WO2013161462A1 - Solid-state lighting device - Google Patents

Solid-state lighting device Download PDF

Info

Publication number
WO2013161462A1
WO2013161462A1 PCT/JP2013/058174 JP2013058174W WO2013161462A1 WO 2013161462 A1 WO2013161462 A1 WO 2013161462A1 JP 2013058174 W JP2013058174 W JP 2013058174W WO 2013161462 A1 WO2013161462 A1 WO 2013161462A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
laser beams
lighting device
state lighting
Prior art date
Application number
PCT/JP2013/058174
Other languages
French (fr)
Japanese (ja)
Inventor
善久 池田
順一 木下
Original Assignee
東芝ライテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝ライテック株式会社 filed Critical 東芝ライテック株式会社
Publication of WO2013161462A1 publication Critical patent/WO2013161462A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted along at least a portion of the lateral surface of the fibre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0003Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being doped with fluorescent agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0006Coupling light into the fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms

Definitions

  • Embodiments of the present invention relate to a solid state lighting device.
  • White solid-state lighting (SSL: Solid-State Lighting) devices using solid-state light-emitting elements are mainly LEDs (Light Emitting Diodes).
  • the white light emitting part having a phosphor and the LED chip are often provided close to each other. For this reason, a substrate for heat dissipation and power supply of the LED chip is required.
  • the high-luminance LED has a chip size of 0.5 mm ⁇ 0.5 mm or more, a Lambert distribution, and a wide emission angle. For this reason, light tends to diverge and it is difficult to efficiently irradiate the phosphor layer.
  • High-brightness and high-intensity light sources are necessary for lighting devices such as liquid crystal projectors, searchlights, headlights, stage lighting, and street lamps.
  • lighting devices such as liquid crystal projectors, searchlights, headlights, stage lighting, and street lamps.
  • it is difficult to configure a light emitting unit that is small, light, and has a low calorific value with LEDs.
  • ⁇ ⁇ Provide a solid-state lighting device that emits incoherent light and has improved safety.
  • the solid-state lighting device includes a light source unit, a waveguide, a light guide, a wavelength conversion layer, and an outer tube unit.
  • the light source unit includes a semiconductor laser and a drive circuit that controls the semiconductor laser, and emits a plurality of laser beams in a blue-violet to blue wavelength range.
  • the waveguide guides the plurality of laser beams.
  • the light guide has a first surface and a second surface and a side surface opposite to the first surface, and introduces the plurality of laser beams from the first surface. The light is scattered while being guided toward the surface, and emitted from the side surface.
  • the wavelength conversion layer has an inner edge surrounding the side surface of the light guide and an outer edge opposite to the inner edge, and the phosphor particles are arranged in a dispersed manner.
  • the wavelength conversion layer includes wavelength-converted light emitted from the phosphor particles that have absorbed light emitted from the side surface, and residual light that is not absorbed by the phosphor particles among the light emitted from the side surface. Scattered light generated by multiple scattering is emitted from the outer edge.
  • the outer tube portion is provided so as to surround the outer edge of the wavelength conversion layer, has an outer surface provided with a rough surface, and scatters the scattered light and the wavelength converted light by the rough surface. The mixed light is emitted from the outer surface.
  • a solid state lighting device with improved safety by emitting incoherent light is provided.
  • FIG. 2A is a schematic cross-sectional view along the central axis of the multiple scattering converter
  • FIG. 2B is a schematic cross-sectional view along the line AA
  • FIG. 2C is a partially enlarged wavelength conversion layer.
  • 3A is a schematic diagram for explaining a speckle contrast measurement system
  • FIG. 3B is an emission spectrum diagram of mixed light.
  • FIG. 4A is a photograph of speckle noise generated on the observation surface by coherent light
  • FIG. 4B is a photograph of the observation surface by incoherent light.
  • 5A is a speckle contrast observation surface of a blue LED
  • FIG. 5B is a speckle contrast observation surface of a blue semiconductor laser
  • FIG. 5C is a speckle contrast observation of an illumination device including four semiconductor lasers
  • FIG. 5D is a graph showing a speckle contrast observation surface of an illumination device including 20 semiconductor lasers. It is a graph of the dependence of speckle contrast on operating current.
  • FIG. 7A is a graph of the optical output with respect to the operating current of the blue semiconductor laser
  • FIG. 7B is a graph of the emission spectrum in the low current region
  • FIG. 7C is the emission spectrum in the high current region.
  • FIG. It is a schematic cross section of the solid-state lighting device concerning 2nd Embodiment.
  • FIG. 1 is a schematic perspective view illustrating the configuration of the solid-state lighting device according to the first embodiment.
  • the solid state lighting device includes a light source unit 10, a waveguide 20, a light guide 39, a wavelength conversion layer 32, and an outer tube unit 34.
  • the light source unit 10 is made of a nitride-based semiconductor material, and a plurality of semiconductor lasers 11 that can emit laser light in a blue-violet to blue wavelength range (405 to 490 nm), and a drive that can drive each of the plurality of semiconductor lasers 11.
  • a semiconductor laser (LD: Laser Diode) 11 can be optically coupled to the light guide 20 efficiently.
  • the light emitting point of the end face of the chip of the semiconductor laser 11 has a size of 10 ⁇ m or less, and its radiation angle (beam divergence) is as narrow as about 25 ° ⁇ 40 °.
  • the drive circuit 12 controls the operation mode by changing the voltage or current of the semiconductor laser 11. It can also be controlled to achieve a predetermined light output.
  • the waveguide 20 guides each of the plurality of laser beams G1 toward the light guide 39.
  • the waveguide 20 can be, for example, an optical fiber 24.
  • the optical fiber 24 may be provided for each laser beam or may be common.
  • the light guide 39, the wavelength conversion layer 32, and the outer tube portion 34 constitute a multiple scattering conversion unit 30.
  • the multiple scattering conversion unit 30 scatters the plurality of semiconductor laser beams G1 to generate scattered light, and generates wavelength converted light by the wavelength conversion layer 32 that has absorbed the plurality of semiconductor laser beams G1, and illuminates incoherent light. It can be emitted as light.
  • the multiple scattering conversion unit 30 has a central axis 39d.
  • FIG. 2A is a schematic cross-sectional view along the central axis of the multiple scattering converter
  • FIG. 2B is a schematic cross-sectional view along the line AA
  • FIG. 2C is a partially enlarged wavelength conversion layer. It is a schematic cross section.
  • the light guide 39 has a first surface 39a, a second surface 39b opposite to the first surface 39a, and a side surface 39c.
  • the four laser beams g1 to g4 are incident from the first surface 30a, guided to the second surface 39b, and emitted outward from the side surface 39c.
  • the number of semiconductor lasers 11 is four, but the number of semiconductor lasers 11 is not limited to this. The number of semiconductor lasers 11 will be described in detail later.
  • the wavelength conversion layer 32 has an inner edge 32a surrounding the side surface 39c of the light guide 39, and an outer edge 32b on the side opposite to the inner edge 32a.
  • phosphor particles 32c made of YAG (Yttrium Aluminum Garnet) phosphor or the like are dispersed and arranged.
  • the light emitted from the side surface 39 c of the light guide 39 irradiates the wavelength conversion layer 32.
  • the phosphor particles 32c that have absorbed the irradiation light emit wavelength-converted light gc.
  • the remaining light that is not absorbed by the phosphor particles 32c becomes scattered light gs with reduced coherence by being multiple-reflected or diffused by the phosphor particles 32c in the wavelength conversion layer 32.
  • the light diffusion particles 32d containing a material having a high diffusion transmittance are dispersed and arranged in the wavelength conversion layer 32, the scattering increases and the coherence can be further reduced.
  • the light scattering particles 32d can contain polymethyl methacrylate, calcium carbonate, or the like.
  • the particle diameters of the phosphor particles 32c and the light diffusion particles 32d are equal to or greater than the wavelength, Mie scattering is mainly generated. Further, when the particle diameter is smaller than the wavelength, Rayleigh scattering is mainly generated.
  • incident light is scattered mainly by particles to reduce coherence.
  • the outer tube portion 34 is provided so as to surround the outer edge 32 b of the wavelength conversion layer 32.
  • a rough surface is provided on the outer surface 34 b of the outer pipe portion 34.
  • the wavelength conversion light gc and the scattered light gs are emitted from the outer edge 32 b of the wavelength conversion layer 32 and enter the outer tube portion 34.
  • the scattered light gs and the wavelength converted light gc are scattered by the rough surface and emitted from the outer surface 34b as the mixed light GT.
  • the wavelength conversion layer 32 may be provided on the inner edge 34a of the outer tube portion 34 by coating or the like.
  • the light guide 39 and the outer tube 34 may include glass (including quartz), ceramics, and the like.
  • the surface can be roughened by, for example, frost treatment.
  • the outer tube portion 34 is made of YAG ceramics, it can be made transparent in the ultraviolet to infrared region. Further, the hardness can be increased and the mechanical strength of the lighting device can be increased.
  • ceramics and including Al 2 O 3 or the like of the hexagonal system having the optical anisotropy to an internal or external surface 34b it is possible to further improve the scattering.
  • the solid-state lighting device of the first embodiment can emit a light beam exceeding 1100 lumens with a diameter of several millimeters or less, and can realize a high-intensity, high-intensity white light source.
  • the heat generation region in the multiple scattering conversion layer 30 is only the wavelength conversion layer 32, it can be made small and lightweight.
  • the illumination device using the semiconductor laser 11 is easy to be small, light, and have a low calorific value.
  • safety management in accordance with the provisions of the International Electrotechnical Commission (IEC) is required for devices using laser light.
  • IEC International Electrotechnical Commission
  • FIG. 3A is a schematic diagram for explaining a speckle contrast measurement system
  • FIG. 3B is an emission spectrum diagram of mixed light.
  • the mixed light GT emitted from the outer surface 34 b of the outer tube portion 34 enters the filter 54 that transmits blue-violet to blue light through the slit 52.
  • the light transmitted through the filter 54 is collected by the lens 56 and projected onto the screen 58.
  • the projection on the screen 58 forms an image on a 1/2 inch CCD (Charge Coupled Device) via a pin hole with a diameter of 0.8 mm that allows light with a solid angle of 2 m radians to pass through and a condenser lens 62.
  • speckle refers to a random interference phenomenon that occurs when a scattered light is randomly scattered by a rough object and scattered light from each point overlaps at each point on the observation surface (CCD light receiving surface) ([Non-patent Reference 1]).
  • the emission spectrum of the mixed light GT includes a wavelength in the vicinity of 450 nm and wavelength-converted light having a broad spectrum with a center wavelength of 560 nm.
  • FIG. 4A is a photograph of speckle noise generated on the observation surface by coherent light
  • FIG. 4B is a photograph of the observation surface by incoherent light.
  • Speckle contrast Cs using average intensity E (I) and the standard deviation sigma I, it shall be expressed by Equation (1).
  • the speckle contrast Cs is calculated from equation (1). This makes it possible to evaluate whether the illumination light is closer to the class to which the laser light that is coherent light belongs or the class to which the LED light that is incoherent light belongs.
  • FIG. 5A is a speckle contrast observation surface of a blue LED
  • FIG. 5B is a speckle contrast observation surface of a blue semiconductor laser
  • FIG. 5C is a speckle contrast observation of an illumination device including four semiconductor lasers.
  • FIG. 5D is a graph showing a speckle contrast observation surface of an illumination device including 20 semiconductor lasers.
  • the vertical axis of the three-dimensional display is the relative intensity of speckle contrast Cs. In the two-dimensional display, the relative intensity is planarly displayed.
  • the speckle contrast Cs of the blue LED having a wavelength of 445 nm was 1.8% when the operating current was 0.16A and 1.8% when the operating current was 1A. That is, the speckle contrast Cs is low and the change with respect to the operating current is small.
  • the speckle contrast Cs of the blue semiconductor laser having a wavelength of 455 nm is 83.3% when the operating current is 0.16 A, and the operating current is 1 A (light output is approximately 1.3 W). 27%. That is, it was higher by one digit or more than the speckle contrast Cs of the blue LED. In addition, when the operating current was increased, the speckle contrast could be reduced.
  • the transmission wavelength of the filter 54 is changed within the visible light wavelength range, the speckle contrast Cs can be measured for each visible light component of the mixed light.
  • the speckle contrast Cs is 15.8% when the operating current is 0.16A and 3.4% when the operating current is 1A. there were.
  • the luminous flux was 1100 lumens and the color temperature was 4000K.
  • the speckle contrast Cs is 2.4% when the operating current is 0.16 A and 1.7 when the operating current is 1 A. %Met. That is, when the operating current is 1 A, when the number of semiconductor lasers 11 is increased from 4 to 20, the speckle contrast Cs can be halved.
  • the speckle contrast Cs of the illumination device is substantially the same as that of the LED, and can be said to be incoherent light.
  • the luminous flux was 5000 lumens, and the color temperature was 5000K.
  • the wavelengths of the plurality of laser beams may be substantially the same.
  • the difference between the maximum value and the minimum value of the oscillation longitudinal mode wavelength Can be approximately 15 nm or less.
  • the drive circuit 12 can be easily designed and the price can be reduced.
  • the oscillation longitudinal mode wavelength is represented by a wavelength at which the emission spectrum intensity peaks in a broad emission spectrum.
  • the oscillation longitudinal mode wavelengths of the plurality of semiconductor lasers 11 may be widely distributed in the range of 405 to 490 nm.
  • the difference between the maximum value and the minimum value of the oscillation longitudinal mode wavelength is 50 nm or more, it is easier to reduce the coherence.
  • FIG. 6 is a graph showing the dependence of speckle contrast on the operating current.
  • the vertical axis represents speckle contrast Cs (%), and the horizontal axis represents operating current (A).
  • the speckle contrast Cs of the solid state lighting device (solid line) with 20 semiconductor lasers 11 is substantially equal to the speckle contrast Cs of the LED (dashed line) in the operating current range of 1.2 A or less. Further, the speckle contrast Cs of the solid state lighting device (dot line) having four semiconductor lasers 11 increases and approaches the blue semiconductor laser (chain line).
  • the speckle contrast Cs (chain line) of the semiconductor laser 11 increases at an operating current lower than 0.3A. From FIG. 6, if the maximum value of the speckle contrast Cs is 10% or less, low coherence can be achieved, and safety for human eyes can be ensured.
  • FIG. 7A is a graph of the optical output with respect to the operating current of the blue semiconductor laser
  • FIG. 7B is a graph of the emission spectrum in the low current region
  • FIG. 7C is the emission spectrum in the high current region.
  • FIG. 7B in the region where the operating current is lower than 0.3 A, the longitudinal mode arrangement is close to the single longitudinal mode oscillation, and the emission spectrum has high coherence.
  • FIG. 7C when the operating current is 0.3 A or more, the mode is completely the multi-longitudinal mode, the emission spectrum width is widened, and low coherence is achieved.
  • the drive circuit 12 can achieve low coherence by controlling each semiconductor laser 11 to operate at 0.3 A or more, as shown by a solid line in FIG. Note that the luminance can be controlled by changing the operating current in the range of 0.3 A or more by the drive circuit 12.
  • the speckle contrast Cs when used, the effect of roughening the outer surface 39b of the light guide 39 can be known.
  • the speckle contrast Cs is 13.7%.
  • the speckle contrast Cs can be reduced to 6%. That is, it has been found that YAG ceramics can be easily made to have lower coherence than quartz.
  • FIG. 8 is a schematic cross-sectional view of a solid-state lighting device according to the second embodiment.
  • the solid state lighting device includes a light source unit 10, a waveguide 20, a light guide 39, a wavelength conversion layer 32, and a reflection layer 38.
  • the cross section of the light guide 39 is a rectangle, this invention is not limited to this.
  • the cross section may be a circle, an ellipse, a polygon, or the like.
  • the light guide 39 has a first surface, a second surface opposite to the first surface, an upper surface 39f, and a lower surface 39e opposite to the upper surface 39f.
  • the plurality of laser beams g5 are reflected and scattered inside the light guide 39 while being guided inside the light guide 39, and are mainly emitted from the upper surface 39f and the lower surface 39e.
  • the wavelength conversion layer 32 in which the phosphor particles are dispersedly disposed is provided in contact with the lower surface 39e of the light guide 39.
  • the light emitted from the lower surface 39e irradiates the wavelength conversion layer 32.
  • the phosphor particles 32c that have absorbed the irradiation light emit wavelength-converted light gc.
  • the remaining light that is not absorbed by the phosphor particles 32 c is reflected or diffused by the phosphor particles in the wavelength conversion layer 32 and becomes scattered light gs.
  • the reflective layer 38 reflects the wavelength-converted light gc and the scattered light gs upward. Further, if light diffusing particles containing a material having a high diffusion transmittance are dispersed and arranged in the wavelength conversion layer 32, the coherence can be further reduced.
  • the light guide 39 may include any of glass (including quartz) and ceramics.
  • lighting devices such as LEDs, halogen light bulbs, high intensity light sources such as HID (High Intensity Discharge), and lighting devices such as projectors have large housings due to the heat generated by the light sources.
  • the projector includes a cooling fan and the like, and optical components such as a liquid crystal and a lens, a circuit, and the like are integrally incorporated in the housing. It is also necessary to take measures against heat dissipation from these expensive parts.
  • the exhaust heat from the cooling fan is uncomfortable and the sound of the fan is loud.
  • the solid-state lighting device of the present embodiment emits a light beam exceeding 1100 lumens with a diameter of several millimeters or less, and can realize a high-intensity high-intensity white light source.
  • the heat generating region in the multiple scattering conversion unit 30 is only the phosphor layer 32, and a small and lightweight white light emitting region can be realized.

Abstract

This solid-state lighting device has a light source section, a waveguide, a light-guiding body, a wavelength conversion layer, and an outer tube section. The light source section has semiconductor lasers and drive circuits, and emits multiple laser beams in a wavelength range of blue-violet to blue. The waveguide respectively guides the multiple laser beams. The light-guiding body, which comprises a first surface, a second surface, and a side surface, scatters the multiple laser beams introduced through the first surface while guiding the laser beams toward the second surface, and emits the resulting light through the side surface. The wavelength conversion layer has an inner edge and an outer edge, and fluorescent particles are distributed in a scattered manner inside the wavelength conversion layer. The wavelength conversion layer emits, through the outer edge, the wavelength-converted light and scattered light that results from multiple scattering of residual light, that is, a portion of the light that is emitted through the side surface without being absorbed by the fluorescent particles. The outer tube section is provided so as to surround the outer edge of the wavelength conversion layer, scatters the scattered light and the wavelength-converted light by means of a rough surface, and emits the resulting light as mixed light through the outer surface thereof.

Description

固体照明装置Solid state lighting device
 本発明の実施形態は、固体照明装置に関する。 Embodiments of the present invention relate to a solid state lighting device.
 固体発光素子を用いた白色固体照明(SSL: Solid-State Lighting)装置は、LED(Light Emitting Diode)が主流である。 White solid-state lighting (SSL: Solid-State Lighting) devices using solid-state light-emitting elements are mainly LEDs (Light Emitting Diodes).
 しかし、蛍光体を有する白色発光部とLEDチップとは近接して設けられることが多い。このため、LEDチップの放熱と給電のための基板が必要である。 However, the white light emitting part having a phosphor and the LED chip are often provided close to each other. For this reason, a substrate for heat dissipation and power supply of the LED chip is required.
 また、高輝度LEDは、チップサイズが0.5mm×0.5mm以上であり、かつ、ランバート(Lambert)分布であり発光放射角が広い。このため、光が発散しやすく、蛍光体層を効率よく照射することが困難である。 Further, the high-luminance LED has a chip size of 0.5 mm × 0.5 mm or more, a Lambert distribution, and a wide emission angle. For this reason, light tends to diverge and it is difficult to efficiently irradiate the phosphor layer.
 液晶プロジェクタ、サーチライト、ヘッドライト、舞台照明、街路灯、などの照明装置には、高輝度大光量光源が必要である。しかしながら、小型、軽量、低発熱量である発光部を、LEDで構成することは困難である。 High-brightness and high-intensity light sources are necessary for lighting devices such as liquid crystal projectors, searchlights, headlights, stage lighting, and street lamps. However, it is difficult to configure a light emitting unit that is small, light, and has a low calorific value with LEDs.
特開2007-52957号公報JP 2007-52957 A
 インコヒーレント光が放出され、安全性が高められた固体照明装置を提供する。 す る Provide a solid-state lighting device that emits incoherent light and has improved safety.
 実施形態にかかる固体照明装置は、光源部と、導波路と、導光体と、波長変換層と、外管部と、を有する。前記光源部は、半導体レーザーと、前記半導体レーザーを制御する駆動回路と、を有し、青紫色~青色の波長範囲の複数のレーザー光を放出する。前記導波路は、前記複数のレーザー光をそれぞれ導光する。前記導光体は、第1の面と前記第1の面とは反対の側の第2の面と側面とを有し、前記複数のレーザー光を前記第1の面から導入し前記第2の面に向かって導光しつつ散乱し前記側面から放出する。前記波長変換層は、前記導光体の前記側面を囲む内縁と前記内縁とは反対の側の外縁とを有し、蛍光体粒子が分散して配置される。前記波長変換層は、前記側面から放出された光を吸収した前記蛍光体粒子から放出された波長変換光と、前記側面から放出された前記光のうち前記蛍光体粒子に吸収されない残余の光が多重散乱されて生じた散乱光と、を前記外縁から放出する。前記外管部は、前記波長変換層の前記外縁を囲むように設けられ、粗面が設けられた外表面を有し、前記散乱光と前記波長変換光とを、前記粗面により散乱して前記外表面から混合光として放出する。 The solid-state lighting device according to the embodiment includes a light source unit, a waveguide, a light guide, a wavelength conversion layer, and an outer tube unit. The light source unit includes a semiconductor laser and a drive circuit that controls the semiconductor laser, and emits a plurality of laser beams in a blue-violet to blue wavelength range. The waveguide guides the plurality of laser beams. The light guide has a first surface and a second surface and a side surface opposite to the first surface, and introduces the plurality of laser beams from the first surface. The light is scattered while being guided toward the surface, and emitted from the side surface. The wavelength conversion layer has an inner edge surrounding the side surface of the light guide and an outer edge opposite to the inner edge, and the phosphor particles are arranged in a dispersed manner. The wavelength conversion layer includes wavelength-converted light emitted from the phosphor particles that have absorbed light emitted from the side surface, and residual light that is not absorbed by the phosphor particles among the light emitted from the side surface. Scattered light generated by multiple scattering is emitted from the outer edge. The outer tube portion is provided so as to surround the outer edge of the wavelength conversion layer, has an outer surface provided with a rough surface, and scatters the scattered light and the wavelength converted light by the rough surface. The mixed light is emitted from the outer surface.
 インコヒーレント光が放出され、安全性が高められた固体照明装置が提供される。 A solid state lighting device with improved safety by emitting incoherent light is provided.
第1の実施形態にかかる固体照明装置の構成を示す模式斜視図である。It is a model perspective view which shows the structure of the solid-state lighting device concerning 1st Embodiment. 図2(a)は多重散乱変換部の中心軸に沿った模式断面図、図2(b)はA-A線に沿った模式断面図、図2(c)は波長変換層を部分拡大した模式断面図、である。2A is a schematic cross-sectional view along the central axis of the multiple scattering converter, FIG. 2B is a schematic cross-sectional view along the line AA, and FIG. 2C is a partially enlarged wavelength conversion layer. It is a schematic cross section. 図3(a)はスペックルコントラストの測定系を説明する模式図、図3(b)は混合光の発光スペクトル図、である。3A is a schematic diagram for explaining a speckle contrast measurement system, and FIG. 3B is an emission spectrum diagram of mixed light. 図4(a)はコヒーレント光により観測面に生じたスペックルノイズの写真図、図4(b)はインコヒーレント光による観測面の写真図、である。FIG. 4A is a photograph of speckle noise generated on the observation surface by coherent light, and FIG. 4B is a photograph of the observation surface by incoherent light. 図5(a)は青色LEDのスペックルコントラスト観測面、図5(b)は青色半導体レーザーのスペックルコントラスト観測面、図5(c)は4つの半導体レーザーを含む照明装置のスペックルコントラスト観測面、図5(d)は20の半導体レーザーを含む照明装置のスペックルコントラスト観測面、を表すグラフ図である。5A is a speckle contrast observation surface of a blue LED, FIG. 5B is a speckle contrast observation surface of a blue semiconductor laser, and FIG. 5C is a speckle contrast observation of an illumination device including four semiconductor lasers. FIG. 5D is a graph showing a speckle contrast observation surface of an illumination device including 20 semiconductor lasers. 動作電流に対するスペックルコントラストの依存性のグラフ図である。It is a graph of the dependence of speckle contrast on operating current. 図7(a)は青色半導体レーザーの動作電流に対する光出力のグラフ図、図7(b)は低電流領域での発光スペクトルのグラフ図、図7(c)は高電流領域での発光スペクトルのグラフ図、である。FIG. 7A is a graph of the optical output with respect to the operating current of the blue semiconductor laser, FIG. 7B is a graph of the emission spectrum in the low current region, and FIG. 7C is the emission spectrum in the high current region. FIG. 第2の実施形態にかかる固体照明装置の模式断面図である。It is a schematic cross section of the solid-state lighting device concerning 2nd Embodiment.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。
 図1は、第1の実施形態にかかる固体照明装置の構成を示す模式斜視図である。
 固体照明装置は、光源部10と、導波路20と、導光体39と、波長変換層32と、外管部34と、を有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic perspective view illustrating the configuration of the solid-state lighting device according to the first embodiment.
The solid state lighting device includes a light source unit 10, a waveguide 20, a light guide 39, a wavelength conversion layer 32, and an outer tube unit 34.
 光源部10は、窒化物系半導体材料からなり、青紫色~青色の波長範囲(405~490nm)のレーザー光を放出可能な複数の半導体レーザー11と、複数の半導体レーザー11のそれぞれ駆動可能な駆動回路12(12a、12b、12c、12d)と、を有する。半導体レーザー(LD:Laser Diode)11は、導光部20に効率良く光結合させることができる。半導体レーザー11のチップの端面の発光点は10μm以下のサイズであり、その放射角(ビーム広がり角:beam divergence)も25度×40度程度と狭い。 The light source unit 10 is made of a nitride-based semiconductor material, and a plurality of semiconductor lasers 11 that can emit laser light in a blue-violet to blue wavelength range (405 to 490 nm), and a drive that can drive each of the plurality of semiconductor lasers 11. Circuit 12 (12a, 12b, 12c, 12d). A semiconductor laser (LD: Laser Diode) 11 can be optically coupled to the light guide 20 efficiently. The light emitting point of the end face of the chip of the semiconductor laser 11 has a size of 10 μm or less, and its radiation angle (beam divergence) is as narrow as about 25 ° × 40 °.
 駆動回路12は、半導体レーザー11の電圧または電流を変化することにより動作モードを制御する。また、所定の光出力となるように制御することもできる。 The drive circuit 12 controls the operation mode by changing the voltage or current of the semiconductor laser 11. It can also be controlled to achieve a predetermined light output.
 導波路20は、複数のレーザー光G1のそれぞれを、導光体39に向けて導光する。導波路20は、たとえば、光ファイバー24とすることができる。光ファイバー24は、それぞれのレーザー光毎に設けられてもよく、共通であってもよい。 The waveguide 20 guides each of the plurality of laser beams G1 toward the light guide 39. The waveguide 20 can be, for example, an optical fiber 24. The optical fiber 24 may be provided for each laser beam or may be common.
 導光体39と、波長変換層32と、外管部34と、は、多重散乱変換部30を構成する。多重散乱変換部30は、複数の半導体レーザー光G1を散乱して散乱光を生成するとともに、複数の半導体レーザー光G1を吸収した波長変換層32により波長変換光を生成し、インコヒーレント光を照明光として放出可能である。多重散乱変換部30は、中心軸39dを有する。 The light guide 39, the wavelength conversion layer 32, and the outer tube portion 34 constitute a multiple scattering conversion unit 30. The multiple scattering conversion unit 30 scatters the plurality of semiconductor laser beams G1 to generate scattered light, and generates wavelength converted light by the wavelength conversion layer 32 that has absorbed the plurality of semiconductor laser beams G1, and illuminates incoherent light. It can be emitted as light. The multiple scattering conversion unit 30 has a central axis 39d.
 図2(a)は多重散乱変換部の中心軸に沿った模式断面図、図2(b)はA-A線に沿った模式断面図、図2(c)は波長変換層を部分拡大した模式断面図、である。
 導光体39の第1の面39aと、第1の面39aとは反対の側の第2の面39bと、側面39cと、を有する。4つのレーザー光g1~g4は、第1の面30aからそれぞれ入射し、第2の面39bに向かって導光されつつ、側面39cから外側に向かって放出される。第1の実施形態において、半導体レーザー11の数を4つとしたが、半導体レーザー11の数は、これに限定されない。半導体レーザー11の数については、後に詳細に説明する。
2A is a schematic cross-sectional view along the central axis of the multiple scattering converter, FIG. 2B is a schematic cross-sectional view along the line AA, and FIG. 2C is a partially enlarged wavelength conversion layer. It is a schematic cross section.
The light guide 39 has a first surface 39a, a second surface 39b opposite to the first surface 39a, and a side surface 39c. The four laser beams g1 to g4 are incident from the first surface 30a, guided to the second surface 39b, and emitted outward from the side surface 39c. In the first embodiment, the number of semiconductor lasers 11 is four, but the number of semiconductor lasers 11 is not limited to this. The number of semiconductor lasers 11 will be described in detail later.
 入射したそれぞれのレーザー光g1~g4は、導光体39の第2の面39bに向かって導光されつつ、導光体39の内部における反射により散乱される。波長変換層32は、導光体39の側面39cを囲む内縁32aと、内縁32aとは反対の側の外縁32bと、を有する。また、波長変換層32には、YAG(Yttrium Alminum Garnet)蛍光体などからなる蛍光体粒子32cが分散して配置される。 Each of the incident laser beams g1 to g4 is scattered by reflection inside the light guide 39 while being guided toward the second surface 39b of the light guide 39. The wavelength conversion layer 32 has an inner edge 32a surrounding the side surface 39c of the light guide 39, and an outer edge 32b on the side opposite to the inner edge 32a. In the wavelength conversion layer 32, phosphor particles 32c made of YAG (Yttrium Aluminum Garnet) phosphor or the like are dispersed and arranged.
 導光体39の側面39cから放出された光は、波長変換層32を照射する。照射光を吸収した蛍光体粒子32cは、波長変換光gcを放出する。蛍光体粒子32cに吸収されない残余の光は、波長変換層32内で、蛍光体粒子32cにより多重反射されたり拡散されたりしてコヒーレンスが低下した散乱光gsとなる。 The light emitted from the side surface 39 c of the light guide 39 irradiates the wavelength conversion layer 32. The phosphor particles 32c that have absorbed the irradiation light emit wavelength-converted light gc. The remaining light that is not absorbed by the phosphor particles 32c becomes scattered light gs with reduced coherence by being multiple-reflected or diffused by the phosphor particles 32c in the wavelength conversion layer 32.
 また、図2(c)のように、拡散透過率の高い材料を含む光拡散粒子32dを波長変換層32内に分散して配置すると、散乱が増加しコヒーレンスをさらに低下することができる。光散乱粒子32dは、ポリメタクリル酸メチルや炭酸カルシウムなどを含むことができる。 Further, as shown in FIG. 2C, when the light diffusion particles 32d containing a material having a high diffusion transmittance are dispersed and arranged in the wavelength conversion layer 32, the scattering increases and the coherence can be further reduced. The light scattering particles 32d can contain polymethyl methacrylate, calcium carbonate, or the like.
 蛍光体粒子32cや光拡散粒子32dの粒径が波長以上の場合、ミー(Mie)散乱を主に生じる。また、粒径が波長よりも小さい場合、レイリー散乱を主に生じる。第1の実施形態では、波長変換層32内では、主として粒子により、入射光を散乱し、コヒーレンスを低下する。 When the particle diameters of the phosphor particles 32c and the light diffusion particles 32d are equal to or greater than the wavelength, Mie scattering is mainly generated. Further, when the particle diameter is smaller than the wavelength, Rayleigh scattering is mainly generated. In the first embodiment, in the wavelength conversion layer 32, incident light is scattered mainly by particles to reduce coherence.
 外管部34は、波長変換層32の外縁32bを囲むように設けられる。外管部34の、外表面34bには、粗面が設けられる。 波長変換光gcと散乱光gsとは、波長変換層32の外縁32bから放出され、外管部34へ入射する。散乱光gsと、波長変換光gcと、は、粗面により散乱されて外表面34bから混合光GTとして放出される。第1の実施形態では、光出射面となる外管部34の外表面34bを粗面化することにより、青紫色~青色光をさらに低コヒーレントとすることができる。なお、波長変換層32は、外管部34の内縁34aに、塗布などにより設けてもよい。 The outer tube portion 34 is provided so as to surround the outer edge 32 b of the wavelength conversion layer 32. A rough surface is provided on the outer surface 34 b of the outer pipe portion 34. The wavelength conversion light gc and the scattered light gs are emitted from the outer edge 32 b of the wavelength conversion layer 32 and enter the outer tube portion 34. The scattered light gs and the wavelength converted light gc are scattered by the rough surface and emitted from the outer surface 34b as the mixed light GT. In the first embodiment, by roughening the outer surface 34b of the outer tube portion 34 serving as a light emitting surface, blue-violet to blue light can be further reduced in coherency. The wavelength conversion layer 32 may be provided on the inner edge 34a of the outer tube portion 34 by coating or the like.
 導光体39と外管部34とは、ガラス(石英を含む)やセラミックスなどを含むものとすることができる。その表面は、たとえば、フロスト処理などにより粗面化することができる。また、外管部34をYAGセラミックスからなるものとすると、紫外~赤外領域で透明にすることができる。さらに、硬度を高め、照明装置の機械的強度を高めることができる。 The light guide 39 and the outer tube 34 may include glass (including quartz), ceramics, and the like. The surface can be roughened by, for example, frost treatment. If the outer tube portion 34 is made of YAG ceramics, it can be made transparent in the ultraviolet to infrared region. Further, the hardness can be increased and the mechanical strength of the lighting device can be increased.
 また、セラミックスが、光学異方性を有する六方晶系のAlなどを外表面34bまたは内部に含むと、散乱をさらに高めることができる。 Also, ceramics and including Al 2 O 3 or the like of the hexagonal system having the optical anisotropy to an internal or external surface 34b, it is possible to further improve the scattering.
 第1の実施形態の固体照明装置は、1100ルーメンを超える光束を数mm以下の直径で発光することが可能であり、大光量高輝度白色光源を実現できる。しかも、多重散乱変換層30における発熱領域は、波長変換層32のみであるので、小型かつ軽量とすることができる。 The solid-state lighting device of the first embodiment can emit a light beam exceeding 1100 lumens with a diameter of several millimeters or less, and can realize a high-intensity, high-intensity white light source. In addition, since the heat generation region in the multiple scattering conversion layer 30 is only the wavelength conversion layer 32, it can be made small and lightweight.
 このように、半導体レーザー11を用いた照明装置は、小型、軽量、かつ低発熱量とすることが容易である。他方、レーザー光を応用した装置に関して、国際電気標準会議(IEC)の規定に準じた安全管理が必要である。以下に、第1の実施形態の照明光がIEC規定のどのクラスに相当するかを評価した結果を詳細に説明する。 As described above, the illumination device using the semiconductor laser 11 is easy to be small, light, and have a low calorific value. On the other hand, safety management in accordance with the provisions of the International Electrotechnical Commission (IEC) is required for devices using laser light. Hereinafter, a result of evaluating which class of the IEC standard the illumination light of the first embodiment corresponds to will be described in detail.
 図3(a)はスペックルコントラストの測定系を説明する模式図、図3(b)は混合光の発光スペクトル図、である。
 図3(a)に表すように、外管部34の外表面34bから放出される混合光GTは、スリット52を介して、青紫色~青色光を透過するフィルタ54に入射する。フィルタ54を透過した光をレンズ56で集光し、スクリーン58に投影する。スクリーン58上の投影は、2mラジアンの立体角の光を通過させる0.8mm径のピンホールと集光レンズ62とを介して2分の1インチCCD(Charge Coupled Device)に結像する。なお、スペックル(speckle)とは、粗物体でランダムに散乱され、各点からの散乱光が観測面(CCD受光面)の各点で重なり合わさって生じるランダムな干渉現象を表す([非特許文献1])。
3A is a schematic diagram for explaining a speckle contrast measurement system, and FIG. 3B is an emission spectrum diagram of mixed light.
As shown in FIG. 3A, the mixed light GT emitted from the outer surface 34 b of the outer tube portion 34 enters the filter 54 that transmits blue-violet to blue light through the slit 52. The light transmitted through the filter 54 is collected by the lens 56 and projected onto the screen 58. The projection on the screen 58 forms an image on a 1/2 inch CCD (Charge Coupled Device) via a pin hole with a diameter of 0.8 mm that allows light with a solid angle of 2 m radians to pass through and a condenser lens 62. Note that speckle refers to a random interference phenomenon that occurs when a scattered light is randomly scattered by a rough object and scattered light from each point overlaps at each point on the observation surface (CCD light receiving surface) ([Non-patent Reference 1]).
 また、図3(b)に表すように、混合光GTの発光スペクトルは、波長450nm近傍と、中心波長が560nmであり広がったスペクトルを有する波長変換光と、を含んでいる。 Further, as shown in FIG. 3B, the emission spectrum of the mixed light GT includes a wavelength in the vicinity of 450 nm and wavelength-converted light having a broad spectrum with a center wavelength of 560 nm.
 図4(a)はコヒーレント光により観測面に生じたスペックルノイズの写真図、図4(b)はインコヒーレント光による観測面の写真図、である。
 スペックルコントラストCsは、平均強度E(I)と標準偏差σとを用いて、式(1)で表すものとする。
FIG. 4A is a photograph of speckle noise generated on the observation surface by coherent light, and FIG. 4B is a photograph of the observation surface by incoherent light.
Speckle contrast Cs, using average intensity E (I) and the standard deviation sigma I, it shall be expressed by Equation (1).

  Cs=σ/E(I)    式(1)

Cs = σ I / E (I) Formula (1)
 観測面上において、平均強度E(I)と標準偏差σとを求めることにより、スペックルコントラストCsを、式(1)から算出する。これにより、照明光が、コヒーレント光であるレーザー光が属するクラスと、インコヒーレント光であるLED光が属するクラスと、のいずれに近いかを評価することができる。 In the observation plane, by mean intensity E (I) and obtaining a standard deviation sigma I, the speckle contrast Cs, is calculated from equation (1). This makes it possible to evaluate whether the illumination light is closer to the class to which the laser light that is coherent light belongs or the class to which the LED light that is incoherent light belongs.
 図5(a)は青色LEDのスペックルコントラスト観測面、図5(b)は青色半導体レーザーのスペックルコントラスト観測面、図5(c)は4つの半導体レーザーを含む照明装置のスペックルコントラスト観測面、図5(d)は20の半導体レーザーを含む照明装置のスペックルコントラスト観測面、を表すグラフ図である。
 3次元表示の縦軸は、スペックルコントラストCsの相対強度である。また、2次元表示は、相対強度を平面表示したものである。
5A is a speckle contrast observation surface of a blue LED, FIG. 5B is a speckle contrast observation surface of a blue semiconductor laser, and FIG. 5C is a speckle contrast observation of an illumination device including four semiconductor lasers. FIG. 5D is a graph showing a speckle contrast observation surface of an illumination device including 20 semiconductor lasers.
The vertical axis of the three-dimensional display is the relative intensity of speckle contrast Cs. In the two-dimensional display, the relative intensity is planarly displayed.
 図5(a)に表すように、波長445nmの青色LEDのスペックルコントラストCsは、動作電流が0.16Aにおいて1.8%、動作電流が1Aにおいて1.8%、であった。すなわち、スペックルコントラストCsは、低く、動作電流に対する変化が小さい。 As shown in FIG. 5A, the speckle contrast Cs of the blue LED having a wavelength of 445 nm was 1.8% when the operating current was 0.16A and 1.8% when the operating current was 1A. That is, the speckle contrast Cs is low and the change with respect to the operating current is small.
 他方、図5(b)に表すように、波長455nmの青色半導体レーザーのスペックルコントラストCsは、動作電流が0.16Aにおいて83.3%、動作電流が1A(光出力が略1.3W)において27%であった。すなわち、青色LEDのスペックルコントラストCsよりも1桁以上高かった。また、動作電流を高くすると、スペックルコントラストを低減することができた。なお、フィルタ54の透過波長を可視光波長範囲内で変化させると、混合光のうちのそれぞれの可視光成分に対してスペックルコントラストCsを測定することができる。 On the other hand, as shown in FIG. 5B, the speckle contrast Cs of the blue semiconductor laser having a wavelength of 455 nm is 83.3% when the operating current is 0.16 A, and the operating current is 1 A (light output is approximately 1.3 W). 27%. That is, it was higher by one digit or more than the speckle contrast Cs of the blue LED. In addition, when the operating current was increased, the speckle contrast could be reduced. When the transmission wavelength of the filter 54 is changed within the visible light wavelength range, the speckle contrast Cs can be measured for each visible light component of the mixed light.
 図5(c)に表すように、4つの半導体レーザー11を有する照明装置の場合、スペックルコントラストCsは、動作電流が0.16Aにおいて15.8%、動作電流が1Aにおいて3.4%であった。この場合、光束は1100ルーメン、色温度は4000Kであった。 As shown in FIG. 5C, in the case of the illumination device having the four semiconductor lasers 11, the speckle contrast Cs is 15.8% when the operating current is 0.16A and 3.4% when the operating current is 1A. there were. In this case, the luminous flux was 1100 lumens and the color temperature was 4000K.
 また、図5(d)に表すように、20の半導体レーザー11を有する照明装置の場合、スペックルコントラストCsは、動作電流が0.16Aにおいて2.4%、動作電流が1Aにおいて1.7%であった。すなわち、動作電流が1Aの場合、半導体レーザー11の数を、4から20に増加すると、スペックルコントラストCsは、2分の1とできた。この場合、照明装置のスペックルコントラストCsは、LEDと略同等であり、インコヒーレント光と言える。また、光束は5000ルーメン、色温度は5000Kであった。 Further, as shown in FIG. 5D, in the case of an illumination device having 20 semiconductor lasers 11, the speckle contrast Cs is 2.4% when the operating current is 0.16 A and 1.7 when the operating current is 1 A. %Met. That is, when the operating current is 1 A, when the number of semiconductor lasers 11 is increased from 4 to 20, the speckle contrast Cs can be halved. In this case, the speckle contrast Cs of the illumination device is substantially the same as that of the LED, and can be said to be incoherent light. The luminous flux was 5000 lumens, and the color temperature was 5000K.
 複数のレーザー光の波長は、略同一であってよい。たとえば、半導体レーザー11が、同一のウェーハに形成されている場合や発光層のMQW(Multi Quantum Well)構造が同一である場合には、発振縦モード波長の最大値と、最小値と、の差は、略15nm以下とすることができる。このようにすると、半導体レーザー11が略同一の特性であるので、駆動回路12の設計が容易であり、価格も低減できる。なお、発振縦モード波長は、広がりを有する発光スペクトル内で発光スペクトル強度がピークとなる波長で表すものとする。 The wavelengths of the plurality of laser beams may be substantially the same. For example, when the semiconductor laser 11 is formed on the same wafer or the MQW (Multi Quantum Well) structure of the light emitting layer is the same, the difference between the maximum value and the minimum value of the oscillation longitudinal mode wavelength Can be approximately 15 nm or less. In this case, since the semiconductor laser 11 has substantially the same characteristics, the drive circuit 12 can be easily designed and the price can be reduced. Note that the oscillation longitudinal mode wavelength is represented by a wavelength at which the emission spectrum intensity peaks in a broad emission spectrum.
 他方、複数の半導体レーザー11の発振縦モード波長が、405~490nmの範囲で広く分布していてもよい。たとえば、発振縦モード波長の最大値と、最小値と、の差を、50nm以上とすると、低コヒーレンス化がより容易となる。 On the other hand, the oscillation longitudinal mode wavelengths of the plurality of semiconductor lasers 11 may be widely distributed in the range of 405 to 490 nm. For example, if the difference between the maximum value and the minimum value of the oscillation longitudinal mode wavelength is 50 nm or more, it is easier to reduce the coherence.
 図6は、動作電流に対するスペックルコントラストの依存性のグラフ図である。
 縦軸はスペックルコントラストCs(%)、横軸は動作電流(A)、である。半導体レーザー11の数を20とした固体照明装置(実線)のスペックルコントラストCsは、1.2A以下の動作電流範囲において、LED(破線)のスペックルコントラストCsと略同等である。また、半導体レーザー11の数を4つとした固体照明装置(ドット線)のスペックルコントラストCsは増大し、青色半導体レーザー(鎖線)に近づく。半導体レーザー11のスペックルコントラストCs(鎖線)は、0.3Aよりも低い動作電流において増大する。図6から、スペックルコントラストCsの最大値を10%以下とすれば、低コヒーレンスとでき、人間の目に対して安全性を確保することができる。
FIG. 6 is a graph showing the dependence of speckle contrast on the operating current.
The vertical axis represents speckle contrast Cs (%), and the horizontal axis represents operating current (A). The speckle contrast Cs of the solid state lighting device (solid line) with 20 semiconductor lasers 11 is substantially equal to the speckle contrast Cs of the LED (dashed line) in the operating current range of 1.2 A or less. Further, the speckle contrast Cs of the solid state lighting device (dot line) having four semiconductor lasers 11 increases and approaches the blue semiconductor laser (chain line). The speckle contrast Cs (chain line) of the semiconductor laser 11 increases at an operating current lower than 0.3A. From FIG. 6, if the maximum value of the speckle contrast Cs is 10% or less, low coherence can be achieved, and safety for human eyes can be ensured.
 図7(a)は青色半導体レーザーの動作電流に対する光出力のグラフ図、図7(b)は低電流領域での発光スペクトルのグラフ図、図7(c)は高電流領域での発光スペクトルのグラフ図、である。
 図7(b)に表すように、動作電流が0.3Aよりも低い領域ではシングル縦モード発振に近い縦モード配置であり、発光スペクトルは高コヒーレンスである。これに対して、図7(c)に表すように、動作電流が0.3A以上では、完全にマルチ縦モードであり、発光スペクトルの幅が広がり低コヒーレンスとなる。すなわち、駆動回路12は、図7(a)に実線で表すように、それぞれの半導体レーザー11を0.3A以上で動作するように制御すると低コヒーレンスとすることができる。なお、輝度の制御は、駆動回路12により0.3A以上の範囲で動作電流を変化すればよい。
FIG. 7A is a graph of the optical output with respect to the operating current of the blue semiconductor laser, FIG. 7B is a graph of the emission spectrum in the low current region, and FIG. 7C is the emission spectrum in the high current region. FIG.
As shown in FIG. 7B, in the region where the operating current is lower than 0.3 A, the longitudinal mode arrangement is close to the single longitudinal mode oscillation, and the emission spectrum has high coherence. On the other hand, as shown in FIG. 7C, when the operating current is 0.3 A or more, the mode is completely the multi-longitudinal mode, the emission spectrum width is widened, and low coherence is achieved. That is, the drive circuit 12 can achieve low coherence by controlling each semiconductor laser 11 to operate at 0.3 A or more, as shown by a solid line in FIG. Note that the luminance can be controlled by changing the operating current in the range of 0.3 A or more by the drive circuit 12.
 このように、多重散乱変換部30へ入射するレーザー光を低コヒーレンスとすることにより、照明光をインコヒーレント光に変換することがさらに容易となる。 Thus, by making the laser light incident on the multiple scattering conversion unit 30 low coherence, it becomes easier to convert the illumination light into incoherent light.
 なお、スペックルコントラストCsを用いると、導光体39の外表面39bの粗面化の効果を知ることができる。たとえば、外管部34を石英からなるものとすると、スペックルコントラストCsは、13.7%であった。他方、外管部34をYAGセラミックスからなるものとすると、スペックルコントラストCsは、6%と小さくできた。すなわち、YAGセラミックスは、石英よりも低コヒーレンスとすることが容易であることが判明した。 In addition, when the speckle contrast Cs is used, the effect of roughening the outer surface 39b of the light guide 39 can be known. For example, when the outer tube portion 34 is made of quartz, the speckle contrast Cs is 13.7%. On the other hand, when the outer tube portion 34 is made of YAG ceramics, the speckle contrast Cs can be reduced to 6%. That is, it has been found that YAG ceramics can be easily made to have lower coherence than quartz.
 図8は、第2の実施形態にかかる固体照明装置の模式断面図である。
 固体照明装置は、光源部10と、導波路20と、導光体39と、波長変換層32と、反射層38と、を有している。なお、導光体39の断面は、矩形であるが、本発明はこれに限定されない。断面は、円、楕円、多角形などであってもよい。
FIG. 8 is a schematic cross-sectional view of a solid-state lighting device according to the second embodiment.
The solid state lighting device includes a light source unit 10, a waveguide 20, a light guide 39, a wavelength conversion layer 32, and a reflection layer 38. In addition, although the cross section of the light guide 39 is a rectangle, this invention is not limited to this. The cross section may be a circle, an ellipse, a polygon, or the like.
 導光体39は、第1の面と、第1の面とは反対の側の第2の面と、上面39fと、上面39fとは反対の側の下面39eと、を有する。複数のレーザー光g5は、導光体39の内部を導光されつつ導光体39の内部で反射され散乱され、上面39fおよび下面39eから主として放出される。 The light guide 39 has a first surface, a second surface opposite to the first surface, an upper surface 39f, and a lower surface 39e opposite to the upper surface 39f. The plurality of laser beams g5 are reflected and scattered inside the light guide 39 while being guided inside the light guide 39, and are mainly emitted from the upper surface 39f and the lower surface 39e.
 また、導光体39の下面39eに接して、蛍光体粒子が分散して配置された波長変換層32が設けられる。下面39eから放出された光は波長変換層32を照射する。照射光を吸収した蛍光体粒子32cは、波長変換光gcを放出する。蛍光体粒子32cに吸収されない残余の光は、波長変換層32内で、蛍光体粒子により反射されたり拡散され散乱光gsとなる。反射層38は、波長変換光gcと散乱光gsとを上方に向かって反射する。また、拡散透過率の高い材料を含む光拡散粒子を波長変換層32内に分散して配置すると、さらにコヒーレンスを低下することができる。 Further, the wavelength conversion layer 32 in which the phosphor particles are dispersedly disposed is provided in contact with the lower surface 39e of the light guide 39. The light emitted from the lower surface 39e irradiates the wavelength conversion layer 32. The phosphor particles 32c that have absorbed the irradiation light emit wavelength-converted light gc. The remaining light that is not absorbed by the phosphor particles 32 c is reflected or diffused by the phosphor particles in the wavelength conversion layer 32 and becomes scattered light gs. The reflective layer 38 reflects the wavelength-converted light gc and the scattered light gs upward. Further, if light diffusing particles containing a material having a high diffusion transmittance are dispersed and arranged in the wavelength conversion layer 32, the coherence can be further reduced.
 導光体39の上面39fに粗面を設けると、波長変換光gcと散乱光gsとをさらに散乱しコヒーレンスをさらに低下することができる。なお、導光体39は、ガラス(石英を含む)およびセラミックスのいずれかを含んでもよい。 If a rough surface is provided on the upper surface 39f of the light guide 39, the wavelength converted light gc and the scattered light gs can be further scattered to further reduce the coherence. The light guide 39 may include any of glass (including quartz) and ceramics.
 もし、LED、ハロゲン電球、HID(High Intensity Discharge)などの大光量高輝度光源を用いる灯具およびプロジェクタなどの照明装置は、その光源の発熱のため、筐体のサイズが大きくなる。特に、プロジェクタは、冷却ファンなどを含み、液晶やレンズなどの光学部品、および、回路などが筐体に一体的に内蔵している。これらの高価な部品の放熱対策も必要になる。また、机の上にプロジェクタを置いた場合、冷却ファンからの排熱が不快であり、ファンの音がうるさい。これに対して、本実施形態では、放熱が容易で、小型軽量の大光量高輝度照明装置を提供することができる。 However, lighting devices such as LEDs, halogen light bulbs, high intensity light sources such as HID (High Intensity Discharge), and lighting devices such as projectors have large housings due to the heat generated by the light sources. In particular, the projector includes a cooling fan and the like, and optical components such as a liquid crystal and a lens, a circuit, and the like are integrally incorporated in the housing. It is also necessary to take measures against heat dissipation from these expensive parts. In addition, when a projector is placed on a desk, the exhaust heat from the cooling fan is uncomfortable and the sound of the fan is loud. On the other hand, in the present embodiment, it is possible to provide a small and lightweight large-intensity high-luminance lighting device that is easy to dissipate.
 また、本実施形態の固体照明装置は、1100ルーメンを超える光束を数mm以下の直径で発光し、大光量高輝度白色光源を実現できる。多重散乱変換部30における発熱領域は、蛍光体層32のみであり、小型で軽量な白色発光領域を実現できる。 In addition, the solid-state lighting device of the present embodiment emits a light beam exceeding 1100 lumens with a diameter of several millimeters or less, and can realize a high-intensity high-intensity white light source. The heat generating region in the multiple scattering conversion unit 30 is only the phosphor layer 32, and a small and lightweight white light emitting region can be realized.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (11)

  1.  半導体レーザーと前記半導体レーザーを制御する駆動回路とを有し、青紫色~青色の波長範囲の複数のレーザー光を放出する光源部と、
     前記複数のレーザー光をそれぞれ導光する導波路と、
     第1の面と前記第1の面とは反対の側の第2の面と側面とを有し、前記複数のレーザー光を前記第1の面から導入し前記第2の面に向かって導光しつつ散乱し前記側面から放出する導光体と、
     前記導光体の前記側面を囲む内縁と前記内縁とは反対の側の外縁とを有し、蛍光体粒子が分散して配置された波長変換層であって、前記側面から放出された光を吸収した前記蛍光体粒子から放出された波長変換光と、前記側面から放出された前記光のうち前記蛍光体粒子に吸収されない残余の光が多重散乱されて生じた散乱光と、を前記外縁から放出する波長変換層と、
     前記波長変換層の前記外縁を囲むように設けられ、粗面が設けられた外表面を有し、前記散乱光と前記波長変換光とを、前記粗面により散乱して前記外表面から混合光として放出する外管部と、
     を備えた固体照明装置。
    A light source unit that has a semiconductor laser and a drive circuit that controls the semiconductor laser, and that emits a plurality of laser beams in a blue-violet to blue wavelength range;
    A waveguide for guiding each of the plurality of laser beams;
    A first surface and a second surface opposite to the first surface; and a plurality of laser beams are introduced from the first surface and guided toward the second surface. A light guide that scatters and emits light from the side surface;
    A wavelength conversion layer having an inner edge surrounding the side surface of the light guide and an outer edge opposite to the inner edge, the phosphor particles being dispersed and arranged, the light emitted from the side surface The wavelength-converted light emitted from the absorbed phosphor particles and the scattered light generated by multiple scattering of the remaining light that is not absorbed by the phosphor particles out of the light emitted from the side surface, from the outer edge A wavelength converting layer to be emitted;
    The outer surface of the wavelength conversion layer is provided so as to surround the outer edge, and has an outer surface provided with a rough surface. The scattered light and the wavelength converted light are scattered by the rough surface and mixed light from the outer surface. As the outer tube part discharging as
    A solid state lighting device.
  2.  前記複数のレーザー光の発振縦モード波長の最大値と最小値との差は、50nm以上である請求項1記載の固体照明装置。 The solid state lighting device according to claim 1, wherein the difference between the maximum value and the minimum value of the oscillation longitudinal mode wavelength of the plurality of laser beams is 50 nm or more.
  3.  前記複数のレーザー光の発振縦モード波長の最大値と最小値との差は、15nm以下である請求項1記載の固体照明装置。 The solid state lighting device according to claim 1, wherein the difference between the maximum value and the minimum value of the oscillation longitudinal mode wavelength of the plurality of laser beams is 15 nm or less.
  4.  前記駆動回路は、前記複数のレーザー光がマルチ縦モードとなるように前記半導体レーザーをそれぞれ駆動する請求項1記載の固体照明装置。 The solid-state lighting device according to claim 1, wherein the driving circuit drives the semiconductor lasers so that the plurality of laser beams are in a multi-longitudinal mode.
  5.  前記混合光のうちの可視光成分のスペックルコントラストは、10%以下である請求項1記載の固体照明装置。 The solid-state lighting device according to claim 1, wherein a speckle contrast of a visible light component in the mixed light is 10% or less.
  6.  半導体レーザーと前記半導体レーザーを制御する駆動回路とを有し、青紫色~青色の波長範囲の複数のレーザー光を放出する光源部と、
     前記複数のレーザー光をそれぞれ導光する導波路と、
     第1の面と前記第1の面とは反対の側の第2の面と上面と下面とを有し、前記複数のレーザー光を前記第1の面から導入し前記第2の面に向かって導光しつつ散乱し前記上面と前記下面から放出する導光体であって、前記上面には粗面が設けられた導光体と、
     前記導光体の前記下面に設けられ蛍光体粒子が分散して配置された波長変換層であって、前記下面から放出された光を吸収した前記蛍光体粒子から放出された波長変換光と、前記下面から放出された前記光のうち前記蛍光体粒子に吸収されない残余の光が多重散乱されて生じた散乱光と、を放出する波長変換層と、
     を備え、
     前記散乱光と前記波長変換光とは、前記粗面により散乱されつつ混合光として放出される固体照明装置。
    A light source unit that has a semiconductor laser and a drive circuit that controls the semiconductor laser, and that emits a plurality of laser beams in a blue-violet to blue wavelength range;
    A waveguide for guiding each of the plurality of laser beams;
    A first surface and a second surface opposite to the first surface; an upper surface and a lower surface; and introducing the plurality of laser beams from the first surface toward the second surface. A light guide that scatters and emits light from the upper surface and the lower surface, the light guide having a rough surface on the upper surface,
    A wavelength conversion layer provided on the lower surface of the light guide and arranged to disperse phosphor particles, the wavelength converted light emitted from the phosphor particles absorbing the light emitted from the lower surface, and A wavelength conversion layer that emits scattered light generated by multiple scattering of the remaining light that is not absorbed by the phosphor particles among the light emitted from the lower surface;
    With
    The scattered light and the wavelength-converted light are solid state lighting devices that are emitted as mixed light while being scattered by the rough surface.
  7.  前記波長変換層に接するか、または前記導光体の前記上面および前記下面の少なくともいずれかに接して設けられ、前記散乱光と前記波長変換光とを反射可能な反射層をさらに備えた請求項6記載の固体照明装置。 The reflective layer provided in contact with the wavelength conversion layer or at least one of the upper surface and the lower surface of the light guide, and capable of reflecting the scattered light and the wavelength converted light. 6. The solid state lighting device according to 6.
  8.  前記複数のレーザー光の発振縦モード波長の最大値と最小値との差は、50nm以上である請求項6記載の固体照明装置。 The solid state lighting device according to claim 6, wherein a difference between a maximum value and a minimum value of the oscillation longitudinal mode wavelength of the plurality of laser beams is 50 nm or more.
  9.  前記複数のレーザー光の発振縦モード波長の最大値と最小値との差は、15nm以下である請求項6記載の固体照明装置。 The solid state lighting device according to claim 6, wherein a difference between a maximum value and a minimum value of oscillation longitudinal mode wavelengths of the plurality of laser beams is 15 nm or less.
  10.  前記駆動回路は、前記複数のレーザー光がマルチ縦モードとなるように前記半導体レーザーをそれぞれ駆動する請求項6記載の固体照明装置。 The solid-state lighting device according to claim 6, wherein the driving circuit drives the semiconductor lasers so that the plurality of laser beams are in a multi-longitudinal mode.
  11.  前記混合光のうちの可視光成分のスペックルコントラストは、10%以下である請求項6記載の固体照明装置。 The solid-state lighting device according to claim 6, wherein a speckle contrast of a visible light component in the mixed light is 10% or less.
PCT/JP2013/058174 2012-04-25 2013-03-21 Solid-state lighting device WO2013161462A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012100107A JP2013229174A (en) 2012-04-25 2012-04-25 Solid-state lighting device
JP2012-100107 2012-04-25

Publications (1)

Publication Number Publication Date
WO2013161462A1 true WO2013161462A1 (en) 2013-10-31

Family

ID=49482799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058174 WO2013161462A1 (en) 2012-04-25 2013-03-21 Solid-state lighting device

Country Status (2)

Country Link
JP (1) JP2013229174A (en)
WO (1) WO2013161462A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016018744A1 (en) * 2014-07-28 2016-02-04 Corning Incorporated Side-emitting optical fiber system and assembly with light-emitting jacket members
US20160327721A1 (en) * 2015-05-04 2016-11-10 Corning Incorporated Optical fiber lighting device and method
CN110277729A (en) * 2018-03-15 2019-09-24 丰田合成株式会社 Light emitting device
WO2020052399A1 (en) * 2018-09-14 2020-03-19 深圳市绎立锐光科技开发有限公司 Light source device and vehicle lamp
WO2021228660A1 (en) * 2020-05-12 2021-11-18 Osram Opto Semiconductors Gmbh Semiconductor laser component and method for operating at least one semiconductor laser

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547997B2 (en) * 2014-12-24 2019-07-24 スタンレー電気株式会社 Vehicle lamp
JP6722909B2 (en) 2016-08-30 2020-07-15 パナソニックIpマネジメント株式会社 Color conversion element and lighting device
JP6658436B2 (en) 2016-09-30 2020-03-04 日亜化学工業株式会社 Lighting equipment
JP6686836B2 (en) 2016-10-14 2020-04-22 日亜化学工業株式会社 Lighting equipment
JP2021170587A (en) 2020-04-15 2021-10-28 日亜化学工業株式会社 Resin impregnation method, manufacturing method of wavelength conversion module, and wavelength conversion module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153794A (en) * 1997-11-20 1999-06-08 Hitachi Ltd Liquid crystal display device
JP2004341128A (en) * 2003-05-14 2004-12-02 Sharp Corp Light emitting body, illuminator including the same, and display
JP2007294754A (en) * 2006-04-26 2007-11-08 Sharp Corp Light emitting device and vehicle head lamp
WO2008029892A1 (en) * 2006-09-07 2008-03-13 Panasonic Corporation Laser light source, planar light source, and liquid crystal display device
JP2009016289A (en) * 2007-07-09 2009-01-22 Sony Corp Light source device and optical device
JP2011171261A (en) * 2010-02-22 2011-09-01 Mabuchi Shomei Seisakusho:Kk Pole type light
JP2011187285A (en) * 2010-03-08 2011-09-22 Toshiba Corp Light emitting device
WO2012017613A1 (en) * 2010-08-03 2012-02-09 三菱電機株式会社 Surface light-source apparatus and liquid crystal display apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153794A (en) * 1997-11-20 1999-06-08 Hitachi Ltd Liquid crystal display device
JP2004341128A (en) * 2003-05-14 2004-12-02 Sharp Corp Light emitting body, illuminator including the same, and display
JP2007294754A (en) * 2006-04-26 2007-11-08 Sharp Corp Light emitting device and vehicle head lamp
WO2008029892A1 (en) * 2006-09-07 2008-03-13 Panasonic Corporation Laser light source, planar light source, and liquid crystal display device
JP2009016289A (en) * 2007-07-09 2009-01-22 Sony Corp Light source device and optical device
JP2011171261A (en) * 2010-02-22 2011-09-01 Mabuchi Shomei Seisakusho:Kk Pole type light
JP2011187285A (en) * 2010-03-08 2011-09-22 Toshiba Corp Light emitting device
WO2012017613A1 (en) * 2010-08-03 2012-02-09 三菱電機株式会社 Surface light-source apparatus and liquid crystal display apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016018744A1 (en) * 2014-07-28 2016-02-04 Corning Incorporated Side-emitting optical fiber system and assembly with light-emitting jacket members
US9857515B2 (en) 2014-07-28 2018-01-02 Corning Incorporated Side-emitting optical fiber system and assembly with light-emitting jacket members
US20160327721A1 (en) * 2015-05-04 2016-11-10 Corning Incorporated Optical fiber lighting device and method
CN110277729A (en) * 2018-03-15 2019-09-24 丰田合成株式会社 Light emitting device
CN110277729B (en) * 2018-03-15 2021-06-25 丰田合成株式会社 Light emitting device
WO2020052399A1 (en) * 2018-09-14 2020-03-19 深圳市绎立锐光科技开发有限公司 Light source device and vehicle lamp
WO2021228660A1 (en) * 2020-05-12 2021-11-18 Osram Opto Semiconductors Gmbh Semiconductor laser component and method for operating at least one semiconductor laser

Also Published As

Publication number Publication date
JP2013229174A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
WO2013161462A1 (en) Solid-state lighting device
JP5788194B2 (en) Light emitting device, lighting device, and vehicle headlamp
TWI493275B (en) A lighting device and a projection system
JP5631509B2 (en) Lighting device having phosphor element
JP2012174551A (en) Light-emitting device
TWI520383B (en) Light emitting diode package structure
US20120106127A1 (en) Light emitting device
KR20080085732A (en) White light source device
JP5722068B2 (en) Light source device, lighting device and vehicle headlamp
JP6161877B2 (en) Light emitting device, vehicle headlamp and lighting device
JP2013080638A (en) Collected linear lighting device and its driving method as well as lamp fitting
JP2017156403A (en) Fluorescent light source device
JP2017107776A (en) Light emitting device and luminaire
TWI611135B (en) Laser car lamp
JP6591152B2 (en) Fresnel lens optical system and illumination device using the same
US20140362558A1 (en) Luminescent Body For Converting Pump Light
JP5842041B2 (en) Light emitting device
WO2013081069A1 (en) Solid state illumination device
JP2014017052A (en) Light source device and light projection device having the same
JP2013211252A (en) Solid lighting device
JP6085204B2 (en) Light emitting device
TWI572063B (en) Light emitting diode package structure
JP2014011034A (en) Solid illumination device
WO2014013923A1 (en) Solid-state lighting device
JP2018085167A (en) Light source device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781427

Country of ref document: EP

Kind code of ref document: A1