WO2013161886A1 - Reciprocating compressor - Google Patents

Reciprocating compressor Download PDF

Info

Publication number
WO2013161886A1
WO2013161886A1 PCT/JP2013/062093 JP2013062093W WO2013161886A1 WO 2013161886 A1 WO2013161886 A1 WO 2013161886A1 JP 2013062093 W JP2013062093 W JP 2013062093W WO 2013161886 A1 WO2013161886 A1 WO 2013161886A1
Authority
WO
WIPO (PCT)
Prior art keywords
bore
passage
drive shaft
cylinder
chamber
Prior art date
Application number
PCT/JP2013/062093
Other languages
French (fr)
Japanese (ja)
Inventor
石川 勉
榎本 安里
聖 寺内
田口 幸彦
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to DE112013002227.3T priority Critical patent/DE112013002227B4/en
Publication of WO2013161886A1 publication Critical patent/WO2013161886A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/109Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1045Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders

Definitions

  • the present invention relates to a reciprocating compressor that compresses a refrigerant, and more particularly to a reciprocating compressor suitable for use in a vehicle air conditioning system.
  • a reciprocating compressor used in a vehicle air conditioning system is well known, and various techniques for improving the circulation state of oil circulated together with a refrigerant have been proposed.
  • Patent Document 1 proposes a technique for separating oil from a refrigerant flowing through a pressure release passage using an oil separator provided on a drive shaft.
  • the pressure release passage (relief passage) has two passages, and the proportion of each of the two passages in the escape passage varies depending on the centrifugal force acting on itself, according to the rotational speed of the drive shaft.
  • An on-off valve is provided.
  • the compressor when the compressor is operating in the low speed or medium speed range, the oil taken out of the compressor is reduced to improve the refrigeration capacity of the air conditioning system, and the compressor is operated in the high speed range. When it is, it is required to prevent a large amount of oil from being stored in the crank chamber.
  • Patent Document 1 attempts to achieve the above-mentioned problem by adding an oil separator and an on-off valve that operates by centrifugal force.
  • this technique has a complicated structure and costs. There is a problem that it increases significantly.
  • an object of the present invention is to reduce the amount of oil taken out of the compressor when the compressor is operated in the low-speed rotation region or the medium-speed rotation region, and when the compressor is operated in the high-speed rotation region.
  • Another object of the present invention is to provide a reciprocating compressor having a simple structure that prevents a large amount of oil from being stored in the tank.
  • Another object of the present invention is to provide a reciprocating compressor in which oil recirculated from the discharge chamber to the crank chamber can actively contribute to lubrication inside the compressor.
  • a reciprocating compressor includes a cylinder block formed with a plurality of cylinder bores arranged in an annular shape, A front housing that closes one end of the cylinder block and defines a crank chamber in cooperation with the cylinder block; A valve plate that closes the other end of the cylinder block and has a discharge hole and a suction hole communicating with the cylinder bore; A cylinder head provided facing the cylinder block across the valve plate and having a discharge chamber and a suction chamber defined; Pistons respectively disposed in a plurality of cylinder bores; A drive shaft whose one end is radially supported by the cylinder block via a sliding bearing; A conversion mechanism that converts the rotation of the drive shaft into the reciprocating motion of the piston; A pressure relief passage communicating the crank chamber and the suction chamber, In the reciprocating compressor that compresses the refrigerant sucked into the cylinder bore from the suction chamber and discharges it to the discharge chamber, A plurality of cylinder bores on the inner side in
  • the recess connected to the crank chamber is provided in the central region in the radial direction of the crank chamber, and the oil is supplied together with the refrigerant at a position higher than the drive shaft of the bottom wall of the recess. Since the pressure release passage is opened as a communication passage that can release the gas to the suction chamber side, the opening of the pressure release passage is located at a position lower than the drive shaft as compared with the case where this recess is not formed. The oil in the crank chamber is less likely to flow out to the suction chamber side as compared to the case where it is provided.
  • the oil is appropriately discharged to the suction chamber side and the oil in the crank chamber is reduced as compared with the low-speed rotation region and the medium-speed rotation region (that is, it is avoided that the oil is excessively stored in the crank chamber). It is avoided that the oil is stirred and sheared by the rotating parts to generate heat and the viscosity of the oil is reduced to deteriorate the lubrication state of the sliding portion inside the compressor. At the same time, the oil can be prevented from flowing out excessively to the suction chamber side and thus to the outside of the compressor, so that the performance of the air conditioning system can be improved.
  • a plurality of cylinder bores forming convex curved surfaces toward the drive shaft form a peripheral wall of the recess
  • a pressure release passage that opens to the bottom wall of the recess Can adopt a structure that opens at a position adjacent to the connection region of the forming wall of the adjacent cylinder bores.
  • the opening end of the pressure release passage can be arranged in the recess at the position farthest from the drive shaft, and the oil adhering to the bottom wall and the peripheral wall can be located adjacent to the connection region. It becomes difficult to flow in, and the outflow of oil to the suction chamber side is further suppressed.
  • the peripheral edge of the opening end of the pressure release passage that opens to the bottom wall of the recess is more than the other region of the bottom wall of the recess adjacent to the peripheral wall of the recess.
  • a structure protruding to the crank chamber side can be adopted.
  • a center bore is formed on the inner side in the compressor radial direction of the plurality of cylinder bores, and the center bore supports the first bore that forms the recess and the second bore that supports the slide bearing.
  • a bore, and a third bore disposed between the second bore and the valve plate, the peripheral wall of the region on the valve plate side being disposed radially outward from the second bore,
  • the pressure relief passage includes a first bore, a first passage that opens in a bottom wall of the first bore and extends toward the suction chamber and communicates with the third bore, a third bore, a third bore, and a suction port
  • the second passage may have a structure that opens to the third bore at a position above the axis of the drive shaft in the direction of gravity.
  • oil can be appropriately stored in the third bore, and the outflow of oil to the suction chamber can be further suppressed. Since the oil stored in the third bore is gradually returned to the crank chamber through a gap between the slide bearing and the outer peripheral surface of the drive shaft, it can contribute to lubrication of the crank chamber.
  • the conversion mechanism includes a swash plate that is slidably attached to the drive shaft so that an inclination angle is variable with respect to the axis of the drive shaft.
  • the dynamic compressor further includes a pressure supply passage that communicates the discharge chamber and the crank chamber, a control valve that adjusts an opening degree of the pressure supply passage, and a throttle disposed in the second passage along the pressure release passage.
  • a variable capacity compressor The first bore, the first passage, and the third bore form a common passage for the pressure supply passage and the pressure relief passage, and the third bore forms a branch space for the pressure supply passage and the pressure relief passage. Therefore, it is possible to adopt a structure in which the aforementioned control valve is arranged in the middle of a pressure supply passage that communicates the third bore and the discharge chamber.
  • the other end of the drive shaft protrudes outward from the front housing, and the other end of the drive shaft is sealed by a shaft seal device attached to the front housing.
  • a shaft seal device attached to the front housing.
  • the front housing is divided by a plane defined by the center between the adjacent cylinder bores and the axis of the drive shaft, the plane is positioned between the open ends of the two lubrication passages on the crank chamber side. Can do.
  • Such a reciprocating compressor according to the present invention is suitable for use in a vehicle air conditioning system, and in that case, in particular, the engine is provided so as to satisfy the opening position of the pressure release passage defined in the present invention. It only has to be attached.
  • the reciprocating compressor when the compressor is operated in the low speed rotation region or the medium speed rotation region, it is possible to suppress excessive oil from being taken out of the compressor.
  • the oil in the crank chamber is appropriately discharged to the suction chamber side through the pressure release passage. The effect of avoiding excessive storage in the crank chamber and aggravation of the lubrication condition inside the compressor due to oil agitation by rotating parts in the crank chamber, heat generation due to shearing, and decrease in oil viscosity Since the oil can be prevented from excessively flowing out of the compressor at the same time, the performance of the air conditioning system can be improved. Further, according to the present invention, it is possible to positively contribute the oil recirculated from the discharge chamber to the crank chamber to the lubrication inside the compressor.
  • FIG. 2 is a partially enlarged longitudinal sectional view of a center bore, a pressure release passage, and a pressure supply passage portion of the compressor of FIG. 1. It is the front view of the cylinder block which looked at the opening position of the pressure release channel
  • FIG. 4 is a partial vertical cross-sectional view of the compressor of FIG. 1 at the bottom dead center position of the swash plate, as viewed from the cross section of the plane W of FIG.
  • FIG. 6A It is a rear view of the front housing seen from the crank chamber side which shows arrangement
  • positioning of the lubrication passage of the compressor of FIG. 6A is a front view of the cylinder block as viewed from the crank chamber side, showing the position A of the communication path shown in FIG. 3 as an embodiment and the position B of the communication path as a comparative example.
  • (B) is a graph showing the relationship between the compressor speed and the oil circulation rate, showing experimental data in the case of positions A and B of the communication path. It is a fragmentary longitudinal cross-section which shows the modification of the bottom wall of the recessed part of the compressor of FIG.
  • FIG. 1 shows a variable capacity compressor 100 used in a vehicle air conditioning system as a reciprocating compressor according to an embodiment of the present invention.
  • the variable capacity compressor 100 is a clutchless compressor, and includes a cylinder block 101 in which a plurality of cylinder bores 101 a arranged in an annular shape and a center bore 101 b arranged radially inside thereof are partitioned, and one end of the cylinder block 101. And a cylinder head 104 provided at the other end of the cylinder block 101 via a valve plate 103.
  • a drive shaft 110 is provided across the crank chamber 140 defined by the cylinder block 101 and the front housing 102, and a swash plate 111 is disposed around the center thereof.
  • the swash plate 111 is connected to a rotor 112 fixed to the drive shaft 110 via a link mechanism 120, and the inclination angle can be changed along the drive shaft 110.
  • the link mechanism 120 includes a first arm 112 a projecting from the rotor 112, a second arm 111 a projecting from the swash plate 111, and one end side rotating with respect to the first arm 112 a via the first connecting pin 122.
  • the link arm 121 is movably connected and the other end is rotatably connected to the second arm 111 a via a second connection pin 123.
  • the through hole 111b of the swash plate 111 is shaped so that the swash plate 111 can tilt within the range of the maximum tilt angle and the minimum tilt angle, and the through hole 111b has a minimum tilt angle restricting portion that contacts the drive shaft 110.
  • the minimum inclination restriction portion of the through hole 111b is formed so that the inclination of the swash plate 111 can be displaced to almost 0 °. ing. Nearly 0 ° indicates a range larger than ⁇ 0.5 ° and smaller than 0.5 °.
  • an inclination decreasing spring 114 that urges the swash plate 111 toward the minimum inclination angle to reach the minimum inclination angle is mounted, and between the swash plate 111 and the spring support member 116.
  • An inclination increasing spring 115 is attached to urge the swash plate 111 in an increasing direction. Since the urging force of the inclination increasing spring 115 is set to be larger than the urging force of the inclination decreasing spring 114 at the minimum inclination angle, the swash plate 111 has the inclination decreasing spring 114 and the inclination increasing spring 115 when the drive shaft 110 is not rotating. It is located at an inclination angle greater than the minimum inclination angle where the urging forces of the two are balanced.
  • One end of the drive shaft 110 is inserted into the center bore 101 b and supported by a slide bearing 131 in the radial direction, and one end surface is supported by a thrust plate 132.
  • the other end side of the drive shaft 110 is supported by a slide bearing 133 in the radial direction, and the rotor 112 fixed to the drive shaft 110 is supported by a bearing 134 in the thrust direction.
  • a gap between one end face of the drive shaft 110 and the thrust plate 132 is adjusted to a predetermined gap by an adjustment screw 135.
  • the other end side of the drive shaft 110 extends through the boss portion 102 a protruding to the outside of the front housing 102 and is connected to the power transmission device 150.
  • a shaft seal device 130 is inserted between the drive shaft 110 and the boss portion 102a to block the inside from the outside. Power from an external drive source (engine) is transmitted to the power transmission device 150, and the drive shaft 110 can rotate in synchronization with the rotation of the power transmission device 150.
  • a piston 136 is disposed in the cylinder bore 101a, and an outer peripheral portion of the swash plate 111 is accommodated in an inner space of an end portion of the piston 136 that protrudes toward the crank chamber 140.
  • the swash plate 111 includes a pair of shoes 137.
  • the piston 136 is linked. Therefore, the piston 136 can reciprocate in the cylinder bore 101a by the rotation of the swash plate 111.
  • the cylinder head 104 is formed with a suction chamber 141 and a discharge chamber 142 annularly surrounding the suction chamber 141 at the center.
  • the suction chamber 141 has a suction hole 103a provided in the valve plate 103 and a suction hole 103a.
  • the discharge chamber 142 communicates with the cylinder bore 101 a via a discharge valve (not shown) and a discharge hole 103 b provided in the valve plate 103.
  • the front housing 102, the cylinder block 101, the valve plate 103, and the cylinder head 104 are fastened by a plurality of through bolts 105 via a gasket (not shown) to form a compressor housing.
  • a suction passage 104a is formed in the cylinder head 104, and the suction chamber 141 is connected to the suction side refrigerant circuit of the air conditioning system via the suction passage 104a.
  • a discharge passage (not shown) is formed in the cylinder head 104, and the discharge chamber 142 is connected to the discharge-side refrigerant circuit of the air conditioning system via the discharge passage.
  • a check valve (not shown) is arranged in the middle of the discharge passage. The check valve operates in response to a pressure difference between the upstream side (discharge chamber 142) and the downstream side (discharge side refrigerant circuit). When the pressure difference is smaller than a predetermined value, the discharge passage is blocked and the pressure difference is predetermined. When larger than the value, the discharge passage is opened.
  • the cylinder head 104 is further provided with a control valve 300.
  • the control valve 300 adjusts the opening of the pressure supply passage 145 that connects the discharge chamber 142 and the crank chamber 140 to control the amount of discharge gas introduced into the crank chamber 140.
  • the pressure of the suction chamber 141 is guided to the control valve 300 through the communication path 146, and the control valve 300 operates in response to the pressure of the suction chamber 141 and the energization amount of the built-in solenoid.
  • the refrigerant in the crank chamber 140 flows to the suction chamber 141 via the pressure release passage 147, and an orifice 103 c formed in the valve plate 103 is disposed in the pressure release passage 147.
  • variable capacity compressor 100 can be variably controlled by changing the pressure of the crank chamber 140 by the control valve 300 and changing the inclination angle of the swash plate 111, that is, the stroke of the piston 136.
  • the energization amount of the solenoid built in the control valve 300 is adjusted based on the external signal, and the discharge capacity is adjusted so that the pressure in the suction chamber 141 becomes a predetermined value.
  • the control valve 300 can optimally control the suction pressure according to the external environment.
  • the pressure supply passage 145 is forcibly opened by turning off the energization of the solenoid built in the control valve 300, and the discharge capacity of the variable displacement compressor 100. Control to a minimum.
  • variable capacity compressor 100 is attached to the vehicle engine via attachment portions 102b and 104b having bolt insertion holes for attaching the front housing 102 and the cylinder head 104 to the vehicle engine side.
  • Various vertical positional relationships in the present invention are satisfied in a state where the engine is attached to the engine.
  • the center bore 101b formed in the cylinder block 101 includes a first bore 101b1 connected to the crank chamber 140, a second bore 101b2 supporting the slide bearing 131, and a second bore.
  • a third bore 101b3 is provided between the bore 101b2 and the valve plate 103, and a peripheral wall of a region on the valve plate 103 side is arranged radially outside the second bore 101b2.
  • a pressure release passage 147 that connects the crank chamber 140 and the suction chamber 141 opens in the first bore 101b1, the bottom wall 101c of the first bore 101b1, and communicates with the third bore 101b3, and the third bore 101b3.
  • the second passage 148 is a member (suction valve) disposed between the third bore 101b3 and the suction chamber 141. If the through hole is formed in the suction valve forming plate, the valve plate 103, the discharge valve forming plate in which the discharge valve is formed, and the gasket), it can be easily formed.
  • the orifice 103 c serving as a throttle disposed in the second passage 148 is formed in the valve plate 103 in this embodiment, but may be formed in another member that forms the second passage 148.
  • the first bore 101b1 is formed on the inner side of the plurality of cylinder bores 101a, and each forming wall (101b11, 101b12,...) (FIG. 3) of the cylinder bore having a convex curved surface toward the drive shaft forms a peripheral wall. It is a recessed part comprised by the bottom wall 101c connected to 101b2.
  • FIG. 3 shows a state in which a plurality of cylinder bores 101a are viewed from the crank chamber 140 side (left direction in FIG. 1).
  • U is a plane T defined by the end faces on the engine side of the mounting portions (102b and 104b).
  • the plane is parallel and includes the axis O of the drive shaft
  • V is a plane orthogonal to the plane U and including the axis O of the drive shaft.
  • the vertical direction of the plane U (and plane T) in the figure is substantially coincident with the direction of gravity when the variable capacity compressor 100 is mounted on the engine.
  • the plane U is often slightly inclined with respect to the direction of gravity. However, since the inclination is within 30 °, for example, the plane U (and plane T) may be regarded as the direction of gravity. Absent.
  • W is the highest cylinder bore 101a1 on the upper side in the direction of internal gravity of the plurality of cylinder bores 101a, the center between one cylinder bore 101a2 adjacent to the cylinder bore 101a1, and the axis O of the drive shaft 110 (sliding bearing 131). It is a plane defined by In addition, the cross section inside the compressor of FIG. 1 (and FIG. 2) is a cut surface of the plane W.
  • the opening end on the crank chamber 140 side of the first passage 101d is above the drive shaft 110 in the gravitational direction, is on the intersection line between the plane W and the bottom wall 101c of the recess (first bore 101b1), and is adjacent thereto.
  • the cylinder bore forming wall (101b11, 101b12) is opened at a position adjacent to the connection region 101e.
  • the second passage 148 opens to the third bore 101b2 above the plane V in the gravity direction.
  • the pressure supply passage 145 that connects the discharge chamber 142 and the crank chamber 140 includes the third passage 145a, the third bore 101b3, and the first passage that connect the discharge chamber 142 and the third bore 101b3. 101d and a first bore 101b1.
  • the control valve 300 is disposed in the cylinder head 104 in the middle of the third passage 145a.
  • first bore 101b1, the first passage 101d, and the third bore 101b3 are a common passage for the pressure supply passage 145 and the pressure release passage 147
  • the third bore 101b3 is the pressure supply passage 145 and the pressure release passage. 147 branch space.
  • the third passage 145a opens to the third bore 101b3 below the plane V in the direction of gravity.
  • the hole diameter is set to about 5 to 8 mm, for example, larger than the hole diameter in the case of unidirectional flow.
  • the first bore 101b1 is recessed from the crank chamber 140 and exists in the central region in the radial direction of the crank chamber 140, so that the first bore 101b1 is an oil-poor region than the crank chamber 140.
  • the opening end of the first passage 101d on the crank chamber 140 side is disposed above the bottom wall 101c in the gravitational direction, and oil attached to the bottom wall and the peripheral wall is difficult to flow in.
  • the opening end of the first passage 101d on the crank chamber 140 side is on the line of intersection between the plane W and the bottom wall 101c, it can be placed farthest away from the drive shaft 110, and the oil attached to the bottom wall and the peripheral wall further flows in Hard to do.
  • the cylinder bore forming wall (101b11,...) Is a curved surface convex toward the drive shaft 110, and the oil adhering to the cylinder bore forming walls 101b11, 101b12 passes from the connection region 101e along the convex curved surface. It becomes difficult for oil to flow into the opening end on the crank chamber 140 side of the first passage 101d that moves in the left-right direction and is directly below the connection region 101e.
  • the oil that has flowed into the first passage 101d is once stored in the third bore 101b3, the oil is prevented from flowing out into the suction chamber 141.
  • the oil stored in the third bore 101b3 is gradually returned to the crank chamber 140 through a minute gap between the outer peripheral surface of the drive shaft 110 and the sliding bearing 131.
  • variable capacity compressor 100 when the variable capacity compressor 100 is operated in the low speed rotation region (including the medium speed rotation region), the degree of stirring of the refrigerant and oil in the crank chamber 140 by the rotating parts such as the swash plate 111 and the piston 136 Therefore, the oil in the crank chamber 140 is suppressed from flowing into the first passage 101d, the oil in the crank chamber 140 is secured, and the sliding portion is effectively lubricated. At the same time, the outflow of oil to the suction chamber 141, that is, the outflow of oil to the outside of the compressor is suppressed, which contributes to improving the performance of the air conditioning system.
  • variable capacity compressor 100 when the variable capacity compressor 100 is operated in the high-speed rotation region, the degree of stirring of the refrigerant / oil in the crank chamber 140 by the rotating parts such as the swash plate 111 and the piston 136 is higher than that in the low-speed rotation region. It becomes stronger and the oil in the crank chamber 140 tends to flow into the first passage 101d, so that the oil secured in the crank chamber 140 is less than in the low-speed rotation region and the oil is excessively stored in the crank chamber 140. This prevents the oil from flowing out excessively into the suction chamber. Therefore, the oil is agitated and sheared by the rotating parts such as the swash plate 111 to generate heat, and the viscosity of the oil does not decrease and the lubrication state of the sliding portion inside the compressor does not deteriorate.
  • the discharge gas flows into the crank chamber 140 via the third passage 145a, the third bore 101b3, the first passage 101d, and the first bore 101b1, but since the discharge gas contains oil, the discharge gas is jetted. The oil splashes along and lubricates the sliding part.
  • the opening end of the first passage 101d on the crank chamber 140 side is disposed at the highest position on the upper side in the direction of gravity in the bottom wall 101c, and thereby a position close to the sliding surface between the swash plate 111 and the shoe 137.
  • the oil scatters along the jet of the discharge gas, and contributes to the lubrication of the sliding surface between the swash plate 111 and the shoe 137 on the compression side.
  • FIG. 4 shows a state in which the inside of the variable capacity compressor 100 is cut along the plane W, and the bottom dead center position of the swash plate 111 coincides with the plane W.
  • the axis of the first passage 101d coincides with the plane W.
  • the bottom dead center position of the swash plate 111 refers to a position where the suction process by the piston 136 ends.
  • the direction is changed in the upward direction in the figure, and the sliding surface between the surface of the swash plate 111 on the compression side and the shoe 137 is lubricated. Since the plane W is between the adjacent shoes 137 and the piston 136, a part of the injected discharge gas passes between the adjacent shoes 137 and the piston 136 and collides with the inner wall of the crank chamber 140, and the front housing 102. It becomes a flow toward the bottom wall 102c and contributes to lubrication of the bearing 134.
  • two lubrication passages 102d1 and 102d2 are formed in the bottom wall 102c of the front housing 102 toward the space in which the shaft seal device 130 is accommodated, and the plane W has two open ends. (Oil capture groove) Since it is between 102e1 and 102e2, in the region where the bottom dead center position of the swash plate 111 is close to the plane W, the oil contained in the jet of the discharge gas is captured by the two oil capture grooves 102e1 and 102e2. This also contributes to lubrication of the shaft seal device 130.
  • variable capacity compressor 100 when the variable capacity compressor 100 is operated in the low speed rotation region or the medium speed rotation region and gas is flowing from the crank chamber 140 to the suction chamber 141, oil in the crank chamber 140 is secured, Lubrication of the sliding part is performed effectively, and the outflow of oil to the outside of the compressor is suppressed, which contributes to improving the performance of the air conditioning system.
  • the oil in the crank chamber 140 when operating in the high speed rotation region, the oil in the crank chamber 140 is reduced as compared with the case of the low speed rotation region or the medium speed rotation region, but excessively flowing out is suppressed, and the rotation of the swash plate 111 etc.
  • the oil is stirred and sheared by the parts to generate heat, and the viscosity of the oil does not decrease and the lubrication state of the sliding part inside the compressor does not deteriorate.
  • the oil contained in the discharge gas not only lubricates the sliding surface of the compression-side swash plate 111 and the shoe 137 but also the shaft seal device 130. Also contributes to lubrication.
  • variable displacement compressor 100 When the variable displacement compressor 100 is in the discharge capacity control state and the opening degree of the control valve 300 is an arbitrary opening degree between fully closed and fully open, the controlled amount of discharge gas flows into the third bore 101b3. Therefore, a bidirectional flow is generated in the common passage of the pressure supply passage 145 and the pressure release passage 147 depending on the amount of discharge gas introduced, thereby changing the pressure of the crank chamber 140, the inclination angle of the swash plate 111, That is, the discharge capacity can be variably controlled by changing the stroke of the piston 136.
  • FIG. 6B shows the oil circulation rate with respect to the refrigerant circulation amount flowing through the air conditioning system when the variable capacity compressor 100 is operated in the test facility, and the position A in FIG. The position of the 1st communicating path 101d is shown, and the position B has shown the position of the 1st communicating path as a comparative example.
  • the position B is a state in which the first communication path is disposed on the lowermost side in the direction of gravity in the bottom wall 101c.
  • the oil circulation rate is clearly smaller at all compressor speeds than when it is at position B. It was confirmed that the oil spillage was suppressed and contributed to improving the performance of the air conditioning system.
  • the oil circulation rate is desirably 1% or less from the viewpoint of the performance of the air conditioning system. However, according to the present invention, it has been confirmed that an oil circulation rate of 1% or less can be achieved in the normal rotation speed range (idling equivalent rotation speed to 3000 rpm). It was.
  • the oil circulation rate is increased as compared with the rotation speed region of 800 rpm and 3000 rpm, the oil is not excessively stored in the crank chamber, and excessively outside the compressor. It was also confirmed that the oil spill was suppressed.
  • Table 1 shows the test conditions in the air conditioning system (at least the air conditioning system including the compressor and the evaporator).
  • the plane U is at the center between the cylinder bores 101a1 and 101a2, but this may be the plane U defined by the center between the cylinder bores 101a1 and 101a3 (FIG. 3) and the axis of the drive shaft.
  • the bottom wall 101c of the recess may be uneven.
  • the peripheral edge 101c1 of the opening end of the first passage 101d opening in the bottom wall 101c of the recess is directed toward the crank chamber 140 from the other bottom wall region 101c2 (particularly the region close to the peripheral wall). You may make it protrude. This makes it difficult for oil attached to the other bottom wall region 101c2 to flow into the opening end of the first passage 101d, and further suppresses the oil from flowing into the suction chamber 141.
  • a common passage is formed between the pressure supply passage 145 and the pressure release passage 147.
  • the pressure supply passage and the pressure release passage are separately provided. It is good also as a variable capacity compressor currently formed.
  • the clutchless compressor is used in the above-described embodiment, a compressor using an electromagnetic clutch may be used.
  • the present invention can also be applied to a fixed capacity compressor.
  • the reciprocating compressor according to the present invention can be applied to any reciprocating compressor that compresses refrigerant, and is particularly suitable as a compressor used in a vehicle air conditioning system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

[Problem] To provide a reciprocating compressor having a simple structure, the reciprocating compressor being configured in such a manner that, in a low-speed rotation region, the amount of oil carried to the outside of the compressor is small and that, in a high-speed rotation region, a large amount of oil is not stored in a crank chamber. [Solution] A reciprocating compressor is provided with a pressure release passage for connecting a crank chamber and a suction chamber. The reciprocating compressor is characterized in that: a recess connecting to the crank chamber and comprising a peripheral wall and a bottom wall is provided on the inside of cylinder bores in the radial direction of the compressor; and the pressure release passage is open on a line connecting the bottom wall of the recess and a plane defined by both the axis of the drive shaft and the center between a cylinder bore which is above a drive shaft in the gravitational direction and which, among the cylinder bores, is located at the highest position on the upper side in the gravitational direction, and a cylinder bore adjacent to the cylinder bore.

Description

往復動圧縮機Reciprocating compressor
 本発明は、冷媒を圧縮する往復動圧縮機に関し、特に車両用空調システムに用いて好適な往復動圧縮機に関する。
 車両用空調システムに使用される往復動圧縮機はよく知られており、冷媒とともに循環されるオイルの循環状態を改善するための技術も各種提案されている。例えば特許文献1には、駆動軸に設けられたオイルセパレータにより、放圧通路を流れる冷媒からオイルを分離する技術が提案されている。この提案構造においては、放圧通路(逃し通路)は2つの通路を有し、駆動軸の回転数に応じて、2つの通路のそれぞれの逃し通路に占める割合を自身に作用する遠心力により変化させるようにした開閉弁を備えている。
The present invention relates to a reciprocating compressor that compresses a refrigerant, and more particularly to a reciprocating compressor suitable for use in a vehicle air conditioning system.
A reciprocating compressor used in a vehicle air conditioning system is well known, and various techniques for improving the circulation state of oil circulated together with a refrigerant have been proposed. For example, Patent Document 1 proposes a technique for separating oil from a refrigerant flowing through a pressure release passage using an oil separator provided on a drive shaft. In this proposed structure, the pressure release passage (relief passage) has two passages, and the proportion of each of the two passages in the escape passage varies depending on the centrifugal force acting on itself, according to the rotational speed of the drive shaft. An on-off valve is provided.
特開2009-209682号公報JP 2009-209682 A
  クランク室内に多量のオイルがある状態で圧縮機が高速回転領域で運転されると、斜板等の回転部品によってオイルが攪拌、せん断されて発熱し、オイルの粘性が低下して圧縮機内部の摺動部位の潤滑状態が悪化する。 When the compressor is operated in the high-speed rotation region with a large amount of oil in the crank chamber, the oil is agitated and sheared by rotating parts such as a swash plate to generate heat, and the viscosity of the oil decreases and the internal pressure of the compressor decreases. The lubrication state of the sliding part is deteriorated.
  したがって、圧縮機が低速回転領域あるいは中速回転領域で運転されているときは圧縮機外に持ち出されるオイルを低減して空調システムの冷凍能力を向上させ、圧縮機が高速回転領域で運転されているときはクランク室内部に多量のオイルが貯留されないようにすることが求められている。 Therefore, when the compressor is operating in the low speed or medium speed range, the oil taken out of the compressor is reduced to improve the refrigeration capacity of the air conditioning system, and the compressor is operated in the high speed range. When it is, it is required to prevent a large amount of oil from being stored in the crank chamber.
  上記特許文献1に示された技術は、オイルセパレータ及び遠心力で動作する開閉弁を付加して上述の課題を達成しようとするものであるが、この手法には、構造が複雑で、コストが著しく増大してしまうという問題がある。 The technique disclosed in Patent Document 1 attempts to achieve the above-mentioned problem by adding an oil separator and an on-off valve that operates by centrifugal force. However, this technique has a complicated structure and costs. There is a problem that it increases significantly.
  また、特許文献1に示された技術では、圧力供給通路(給気通路)を経由して吐出室からクランク室に流入する冷媒に含まれるオイルによって積極的に圧縮機内部の摺動部位を潤滑することは何ら考慮されていない。吐出室からクランク室に還流されたオイルによる潤滑にはまだ改善の余地がある。 In the technique disclosed in Patent Document 1, the sliding portion inside the compressor is actively lubricated by oil contained in the refrigerant flowing from the discharge chamber into the crank chamber via the pressure supply passage (supply passage). There is no consideration to do. There is still room for improvement in lubrication with the oil recirculated from the discharge chamber to the crank chamber.
  そこで本発明の課題は、圧縮機が低速回転領域あるいは中速回転領域で運転されているときには圧縮機外に持ち出されるオイルが少なく、かつ圧縮機が高速回転領域で運転されているときにはクランク室内部に多量のオイルが貯留されないようにした、簡易な構造の往復動圧縮機を提供することにある。 Accordingly, an object of the present invention is to reduce the amount of oil taken out of the compressor when the compressor is operated in the low-speed rotation region or the medium-speed rotation region, and when the compressor is operated in the high-speed rotation region. Another object of the present invention is to provide a reciprocating compressor having a simple structure that prevents a large amount of oil from being stored in the tank.
  また、本発明は、吐出室からクランク室に還流されたオイルを圧縮機内部の潤滑に積極的に寄与させることができるようにした往復動圧縮機を提供することも課題とする。 Also, another object of the present invention is to provide a reciprocating compressor in which oil recirculated from the discharge chamber to the crank chamber can actively contribute to lubrication inside the compressor.
  上記課題を解決するために、本発明に係る往復動圧縮機は、環状に配列された複数のシリンダボアが形成されたシリンダブロックと、
  シリンダブロックの一端側を閉塞し、シリンダブロックとの協働によりクランク室を画成するフロントハウジングと、
  シリンダブロックの他端側を閉塞し、シリンダボアと連通する吐出孔及び吸入孔が形成されたバルブプレートと、
  バルブプレートを挟んでシリンダブロックと対向して設けられ吐出室と吸入室とが区画形成されたシリンダヘッドと、
  複数のシリンダボアにそれぞれ配設されたピストンと、
  一端側が滑り軸受を介してシリンダブロックにラジアル支持された駆動軸と、
  駆動軸の回転をピストンの往復運動に変換する変換機構と、
  クランク室と吸入室とを連通する放圧通路と、を備え、
  吸入室からシリンダボアに吸入された冷媒を圧縮して吐出室に吐出する往復動圧縮機において、
  複数のシリンダボアの圧縮機径方向内側にはクランク室と接続し周壁と底壁によって形成された凹部が設けられ、
  前記放圧通路は、駆動軸よりも重力方向の上側の位置であって、複数のシリンダボアのうち重力方向の上側の最も高い位置にあるシリンダボアとこのシリンダボアに隣接したいずれか一方のシリンダボア間の中心と駆動軸の軸線とで規定される平面と、前記凹部の底壁との交線上に開口していることを特徴とするものからなる。
In order to solve the above problems, a reciprocating compressor according to the present invention includes a cylinder block formed with a plurality of cylinder bores arranged in an annular shape,
A front housing that closes one end of the cylinder block and defines a crank chamber in cooperation with the cylinder block;
A valve plate that closes the other end of the cylinder block and has a discharge hole and a suction hole communicating with the cylinder bore;
A cylinder head provided facing the cylinder block across the valve plate and having a discharge chamber and a suction chamber defined;
Pistons respectively disposed in a plurality of cylinder bores;
A drive shaft whose one end is radially supported by the cylinder block via a sliding bearing;
A conversion mechanism that converts the rotation of the drive shaft into the reciprocating motion of the piston;
A pressure relief passage communicating the crank chamber and the suction chamber,
In the reciprocating compressor that compresses the refrigerant sucked into the cylinder bore from the suction chamber and discharges it to the discharge chamber,
A plurality of cylinder bores on the inner side in the compressor radial direction are provided with a recess formed by a peripheral wall and a bottom wall connected to the crank chamber,
The pressure relief passage is located above the drive shaft in the gravity direction, and is the center between the cylinder bore at the highest position above the gravity direction among the plurality of cylinder bores and any one of the cylinder bores adjacent to the cylinder bore. And a plane defined by the axis of the drive shaft and the bottom wall of the recess.
  このような本発明に係る往復動圧縮機においては、クランク室と接続する凹部がクランク室の径方向中心領域に設けられ、この凹部の底壁の駆動軸よりも上位の位置に、冷媒とともにオイルを吸入室側に逃がすことが可能な連通路としての放圧通路が開口されているので、この凹部が形成されていない場合に比べて、さらに放圧通路の開口が駆動軸よりも下位の位置に設けられている場合に比べて、クランク室内のオイルは吸入室側には流出しにくくなる。したがって、往復動圧縮機が低速回転領域や中速回転領域で運転されており、クランク室内の回転部品による冷媒・オイルの攪拌の程度が弱いときには、クランク室内にオイルが十分に確保されて圧縮機内部の摺動部位の潤滑が効果的に行なわれると共に、吸入室側を介しての圧縮機外へのオイルの過度の流出が抑制されて空調システムの性能向上に寄与することが可能になる。また、圧縮機が高速回転領域で運転されており、クランク室内の冷媒・オイルの攪拌の程度が上記低速回転領域や中速回転領域の場合よりも強くなるときには、オイルが放圧通路を介して適度に吸入室側に流出され、クランク室内のオイルが低速回転領域や中速回転領域の場合より減少するので(つまり、オイルが過度にクランク室内に貯留されることが回避され)、斜板等の回転部品によってオイルが攪拌、せん断されて発熱し、オイルの粘性が低下して圧縮機内部の摺動部位の潤滑状態が悪化することが回避される。このとき同時に、オイルが吸入室側に、ひいては圧縮機外に、過度に流出することも抑制されるので、空調システムの性能向上もはかられる。 In such a reciprocating compressor according to the present invention, the recess connected to the crank chamber is provided in the central region in the radial direction of the crank chamber, and the oil is supplied together with the refrigerant at a position higher than the drive shaft of the bottom wall of the recess. Since the pressure release passage is opened as a communication passage that can release the gas to the suction chamber side, the opening of the pressure release passage is located at a position lower than the drive shaft as compared with the case where this recess is not formed. The oil in the crank chamber is less likely to flow out to the suction chamber side as compared to the case where it is provided. Therefore, when the reciprocating compressor is operated in the low-speed rotation region or the medium-speed rotation region, and the degree of stirring of the refrigerant / oil by the rotating parts in the crank chamber is weak, sufficient oil is secured in the crank chamber. Lubrication of the internal sliding portion is effectively performed, and excessive oil outflow to the outside of the compressor via the suction chamber side is suppressed, which can contribute to improvement of the performance of the air conditioning system. Further, when the compressor is operated in the high speed rotation region and the degree of stirring of the refrigerant / oil in the crank chamber becomes stronger than that in the low speed rotation region and the medium speed rotation region, the oil passes through the pressure release passage. Since the oil is appropriately discharged to the suction chamber side and the oil in the crank chamber is reduced as compared with the low-speed rotation region and the medium-speed rotation region (that is, it is avoided that the oil is excessively stored in the crank chamber). It is avoided that the oil is stirred and sheared by the rotating parts to generate heat and the viscosity of the oil is reduced to deteriorate the lubrication state of the sliding portion inside the compressor. At the same time, the oil can be prevented from flowing out excessively to the suction chamber side and thus to the outside of the compressor, so that the performance of the air conditioning system can be improved.
  上記本発明に係る往復動圧縮機においては、駆動軸に向かって凸曲面をなす複数のシリンダボアの形成壁が、上記凹部の周壁を形成しており、上記凹部の底壁に開口する放圧通路は、上記隣り合うシリンダボアの形成壁の接続領域に隣接した位置に開口している構造を採ることができる。 In the reciprocating compressor according to the present invention, a plurality of cylinder bores forming convex curved surfaces toward the drive shaft form a peripheral wall of the recess, and a pressure release passage that opens to the bottom wall of the recess Can adopt a structure that opens at a position adjacent to the connection region of the forming wall of the adjacent cylinder bores.
  このような構造を採用すれば、凹部内において放圧通路の開口端を駆動軸から最も遠ざかった位置に配置でき、また上記接続領域に隣接した位置であるので底壁や周壁に付着したオイルが流入しにくくなり、吸入室側へのオイルの流出がより抑制される。 If such a structure is adopted, the opening end of the pressure release passage can be arranged in the recess at the position farthest from the drive shaft, and the oil adhering to the bottom wall and the peripheral wall can be located adjacent to the connection region. It becomes difficult to flow in, and the outflow of oil to the suction chamber side is further suppressed.
  また、上記本発明に係る往復動圧縮機においては、上記凹部の底壁に開口する放圧通路の開口端の周縁が、上記凹部の周壁に隣接した上記凹部の底壁の他の領域よりもクランク室側に突出している構造を採ることができる。 In the reciprocating compressor according to the present invention, the peripheral edge of the opening end of the pressure release passage that opens to the bottom wall of the recess is more than the other region of the bottom wall of the recess adjacent to the peripheral wall of the recess. A structure protruding to the crank chamber side can be adopted.
  このような構造を採用すれば、放圧通路の開口端に凹部の底壁の他の領域に付着したオイルが流入し難くなり、吸入室へのオイルの流出がさらに抑制される。 If such a structure is adopted, it becomes difficult for oil attached to other regions of the bottom wall of the recess to flow into the open end of the pressure release passage, and oil outflow to the suction chamber is further suppressed.
  また、上記本発明に係る往復動圧縮機においては、複数のシリンダボアの圧縮機径方向内側にはセンタボアが形成され、センタボアは、上記凹部をなす第1ボアと、上記滑り軸受を支持する第2ボアと、第2ボアとバルブプレートとの間に配置され、バルブプレート側の領域の周壁が第2ボアより径方向外側に配置された第3ボアと、を備え、
  上記放圧通路は、第1ボアと、第1ボアの底壁に開口し吸入室に向かって延設されて第3ボアと連通する第1通路と、第3ボアと、第3ボアと吸入室とを連通する第2通路と、を備え、
  上記第2通路は駆動軸の軸線よりも重力方向の上側の位置で第3ボアに開口している構造を採ることができる。
In the reciprocating compressor according to the present invention, a center bore is formed on the inner side in the compressor radial direction of the plurality of cylinder bores, and the center bore supports the first bore that forms the recess and the second bore that supports the slide bearing. A bore, and a third bore disposed between the second bore and the valve plate, the peripheral wall of the region on the valve plate side being disposed radially outward from the second bore,
The pressure relief passage includes a first bore, a first passage that opens in a bottom wall of the first bore and extends toward the suction chamber and communicates with the third bore, a third bore, a third bore, and a suction port A second passage communicating with the chamber,
The second passage may have a structure that opens to the third bore at a position above the axis of the drive shaft in the direction of gravity.
  このような構造を採用すれば、第3ボアにオイルを適度に貯留することができ、吸入室へのオイルの流出がさらに一層抑制できる。この第3ボアに貯留されたオイルは滑り軸受と駆動軸の外周面との隙間を介して徐々にクランク室に還流されるので、クランク室の潤滑に寄与することができる。 If such a structure is adopted, oil can be appropriately stored in the third bore, and the outflow of oil to the suction chamber can be further suppressed. Since the oil stored in the third bore is gradually returned to the crank chamber through a gap between the slide bearing and the outer peripheral surface of the drive shaft, it can contribute to lubrication of the crank chamber.
  また、上記本発明に係る往復動圧縮機においては、上記変換機構は駆動軸の軸線に対して傾角が可変となるように駆動軸に摺動自在に取り付けられた斜板を備えており、往復動圧縮機は、さらに吐出室とクランク室とを連通する圧力供給通路と、圧力供給通路の開度を調整する制御弁と、放圧通路の途上の前記第2通路に配設された絞りと、を備えた可変容量型の圧縮機であって、
  上記第1ボア、上記第1通路及び上記第3ボアは圧力供給通路と放圧通路の共通の通路を形成しているとともに、第3ボアが圧力供給通路と放圧通路の分岐空間を形成しており、第3ボアと吐出室とを連通する圧力供給通路の途上に前述の制御弁が配設されている構造を採ることができる。
In the reciprocating compressor according to the present invention, the conversion mechanism includes a swash plate that is slidably attached to the drive shaft so that an inclination angle is variable with respect to the axis of the drive shaft. The dynamic compressor further includes a pressure supply passage that communicates the discharge chamber and the crank chamber, a control valve that adjusts an opening degree of the pressure supply passage, and a throttle disposed in the second passage along the pressure release passage. , A variable capacity compressor,
The first bore, the first passage, and the third bore form a common passage for the pressure supply passage and the pressure relief passage, and the third bore forms a branch space for the pressure supply passage and the pressure relief passage. Therefore, it is possible to adopt a structure in which the aforementioned control valve is arranged in the middle of a pressure supply passage that communicates the third bore and the discharge chamber.
  このような構造を採用すれば、吐出室からクランク室へガスが流れている時は、吐出ガスに含まれるオイルは圧縮側の斜板の面とシューとの摺動面の潤滑に直接的に寄与するとともに、フロントハウジング側の特定の部位の潤滑にも寄与することができる。 If such a structure is adopted, when gas flows from the discharge chamber to the crank chamber, the oil contained in the discharge gas directly contributes to the lubrication of the sliding surface of the compression-side swash plate and the shoe. This contributes to lubrication of a specific part on the front housing side.
  また、上記本発明に係る往復動圧縮機においては、駆動軸の他端はフロントハウジングから外側に突出して駆動軸の他端側はフロントハウジングに装着された軸封装置により封止され、フロントハウジングには軸封装置を潤滑するための潤滑通路が2つ形成されており、
  上記隣り合うシリンダボア間の中心と駆動軸の軸線とで規定される平面でフロントハウジングを分けたとき、この平面は上記2つの潤滑通路のクランク室側の開口端の間に位置する構造を採ることができる。
In the reciprocating compressor according to the present invention, the other end of the drive shaft protrudes outward from the front housing, and the other end of the drive shaft is sealed by a shaft seal device attached to the front housing. Has two lubrication passages for lubricating the shaft seal device,
When the front housing is divided by a plane defined by the center between the adjacent cylinder bores and the axis of the drive shaft, the plane is positioned between the open ends of the two lubrication passages on the crank chamber side. Can do.
  このような構造を採用すれば、吐出ガスに含まれるオイルが軸封装置に効率よく効果的に供給されるので、軸封装置の潤滑に寄与することができる。 If such a structure is adopted, oil contained in the discharge gas is efficiently and effectively supplied to the shaft seal device, which can contribute to lubrication of the shaft seal device.
  このような本発明に係る往復動圧縮機は、車両用空調システムに使用されて好適なものであり、その場合に、とくに本発明で規定した放圧通路の開口位置を満足するようにエンジンに取り付けられればよい。 Such a reciprocating compressor according to the present invention is suitable for use in a vehicle air conditioning system, and in that case, in particular, the engine is provided so as to satisfy the opening position of the pressure release passage defined in the present invention. It only has to be attached.
  このように、本発明に係る往復動圧縮機によれば、圧縮機が低速回転領域や中速回転領域で運転されているときには圧縮機外に過度にオイルが持ち出されるのを抑えて空調シス テムの性能向上に寄与することが可能になり、圧縮機が高速回転領域で運転されているときには、クランク室内のオイルが放圧通路を介して適度に吸入室側に流出されるようにし、オイルが過度にクランク室内に貯留されることを回避して、クランク室内での回転部品によるオイルの攪拌、せん断による発熱、オイルの粘性低下に起因して圧縮機内部の潤滑状態が悪化することを、効果的に回避でき、同時に、オイルが圧縮機外に過度に流出することも抑制できるため、空調システムの性能向上をはかることができる。また、本発明では、吐出室からクランク室に還流されたオイルを圧縮機内部の潤滑に積極的に寄与させることも可能になる。 As described above, according to the reciprocating compressor according to the present invention, when the compressor is operated in the low speed rotation region or the medium speed rotation region, it is possible to suppress excessive oil from being taken out of the compressor. When the compressor is operated in the high-speed rotation region, the oil in the crank chamber is appropriately discharged to the suction chamber side through the pressure release passage. The effect of avoiding excessive storage in the crank chamber and aggravation of the lubrication condition inside the compressor due to oil agitation by rotating parts in the crank chamber, heat generation due to shearing, and decrease in oil viscosity Since the oil can be prevented from excessively flowing out of the compressor at the same time, the performance of the air conditioning system can be improved. Further, according to the present invention, it is possible to positively contribute the oil recirculated from the discharge chamber to the crank chamber to the lubrication inside the compressor.
本発明の一実施態様に係る往復動圧縮機としての可変容量圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the variable capacity compressor as a reciprocating compressor which concerns on one embodiment of this invention. 図1の圧縮機のセンタボア、放圧通路及び圧力供給通路部分の部分拡大縦断面図である。FIG. 2 is a partially enlarged longitudinal sectional view of a center bore, a pressure release passage, and a pressure supply passage portion of the compressor of FIG. 1. 図1の圧縮機の放圧通路の開口位置を示す、シリンダボアをクランク室側から見たシリンダブロックの正面図である。It is the front view of the cylinder block which looked at the opening position of the pressure release channel | path of the compressor of FIG. 1 which looked at the cylinder bore from the crank chamber side. 図3の平面Wの断面で見た、斜板の下死点位置における図1の圧縮機の部分縦断面図である。FIG. 4 is a partial vertical cross-sectional view of the compressor of FIG. 1 at the bottom dead center position of the swash plate, as viewed from the cross section of the plane W of FIG. 図1の圧縮機の潤滑通路の配置を示す、クランク室側から見たフロントハウジングの背面図である。It is a rear view of the front housing seen from the crank chamber side which shows arrangement | positioning of the lubrication passage of the compressor of FIG. 図6(A)は実施例としての図3に示した連通路の位置Aと比較例としての連通路の位置Bとを示す、クランク室側から見たシリンダブロックの正面図であり、図6(B)は連通路の位置A、Bの場合の実験データを示す、圧縮機回転数とオイル循環率との関係を表したグラフである。6A is a front view of the cylinder block as viewed from the crank chamber side, showing the position A of the communication path shown in FIG. 3 as an embodiment and the position B of the communication path as a comparative example. (B) is a graph showing the relationship between the compressor speed and the oil circulation rate, showing experimental data in the case of positions A and B of the communication path. 図1の圧縮機の凹部の底壁の変形例を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows the modification of the bottom wall of the recessed part of the compressor of FIG.
  以下に、本発明の実施の形態について、図面を参照しながら説明する。
 (1)圧縮機全体構成(図1)
  図1は、本発明の一実施態様に係る往復動圧縮機としての、車両用空調システムに使用される可変容量圧縮機100を示している。可変容量圧縮機100はクラッチレス圧縮機であって、環状に配列された複数のシリンダボア101aとその径方向内側に配置されたセンタボア101bとが区画形成されたシリンダブロック101と、シリンダブロック101の一端に設けられたフロントハウジング102と、シリンダブロック101の他端にバルブプレート103を介して設けられたシリンダヘッド104とを備えている。
Embodiments of the present invention will be described below with reference to the drawings.
(1) Overall compressor configuration (Fig. 1)
FIG. 1 shows a variable capacity compressor 100 used in a vehicle air conditioning system as a reciprocating compressor according to an embodiment of the present invention. The variable capacity compressor 100 is a clutchless compressor, and includes a cylinder block 101 in which a plurality of cylinder bores 101 a arranged in an annular shape and a center bore 101 b arranged radially inside thereof are partitioned, and one end of the cylinder block 101. And a cylinder head 104 provided at the other end of the cylinder block 101 via a valve plate 103.
  シリンダブロック101と、フロントハウジング102とによって規定されるクランク室140内を横断して、駆動軸110が設けられ、その中心部の周囲には、斜板111が配置されている。斜板111は、駆動軸110に固定されたロータ112とリンク機構120を介して連結し、駆動軸110に沿ってその傾角が変化可能となっている。 駆 動 A drive shaft 110 is provided across the crank chamber 140 defined by the cylinder block 101 and the front housing 102, and a swash plate 111 is disposed around the center thereof. The swash plate 111 is connected to a rotor 112 fixed to the drive shaft 110 via a link mechanism 120, and the inclination angle can be changed along the drive shaft 110.
  リンク機構120は、ロータ112から突設された第1アーム112aと、斜板111から突設された第2アーム111aと、一端側が第1連結ピン122を介して第1アーム112aに対して回動自在に連結され、他端側が第2連結ピン123を介して第2アーム111aに対して回動自在に連結されたリンクアーム121から構成されている。 The link mechanism 120 includes a first arm 112 a projecting from the rotor 112, a second arm 111 a projecting from the swash plate 111, and one end side rotating with respect to the first arm 112 a via the first connecting pin 122. The link arm 121 is movably connected and the other end is rotatably connected to the second arm 111 a via a second connection pin 123.
  斜板111の貫通孔111bは斜板111が最大傾角と最小傾角の範囲で傾動可能となるように形状が形成されており、貫通孔111bには駆動軸110と当接する最小傾角規制部が形成されている。斜板111が駆動軸110に対して直交するときの斜板の傾角を0°とした場合、貫通孔111bの最小傾角規制部は斜板111をほぼ0°まで傾角変位
 可能なように形成されている。尚ほぼ0°とは-0.5°より大きく0.5°より小さい範囲を指す。
The through hole 111b of the swash plate 111 is shaped so that the swash plate 111 can tilt within the range of the maximum tilt angle and the minimum tilt angle, and the through hole 111b has a minimum tilt angle restricting portion that contacts the drive shaft 110. Has been. When the inclination angle of the swash plate when the swash plate 111 is orthogonal to the drive shaft 110 is 0 °, the minimum inclination restriction portion of the through hole 111b is formed so that the inclination of the swash plate 111 can be displaced to almost 0 °. ing. Nearly 0 ° indicates a range larger than −0.5 ° and smaller than 0.5 °.
  ロータ112と斜板111の間には斜板111を最小傾角に向けて最小傾角に至るまで付勢する傾角減少バネ114が装着され、また、斜板111とバネ支持部材116との間には斜板111の傾角を増大する方向に付勢する傾角増大バネ115が装着されている。最小傾角において傾角増大バネ115の付勢力は傾角減少バネ114の付勢力より大きく設定されているので、斜板111は駆動軸110が回転していないときは、傾角減少バネ114と傾角増大バネ115の付勢力がバランスする、最小傾角より大きな傾角に位置する。 Between the rotor 112 and the swash plate 111, an inclination decreasing spring 114 that urges the swash plate 111 toward the minimum inclination angle to reach the minimum inclination angle is mounted, and between the swash plate 111 and the spring support member 116. An inclination increasing spring 115 is attached to urge the swash plate 111 in an increasing direction. Since the urging force of the inclination increasing spring 115 is set to be larger than the urging force of the inclination decreasing spring 114 at the minimum inclination angle, the swash plate 111 has the inclination decreasing spring 114 and the inclination increasing spring 115 when the drive shaft 110 is not rotating. It is located at an inclination angle greater than the minimum inclination angle where the urging forces of the two are balanced.
  駆動軸110は一端側がセンタボア101bに挿通されてラジアル方向に滑り軸受131で支持され、また一端面がスラストプレート132で支持されている。また駆動軸110の他端側はラジアル方向に滑り軸受133で支持され、スラスト方向は駆動軸110に固定されたロータ112が軸受134で支持されている。駆動軸110の一端面とスラストプレート132との隙間は調整ネジ135により所定の隙間に調整されている。 一端 One end of the drive shaft 110 is inserted into the center bore 101 b and supported by a slide bearing 131 in the radial direction, and one end surface is supported by a thrust plate 132. The other end side of the drive shaft 110 is supported by a slide bearing 133 in the radial direction, and the rotor 112 fixed to the drive shaft 110 is supported by a bearing 134 in the thrust direction. A gap between one end face of the drive shaft 110 and the thrust plate 132 is adjusted to a predetermined gap by an adjustment screw 135.
  尚、駆動軸110の他端側は、フロントハウジング102の外側に突出したボス部102a内を貫通して外側まで延在し、動力伝達装置150に連結されている。駆動軸110とボス部102aとの間には、軸封装置130が挿入され、内部と外部とを遮断している。外部駆動源(エンジン)からの動力が動力伝達装置150に伝達され、駆動軸110は動力伝達装置150の回転と同期して回転可能となっている。 Note that the other end side of the drive shaft 110 extends through the boss portion 102 a protruding to the outside of the front housing 102 and is connected to the power transmission device 150. A shaft seal device 130 is inserted between the drive shaft 110 and the boss portion 102a to block the inside from the outside. Power from an external drive source (engine) is transmitted to the power transmission device 150, and the drive shaft 110 can rotate in synchronization with the rotation of the power transmission device 150.
  シリンダボア101a内には、ピストン136が配置され、ピストン136のクランク室140側に突出している端部の内側空間には、斜板111の外周部が収容され、斜板111は一対のシュー137を介して、ピストン136と連動する構成となっている。したがって斜板111の回転によりピストン136がシリンダボア101a内を往復動することが可能となる。 A piston 136 is disposed in the cylinder bore 101a, and an outer peripheral portion of the swash plate 111 is accommodated in an inner space of an end portion of the piston 136 that protrudes toward the crank chamber 140. The swash plate 111 includes a pair of shoes 137. Thus, the piston 136 is linked. Therefore, the piston 136 can reciprocate in the cylinder bore 101a by the rotation of the swash plate 111.
  シリンダヘッド104には、中央部に吸入室141及び吸入室141を環状に取り囲む吐出室142が区画形成され、吸入室141は、シリンダボア101aとは、バルブプレート103に設けられた吸入孔103a、吸入弁(図示せず)を介して連通し、吐出室142は、シリンダボア101aとは、吐出弁(図示せず)、バルブプレート103に設けられた吐出孔103bを介して連通している。 The cylinder head 104 is formed with a suction chamber 141 and a discharge chamber 142 annularly surrounding the suction chamber 141 at the center. The suction chamber 141 has a suction hole 103a provided in the valve plate 103 and a suction hole 103a. The discharge chamber 142 communicates with the cylinder bore 101 a via a discharge valve (not shown) and a discharge hole 103 b provided in the valve plate 103.
  フロントハウジング102、シリンダブロック101、バルブプレート103、シリンダヘッド104が、図示しないガスケットを介して複数の通しボルト105によって締結されて圧縮機ハウジングが形成される。 フ ロ ン ト The front housing 102, the cylinder block 101, the valve plate 103, and the cylinder head 104 are fastened by a plurality of through bolts 105 via a gasket (not shown) to form a compressor housing.
  シリンダヘッド104には吸入通路104aが形成され、吸入室141は吸入通路104aを介して空調システムの吸入側冷媒回路と接続されている。 シ リ ン ダ A suction passage 104a is formed in the cylinder head 104, and the suction chamber 141 is connected to the suction side refrigerant circuit of the air conditioning system via the suction passage 104a.
  また、シリンダヘッド104には図示しない吐出通路が形成され、吐出室142は吐出通路を介して空調システムの吐出側冷媒回路と接続されている。尚吐出通路の途上には図示しない逆止弁が配置されている。逆止弁は上流側(吐出室142)と下流側(吐出側冷媒回路)との圧力差に応答して動作し、圧力差が所定値より小さい場合は吐出通路を遮断し、圧力差が所定値より大きい場合に吐出通路を開放する。 In addition, a discharge passage (not shown) is formed in the cylinder head 104, and the discharge chamber 142 is connected to the discharge-side refrigerant circuit of the air conditioning system via the discharge passage. A check valve (not shown) is arranged in the middle of the discharge passage. The check valve operates in response to a pressure difference between the upstream side (discharge chamber 142) and the downstream side (discharge side refrigerant circuit). When the pressure difference is smaller than a predetermined value, the discharge passage is blocked and the pressure difference is predetermined. When larger than the value, the discharge passage is opened.
  シリンダヘッド104にはさらに制御弁300が設けられている。制御弁300は吐出室142とクランク室140とを連通する圧力供給通路145の開度を調整し、クランク室140への吐出ガス導入量を制御する。制御弁300には連通路146により吸入室141の圧力が導かれ、制御弁300は吸入室141の圧力及び内蔵されるソレノイドの通電量に応答して動作する。またクランク室140内の冷媒は放圧通路147を経由して吸入室141へ流れ、放圧通路147にはバルブプレート103に形成されたオリフィス103cが配設されている。 シ リ ン ダ The cylinder head 104 is further provided with a control valve 300. The control valve 300 adjusts the opening of the pressure supply passage 145 that connects the discharge chamber 142 and the crank chamber 140 to control the amount of discharge gas introduced into the crank chamber 140. The pressure of the suction chamber 141 is guided to the control valve 300 through the communication path 146, and the control valve 300 operates in response to the pressure of the suction chamber 141 and the energization amount of the built-in solenoid. The refrigerant in the crank chamber 140 flows to the suction chamber 141 via the pressure release passage 147, and an orifice 103 c formed in the valve plate 103 is disposed in the pressure release passage 147.
  したがって、制御弁300によりクランク室140の圧力を変化させ、斜板111の傾斜角、つまりピストン136のストロークを変化させることにより可変容量圧縮機100の吐出容量を可変制御することができる。 Therefore, the discharge capacity of the variable capacity compressor 100 can be variably controlled by changing the pressure of the crank chamber 140 by the control valve 300 and changing the inclination angle of the swash plate 111, that is, the stroke of the piston 136.
  空調作動時、つまり可変容量圧縮機100の作動状態では、外部信号に基づいて制御弁300に内蔵されるソレノイドの通電量が調整され、吸入室141の圧力が所定値になるように吐出容量が可変制御される。制御弁300は、外部環境に応じて、吸入圧力を最適制御することができる。 During the air conditioning operation, that is, in the operation state of the variable displacement compressor 100, the energization amount of the solenoid built in the control valve 300 is adjusted based on the external signal, and the discharge capacity is adjusted so that the pressure in the suction chamber 141 becomes a predetermined value. Variable control. The control valve 300 can optimally control the suction pressure according to the external environment.
  また空調非作動時、つまり可変容量圧縮機100の非作動状態では、制御弁300に内蔵されるソレノイドの通電をOFFすることにより圧力供給通路145を強制開放し、可変容量圧縮機100の吐出容量を最小に制御する。 When the air conditioning is not operating, that is, when the variable displacement compressor 100 is not operating, the pressure supply passage 145 is forcibly opened by turning off the energization of the solenoid built in the control valve 300, and the discharge capacity of the variable displacement compressor 100. Control to a minimum.
  可変容量圧縮機100は、フロントハウジング102及びシリンダヘッド104の外方に車両エンジン側への取り付けを行うためのボルト挿通孔を有する取付部102b及び104bを介して車両のエンジンに装着される。このエンジンに取り付けられた状態にて、本発明における各種上下位置関係が満たされるようになっている。 可 変 The variable capacity compressor 100 is attached to the vehicle engine via attachment portions 102b and 104b having bolt insertion holes for attaching the front housing 102 and the cylinder head 104 to the vehicle engine side. Various vertical positional relationships in the present invention are satisfied in a state where the engine is attached to the engine.
 (2)放圧通路
  図2に示すように、シリンダブロック101に形成されたセンタボア101bは、クランク室140に接続する第1ボア101b1と、滑り軸受131を支持する第2ボア101b2と、第2ボア101b2とバルブプレート103との間に配置され、バルブプレート103側の領域の周壁が第2ボア101b2より径方向外側に配置された第3ボア101b3とを備えている。
(2) Pressure Relief Passage As shown in FIG. 2, the center bore 101b formed in the cylinder block 101 includes a first bore 101b1 connected to the crank chamber 140, a second bore 101b2 supporting the slide bearing 131, and a second bore. A third bore 101b3 is provided between the bore 101b2 and the valve plate 103, and a peripheral wall of a region on the valve plate 103 side is arranged radially outside the second bore 101b2.
  クランク室140と吸入室141とを連通する放圧通路147は第1ボア101b1と、第1ボア101b1の底壁101cに開口し第3ボア101b3と連通する第1通路101dと、第3ボア101b3と、第3ボア101b3と吸入室141とを連通する第2通路148とを備えている。 A pressure release passage 147 that connects the crank chamber 140 and the suction chamber 141 opens in the first bore 101b1, the bottom wall 101c of the first bore 101b1, and communicates with the third bore 101b3, and the third bore 101b3. And a second passage 148 communicating with the third bore 101b3 and the suction chamber 141.
  第3ボア101b3はバルブプレート103を間に挟んで吸入室141と隣接しているので、第2通路148は、第3ボア101b3と吸入室141との間に配設されている部材(吸入弁が形成された吸入弁形成板、バルブプレート103、吐出弁が形成された吐出弁形成板、ガスケット)に貫通孔を形成すれば容易に形成できる。この第2通路148に配設される絞りとしてのオリフィス103cは、本実施態様ではバルブプレート103に形成してあるが、第2通路148を形成する他の部材に形成してもよい。 Since the third bore 101b3 is adjacent to the suction chamber 141 with the valve plate 103 interposed therebetween, the second passage 148 is a member (suction valve) disposed between the third bore 101b3 and the suction chamber 141. If the through hole is formed in the suction valve forming plate, the valve plate 103, the discharge valve forming plate in which the discharge valve is formed, and the gasket), it can be easily formed. The orifice 103 c serving as a throttle disposed in the second passage 148 is formed in the valve plate 103 in this embodiment, but may be formed in another member that forms the second passage 148.
  第1ボア101b1は複数のシリンダボア101aの内側に形成され、駆動軸に向かって凸曲面をなすシリンダボアの各形成壁(101b11、101b12、・・・)(図3)が周壁をなし、第2ボア101b2と接続する底壁101cとで構成される凹部である。 The first bore 101b1 is formed on the inner side of the plurality of cylinder bores 101a, and each forming wall (101b11, 101b12,...) (FIG. 3) of the cylinder bore having a convex curved surface toward the drive shaft forms a peripheral wall. It is a recessed part comprised by the bottom wall 101c connected to 101b2.
  図3は、複数のシリンダボア101aをクランク室140側(図1の左方向)から見た状態を示すもので、Uは取付部(102b及び104b)のエンジン側の端面で規定され
 る平面Tと平行で駆動軸の軸線Oを含む平面であり、Vは平面Uと直交し駆動軸の軸線Oを含む平面である。図中の平面U(及び平面T)の上下方向は可変容量圧縮機100をエンジンに装着した状態で重力方向にほぼ一致している。尚、実際の装着状態においては、平面Uは重力方向に対して多少傾斜している場合が多いが、その傾斜は例えば30°以内なので平面U(及び平面T)を重力方向と見なしても差し支えない。
FIG. 3 shows a state in which a plurality of cylinder bores 101a are viewed from the crank chamber 140 side (left direction in FIG. 1). U is a plane T defined by the end faces on the engine side of the mounting portions (102b and 104b). The plane is parallel and includes the axis O of the drive shaft, and V is a plane orthogonal to the plane U and including the axis O of the drive shaft. The vertical direction of the plane U (and plane T) in the figure is substantially coincident with the direction of gravity when the variable capacity compressor 100 is mounted on the engine. In an actual mounting state, the plane U is often slightly inclined with respect to the direction of gravity. However, since the inclination is within 30 °, for example, the plane U (and plane T) may be regarded as the direction of gravity. Absent.
  また、Wは複数のシリンダボア101aの内重力方向の上側にある最も高い位置にあるシリンダボア101a1とこのシリンダボア101a1に隣接した一方のシリンダボア101a2間の中心と駆動軸110(滑り軸受131)の軸線Oとで規定される平面である。尚、図1(及び図2)の圧縮機内部の断面は平面Wの切断面である。 W is the highest cylinder bore 101a1 on the upper side in the direction of internal gravity of the plurality of cylinder bores 101a, the center between one cylinder bore 101a2 adjacent to the cylinder bore 101a1, and the axis O of the drive shaft 110 (sliding bearing 131). It is a plane defined by In addition, the cross section inside the compressor of FIG. 1 (and FIG. 2) is a cut surface of the plane W.
  第1通路101dのクランク室140側開口端は、駆動軸110より重力方向の上側であって、平面Wと前記凹部(第1ボア101b1)の底壁101cとの交線上であって、隣り合うシリンダボアの形成壁(101b11、101b12)の接続領域101eに隣接した位置に開口している。また、第2通路148は、平面Vより重力方向上側で第3ボア101b2に開口している。 The opening end on the crank chamber 140 side of the first passage 101d is above the drive shaft 110 in the gravitational direction, is on the intersection line between the plane W and the bottom wall 101c of the recess (first bore 101b1), and is adjacent thereto. The cylinder bore forming wall (101b11, 101b12) is opened at a position adjacent to the connection region 101e. The second passage 148 opens to the third bore 101b2 above the plane V in the gravity direction.
 (3)圧力供給通路
  吐出室142とクランク室140とを連通する圧力供給通路145は、吐出室142と第3ボア101b3とを連通する第3通路145aと、第3ボア101b3と、第1通路101dと、第1ボア101b1とを備えている。尚制御弁300は、シリンダヘッド104内において、第3通路145aの途上に配置されている。
(3) Pressure supply passage The pressure supply passage 145 that connects the discharge chamber 142 and the crank chamber 140 includes the third passage 145a, the third bore 101b3, and the first passage that connect the discharge chamber 142 and the third bore 101b3. 101d and a first bore 101b1. The control valve 300 is disposed in the cylinder head 104 in the middle of the third passage 145a.
  つまり、第1ボア101b1、第1通路101d及び第3ボア101b3は、圧力供給通路145と放圧通路147との共通の通路となっており、第3ボア101b3が圧力供給通路145と放圧通路147の分岐空間となっている。第3通路145aは、平面Vより重力方向下側で第3ボア101b3に開口している。 That is, the first bore 101b1, the first passage 101d, and the third bore 101b3 are a common passage for the pressure supply passage 145 and the pressure release passage 147, and the third bore 101b3 is the pressure supply passage 145 and the pressure release passage. 147 branch space. The third passage 145a opens to the third bore 101b3 below the plane V in the direction of gravity.
  尚、第1通路101dは圧力供給通路145と放圧通路147との共通の通路となっているので、その孔径は例えば5~8mm程度と一方向流れの場合の孔径より大きく設定してある。 Note that since the first passage 101d is a common passage for the pressure supply passage 145 and the pressure release passage 147, the hole diameter is set to about 5 to 8 mm, for example, larger than the hole diameter in the case of unidirectional flow.
 (4)クランク室から吸入室へのガスの流れ
  例えば制御弁300が閉じると圧力供給通路145が遮断され、その結果ピストン136がガスを圧縮する際に発生するブローバイガスが放圧通路147を介してクランク室140から吸入室141に流れる。このときクランク室140内のオイルもガスの流れに沿って吸入室141に流れようとするが、以下の理由により第1通路101dへのオイルの流入が抑制される。
(4) Gas flow from the crank chamber to the suction chamber For example, when the control valve 300 is closed, the pressure supply passage 145 is shut off, and as a result, blow-by gas generated when the piston 136 compresses the gas passes through the pressure release passage 147. And flows from the crank chamber 140 to the suction chamber 141. At this time, the oil in the crank chamber 140 also tends to flow into the suction chamber 141 along the gas flow, but the inflow of oil into the first passage 101d is suppressed for the following reason.
 ・第1ボア101b1はクランク室140よりも凹んでおり、かつクランク室140の径方向中心領域に存在するので、第1ボア101b1内はクランク室140よりもオイルプアな領域である。
 ・第1通路101dのクランク室140側の開口端は底壁101cの重力方向の上側に配置されており、底壁や周壁に付着したオイルが流入しにくい。
 ・第1通路101dのクランク室140側の開口端は平面Wと底壁101cとの交線上にあるので、駆動軸110から最も遠ざかる位置に配置でき、底壁や周壁に付着したオイルがさらに流入しにくい。また、シリンダボアの形成壁(101b11、・・・)は駆動軸110に向かって凸となる曲面であり、シリンダボアの形成壁101b11、101b12に付着したオイルは、その凸曲面に沿って接続領域101eから左右方向に移動して接続領域101eの直下にある第1通路101dのクランク室140側の開口端にオイルが流入しにくくなる。
The first bore 101b1 is recessed from the crank chamber 140 and exists in the central region in the radial direction of the crank chamber 140, so that the first bore 101b1 is an oil-poor region than the crank chamber 140.
The opening end of the first passage 101d on the crank chamber 140 side is disposed above the bottom wall 101c in the gravitational direction, and oil attached to the bottom wall and the peripheral wall is difficult to flow in.
-Since the opening end of the first passage 101d on the crank chamber 140 side is on the line of intersection between the plane W and the bottom wall 101c, it can be placed farthest away from the drive shaft 110, and the oil attached to the bottom wall and the peripheral wall further flows in Hard to do. Further, the cylinder bore forming wall (101b11,...) Is a curved surface convex toward the drive shaft 110, and the oil adhering to the cylinder bore forming walls 101b11, 101b12 passes from the connection region 101e along the convex curved surface. It becomes difficult for oil to flow into the opening end on the crank chamber 140 side of the first passage 101d that moves in the left-right direction and is directly below the connection region 101e.
  また、第1通路101dに流入したオイルは、一旦第3ボア101b3に貯留されるので、吸入室141へオイルが流出することが抑制される。第3ボア101b3に貯留されたオイルは、駆動軸110の外周面と滑り軸受131との間の微小な隙間を介して徐々にクランク室140に還流される。 In addition, since the oil that has flowed into the first passage 101d is once stored in the third bore 101b3, the oil is prevented from flowing out into the suction chamber 141. The oil stored in the third bore 101b3 is gradually returned to the crank chamber 140 through a minute gap between the outer peripheral surface of the drive shaft 110 and the sliding bearing 131.
  したがって、可変容量圧縮機100が低速回転領域(中速回転領域を含む)で運転されているときは、斜板111等の回転部品やピストン136によるクランク室140内の冷媒・オイルの攪拌の程度が弱く、クランク室140内のオイルが第1通路101dに流入することが抑制されてクランク室140内のオイルが確保され、摺動部位の潤滑が効果的に行なわれる。同時に吸入室141へのオイルの流出、つまり圧縮機外へのオイルの流出が抑制されて空調システムの性能向上に寄与する。 Therefore, when the variable capacity compressor 100 is operated in the low speed rotation region (including the medium speed rotation region), the degree of stirring of the refrigerant and oil in the crank chamber 140 by the rotating parts such as the swash plate 111 and the piston 136 Therefore, the oil in the crank chamber 140 is suppressed from flowing into the first passage 101d, the oil in the crank chamber 140 is secured, and the sliding portion is effectively lubricated. At the same time, the outflow of oil to the suction chamber 141, that is, the outflow of oil to the outside of the compressor is suppressed, which contributes to improving the performance of the air conditioning system.
  また、可変容量圧縮機100が高速回転領域で運転されているときは、斜板111等の回転部品やピストン136によるクランク室140内の冷媒・オイルの攪拌の程度が上記低速回転領域の場合より強くなり、クランク室140内のオイルが第1通路101dに流入しやすくなって、クランク室140内に確保されるオイルが低速回転領域の場合より減少して過度にオイルがクランク室140内に貯留されることが回避され、同時にオイルが吸入室に過度に流出することが抑制される。したがって、斜板111等の回転部品によってオイルが攪拌、せん断されて発熱し、オイルの粘性が低下して圧縮機内部の摺動部位の潤滑状態が悪化することは無い。 Further, when the variable capacity compressor 100 is operated in the high-speed rotation region, the degree of stirring of the refrigerant / oil in the crank chamber 140 by the rotating parts such as the swash plate 111 and the piston 136 is higher than that in the low-speed rotation region. It becomes stronger and the oil in the crank chamber 140 tends to flow into the first passage 101d, so that the oil secured in the crank chamber 140 is less than in the low-speed rotation region and the oil is excessively stored in the crank chamber 140. This prevents the oil from flowing out excessively into the suction chamber. Therefore, the oil is agitated and sheared by the rotating parts such as the swash plate 111 to generate heat, and the viscosity of the oil does not decrease and the lubrication state of the sliding portion inside the compressor does not deteriorate.
 (5)吐出室からクランク室へのガスの流れ
  例えば制御弁300が閉じた状態から制御弁300が開放されると、吐出室142からクランク室140に向けた吐出ガスの流れが発生する。
(5) Gas flow from the discharge chamber to the crank chamber For example, when the control valve 300 is opened from a state in which the control valve 300 is closed, a flow of discharge gas from the discharge chamber 142 toward the crank chamber 140 is generated.
  吐出ガスは第3通路145a、第3ボア101b3、第1通路101d及び第1ボア101b1を経由してクランク室140に流入するが、吐出ガスにはオイルも含まれているので吐出ガスの噴流に沿ってオイルが飛散して摺動部位を潤滑する。 The discharge gas flows into the crank chamber 140 via the third passage 145a, the third bore 101b3, the first passage 101d, and the first bore 101b1, but since the discharge gas contains oil, the discharge gas is jetted. The oil splashes along and lubricates the sliding part.
  第1通路101dのクランク室140側の開口端は底壁101cの中で重力方向の上側の最も高い位置に配置されており、これによって斜板111とシュー137との摺動面に近接した位置に吐出ガスの噴流に沿ってオイルが飛散し、特に圧縮側の斜板111とシュー137との摺動面の潤滑に寄与する。 The opening end of the first passage 101d on the crank chamber 140 side is disposed at the highest position on the upper side in the direction of gravity in the bottom wall 101c, and thereby a position close to the sliding surface between the swash plate 111 and the shoe 137. In addition, the oil scatters along the jet of the discharge gas, and contributes to the lubrication of the sliding surface between the swash plate 111 and the shoe 137 on the compression side.
  また、図4は可変容量圧縮機100の内部を平面Wで切断したもので、斜板111の下死点位置が平面Wに一致する状態を示したものである。第1通路101dの軸線は平面Wに一致する。尚、斜板111の下死点位置とはピストン136による吸入工程が終了する位置を指す。 FIG. 4 shows a state in which the inside of the variable capacity compressor 100 is cut along the plane W, and the bottom dead center position of the swash plate 111 coincides with the plane W. The axis of the first passage 101d coincides with the plane W. Note that the bottom dead center position of the swash plate 111 refers to a position where the suction process by the piston 136 ends.
  第1通路101dのクランク室140側の開口端から噴射された吐出ガスの主流(矢印)は、傾斜した斜板111に衝突し、斜板111の遠心力により斜面に沿ってクランク室140の内壁の図中上方向に向きを変え、圧縮側の斜板111の面とシュー137との摺動面を潤滑する。平面Wは隣り合うシュー137及びピストン136の間にあるので、噴射された吐出ガスの一部は隣り合うシュー137及びピストン136との間を抜けてクランク室140の内壁に衝突しフロントハウジング102の底壁102cに向かう流れとなり、軸受134の潤滑に寄与する。 The main flow (arrow) of the discharge gas injected from the opening end of the first passage 101d on the crank chamber 140 side collides with the inclined swash plate 111, and the inner wall of the crank chamber 140 along the inclined surface by the centrifugal force of the swash plate 111. The direction is changed in the upward direction in the figure, and the sliding surface between the surface of the swash plate 111 on the compression side and the shoe 137 is lubricated. Since the plane W is between the adjacent shoes 137 and the piston 136, a part of the injected discharge gas passes between the adjacent shoes 137 and the piston 136 and collides with the inner wall of the crank chamber 140, and the front housing 102. It becomes a flow toward the bottom wall 102c and contributes to lubrication of the bearing 134.
  フロントハウジング102の底壁102cには、図5に示すように、軸封装置130が収容されている空間に向けて潤滑通路102d1、102d2が2つ形成されており、平面Wは2つの開口端(オイル捕捉溝)102e1、102e2の間にあるので、斜板111の下死点位置が平面Wに近い領域では吐出ガスの噴流に含まれるオイルは2つのオイル捕捉溝102e1、102e2に捕捉されて軸封装置130の潤滑にも寄与する。 As shown in FIG. 5, two lubrication passages 102d1 and 102d2 are formed in the bottom wall 102c of the front housing 102 toward the space in which the shaft seal device 130 is accommodated, and the plane W has two open ends. (Oil capture groove) Since it is between 102e1 and 102e2, in the region where the bottom dead center position of the swash plate 111 is close to the plane W, the oil contained in the jet of the discharge gas is captured by the two oil capture grooves 102e1 and 102e2. This also contributes to lubrication of the shaft seal device 130.
  以上説明したように、可変容量圧縮機100が低速回転領域や中速回転領域で運転され、クランク室140から吸入室141へガスが流れているときは、クランク室140内のオイルが確保され、摺動部位の潤滑が効果的に行なわれると共に、圧縮機外へのオイルの流出が抑制されて空調システムの性能向上に寄与する。また、高速回転領域で運転されているときは、クランク室140内のオイルが低速回転領域や中速回転領域の場合より減少するが、過度に流出することが抑制され、斜板111等の回転部品によってオイルが攪拌、せん断されて発熱し、オイルの粘性が低下して圧縮機内部の摺動部位の潤滑状態が悪化することは無い。 As described above, when the variable capacity compressor 100 is operated in the low speed rotation region or the medium speed rotation region and gas is flowing from the crank chamber 140 to the suction chamber 141, oil in the crank chamber 140 is secured, Lubrication of the sliding part is performed effectively, and the outflow of oil to the outside of the compressor is suppressed, which contributes to improving the performance of the air conditioning system. Further, when operating in the high speed rotation region, the oil in the crank chamber 140 is reduced as compared with the case of the low speed rotation region or the medium speed rotation region, but excessively flowing out is suppressed, and the rotation of the swash plate 111 etc. The oil is stirred and sheared by the parts to generate heat, and the viscosity of the oil does not decrease and the lubrication state of the sliding part inside the compressor does not deteriorate.
  さらに、吐出室142からクランク室140へガスが流れているときは、吐出ガスに含まれるオイルで圧縮側の斜板111の面とシュー137との摺動面の潤滑のみならず軸封装置130等の潤滑にも寄与する。 Further, when gas flows from the discharge chamber 142 to the crank chamber 140, the oil contained in the discharge gas not only lubricates the sliding surface of the compression-side swash plate 111 and the shoe 137 but also the shaft seal device 130. Also contributes to lubrication.
  尚、可変容量圧縮機100が吐出容量制御状態で制御弁300の開度が全閉と全開の間の任意の開度にあるときは第3ボア101b3に制御された量の吐出ガスが流入するので、その導入される吐出ガス量によって圧力供給通路145と放圧通路147との共通の通路に双方向の流れが生じ、これによってクランク室140の圧力を変化させ、斜板111の傾斜角、つまりピストン136のストロークを変化させることにより吐出容量を可変制御することができる。 When the variable displacement compressor 100 is in the discharge capacity control state and the opening degree of the control valve 300 is an arbitrary opening degree between fully closed and fully open, the controlled amount of discharge gas flows into the third bore 101b3. Therefore, a bidirectional flow is generated in the common passage of the pressure supply passage 145 and the pressure release passage 147 depending on the amount of discharge gas introduced, thereby changing the pressure of the crank chamber 140, the inclination angle of the swash plate 111, That is, the discharge capacity can be variably controlled by changing the stroke of the piston 136.
  図6(B)は、可変容量圧縮機100を試験設備で運転したときの空調システムを流れる冷媒循環量に対するオイル循環率を示したもので、図6(A)における位置Aは本発明の第1連通路101dの位置を示し、位置Bは比較例としての第1連通路の位置を示している。位置Bは、底壁101c内の重力方向の最も下側に第1連通路が配置されている状態である。 FIG. 6B shows the oil circulation rate with respect to the refrigerant circulation amount flowing through the air conditioning system when the variable capacity compressor 100 is operated in the test facility, and the position A in FIG. The position of the 1st communicating path 101d is shown, and the position B has shown the position of the 1st communicating path as a comparative example. The position B is a state in which the first communication path is disposed on the lowermost side in the direction of gravity in the bottom wall 101c.
  図6(B)に示すように、第1連通路が位置Aにある場合、位置Bにある場合に比べて明らかにすべての圧縮機回転数においてオイル循環率が小さくなっており、圧縮機外へのオイルの流出が抑制されて空調システムの性能向上に寄与することが確認された。オイル循環率は空調システムの性能の観点から1%以下が望ましいが、本発明により常用回転数領域(アイドリング相当回転数~3000rpm)では1%以下のオイル循環率を達成できていることが確認された。 As shown in FIG. 6B, when the first communication path is at position A, the oil circulation rate is clearly smaller at all compressor speeds than when it is at position B. It was confirmed that the oil spillage was suppressed and contributed to improving the performance of the air conditioning system. The oil circulation rate is desirably 1% or less from the viewpoint of the performance of the air conditioning system. However, according to the present invention, it has been confirmed that an oil circulation rate of 1% or less can be achieved in the normal rotation speed range (idling equivalent rotation speed to 3000 rpm). It was.
  また、高速回転領域(5000rpm、8000rpm)では、800rpm、3000rpmの回転数領域に比べてオイル循環率が増大し、クランク室に過度にオイルが貯留されることがなく、かつ圧縮機外への過度なオイルの流出が抑制されていることも確認できた。 Further, in the high speed rotation region (5000 rpm, 8000 rpm), the oil circulation rate is increased as compared with the rotation speed region of 800 rpm and 3000 rpm, the oil is not excessively stored in the crank chamber, and excessively outside the compressor. It was also confirmed that the oil spill was suppressed.
  なお、上記空調システム(少なくとも、上記圧縮機とエバポレータを含む空調システム)における試験の条件を表1に示す。 試 験 Table 1 shows the test conditions in the air conditioning system (at least the air conditioning system including the compressor and the evaporator).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  上記実施態様では、平面Uはシリンダボア101a1と101a2間の中心にあるが、これをシリンダボア101a1と101a3(図3)間の中心と駆動軸の軸線とで規定される平面Uとしてもよい。 In the above embodiment, the plane U is at the center between the cylinder bores 101a1 and 101a2, but this may be the plane U defined by the center between the cylinder bores 101a1 and 101a3 (FIG. 3) and the axis of the drive shaft.
  また、凹部(第1ボア101b1)の底壁101cには凹凸があってもよい。例えば図7に示すように、凹部の底壁101cに開口する第1通路101dの開口端の周縁101c1を他の底壁の領域101c2(特に周壁に近接した領域)よりクランク室140側に向かって突出させてもよい。このようにすれば、他の底壁の領域101c2に付着したオイルが第1通路101dの開口端に流入し難くなり、吸入室141へのオイルの流出がさらに抑制される。 凹凸 Also, the bottom wall 101c of the recess (first bore 101b1) may be uneven. For example, as shown in FIG. 7, the peripheral edge 101c1 of the opening end of the first passage 101d opening in the bottom wall 101c of the recess is directed toward the crank chamber 140 from the other bottom wall region 101c2 (particularly the region close to the peripheral wall). You may make it protrude. This makes it difficult for oil attached to the other bottom wall region 101c2 to flow into the opening end of the first passage 101d, and further suppresses the oil from flowing into the suction chamber 141.
  また、前記実施態様では圧力供給通路145と放圧通路147との共通の通路が形成されているが、共通の通路構成が必要とされない構造の場合には、圧力供給通路と放圧通路が別々に形成されている可変容量圧縮機としてもよい。 In the above embodiment, a common passage is formed between the pressure supply passage 145 and the pressure release passage 147. However, in the case where the common passage configuration is not required, the pressure supply passage and the pressure release passage are separately provided. It is good also as a variable capacity compressor currently formed.
  さらに、前記実施態様では、クラッチレス圧縮機としたが、電磁クラッチを使用した圧縮機としてもよい。また、本発明は固定容量圧縮機にも適用可能である。 さ ら に Furthermore, although the clutchless compressor is used in the above-described embodiment, a compressor using an electromagnetic clutch may be used. The present invention can also be applied to a fixed capacity compressor.
  本発明に係る往復動圧縮機は、冷媒を圧縮するあらゆる往復動圧縮機に適用可能であり、特に車両用空調システムに用いられる圧縮機として好適である。 往復 The reciprocating compressor according to the present invention can be applied to any reciprocating compressor that compresses refrigerant, and is particularly suitable as a compressor used in a vehicle air conditioning system.
 100 往復動圧縮機としての可変容量圧縮機
 101 シリンダブロック
 101a、101a1、101a2、101a3 シリンダボア
 101b センタボア
 101b1 第1ボア
 101b2 第2ボア
 101b3 第3ボア
 101b11、101b12 シリンダボアの形成壁
 101c 底壁
 101c1 開口端の周縁
 101c2 他の底壁の領域
 101d 第1通路
 101e 接続領域
 102 フロントハウジング
 102a ボス部
 102b、104b 取付部
 102c フロントハウジングの底壁
 102d1、102d2 潤滑通路
 102e1、102e2 オイル捕捉溝
 103 バルブプレート
 103a 吸入孔
 103b 吐出孔
 103c オリフィス
 104 シリンダヘッド
 104a 吸入通路
 105 通しボルト
 110 駆動軸
 111 斜板
 111b 貫通孔
 111a 第2アーム
 112 ロータ
 112a 第1アーム
 114 傾角減少バネ
 115 傾角増大バネ
 116 バネ支持部材
 120 リンク機構
 121 リンクアーム
 122 第1連結ピン
 123 第2連結ピン
 130 軸封装置
 131 滑り軸受
 132 スラストプレート
 133 滑り軸受
 134 軸受
 135 調整ネジ
 136 ピストン
 137 シュー
 140 クランク室
 141 吸入室
 142 吐出室
 145 圧力供給通路
 145a 第3通路
 146 連通路
 147 放圧通路
 148 第2通路
 150 動力伝達装置
 300 制御弁
 U、T、V、W 平面
 O 駆動軸の軸線
100 Variable capacity compressor as a reciprocating compressor 101 Cylinder block 101a, 101a1, 101a2, 101a3 Cylinder bore 101b Center bore 101b1 First bore 101b2 Second bore 101b3 Third bore 101b11, 101b12 Cylinder bore forming wall 101c Bottom wall 101c1 Open end Edge 101c2 Other bottom wall region 101d First passage 101e Connection region 102 Front housing 102a Boss portion 102b, 104b Mounting portion 102c Front housing bottom wall 102d1, 102d2 Lubrication passageway 102e1, 102e2 Oil capturing groove 103 Valve plate 103a Suction hole 103b Discharge hole 103c Orifice 104 Cylinder head 104a Suction passage 105 Through bolt 110 Drive shaft 111 Swash plate 11 b Through-hole 111a Second arm 112 Rotor 112a First arm 114 Tilt decreasing spring 115 Tilt increasing spring 116 Spring support member 120 Link mechanism 121 Link arm 122 First connecting pin 123 Second connecting pin 130 Shaft seal device 131 Sliding bearing 132 Thrust Plate 133 Slide bearing 134 Bearing 135 Adjustment screw 136 Piston 137 Shoe 140 Crank chamber 141 Suction chamber 142 Discharge chamber 145 Pressure supply passage 145a Third passage 146 Communication passage 147 Pressure release passage 148 Second passage 150 Power transmission device 300 Control valve U, T, V, W plane O Axis of drive shaft

Claims (7)

  1.   環状に配列された複数のシリンダボアが形成されたシリンダブロックと、
      シリンダブロックの一端側を閉塞し、シリンダブロックとの協働によりクランク室を画成するフロントハウジングと、
      シリンダブロックの他端側を閉塞し、シリンダボアと連通する吐出孔及び吸入孔が形成されたバルブプレートと、
      バルブプレートを挟んでシリンダブロックと対向して設けられ吐出室と吸入室とが区画形成されたシリンダヘッドと、
      複数のシリンダボアにそれぞれ配設されたピストンと、
      一端側が滑り軸受を介してシリンダブロックにラジアル支持された駆動軸と、
      駆動軸の回転をピストンの往復運動に変換する変換機構と、
      クランク室と吸入室とを連通する放圧通路と、を備え、
      吸入室からシリンダボアに吸入された冷媒を圧縮して吐出室に吐出する往復動圧縮機において、
      複数のシリンダボアの圧縮機径方向内側にはクランク室と接続し周壁と底壁によって形成された凹部が設けられ、
      前記放圧通路は、駆動軸よりも重力方向の上側の位置であって、複数のシリンダボアのうち重力方向の上側の最も高い位置にあるシリンダボアとこのシリンダボアに隣接したいずれか一方のシリンダボア間の中心と駆動軸の軸線とで規定される平面と、前記凹部の底壁との交線上に開口していることを特徴とする往復動圧縮機。
    A cylinder block formed with a plurality of cylinder bores arranged in an annular shape;
    A front housing that closes one end of the cylinder block and defines a crank chamber in cooperation with the cylinder block;
    A valve plate that closes the other end of the cylinder block and has a discharge hole and a suction hole communicating with the cylinder bore;
    A cylinder head provided facing the cylinder block across the valve plate and having a discharge chamber and a suction chamber defined;
    Pistons respectively disposed in a plurality of cylinder bores;
    A drive shaft whose one end is radially supported by the cylinder block via a sliding bearing;
    A conversion mechanism that converts the rotation of the drive shaft into the reciprocating motion of the piston;
    A pressure relief passage communicating the crank chamber and the suction chamber,
    In the reciprocating compressor that compresses the refrigerant sucked into the cylinder bore from the suction chamber and discharges it to the discharge chamber,
    A plurality of cylinder bores on the inner side in the compressor radial direction are provided with a recess formed by a peripheral wall and a bottom wall connected to the crank chamber,
    The pressure relief passage is located above the drive shaft in the gravity direction, and is the center between the cylinder bore at the highest position above the gravity direction among the plurality of cylinder bores and any one of the cylinder bores adjacent to the cylinder bore. A reciprocating compressor characterized in that the reciprocating compressor is opened on a line of intersection between a plane defined by the axis of the drive shaft and the bottom wall of the recess.
  2.   駆動軸に向かって凸曲面をなす複数のシリンダボアの形成壁が、前記凹部の周壁を形成しており、前記凹部の底壁に開口する放圧通路は、前記隣り合うシリンダボアの形成壁の接続領域に隣接した位置に開口していることを特徴とする、請求項1に記載の往復動圧縮機。 A plurality of cylinder bore forming walls that form a convex curved surface toward the drive shaft form a peripheral wall of the recess, and a pressure release passage that opens in the bottom wall of the recess is a connection region of the adjacent cylinder bore forming walls The reciprocating compressor according to claim 1, wherein the reciprocating compressor is open at a position adjacent to the compressor.
  3.   前記凹部の底壁に開口する放圧通路の開口端の周縁は、前記凹部の周壁に隣接した前記凹部の底壁の他の領域よりもクランク室側に突出していることを特徴とする、請求項1または2に記載の往復動圧縮機。 The peripheral edge of the opening end of the pressure release passage that opens in the bottom wall of the recess protrudes toward the crank chamber from the other region of the bottom wall of the recess adjacent to the peripheral wall of the recess. Item 3. The reciprocating compressor according to Item 1 or 2.
  4.   複数のシリンダボアの圧縮機径方向内側にはセンタボアが形成され、センタボアは、前記凹部をなす第1ボアと、前記滑り軸受を支持する第2ボアと、第2ボアとバルブプレートとの間に配置され、バルブプレート側の領域の周壁が第2ボアより径方向外側に配置された第3ボアと、を備え、
      前記放圧通路は、第1ボアと、第1ボアの底壁に開口し吸入室に向かって延設されて第3ボアと連通する第1通路と、第3ボアと、第3ボアと吸入室とを連通する第2通路と、を備え、
      前記第2通路は駆動軸の軸線よりも重力方向の上側の位置で第3ボアに開口していることを特徴とする、請求項1~3のいずれかに記載の往復動圧縮機。
    A center bore is formed on the inner side in the compressor radial direction of the plurality of cylinder bores, and the center bore is disposed between the first bore that forms the recess, the second bore that supports the slide bearing, the second bore, and the valve plate. A third bore in which the peripheral wall of the region on the valve plate side is disposed radially outside the second bore,
    The pressure relief passage includes a first bore, a first passage that opens in a bottom wall of the first bore and extends toward the suction chamber and communicates with the third bore, a third bore, and a third bore and the suction A second passage communicating with the chamber,
    The reciprocating compressor according to any one of claims 1 to 3, wherein the second passage opens in the third bore at a position above the axis of the drive shaft in the direction of gravity.
  5.   前記変換機構は駆動軸の軸線に対して傾角が可変となるように駆動軸に摺動自在に取り付けられた斜板を備えており、往復動圧縮機は、さらに吐出室とクランク室とを連通する圧力供給通路と、圧力供給通路の開度を調整する制御弁と、放圧通路の途上の前記第2通路に配設された絞りと、を備えた可変容量型の圧縮機であって、
      前記第1ボア、前記第1通路及び前記第3ボアは圧力供給通路と放圧通路の共通の通路を形成しているとともに、第3ボアが圧力供給通路と放圧通路の分岐空間を形成しており、第3ボアと吐出室とを連通する圧力供給通路の途上に制御弁が配設されていることを特徴とする、請求項4に記載の往復動圧縮機。
    The conversion mechanism includes a swash plate that is slidably attached to the drive shaft so that an inclination angle is variable with respect to the axis of the drive shaft, and the reciprocating compressor further communicates the discharge chamber and the crank chamber. A variable capacity compressor including a pressure supply passage, a control valve for adjusting an opening of the pressure supply passage, and a throttle disposed in the second passage in the middle of the pressure release passage,
    The first bore, the first passage, and the third bore form a common passage for the pressure supply passage and the pressure relief passage, and the third bore forms a branch space for the pressure supply passage and the pressure relief passage. The reciprocating compressor according to claim 4, wherein a control valve is disposed in the middle of a pressure supply passage communicating the third bore and the discharge chamber.
  6.   駆動軸の他端はフロントハウジングから外側に突出して駆動軸の他端側はフロントハウジングに装着された軸封装置により封止され、フロントハウジングには軸封装置を潤滑するための潤滑通路が2つ形成されており、
      前記隣り合うシリンダボア間の中心と駆動軸の軸線とで規定される平面でフロントハウジングを分けたとき、前記平面は2つの潤滑通路のクランク室側の開口端の間に位置することを特徴とする、請求項1~5のいずれかに記載の往復動圧縮機。
    The other end of the drive shaft protrudes outward from the front housing, and the other end of the drive shaft is sealed by a shaft seal device mounted on the front housing, and the front housing has two lubrication passages for lubricating the shaft seal device. Formed,
    When the front housing is divided by a plane defined by the center between the adjacent cylinder bores and the axis of the drive shaft, the plane is positioned between the open ends of the two lubrication passages on the crank chamber side. The reciprocating compressor according to any one of claims 1 to 5.
  7.   車両用空調システムに使用され、エンジンに取り付けられる、請求項1~6のいずれかに記載の往復動圧縮機。 The reciprocating compressor according to any one of claims 1 to 6, which is used in a vehicle air conditioning system and attached to an engine.
PCT/JP2013/062093 2012-04-25 2013-04-24 Reciprocating compressor WO2013161886A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112013002227.3T DE112013002227B4 (en) 2012-04-25 2013-04-24 Piston compressor with a pressure escape between the crank chamber and the suction chamber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-099621 2012-04-25
JP2012099621A JP6013767B2 (en) 2012-04-25 2012-04-25 Reciprocating compressor

Publications (1)

Publication Number Publication Date
WO2013161886A1 true WO2013161886A1 (en) 2013-10-31

Family

ID=49483194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062093 WO2013161886A1 (en) 2012-04-25 2013-04-24 Reciprocating compressor

Country Status (3)

Country Link
JP (1) JP6013767B2 (en)
DE (1) DE112013002227B4 (en)
WO (1) WO2013161886A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299959A (en) * 1993-04-14 1994-10-25 Toyota Autom Loom Works Ltd Lubricating structure in one side piston type variable displacement compressor
JPH08121329A (en) * 1994-10-28 1996-05-14 Toyota Autom Loom Works Ltd Swash plate type compressor
JP2003293947A (en) * 2002-03-29 2003-10-15 Calsonic Kansei Corp Compressor and piston for compressor
JP2006057560A (en) * 2004-08-20 2006-03-02 Calsonic Kansei Corp Variable displacement compressor
JP2007127118A (en) * 2005-10-06 2007-05-24 Valeo Thermal Systems Japan Corp Piston-type compressor
JP2007146754A (en) * 2005-11-28 2007-06-14 Calsonic Kansei Corp Compressor
JP2008064031A (en) * 2006-09-07 2008-03-21 Toyota Industries Corp Lubricating device in swash plate type compressor
JP2009150261A (en) * 2007-12-19 2009-07-09 Toyota Industries Corp Swash plate compressor
JP2010121487A (en) * 2008-11-18 2010-06-03 Sanden Corp Variable capacity compressor
JP2012002198A (en) * 2010-06-21 2012-01-05 Sanden Corp Variable-displacement compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6786703B2 (en) * 2001-11-02 2004-09-07 Delphi Technologies, Inc. Variable capacity air conditioning compressor with improved crankcase oil retention
US7014428B2 (en) * 2002-12-23 2006-03-21 Visteon Global Technologies, Inc. Controls for variable displacement compressor
JP2005194932A (en) 2004-01-07 2005-07-21 Zexel Valeo Climate Control Corp Variable displacement compressor
DE102008054929A1 (en) * 2007-12-19 2009-07-30 Kabushiki Kaisha Toyota Jidoshokki, Kariya Swash-plate compressor for cooling circuit of power machine or engine of vehicle, has extended space circularly formed along circumference of cylindrical section and lying between base section and swash plate section
JP4924464B2 (en) 2008-02-05 2012-04-25 株式会社豊田自動織機 Swash plate compressor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299959A (en) * 1993-04-14 1994-10-25 Toyota Autom Loom Works Ltd Lubricating structure in one side piston type variable displacement compressor
JPH08121329A (en) * 1994-10-28 1996-05-14 Toyota Autom Loom Works Ltd Swash plate type compressor
JP2003293947A (en) * 2002-03-29 2003-10-15 Calsonic Kansei Corp Compressor and piston for compressor
JP2006057560A (en) * 2004-08-20 2006-03-02 Calsonic Kansei Corp Variable displacement compressor
JP2007127118A (en) * 2005-10-06 2007-05-24 Valeo Thermal Systems Japan Corp Piston-type compressor
JP2007146754A (en) * 2005-11-28 2007-06-14 Calsonic Kansei Corp Compressor
JP2008064031A (en) * 2006-09-07 2008-03-21 Toyota Industries Corp Lubricating device in swash plate type compressor
JP2009150261A (en) * 2007-12-19 2009-07-09 Toyota Industries Corp Swash plate compressor
JP2010121487A (en) * 2008-11-18 2010-06-03 Sanden Corp Variable capacity compressor
JP2012002198A (en) * 2010-06-21 2012-01-05 Sanden Corp Variable-displacement compressor

Also Published As

Publication number Publication date
DE112013002227B4 (en) 2018-05-09
DE112013002227T5 (en) 2015-01-15
JP6013767B2 (en) 2016-10-25
JP2013227895A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
EP2096308B1 (en) Swash plate type variable displacement compressor
JP6605463B2 (en) Variable capacity swash plate compressor
JP2002005022A (en) Compressor
JP5341827B2 (en) Variable capacity compressor
JP4820269B2 (en) Reciprocating compressor
US9765765B2 (en) Three-bore variable displacement compressor with a swash plate having an adjustable incline
JP6013767B2 (en) Reciprocating compressor
JP4292539B2 (en) Compressor
JP6097051B2 (en) Compressor
WO2018207724A1 (en) Compressor
WO2019176476A1 (en) Compressor
JP6227995B2 (en) Variable capacity compressor
WO2017002522A1 (en) Compressor
JP7164724B2 (en) compressor
JP2007192154A (en) Reciprocating fluid machine
JP2006138231A (en) Oil drain structure in crank chamber in clutch-less variable displacement type compressor
JP2019112980A (en) Variable displacement swash plate compressor
JP2009103075A (en) Single swash plate variable capacity compressor
KR100210216B1 (en) Variable typed rotary slant typed compressor
JP2005171851A (en) Variable displacement compressor
JP2017106331A (en) Compressor
WO2011086908A1 (en) Compressor having suction throttle valve
WO2003060325A1 (en) Compressor
KR20110093272A (en) A variable displacement swash plate type compressor
JP2006090229A (en) Piston type compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781629

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013002227

Country of ref document: DE

Ref document number: 1120130022273

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781629

Country of ref document: EP

Kind code of ref document: A1