WO2013161655A1 - Power-supply device, vehicle provided therewith, and electricity-storage device - Google Patents

Power-supply device, vehicle provided therewith, and electricity-storage device Download PDF

Info

Publication number
WO2013161655A1
WO2013161655A1 PCT/JP2013/061457 JP2013061457W WO2013161655A1 WO 2013161655 A1 WO2013161655 A1 WO 2013161655A1 JP 2013061457 W JP2013061457 W JP 2013061457W WO 2013161655 A1 WO2013161655 A1 WO 2013161655A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
duct
power supply
supply device
battery
Prior art date
Application number
PCT/JP2013/061457
Other languages
French (fr)
Japanese (ja)
Inventor
一広 藤井
智一 高品
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013161655A1 publication Critical patent/WO2013161655A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/308Detachable arrangements, e.g. detachable vent plugs or plug systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply device in which a plurality of batteries are connected, and a vehicle and a power storage device including the power supply device, and more particularly, a motor that is mounted on an electric vehicle such as a hybrid vehicle, a fuel cell vehicle, an electric vehicle, and an electric motorcycle.
  • the present invention relates to a power supply apparatus that supplies power to a power supply for large currents used for power storage applications for home use, factories, etc., a vehicle including the power supply apparatus, and a power storage apparatus.
  • a power supply device including a plurality of battery cells is used for a power supply device for a vehicle such as a hybrid vehicle or an electric vehicle, or for a power storage system for a factory or a home.
  • the battery cell is provided with a gas discharge valve by opening a gas discharge port so that the internal gas can be discharged to the outside when the internal pressure rises at a high temperature or the like.
  • a battery cell having such a gas discharge port needs to guide and discharge the discharged gas safely.
  • a power supply device equipped with a mechanism for safely guiding and discharging gas
  • it is equipped with a gas duct that communicates with the gas discharge port, and in order to prevent gas leakage at the connecting part of the gas duct and gas discharge port, it is sealed with a sealing member
  • a power supply device that is sealed in the manner described above.
  • gas ducts are also required to be thinner and lighter.
  • the gas duct is made of resin to reduce the weight.
  • the gas duct can be made of metal as the material constituting the gas duct, the durability of the gas duct can be improved.
  • the gas duct becomes expensive and the weight is increased.
  • a main object of the present invention is to provide a power supply device, a vehicle including the power source device, and a power storage device that can suppress a reduction in resistance during gas discharge while reducing the thickness of a gas duct.
  • a plurality of battery cells 1 provided with gas discharge ports 12 having gas discharge valves 11 on the first end surfaces 10 and 60.
  • 51 a battery stack 2 formed by stacking the plurality of battery cells 1, 51, and fixed to one surface of the battery stack 2 so as to be connected to the gas discharge ports 12 of the battery cells 1, 51.
  • Gas ducts 6, 56, and 76, and a metal layer 17 is provided on the inner surface of the gas ducts 6, 56, and 76 and on the surface facing the gas outlet 12.
  • the temperature rise in the case where the metal layer is provided on the inner surface of the gas duct opposite to the gas discharge port (the power supply device of the present invention) is the same part and the metal layer is not provided (conventional method).
  • the maximum temperature was lowered by about 40 degrees, and it was proved that an extremely excellent temperature reduction effect was obtained.
  • connection openings 6b, 56b which are connected to the gas discharge port 12, at positions where the gas ducts 6, 56, 76 are opposed to the gas discharge port 12.
  • 76b is provided, and the metal layer 17 can be fixed to the inner surface of the gas ducts 6, 56, and 76 that faces the surface provided with the connection openings 6b, 56b, and 76b.
  • the first duct in which the gas ducts 6, 56, 76 are divided in a direction perpendicular to the first end faces 10, 60 of the battery cells 1, 51. 6A, 56A, 76A and second ducts 6B, 56B, 76B, and connecting the first ducts 6A, 56A, 76A and the second ducts 6B, 56B, 76B to discharge columnar gas inside A path 46 is formed, and the first ducts 6A, 56A, and 76A have groove-shaped recesses 6d, 56d, and 76d on the inner side, and the metal layer 17 is placed on the bottom surfaces of the groove-shaped recesses 6d, 56d, and 76d.
  • the second ducts 6B, 56B, and 76B may be provided with the connection openings 6b, 56b, and 76b connected to the gas discharge ports 12 of the battery cells 1 and 51, respectively.
  • the gas duct is constituted by the first duct and the second duct, and a gas duct having a columnar gas discharge path is formed inside, while the second duct has a connection opening and the first duct. Can easily and efficiently provide the metal layer.
  • the gas ducts 6, 56, and 76 have columnar gas discharge passages 46 therein, and are the inner surfaces of the gas ducts 6, 56, and 76,
  • the metal layer 17 can be provided only on the surface facing the surface on which the connection openings 6b, 56b, 76b are provided, and the other surfaces can be exposed.
  • the metal layer 17 can be affixed to the inner surfaces of the gas ducts 6, 56, and 76 in the form of an aluminum sheet. With the above configuration, the metal layer can be provided on the inner surface of the gas duct easily and inexpensively.
  • the metal layer 17 is provided by sticking an aluminum sheet on the inner surface of the first duct 6A, 56A, 76A, and the second duct 6B.
  • , 56B, and 76B can include a support portion 57 that protrudes toward the metal layer 17 attached to the first ducts 6A, 56A, and 76A.
  • a vehicle including the power supply device according to the seventh aspect of the present invention can include any one of the power supply devices described above.
  • a power storage device including the power supply device according to the eighth aspect of the present invention can include any one of the power supply devices described above.
  • FIG. 2 is a cross-sectional view taken along line II-II of the power supply device shown in FIG.
  • FIG. 3 is a partially enlarged cross-sectional view corresponding to a cross section taken along line III-III of the power supply device shown in FIG.
  • It is a bottom perspective view of the power supply device shown in FIG.
  • It is a disassembled perspective view of the power supply device shown in FIG.
  • It is a disassembled perspective view of the electric laminated body of the power supply device shown in FIG.
  • FIG. 10 is an enlarged vertical sectional view of the power supply device shown in FIG. 9.
  • FIG. 6 is a bottom perspective view of the top cover shown in FIG. 5.
  • It is a vertical cross-sectional view of a power supply device according to another embodiment of the present invention.
  • It is a perspective view of the gas duct used for the power supply device concerning the other Example of this invention.
  • It is a disassembled perspective view of the gas duct shown in FIG. It is the disassembled perspective view which looked at the gas duct shown in FIG. 14 from the lower side.
  • FIG. 1 It is a vertical cross-sectional view of the gas duct shown in FIG. It is a block diagram which shows the example which mounts a power supply device in the hybrid car which drive
  • the embodiment described below exemplifies a power supply device for embodying the technical idea of the present invention, a vehicle including the power supply device, and a power storage device
  • the present invention includes a power supply device, a vehicle including the power supply device
  • the power storage device is not specified as follows.
  • the member shown by the claim is not what specifies the member of embodiment.
  • the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
  • the contents described in some examples and embodiments may be used in other examples and embodiments.
  • FIG. 1 is a perspective view of the power supply device
  • FIG. 2 is a cross-sectional view taken along line II-II of the power supply device of FIG. 1
  • FIG. 4 is a bottom perspective view of the power supply device of FIG. 1
  • FIG. 5 is an exploded perspective view of the power supply device of FIG. 1
  • FIG. 6 is an exploded perspective view of the battery stack
  • FIG. 7 is a first duct of the gas duct. A bottom perspective view is shown respectively.
  • the power supply apparatus shown in these figures is most suitable for the power supply of an electric vehicle such as a hybrid car that runs with both an engine and a motor and an electric vehicle that runs with only a motor.
  • the power supply device of the present invention can be used for vehicles other than hybrid cars and electric vehicles, and can also be used for applications requiring high output other than electric vehicles.
  • a power supply device 100 shown in FIGS. 1 to 6 includes a plurality of battery cells 1 in which a gas discharge port 12 having a gas discharge valve 11 is provided on a first end face 10 and a battery in which these battery cells 1 are stacked.
  • the laminated body 2 and a gas duct 6 fixed on one surface of the battery laminated body 2 so as to be connected to the gas discharge port 12 of each battery cell 1 are provided.
  • the power supply device shown in the drawing is fixed to the end plate 3 and the end plate 3 disposed on both end faces of the battery stack 2, and the battery stack 2 is fastened in the stacking direction via the end plate 3.
  • connection fixture 4 and one surface of the battery stack 2 are fixed to the end plate 3 so as to face the surface to which the gas duct 6 is fixed, and the battery stack is interposed via the end plate 3.
  • a sub-connecting fixture 5 for fastening the body 2 in the stacking direction is provided.
  • the gas duct 6 is disposed at a fixed position of the battery stack 2 via the sub-connecting fixture 5.
  • a plurality of battery cells 1 having a rectangular outer shape are stacked to form a battery stack 2.
  • the battery cell 1 has a rectangular outer can and is provided with a gas discharge valve 11 for discharging gas generated inside the outer can.
  • the battery cell 1 is provided with a gas discharge port 12 for discharging gas from the gas discharge valve 11 on the surface of the outer can.
  • a plurality of battery cells 1 are stacked in a posture in which the first end face 10 is arranged on substantially the same plane, and a plurality of gas discharge ports 12 are arranged on the first surface 2A. ing.
  • a plurality of battery cells 1 are stacked in a posture in which the first end face 10 provided with the gas discharge valve 11 is an upper surface. (Battery cell 1)
  • the battery cell 1 is a rectangular battery that is wider than the thickness, in other words, a rectangular battery that is thinner than the width, and is stacked in the thickness direction to form the battery stack 2.
  • the battery cell 1 is a lithium ion secondary battery.
  • the battery cell may be a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery.
  • the battery cell 1 in FIG. 6 is a battery having a rectangular shape with both wide surfaces, and is laminated so that both surfaces face each other to form a battery laminate 2.
  • positive and negative electrode terminals 13 are provided so as to protrude from both end portions of the first end surface 10 that is the upper surface, and a gas discharge port 12 of a gas discharge valve 11 is provided in the center portion.
  • the rectangular battery cell 1 has the opening part of the outer can which press-processes the metal plate in the cylinder shape which obstruct
  • the sealing plate used as the first end face 10 is a flat metal plate, and its outer shape is the shape of the opening of the outer can.
  • the sealing plate is laser welded and fixed to the outer peripheral edge of the outer can so as to hermetically close the opening of the outer can.
  • the sealing plate fixed to the outer can has positive and negative electrode terminals 13 fixed to both ends thereof, and a gas discharge port 12 is provided between the positive and negative electrode terminals 13.
  • a gas discharge valve 11 is provided inside the gas discharge port 12.
  • the gas discharge valve 11 is opened when the internal pressure of the battery cell 1 becomes higher than the set pressure, thereby preventing the internal pressure from increasing.
  • the gas discharge valve 11 incorporates a valve body (not shown) that closes the gas discharge port 12.
  • the valve body is a thin film that is destroyed at a set pressure, or a valve that is pressed against the valve seat by an elastic body so as to open at the set pressure.
  • the plurality of battery cells 1 to be stacked are connected in series and / or in parallel with each other by connecting positive and negative electrode terminals 13.
  • the power supply device connects positive and negative electrode terminals 13 of adjacent battery cells 1 to each other in series and / or in parallel via a bus bar 14.
  • a power supply device that connects adjacent battery cells in series can increase the output voltage by increasing the output voltage, and can connect adjacent battery cells in parallel to increase the charge / discharge current.
  • the battery stack 2 shown in FIG. 5 and FIG. 6 twelve battery cells 1 are stacked on each other via a separator 15, and these battery cells 1 are connected in series.
  • adjacent battery cells 1 are arranged in opposite directions, and electrode terminals 13 adjacent on both sides thereof are connected by a bus bar 14 to connect two adjacent battery cells 1 in series. All battery cells 1 are connected in series.
  • the present invention does not specify the number of battery cells constituting the battery stack and the connection state thereof.
  • the battery stack 2 has a separator 15 sandwiched between stacked battery cells 1.
  • the separator 15 insulates adjacent battery cells 1.
  • the separator 15 shown in the figure is an insulating sheet.
  • a plastic sheet can be used as this insulating sheet. Since the separator 15 made of a plastic insulating sheet can be made thin, the total length of the battery stack 2 can be shortened to make the whole compact.
  • a plastic molded into a plate shape can be used as the separator. This separator can be laminated so that adjacent battery cells are not displaced as a shape in which the battery cells are fitted and arranged at a fixed position.
  • molded with a plastic can also cool a battery cell by providing the surface with the cooling clearance gap which allows cooling gas, such as air, to pass through.
  • cooling gas such as air
  • air can be forcedly blown into the cooling gap to directly and efficiently cool the outer can of the battery cell.
  • the separator formed of a plastic material having a low thermal conductivity has an effect of effectively preventing thermal runaway of adjacent battery cells.
  • the outer can can be made of metal such as aluminum.
  • the battery stack does not necessarily need to interpose a separator between battery cells.
  • a separator between battery cells For example, by separating the battery cells adjacent to each other by a method such as forming the battery cell outer can with an insulating material or coating the outer periphery of the battery cell outer can with an insulating sheet or insulating paint, etc. It is because it can be made unnecessary.
  • the battery stack without interposing separators between the battery cells is a method of directly cooling using a refrigerant or the like without adopting an air cooling method in which cooling air is forced between the battery cells to cool the battery cells. Can be used to cool the battery cell. (end plate)
  • a pair of end plates 3 are disposed on both end faces of the battery stack 2, and the battery stack 2 is fastened by being sandwiched from both ends by the pair of end plates 3.
  • the end plate 3 is a quadrangle having the same shape and dimensions as the outer shape of the battery cell 1 and sandwiches the stacked battery stack 2 from both end faces.
  • the entire end plate 3 in FIG. 5 is made of metal.
  • the metal end plate is strong as a whole, and can stably hold the battery stack from both ends.
  • the end plate can be entirely made of plastic, or can be reinforced by fixing a reinforcing bracket to a plastic main body.
  • the end plate 3 shown in the drawing is provided with fitting recesses 3A and 3B for the connection fixture 4 and the sub connection fixture 5 on the outer surface so that the connection fixture 4 and the sub connection fixture 5 can be fixed in place. Yes.
  • the end plate 3 shown in the figure has a coupling recess for fitting coupling portions 4B provided at both ends of the coupling fixture 4 to the corners of the four corners of the outer surface in order to fix the coupling fixture 4 in place. 3A is provided.
  • the shape of the fitting recess 3A is such that the connecting portion 4B of the connecting fixture 4 can be fitted.
  • end plate 3 is fitted to fit the connecting portions 5B provided at both ends of the sub-connecting fixture 5 to the upper end portion of the outer surface in order to fix the sub-connecting fixture 5 in place.
  • a recess 3B is also provided.
  • the shape of the fitting recess 3B is such that the connecting portion 5B of the sub-connecting fixture 5 can be fitted.
  • the end plate 3 shown in the figure has female screw holes 3a and 3b for screwing set screws 18 and 19 for fixing both ends of the connection fixture 4 and the sub-connection fixture 5 on the outer peripheral surface.
  • the end plate 3 shown in the figure has a female screw hole 3a through which a set screw 18 for fixing a pair of connecting fixtures 4 arranged at the upper ends of both side surfaces 2B of the battery stack 2 is inserted into the upper surface of the end plate 3. It is provided at the left and right ends.
  • the end plate 3 has female screw holes 3b through which set screws 18 for fixing the pair of connecting fixtures 4 arranged at the lower ends of the both side surfaces 2B of the battery stack 2 are formed on both side surfaces of the end plate 3. It is provided at the lower end.
  • the end plate 3 has a female screw hole 3b through which a set screw 19 for fixing the sub-connecting fixture 5 arranged on the first surface 2A of the battery stack 2 is inserted at the center of the upper surface of the end plate 3.
  • the above structure is a direction in which the axial direction of the set screws 18 and 19 screwed into the end plate 3 intersects the stacking direction of the battery stack 2. For this reason, in a state where the power supply device vibrates by receiving a force from the outside, the shearing force acting on the shaft portions of the set screws 18 and 19 screwed into the end plate 3 is reduced, and the set screws 18 and 19 are protected. A stronger connection strength can be realized. Further, there is also a feature that the set screws 18 and 19 can be more firmly connected by making the entire length of the set screws 18 and 19 larger than the thickness of the end plate 3, that is, by increasing the total length of the set screws 18 and 19. (Connecting fixture 4)
  • connection fixture 4 is extended in the stacking direction of the battery stack 2, both ends are fixed to the end plate 3, and the battery stack 2 is fastened in the stacking direction.
  • the connecting fixture 4 shown in the figure is disposed to face both side surfaces 2B different from the first surface 2A of the battery stack 2.
  • the structure in which the connecting fixture 4 is arranged and fastened on both side surfaces 2B of the battery stack 2 can more securely fasten the plurality of battery cells 1 in the stacking direction.
  • the connecting fixtures are not necessarily arranged on both side surfaces of the battery stack.
  • the connection fixture can be disposed on the top surface and the bottom surface, or can be disposed only on the top surface and the bottom surface without being disposed on both side surfaces.
  • the connecting fixture 4 is a metal plate having a predetermined width and a predetermined thickness along the surface of the battery stack 2.
  • the connection fixture 4 can be a metal plate such as iron, preferably a steel plate.
  • the connecting fixture 4 made of a metal plate is provided with connecting portions 4B that are connected to the end plate 3 at both ends of the binding portion 4A.
  • the connecting fixture 4 shown in the drawing is bent at substantially right angles at both ends along the outer surface of the end plate 3 to provide a connecting portion 4B.
  • the connection portions 4 ⁇ / b> B at both ends are connected to the end plate 3, whereby the connection portions 4 ⁇ / b> B of the connection fixture 4 are locked to the pair of end plates 3 disposed at both ends of the battery stack 2.
  • connection fixture 4 of FIG. 5 the connection portion 4 ⁇ / b> B is connected to fitting recesses 3 ⁇ / b> A provided at the four corners of the end plate 3, and the pair of end plates 3 are connected by the four connection fixtures 4. Therefore, the connecting portion 4 ⁇ / b> B of the connecting fixture 4 is bent along the fitting recess 3 ⁇ / b> A of the end plate 3. Further, both ends of the connection fixture 4 are fixed to the end plate 3 with set screws 18.
  • the connecting fixture 4 shown in the figure is provided with opening through holes into which set screws 18 are inserted at both ends of the binding portion 4A.
  • the connecting fixture 4 is configured such that a set screw 18 is inserted into the through hole in a state where the connecting portions 4B at both ends are connected to the fitting recess 3A of the end plate 3, and the set screw 18 is provided on the outer peripheral surface of the end plate 3. It is screwed into the female screw hole 3 a and fixed to the pair of end plates 3.
  • the connection portion 4B of the connection fixture 4 is locked to the end plate 3 so that the battery stack 2 can be firmly connected in the stacking direction. Strength can be realized. Further, in this configuration, since the set screws 18 and 19 are not positioned in the stacking direction of the battery stack 2, it is possible to suppress an increase in size of the power supply device.
  • the electrode terminal 13 of the battery cell 1 and a cooling plate 30 described later are disposed in the vertical direction of the end plate 3. The above-described configuration allows for an increase in the size of the power supply device.
  • the connecting fixture 4 shown in FIGS. 2 and 5 is arranged at the corners of the four corners of the battery stack 2 with the binding section 4A having an L-shaped cross-sectional shape.
  • 4 A of bind parts of this shape can arrange
  • the connecting fixture does not necessarily need to have an L-shaped cross-sectional shape for all the binding portions, only the upper connecting fixture has an L-shaped cross-sectional shape at the upper corner of the battery stack.
  • only the lower connection fixture can be arranged in the lower corner portion of the battery stack with the cross-sectional shape being L-shaped.
  • the connection fixture does not necessarily need to be disposed along the corner portion of the battery stack, and can be disposed along both side surfaces of the battery stack or along both side surfaces and the bottom surface.
  • the connection fixture can be formed in a plate shape along the side surface of the battery stack. The plate-shaped main fixture can also open the opening. (Gas duct 6)
  • the gas duct 6 is a first surface which is the upper surface of the battery stack 2 in a posture facing the gas discharge port 12 of each battery cell 1 so as to guide the gas discharged from the gas discharge valve 11 to the outside of the power supply device. It is arranged on the surface 2A.
  • the gas duct 6 is designed to have sufficient strength so as not to be destroyed when high-pressure and high-temperature gas is discharged, and preferably made of a plastic excellent in heat resistance and chemical resistance, for example, made of polybutylene terephthalate. .
  • the gas duct can be made of plastic such as nylon resin or epoxy resin.
  • molds a gas duct with resin has the advantage that it is excellent in workability and there are few restrictions on a design.
  • the gas duct 6 shown in FIG. 2 and FIG. 3 is formed in a hollow shape, and is a surface facing the battery stack 2 and at a position facing the gas discharge port 12 of each battery cell 1.
  • the connection opening 6b connected to is provided.
  • the gas duct 6 shown in the drawing is provided with a columnar gas discharge passage 46 inside, so that the gas discharged from the gas discharge port 12 of the battery cell 1 flows into the gas discharge passage 46 through the connection opening 6b. I have to.
  • the gas duct 6 is provided with a metal layer 17 on the inner surface in order to improve resistance to the high-temperature gas discharged from the gas discharge port 12.
  • the gas duct 6 is provided with a metal layer 17 on the inner surface thereof, that is, on the surface facing the gas discharge port 12, that is, on the inner surface facing the surface provided with the connection opening 6b.
  • the gas duct 6 shown in FIGS. 2, 3, and 7 includes a prismatic gas discharge passage 46 inside, and is a top surface 6 t of the gas discharge passage 46, and a bottom surface provided with a connection opening 6 b.
  • the metal layer 17 is provided only on the inner surfaces facing each other, and the inner surface of the gas duct 6 is exposed on the other surfaces without providing the metal layer 17.
  • This structure can reliably protect the top surface 6t of the gas duct 6 by causing the high-temperature gas discharged from the gas discharge port 12 to directly collide with the metal layer 17.
  • the high temperature gas injected from the gas discharge port 12 is normally injected in a direction perpendicular to the first end face 10 of the battery cell 1, and therefore the top surface 6t side where the high temperature gas is directly injected is most heated. Be susceptible. Therefore, by providing the metal layer 17 only at this portion, the metal layer 17 can be provided only at the minimum necessary portion, and its resistance can be maintained.
  • the gas duct can also be provided with a metal layer on a surface other than the inner surface facing the connection opening, for example, the inner surface of the side wall.
  • the metal duct 17 is provided by fixing the metal sheet 17 ⁇ / b> A to the inner surface of the gas duct 6.
  • the metal layer can be provided by fixing a thin metal plate to the inner surface of the gas duct instead of the metal sheet.
  • the metal layer 17A or the metal layer 17 made of a thin metal plate is provided with an adhesive layer on one side and is attached to the inner surface of the gas duct 6 through the adhesive layer, or the gas duct is provided through an adhesive or a double-sided tape. 6 can be affixed to the inner surface.
  • the gas duct 6 shown in FIG. 8 is provided with a metal layer 17 by fixing the metal plate 17B to the inner surface of the gas duct 6 by insert molding.
  • the metal layer 17 shown in the figure is provided by inserting a strip-shaped metal plate 17B so as to be positioned along the top surface 6t of the gas discharge path 46 on the inner surface of the groove-shaped gas duct 6.
  • both side edges of the metal plate 17B are embedded in a boundary portion between the top surface 6t and the side wall 6f, and are fixed to the inner surface facing the bottom surface provided with the connection opening 6b.
  • the metal plate can be embedded by bending both side edges and extending to the inner surface of the side wall.
  • the structure in which the metal plate 17B is inserted and fixed to the gas duct 6 can be firmly fixed to a fixed position of the gas duct 6 even if the metal plate is somewhat thick, and the gas duct is inserted by the inserted metal plate 17B.
  • the whole 6 can be reinforced.
  • the metal layer made of a metal plate can be fixed at a fixed position on the inner surface of the gas duct by means such as a locking structure or a fitting structure.
  • the thickness of the metal layer 17 can be reduced by making the metal layer 17 thin and easy to be deformed.
  • the metal layer 17 can be easily attached in a state of being in close contact with the inner surface of the gas duct 6 while reducing the weight and manufacturing cost.
  • the heat capacity can be increased while the strength against impact is increased, and the heat received from the high-temperature gas can be quickly diffused. Therefore, the metal layer 17 composed of the metal sheet 17A and the metal plate 17B is set to an optimum thickness in consideration of these matters.
  • the metal to be used is selected considering these things.
  • an aluminum metal sheet 17A or a metal plate 17B can be preferably used.
  • the metal sheet 17A and the metal plate 17B made of aluminum are inexpensive, light, and have excellent thermal conductivity, so that the heat of the high-temperature gas discharged from the gas discharge port 12 can be efficiently conducted and diffused.
  • aluminum sheets commonly used aluminum foil and aluminum foil can be used.
  • Such an aluminum sheet has a thickness of 6 ⁇ m to 0.3 mm, preferably 50 ⁇ m to 0.2 mm, and can achieve excellent thermal conductivity while being applied simply and at low cost.
  • the metal layer which consists of a thin metal plate made from aluminum can be easily affixed while simplifying the handling with a thickness of 1 mm or less, and can realize excellent resistance.
  • the aluminum metal plate 17B that is inserted into and fixed to the gas duct 6 has a large thickness, thereby increasing heat capacity and quickly diffusing heat, thereby realizing excellent resistance.
  • the aluminum metal plate 17B inserted into the gas duct 6 can be, for example, 0.2 mm to 3 mm, preferably 0.5 mm to 2 mm.
  • metals other than aluminum can also be used for the metal layer.
  • the gas duct 6 shown in FIG. 5 is manufactured by being divided into a first duct 6A and a second duct 6B.
  • the first duct 6A and the second duct 6B are divided in a direction perpendicular to the first end face 10 of the battery cell 1, and the second duct 6B is formed between the first duct 6A and the battery stack 2. Arranged in between.
  • This gas duct 6 connects the first duct 6A and the second duct 6B to each other to form a columnar gas discharge path 46 therein.
  • the first duct 6A shown in FIGS. 2, 7, and 8 is formed in a shape having a groove-shaped recess 6d on the inside, and the opening of the groove-shaped recess 6d is formed as a gas discharge port of the battery cell 1.
  • the first duct 6A shown in the figure is the inner surface of the groove-shaped recess 6d, and the metal layer 17 is provided on the top surface 6t of the gas discharge path 46. Furthermore, the first duct 6A shown in the figure is a flange that protrudes outward along the opening edge of the groove-shaped recess 6d so as to be fixed to the battery stack 2 via a sub-connecting fixture 5 described later. 6a is integrally formed.
  • the second duct 6B has a plate shape arranged along the first surface 2A of the battery stack 2 and has a stepped recess 6c on the surface for fitting the flange 6a of the first duct 6A.
  • the second duct 6B is a hollow gas duct 6 in which the flange 6a of the first duct 6A is fitted into the stepped recess 6c to connect the first duct 6A and the second duct 6B.
  • the gas duct 6 can be hermetically fixed by vibration welding the first duct 6A and the second duct 6B, ultrasonic welding, or bonding them.
  • first duct and the second duct do not necessarily need to be fixed by welding or bonding, and a packing (not shown) is arranged at the boundary between the stepped recess and the flange, and the packing is sandwiched.
  • the first duct and the second duct can be connected in an airtight manner by being connected in a state.
  • the second duct 6B is provided with a connection opening 6b connected to the gas discharge port 12 of each battery cell 1, and the connection opening 6b is connected to the gas discharge port 12.
  • the second duct 6 ⁇ / b> B in the figure is provided with a rectangular connection opening 6 b at a position facing the gas discharge port 12 of the battery cell 1.
  • the connection opening may be an oval shape or an elliptical shape along the gas discharge port of the battery cell.
  • the first duct 6A and the second duct 6B can be made of plastics of different materials.
  • the gas duct 6 can be formed by molding the first duct 6A with a plastic excellent in heat resistance and the second duct 6B with a plastic excellent in insulation.
  • the first duct 6A is made of plastic such as polybutylene terephthalate, nylon resin or epoxy resin in which glass fiber or carbon fiber is embedded and reinforced
  • the second duct 6B is made of nylon resin or epoxy. It can be made of insulating plastic such as resin. Even if the 2nd duct formed by an insulating plastic contacts the surface of a battery cell, it does not short-circuit the outer can of a battery cell.
  • the gas duct 6 is provided with a discharge portion 6 x that discharges the gas inside the gas duct 6 to the outside at one end portion.
  • a hollow pipe projecting from the upper surface is connected to a cylindrical pipe communicating with an internal gas discharge path 46 to form a discharge section 6x.
  • an external duct 36 is connected to the discharge portion 6x to discharge the gas flowing in from the gas duct 6 to the outside.
  • the surface plate 8 is disposed on the first surface 2 ⁇ / b> A of the battery stack 2, and the battery cells 1 stacked on each other by the surface plate 8.
  • the first end face 10 is covered.
  • the surface plate 8 is formed in an outer shape along the upper surface of the battery stack 2.
  • the surface plate 8 is also used as the second duct 6B of the gas duct 6. That is, the surface plate 8 shown in the drawing is provided with a plurality of connection openings 6b by using a portion facing the plurality of gas discharge ports 12 arranged at the center of the battery stack 2 as the second duct 6B. . Therefore, the surface plate 8 is formed of an insulating plastic such as nylon resin or epoxy resin.
  • the surface plate 8 is provided with an opening window 24 for disposing the bus bar 14 at a position facing the electrode terminal 13 of the battery cell 1.
  • the surface plate 8 in the figure is provided with a plurality of opening windows 24 along both sides of the battery stack 2 on both sides of the central portion constituting the second duct 6B.
  • the opening window 24 is sized and shaped along the outer shape of the bus bar 14 so that it can be connected to the electrode terminal 13 while guiding the bus bar 14 to a fixed position.
  • the bus bar 14 disposed in the opening window 24 of the surface plate 8 is fixed to the electrode terminal 13 of the battery cell 1 by welding such as laser welding, and connects the plurality of battery cells 1 to a predetermined connection state.
  • the power supply device does not necessarily need to arrange the surface plate on the first surface of the battery stack.
  • the above surface plate 8 is fixed to the first surface of the battery stack 2 via the sub-connecting fixture 5 that connects the gas duct 6 to the battery stack 2.
  • the structure in which the surface plate 8 disposed on the first surface 2A of the battery stack 2 is also used as the gas duct 6 allows the gas duct 6 to be arranged easily and at low cost by reducing the number of parts.
  • the structure in which the surface plate 8 is also used as the second gas duct 6B is to connect the first gas duct 6A with the battery stack 2 fastened in advance through the connection fixture 4 in the assembly process of the power supply device. Therefore, the first gas duct 6A can be more reliably connected to the second gas duct 6B in an airtight state.
  • the power supply device of the present invention can also be disposed on the first surface of the battery stack without using the surface plate as a gas duct, with the gas duct as a separate member.
  • a through hole 58A extending in the stacking direction of the battery cells 1 is opened at the center of the surface plate 58, and the gas duct 56 is disposed in the through hole 58A.
  • the gas duct 56 shown in FIGS. 9 and 10 is divided into a first duct 56A and a second duct 56B.
  • the first duct 56A and the second duct 56B are connected to each other, and a prismatic shape is formed inside.
  • a gas discharge path 46 is provided.
  • the first duct 56A is provided with a groove-shaped recess 56d having a lower opening in the drawing, and the opening of the groove-shaped recess 56d is disposed so as to face the gas outlet 12 of the battery cell 1. Yes.
  • the first duct 56A shown in the figure is provided with the metal layer 17 on the top surface 56t of the gas discharge path 46, on the inner surface of the groove-shaped recess 56d. Furthermore, the first duct 56A shown in the drawing is provided with a flange 56a that projects outward along the opening edge of the groove-shaped recess 56d.
  • the second duct 56 ⁇ / b> B is provided with a connection opening 56 b connected to the gas discharge port 12 at a position facing the gas discharge port 12 of each battery cell 1. Further, the second duct 6B shown in FIG. 9 is provided between the connection openings 56b and integrally provided with a support portion 57 that protrudes toward the metal layer 17 of the first duct 56A. The second duct 56B shown in the drawing is located between the connecting openings 56b adjacent to each other, and a plurality of support portions 57 are provided. However, the support portions can be provided at predetermined intervals.
  • the support portion 57 shown in the figure has its tip edge in contact with the metal layer 17.
  • the support portion 57 whose tip is brought into contact with the metal layer 17 is characterized in that the metal layer 17 can be supported while being pressed and the metal layer 17 can be held at a fixed position on the inner surface of the first duct 56A.
  • This support portion can also be reliably supported on the inner surface side of the first duct without dropping the peeled metal layer even if the adhesive strength of the metal layer is lowered with time.
  • the support portion 57 shown in the figure is a cylindrical convex portion, and the outer diameter of the convex portion is made narrower than the inner width of the gas exhaust passage 46 so that the gas discharged to the gas exhaust passage 46 can pass smoothly.
  • the support portion may be a rib.
  • the rib-shaped support portion can support the metal layer over a wide area by bringing the tip end face closer to or in contact with the inner surface of the metal layer.
  • the first duct 56A and the second duct 56B described above are hermetically fixed by vibration welding, ultrasonic welding, or adhesion to form the gas duct 56.
  • the gas duct does not necessarily need to be divided into the first duct and the second duct, but is formed as a single cylinder, and a plurality of connection openings are provided on one surface of the cylinder, and the connection openings are connected to the gas exhaust of the battery cell. It can also be connected to the outlet. (Packing)
  • the power supply device has a packing 7 disposed between the gas ducts 6 and 56 and the battery stack 2.
  • the packing 7 is a rubber-like elastic body, and is disposed between a sealing plate, which is the first end face 10 of the plurality of battery cells 1 constituting the battery stack 2, and the gas ducts 6 and 56.
  • the space between the battery cells 1 is airtightly closed.
  • the packing 7 made of a rubber-like elastic body is sandwiched between the battery stack 2 and the gas ducts 6 and 56 and elastically deforms.
  • the packing 7 in a state where the sub-connecting fixture 5 presses the gas ducts 6 and 56 against the battery stack 2, the packing 7 is sandwiched between the gas ducts 6 and 56 and the battery stack 2 and crushed, and the gas ducts 6 and 56 and the battery cell are pressed. 1 is securely closed.
  • the elastically deformable packing 7 hermetically closes the space between the gas ducts 6 and 56 and the battery cell 1 and allows the exhaust gas ejected from the gas exhaust port 12 to flow into the gas ducts 6 and 56 without leaking. Exhaust to the outside.
  • the packing 7 shown in FIGS. 5 and 9 is a long and narrow plate extending in the stacking direction of the battery stack 2, and a through hole 7 b is provided at a position facing the gas discharge port 12 of each battery cell 1.
  • the through-hole 7b is located at a position facing the connection openings 6b and 56b opened in the second ducts 6B and 56B, and allows gas passing through the through-hole 7b to flow into the gas ducts 6 and 56.
  • the through-hole 7b of the packing 7 is disposed in a state of facing the gas discharge port 12 of the battery cell 1, and the battery cell 1 and the gas ducts 6 and 56 are closed, so that the gas is discharged from the gas discharge port 12. The gas can be surely prevented from leaking.
  • the packing 7 shown in the figure is provided with a rectangular through hole 7b extending along the inner shape of the connection openings 6b and 56b opened in the second ducts 6B and 56B, and this through hole 7b is formed in the gas discharge port 12 of the battery cell 1. It is connected.
  • the through hole can be formed in an oval shape or an elliptical shape along the gas discharge port of the battery cell.
  • the packing 7 shown in the drawing is disposed at a fixed position on the lower surface of the second ducts 6B and 56B, that is, the surface facing the battery stack 2, and the through hole 7b is disposed at a position facing the connection openings 6b and 56b.
  • the second duct 6B shown in FIG. 2 is integrally formed with a rib 6e extending along the outer periphery of the packing 7 protruding from the lower surface, and the packing 7 is guided inside the rib 6e and arranged at a fixed position.
  • the packing can also be disposed at a fixed position of the battery stack by adhesion or the like.
  • the above packing has a plate shape as a whole and opens a plurality of through-holes.
  • the packing may be formed in a ring shape facing each connection opening.
  • This structure arrange
  • the above gas ducts 6 and 56 are arranged facing the gas discharge port 12 of the battery stack 2 and are in place via the sub-connecting fixture 5 arranged on the first surface 2A of the battery stack 2. Fixed. As shown in FIGS. 5 and 9, the sub-connecting fixture 5 is disposed to face the first surface 2 ⁇ / b> A of the battery stack 2, and the gas ducts 6 and 56 are disposed at fixed positions of the battery stack 2. ing. Both ends of the sub-connecting fixture 5 are also fixed to the end plate 3, and the battery stack 2 is fastened with the first surface 2A.
  • the sub coupling fixture 4 is a metal plate having a predetermined width and thickness, and a metal plate such as iron, preferably a steel plate can be used.
  • the sub coupling fixture 4 made of a metal plate is provided with coupling portions 5B coupled to the outer surface of the end plate 3 at both ends of the binding portion 5A.
  • the sub coupling fixture 5 shown in the figure includes two rows of binding portions 5A and a coupling portion 5B formed by coupling both ends of these binding portions 5A.
  • Two rows of binding portions 5 ⁇ / b> A are disposed along both sides of the gas ducts 6 and 56.
  • the two rows of binding portions 5A are arranged at predetermined intervals so that the flange portions 6a and 56a provided on both sides of the gas ducts 6 and 56 can be pressed.
  • the sub-connecting fixture 5 is fixed to the end plate 3 with the gas ducts 6 and 56 disposed between the two rows of binding portions 5A, and presses the flange portions 6a and 56a with the two rows of binding portions 5A. .
  • the two rows of binding portions 5A are connected at both ends by connecting portions 5B, and the connecting portions 5B are bent at substantially right angles and connected to the end plate 2.
  • the sub-connecting fixture 5 connects the battery stack 2 from both ends by connecting the connecting portions 5B at both ends to the fitting recesses 3B provided on the end plate 3, with the pair of end plates 3 being set at a predetermined interval. . Furthermore, the both ends of the sub coupling fixture 5 are fixed to the end plate 3 with set screws 19.
  • the sub-connecting fixture 5 shown in the figure is provided with opening through holes into which set screws 19 are inserted at both ends of the binding portion 5A.
  • the sub-connecting fixture 5 is configured such that a set screw 19 is inserted into the through hole in a state in which the connecting portions 5B at both ends are connected to the fitting recess 3B of the end plate 3, and the set screw 19 is provided on the outer peripheral surface of the end plate 3. Screwed into the female screw holes 3b and fixed to the pair of end plates 3.
  • the sub-connecting fixture 5 shown in the figure is integrally formed with two rows of binding portions 5A and connecting portions 5B at both ends, but the sub-connecting fixture can also be divided into two. Although the sub-connecting fixtures divided into two are not shown, each may be arranged along both sides of the gas duct, and each binding part may press the claws along the flanges protruding from both sides of the gas duct. it can.
  • the sub-connecting fixture can also connect two rows of binding portions with a bridging portion provided in the middle and arrange the bridging portion on the upper surface of the gas duct.
  • the sub-connecting fixture can be arranged at a fixed position on the first surface of the battery stack by pressing the upper surface of the gas duct at the bridge portion.
  • the sub-connecting fixture includes a row of binding portions, and presses the upper surface of the gas duct with this binding portion, so that the gas duct is disposed at a fixed position on the first surface of the battery stack. You can also. (Circuit board)
  • the power supply device shown in FIGS. 2 and 5 includes a circuit board 9 connected to the battery stack 2, and the circuit board 9 is located above the gas duct 6 and between the top cover 20. It is arranged.
  • the top cover 20 shown in the drawing is provided with a storage recess 21 for storing the circuit board 9 on the upper surface side, and the circuit board 9 is stored in the storage recess 21.
  • the circuit board 9 is mounted with an electronic component (not shown) that implements a protection circuit for the battery cell 1.
  • the circuit board 9 is mounted with a voltage detection circuit for detecting a cell voltage connected to each battery cell 1, a temperature detection circuit for detecting the temperature of the battery cell 1, etc. 1 is controlled so as to prevent overcharging and overdischarging, or charging / discharging is controlled so as to prevent an abnormal temperature rise of the battery cell 1.
  • Electronic components that realize these circuits are arranged on the circuit board 9 and stored in the storage recess 21.
  • the circuit board 9 shown in the figure is arranged at a fixed position on the upper surface of the gas duct 6 via the sub-connecting fixture 5. 2, 3, and 5, a plurality of nuts 26 are fixed to the upper surface of the binding portion 5 ⁇ / b> A in order to fix the circuit board 9.
  • a set screw 25 penetrating the circuit board 9 is screwed into a nut 26 provided in the sub-connecting fixture 5, and the circuit board 9 is disposed at a fixed position on the upper surface of the gas duct 6.
  • the sub-connecting fixture 5 made of a metal plate is disposed between the circuit board 9 and the battery stack 2, so that the circuit board 9 is attached to the battery stack 2 with the metal plate of the sub-connecting fixture 5.
  • the circuit board 9 can be shielded from the battery stack 2 by the metal layer 17.
  • the battery stack 2 is charged and discharged with a large current, and is charged and discharged with a particularly large pulse current, so that pulse noise is emitted.
  • the metal plate of the sub-connecting fixture 5 and the metal layer 17 of the gas ducts 6 and 56 are between the circuit board 9 and the battery stack 2, and the circuit board 9 is removed from the pulsed induction noise radiated from the battery stack 2. It has a feature that it can be shielded to prevent malfunction due to induced noise of the circuit board 9. In particular, the induction noise from the battery stack 2 can be more effectively shielded by connecting the sub-connecting fixture, which is a metal plate, to the earth line. (Top cover)
  • the top cover 20 covers the upper surface of the surface plate 8 and covers and protects the bus bar 14 and the circuit board 9 connected to the battery stack 2. Therefore, the top cover 20 has an outer shape capable of covering the upper surface of the surface plate 8 and is molded of plastic into a shape having a space in which the circuit board 9 can be accommodated.
  • the top cover 20 shown in FIGS. 2 and 11 is formed into a shallow container shape with a lower opening, and the central portion is formed one step deeper than the surroundings, and a storage recess 21 for storing the circuit board 9 is formed. Provided.
  • the top cover 20 is provided with a notch 22 for projecting the discharge part 6x of the gas duct 6 to the outside at one end.
  • the top cover 20 causes the discharge portion 6 x to be exposed to the outside from the cutout portion 22 in a state of being connected to the upper surface of the battery stack 2.
  • the top cover 20 shown in FIGS. 1 and 11 has output terminal windows 23 at both ends. In the battery stack 2, output terminal plates 16 are connected to the electrode terminals 13 of the battery cells 1 arranged at both ends. The top cover is provided with terminal windows 23 opened at both ends for exposing these output terminal plates 16 to the outside.
  • the above top cover 20 is fixed to the gas duct 6 via a set screw 27.
  • the gas duct 6 shown in FIG. 5 is provided with a connecting boss 28 integrally formed on the upper surface in order to fix the top cover 20 at a fixed position.
  • the connecting boss 28 in FIG. 5 is provided so as to protrude from the upper surface of both end portions of the gas duct 6.
  • the top cover 20 has a through hole 29 at a position facing the connection boss 28, and a set screw 27 inserted through the through hole 29 is screwed into the connection boss 28 of the gas duct 6 to fix the battery stack 2. Fixed in position.
  • the power supply device provided with the top cover 20 can prevent the connection portion between the battery cells 1 having a high voltage, the circuit board 9 and the like from being exposed. For example, the battery is inadvertently used during maintenance. It is possible to prevent the circuit from being short-circuited by contacting the connection portion between the cells 1 or the circuit board 9 or the like. Also, a simple waterproof effect can be obtained.
  • the metal layer 17 is not only provided at a position facing the gas discharge port 12, but the metal layer 17 is formed on the opposite surface of the gas discharge port 12 of the gas duct 6 over both ends of the gas duct 6 as shown in FIG.
  • the above power supply device is the structure which presses the gas duct 6 with the sub coupling fixture 5, it can adhere
  • the volume of the gas duct 6 can be made relatively small, that is, the height of the gas duct 6 can be reduced.
  • a power supply device can arrange a gas duct or a circuit board inside the tip of an electrode terminal of a battery cell, for example, and suppresses the enlargement of a power supply device by having such composition. Can do.
  • An example of such a power supply device is shown in FIG.
  • the electrode terminal 63 provided on the first end surface 60 of the battery cell 51 is protruded from the upper surface in the form of a rod having a male screw on the outer peripheral surface.
  • the electrode terminal 63 is inserted into the through hole of the bus bar 14 and a nut 67 is screwed to fix the bus bar 14 in a fixed position.
  • the battery cell 51 has a shape in which the electrode terminal 63 protrudes from the first end face 60 of the battery cell 51 so that the nut 67 can be screwed.
  • electrode terminals 63 are arranged along both sides of the first surface 2 ⁇ / b> A, and the gas duct 6 is arranged between these electrode terminals 63.
  • the gas duct 6 is formed to have a low height.
  • the gas duct 6 is arranged in a state where the upper surface is brought close to the gas outlet 12 of the battery cell 51, and is arranged inside the tip of the electrode terminal 63.
  • the inner side of the tip of the electrode terminal 63 means the first end surface 10 side of the line connecting the tips of the electrode terminals 63 located at both ends of the first end surface 10 of the battery cell 1. To do.
  • the gas duct 6 is disposed inside the line connecting the tips of the electrode terminals 63 located at both ends of the battery cell 1 and does not protrude from the line. Thereby, the enlargement of a power supply device is suppressed, without making the gas duct 6 protrude from the battery laminated body 2 highly.
  • the circuit board 9 is arranged between the electrode terminals 63 arranged on both sides of the gas duct 6, and the circuit board 9 is also located inside the tip of the electrode terminal 63. Is arranged. While this power supply device has a structure in which the circuit board 9 is disposed on the first surface 2 ⁇ / b> A side of the battery stack 2, an increase in size of the power supply device can be suppressed. Furthermore, the area of the circuit board can be increased. This is because the enlargement of the power supply device can be suppressed even if the circuit board is enlarged. A circuit board having a large area can be arranged in an ideal state while simplifying the wiring pattern provided on the surface and taking into consideration the heat dissipation of the electronic components to be mounted.
  • the power supply device shown in FIG. 12 includes a surface plate 68 that covers the first surface 2 ⁇ / b> A of the battery stack 2, and has an opening window 24 in which the bus bar 14 is disposed along both sides of the surface plate 68.
  • the surface plate 68 shown in the drawing is provided with a partition wall 68a protruding in the protruding direction of the electrode terminal 63 along the opening edge of the opening window. Since this structure can protect the electrode terminal 63 and the bus bar protruding from the battery cell with the partition wall 68a, it can effectively prevent a short circuit or the like from coming into contact with the electrode terminal or the bus bar 14 of the battery cell 1 during maintenance. Can be prevented.
  • the gas duct 6 and the circuit board 9 arranged between the electrode terminals 63 are arranged on the inner side of the tip of the partition wall 68a.
  • the inside of the tip of the partition wall 68a means the first surface 2A side with respect to the line connecting the tips of the partition walls 68a provided on both sides of the surface plate 68. That is, the gas duct 6 and the circuit board 9 are disposed inside the line connecting the leading ends of the partition walls 68a provided on both sides of the surface plate 68, and do not protrude from the line. Thereby, the enlargement of a power supply device is suppressed, without making the gas duct 6 and the circuit board 9 protrude highly from the battery laminated body 2.
  • the gas ducts 6 and 56 are fixed to the first surface 2 ⁇ / b> A of the battery stack 2 via the sub-connecting fixture 5.
  • the gas duct is not necessarily fixed to the battery stack via the sub-connecting fixture, and can be fixed to the battery stack via another connection structure.
  • the gas duct 76 shown in FIGS. 13 to 16 is configured to be fixed to end plates (not shown) disposed at both ends of the battery stack through fixing screws 79. Further, the gas duct 76 shown in FIGS. 13 to 16 is an example of the gas duct 76 that is disposed on the first surface of the battery stack as a whole.
  • the cylindrical gas duct 76 is divided into a first duct 76A and a second duct 76B, and the first duct 76A and the second duct 76B are connected to each other so that a corner is formed inside.
  • a columnar gas discharge path 46 is provided.
  • the first duct 76A is provided with a thin lid-shaped groove-shaped recess 76d having a lower opening in the drawing, and the opening of the groove-shaped recess 76d is disposed so as to face the gas discharge port of the battery cell. Is done.
  • the first duct 76A shown in the figure is the inner surface of the groove-shaped recess 76d, and the metal layer 17 is provided on the top surface 76t of the gas discharge path 46.
  • the gas duct 76 also fixes the metal layer 17 made of the metal sheet 17A to the inner surface.
  • the second duct 76B is in the form of a long and narrow container formed by providing a peripheral wall 76g around the belt-like bottom plate 76f.
  • the gas duct 76 has a cylindrical shape as a whole by connecting the tip edge of the peripheral wall 76g of the second duct 76B to the outer peripheral portion of the first duct 76A. Further, the second duct 76B is provided with a plurality of connection openings 76b connected to the gas discharge ports 12 of the respective battery cells 1 in the bottom plate 76f.
  • the 15 and 16 is provided with a plurality of cylindrical portions 76h protruding from the lower surface of the bottom plate 76f, and provided with a connecting opening 76b penetrating these cylindrical portions 76h.
  • the cylinder portion 76h is provided to face the gas discharge port 12 provided in each battery cell 1.
  • the gas duct 76 is connected to the gas discharge port of the battery cell 1 through a packing 77 arranged on the lower surface of the second duct 76B and connected to the periphery of the cylindrical portion 76h.
  • the packing 77 is a rubber-like elastic body, and is disposed between the gas duct 76 and the first end face of the battery cell so that the gas ejected from the gas discharge port of the battery cell can flow into the gas duct 76 without leaking. I have to. As shown in FIGS.
  • the packing 77 has an elongated shape extending in the same direction as the gas duct 76, and is provided with a plurality of through holes 77 b into which the cylindrical portions 76 h of the gas duct 76 are fitted at predetermined intervals.
  • the packing 77 is disposed at a fixed position of the gas duct 76 via the positioning holder 78 and is in close contact with the first end face of the battery cell.
  • This structure can flow into the gas discharge path 46 of the gas duct 76 and exhaust outside without leaking the exhaust gas ejected from the gas discharge port of the battery cell.
  • the above-described gas duct 76 is connected to a fixed position of the positioning holder 78 by guiding a cylindrical portion 76 h protruding from the lower surface to a positioning hole 78 b provided in the positioning holder 78. Further, the gas duct 76 is arranged at a fixed position of the packing 77 by inserting a cylindrical portion 76 h penetrating the positioning holder 78 into the through hole 77 b of the packing 77. The gas duct 76 is inserted into the through-hole 77 b of the packing 77 with the cylindrical portion 76 h passing through the positioning holder 78, and is disposed at a fixed position of the battery stack through the packing 77.
  • the packing 26 and the positioning holder 78 are connected to each other by a fitting structure, and the packing 26 is disposed at a fixed position of the gas duct 76.
  • the fitting structure shown in the figure is a structure in which the cylindrical portion 76 h provided in the second duct 76 B is inserted into the positioning hole 78 b of the positioning holder 78 and the through hole 77 b of the packing 77.
  • This fitting structure is characterized in that the gas discharged from the battery cell can flow into the gas duct 76 while the packing 77 and the gas duct 76 are connected to each other at an accurate position.
  • the present invention does not specify the fitting structure between the gas duct and the packing in this structure.
  • the fitting structure of the gas duct and the packing is provided with a convex portion on one side, a concave portion for inserting the convex portion on the other side, and the convex portion is inserted into the concave portion so as to be connected to each other in a fixed position. be able to.
  • the gas duct 76 described above is provided with connecting pieces 75 for fixing to the battery stack 2 at both ends thereof.
  • the connecting piece 75 shown in the figure protrudes from both ends of the second duct 76B, and is fixed to the end plate of the battery stack through a set screw 79 screwed into the connecting piece 75.
  • the illustrated gas duct 76 is fixed at a fixed position of the battery stack by connecting a set screw 79 inserted into the connecting piece 75 at both ends to the end plate.
  • the end plate (not shown) to which the gas duct 76 is fixed has a screw hole for screwing a fixing screw 79 for connecting the gas duct 76 on the upper surface.
  • the gas duct 76 is fixed at a fixed position of the battery stack by fixing screws 79 inserted into the connecting pieces 75 into the end plate. (Cooling plate)
  • a battery stack 2 formed by stacking a plurality of battery cells 1 is arranged on the surface of the cooling plate 30 in a heat conductive state. This power supply device forcibly cools the cooling plate 30 to dissipate heat generated by each battery cell 1.
  • the cooling plate 30 is provided with a refrigerant passage 31 therein, supplies the liquefied refrigerant to the refrigerant passage 31, vaporizes the refrigerant in the refrigerant passage 31, and heats vaporization of the refrigerant.
  • the battery cell 1 is cooled by forcibly cooling.
  • a cooling mechanism that forcibly cools the cooling plate 30 with the heat of vaporization of the refrigerant is not shown, a compressor that pressurizes the refrigerant in a gaseous state, a condenser that cools and liquefies the gas pressurized by the compressor, And an expansion valve that supplies the refrigerant liquefied by the condenser to the refrigerant passage 31 of the cooling plate 30.
  • This cooling mechanism supplies the liquefied refrigerant to the cooling plate 30 via the expansion valve, vaporizes the supplied refrigerant inside the cooling plate 30, and cools the cooling plate 30 with heat of vaporization.
  • the vaporized refrigerant is pressurized by the compressor, supplied to the condenser, liquefied by the condenser, and circulated to the refrigerant passage 31 of the cooling plate 30 via the expansion valve to cool the cooling plate 30.
  • the refrigerant passage 31 provided inside the cooling plate 30 is connected to the cooling mechanism via a connecting portion 32 protruding outward.
  • the cooling plate is not necessarily cooled by the heat of vaporization of the refrigerant, and can be cooled by circulating a cooled liquid inside, for example. Further, the cooling plate can be cooled by providing a cooling gas passage inside and forcibly blowing the gas cooled in this passage.
  • the battery stack 2 is formed by stacking 12 battery cells 1.
  • the battery cells to be stacked are 11 or less, or 13 or more. It can also be connected in series and / or in parallel.
  • the gas duct is formed into the battery stack by the sub-connecting fixture. Since it is configured to be pressed toward the outside, the gas duct and the gas outlet can be kept airtight even when the number of battery cells is large.
  • an electrode terminal is arrange
  • a cooling plate is arrange
  • an electrode terminal and a cooling plate are battery laminated bodies depending on the structure of a power supply device. It may be provided on the side surface side.
  • a set screw for fixing the connection fixture may be fixed to the side surface of the end plate. According to this configuration, the position of the set screw can be made to correspond to the position of the electrode terminal or the cooling plate, and an increase in size of the power supply device can be suppressed.
  • the gas stack is held and the sub connection fixture for fastening the battery stack is provided.
  • the load resulting from the fastening can be distributed to the connection fixture and the sub connection fixture. For this reason, compared with the structure which fastens a battery laminated body only with a connection fixture, the intensity
  • the above power supply devices can be used as in-vehicle power supplies.
  • a vehicle equipped with a power supply device an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and it is used as a power source for these vehicles. .
  • FIG. 17 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor.
  • a vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 100 that supplies power to the motor 93, and a generator that charges a battery of the power supply device 100.
  • the power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply device 100.
  • the motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100.
  • FIG. 18 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor.
  • a vehicle EV equipped with the power supply device shown in this figure includes a traveling motor 93 for traveling the vehicle EV, a power supply device 100 that supplies power to the motor 93, and a generator 94 that charges a battery of the power supply device 100.
  • the power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by energy when regeneratively braking the vehicle EV and charges the battery of the power supply device 100.
  • this power supply apparatus can be used not only as a power source for a moving body but also as a stationary power storage facility.
  • a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals.
  • FIG. The power supply apparatus 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape. Each battery pack 81 has a plurality of battery cells connected in series and / or in parallel. Each battery pack 81 is controlled by a power controller 84.
  • the power supply apparatus 100 drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply apparatus 100 includes a charging mode and a discharging mode.
  • the load LD and the charging power source CP are connected to the power supply device 100 via the discharging switch DS and the charging switch CS, respectively.
  • ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 100.
  • the power supply controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply apparatus 100.
  • the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge.
  • the mode is switched to permit discharge from the power supply apparatus 100 to the load LD.
  • the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply device 100 at the same time.
  • the load LD driven by the power supply device 100 is connected to the power supply device 100 via the discharge switch DS.
  • the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply apparatus 100.
  • the discharge switch DS a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100.
  • the power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 19, the host device HT is connected in accordance with an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
  • Each battery pack 81 includes a signal terminal and a power supply terminal.
  • the signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO.
  • the pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84
  • the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs.
  • the pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside.
  • the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel.
  • the power supply device can be suitably used as a power supply device for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle or the like that can switch between the EV traveling mode and the HEV traveling mode.
  • a backup power supply that can be mounted on a rack of a computer server, a backup power supply for a wireless base station such as a mobile phone, a power supply for home use, a power supply for a factory, a power supply for a street light, etc. It can also be used as appropriate for applications such as backup power supplies for devices and traffic lights.
  • SYMBOLS 100 Power supply device 1 ... Battery cell 2 ... Battery laminated body; 2A ... 1st surface; 2B ... Side surface 3 ... End plate; 3A ... Insertion recessed part; 3B ... Insertion recessed part 3a ... Female screw hole; 4A ... Binding portion; 4B ... Connection portion 5 ... Sub-connection fixing device; 5A ... Binding portion; 5B ... Connection portion 6 ... Gas duct; 6A ... First duct; 6B ... Second duct 6a ... 6b ... Stepped recess; 6d ... Groove-shaped recess 6e ... Rib; 6f ... Side wall; 6t ... Top surface; 6x ...
  • Discharge part 7 ... Packing; 7b ... Through hole 8 ... Surface plate 9 ... Circuit board 10 ... first end face 11 ... gas exhaust valve 12 ... gas exhaust port 13 ... electrode terminal 14 ... bus bar 15 ... separator 16 ... output terminal plate 17 ... metal layer; 17A ... metal sheet; 17B ... metal plate 18 ... Set screw 19 ... Set screw 20 ... Top cover 21 Storage recess 22 ... cutout 23 ... terminal window 24 ... opening window 25 ... nut 26 ... set screw 27 ... set screw 28 ... connection boss 29 ... through hole 30 ... cooling plate 31 ... refrigerant passage 32 ... connection part 36 ... external duct 46 ... gas discharge path 51 ... battery cell 56 ... gas duct; 56A ...

Abstract

[Problem] To make a gas duct thinner while minimizing decreases in tolerance during gas discharge. [Solution] A power-supply device is provided with the following: a plurality of battery cells (1), each of which has a gas-discharge port (12) with a gas-discharge valve (11) provided in a first end surface (10); a battery stack (2) comprising the aforementioned plurality of battery cells (1) stacked together; and a gas duct (6) affixed to one surface of the battery stack (2) so as to connect to the gas-discharge ports (12) of the battery cells (1). A metal layer (17) is provided on the part of the inner surface of the gas duct (6) that faces the gas-discharge ports (12).

Description

電源装置及びこれを備える車両並びに蓄電装置Power supply device, vehicle including the same, and power storage device
 本発明は、電池を複数接続した電源装置、及びこの電源装置を備える車両及び蓄電装置に関し、特にハイブリッド車、燃料電池自動車、電気自動車、電動オートバイ等の電動車両に搭載されて車両を走行させるモータの電源装置、あるいは家庭用、工場用の蓄電用途等に使用される大電流用の電源に電力を供給する電源装置、及び電源装置を備える車両並びに蓄電装置に関する。 TECHNICAL FIELD The present invention relates to a power supply device in which a plurality of batteries are connected, and a vehicle and a power storage device including the power supply device, and more particularly, a motor that is mounted on an electric vehicle such as a hybrid vehicle, a fuel cell vehicle, an electric vehicle, and an electric motorcycle. The present invention relates to a power supply apparatus that supplies power to a power supply for large currents used for power storage applications for home use, factories, etc., a vehicle including the power supply apparatus, and a power storage apparatus.
 複数の電池セルを備える電源装置は、ハイブリッド自動車や電気自動車など車両用の電源装置や、工場用、家庭用などの蓄電システムの電源などに利用されている。また、電池セルは、高温時などに内圧が上昇した際、内部のガスを外部に排出できるようにガス排出口を開口してガス排出弁を設けている。このようなガス排出口を備えた電池セルは、排出されるガスを安全に誘導して排出する必要がある。ガスを安全に誘導して排出する機構を備えた電源装置として、ガス排出口と連通されるガスダクトを備え、さらにガスダクトとガス排出口との連結部分でガス漏れを防止すべく、シール部材により気密にシールした電源装置が知られている。(例えば特許文献1参照) A power supply device including a plurality of battery cells is used for a power supply device for a vehicle such as a hybrid vehicle or an electric vehicle, or for a power storage system for a factory or a home. In addition, the battery cell is provided with a gas discharge valve by opening a gas discharge port so that the internal gas can be discharged to the outside when the internal pressure rises at a high temperature or the like. A battery cell having such a gas discharge port needs to guide and discharge the discharged gas safely. As a power supply device equipped with a mechanism for safely guiding and discharging gas, it is equipped with a gas duct that communicates with the gas discharge port, and in order to prevent gas leakage at the connecting part of the gas duct and gas discharge port, it is sealed with a sealing member There is known a power supply device that is sealed in the manner described above. (For example, see Patent Document 1)
特開2007-157633号公報JP 2007-157633 A
 一方で、電源装置の小型化、低コスト化が強く求められている。特に車載用途においては、電源装置の搭載スペースが限られている上、軽量化も必要とされる。このような背景から、ガスダクトも一層の薄型化、軽量化が求められているところである。一般にガスダクトは、樹脂製として軽量化が図られている。
 しかしながら、ガスダクトを樹脂製とし、さらに、ガスダクトの高さを縮小すると、高圧ガス排出時にガスの高温高圧によって受ける衝撃や温度に対する耐性が相対的に低下して、ガスダクトが溶融、破損される事態も考えられる。ガスダクトを構成する材質を金属製とすることで、ガスダクトの耐性を向上させることはできるが、この場合はガスダクトが高価になり、また重量も増すといった問題点があった。
On the other hand, there is a strong demand for downsizing and cost reduction of power supply devices. Especially in in-vehicle applications, the space for mounting the power supply device is limited, and weight reduction is also required. Against this background, gas ducts are also required to be thinner and lighter. In general, the gas duct is made of resin to reduce the weight.
However, if the gas duct is made of resin and the height of the gas duct is further reduced, the resistance to impact and temperature caused by the high temperature and high pressure of the gas when discharging the high pressure gas is relatively reduced, and the gas duct may be melted or damaged. Conceivable. Although the gas duct can be made of metal as the material constituting the gas duct, the durability of the gas duct can be improved. However, in this case, there is a problem that the gas duct becomes expensive and the weight is increased.
 本発明は、従来のこのような問題点を解決すべくなされたものである。本発明の主な目的は、ガスダクトの薄型化を図りつつも、ガス排出時における耐性の低下を抑制した電源装置及びこれを備える車両並びに蓄電装置を提供することにある。 The present invention has been made to solve the conventional problems. A main object of the present invention is to provide a power supply device, a vehicle including the power source device, and a power storage device that can suppress a reduction in resistance during gas discharge while reducing the thickness of a gas duct.
課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention
 上記の目的を達成するために、本発明の第1の側面に係る電源装置によれば、ガス排出弁11を有するガス排出口12を第1の端面10、60に設けた複数の電池セル1、51と、前記複数の電池セル1、51を積層してなる電池積層体2と、前記電池積層体2の一面に、各電池セル1、51の前記ガス排出口12と連結するように固定されたガスダクト6、56、76とを備えており、前記ガスダクト6、56、76の内面であって、前記ガス排出口12との対向面に金属層17を設けている。
 上記構成により、電池セルのガス排出弁から高温のガスが排出されても、金属層でもって熱を発散させることができるため、ガスダクトの耐性を増すことができ、この結果、ガスダクトの高さを低減することが可能となり、もって電源装置の小型化に寄与できる。 ちなみに、ガスダクトの内面に金属層を設けた本発明の電源装置とガスダクトの内面に金属層を設けていない従来の電源装置を用いて、電池セルからのガス噴出時におけるガスダクトの内面の温度変化を測定すると、ガスダクトの内面であって、ガス排出口と対向する内面に金属層を設けた場合(本発明の電源装置)における温度上昇は、同じ部位であって金属層を設けない場合(従来の電源装置)の温度上昇に比較して、最高温度が約40度も低くなり、極めて優れた温度の低減効果が得られることが実証できた。
In order to achieve the above object, according to the power supply device of the first aspect of the present invention, a plurality of battery cells 1 provided with gas discharge ports 12 having gas discharge valves 11 on the first end surfaces 10 and 60. , 51, a battery stack 2 formed by stacking the plurality of battery cells 1, 51, and fixed to one surface of the battery stack 2 so as to be connected to the gas discharge ports 12 of the battery cells 1, 51. Gas ducts 6, 56, and 76, and a metal layer 17 is provided on the inner surface of the gas ducts 6, 56, and 76 and on the surface facing the gas outlet 12.
With the above configuration, even if high temperature gas is discharged from the gas discharge valve of the battery cell, heat can be dissipated by the metal layer, so that the resistance of the gas duct can be increased, and as a result, the height of the gas duct can be increased. Therefore, it is possible to reduce the size of the power supply device. By the way, using the power supply device of the present invention in which the metal layer is provided on the inner surface of the gas duct and the conventional power supply device in which the metal layer is not provided on the inner surface of the gas duct, the temperature change of the inner surface of the gas duct at the time of gas ejection from the battery cell is measured. When measured, the temperature rise in the case where the metal layer is provided on the inner surface of the gas duct opposite to the gas discharge port (the power supply device of the present invention) is the same part and the metal layer is not provided (conventional method). Compared to the temperature rise of the power supply device), the maximum temperature was lowered by about 40 degrees, and it was proved that an extremely excellent temperature reduction effect was obtained.
 本発明の第2の側面に係る電源装置によれば、前記ガスダクト6、56、76が、前記ガス排出口12と対向する位置に、前記ガス排出口12に連結される連結開口6b、56b、76bを設けて、前記ガスダクト6、56、76の内面であって、前記連結開口6b、56b、76bを設けた面と対向する面に、前記金属層17を固定することができる。 上記構成により、電池セルのガス排出弁から排出される高温のガスを、連結開口からガスダクトの内部に流入させると共に、この連通開口から流入するガスの熱を、連結開口と対向する位置に設けた金属層でもって確実に発散させることができる。 According to the power supply device according to the second aspect of the present invention, the connection openings 6b, 56b, which are connected to the gas discharge port 12, at positions where the gas ducts 6, 56, 76 are opposed to the gas discharge port 12. 76b is provided, and the metal layer 17 can be fixed to the inner surface of the gas ducts 6, 56, and 76 that faces the surface provided with the connection openings 6b, 56b, and 76b. With the above configuration, the high temperature gas discharged from the gas discharge valve of the battery cell is caused to flow into the gas duct from the connection opening, and the heat of the gas flowing from the communication opening is provided at a position facing the connection opening. The metal layer can surely diverge.
 本発明の第3の側面に係る電源装置によれば、前記ガスダクト6、56、76が、前記電池セル1、51の第1の端面10、60に垂直な方向に分割される第1のダクト6A、56A、76Aと第2のダクト6B、56B、76Bを備えて、該第1のダクト6A、56A、76Aと該第2のダクト6B、56B、76Bを連結して内部に柱状のガス排出路46を形成し、前記第1のダクト6A、56A、76Aが、内側に溝形凹部6d、56d、76dを有して、該溝形凹部6d、56d、76dの底面に前記金属層17を設けて、前記第2のダクト6B、56B、76Bが、各電池セル1、51の前記ガス排出口12に連結される前記連結開口6b、56b、76bを備えることができる。
 上記構成により、ガスダクトを第1のダクトと第2のダクトで構成して、内部に柱状のガス排出路を有するガスダクトを形成しながら、第2のダクトには連結開口を、第1のダクトには金属層を、簡単かつ能率良く設けることができる。
According to the power supply device of the third aspect of the present invention, the first duct in which the gas ducts 6, 56, 76 are divided in a direction perpendicular to the first end faces 10, 60 of the battery cells 1, 51. 6A, 56A, 76A and second ducts 6B, 56B, 76B, and connecting the first ducts 6A, 56A, 76A and the second ducts 6B, 56B, 76B to discharge columnar gas inside A path 46 is formed, and the first ducts 6A, 56A, and 76A have groove- shaped recesses 6d, 56d, and 76d on the inner side, and the metal layer 17 is placed on the bottom surfaces of the groove- shaped recesses 6d, 56d, and 76d. The second ducts 6B, 56B, and 76B may be provided with the connection openings 6b, 56b, and 76b connected to the gas discharge ports 12 of the battery cells 1 and 51, respectively.
With the above configuration, the gas duct is constituted by the first duct and the second duct, and a gas duct having a columnar gas discharge path is formed inside, while the second duct has a connection opening and the first duct. Can easily and efficiently provide the metal layer.
 本発明の第4の側面に係る電源装置によれば、前記ガスダクト6、56、76が、内部に柱状のガス排出路46を有して、前記ガスダクト6、56、76の内面であって、前記連結開口6b、56b、76bを設けた面と対向する面にのみ前記金属層17を設けて、他の面は露出させることができる。
 上記構成により、必要最小限の部位にのみ金属層を設けつつも、その耐性を維持することが可能となる。
According to the power supply device of the fourth aspect of the present invention, the gas ducts 6, 56, and 76 have columnar gas discharge passages 46 therein, and are the inner surfaces of the gas ducts 6, 56, and 76, The metal layer 17 can be provided only on the surface facing the surface on which the connection openings 6b, 56b, 76b are provided, and the other surfaces can be exposed.
With the above configuration, it is possible to maintain the resistance while providing the metal layer only at the minimum necessary portion.
 本発明の第5の側面に係る電源装置によれば、前記金属層17を、アルミニウム製のシート状として、前記ガスダクト6、56、76の内面に貼付することができる。
 上記構成により、安価に且つ簡単にガスダクト内面に金属層を設けることができる。
According to the power supply device of the fifth aspect of the present invention, the metal layer 17 can be affixed to the inner surfaces of the gas ducts 6, 56, and 76 in the form of an aluminum sheet.
With the above configuration, the metal layer can be provided on the inner surface of the gas duct easily and inexpensively.
 本発明の第6の側面に係る電源装置によれば、前記第1のダクト6A、56A、76Aの内面にアルミニウム製のシートを貼付して前記金属層17を設けて、前記第2のダクト6B、56B、76Bが、前記第1のダクト6A、56A、76Aに貼付した前記金属層17に向かって突出する支持部57を備えることができる。
 上記構成により、アルミニウム製のシートを貼付する接着力が経時的に低下しても、金属層が剥離して落下するのを支持部によって支持できる。
According to the power supply device of the sixth aspect of the present invention, the metal layer 17 is provided by sticking an aluminum sheet on the inner surface of the first duct 6A, 56A, 76A, and the second duct 6B. , 56B, and 76B can include a support portion 57 that protrudes toward the metal layer 17 attached to the first ducts 6A, 56A, and 76A.
With the above configuration, even if the adhesive force for attaching the aluminum sheet decreases with time, the support portion can support the metal layer peeling off and falling.
 さらにまた、本発明の第7の側面に係る電源装置を備える車両は、上記いずれかの電源装置を備えることができる。 Furthermore, a vehicle including the power supply device according to the seventh aspect of the present invention can include any one of the power supply devices described above.
 さらにまた、本発明の第8の側面に係る電源装置を備える蓄電装置は、上記いずれかの電源装置を備えることができる。 Furthermore, a power storage device including the power supply device according to the eighth aspect of the present invention can include any one of the power supply devices described above.
本発明の一実施例にかかる電源装置の斜視図である。It is a perspective view of the power supply device concerning one Example of this invention. 図1に示す電源装置のII-II線断面図である。FIG. 2 is a cross-sectional view taken along line II-II of the power supply device shown in FIG. 図1に示す電源装置のIII-III線断面に相当する一部拡大断面図である。FIG. 3 is a partially enlarged cross-sectional view corresponding to a cross section taken along line III-III of the power supply device shown in FIG. 図1に示す電源装置の底面斜視図である。It is a bottom perspective view of the power supply device shown in FIG. 図1に示す電源装置の分解斜視図である。It is a disassembled perspective view of the power supply device shown in FIG. 図5に示す電源装置の電気積層体の分解斜視図である。It is a disassembled perspective view of the electric laminated body of the power supply device shown in FIG. 図5に示す電源装置の第1のダクトを下側から見た分解斜視図である。It is the disassembled perspective view which looked at the 1st duct of the power supply device shown in FIG. 5 from the lower side. ガスダクトに設ける金属層の他の一例を示す拡大断面図である。It is an expanded sectional view which shows another example of the metal layer provided in a gas duct. 本発明の他の実施例にかかる電源装置の分解斜視図である。It is a disassembled perspective view of the power supply device concerning the other Example of this invention. 図9に示す電源装置の拡大縦断面図である。FIG. 10 is an enlarged vertical sectional view of the power supply device shown in FIG. 9. 図5に示すトップカバーの底面斜視図である。FIG. 6 is a bottom perspective view of the top cover shown in FIG. 5. 本発明の他の実施例にかかる電源装置の垂直横断面図である。It is a vertical cross-sectional view of a power supply device according to another embodiment of the present invention. 本発明の他の実施例にかかる電源装置に使用されるガスダクトの斜視図である。It is a perspective view of the gas duct used for the power supply device concerning the other Example of this invention. 図13に示すガスダクトの分解斜視図である。It is a disassembled perspective view of the gas duct shown in FIG. 図14に示すガスダクトを下側から見た分解斜視図である。It is the disassembled perspective view which looked at the gas duct shown in FIG. 14 from the lower side. 図13に示すガスダクトの垂直横断面図である。It is a vertical cross-sectional view of the gas duct shown in FIG. エンジンとモータで走行するハイブリッドカーに電源装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a power supply device in the hybrid car which drive | works with an engine and a motor. モータのみで走行する電気自動車に電源装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a power supply device in the electric vehicle which drive | works only with a motor. 蓄電装置に電源装置を使用する例を示すブロック図である。It is a block diagram which shows the example which uses a power supply device for an electrical storage apparatus.
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電源装置及びこれを備える車両並びに蓄電装置を例示するものであって、本発明は電源装置及びこれを備える車両並びに蓄電装置を以下のものに特定しない。なお、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a power supply device for embodying the technical idea of the present invention, a vehicle including the power supply device, and a power storage device, and the present invention includes a power supply device, a vehicle including the power supply device, The power storage device is not specified as follows. In addition, the member shown by the claim is not what specifies the member of embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.
 以下、本発明の一実施の形態に係る電源装置として車載用の電源装置に適用した例を、図1~図7に基づいて説明する。これらの図において、図1は電源装置の斜視図、図2は図1の電源装置のII-II線断面図、図3は図1の電源装置のIII-III線断面に相当する一部拡大断面図、図4は図1の電源装置の底面斜視図、図5は図1の電源装置の分解斜視図、図6は電池積層体の分解斜視図、図7はガスダクトの第1のダクトの底面斜視図をそれぞれ示している。これらの図に示す電源装置は、主として、エンジンとモータの両方で走行するハイブリッドカーや、モータのみで走行する電気自動車などの電動車両の電源に最適である。ただ、本発明の電源装置は、ハイブリッドカーや電気自動車以外の車両に使用し、また、電動車両以外の大出力が要求される用途にも使用できる。 Hereinafter, an example in which a power supply apparatus according to an embodiment of the present invention is applied to an in-vehicle power supply apparatus will be described with reference to FIGS. In these drawings, FIG. 1 is a perspective view of the power supply device, FIG. 2 is a cross-sectional view taken along line II-II of the power supply device of FIG. 1, and FIG. 4 is a bottom perspective view of the power supply device of FIG. 1, FIG. 5 is an exploded perspective view of the power supply device of FIG. 1, FIG. 6 is an exploded perspective view of the battery stack, and FIG. 7 is a first duct of the gas duct. A bottom perspective view is shown respectively. The power supply apparatus shown in these figures is most suitable for the power supply of an electric vehicle such as a hybrid car that runs with both an engine and a motor and an electric vehicle that runs with only a motor. However, the power supply device of the present invention can be used for vehicles other than hybrid cars and electric vehicles, and can also be used for applications requiring high output other than electric vehicles.
 図1ないし図6に示す電源装置100は、ガス排出弁11を有するガス排出口12を第1の端面10に設けている複数の電池セル1と、これらの電池セル1を積層してなる電池積層体2と、この電池積層体2の一面に、各電池セル1のガス排出口12と連結するように固定されたガスダクト6とを備えている。さらに、図に示す電源装置は、電池積層体2の両端面に配置されたエンドプレート3と、エンドプレート3に固定されて、このエンドプレート3を介して電池積層体2を積層方向に締結する連結固定具4と、電池積層体2の一面であって、ガスダクト6が固定される面に対向して配置されるようにエンドプレート3に固定されると共に、このエンドプレート3を介して電池積層体2を積層方向に締結するサブ連結固定具5を備えている。図の電源装置は、このサブ連結固定具5を介して、ガスダクト6を電池積層体2の定位置に配置している。
(電池積層体2)
A power supply device 100 shown in FIGS. 1 to 6 includes a plurality of battery cells 1 in which a gas discharge port 12 having a gas discharge valve 11 is provided on a first end face 10 and a battery in which these battery cells 1 are stacked. The laminated body 2 and a gas duct 6 fixed on one surface of the battery laminated body 2 so as to be connected to the gas discharge port 12 of each battery cell 1 are provided. Furthermore, the power supply device shown in the drawing is fixed to the end plate 3 and the end plate 3 disposed on both end faces of the battery stack 2, and the battery stack 2 is fastened in the stacking direction via the end plate 3. The connection fixture 4 and one surface of the battery stack 2 are fixed to the end plate 3 so as to face the surface to which the gas duct 6 is fixed, and the battery stack is interposed via the end plate 3. A sub-connecting fixture 5 for fastening the body 2 in the stacking direction is provided. In the illustrated power supply apparatus, the gas duct 6 is disposed at a fixed position of the battery stack 2 via the sub-connecting fixture 5.
(Battery stack 2)
 図1ないし図6の電源装置は、外形を角形とする複数の電池セル1を積層して電池積層体2としている。電池セル1は、角形の外装缶を有しており、この外装缶の内部で発生したガスを排出するためのガス排出弁11を備えている。電池セル1は、ガス排出弁11からガスを排出するためのガス排出口12を外装缶の表面に設けている。図6に示す電池積層体2は、複数の電池セル1を、第1の端面10を略同一面に配置する姿勢で積層して、複数のガス排出口12を第1の表面2Aに配置している。図の電池積層体2は、ガス排出弁11を設けている第1の端面10を上面とする姿勢で、複数の電池セル1を積層している。
(電池セル1)
In the power supply device of FIGS. 1 to 6, a plurality of battery cells 1 having a rectangular outer shape are stacked to form a battery stack 2. The battery cell 1 has a rectangular outer can and is provided with a gas discharge valve 11 for discharging gas generated inside the outer can. The battery cell 1 is provided with a gas discharge port 12 for discharging gas from the gas discharge valve 11 on the surface of the outer can. In the battery stack 2 shown in FIG. 6, a plurality of battery cells 1 are stacked in a posture in which the first end face 10 is arranged on substantially the same plane, and a plurality of gas discharge ports 12 are arranged on the first surface 2A. ing. In the illustrated battery stack 2, a plurality of battery cells 1 are stacked in a posture in which the first end face 10 provided with the gas discharge valve 11 is an upper surface.
(Battery cell 1)
 電池セル1は、図6に示すように、厚さに比べて幅が広い、言い換えると幅よりも薄い角形の電池で、厚さ方向に積層されて電池積層体2としている。この電池セル1は、リチウムイオン二次電池である。ただし、電池セルは、ニッケル水素電池やニッケルカドミウム電池等の二次電池とすることもできる。図6の電池セル1は、幅の広い両表面を四角形とする電池で、両表面を対向するように積層して電池積層体2としている。図の電池セル1は、上面である第1の端面10の両端部に正負の電極端子13を突出して設けて、中央部にはガス排出弁11のガス排出口12を設けている。角形の電池セル1は、底を閉塞する筒状に金属板をプレス加工している外装缶の開口部を、封口板で閉塞して密閉している。第1の端面10となる封口板は平面状の金属板で、その外形を外装缶の開口部の形状としている。この封口板はレーザー溶接して外装缶の外周縁に固定されて外装缶の開口部を気密に閉塞している。外装缶に固定される封口板は、その両端部に正負の電極端子13を固定しており、さらに正負の電極端子13の中間にはガス排出口12を設けている。ガス排出口12の内部にはガス排出弁11を設けている。 As shown in FIG. 6, the battery cell 1 is a rectangular battery that is wider than the thickness, in other words, a rectangular battery that is thinner than the width, and is stacked in the thickness direction to form the battery stack 2. The battery cell 1 is a lithium ion secondary battery. However, the battery cell may be a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery. The battery cell 1 in FIG. 6 is a battery having a rectangular shape with both wide surfaces, and is laminated so that both surfaces face each other to form a battery laminate 2. In the illustrated battery cell 1, positive and negative electrode terminals 13 are provided so as to protrude from both end portions of the first end surface 10 that is the upper surface, and a gas discharge port 12 of a gas discharge valve 11 is provided in the center portion. The rectangular battery cell 1 has the opening part of the outer can which press-processes the metal plate in the cylinder shape which obstruct | occludes the bottom, and is sealed with the sealing plate. The sealing plate used as the first end face 10 is a flat metal plate, and its outer shape is the shape of the opening of the outer can. The sealing plate is laser welded and fixed to the outer peripheral edge of the outer can so as to hermetically close the opening of the outer can. The sealing plate fixed to the outer can has positive and negative electrode terminals 13 fixed to both ends thereof, and a gas discharge port 12 is provided between the positive and negative electrode terminals 13. A gas discharge valve 11 is provided inside the gas discharge port 12.
 ガス排出弁11は、電池セル1の内圧が設定圧力よりも高くなると開弁して、内圧の上昇を防止する。このガス排出弁11は、ガス排出口12を閉塞する弁体(図示せず)を内蔵している。弁体は、設定圧力で破壊される薄膜、あるいは設定圧力で開弁するように弾性体で弁座に押圧されている弁である。ガス排出弁11が開弁されると、ガス排出口12を介して電池セル1の内部が外部に開放され、内部のガスを放出して内圧の上昇が防止される。 The gas discharge valve 11 is opened when the internal pressure of the battery cell 1 becomes higher than the set pressure, thereby preventing the internal pressure from increasing. The gas discharge valve 11 incorporates a valve body (not shown) that closes the gas discharge port 12. The valve body is a thin film that is destroyed at a set pressure, or a valve that is pressed against the valve seat by an elastic body so as to open at the set pressure. When the gas discharge valve 11 is opened, the inside of the battery cell 1 is opened to the outside through the gas discharge port 12, and the internal gas is discharged to prevent the internal pressure from increasing.
 積層される複数の電池セル1は、正負の電極端子13を接続して互いに直列及び/又は並列に接続される。電源装置は、隣接する電池セル1の正負の電極端子13を、バスバー14を介して互いに直列及び/又は並列に接続する。隣接する電池セルを互いに直列に接続する電源装置は、出力電圧を高くして出力を大きくでき、隣接する電池セルを並列に接続して、充放電の電流を大きくできる。 The plurality of battery cells 1 to be stacked are connected in series and / or in parallel with each other by connecting positive and negative electrode terminals 13. The power supply device connects positive and negative electrode terminals 13 of adjacent battery cells 1 to each other in series and / or in parallel via a bus bar 14. A power supply device that connects adjacent battery cells in series can increase the output voltage by increasing the output voltage, and can connect adjacent battery cells in parallel to increase the charge / discharge current.
 図5と図6に示す電池積層体2は、12個の電池セル1を、セパレータ15を介して互いに積層しており、これらの電池セル1を直列に接続している。図の電池積層体2は、互いに隣接する電池セル1同士を逆向きに並べており、その両側において隣接する電極端子13同士をバスバー14で連結して、隣り合う2個の電池セル1を直列に接続して、すべての電池セル1を直列に接続している。ただ、本発明は、電池積層体を構成する電池セルの個数とその接続状態を特定しない。 In the battery stack 2 shown in FIG. 5 and FIG. 6, twelve battery cells 1 are stacked on each other via a separator 15, and these battery cells 1 are connected in series. In the illustrated battery stack 2, adjacent battery cells 1 are arranged in opposite directions, and electrode terminals 13 adjacent on both sides thereof are connected by a bus bar 14 to connect two adjacent battery cells 1 in series. All battery cells 1 are connected in series. However, the present invention does not specify the number of battery cells constituting the battery stack and the connection state thereof.
 電池積層体2は、図6に示すように、積層している電池セル1の間にセパレータ15を挟着している。セパレータ15は、隣接する電池セル1を絶縁する。図に示すセパレータ15は絶縁シートである。この絶縁シートには、例えば、プラスチックシートが使用できる。プラスチック製の絶縁シートからなるセパレータ15は、厚さを薄くできるので、電池積層体2の全長を短くして全体をコンパクトにできる特徴がある。ただ、セパレータには、プラスチックを板状に成形したものも使用できる。このセパレータは、電池セルを嵌着して定位置に配置する形状として、隣接する電池セルを位置ずれしないように積層できる。また、プラスチックで成形されるセパレータは、空気などの冷却気体を通過させる冷却隙間を表面に設けて、電池セルを冷却することもできる。この構造は、冷却隙間に空気を強制送風させて、電池セルの外装缶を直接に効率よく冷却できる。さらに、熱伝導率の小さい材質のプラスチックで成形されるセパレータは、隣接する電池セルの熱暴走を効果的に防止できる効果もある。 As shown in FIG. 6, the battery stack 2 has a separator 15 sandwiched between stacked battery cells 1. The separator 15 insulates adjacent battery cells 1. The separator 15 shown in the figure is an insulating sheet. As this insulating sheet, for example, a plastic sheet can be used. Since the separator 15 made of a plastic insulating sheet can be made thin, the total length of the battery stack 2 can be shortened to make the whole compact. However, as the separator, a plastic molded into a plate shape can be used. This separator can be laminated so that adjacent battery cells are not displaced as a shape in which the battery cells are fitted and arranged at a fixed position. Moreover, the separator shape | molded with a plastic can also cool a battery cell by providing the surface with the cooling clearance gap which allows cooling gas, such as air, to pass through. With this structure, air can be forcedly blown into the cooling gap to directly and efficiently cool the outer can of the battery cell. Furthermore, the separator formed of a plastic material having a low thermal conductivity has an effect of effectively preventing thermal runaway of adjacent battery cells.
 以上のように、セパレータ15で絶縁して積層される電池セル1は、外装缶をアルミニウムなどの金属製にできる。ただ、電池積層体は、必ずしも電池セルの間にセパレータを介在させる必要はない。例えば、電池セルの外装缶を絶縁材で成形し、あるいは電池セルの外装缶の外周を絶縁シートや絶縁塗料等で被覆する等の方法で、互いに隣接する電池セル同士を絶縁することによって、セパレータを不要とできるからである。さらに、電池セルの間にセパレータを介在させない電池積層体は、電池セルの間に冷却風を強制送風して電池セルを冷却する空冷式を採用することなく、冷媒等を用いて直接冷却する方式を採用して電池セルを冷却できる。
(エンドプレート)
As described above, in the battery cell 1 that is insulated and stacked by the separator 15, the outer can can be made of metal such as aluminum. However, the battery stack does not necessarily need to interpose a separator between battery cells. For example, by separating the battery cells adjacent to each other by a method such as forming the battery cell outer can with an insulating material or coating the outer periphery of the battery cell outer can with an insulating sheet or insulating paint, etc. It is because it can be made unnecessary. Furthermore, the battery stack without interposing separators between the battery cells is a method of directly cooling using a refrigerant or the like without adopting an air cooling method in which cooling air is forced between the battery cells to cool the battery cells. Can be used to cool the battery cell.
(end plate)
 電池積層体2の両端面には一対のエンドプレート3を配置して、一対のエンドプレート3で両端から挟着して電池積層体2を締結している。エンドプレート3は、電池セル1の外形と同じ形状と寸法の四角形として、積層している電池積層体2を両端面から挟着している。図5のエンドプレート3は、全体を金属で製作している。金属製のエンドプレートは、全体を強固にして安定して電池積層体を両端から挟持できる。ただ、エンドプレートは、全体をプラスチック製とすることも、あるいはプラスチック製の本体部に補強金具を固定して補強する構造とすることもできる。 A pair of end plates 3 are disposed on both end faces of the battery stack 2, and the battery stack 2 is fastened by being sandwiched from both ends by the pair of end plates 3. The end plate 3 is a quadrangle having the same shape and dimensions as the outer shape of the battery cell 1 and sandwiches the stacked battery stack 2 from both end faces. The entire end plate 3 in FIG. 5 is made of metal. The metal end plate is strong as a whole, and can stably hold the battery stack from both ends. However, the end plate can be entirely made of plastic, or can be reinforced by fixing a reinforcing bracket to a plastic main body.
 図に示すエンドプレート3は、連結固定具4やサブ連結固定具5を定位置に固定できるように、外側表面に連結固定具4とサブ連結固定具5の嵌着凹部3A、3Bを設けている。図のエンドプレート3は、連結固定具4を定位置に配置して固定するために、外側表面の四隅のコーナー部に、連結固定具4の両端に設けた連結部4Bを嵌着する連結凹部3Aを設けている。図に示すエンドプレート3は、この嵌着凹部3Aの形状を連結固定具4の連結部4Bを嵌着できる形状としている。さらに、エンドプレート3は、サブ連結固定具5を定位置に配置して固定するために、外側表面の上端部に、サブ連結固定具5の両端に設けた連結部5Bを嵌合させる嵌着凹部3Bも設けている。図に示すエンドプレート3は、この嵌着凹部3Bの形状をサブ連結固定具5の連結部5Bを嵌合できる形状としている。 The end plate 3 shown in the drawing is provided with fitting recesses 3A and 3B for the connection fixture 4 and the sub connection fixture 5 on the outer surface so that the connection fixture 4 and the sub connection fixture 5 can be fixed in place. Yes. The end plate 3 shown in the figure has a coupling recess for fitting coupling portions 4B provided at both ends of the coupling fixture 4 to the corners of the four corners of the outer surface in order to fix the coupling fixture 4 in place. 3A is provided. In the end plate 3 shown in the figure, the shape of the fitting recess 3A is such that the connecting portion 4B of the connecting fixture 4 can be fitted. Further, the end plate 3 is fitted to fit the connecting portions 5B provided at both ends of the sub-connecting fixture 5 to the upper end portion of the outer surface in order to fix the sub-connecting fixture 5 in place. A recess 3B is also provided. In the end plate 3 shown in the figure, the shape of the fitting recess 3B is such that the connecting portion 5B of the sub-connecting fixture 5 can be fitted.
 さらに、図に示すエンドプレート3は、連結固定具4とサブ連結固定具5の両端部を固定する止ネジ18、19をねじ込む雌ネジ孔3a、3bを外周面に設けている。図に示すエンドプレート3は、電池積層体2の両側面2Bの上端部に配置される一対の連結固定具4を固定する止ネジ18を挿通する雌ネジ孔3aを、エンドプレート3の上面の左右の両端部に設けている。また、エンドプレート3は、電池積層体2の両側面2Bの下端部に配置される一対の連結固定具4を固定する止ネジ18を挿通する雌ネジ孔3bを、エンドプレート3の両側面の下端部に設けている。さらに、エンドプレート3は、電池積層体2の第1の表面2Aに配置されるサブ連結固定具5を固定する止ネジ19を挿通する雌ネジ孔3bを、エンドプレート3の上面の中央部に設けている。以上の構造は、エンドプレート3にねじ込まれる止ネジ18、19の軸方向と電池積層体2の積層方向とが交差する方向となる。このため、電源装置が外部から力を受けて振動する状態において、エンドプレート3にねじ込まれる止ネジ18、19の軸部に作用するせん断力を低減して、止ネジ18、19を保護しながら、より強固な連結強度を実現できる。また、止ネジ18、19の全長をエンドプレート3の厚さよりも大きくして、すなわち、止ネジ18、19の全長を長くして、より強固に連結できる特徴もある。
(連結固定具4)
Furthermore, the end plate 3 shown in the figure has female screw holes 3a and 3b for screwing set screws 18 and 19 for fixing both ends of the connection fixture 4 and the sub-connection fixture 5 on the outer peripheral surface. The end plate 3 shown in the figure has a female screw hole 3a through which a set screw 18 for fixing a pair of connecting fixtures 4 arranged at the upper ends of both side surfaces 2B of the battery stack 2 is inserted into the upper surface of the end plate 3. It is provided at the left and right ends. The end plate 3 has female screw holes 3b through which set screws 18 for fixing the pair of connecting fixtures 4 arranged at the lower ends of the both side surfaces 2B of the battery stack 2 are formed on both side surfaces of the end plate 3. It is provided at the lower end. Furthermore, the end plate 3 has a female screw hole 3b through which a set screw 19 for fixing the sub-connecting fixture 5 arranged on the first surface 2A of the battery stack 2 is inserted at the center of the upper surface of the end plate 3. Provided. The above structure is a direction in which the axial direction of the set screws 18 and 19 screwed into the end plate 3 intersects the stacking direction of the battery stack 2. For this reason, in a state where the power supply device vibrates by receiving a force from the outside, the shearing force acting on the shaft portions of the set screws 18 and 19 screwed into the end plate 3 is reduced, and the set screws 18 and 19 are protected. A stronger connection strength can be realized. Further, there is also a feature that the set screws 18 and 19 can be more firmly connected by making the entire length of the set screws 18 and 19 larger than the thickness of the end plate 3, that is, by increasing the total length of the set screws 18 and 19.
(Connecting fixture 4)
 連結固定具4は、図1と図4に示すように、電池積層体2の積層方向に延長されており、両端がエンドプレート3に固定されて、電池積層体2を積層方向に締結する。図に示す連結固定具4は、電池積層体2の第1の表面2Aと異なる両側面2Bに対向して配置されている。このように、連結固定具4を電池積層体2の両側面2Bに配置して締結する構造は、複数の電池セル1をより確実に積層方向に締結できる。ただ、連結固定具は、必ずしも電池積層体の両側面に配置する必要はない。連結固定具は、電池積層体の両側面に加えて上面や底面に配置することも、両側面に配置することなく、上面や底面にのみ配置することもできる。 As shown in FIGS. 1 and 4, the connection fixture 4 is extended in the stacking direction of the battery stack 2, both ends are fixed to the end plate 3, and the battery stack 2 is fastened in the stacking direction. The connecting fixture 4 shown in the figure is disposed to face both side surfaces 2B different from the first surface 2A of the battery stack 2. As described above, the structure in which the connecting fixture 4 is arranged and fastened on both side surfaces 2B of the battery stack 2 can more securely fasten the plurality of battery cells 1 in the stacking direction. However, the connecting fixtures are not necessarily arranged on both side surfaces of the battery stack. In addition to the both side surfaces of the battery stack, the connection fixture can be disposed on the top surface and the bottom surface, or can be disposed only on the top surface and the bottom surface without being disposed on both side surfaces.
 連結固定具4は、電池積層体2の表面に沿う所定の幅と所定の厚さを有する金属板である。この連結固定具4には、鉄などの金属板、好ましくは、鋼板が使用できる。金属板からなる連結固定具4は、バインド部4Aの両端に、エンドプレート3に連結する連結部4Bを設けている。図の連結固定具4は、その両端部を、エンドプレート3の外側面に沿うようにほぼ直角に折曲加工して、連結部4Bを設けている。この連結固定具4は、両端の連結部4Bをエンドプレート3に連結することにより、連結固定具4の連結部4Bが電池積層体2の両端に配置された一対のエンドプレート3に係止され、一対のエンドプレート3が所定の間隔となるようにして、電池積層体2を両端から挟着している。図5の連結固定具4は、エンドプレート3の四隅部に設けた嵌着凹部3Aに連結部4Bを連結して、4本の連結固定具4で一対のエンドプレート3を連結している。したがって、連結固定具4の連結部4Bは、エンドプレート3の嵌着凹部3Aに沿うように折曲加工されている。さらに、連結固定具4は、その両端部を止ネジ18でエンドプレート3に固定している。図の連結固定具4は、バインド部4Aの両端部に、止ネジ18を挿入する貫通孔を開口して設けている。連結固定具4は、両端の連結部4Bをエンドプレート3の嵌着凹部3Aに連結する状態で、貫通孔に止ネジ18を挿入し、この止ネジ18をエンドプレート3の外周面に設けた雌ネジ孔3aにねじ込んで一対のエンドプレート3に固定している。 The connecting fixture 4 is a metal plate having a predetermined width and a predetermined thickness along the surface of the battery stack 2. The connection fixture 4 can be a metal plate such as iron, preferably a steel plate. The connecting fixture 4 made of a metal plate is provided with connecting portions 4B that are connected to the end plate 3 at both ends of the binding portion 4A. The connecting fixture 4 shown in the drawing is bent at substantially right angles at both ends along the outer surface of the end plate 3 to provide a connecting portion 4B. In this connection fixture 4, the connection portions 4 </ b> B at both ends are connected to the end plate 3, whereby the connection portions 4 </ b> B of the connection fixture 4 are locked to the pair of end plates 3 disposed at both ends of the battery stack 2. The battery stack 2 is sandwiched from both ends so that the pair of end plates 3 are at a predetermined interval. In the connection fixture 4 of FIG. 5, the connection portion 4 </ b> B is connected to fitting recesses 3 </ b> A provided at the four corners of the end plate 3, and the pair of end plates 3 are connected by the four connection fixtures 4. Therefore, the connecting portion 4 </ b> B of the connecting fixture 4 is bent along the fitting recess 3 </ b> A of the end plate 3. Further, both ends of the connection fixture 4 are fixed to the end plate 3 with set screws 18. The connecting fixture 4 shown in the figure is provided with opening through holes into which set screws 18 are inserted at both ends of the binding portion 4A. The connecting fixture 4 is configured such that a set screw 18 is inserted into the through hole in a state where the connecting portions 4B at both ends are connected to the fitting recess 3A of the end plate 3, and the set screw 18 is provided on the outer peripheral surface of the end plate 3. It is screwed into the female screw hole 3 a and fixed to the pair of end plates 3.
 この構成によると、上述の通り、エンドプレート3にねじ込まれる止ネジ18、19の軸方向と電池積層体2の積層方向とが交差する方向となり、止ネジ18、19を保護しながら、より強固な連結強度を実現できるが、これに加え、連結固定具4の連結部4Bがエンドプレート3に係止される構成とすることで、電池積層体2の積層方向に対しても、強固な連結強度を実現することができる。また、この構成では、止ネジ18、19が電池積層体2の積層方向に位置しないので、電源装置の大型化を抑制することができる。具体的には、エンドプレート3の寸法は、電池セル1の外装缶の大きさと同程度であるため、エンドプレート3の上下方向には、電池セル1の電極端子13や、後述する冷却プレート30の寸法分だけ余裕があり、上記構成とすることで、電源装置の大型化を抑制することができる。 According to this configuration, as described above, the axial direction of the set screws 18 and 19 to be screwed into the end plate 3 and the stacking direction of the battery stack 2 intersect each other, and the set screws 18 and 19 are protected while being stronger. In addition to this, the connection portion 4B of the connection fixture 4 is locked to the end plate 3 so that the battery stack 2 can be firmly connected in the stacking direction. Strength can be realized. Further, in this configuration, since the set screws 18 and 19 are not positioned in the stacking direction of the battery stack 2, it is possible to suppress an increase in size of the power supply device. Specifically, since the dimensions of the end plate 3 are approximately the same as the size of the outer can of the battery cell 1, the electrode terminal 13 of the battery cell 1 and a cooling plate 30 described later are disposed in the vertical direction of the end plate 3. The above-described configuration allows for an increase in the size of the power supply device.
 さらに、図2と図5に示す連結固定具4は、バインド部4Aの横断面形状をL字状として、電池積層体2の四隅のコーナー部に配置している。この形状のバインド部4Aは、内面を電池積層体2のコーナー部に沿う状態で配置して、互いに積層される電池セル1の上下左右の振動を抑制できる。それは、電池積層体2の側面2Bに沿う垂直部で電池セル1の左右方向の振動を防止し、電池積層体2の上面と底面に沿う水平部で電池セル1の上下方向の振動を防止できるからである。さらに、横断面形状をL字状とすることで、バインド部4Aの曲げ強度を強くできる特徴もある。ただ、連結固定具は、必ずしもすべてのバインド部の横断面形状をL字状とする必要はなく、上側の連結固定具のみ横断面形状をL字状として、電池積層体の上側のコーナー部に配置することも、下側の連結固定具のみ横断面形状をL字状として、電池積層体の下側のコーナー部に配置することもできる。また、連結固定具は、必ずしも電池積層体のコーナー部に沿って配置する必要はなく、電池積層体の両側面に沿って配置することも、両側面と底面に沿って配置することもできる。さらにまた、連結固定具は、電池積層体の側面に沿う板状とすることもできる。板状のメイン固定具は、開口部を開口することもできる。
(ガスダクト6)
Further, the connecting fixture 4 shown in FIGS. 2 and 5 is arranged at the corners of the four corners of the battery stack 2 with the binding section 4A having an L-shaped cross-sectional shape. 4 A of bind parts of this shape can arrange | position an inner surface in the state which follows the corner part of the battery laminated body 2, and can suppress the vibration of the battery cell 1 laminated | stacked mutually up and down and right and left. That is, the vertical portion along the side surface 2B of the battery stack 2 can prevent left-right vibration of the battery cell 1, and the horizontal portion along the top and bottom surfaces of the battery stack 2 can prevent vertical vibration of the battery cell 1. Because. Furthermore, there is also a feature that the bending strength of the binding portion 4A can be increased by making the cross-sectional shape L-shaped. However, the connecting fixture does not necessarily need to have an L-shaped cross-sectional shape for all the binding portions, only the upper connecting fixture has an L-shaped cross-sectional shape at the upper corner of the battery stack. Alternatively, only the lower connection fixture can be arranged in the lower corner portion of the battery stack with the cross-sectional shape being L-shaped. Moreover, the connection fixture does not necessarily need to be disposed along the corner portion of the battery stack, and can be disposed along both side surfaces of the battery stack or along both side surfaces and the bottom surface. Furthermore, the connection fixture can be formed in a plate shape along the side surface of the battery stack. The plate-shaped main fixture can also open the opening.
(Gas duct 6)
 ガスダクト6は、ガス排出弁11から放出されるガスを電源装置の外部に案内するように、各電池セル1のガス排出口12と対向する姿勢で、電池積層体2の上面である第1の表面2Aに配置されている。ガスダクト6は、高圧、高温のガスが排出された際に破壊されない十分な強度に設計され、好ましくは耐熱性、耐薬品製に優れたプラスチック製、例えば、ポリブチレンテレフタラート製とすることができる。ただ、ガスダクトは、ナイロン樹脂、エポキシ樹脂などのプラスチック製とすることもできる。なお、ガスダクトを樹脂で成形する構成には、加工性に優れ、設計上の制約が少ないという利点がある。 The gas duct 6 is a first surface which is the upper surface of the battery stack 2 in a posture facing the gas discharge port 12 of each battery cell 1 so as to guide the gas discharged from the gas discharge valve 11 to the outside of the power supply device. It is arranged on the surface 2A. The gas duct 6 is designed to have sufficient strength so as not to be destroyed when high-pressure and high-temperature gas is discharged, and preferably made of a plastic excellent in heat resistance and chemical resistance, for example, made of polybutylene terephthalate. . However, the gas duct can be made of plastic such as nylon resin or epoxy resin. In addition, the structure which shape | molds a gas duct with resin has the advantage that it is excellent in workability and there are few restrictions on a design.
 図2と図3に示すガスダクト6は、中空状に形成されており、電池積層体2との対向面であって、各電池セル1のガス排出口12と対向する位置に、ガス排出口12に連結される連結開口6bを設けている。図に示すガスダクト6は、内部に柱状のガス排出路46を設けており、電池セル1のガス排出口12から排出されるガスを、連結開口6bを通過させてガス排出路46に流入するようにしている。 The gas duct 6 shown in FIG. 2 and FIG. 3 is formed in a hollow shape, and is a surface facing the battery stack 2 and at a position facing the gas discharge port 12 of each battery cell 1. The connection opening 6b connected to is provided. The gas duct 6 shown in the drawing is provided with a columnar gas discharge passage 46 inside, so that the gas discharged from the gas discharge port 12 of the battery cell 1 flows into the gas discharge passage 46 through the connection opening 6b. I have to.
 さらに、ガスダクト6は、ガス排出口12から排出される高温のガスに対して耐性を向上するために、内面に金属層17を設けている。ガスダクト6は、その内面であって、ガス排出口12との対向面に、すなわち連結開口6bを設けた面と対向する内面に金属層17を設けている。図2、図3、及び図7に示すガスダクト6は、内部に角柱状のガス排出路46を設けており、このガス排出路46の天面6tであって、連結開口6bを設けた底面と対向する内面にのみ金属層17を設けて、他の面は金属層17を設けることなくガスダクト6の内面を露出させている。この構造は、ガス排出口12から排出される高温のガスを、直接に金属層17に衝突させて、ガスダクト6の天面6tを確実に保護できる。ガス排出口12から噴射される高温のガスは、通常、電池セル1の第1の端面10に対して垂直方向に噴射されるので、高温のガスが直接噴射される天面6t側が最も熱による影響を受けやすくなる。したがって、この部分にのみに金属層17を設けることで、必要最小限の部位にのみ金属層17を設けて、その耐性を維持することができる。ただ、ガスダクトは、連結開口と対向する内面以外の面、例えば、側壁の内面にも金属層を設けることもできる。 Furthermore, the gas duct 6 is provided with a metal layer 17 on the inner surface in order to improve resistance to the high-temperature gas discharged from the gas discharge port 12. The gas duct 6 is provided with a metal layer 17 on the inner surface thereof, that is, on the surface facing the gas discharge port 12, that is, on the inner surface facing the surface provided with the connection opening 6b. The gas duct 6 shown in FIGS. 2, 3, and 7 includes a prismatic gas discharge passage 46 inside, and is a top surface 6 t of the gas discharge passage 46, and a bottom surface provided with a connection opening 6 b. The metal layer 17 is provided only on the inner surfaces facing each other, and the inner surface of the gas duct 6 is exposed on the other surfaces without providing the metal layer 17. This structure can reliably protect the top surface 6t of the gas duct 6 by causing the high-temperature gas discharged from the gas discharge port 12 to directly collide with the metal layer 17. The high temperature gas injected from the gas discharge port 12 is normally injected in a direction perpendicular to the first end face 10 of the battery cell 1, and therefore the top surface 6t side where the high temperature gas is directly injected is most heated. Be susceptible. Therefore, by providing the metal layer 17 only at this portion, the metal layer 17 can be provided only at the minimum necessary portion, and its resistance can be maintained. However, the gas duct can also be provided with a metal layer on a surface other than the inner surface facing the connection opening, for example, the inner surface of the side wall.
 図2、図3、及び図7に示すガスダクト6は、金属シート17Aをガスダクト6の内面に固定して金属層17を設けている。ただ、金属層は、金属シートに替えて、薄い金属板をガスダクトの内面に固定して設けることもできる。金属シート17Aや薄い金属板からなる金属層17は、片側の面に接着層を設けて、この接着層を介してガスダクト6の内面に貼付し、あるいは、接着材や両面テープ等を介してガスダクト6の内面に貼付することができる。 2, 3, and 7, the metal duct 17 is provided by fixing the metal sheet 17 </ b> A to the inner surface of the gas duct 6. However, the metal layer can be provided by fixing a thin metal plate to the inner surface of the gas duct instead of the metal sheet. The metal layer 17A or the metal layer 17 made of a thin metal plate is provided with an adhesive layer on one side and is attached to the inner surface of the gas duct 6 through the adhesive layer, or the gas duct is provided through an adhesive or a double-sided tape. 6 can be affixed to the inner surface.
 さらに、図8に示すガスダクト6は、インサート成形により、金属板17Bをガスダクト6の内面に固定して金属層17を設けている。図に示す金属層17は、帯状の金属板17Bを、溝状のガスダクト6の内面であって、ガス排出路46の天面6tに沿って位置するようにインサートして設けている。図に示すガスダクト6は、金属板17Bの両側縁部を、天面6tと側壁6fとの境界部分に埋設して、連結開口6bを設けた底面と対向する内面に固定している。さらに、金属板は、図の鎖線で示すように、両側縁部を折曲して、側壁の内面まで延長して埋設することもできる。このように、金属板17Bをガスダクト6にインサートして固定する構造は、多少厚みのある金属板であっても、ガスダクト6の定位置に強固に固定できると共に、インサートされる金属板17Bによってガスダクト6全体を補強できる特徴がある。ただ、金属板からなる金属層は、係止構造や嵌着構造等の手段によって、ガスダクトの内面の定位置に固定することもできる。 Further, the gas duct 6 shown in FIG. 8 is provided with a metal layer 17 by fixing the metal plate 17B to the inner surface of the gas duct 6 by insert molding. The metal layer 17 shown in the figure is provided by inserting a strip-shaped metal plate 17B so as to be positioned along the top surface 6t of the gas discharge path 46 on the inner surface of the groove-shaped gas duct 6. In the gas duct 6 shown in the drawing, both side edges of the metal plate 17B are embedded in a boundary portion between the top surface 6t and the side wall 6f, and are fixed to the inner surface facing the bottom surface provided with the connection opening 6b. Furthermore, as shown by the chain line in the figure, the metal plate can be embedded by bending both side edges and extending to the inner surface of the side wall. Thus, the structure in which the metal plate 17B is inserted and fixed to the gas duct 6 can be firmly fixed to a fixed position of the gas duct 6 even if the metal plate is somewhat thick, and the gas duct is inserted by the inserted metal plate 17B. There is a feature that the whole 6 can be reinforced. However, the metal layer made of a metal plate can be fixed at a fixed position on the inner surface of the gas duct by means such as a locking structure or a fitting structure.
 金属層17は、その厚さを薄くすることで、可撓性を高めて変形しやすくして、ガスダクト6の内面に密着する状態で容易に貼付しながら、重量や製造コストを低減できる。また、金属層17は、その厚さを厚くすることで、衝撃に対する強度を高めながら、熱容量を大きくして、高温のガスから受ける熱を速やかに拡散できる。したがって、金属シート17Aや金属板17Bからなる金属層17は、これらのことを考慮して最適な厚さに設定される。また、金属層は、使用する金属によって、密度や比熱、コストが異なるので、これらのことを考慮して使用する金属を選択する。 The thickness of the metal layer 17 can be reduced by making the metal layer 17 thin and easy to be deformed. The metal layer 17 can be easily attached in a state of being in close contact with the inner surface of the gas duct 6 while reducing the weight and manufacturing cost. Further, by increasing the thickness of the metal layer 17, the heat capacity can be increased while the strength against impact is increased, and the heat received from the high-temperature gas can be quickly diffused. Therefore, the metal layer 17 composed of the metal sheet 17A and the metal plate 17B is set to an optimum thickness in consideration of these matters. Moreover, since a density, a specific heat, and cost differ according to the metal to be used for a metal layer, the metal to be used is selected considering these things.
 金属層17には、好ましくは、アルミニウム製の金属シート17Aや金属板17Bが使用できる。アルミニウム製の金属シート17Aや金属板17Bは、安価で軽く、また優れた熱伝導率を有するので、ガス排出口12から排出される高温のガスの熱を効率よく伝導して拡散できる特徴がある。とくに、アルミニウム製のシートは、一般に使用されているアルミ箔やアルミホイルが使用できる。このようなアルミニウム製のシートは、厚さを6μm~0.3mm、好ましくは50μm~0.2mmとして、簡単かつ低コストに貼付しながら、優れた熱伝導性を実現できる。また、アルミニウム製の薄い金属板からなる金属層は、その厚さを1mm以下として、取り扱いを簡単にしながら簡単に貼付でき、しかも優れた耐性を実現できる。さらにまた、ガスダクト6にインサートして固定されるアルミニウム製の金属板17Bは、その厚さを厚くすることで、熱容量を大きくして熱を速やかに拡散して、優れた耐性を実現できる。ガスダクト6にインサートされるアルミニウム製の金属板17Bは、例えば、0.2mm~3mm、好ましくは0.5mm~2mmとすることができる。ただ、金属層には、アルミニウム以外の金属を使用することもできる。 For the metal layer 17, an aluminum metal sheet 17A or a metal plate 17B can be preferably used. The metal sheet 17A and the metal plate 17B made of aluminum are inexpensive, light, and have excellent thermal conductivity, so that the heat of the high-temperature gas discharged from the gas discharge port 12 can be efficiently conducted and diffused. . In particular, for aluminum sheets, commonly used aluminum foil and aluminum foil can be used. Such an aluminum sheet has a thickness of 6 μm to 0.3 mm, preferably 50 μm to 0.2 mm, and can achieve excellent thermal conductivity while being applied simply and at low cost. Moreover, the metal layer which consists of a thin metal plate made from aluminum can be easily affixed while simplifying the handling with a thickness of 1 mm or less, and can realize excellent resistance. Furthermore, the aluminum metal plate 17B that is inserted into and fixed to the gas duct 6 has a large thickness, thereby increasing heat capacity and quickly diffusing heat, thereby realizing excellent resistance. The aluminum metal plate 17B inserted into the gas duct 6 can be, for example, 0.2 mm to 3 mm, preferably 0.5 mm to 2 mm. However, metals other than aluminum can also be used for the metal layer.
 図5に示すガスダクト6は、第1のダクト6Aと第2のダクト6Bとに分割して製作している。第1のダクト6Aと第2のダクト6Bは、電池セル1の第1の端面10に垂直な方向に分割されており、第2のダクト6Bを第1のダクト6Aと電池積層体2との間に配置している。このガスダクト6は、第1のダクト6Aと第2のダクト6Bを互いに連結して内部に柱状のガス排出路46を形成している。図2、図7、及び図8に示す第1のダクト6Aは、内側に溝形凹部6dを有する形状に成形しており、この溝形凹部6dの開口部を、電池セル1のガス排出口12に対向する姿勢として配置している。図に示す第1のダクト6Aは、溝形凹部6dの内面であって、ガス排出路46の天面6tに金属層17を設けている。さらに、図に示す第1のダクト6Aは、後述するサブ連結固定具5を介して電池積層体2に固定するために、この溝形凹部6dの開口縁に沿って、外側に突出する鍔部6aを一体成形して設けている。 The gas duct 6 shown in FIG. 5 is manufactured by being divided into a first duct 6A and a second duct 6B. The first duct 6A and the second duct 6B are divided in a direction perpendicular to the first end face 10 of the battery cell 1, and the second duct 6B is formed between the first duct 6A and the battery stack 2. Arranged in between. This gas duct 6 connects the first duct 6A and the second duct 6B to each other to form a columnar gas discharge path 46 therein. The first duct 6A shown in FIGS. 2, 7, and 8 is formed in a shape having a groove-shaped recess 6d on the inside, and the opening of the groove-shaped recess 6d is formed as a gas discharge port of the battery cell 1. 12 is arranged in a posture opposite to 12. The first duct 6A shown in the figure is the inner surface of the groove-shaped recess 6d, and the metal layer 17 is provided on the top surface 6t of the gas discharge path 46. Furthermore, the first duct 6A shown in the figure is a flange that protrudes outward along the opening edge of the groove-shaped recess 6d so as to be fixed to the battery stack 2 via a sub-connecting fixture 5 described later. 6a is integrally formed.
 第2のダクト6Bは、電池積層体2の第1の表面2Aに沿って配置される板状で、第1のダクト6Aの鍔部6aを嵌着する段差凹部6cを表面に設けている。第2のダクト6Bは、この段差凹部6cに、第1のダクト6Aの鍔部6aを嵌着させて、第1のダクト6Aと第2のダクト6Bとを連結して中空状のガスダクト6としている。このガスダクト6は、第1のダクト6Aと第2のダクト6Bを振動溶着し、あるいは超音波溶着し、あるいはまた接着して気密に固定することができる。ただ、第1のダクトと第2のダクトは、必ずしも溶着や接着して固定する必要はなく、段差凹部と鍔部との境界にパッキン(図示せず)を配置し、このパッキンを挟着する状態で連結して、第1のダクトと第2のダクトとを気密に連結することもできる。 The second duct 6B has a plate shape arranged along the first surface 2A of the battery stack 2 and has a stepped recess 6c on the surface for fitting the flange 6a of the first duct 6A. The second duct 6B is a hollow gas duct 6 in which the flange 6a of the first duct 6A is fitted into the stepped recess 6c to connect the first duct 6A and the second duct 6B. Yes. The gas duct 6 can be hermetically fixed by vibration welding the first duct 6A and the second duct 6B, ultrasonic welding, or bonding them. However, the first duct and the second duct do not necessarily need to be fixed by welding or bonding, and a packing (not shown) is arranged at the boundary between the stepped recess and the flange, and the packing is sandwiched. The first duct and the second duct can be connected in an airtight manner by being connected in a state.
 さらに、第2のダクト6Bは、各々の電池セル1のガス排出口12に連結される連結開口6bを設けており、この連結開口6bをガス排出口12に連結している。図の第2のダクト6Bは、電池セル1のガス排出口12と対向する位置に、角形の連結開口6bを開口して設けている。ただ、連結開口は、電池セルのガス排出口に沿う長円形状や楕円形状とすることもできる。 Furthermore, the second duct 6B is provided with a connection opening 6b connected to the gas discharge port 12 of each battery cell 1, and the connection opening 6b is connected to the gas discharge port 12. The second duct 6 </ b> B in the figure is provided with a rectangular connection opening 6 b at a position facing the gas discharge port 12 of the battery cell 1. However, the connection opening may be an oval shape or an elliptical shape along the gas discharge port of the battery cell.
 以上のように、ガスダクト6を第1のダクト6Aと第2のダクト6Bに分割する構造は、第1のダクト6Aと第2のダクト6Bを異なる材質のプラスチックとすることができる。このガスダクト6は、第1のダクト6Aを耐熱性に優れたプラスチックで成形して、第2のダクト6Bを絶縁性に優れたプラスチックで成形することができる。この第1のダクト6Aは、ポリブチレンテレフタラートや、ガラス繊維やカーボン繊維を埋設して補強しているナイロン樹脂やエポキシ樹脂などのプラスチックで製作し、第2のダクト6Bは、ナイロン樹脂やエポキシ樹脂などの絶縁性のプラスチックで製作することができる。絶縁性のプラスチックで成形してなる第2のダクトは、電池セルの表面に接触しても、電池セルの外装缶をショートすることはない。 As described above, in the structure in which the gas duct 6 is divided into the first duct 6A and the second duct 6B, the first duct 6A and the second duct 6B can be made of plastics of different materials. The gas duct 6 can be formed by molding the first duct 6A with a plastic excellent in heat resistance and the second duct 6B with a plastic excellent in insulation. The first duct 6A is made of plastic such as polybutylene terephthalate, nylon resin or epoxy resin in which glass fiber or carbon fiber is embedded and reinforced, and the second duct 6B is made of nylon resin or epoxy. It can be made of insulating plastic such as resin. Even if the 2nd duct formed by an insulating plastic contacts the surface of a battery cell, it does not short-circuit the outer can of a battery cell.
 さらに、ガスダクト6は、図3ないし図5に示すように、一方の端部に、ガスダクト6の内部のガスを外部に排出する排出部6xを設けている。図に示すガスダクト6は、上面から突出する中空の凸部に、内部のガス排出路46に連通してなる筒状のパイプを連結して排出部6xとしている。図3に示すガスダクト6は、この排出部6xに外部ダクト36を連結して、ガスダクト6から流入されるガスを外部に排出するようにしている。
(表面プレート)
Further, as shown in FIGS. 3 to 5, the gas duct 6 is provided with a discharge portion 6 x that discharges the gas inside the gas duct 6 to the outside at one end portion. In the gas duct 6 shown in the figure, a hollow pipe projecting from the upper surface is connected to a cylindrical pipe communicating with an internal gas discharge path 46 to form a discharge section 6x. In the gas duct 6 shown in FIG. 3, an external duct 36 is connected to the discharge portion 6x to discharge the gas flowing in from the gas duct 6 to the outside.
(Surface plate)
 さらに、図2、図3、及び図5に示す電源装置は、電池積層体2の第1の表面2Aに表面プレート8を配置しており、この表面プレート8で互いに積層される電池セル1の第1の端面10をカバーしている。この表面プレート8は、電池積層体2の上面に沿う外形に成形している。ここで、図に示す電源装置は、この表面プレート8を、ガスダクト6の第2のダクト6Bに兼用している。すなわち、図に示す表面プレート8は、電池積層体2の中央部に配置された複数のガス排出口12と対向する部分を第2のダクト6Bに兼用して複数の連結開口6bを設けている。したがって、この表面プレート8は、ナイロン樹脂、エポキシ樹脂などの絶縁性のプラスチックで成形している。 Further, in the power supply device shown in FIGS. 2, 3, and 5, the surface plate 8 is disposed on the first surface 2 </ b> A of the battery stack 2, and the battery cells 1 stacked on each other by the surface plate 8. The first end face 10 is covered. The surface plate 8 is formed in an outer shape along the upper surface of the battery stack 2. Here, in the power supply device shown in the figure, the surface plate 8 is also used as the second duct 6B of the gas duct 6. That is, the surface plate 8 shown in the drawing is provided with a plurality of connection openings 6b by using a portion facing the plurality of gas discharge ports 12 arranged at the center of the battery stack 2 as the second duct 6B. . Therefore, the surface plate 8 is formed of an insulating plastic such as nylon resin or epoxy resin.
 さらに、表面プレート8は、図2と図5に示すように、電池セル1の電極端子13と対向する位置にバスバー14を配置するための開口窓24を開口して設けている。図の表面プレート8は、第2ダクト6Bを構成する中央部の両側であって、電池積層体2の両側部に沿って、複数の開口窓24を設けている。開口窓24は、バスバー14を定位置に案内しながら電極端子13に接続できるように、バスバー14の外形に沿う大きさと形状している。表面プレート8の開口窓24に配置されるバスバー14は、電池セル1の電極端子13にレーザー溶接等の溶着によって固定されて、複数の電池セル1を所定の接続状態に接続する。ただ、電源装置は、必ずしも電池積層体の第1の表面に表面プレートを配置する必要はない。以上の表面プレート8は、ガスダクト6を電池積層体2に連結するサブ連結固定具5を介して電池積層体2の第1の表面に固定される。 Further, as shown in FIGS. 2 and 5, the surface plate 8 is provided with an opening window 24 for disposing the bus bar 14 at a position facing the electrode terminal 13 of the battery cell 1. The surface plate 8 in the figure is provided with a plurality of opening windows 24 along both sides of the battery stack 2 on both sides of the central portion constituting the second duct 6B. The opening window 24 is sized and shaped along the outer shape of the bus bar 14 so that it can be connected to the electrode terminal 13 while guiding the bus bar 14 to a fixed position. The bus bar 14 disposed in the opening window 24 of the surface plate 8 is fixed to the electrode terminal 13 of the battery cell 1 by welding such as laser welding, and connects the plurality of battery cells 1 to a predetermined connection state. However, the power supply device does not necessarily need to arrange the surface plate on the first surface of the battery stack. The above surface plate 8 is fixed to the first surface of the battery stack 2 via the sub-connecting fixture 5 that connects the gas duct 6 to the battery stack 2.
 以上のように、電池積層体2の第1の表面2Aに配置される表面プレート8をガスダクト6に兼用する構造は、部品点数を低減して簡単かつ低コストにガスダクト6を配設できる。さらに、表面プレート8を第2ガスダクト6Bに兼用する構造は、電源装置の組立工程において、連結固定具4を介して、電池積層体2を予め締結した状態で、第1ガスダクト6Aを連結させることができるので、第1ガスダクト6Aをより確実に、第2ガスダクト6Bと気密状態に連結させることができる。ただ、本発明の電源装置は、表面プレートをガスダクトに兼用することなく、ガスダクトを別部材として電池積層体の第1の表面に配置することもできる。 As described above, the structure in which the surface plate 8 disposed on the first surface 2A of the battery stack 2 is also used as the gas duct 6 allows the gas duct 6 to be arranged easily and at low cost by reducing the number of parts. Further, the structure in which the surface plate 8 is also used as the second gas duct 6B is to connect the first gas duct 6A with the battery stack 2 fastened in advance through the connection fixture 4 in the assembly process of the power supply device. Therefore, the first gas duct 6A can be more reliably connected to the second gas duct 6B in an airtight state. However, the power supply device of the present invention can also be disposed on the first surface of the battery stack without using the surface plate as a gas duct, with the gas duct as a separate member.
 図9に示す電源装置は、表面プレート58の中央部に、電池セル1の積層方向に伸びる貫通穴58Aを開口しており、この貫通穴58Aにガスダクト56を配置している。図9と図10のガスダクト56は、第1のダクト56Aと第2のダクト56Bとに分割しており、第1のダクト56Aと第2のダクト56Bを互いに連結して、内部に角柱状のガス排出路46を設けている。第1のダクト56Aは、図において下側開口の溝形凹部56dを内側に設けており、この溝形凹部56dの開口部を、電池セル1のガス排出口12に対向する姿勢として配置している。図に示す第1のダクト56Aは、溝形凹部56dの内面でああって、ガス排出路46の天面56tに金属層17を設けている。さらに、図に示す第1のダクト56Aは、溝形凹部56dの開口縁に沿って外側に突出する鍔部56aを一体成形して設けている。 In the power supply device shown in FIG. 9, a through hole 58A extending in the stacking direction of the battery cells 1 is opened at the center of the surface plate 58, and the gas duct 56 is disposed in the through hole 58A. The gas duct 56 shown in FIGS. 9 and 10 is divided into a first duct 56A and a second duct 56B. The first duct 56A and the second duct 56B are connected to each other, and a prismatic shape is formed inside. A gas discharge path 46 is provided. The first duct 56A is provided with a groove-shaped recess 56d having a lower opening in the drawing, and the opening of the groove-shaped recess 56d is disposed so as to face the gas outlet 12 of the battery cell 1. Yes. The first duct 56A shown in the figure is provided with the metal layer 17 on the top surface 56t of the gas discharge path 46, on the inner surface of the groove-shaped recess 56d. Furthermore, the first duct 56A shown in the drawing is provided with a flange 56a that projects outward along the opening edge of the groove-shaped recess 56d.
 第2のダクト56Bは、各電池セル1のガス排出口12と対向する位置に、ガス排出口12に連結され
る連結開口56bを設けている。さらに、図9に示す第2のダクト6Bは、連結開口56bの間に位置して、第1のダクト56Aの金属層17に向かって突出する支持部57を一体成形して設けている。図に示す第2のダクト56Bは、互いに隣接する連結開口56bの間に位置して、複数の支持部57を設けている。ただ、支持部は所定の間隔で設けることもできる。
The second duct 56 </ b> B is provided with a connection opening 56 b connected to the gas discharge port 12 at a position facing the gas discharge port 12 of each battery cell 1. Further, the second duct 6B shown in FIG. 9 is provided between the connection openings 56b and integrally provided with a support portion 57 that protrudes toward the metal layer 17 of the first duct 56A. The second duct 56B shown in the drawing is located between the connecting openings 56b adjacent to each other, and a plurality of support portions 57 are provided. However, the support portions can be provided at predetermined intervals.
 図に示す支持部57は、その先端縁を金属層17に当接させている。先端を金属層17に当接させる支持部57は、金属層17を押圧しながら支持して、金属層17を第1のダクト56Aの内面の定位置に保持できる特徴がある。ただ、支持部は、必ずしも先端縁を金属層に当接させる必要はなく、金属層の表面に接近させることもできる。この支持部も、金属層の接着力が経時的に低下しても、剥離した金属層を落下させることなく、確実に第1のダクトの内面側に支持できる。 The support portion 57 shown in the figure has its tip edge in contact with the metal layer 17. The support portion 57 whose tip is brought into contact with the metal layer 17 is characterized in that the metal layer 17 can be supported while being pressed and the metal layer 17 can be held at a fixed position on the inner surface of the first duct 56A. However, it is not always necessary for the support portion to have the tip edge abutted against the metal layer, and the support portion can be brought close to the surface of the metal layer. This support portion can also be reliably supported on the inner surface side of the first duct without dropping the peeled metal layer even if the adhesive strength of the metal layer is lowered with time.
 図に示す支持部57は、円柱状の凸部で、この凸部の外径をガス排出路46の内幅よりも細くして、ガス排出路46に排出されるガスがスムーズに通過できるようにしている。ただ、支持部は、リブとすることもできる。リブ形状の支持部は、先端面を金属層の内面に接近または当接させて、金属層を広い領域にわたって支持できる。 The support portion 57 shown in the figure is a cylindrical convex portion, and the outer diameter of the convex portion is made narrower than the inner width of the gas exhaust passage 46 so that the gas discharged to the gas exhaust passage 46 can pass smoothly. I have to. However, the support portion may be a rib. The rib-shaped support portion can support the metal layer over a wide area by bringing the tip end face closer to or in contact with the inner surface of the metal layer.
 以上の第1のダクト56Aと第2のダクト56Bは、振動溶着、超音波溶着、あるいは接着によって気密に固定されてガスダクト56が形成される。ただ、ガスダクトは、必ずしも第1のダクトと第2のダクトに分割する必要はなく、ひとつの筒体とし、この筒体の一面に複数の連結開口を設けてこの連結開口を電池セルのガス排出口に連結することもできる。
(パッキン)
The first duct 56A and the second duct 56B described above are hermetically fixed by vibration welding, ultrasonic welding, or adhesion to form the gas duct 56. However, the gas duct does not necessarily need to be divided into the first duct and the second duct, but is formed as a single cylinder, and a plurality of connection openings are provided on one surface of the cylinder, and the connection openings are connected to the gas exhaust of the battery cell. It can also be connected to the outlet.
(Packing)
 さらに、電源装置は、図2、図3、図5、図9、及び図10に示すように、ガスダクト6、56と電池積層体2との間にパッキン7を配設している。パッキン7はゴム状弾性体で、電池積層体2を構成する複数の電池セル1の第1の端面10である封口板とガスダクト6、56との間に配設されて、ガスダクト6、56と電池セル1との間を気密に閉塞している。ゴム状弾性体からなるパッキン7は、電池積層体2とガスダクト6、56に挟着されて弾性変形する。すなわち、サブ連結固定具5がガスダクト6、56を電池積層体2に押し付ける状態で、パッキン7がガスダクト6、56と電池積層体2に挟まれて押し潰されて、ガスダクト6、56と電池セル1との隙間を確実に閉塞する。このように、弾性変形するパッキン7は、ガスダクト6、56と電池セル1との間を気密に閉塞して、ガス排出口12から噴き出される排出ガスを漏らすことなくガスダクト6、56に流入させて外部に排気する。 Furthermore, as shown in FIGS. 2, 3, 5, 9, and 10, the power supply device has a packing 7 disposed between the gas ducts 6 and 56 and the battery stack 2. The packing 7 is a rubber-like elastic body, and is disposed between a sealing plate, which is the first end face 10 of the plurality of battery cells 1 constituting the battery stack 2, and the gas ducts 6 and 56. The space between the battery cells 1 is airtightly closed. The packing 7 made of a rubber-like elastic body is sandwiched between the battery stack 2 and the gas ducts 6 and 56 and elastically deforms. That is, in a state where the sub-connecting fixture 5 presses the gas ducts 6 and 56 against the battery stack 2, the packing 7 is sandwiched between the gas ducts 6 and 56 and the battery stack 2 and crushed, and the gas ducts 6 and 56 and the battery cell are pressed. 1 is securely closed. Thus, the elastically deformable packing 7 hermetically closes the space between the gas ducts 6 and 56 and the battery cell 1 and allows the exhaust gas ejected from the gas exhaust port 12 to flow into the gas ducts 6 and 56 without leaking. Exhaust to the outside.
 図5と図9に示すパッキン7は、電池積層体2の積層方向に伸びる細長い板状であって、各々の電池セル1のガス排出口12の対向する位置に貫通孔7bを設けている。貫通孔7bは、第2のダクト6B、56Bに開口された連結開口6b、56bと対向する位置にあって、貫通孔7bを通過するガスをガスダクト6、56の内部に流入させる。この構造は、パッキン7の貫通孔7bを電池セル1のガス排出口12に対向する状態で配置して、電池セル1とガスダクト6、56とを閉塞するので、ガス排出口12から排出されるガスが漏れるのを確実に阻止できる。図のパッキン7は、第2のダクト6B、56Bに開口した連結開口6b、56bの内形に沿う角形の貫通孔7bを設けており、この貫通孔7bを電池セル1のガス排出口12に連結している。ただ、貫通孔は、電池セルのガス排出口に沿う長円形状や楕円形状とすることもできる。 The packing 7 shown in FIGS. 5 and 9 is a long and narrow plate extending in the stacking direction of the battery stack 2, and a through hole 7 b is provided at a position facing the gas discharge port 12 of each battery cell 1. The through-hole 7b is located at a position facing the connection openings 6b and 56b opened in the second ducts 6B and 56B, and allows gas passing through the through-hole 7b to flow into the gas ducts 6 and 56. In this structure, the through-hole 7b of the packing 7 is disposed in a state of facing the gas discharge port 12 of the battery cell 1, and the battery cell 1 and the gas ducts 6 and 56 are closed, so that the gas is discharged from the gas discharge port 12. The gas can be surely prevented from leaking. The packing 7 shown in the figure is provided with a rectangular through hole 7b extending along the inner shape of the connection openings 6b and 56b opened in the second ducts 6B and 56B, and this through hole 7b is formed in the gas discharge port 12 of the battery cell 1. It is connected. However, the through hole can be formed in an oval shape or an elliptical shape along the gas discharge port of the battery cell.
 図に示すパッキン7は、第2のダクト6B、56Bの下面、すなわち電池積層体2との対向面の定位置に配置して、貫通孔7bを連結開口6b、56bと対向する位置に配置している。図2に示す第2のダクト6Bは、パッキン7の外周に沿うリブ6eを下面に突出して一体成形しており、このリブ6eの内側にパッキン7を案内して定位置に配置している。ただ、パッキンは、接着等により、電池積層体の定位置に配置することもできる。 The packing 7 shown in the drawing is disposed at a fixed position on the lower surface of the second ducts 6B and 56B, that is, the surface facing the battery stack 2, and the through hole 7b is disposed at a position facing the connection openings 6b and 56b. ing. The second duct 6B shown in FIG. 2 is integrally formed with a rib 6e extending along the outer periphery of the packing 7 protruding from the lower surface, and the packing 7 is guided inside the rib 6e and arranged at a fixed position. However, the packing can also be disposed at a fixed position of the battery stack by adhesion or the like.
 以上のパッキンは、全体の形状を板状として複数の貫通孔を開口しているが、パッキンは、各々の連結開口に対向して配置されるリング状とすることもできる。この構造は、第2のダクトの各連結開口に、複数に分割されたパッキンを配置して、ガス排出口と電池セルとのガス漏れを阻止する。ただし、ガスダクトと電池セルとの間には必ずしもパッキンを挟着する必要はない。ガスダクトを電池積層体の第1の表面に向かって押圧して、ガスダクトと電池セルとの対向面を互いに密着させることで、連結開口をガス排出口にガス漏れしないように連結することもできるからである。
(サブ連結固定具5)
The above packing has a plate shape as a whole and opens a plurality of through-holes. However, the packing may be formed in a ring shape facing each connection opening. This structure arrange | positions the packing divided | segmented into plurality in each connection opening of a 2nd duct, and prevents the gas leak of a gas exhaust port and a battery cell. However, it is not always necessary to sandwich packing between the gas duct and the battery cell. Since the gas duct is pressed toward the first surface of the battery stack and the opposing surfaces of the gas duct and the battery cell are brought into close contact with each other, the connection opening can be connected to the gas discharge port so as not to leak gas. It is.
(Sub-connecting fixture 5)
 以上のガスダクト6、56は、電池積層体2のガス排出口12に対向して配置されて、電池積層体2の第1の表面2Aに配置されるサブ連結固定具5を介して定位置に固定される。サブ連結固定具5は、図5と図9に示すように、電池積層体2の第1の表面2Aに対向して配置されて、ガスダクト6、56を電池積層体2の定位置に配置している。このサブ連結固定具5も、両端がエンドプレート3に固定されて電池積層体2を第1の表面2Aで締結する。サブ連結固定具4は、所定の幅と厚さを有する金属板で、鉄などの金属板、好ましくは、鋼板が使用できる。金属板からなるサブ連結固定具4は、バインド部5Aの両端に、エンドプレート3の外側表面に連結する連結部5Bを設けている。 The above gas ducts 6 and 56 are arranged facing the gas discharge port 12 of the battery stack 2 and are in place via the sub-connecting fixture 5 arranged on the first surface 2A of the battery stack 2. Fixed. As shown in FIGS. 5 and 9, the sub-connecting fixture 5 is disposed to face the first surface 2 </ b> A of the battery stack 2, and the gas ducts 6 and 56 are disposed at fixed positions of the battery stack 2. ing. Both ends of the sub-connecting fixture 5 are also fixed to the end plate 3, and the battery stack 2 is fastened with the first surface 2A. The sub coupling fixture 4 is a metal plate having a predetermined width and thickness, and a metal plate such as iron, preferably a steel plate can be used. The sub coupling fixture 4 made of a metal plate is provided with coupling portions 5B coupled to the outer surface of the end plate 3 at both ends of the binding portion 5A.
 図に示すサブ連結固定具5は、2列のバインド部5Aと、これらのバインド部5Aの両端を連結してなる連結部5Bとを備えている。2列のバインド部5Aは、ガスダクト6、56の両側に沿って配置されている。2列のバインド部5Aは、ガスダクト6、56の両側に設けられた鍔部6a、56aを押圧できるように、所定の間隔で配置されている。サブ連結固定具5は、2列のバインド部5Aの間にガスダクト6、56を配置する状態でエンドプレート3に固定されて、2列のバインド部5Aで鍔部6a、56aを押圧している。2列のバインド部5Aは両端を連結部5Bで連結しており、この連結部5Bをほぼ直角に折曲して、エンドプレート2に連結している。サブ連結固定具5は、両端の連結部5Bをエンドプレート3に設けた嵌着凹部3Bに連結することにより、一対のエンドプレート3を所定の間隔として、電池積層体2を両端から挟着する。さらに、サブ連結固定具5は、その両端部を止ネジ19でエンドプレート3に固定している。図のサブ連結固定具5は、バインド部5Aの両端部に、止ネジ19を挿入する貫通孔を開口して設けている。サブ連結固定具5は、両端の連結部5Bをエンドプレート3の嵌着凹部3Bに連結する状態で、貫通孔に止ネジ19を挿入し、この止ネジ19をエンドプレート3の外周面に設けた雌ネジ孔3bにねじ込んで一対のエンドプレート3に固定している。 The sub coupling fixture 5 shown in the figure includes two rows of binding portions 5A and a coupling portion 5B formed by coupling both ends of these binding portions 5A. Two rows of binding portions 5 </ b> A are disposed along both sides of the gas ducts 6 and 56. The two rows of binding portions 5A are arranged at predetermined intervals so that the flange portions 6a and 56a provided on both sides of the gas ducts 6 and 56 can be pressed. The sub-connecting fixture 5 is fixed to the end plate 3 with the gas ducts 6 and 56 disposed between the two rows of binding portions 5A, and presses the flange portions 6a and 56a with the two rows of binding portions 5A. . The two rows of binding portions 5A are connected at both ends by connecting portions 5B, and the connecting portions 5B are bent at substantially right angles and connected to the end plate 2. The sub-connecting fixture 5 connects the battery stack 2 from both ends by connecting the connecting portions 5B at both ends to the fitting recesses 3B provided on the end plate 3, with the pair of end plates 3 being set at a predetermined interval. . Furthermore, the both ends of the sub coupling fixture 5 are fixed to the end plate 3 with set screws 19. The sub-connecting fixture 5 shown in the figure is provided with opening through holes into which set screws 19 are inserted at both ends of the binding portion 5A. The sub-connecting fixture 5 is configured such that a set screw 19 is inserted into the through hole in a state in which the connecting portions 5B at both ends are connected to the fitting recess 3B of the end plate 3, and the set screw 19 is provided on the outer peripheral surface of the end plate 3. Screwed into the female screw holes 3b and fixed to the pair of end plates 3.
 図に示すサブ連結固定具5は、2列のバインド部5Aと両端の連結部5Bとを一体的に成形しているが、サブ連結固定具は、2本に分割することもできる。2本に分割されるサブ連結固定具は、図示しないが、各々をガスダクトの両側に沿って配置して、各々のバインド部でガスダクトの両側から突出する鍔部を沿う敦手を押圧することができる。 The sub-connecting fixture 5 shown in the figure is integrally formed with two rows of binding portions 5A and connecting portions 5B at both ends, but the sub-connecting fixture can also be divided into two. Although the sub-connecting fixtures divided into two are not shown, each may be arranged along both sides of the gas duct, and each binding part may press the claws along the flanges protruding from both sides of the gas duct. it can.
 さらに、サブ連結固定具は、図示しないが、2列のバインド部を、中間に設けた橋渡し部で連結し、この橋渡し部をガスダクトの上面に配置することもできる。このサブ連結固定具は、橋渡し部でガスダクトの上面を押圧して、ガスダクトを電池積層体の第1の表面の定位置に配置できる。さらに、サブ連結固定具は、図示しないが、1列のバインド部を備えて、このバインド部でガスダクトの上面を押圧して、ガスダクトを電池積層体の第1の表面の定位置に配置することもできる。
(回路基板)
Furthermore, although not shown in the drawings, the sub-connecting fixture can also connect two rows of binding portions with a bridging portion provided in the middle and arrange the bridging portion on the upper surface of the gas duct. The sub-connecting fixture can be arranged at a fixed position on the first surface of the battery stack by pressing the upper surface of the gas duct at the bridge portion. Furthermore, although not shown in the drawing, the sub-connecting fixture includes a row of binding portions, and presses the upper surface of the gas duct with this binding portion, so that the gas duct is disposed at a fixed position on the first surface of the battery stack. You can also.
(Circuit board)
 さらに、図2と図5に示す電源装置は、電池積層体2に接続している回路基板9を備えており、この回路基板9をガスダクト6の上方であって、トップカバー20との間に配置している。図に示すトップカバー20は、上面側に回路基板9を収納する収納凹部21を設けており、この収納凹部21に回路基板9を収納している。回路基板9は、電池セル1の保護回路を実現する電子部品(図示せず)等を実装している。この回路基板9は、各々の電池セル1に接続されてセル電圧を検出する電圧検出回路、電池セル1の温度を検出する温度検出回路等を実装しており、セル電圧を検出して電池セル1の過充電や過放電を防止するように制御し、あるいは電池セル1の異常な温度上昇を防止するように充放電を制御する。これらの回路を実現する電子部品は、回路基板9に配置されて、収納凹部21に収納される。 Furthermore, the power supply device shown in FIGS. 2 and 5 includes a circuit board 9 connected to the battery stack 2, and the circuit board 9 is located above the gas duct 6 and between the top cover 20. It is arranged. The top cover 20 shown in the drawing is provided with a storage recess 21 for storing the circuit board 9 on the upper surface side, and the circuit board 9 is stored in the storage recess 21. The circuit board 9 is mounted with an electronic component (not shown) that implements a protection circuit for the battery cell 1. The circuit board 9 is mounted with a voltage detection circuit for detecting a cell voltage connected to each battery cell 1, a temperature detection circuit for detecting the temperature of the battery cell 1, etc. 1 is controlled so as to prevent overcharging and overdischarging, or charging / discharging is controlled so as to prevent an abnormal temperature rise of the battery cell 1. Electronic components that realize these circuits are arranged on the circuit board 9 and stored in the storage recess 21.
 図に示す回路基板9は、サブ連結固定具5を介してガスダクト6の上面の定位置に配置している。図2、図3、及び図5に示すサブ連結固定具5は、回路基板9を固定するために、バインド部5Aの上面に複数のナット26を固定している。図の電源装置は、回路基板9を貫通する止ネジ25をサブ連結固定具5に設けたナット26にねじ込んで、回路基板9をガスダクト6の上面の定位置に配置している。この電源装置は、回路基板9と電池積層体2との間に金属板からなるサブ連結固定具5を配置するので、サブ連結固定具5の金属板でもって、回路基板9を電池積層体2からシールドできる。さらに、この電源装置は、ガスダクト6、56の内面に金属層17を設けているので、この金属層17によっても回路基板9を電池積層体2からシールドできる。電池積層体2は大電流で充放電され、とくに大きなパルス電流で充放電されることから、パルス性のノイズが放射される。サブ連結固定具5の金属板やガスダクト6、56の金属層17は、回路基板9と電池積層体2との間にあって、電池積層体2から放射されるパルス性の誘導ノイズから回路基板9をシールドして、回路基板9の誘導ノイズによる誤動作を防止できる特徴がある。とくに、金属板であるサブ連結固定具をアースラインに接続することで、電池積層体2からの誘導ノイズをより効果的にシールドできる。
(トップカバー)
The circuit board 9 shown in the figure is arranged at a fixed position on the upper surface of the gas duct 6 via the sub-connecting fixture 5. 2, 3, and 5, a plurality of nuts 26 are fixed to the upper surface of the binding portion 5 </ b> A in order to fix the circuit board 9. In the illustrated power supply device, a set screw 25 penetrating the circuit board 9 is screwed into a nut 26 provided in the sub-connecting fixture 5, and the circuit board 9 is disposed at a fixed position on the upper surface of the gas duct 6. In this power supply device, the sub-connecting fixture 5 made of a metal plate is disposed between the circuit board 9 and the battery stack 2, so that the circuit board 9 is attached to the battery stack 2 with the metal plate of the sub-connecting fixture 5. Can shield from. Further, since the power supply device has the metal layer 17 provided on the inner surfaces of the gas ducts 6 and 56, the circuit board 9 can be shielded from the battery stack 2 by the metal layer 17. The battery stack 2 is charged and discharged with a large current, and is charged and discharged with a particularly large pulse current, so that pulse noise is emitted. The metal plate of the sub-connecting fixture 5 and the metal layer 17 of the gas ducts 6 and 56 are between the circuit board 9 and the battery stack 2, and the circuit board 9 is removed from the pulsed induction noise radiated from the battery stack 2. It has a feature that it can be shielded to prevent malfunction due to induced noise of the circuit board 9. In particular, the induction noise from the battery stack 2 can be more effectively shielded by connecting the sub-connecting fixture, which is a metal plate, to the earth line.
(Top cover)
 さらに、図2と図3の電源装置は、上面にトップカバー20を配置している。このトップカバー20は、表面プレート8の上面をカバーして、電池積層体2に接続されたバスバー14や回路基板9をカバーして保護する。したがって、トップカバー20は、表面プレート8の上面をカバーできる外形であって、内部に回路基板9を収納できる空間を有する形状にプラスチックで成形している。図2と図11のトップカバー20は、全体を下側開口の浅い容器形状に成形しており、中央部を周囲よりも一段深く成形して、回路基板9を収納するための収納凹部21を設けている。 2 and 3 have a top cover 20 on the top surface. The top cover 20 covers the upper surface of the surface plate 8 and covers and protects the bus bar 14 and the circuit board 9 connected to the battery stack 2. Therefore, the top cover 20 has an outer shape capable of covering the upper surface of the surface plate 8 and is molded of plastic into a shape having a space in which the circuit board 9 can be accommodated. The top cover 20 shown in FIGS. 2 and 11 is formed into a shallow container shape with a lower opening, and the central portion is formed one step deeper than the surroundings, and a storage recess 21 for storing the circuit board 9 is formed. Provided.
 さらに、トップカバー20は、図11に示すように、一方の端部に、ガスダクト6の排出部6xを外部に突出させるための切欠部22を設けている。このトップカバー20は、図1に示すように、電池積層体2の上面に連結される状態で、この切欠部22から排出部6xを外部に表出させる。さらにまた、図1と図11に示すトップカバー20は、両端部に出力用の端子窓23を開口している。電池積層体2は、両端に配置される電池セル1の電極端子13に出力用端子板16を接続している。トップカバーは、これらの出力用端子板16を外部に表出させるための端子窓23を両端に開口して設けている。 Furthermore, as shown in FIG. 11, the top cover 20 is provided with a notch 22 for projecting the discharge part 6x of the gas duct 6 to the outside at one end. As shown in FIG. 1, the top cover 20 causes the discharge portion 6 x to be exposed to the outside from the cutout portion 22 in a state of being connected to the upper surface of the battery stack 2. Furthermore, the top cover 20 shown in FIGS. 1 and 11 has output terminal windows 23 at both ends. In the battery stack 2, output terminal plates 16 are connected to the electrode terminals 13 of the battery cells 1 arranged at both ends. The top cover is provided with terminal windows 23 opened at both ends for exposing these output terminal plates 16 to the outside.
 以上のトップカバー20は、止ネジ27を介してガスダクト6に固定している。図5に示すガスダクト6は、トップカバー20を定位置に固定するために、上面に連結ボス28を一体成形して設けている。図5の連結ボス28は、ガスダクト6の両端部の上面に突出して設けられている。トップカバー20は、連結ボス28と対向する位置に貫通孔29を開口しており、この貫通孔29に挿通される止ネジ27がガスダクト6の連結ボス28にねじ込まれて電池積層体2の定位置に固定されている。トップカバー20を備えた電源装置は、高電圧となる電池セル1同士の接続部分や、回路基板9等が露出することを防止することができ、例えば、メンテナンスの際などに、不用意に電池セル1同士の接続部分や、回路基板9等に接触し、回路が短絡したりすることを防止できる。また、簡易的な防水効果も得られる。 The above top cover 20 is fixed to the gas duct 6 via a set screw 27. The gas duct 6 shown in FIG. 5 is provided with a connecting boss 28 integrally formed on the upper surface in order to fix the top cover 20 at a fixed position. The connecting boss 28 in FIG. 5 is provided so as to protrude from the upper surface of both end portions of the gas duct 6. The top cover 20 has a through hole 29 at a position facing the connection boss 28, and a set screw 27 inserted through the through hole 29 is screwed into the connection boss 28 of the gas duct 6 to fix the battery stack 2. Fixed in position. The power supply device provided with the top cover 20 can prevent the connection portion between the battery cells 1 having a high voltage, the circuit board 9 and the like from being exposed. For example, the battery is inadvertently used during maintenance. It is possible to prevent the circuit from being short-circuited by contacting the connection portion between the cells 1 or the circuit board 9 or the like. Also, a simple waterproof effect can be obtained.
 ところで、電源装置は、その大型化を抑制するために、ガスダクトの容積を小さくすることが有効であるが、ガスダクトの容積が小さくなると、その分だけ、電池のガス排出口とガスダクトとの距離が近くなる。そのため、電池セルからガスが排出された際に、排出ガスがガスダクトに与える影響も大きくなる。具体的には、高温の排出ガスに起因する熱の影響や、ガスダクトにかかる圧力の増大などである。以上の実施形態によると、ガスダクト6の内面であって、ガス排出口12と対向する天面6tに金属層を設けているので、高温の排出ガスが噴出される状態においても、この熱を速やかに拡散して熱による悪影響を抑制できる。特に、単にガス排出口12と対向する位置に金属層17を設けるだけでなく、図7に示すように、ガスダクト6のガス排出口12の対向面に、ガスダクト6の両端部にかけて金属層17が設けられることで、高温の排出ガスが噴出される状態においても、この熱を速やかに拡散して熱による悪影響を抑制できる。また、以上の電源装置は、サブ連結固定具5により、ガスダクト6を押圧する構成となっているため、ガスダクト6を電池積層体2の第1の表面2Aに密着させて強固に固定することができ、ガスダクト6の容積を比較的小さく、すなわち、ガスダクト6の高さを低くすることができる。このため、電源装置は、例えば、ガスダクトや回路基板を、電池セルの電極端子の先端よりも内側に配置することができ、このような構成とすることで、電源装置の大型化を抑制することができる。このような電源装置の一例を図12に示す。 By the way, in order to suppress the enlargement of the power supply device, it is effective to reduce the volume of the gas duct. However, if the volume of the gas duct is reduced, the distance between the gas discharge port of the battery and the gas duct is increased accordingly. Get closer. For this reason, when gas is discharged from the battery cell, the influence of the exhaust gas on the gas duct is also increased. Specifically, the influence of heat caused by the high-temperature exhaust gas and the increase in pressure applied to the gas duct. According to the above embodiment, since the metal layer is provided on the inner surface of the gas duct 6 and on the top surface 6t opposed to the gas discharge port 12, this heat is rapidly transferred even in a state where high temperature exhaust gas is ejected. It is possible to suppress the adverse effect due to heat by diffusing to. In particular, the metal layer 17 is not only provided at a position facing the gas discharge port 12, but the metal layer 17 is formed on the opposite surface of the gas discharge port 12 of the gas duct 6 over both ends of the gas duct 6 as shown in FIG. By being provided, even in a state where high-temperature exhaust gas is ejected, this heat can be quickly diffused to suppress adverse effects due to heat. Moreover, since the above power supply device is the structure which presses the gas duct 6 with the sub coupling fixture 5, it can adhere | attach the gas duct 6 on the 1st surface 2A of the battery laminated body 2, and can fix it firmly. The volume of the gas duct 6 can be made relatively small, that is, the height of the gas duct 6 can be reduced. For this reason, a power supply device can arrange a gas duct or a circuit board inside the tip of an electrode terminal of a battery cell, for example, and suppresses the enlargement of a power supply device by having such composition. Can do. An example of such a power supply device is shown in FIG.
 図12に示す電源装置は、電池セル51の第1の端面60に設けた電極端子63を、外周面に雄ネジを設けたロッド状として上面から突出させている。この電極端子63は、バスバー14の貫通孔に挿通する状態で、ナット67がねじ込まれてバスバー14を定位置に固定している。このため、この電池セル51は、ナット67をねじ込むことができるように、電極端子63を電池セル51の第1の端面60から突出する形状としている。この電池セル1を積層してなる電池積層体2は、第1の表面2Aの両側に沿って電極端子63を配置しており、これらの電極端子63の間にガスダクト6を配置している。このガスダクト6は、高さを低く成形して、いいかえると、上面を電池セル51のガス排出口12に接近させる状態で配置して、電極端子63の先端よりも内側に配置している。ここで、電極端子63の先端よりも内側とは、電池セル1の第1の端面10の両端部に位置する電極端子63の先端を結ぶラインよりも第1の端面10側を意味するものとする。すなわち、ガスダクト6は、電池セル1の両端部に位置する電極端子63の先端を結ぶラインよりも内側であって、このラインより突出しない状態で配設している。これにより、ガスダクト6を電池積層体2から高く突出させることなく、電源装置の大型化を抑制している。 In the power supply device shown in FIG. 12, the electrode terminal 63 provided on the first end surface 60 of the battery cell 51 is protruded from the upper surface in the form of a rod having a male screw on the outer peripheral surface. The electrode terminal 63 is inserted into the through hole of the bus bar 14 and a nut 67 is screwed to fix the bus bar 14 in a fixed position. For this reason, the battery cell 51 has a shape in which the electrode terminal 63 protrudes from the first end face 60 of the battery cell 51 so that the nut 67 can be screwed. In the battery laminate 2 formed by laminating the battery cells 1, electrode terminals 63 are arranged along both sides of the first surface 2 </ b> A, and the gas duct 6 is arranged between these electrode terminals 63. The gas duct 6 is formed to have a low height. In other words, the gas duct 6 is arranged in a state where the upper surface is brought close to the gas outlet 12 of the battery cell 51, and is arranged inside the tip of the electrode terminal 63. Here, the inner side of the tip of the electrode terminal 63 means the first end surface 10 side of the line connecting the tips of the electrode terminals 63 located at both ends of the first end surface 10 of the battery cell 1. To do. That is, the gas duct 6 is disposed inside the line connecting the tips of the electrode terminals 63 located at both ends of the battery cell 1 and does not protrude from the line. Thereby, the enlargement of a power supply device is suppressed, without making the gas duct 6 protrude from the battery laminated body 2 highly.
 さらに、図に示す電源装置は、ガスダクト6の上側であって、両側に配置される電極端子63の間に回路基板9を配置しており、この回路基板9も電極端子63の先端よりも内側に配置している。この電源装置は、電池積層体2の第1の表面2A側に回路基板9を配置する構造としながら、電源装置の大型化を抑制できる。さらに、この回路基板は、面積を広くすることもできる。回路基板を大きくしても、電源装置の大型化を抑制できるからである。面積を大きくできる回路基板は、表面に設けられる配線パターンを簡単にしながら、また、実装される電子部品の放熱性を考慮しながら理想的な状態で配置できる。 Further, in the power supply device shown in the figure, the circuit board 9 is arranged between the electrode terminals 63 arranged on both sides of the gas duct 6, and the circuit board 9 is also located inside the tip of the electrode terminal 63. Is arranged. While this power supply device has a structure in which the circuit board 9 is disposed on the first surface 2 </ b> A side of the battery stack 2, an increase in size of the power supply device can be suppressed. Furthermore, the area of the circuit board can be increased. This is because the enlargement of the power supply device can be suppressed even if the circuit board is enlarged. A circuit board having a large area can be arranged in an ideal state while simplifying the wiring pattern provided on the surface and taking into consideration the heat dissipation of the electronic components to be mounted.
 さらに、図12に示す電源装置は、電池積層体2の第1の表面2Aをカバーする表面プレート68を備えており、この表面プレート68の両側に沿って、バスバー14を配置する開口窓24を備えている。さらに、図に示す表面プレート68は、開口窓の開口縁に沿って、電極端子63の突出方向に突出する区画壁68aを設けている。この構造は、電池セルから突出する電極端子63やバスバーを区画壁68aで保護できるので、メンテナンスの際などに、電池セル1の電極端子やバスバー14に接触してショート等が生じる弊害を有効に防止できる。さらに、図に示す電源装置は、電極端子63の間に配置されるガスダクト6や回路基板9を区画壁68aの先端よりも内側に配置している。ここで、区画壁68aの先端よりも内側とは、表面プレート68の両側に設けた区画壁68aの先端を結ぶラインよりも第1の表面2A側を意味するものとする。すなわち、ガスダクト6や回路基板9は、表面プレート68の両側に設けた区画壁68aの先端を結ぶラインよりも内側であって、このラインより突出しない状態で配設している。これにより、ガスダクト6や回路基板9を電池積層体2から高く突出させることなく、電源装置の大型化を抑制している。 Furthermore, the power supply device shown in FIG. 12 includes a surface plate 68 that covers the first surface 2 </ b> A of the battery stack 2, and has an opening window 24 in which the bus bar 14 is disposed along both sides of the surface plate 68. I have. Furthermore, the surface plate 68 shown in the drawing is provided with a partition wall 68a protruding in the protruding direction of the electrode terminal 63 along the opening edge of the opening window. Since this structure can protect the electrode terminal 63 and the bus bar protruding from the battery cell with the partition wall 68a, it can effectively prevent a short circuit or the like from coming into contact with the electrode terminal or the bus bar 14 of the battery cell 1 during maintenance. Can be prevented. Further, in the power supply device shown in the figure, the gas duct 6 and the circuit board 9 arranged between the electrode terminals 63 are arranged on the inner side of the tip of the partition wall 68a. Here, the inside of the tip of the partition wall 68a means the first surface 2A side with respect to the line connecting the tips of the partition walls 68a provided on both sides of the surface plate 68. That is, the gas duct 6 and the circuit board 9 are disposed inside the line connecting the leading ends of the partition walls 68a provided on both sides of the surface plate 68, and do not protrude from the line. Thereby, the enlargement of a power supply device is suppressed, without making the gas duct 6 and the circuit board 9 protrude highly from the battery laminated body 2. FIG.
 以上の実施形態の電源装置は、ガスダクト6、56を、サブ連結固定具5を介して電池積層体2の第1の表面2Aに固定している。ただ、ガスダクトは、必ずしもサブ連結固定具を介して電池積層体に固定する必要はなく、他の連結構造を介して電池積層体に固定することもできる。図13~図16に示すガスダクト76は、固定ネジ79を介して、電池積層体の両端に配置されるエンドプレート(図示せず)に固定する構造としている。さらに、図13~図16に示すガスダクト76は、全体を筒状として電池積層体の第1の表面に配置されるガスダクト76の一例を示している。 In the power supply device of the above embodiment, the gas ducts 6 and 56 are fixed to the first surface 2 </ b> A of the battery stack 2 via the sub-connecting fixture 5. However, the gas duct is not necessarily fixed to the battery stack via the sub-connecting fixture, and can be fixed to the battery stack via another connection structure. The gas duct 76 shown in FIGS. 13 to 16 is configured to be fixed to end plates (not shown) disposed at both ends of the battery stack through fixing screws 79. Further, the gas duct 76 shown in FIGS. 13 to 16 is an example of the gas duct 76 that is disposed on the first surface of the battery stack as a whole.
 図に示すように、筒状のガスダクト76は、第1のダクト76Aと第2のダクト76Bに分割しており、第1のダクト76Aと第2のダクト76Bを互いに連結して、内部に角柱状のガス排出路46を設けている。第1のダクト76Aは、図において下側開口の薄い蓋状の溝形凹部76dを内側に設けており、この溝形凹部76dの開口部を、電池セルのガス排出口に対向する姿勢として配置される。図に示す第1のダクト76Aは、溝形凹部76dの内面であって、ガス排出路46の天面76tに金属層17を設けている。このガスダクト76も、前述のガスダクト6、56と同様にして、金属シート17Aからなる金属層17を内面に固定している。 As shown in the figure, the cylindrical gas duct 76 is divided into a first duct 76A and a second duct 76B, and the first duct 76A and the second duct 76B are connected to each other so that a corner is formed inside. A columnar gas discharge path 46 is provided. The first duct 76A is provided with a thin lid-shaped groove-shaped recess 76d having a lower opening in the drawing, and the opening of the groove-shaped recess 76d is disposed so as to face the gas discharge port of the battery cell. Is done. The first duct 76A shown in the figure is the inner surface of the groove-shaped recess 76d, and the metal layer 17 is provided on the top surface 76t of the gas discharge path 46. Similarly to the gas ducts 6 and 56 described above, the gas duct 76 also fixes the metal layer 17 made of the metal sheet 17A to the inner surface.
 第2のダクト76Bは、帯状の底面プレート76fの周囲に周壁76gを設けてなる細長い容器状としている。このガスダクト76は、第2のダクト76Bの周壁76gの先端縁を第1のダクト76Aの外周部に連結して、全体の形状を筒状としている。さらに、第2のダクト76Bは、底面プレート76fに、各電池セル1のガス排出口12に連結される複数の連結開口76bを設けている。図15と図16に示す第2のダクト76Bは、底面プレート76fの下面から突出する複数の筒部76hを設けており、これらの筒部76hを貫通する連結開口76bを設けている。筒部76hは、各電池セル1に設けられたガス排出口12に対向して設けられている。 The second duct 76B is in the form of a long and narrow container formed by providing a peripheral wall 76g around the belt-like bottom plate 76f. The gas duct 76 has a cylindrical shape as a whole by connecting the tip edge of the peripheral wall 76g of the second duct 76B to the outer peripheral portion of the first duct 76A. Further, the second duct 76B is provided with a plurality of connection openings 76b connected to the gas discharge ports 12 of the respective battery cells 1 in the bottom plate 76f. The second duct 76B shown in FIGS. 15 and 16 is provided with a plurality of cylindrical portions 76h protruding from the lower surface of the bottom plate 76f, and provided with a connecting opening 76b penetrating these cylindrical portions 76h. The cylinder portion 76h is provided to face the gas discharge port 12 provided in each battery cell 1.
 このガスダクト76は、第2のダクト76Bの下面に配置されて筒部76hの周囲に連結されるパッキン77を介して電池セル1のガス排出口に連結される。パッキン77はゴム状弾性体で、ガスダクト76と電池セルの第1の端面との間に配設されて、電池セルのガス排出口から噴出されるガスを漏らすことなく、ガスダクト76に流入できるようにしている。パッキン77は、図14と図15に示すように、ガスダクト76と同じ方向に伸びる細長い形状であって、ガスダクト76の筒部76hを嵌入する複数の貫通孔77bを所定の間隔で設けている。パッキン77は、位置決ホルダ78を介して、ガスダクト76の定位置に配置されて、電池セルの第1の端面に密着される。この構造は、電池セルのガス排出口から噴き出される排出ガスを漏らすことなく、ガスダクト76のガス排出路46に流入して外部に排気できる。ただし、ガスダクトと電池セルとの間には、必ずしもパッキンを挟着する必要はない。ガスダクトと電池セルとの対向面を互いに密着させることで、連結開口をガス排出口にガス漏れしないように連結することもできるからである。 The gas duct 76 is connected to the gas discharge port of the battery cell 1 through a packing 77 arranged on the lower surface of the second duct 76B and connected to the periphery of the cylindrical portion 76h. The packing 77 is a rubber-like elastic body, and is disposed between the gas duct 76 and the first end face of the battery cell so that the gas ejected from the gas discharge port of the battery cell can flow into the gas duct 76 without leaking. I have to. As shown in FIGS. 14 and 15, the packing 77 has an elongated shape extending in the same direction as the gas duct 76, and is provided with a plurality of through holes 77 b into which the cylindrical portions 76 h of the gas duct 76 are fitted at predetermined intervals. The packing 77 is disposed at a fixed position of the gas duct 76 via the positioning holder 78 and is in close contact with the first end face of the battery cell. This structure can flow into the gas discharge path 46 of the gas duct 76 and exhaust outside without leaking the exhaust gas ejected from the gas discharge port of the battery cell. However, it is not always necessary to sandwich packing between the gas duct and the battery cell. This is because the connection opening can be connected to the gas discharge port so as not to leak gas by bringing the opposing surfaces of the gas duct and the battery cell into close contact with each other.
 以上のガスダクト76は、下面から突出する筒部76hが、位置決ホルダ78に設けられた位置決穴78bに案内されて、位置決ホルダ78の定位置に連結される。さらに、ガスダクト76は、位置決ホルダ78を貫通する筒部76hが、パッキン77の貫通孔77bに挿入されて、パッキン77の定位置に配置される。ガスダクト76は、筒部76hが位置決ホルダ78を貫通する状態で、パッキン77の貫通孔77bに挿入されて、パッキン77を介して電池積層体の定位置に配置される。 The above-described gas duct 76 is connected to a fixed position of the positioning holder 78 by guiding a cylindrical portion 76 h protruding from the lower surface to a positioning hole 78 b provided in the positioning holder 78. Further, the gas duct 76 is arranged at a fixed position of the packing 77 by inserting a cylindrical portion 76 h penetrating the positioning holder 78 into the through hole 77 b of the packing 77. The gas duct 76 is inserted into the through-hole 77 b of the packing 77 with the cylindrical portion 76 h passing through the positioning holder 78, and is disposed at a fixed position of the battery stack through the packing 77.
 パッキン26と位置決ホルダ78は、互いに嵌合構造で連結されて、パッキン26をガスダクト76の定位置に配置している。図の嵌合構造は、第2のダクト76Bに設けた筒部76hを位置決ホルダ78の位置決穴78bとパッキン77の貫通孔77bに挿入する構造としている。この嵌合構造は、パッキン77とガスダクト76とを正確な位置に連結しながら、電池セルから排出されるガスを漏れないようにガスダクト76に流入できる特徴がある。ただ、本発明は、ガスダクトとパッキンの嵌合構造をこの構造には特定しない。ガスダクトとパッキンの嵌合構造は、一方に凸部を設けて、他方にはこの凸部を挿入する凹部を設け、凸部を凹部に挿入して、互いに定位置に連結できる全ての構造とすることができる。 The packing 26 and the positioning holder 78 are connected to each other by a fitting structure, and the packing 26 is disposed at a fixed position of the gas duct 76. The fitting structure shown in the figure is a structure in which the cylindrical portion 76 h provided in the second duct 76 B is inserted into the positioning hole 78 b of the positioning holder 78 and the through hole 77 b of the packing 77. This fitting structure is characterized in that the gas discharged from the battery cell can flow into the gas duct 76 while the packing 77 and the gas duct 76 are connected to each other at an accurate position. However, the present invention does not specify the fitting structure between the gas duct and the packing in this structure. The fitting structure of the gas duct and the packing is provided with a convex portion on one side, a concave portion for inserting the convex portion on the other side, and the convex portion is inserted into the concave portion so as to be connected to each other in a fixed position. be able to.
 以上のガスダクト76は、その両端に、電池積層体2と固定するための連結片75が設けられている。図に示す連結片75は、第2のダクト76Bの両端から突出しており、この連結片75にねじ込まれる止ネジ79を介して電池積層体のエンドプレートに固定する構造としている。図のガスダクト76は、両端の連結片75に挿通される止ネジ79をエンドプレートに連結して、電池積層体の定位置に固定される。以上のガスダクト76が固定されるエンドプレート(図示せず)は、上面に、ガスダクト76を連結するための固定ネジ79を螺合するためのねじ穴を設けている。このガスダクト76は、連結片75に挿通される固定ネジ79がエンドプレートにねじ込まれて、電池積層体の定位置に固定される。
(冷却プレート)
The gas duct 76 described above is provided with connecting pieces 75 for fixing to the battery stack 2 at both ends thereof. The connecting piece 75 shown in the figure protrudes from both ends of the second duct 76B, and is fixed to the end plate of the battery stack through a set screw 79 screwed into the connecting piece 75. The illustrated gas duct 76 is fixed at a fixed position of the battery stack by connecting a set screw 79 inserted into the connecting piece 75 at both ends to the end plate. The end plate (not shown) to which the gas duct 76 is fixed has a screw hole for screwing a fixing screw 79 for connecting the gas duct 76 on the upper surface. The gas duct 76 is fixed at a fixed position of the battery stack by fixing screws 79 inserted into the connecting pieces 75 into the end plate.
(Cooling plate)
 さらに、図1ないし図5に示す電源装置は、複数の電池セル1を積層してなる電池積層体2を冷却プレート30の表面に熱伝導状態で配置している。この電源装置は、冷却プレート30を強制的に冷却して、各々の電池セル1の発熱を放熱する。 Furthermore, in the power supply device shown in FIGS. 1 to 5, a battery stack 2 formed by stacking a plurality of battery cells 1 is arranged on the surface of the cooling plate 30 in a heat conductive state. This power supply device forcibly cools the cooling plate 30 to dissipate heat generated by each battery cell 1.
 冷却プレート30は、図2と図3に示すように、内部に冷媒通路31を設け、この冷媒通路31に液化された冷媒を供給し、冷媒を冷媒通路31で気化させて、冷媒の気化熱で強制的に冷却して、電池セル1を冷却する。冷却プレート30を冷媒の気化熱で強制冷却する冷却機構は、図示しないが、気体の状態にある冷媒を加圧するコンプレッサと、このコンプレッサで加圧された気体を冷却して液化させる凝縮器と、この凝縮器で液化された冷媒を冷却プレート30の冷媒通路31に供給する膨張弁とを備えている。この冷却機構は、膨張弁を介して液化された冷媒を冷却プレート30に供給し、供給された冷媒を冷却プレート30の内部で気化させて気化熱で冷却プレート30を冷媒する。気化された冷媒は、コンプレッサで加圧されて凝縮器に供給され、凝縮器で液化され、膨張弁を介して冷却プレート30の冷媒通路31に循環されて、冷却プレート30を冷却する。冷却プレート30の内部に設けられる冷媒通路31は、外側に突出する連結部32を介して冷却機構に連結される。 As shown in FIGS. 2 and 3, the cooling plate 30 is provided with a refrigerant passage 31 therein, supplies the liquefied refrigerant to the refrigerant passage 31, vaporizes the refrigerant in the refrigerant passage 31, and heats vaporization of the refrigerant. The battery cell 1 is cooled by forcibly cooling. Although not shown, a cooling mechanism that forcibly cools the cooling plate 30 with the heat of vaporization of the refrigerant is not shown, a compressor that pressurizes the refrigerant in a gaseous state, a condenser that cools and liquefies the gas pressurized by the compressor, And an expansion valve that supplies the refrigerant liquefied by the condenser to the refrigerant passage 31 of the cooling plate 30. This cooling mechanism supplies the liquefied refrigerant to the cooling plate 30 via the expansion valve, vaporizes the supplied refrigerant inside the cooling plate 30, and cools the cooling plate 30 with heat of vaporization. The vaporized refrigerant is pressurized by the compressor, supplied to the condenser, liquefied by the condenser, and circulated to the refrigerant passage 31 of the cooling plate 30 via the expansion valve to cool the cooling plate 30. The refrigerant passage 31 provided inside the cooling plate 30 is connected to the cooling mechanism via a connecting portion 32 protruding outward.
 冷却プレートは、必ずしも冷媒の気化熱で冷却する必要はなく、たとえば、冷却された液体を内部に循環して冷却することができる。また、冷却プレートは、内部に冷却気体の通路を設けて、この通路に冷却された気体を強制送風して冷却することもできる。 The cooling plate is not necessarily cooled by the heat of vaporization of the refrigerant, and can be cooled by circulating a cooled liquid inside, for example. Further, the cooling plate can be cooled by providing a cooling gas passage inside and forcibly blowing the gas cooled in this passage.
 なお、上記実施形態では、電池積層体2を12個の電池セル1を積層して形成しているが、積層される電池セルを11個以下とし、あるいは13個以上として、これらの電池セルを直列及び/又は並列に接続することもできる。とくに、積層される電池セルの数が多くなると、ガスダクトとガス排出口の気密性を維持することが困難になるが、本発明の構成によると、サブ連結固定具によって、ガスダクトが電池積層体に向かって押圧される構成となっているため、電池セルの数が多い場合にも、ガスダクトとガス排出口の気密性を維持することができる。 In the above embodiment, the battery stack 2 is formed by stacking 12 battery cells 1. However, the battery cells to be stacked are 11 or less, or 13 or more. It can also be connected in series and / or in parallel. In particular, as the number of battery cells to be stacked increases, it becomes difficult to maintain the gastightness of the gas duct and the gas discharge port. However, according to the configuration of the present invention, the gas duct is formed into the battery stack by the sub-connecting fixture. Since it is configured to be pressed toward the outside, the gas duct and the gas outlet can be kept airtight even when the number of battery cells is large.
 また、上記実施形態では、電極端子は電池積層体の上面側、冷却プレートは電池積層体の下面側に配置されているが、電極端子や冷却プレートは、電源装置の構成によっては、電池積層体の側面側に設けられることもある。このような場合、連結固定具を固定するための止ネジをエンドプレートの側面側に固定してもよい。この構成によると、止ネジの位置を、電極端子や冷却プレートの位置と対応させることができ、電源装置の大型化を抑制することができる。 Moreover, in the said embodiment, although an electrode terminal is arrange | positioned at the upper surface side of a battery laminated body, and a cooling plate is arrange | positioned at the lower surface side of a battery laminated body, an electrode terminal and a cooling plate are battery laminated bodies depending on the structure of a power supply device. It may be provided on the side surface side. In such a case, a set screw for fixing the connection fixture may be fixed to the side surface of the end plate. According to this configuration, the position of the set screw can be made to correspond to the position of the electrode terminal or the cooling plate, and an increase in size of the power supply device can be suppressed.
 さらに、上記実施形態では、電池積層体を締結するための連結固定具に加え、ガスダクトを保持すると共に、電池積層体を締結するサブ連結固定具を備える構成となっているため、電池積層体の締結に起因する負荷を連結固定具とサブ連結固定具に分散させることができる。このため、連結固定具のみで電池積層体を締結する構成と比較して、連結固定具の強度を下げることができる。そのため、例えば、連結固定具の厚さを薄くすることができるので、電源装置の寸法を小さくすることができる。 Furthermore, in the above embodiment, in addition to the connection fixture for fastening the battery stack, the gas stack is held and the sub connection fixture for fastening the battery stack is provided. The load resulting from the fastening can be distributed to the connection fixture and the sub connection fixture. For this reason, compared with the structure which fastens a battery laminated body only with a connection fixture, the intensity | strength of a connection fixture can be lowered | hung. Therefore, for example, since the thickness of the connecting fixture can be reduced, the size of the power supply device can be reduced.
 以上の電源装置は、車載用の電源として利用できる。電源装置を搭載する車両としては、エンジンとモータの両方で走行するハイブリッド自動車やプラグインハイブリッド自動車、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの車両の電源として使用される。 The above power supply devices can be used as in-vehicle power supplies. As a vehicle equipped with a power supply device, an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and it is used as a power source for these vehicles. .
(ハイブリッド車用電源装置)
 図17に、エンジンとモータの両方で走行するハイブリッド自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給する電源装置100と、電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置100の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置100の電池を充電する。
(Power supply for hybrid vehicles)
FIG. 17 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor. A vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 100 that supplies power to the motor 93, and a generator that charges a battery of the power supply device 100. 94. The power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply device 100. The motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving. The motor 93 is driven by power supplied from the power supply device 100. The generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100.
(電気自動車用電源装置)
 また、図18に、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給する電源装置100と、この電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置100の電池を充電する。
(Power supply for electric vehicles)
FIG. 18 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor. A vehicle EV equipped with the power supply device shown in this figure includes a traveling motor 93 for traveling the vehicle EV, a power supply device 100 that supplies power to the motor 93, and a generator 94 that charges a battery of the power supply device 100. And. The power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The motor 93 is driven by power supplied from the power supply device 100. The generator 94 is driven by energy when regeneratively braking the vehicle EV and charges the battery of the power supply device 100.
(蓄電用電源装置)
 さらに、この電源装置は、移動体用の動力源としてのみならず、定置型の蓄電用設備としても利用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図19に示す。この図に示す電源装置100は、複数の電池パック81をユニット状に接続して電池ユニット82を構成している。各電池パック81は、複数の電池セルが直列及び/又は並列に接続されている。各電池パック81は、電源コントローラ84により制御される。この電源装置100は、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このため電源装置100は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介して電源装置100と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、電源装置100の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPから電源装置100への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、電源装置100から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、電源装置100への充電を同時に行うこともできる。
(Power storage device for power storage)
Furthermore, this power supply apparatus can be used not only as a power source for a moving body but also as a stationary power storage facility. For example, as a power source for home and factory use, a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals. Such an example is shown in FIG. The power supply apparatus 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape. Each battery pack 81 has a plurality of battery cells connected in series and / or in parallel. Each battery pack 81 is controlled by a power controller 84. The power supply apparatus 100 drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply apparatus 100 includes a charging mode and a discharging mode. The load LD and the charging power source CP are connected to the power supply device 100 via the discharging switch DS and the charging switch CS, respectively. ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 100. In the charging mode, the power supply controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply apparatus 100. Further, when the charging is completed and the battery is fully charged, or in response to a request from the load LD in a state where a capacity of a predetermined value or more is charged, the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge. The mode is switched to permit discharge from the power supply apparatus 100 to the load LD. Further, if necessary, the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply device 100 at the same time.
 電源装置100で駆動される負荷LDは、放電スイッチDSを介して電源装置100と接続されている。電源装置100の放電モードにおいては、電源コントローラ84が放電スイッチDSをONに切り替えて、負荷LDに接続し、電源装置100からの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子が利用できる。放電スイッチDSのON/OFFは、電源装置100の電源コントローラ84によって制御される。また電源コントローラ84は、外部機器と通信するための通信インターフェースを備えている。図19の例では、UARTやRS-232C等の既存の通信プロトコルに従い、ホスト機器HTと接続されている。また必要に応じて、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。 The load LD driven by the power supply device 100 is connected to the power supply device 100 via the discharge switch DS. In the discharge mode of the power supply apparatus 100, the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply apparatus 100. As the discharge switch DS, a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100. The power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 19, the host device HT is connected in accordance with an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
 各電池パック81は、信号端子と電源端子を備える。信号端子は、パック入出力端子DIと、パック異常出力端子DAと、パック接続端子DOとを含む。パック入出力端子DIは、他のパック電池や電源コントローラ84からの信号を入出力するための端子であり、パック接続端子DOは子パックである他のパック電池に対して信号を入出力するための端子である。またパック異常出力端子DAは、パック電池の異常を外部に出力するための端子である。さらに電源端子は、電池パック81同士を直列、並列に接続するための端子である。 Each battery pack 81 includes a signal terminal and a power supply terminal. The signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO. The pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84, and the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs. Terminal. The pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside. Furthermore, the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel.
 本発明に係る電源装置は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置として好適に利用できる。また、コンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等の太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。 The power supply device according to the present invention can be suitably used as a power supply device for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle or the like that can switch between the EV traveling mode and the HEV traveling mode. In addition, a backup power supply that can be mounted on a rack of a computer server, a backup power supply for a wireless base station such as a mobile phone, a power supply for home use, a power supply for a factory, a power supply for a street light, etc. It can also be used as appropriate for applications such as backup power supplies for devices and traffic lights.
100…電源装置
1…電池セル
2…電池積層体;2A…第1の表面;2B…側面
3…エンドプレート;3A…嵌着凹部;3B…嵌着凹部
3a…雌ネジ孔;3b…雌ネジ孔
4…連結固定具;4A…バインド部;4B…連結部
5…サブ連結固定具;5A…バインド部;5B…連結部
6…ガスダクト;6A…第1のダクト;6B…第2のダクト
6a…鍔部;6b…連結開口;6c…段差凹部;6d…溝形凹部
6e…リブ;6f…側壁;6t…天面;6x…排出部
7…パッキン;7b…貫通孔
8…表面プレート
9…回路基板
10…第1の端面
11…ガス排出弁
12…ガス排出口
13…電極端子
14…バスバー
15…セパレータ
16…出力用端子板
17…金属層;17A…金属シート;17B…金属板
18…止ネジ
19…止ネジ
20…トップカバー
21…収納凹部
22…切欠部
23…端子窓
24…開口窓
25…ナット
26…止ネジ
27…止ネジ
28…連結ボス
29…貫通孔
30…冷却プレート
31…冷媒通路
32…連結部
36…外部ダクト
46…ガス排出路
51…電池セル
56…ガスダクト;56A…第1のダクト;56B…第2のダクト
56a…鍔部;56b…連結開口;56d…溝形凹部;56t…天面
57…支持部
58…表面プレート;58A…貫通穴
60…第1の端面
63…電極端子
67…ナット
68…表面プレート;68a…区画壁
75…連結片
76…ガスダクト;76A…第1のダクト;76B…第2のダクト
76b…連結開口;76d…溝形凹部
76f…底面プレート;76g…周壁;76h…筒部
76t…天面
77…パッキン;77b…貫通孔
78…位置決ホルダ;78b…位置決穴
79…固定ネジ
81…電池パック
82…電池ユニット
84…電源コントローラ
85…並列接続スイッチ
93…モータ
94…発電機
95…DC/ACインバータ
96…エンジン
EV、HV…車両
LD…負荷
CP…充電用電源
DS…放電スイッチ
CS…充電スイッチ
OL…出力ライン
HT…ホスト機器
DI…パック入出力端子
DA…パック異常出力端子
DO…パック接続端子
DESCRIPTION OF SYMBOLS 100 ... Power supply device 1 ... Battery cell 2 ... Battery laminated body; 2A ... 1st surface; 2B ... Side surface 3 ... End plate; 3A ... Insertion recessed part; 3B ... Insertion recessed part 3a ... Female screw hole; 4A ... Binding portion; 4B ... Connection portion 5 ... Sub-connection fixing device; 5A ... Binding portion; 5B ... Connection portion 6 ... Gas duct; 6A ... First duct; 6B ... Second duct 6a ... 6b ... Stepped recess; 6d ... Groove-shaped recess 6e ... Rib; 6f ... Side wall; 6t ... Top surface; 6x ... Discharge part 7 ... Packing; 7b ... Through hole 8 ... Surface plate 9 ... Circuit board 10 ... first end face 11 ... gas exhaust valve 12 ... gas exhaust port 13 ... electrode terminal 14 ... bus bar 15 ... separator 16 ... output terminal plate 17 ... metal layer; 17A ... metal sheet; 17B ... metal plate 18 ... Set screw 19 ... Set screw 20 ... Top cover 21 Storage recess 22 ... cutout 23 ... terminal window 24 ... opening window 25 ... nut 26 ... set screw 27 ... set screw 28 ... connection boss 29 ... through hole 30 ... cooling plate 31 ... refrigerant passage 32 ... connection part 36 ... external duct 46 ... gas discharge path 51 ... battery cell 56 ... gas duct; 56A ... first duct; 56B ... second duct 56a ... collar part; 56b ... connection opening; 56d ... groove-shaped recess; 56t ... top surface 57 ... support part 58 ... surface plate; 58A ... through hole 60 ... first end face 63 ... electrode terminal 67 ... nut 68 ... surface plate; 68a ... partition wall 75 ... connecting piece 76 ... gas duct; 76A ... first duct; 76B ... second Duct 76b ... Connection opening; 76d ... Groove-shaped recess 76f ... Bottom plate; 76g ... Peripheral wall; 76h ... Cylindrical part 76t ... Top surface 77 ... Packing; 77b ... Through hole 78 ... Positioning holder; Placement hole 79 ... Fixing screw 81 ... Battery pack 82 ... Battery unit 84 ... Power supply controller 85 ... Parallel connection switch 93 ... Motor 94 ... Generator 95 ... DC / AC inverter 96 ... Engine EV, HV ... Vehicle LD ... Load CP ... Charging power supply DS ... Discharge switch CS ... Charge switch OL ... Output line HT ... Host device DI ... Pack input / output terminal DA ... Pack abnormal output terminal DO ... Pack connection terminal

Claims (8)

  1.  ガス排出弁を有するガス排出口を第1の端面に設けた複数の電池セルと、
     前記複数の電池セルを積層してなる電池積層体と、
     前記電池積層体の一面に、各電池セルの前記ガス排出口と連結するように固定されたガスダクトと、
    を備える電源源装置であって、
     前記ガスダクトの内面であって、前記ガス排出口との対向面に、金属層を設けてなることを特徴とする電源装置。
    A plurality of battery cells each having a gas discharge port having a gas discharge valve provided on the first end surface;
    A battery laminate formed by laminating the plurality of battery cells;
    A gas duct fixed to one surface of the battery stack to be connected to the gas outlet of each battery cell;
    A power source device comprising:
    A power supply apparatus comprising a metal layer on an inner surface of the gas duct and facing the gas discharge port.
  2.  請求項1に記載の電源装置であって、
     前記ガスダクトが、前記ガス排出口と対向する位置に、前記ガス排出口に連結される連結開口を設けており、
     前記ガスダクトの内面であって、前記連結開口を設けた面と対向する面に、前記金属層を設けてなることを特徴とする電源装置。
    The power supply device according to claim 1,
    The gas duct is provided with a connection opening connected to the gas discharge port at a position facing the gas discharge port,
    The power supply apparatus according to claim 1, wherein the metal layer is provided on an inner surface of the gas duct, the surface facing the surface provided with the connection opening.
  3.  請求項2に記載の電源装置であって、
     前記ガスダクトが、前記電池セルの第1の端面に垂直な方向に分割される第1のダクトと第2のダクトを備え、該第1のダクトと該第2のダクトを連結して内部に柱状のガス排出路を形成しており、
     前記第1のダクトは、内側に溝形凹部を有して、該溝形凹部の底面に前記金属層を設けており、
     前記第2のダクトは、各電池セルの前記ガス排出口に連結される前記連結開口を備えることを特徴とする電源装置。
    The power supply device according to claim 2,
    The gas duct includes a first duct and a second duct that are divided in a direction perpendicular to the first end face of the battery cell, and the first duct and the second duct are connected to form a columnar shape inside. A gas exhaust passage of
    The first duct has a groove-shaped recess inside, and the metal layer is provided on a bottom surface of the groove-shaped recess,
    The power supply apparatus, wherein the second duct includes the connection opening connected to the gas discharge port of each battery cell.
  4.  請求項1から3のいずれか一に記載の電源装置であって、
     前記ガスダクトが、内部に角柱状のガス排出路を有すると共に、前記ガスダクトの内面であって、前記連結開口を設けた面と対向する面にのみ前記金属層を設けて、他の内面は露出させてなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 3,
    The gas duct has a prismatic gas discharge passage inside, and the metal layer is provided only on the inner surface of the gas duct opposite to the surface provided with the connection opening, and the other inner surface is exposed. A power supply device characterized by comprising:
  5.  請求項1から4のいずれか一に記載の電源装置であって、
     前記金属層が、アルミニウム製のシート状であって、前記ガスダクトの内面に貼付してなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 4,
    The power supply device, wherein the metal layer is in the form of an aluminum sheet and is attached to the inner surface of the gas duct.
  6.  請求項3に記載の電源装置であって、
     前記第1のダクトの内面に、アルミニウム製のシートを貼付して前記金属層を設けており、
     前記第2のダクトが、前記第1のダクトに貼付した前記金属層に向かって突出する支持部を備えることを特徴とする電源装置。
    The power supply device according to claim 3,
    The metal layer is provided by sticking an aluminum sheet on the inner surface of the first duct,
    The power supply apparatus, wherein the second duct includes a support portion that protrudes toward the metal layer attached to the first duct.
  7.  請求項1から6のいずれか一に記載される電源装置を備える車両。 A vehicle comprising the power supply device according to any one of claims 1 to 6.
  8.  請求項1から6のいずれか一に記載される電源装置を備える蓄電装置。 A power storage device comprising the power supply device according to any one of claims 1 to 6.
PCT/JP2013/061457 2012-04-27 2013-04-18 Power-supply device, vehicle provided therewith, and electricity-storage device WO2013161655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-103935 2012-04-27
JP2012103935A JP2015133169A (en) 2012-04-27 2012-04-27 Power supply device, and vehicle and power storage device provided with the same

Publications (1)

Publication Number Publication Date
WO2013161655A1 true WO2013161655A1 (en) 2013-10-31

Family

ID=49482977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061457 WO2013161655A1 (en) 2012-04-27 2013-04-18 Power-supply device, vehicle provided therewith, and electricity-storage device

Country Status (2)

Country Link
JP (1) JP2015133169A (en)
WO (1) WO2013161655A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018163883A (en) * 2018-05-25 2018-10-18 株式会社Gsユアサ Power storage device
US10290845B2 (en) 2014-03-31 2019-05-14 Gs Yuasa International Ltd. Energy storage apparatus
WO2020110448A1 (en) 2018-11-28 2020-06-04 三洋電機株式会社 Battery module
JPWO2020188948A1 (en) * 2019-03-19 2020-09-24
WO2020194965A1 (en) * 2019-03-22 2020-10-01 三洋電機株式会社 Battery module
JPWO2020194966A1 (en) * 2019-03-22 2020-10-01
WO2022185590A1 (en) * 2021-03-01 2022-09-09 ビークルエナジージャパン株式会社 Battery pack
EP4167355A1 (en) * 2021-10-15 2023-04-19 Volvo Car Corporation Battery cell pack for electric vehicle
WO2023133728A1 (en) * 2022-01-12 2023-07-20 宁德时代新能源科技股份有限公司 Battery, power consuming device and method for manufacturing battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101690234B1 (en) * 2015-11-04 2016-12-27 (주)캠시스 Temperature controlling system of battery pack
JP6493194B2 (en) * 2015-12-16 2019-04-03 トヨタ自動車株式会社 Battery module
KR102502722B1 (en) * 2018-03-26 2023-02-22 에이치그린파워 주식회사 reinforcement structure for insulation level of Battery pack
JPWO2021020328A1 (en) * 2019-08-01 2021-02-04
JP7275168B2 (en) * 2019-08-09 2023-05-17 欣旺達電動汽車電池有限公司 battery module
WO2021161587A1 (en) 2020-02-14 2021-08-19 三洋電機株式会社 Battery module
WO2021199595A1 (en) * 2020-03-31 2021-10-07 三洋電機株式会社 Power supply device, and vehicle and electrical storage device each equipped with same
WO2023004774A1 (en) 2021-07-30 2023-02-02 宁德时代新能源科技股份有限公司 Battery group, battery pack and electric apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080532A (en) * 2008-09-24 2010-04-08 Fuji Xerox Co Ltd Light emitting element, light emitting element head, and image forming apparatus
JP2010108788A (en) * 2008-10-30 2010-05-13 Sanyo Electric Co Ltd Battery system
JP2011129372A (en) * 2009-12-17 2011-06-30 Toshiba Corp Secondary battery device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080532A (en) * 2008-09-24 2010-04-08 Fuji Xerox Co Ltd Light emitting element, light emitting element head, and image forming apparatus
JP2010108788A (en) * 2008-10-30 2010-05-13 Sanyo Electric Co Ltd Battery system
JP2011129372A (en) * 2009-12-17 2011-06-30 Toshiba Corp Secondary battery device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10290845B2 (en) 2014-03-31 2019-05-14 Gs Yuasa International Ltd. Energy storage apparatus
US11362394B2 (en) 2014-03-31 2022-06-14 Gs Yuasa International Ltd. Energy storage apparatus
JP2018163883A (en) * 2018-05-25 2018-10-18 株式会社Gsユアサ Power storage device
WO2020110448A1 (en) 2018-11-28 2020-06-04 三洋電機株式会社 Battery module
JPWO2020188948A1 (en) * 2019-03-19 2020-09-24
JP7418405B2 (en) 2019-03-19 2024-01-19 三洋電機株式会社 battery module
CN113574725A (en) * 2019-03-22 2021-10-29 三洋电机株式会社 Battery module
WO2020194966A1 (en) * 2019-03-22 2020-10-01 三洋電機株式会社 Battery module
JPWO2020194965A1 (en) * 2019-03-22 2020-10-01
CN113632297A (en) * 2019-03-22 2021-11-09 三洋电机株式会社 Battery module
JPWO2020194966A1 (en) * 2019-03-22 2020-10-01
CN113632297B (en) * 2019-03-22 2023-05-26 三洋电机株式会社 Battery module
JP7418409B2 (en) 2019-03-22 2024-01-19 三洋電機株式会社 battery module
WO2020194965A1 (en) * 2019-03-22 2020-10-01 三洋電機株式会社 Battery module
JP7418410B2 (en) 2019-03-22 2024-01-19 三洋電機株式会社 battery module
WO2022185590A1 (en) * 2021-03-01 2022-09-09 ビークルエナジージャパン株式会社 Battery pack
EP4167355A1 (en) * 2021-10-15 2023-04-19 Volvo Car Corporation Battery cell pack for electric vehicle
WO2023062138A1 (en) * 2021-10-15 2023-04-20 Volvo Car Corporation Battery cell pack for electric vehicle
WO2023133728A1 (en) * 2022-01-12 2023-07-20 宁德时代新能源科技股份有限公司 Battery, power consuming device and method for manufacturing battery

Also Published As

Publication number Publication date
JP2015133169A (en) 2015-07-23

Similar Documents

Publication Publication Date Title
WO2013161655A1 (en) Power-supply device, vehicle provided therewith, and electricity-storage device
JP6151254B2 (en) Power supply device, electric vehicle including the same, and power storage device
JP2013171746A (en) Power supply device, and vehicle and power storage device having the same
JP6189301B2 (en) Power supply device, electric vehicle including the same, and power storage device
JP6017539B2 (en) Power supply device, vehicle including the same, and power storage device
WO2012133710A1 (en) Power supply and vehicle comprising same
JP6223978B2 (en) Power supply device, electric vehicle including the same, and power storage device
JP6138688B2 (en) Power supply device, vehicle including the same, and power storage device
JP5431036B2 (en) Assembled battery for vehicle, vehicle equipped with the same, and separator for assembled battery
WO2014024450A1 (en) Power source device, electric vehicle provided with same, and electricity storage device
JP5868676B2 (en) Power supply device, vehicle including the same, and power storage device
WO2012165493A1 (en) Power source device for supplying power and vehicle provided with power source device
WO2013161654A1 (en) Power-supply device, vehicle provided with power-supply device, and electricity-storage device
WO2013146561A1 (en) Power supply device, and vehicle and power storage device equipped with same
JP6328842B2 (en) Power supply device and vehicle equipped with the same
KR20130004141A (en) Power supply apparatus and vehicle with the same
WO2014024451A1 (en) Power source device, electric vehicle provided with same, and electricity storage device
WO2013084756A1 (en) Power source device, vehicle equipped with same and electricity storage device
JP2012033419A (en) Power supply device, vehicle using the same, battery cell, and method of manufacturing the battery cell
JP2012138307A (en) Power supply device, vehicle equipped with power supply device, and dust-proof case
WO2012057169A1 (en) Power-supply device, vehicle using same, battery cell, and battery-cell manufacturing method
WO2014024449A1 (en) Method for producing power source device, power source device, electric vehicle provided with same, and electricity storage device
WO2012147801A1 (en) Power supply device and vehicle equipped with power supply device
WO2012173069A1 (en) Power unit for electric power and vehicle equipped with power unit
JP6164279B2 (en) Power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP