WO2013161192A1 - Resin film web and method for manufacturing optical film - Google Patents

Resin film web and method for manufacturing optical film Download PDF

Info

Publication number
WO2013161192A1
WO2013161192A1 PCT/JP2013/002302 JP2013002302W WO2013161192A1 WO 2013161192 A1 WO2013161192 A1 WO 2013161192A1 JP 2013002302 W JP2013002302 W JP 2013002302W WO 2013161192 A1 WO2013161192 A1 WO 2013161192A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
film
layer
resin
core member
Prior art date
Application number
PCT/JP2013/002302
Other languages
French (fr)
Japanese (ja)
Inventor
昌弘 大和田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013161192A1 publication Critical patent/WO2013161192A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/28Wound package of webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/04Kinds or types
    • B65H75/08Kinds or types of circular or polygonal cross-section
    • B65H75/10Kinds or types of circular or polygonal cross-section without flanges, e.g. cop tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/50Auxiliary process performed during handling process
    • B65H2301/51Modifying a characteristic of handled material
    • B65H2301/513Modifying electric properties
    • B65H2301/5133Removing electrostatic charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/61Display device manufacture, e.g. liquid crystal displays

Definitions

  • the present invention relates to a resin film original fabric and a method for producing an optical film.
  • a resin film used for manufacturing an optical film used in an image display device such as a liquid crystal display device or a plasma display device is a resin film raw material obtained by winding a long one around a core member in a roll shape. (Film roll) is used for storage and transportation. And when using a resin film, it unwinds and uses the resin film from the resin film original fabric one by one.
  • a film provided with a functional layer on the surface of a resin film is used in order to exhibit various functions.
  • the functional layer include a hard coat layer, an antireflection layer with an adjusted refractive index, an antiglare layer having a concavo-convex shape formed on the surface, and a liquid crystal layer (optically anisotropic layer) in which the orientation direction of liquid crystal molecules is controlled.
  • Etc. Such a functional layer can be formed by applying a functional layer forming coating liquid containing a material constituting the functional layer to the surface of the resin film.
  • the coating solution in order to form a uniform functional layer, it is required that the coating solution be uniformly applied and spread on the resin film. For example, it is necessary to suppress the occurrence of unevenness in the formed functional layer due to the phenomenon that the coating solution is repelled on the resin film, that is, the repelling.
  • Patent Document 1 As a method for suppressing such application repelling, for example, the method described in Patent Document 1 can be mentioned.
  • Patent Document 1 describes a method of manufacturing a film raw material that is wound using a cylindrical core in which an antistatic treatment is applied to the core surface layer or the entire core when winding a continuous band-shaped film. Yes. According to Patent Document 1, it is possible to provide a film that is not charged even when a continuous belt-like film is stored for a long period of time and does not generate repellency when an adhesive or paint is applied. Is disclosed.
  • An object of the present invention is to provide a resin film raw material capable of unwinding a resin film capable of producing an optical film in which the occurrence of an image defect is sufficiently suppressed when used in an image display device. Moreover, it aims at providing the manufacturing method of the optical film using such a resin film original fabric.
  • One aspect of the present invention includes a cylindrical core member and a long resin film wound in a roll around the outer peripheral surface of the core member, and the resin film contains a polymer additive.
  • the core member includes an insulating layer and a conductive layer located inside the insulating layer.
  • FIG. 1 is a schematic view showing a resin film original fabric according to this embodiment.
  • FIG. 2 is a schematic perspective view showing the core member of the resin film original fabric according to this embodiment.
  • FIG. 3 is a schematic view showing a basic configuration of a resin film manufacturing apparatus by a solution casting method.
  • FIG. 4 is a schematic diagram showing a basic configuration of an optical film manufacturing apparatus.
  • the resin film may contain a polymer additive in order to adjust properties such as flexibility.
  • a polymer additive in order to adjust properties such as flexibility.
  • the present inventor can sufficiently generate image defects only by reducing the charge amount of the resin film that is the base material of the optical film. It was found to be insufficient to obtain an optical film that can be suppressed to a low level. And this inventor presumed that it was due to the nonuniformity of the charging of the resin film, and such charging nonuniformity occurred when the resin film original was stored or when the resin film was unwound from the resin film original.
  • the cause of the above-mentioned defects related to image defects more significantly is that such a resin film is a film that easily retains uneven charging. Conceivable.
  • the reason why non-uniform charging of a resin film containing a polymer additive is easily maintained is that the specific resistance (electrical resistivity) is different between the resin that is a component of the resin film and the polymer additive mixed in the resin film. It is considered that the charge is concentrated on the component having the smaller specific resistance, resulting in uneven charging. That is, it is considered that charging unevenness is easily maintained by mixing a polymer additive having a specific resistance different from that of the resin into the resin which is a component constituting the resin film.
  • a method of reducing the uneven charging generated in the resin film by applying a charge-removing treatment or a reverse charge to the resin film unwound from the resin film original fabric may be considered. Even if a reverse charge is applied to the resin film, it is difficult to eliminate the charging unevenness, and the charging unevenness accumulated in the resin film wound around the resin film original is unwound after unwinding the resin film. It was difficult to eliminate. Moreover, if the charge removal process is sufficiently performed, it may cause an increase in the size of equipment and a decrease in production speed.
  • the present inventor has examined the configuration of the core member, so that the resin film unrolled from the resin film original wound around the resin film containing the polymer additive is charged unevenly.
  • the inventors have arrived at a resin film raw material capable of sufficiently suppressing the occurrence of the above. That is, the present inventor manufactures an optical film by forming a functional layer on a resin film unwound from a resin film raw film obtained by winding a resin film containing a polymer additive.
  • the inventors have arrived at a resin film original fabric from which an optical film in which the occurrence of image defects in the image display device is suppressed can be obtained.
  • the resin film original fabric according to the embodiment of the present invention includes a cylindrical core member and a long resin film wound around the outer peripheral surface of the core member in a roll shape. And a polymer-based additive, wherein the core member includes an insulating layer and a conductive layer located inside the insulating layer.
  • long means that length is about 5 times or more with respect to a width
  • the elongate here means that the length of the resin film is about 5 times or more, preferably 10 times or more, with respect to the width of the resin film.
  • the charge of the resin film generated when the resin film is stored or when the resin film is unwound is reduced. It is thought that it moves to the conductive layer of the member and diffuses into the conductive layer. At this time, since the charge generated in the resin film moves to the conductive layer through the insulating layer, it is considered that the charge moves slowly and the occurrence of uneven charging of the resin film can be suppressed.
  • the insulating layer is applied to the resin film that is less conductive than the conductive layer. It is thought that it is difficult to move through.
  • the electric charge generated in the insulating layer does not move to the resin film but easily moves to the conductive layer having high conductivity. From these facts, it is considered that the charging amount of the resin film is reduced, and even when the resin film is charged, the uneven charging is sufficiently suppressed. From this, when the resin film unwound from the resin film original fabric is used, an optical film in which the occurrence of image defects when used in an image display device is sufficiently suppressed can be produced. Specifically, an optical film in which generation of interference fringes such as moire fringes and glare is sufficiently suppressed can be manufactured.
  • the resin film original as described above can unwind a resin film capable of producing an optical film in which the occurrence of image defects is sufficiently suppressed when used in an image display device.
  • the resin film original is a film roll wound around the outer peripheral surface of the core member in a roll shape.
  • the resin film original as shown in FIG. Etc.
  • FIG. 1 is a schematic view showing a resin film original fabric 10 according to this embodiment.
  • 1A is a schematic perspective view showing the resin film original fabric 10
  • FIG. 1B is a schematic perspective view for explaining the storage state of the resin film original fabric 10
  • FIG. (C) is a top view for demonstrating the preservation
  • the resin film original fabric 10 includes a cylindrical core member 11 and a long resin film 12 wound around the outer peripheral surface of the core member 11 in a roll shape.
  • the resin film original fabric 10 is stored on a gantry 15 provided with holding portions 14 that can pivotally support both ends of the core member 11. And the like.
  • the resin film original fabric according to the present embodiment can sufficiently suppress the occurrence of uneven charging in such a resin film.
  • the core member is not particularly limited as long as it includes an insulating layer and a conductive layer located inside the insulating layer.
  • Examples of the core member 11 include a core member including an insulating layer 21 and a conductive layer 22 positioned inside the insulating layer 21 as shown in FIG.
  • FIG. 2 is a schematic perspective view showing the core member 11 of the raw resin film according to the present embodiment, and shows a cross section by cutting a part of the core member 11.
  • FIG. 2 is a drawing for showing the positional relationship between the insulating layer and the conductive layer, and the thickness of each layer is not limited to the thickness shown in FIG.
  • the insulating layer is an insulating layer, and specifically includes a layer having a surface resistivity of 10 12 ⁇ / cm 2 or more.
  • a conductive layer is a layer which has electroconductivity, Specifically, the layer etc. whose surface resistivity is 10 ⁇ 9 > ohm / cm ⁇ 2 > or less are mentioned.
  • the surface resistivity here can be measured with a general resistivity meter, for example, using a portable surface resistivity / resistance meter 272A manufactured by Monroe Electronics.
  • the core member 11 is not limited to the insulating layer 21 and the conductive layer 22 as shown in FIG. 2, and may include other layers.
  • another layer may be provided inside the conductive layer 22.
  • the surface of the insulating layer 21 may be provided with a protective layer, a lubricant layer for improving lubricity, and the like.
  • the core member is preferably such that the outermost layer is an insulating layer.
  • the outermost layer is an insulating layer.
  • the insulating layer and the conductive layer are in direct contact with the core member. By doing so, it is considered that charges generated in the resin film can easily move to the conductive layer through the insulating layer, and the effects of the present invention can be suitably exhibited.
  • the insulating layer is not particularly limited as long as it is an insulating layer.
  • resin layers such as epoxy resins, polyurethane resins, polycarbonate resins, polyethylene resins, polypropylene resins, ABS resins, polyester resins, polystyrene resins, and acrylic resins.
  • an epoxy resin layer is preferable from the viewpoint of durability.
  • the thickness of the insulating layer is not particularly limited, but is preferably 3 mm or less, and more preferably 0.5 mm or more and 2 mm or less. With such a thickness, the charge generated in the resin film can be more suitably transferred to the conductive layer through the insulating layer. That is, the effect that an insulating layer intervenes between the resin film and the conductive layer can be further exhibited.
  • the conductive layer is not particularly limited as long as it is a conductive layer. Specifically, it is generally used as the core member of the resin film raw material, and includes a core member having conductivity. More specifically, a fiber reinforced resin (FRP) including a resin containing a conductive material and fibers, a resin containing a conductive polymer, a metal, and the like can be given. Among these, an FRP layer containing a conductive material is preferable from the viewpoint of ease of production and handling.
  • the resin is not particularly limited as long as it can be used as an FRP resin. Specifically, an epoxy resin etc. are mentioned. Moreover, the said fiber will not be specifically limited if it can be used as a fiber of FRP. Specifically, glass fiber etc. are mentioned.
  • the conductive material is not particularly limited as long as it can be contained in FRP to obtain conductive FRP.
  • FRP conductive FRP
  • these content is not specifically limited.
  • Content of the said resin and the said fiber should just be the same composition as the cylindrical FRP layer used as a core member of a resin film original fabric, for example.
  • the content of the conductive material is not particularly limited as long as the FRP layer can exhibit conductivity while maintaining the strength that can be used as the core material.
  • the thickness of the said insulating layer should just be the thickness of the core member generally used, and is not specifically limited.
  • the antistatic agent various ionic surfactants and nonionic surfactants typified by fluorine surfactants are generally used. Specific examples of antistatic agents include Muromachi Technos Co., Ltd. MU-003 manufactured by Ichiko Engineering Co., Ltd., MX-50, SL-10 manufactured by Achilles Co., Ltd., and the like.
  • the coating thickness of the antistatic agent is not particularly limited, but it is important that the thickness be sufficient to exert the electrostatic effect, and the thickness is 0.001 ⁇ m or more, preferably 0.01 ⁇ m or more, and most preferably 0.1 ⁇ m or more. It is good to form with.
  • the core member has a cylindrical shape as shown in FIG. If it is cylindrical, since the inside is hollow, the weight can be reduced. Moreover, when the inside is a hollow, it is easy to install a rotating device that rotates the core member when the resin film is wound up to form a resin film with the resin film wound around the outer peripheral surface.
  • the core member manufacturing method is not particularly limited as long as it is a method capable of manufacturing a core member including an insulating layer and a conductive layer located inside the insulating layer. Specifically, a method of applying a coating liquid containing a resin constituting the insulating layer to the surface of the conductive layer as described above and drying the surface can be used. By doing so, an insulating layer can be formed on the surface of the insulating layer. In addition, after the drying, heat treatment may be performed for curing the insulating layer.
  • the resin film is not particularly limited as long as it is a resin film containing a polymer additive.
  • a resin film original fabric in which a resin film containing such a polymer-based additive is wound around a core member is used to produce an optical film by forming a functional layer on the resin film unwound from the resin film original fabric
  • the obtained optical film tended to be prone to image defects.
  • it is the resin film original fabric which concerns on this embodiment, even if it uses the resin film containing a polymer-type additive as a resin film, it can manufacture the optical film by which generation
  • examples of the resin film include a resin film used as a base material of an optical film, and specific examples include a cellulose ester resin-containing film and an acrylic resin-containing film. That is, examples include a cellulose ester resin-containing film and an acrylic resin-containing film containing a polymer additive.
  • a cellulose ester-based resin-containing film containing a polymer-based additive is preferable in that an optical film having suitable properties and excellent optical properties can be produced as a substrate for an optical film.
  • image defects are sufficiently generated. A suppressed optical film is obtained.
  • the polymer-based additive is not particularly limited, and examples thereof include those that can be transformed into a material suitable for a substrate of an optical film by being contained in a resin film.
  • the polymer additives in the present invention include those having a number average molecular weight of 200 or more and 50000 or less, preferably 300 or more and 10000 or less, and more preferably 300 or more and 5000 or less.
  • Specific examples include relatively high molecular weight plasticizers such as polyester plasticizers and acrylic resin plasticizers. Among these, a polyester plasticizer is preferable.
  • the polyester plasticizer is a polycondensation of at least one polybasic acid and at least one polyhydric alcohol, preferably a polycondensation of one dibasic acid and at least one dihydric alcohol.
  • the dibasic acid may be either an aliphatic dibasic acid or an aromatic dibasic acid
  • the aliphatic dibasic acid may be an aliphatic dicarboxylic acid, such as malonic acid, succinic acid, glutaric acid, or adipine.
  • Acid, sebacic acid, azelaic acid, cyclohexanedicarboxylic acid, maleic acid or fumaric acid are preferably used.
  • aromatic dibasic acid aromatic dicarboxylic acid phthalic acid, isophthalic acid, terephthalic acid, 1,5- Naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,8-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid and the like are preferably used.
  • the dihydric alcohol may be either a divalent aliphatic alcohol (aliphatic diol) or a divalent aromatic alcohol (aromatic ring-containing diol), but is preferably an aliphatic diol.
  • Aliphatic diols include ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1, 4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 1,4-hexanediol, 1,4-cyclohexanediol or 1,4-cyclohexanedi Methanol is preferably used, and bisphenol A, 1,4-dihydroxyfunol or benzene-1,4-dimethanol is preferably used as the aromatic ring-containing diol.
  • the end of the polyester plasticizer may be unsealed or sealed, but in the case of sealing, it contains an aliphatic group having 1 to 22 carbon atoms and an aromatic ring having 6 to 20 carbon atoms. It is preferably sealed with a substituent selected from a group, and among them, a monoalcohol residue or a monocarboxylic acid residue is preferable.
  • the monoalcohol residue is preferably a substituted or unsubstituted monoalcohol residue having 1 to 30 carbon atoms.
  • the monocarboxylic acid used as the monocarboxylic acid residue is preferably a substituted or unsubstituted monocarboxylic acid having 1 to 30 carbon atoms. These may be aliphatic monocarboxylic acids or aromatic ring-containing carboxylic acids. Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butanoic acid, caprylic acid, caproic acid, decanoic acid, dodecanoic acid, stearic acid, and oleic acid.
  • Preferred aromatic ring-containing monocarboxylic acids include, for example, Benzoic acid, p-tert-butylbenzoic acid, p-tert-amylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid, etc. Each of these may be used alone or in combination of two or more.
  • a resin film containing a polyester plasticizer has suitable properties as a substrate for an optical film.
  • image defects are sufficiently generated. A suppressed optical film is obtained.
  • a polyester plasticizer is preferable from the viewpoint of compatibility.
  • the resin film for example, a resin film obtained by a solution casting film forming method or the like can be used. If it is such a resin film, a film thickness is uniform and it can be conveniently used as an optical film.
  • the solution casting film forming method is a casting process in which a resin solution (dope) in which a transparent resin is dissolved is cast on a traveling support to form a casting film (web), and the casting film It is a film forming method provided with the peeling process which peels from the said support body, and the drying process which dries the cast film which peeled. For example, it is performed by a resin film manufacturing apparatus using a solution casting film forming method as shown in FIG. In addition, as a manufacturing apparatus of a resin film, it is not limited to what is shown in FIG. 3, The thing of another structure may be sufficient.
  • FIG. 3 is a schematic view showing a basic configuration of an apparatus for producing a resin film by a solution casting method.
  • the resin film manufacturing apparatus 30 includes an endless belt support 31, a casting die 32, a peeling roller 33, a drying device 34, a winding device 35, and the like.
  • the casting die 32 casts a resin solution (dope) 36 in which a transparent resin is dissolved onto the surface of the endless belt support 31.
  • the endless belt support 31 is supported to be drivable by a pair of driving rollers and driven rollers, forms a casting film made of the resin solution 36 cast from the casting die 32, and is dried while being conveyed.
  • the peeling roller 33 peels the dried cast film from the endless belt support 31.
  • the peeled cast film is further dried by the drying device 34, and the dried cast film is wound around the winding device 35 as a resin film. Since the resin film thus obtained is wound around the core member by the winding device 35, it is obtained as a resin film original.
  • the resin film is not limited to the resin film formed by the solution casting film forming method, and may be a resin film formed by a melt casting film forming method.
  • the manufacturing method of the said resin film original fabric is equipped with the said core member 11 as shown in FIG. 1, and the elongate resin film 12 wound by the outer peripheral surface of the core member 11 in roll shape.
  • the resin film original fabric it will not specifically limit.
  • a method of winding the resin film on the outer peripheral surface of the core member by rotating the core member and supplying the resin film onto the outer peripheral surface of the rotating core member can be mentioned.
  • the resin film original fabric (film roll) by which the elongate resin film was wound by roll shape on the outer peripheral surface of the core member is obtained.
  • a method of installing a core member in a winding device and rotating the core member with the winding device can be used. More specifically, a method using a winding device of a resin film manufacturing apparatus by a solution casting film forming method as shown in FIG.
  • the method for producing the optical film is not particularly limited as long as the method includes an unwinding step and a functional layer forming step.
  • the unwinding step is not particularly limited as long as the resin film is sequentially unwound from the resin film original.
  • a method of rotating the core member of the resin film original in the direction opposite to the direction of winding the resin film and unwinding the resin film from the resin film original can be mentioned.
  • the said functional layer formation process will not be specifically limited if it is a process which can apply
  • a heat treatment or a curing treatment is performed after the coating.
  • the application method of the application liquid is not particularly limited, and a known application method can be used. Specific examples include a gravure coater, a spinner coater, a wire bar coater, a roll coater, a reverse coater, an extrusion coater, an air doctor coater, a die coater, a dip coater, and an ink jet method.
  • the manufacturing apparatus of an optical film is not limited to what is shown in FIG. 4, The thing of another structure may be sufficient. Also, the configuration differs depending on the type of functional layer to be formed.
  • FIG. 4 is a schematic diagram showing a basic configuration of the optical film manufacturing apparatus 40.
  • the optical film manufacturing apparatus 40 includes an unwinding device 41, a coating device 42, temperature adjusting devices 43 and 44, a curing device 45, and a winding device 46.
  • the unwinding device 41 supplies a resin film to the coating device 42 and the like.
  • the unwinding device 41 is a device that unwinds the resin film and supplies it to the coating device 42, for example, by rotating the resin film original.
  • the coating device 42 applies a coating solution containing a material constituting the functional layer onto the surface of the resin film supplied from the unwinding device 41.
  • a general coating device can be used without limitation.
  • multiple layers may be simultaneously applied by a single application device such as an extrusion die having a multi-manifold, or a coating device for applying one layer. You may make it apply
  • the temperature adjusting devices 43 and 44 perform heat treatment or cooling treatment on the coating liquid layer applied on the resin film. For example, first, the coating liquid applied on the resin film is dried by heating with the temperature adjusting device 43. Then, it cools with the temperature control apparatus 44, and reduces the viscosity of a coating liquid layer before a hardening process.
  • the curing device 45 is applied on a resin film and subjected to a curing process on the coating liquid layer that has been subjected to the heat treatment or the cooling process.
  • actinic rays such as ultraviolet rays are irradiated, or heat treatment is performed at a temperature higher than that by the temperature adjusting device. By doing so, the optical film in which the functional layer was formed on the resin film is obtained.
  • the winding device 46 winds up the optical film obtained as described above.
  • the winding device 46 is, for example, a device that includes a rotatable winding roller and winds the optical film by rotating the winding roller.
  • the functional layer of the optical film is not particularly limited as long as it is a layer for forming on the resin film and exhibiting the performance required as the optical film.
  • Specific examples include a hard coat layer, an antireflection layer, an antiglare layer, and a liquid crystal layer.
  • each functional layer will not be specifically limited if it is a layer respectively used as a functional layer of an optical film.
  • the optical film may be one in which only one of these layers is formed on a resin film, or may be a laminate of two or more types of layers.
  • the obtained optical film is attached to a polarizing element to obtain a polarizing plate.
  • the polarizing plate includes a polarizing element and a transparent protective film disposed on the surface of the polarizing element, and the transparent protective film is the optical film.
  • Such a polarizing plate uses the above optical film in which the occurrence of image defects is sufficiently suppressed when used in an image display device. For this reason, when this polarizing plate is used, an image display apparatus with few image defects is obtained.
  • the polarizing plate for example, a completely saponified polyvinyl alcohol aqueous solution is used on at least one surface of a polarizing element produced by immersing and stretching a polyvinyl alcohol film in an iodine solution.
  • a laminate is preferred.
  • the polarizing plate may be formed by attaching an optical film to one surface of the polarizing element, but the optical film may be laminated on the other surface of the polarizing element, or another polarized light.
  • a transparent protective film for a plate may be laminated.
  • the polarizing plate is obtained by laminating an optical film on at least one surface side of the polarizing element as described above.
  • the optical film functions as an optical compensation film such as a retardation film
  • the optical film is preferably disposed so that the slow axis of the optical film is substantially parallel or orthogonal to the absorption axis of the polarizing element.
  • polarizing element examples include, for example, a polyvinyl alcohol polarizing film.
  • Polyvinyl alcohol polarizing films include those obtained by dyeing iodine on polyvinyl alcohol films and those obtained by dyeing dichroic dyes.
  • a modified polyvinyl alcohol film modified with ethylene is preferably used as the polyvinyl alcohol film.
  • the polarizing plate can be used for an image display device such as a liquid crystal display device.
  • a liquid crystal display device includes a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates is the polarizing plate.
  • the liquid crystal cell is a cell in which a liquid crystal substance is filled between a pair of electrodes, and by applying a voltage to the electrodes, the alignment state of the liquid crystal is changed and the amount of transmitted light is controlled.
  • Such a liquid crystal device is an image display device with few image defects since the polarizing plate is used.
  • the image display device using the optical film is not limited to the liquid crystal display device, and becomes an image display device with few image defects.
  • One aspect of the present invention includes a cylindrical core member and a long resin film wound in a roll around the outer peripheral surface of the core member, and the resin film contains a polymer additive.
  • the core member includes an insulating layer and a conductive layer located inside the insulating layer.
  • this resin film original fabric can unwind a resin film capable of producing an optical film in which occurrence of image defects is sufficiently suppressed when used in an image display device. That is, it is possible to provide a resin film raw material capable of unwinding a resin film that can produce an optical film in which the occurrence of an image defect is sufficiently suppressed when used in an image display device.
  • the insulating layer is preferably the outermost layer of the core member.
  • the resin film is preferably a cellulose ester resin-containing film.
  • a film can be produced.
  • the polymer additive contained in the resin film is preferably a polyester plasticizer.
  • the resin film containing the polyester plasticizer When the resin film containing the polyester plasticizer is unwound from the original resin film and used for the production of an optical film, the obtained optical film is prone to image defects when used in an image display device. There was a problem. With respect to the problem of the resin film containing such a polyester-based plasticizer, an optical film in which the occurrence of image defects is sufficiently suppressed can be obtained if the resin film is wound around the core member.
  • the functional layer is at least one selected from the group consisting of a hard coat layer, an antireflection layer, an antiglare layer, and a liquid crystal layer.
  • the surface resistivity was measured using a resistivity meter (a portable surface resistivity / resistance meter 272A manufactured by Monroe Electronics).
  • Core A As shown in FIG. 2, a core A having an insulating layer on the outermost surface and a conductive layer on the inside was fabricated.
  • thermosetting epoxy resin is used as the matrix resin, and a semi-cured sheet obtained by impregnating the glass resin and carbon roving (carbon fiber) with the matrix resin is wound around a mold.
  • the FRP (fiber reinforced plastic) winding core (cylindrical FRP layer) having an inner diameter of 152 mm, an outer diameter of 165 mm, and a length of 1450 mm is separated from the mold.
  • this surface resistivity was 7 ⁇ 10 7 ⁇ / cm 2 and was conductive.
  • a coating solution containing an epoxy resin was applied to the cylindrical FRP layer (inner layer) so that the thickness after drying was 2 mm and dried.
  • thermosetting epoxy resin was apply
  • Core B A core B in which the outermost surface was a conductive layer and the inside was an insulating layer was produced.
  • an antistatic agent (MU-003 manufactured by Muromachi Technos Co., Ltd., a mixture of polyoxyethylene trialkyl ethers and a fluorosurfactant) is made of polycarbonate having an inner diameter of 152 mm, an outer diameter of 165 mm, and a length of 1450 mm. It sprayed uniformly on the surface of the core. Then, it was dried at 30 ° C. for 5 minutes. By doing so, an antistatic layer having an average film thickness of 0.1 ⁇ m was formed on the core. As shown in Table 1, this surface resistivity was 7 ⁇ 10 7 ⁇ / cm 2 and was conductive. As shown in Table 1, the surface resistivity of the polycarbonate core was 2 ⁇ 10 14 ⁇ / cm 2 and was insulative.
  • Core C A core C in which the outermost surface was an insulating layer and the inside was also an insulating layer was produced.
  • an FRP core (cylindrical FRP layer) having an inner diameter of 152 mm, an outer diameter of 165 mm, and a length of 1450 mm was prepared as an inner layer.
  • the cylindrical FRP layer was formed only of glass fibers and matrix resin without using carbon roving. And as shown in Table 1, this surface resistivity was 2 ⁇ 10 14 ⁇ / cm 2 and was insulating.
  • a coating liquid containing an epoxy resin was applied to the cylindrical FRP layer (inner layer) so that the thickness after drying was 2 mm, and dried and cured. By doing so, an epoxy resin layer having an average film thickness of 2 mm was formed as an outer layer (outermost layer) on the cylindrical FRP layer. As shown in Table 1, this surface resistivity was 2 ⁇ 10 14 ⁇ / cm 2 and was insulating.
  • the obtained resin solution was filtered using a filter paper having a filtration accuracy of 0.005 mm. Air bubbles in the resin solution were degassed by allowing the resin solution after filtration to stand overnight. Using the resin solution thus obtained as a dope, a resin film was produced as follows.
  • both ends of the film were gripped with clips and dried at a drying temperature (heat treatment temperature / stretching temperature) of 130 ° C. while maintaining the width.
  • a drying temperature heat treatment temperature / stretching temperature
  • the residual solvent amount when starting this drying was 20 mass%.
  • it was made to dry for 15 minutes, conveying the inside of a 100 degreeC drying apparatus with many rolls.
  • both ends were cut (slit) so that a film with a width of 1330 mm was formed, and knurling with a width of 15 mm and a height of 10 ⁇ m was applied to both ends of the film.
  • the knurling resin film was wound around the core members (cores A to C) for a length of 500 m at an initial winding tension of 220 N / m and a taper of 40%. By doing so, the resin film original fabric was obtained.
  • the residual solvent amount of the resin film wound around the resin film original fabric was 0.2% by mass, and the film thickness was 40 ⁇ m.
  • ⁇ Resin film stock wound with a resin film containing no polymer-based additive First, in a sealable dissolution tank containing 440 parts by mass of methylene chloride and 40 parts by mass of ethanol, 100 parts by mass of cellulose ester-based triacetyl cellulose, 8 parts by mass of triphenyl phosphate, ethylphthalylethyl glycolate 2 Part by mass, 1 part by mass of Tinuvin 109 (manufactured by Ciba Japan Co., Ltd.), and 0.2 part by mass of silica particles (Aerosil 972V manufactured by Nippon Aerosil Co., Ltd.) were added. And after raising the liquid temperature to 80 ° C., the mixture was stirred for 3 hours.
  • the resin solution in which the cellulose ester resin was dissolved was obtained. Then, stirring was complete
  • the resin solution thus obtained was produced in the same manner as the method for producing a resin film raw material wound with a resin film containing a polymer additive, except that the resin solution was used as a dope.
  • HC layer ⁇ Formation of hard coat (HC) layer> (Preparation of resin composition for forming hard coat layer) 30 parts by mass of pentaerythritol triacrylate (PETA) and 1.5 parts by mass of a photopolymerization initiator (Irgacure 907 (trade name) manufactured by Ciba Japan KK) were dissolved in 73.5 parts by mass of methyl isobutyl ketone. A resin composition for forming a hard coat layer was obtained.
  • PETA pentaerythritol triacrylate
  • Irgacure 907 photopolymerization initiator
  • the resin composition for forming a hard coat layer was bar-coated on a resin film that was unwound from (unrolled from) the original resin film, and the solvent was removed by drying. Thereafter, UV irradiation is performed at an irradiation dose of about 20 mJ / cm 2 using an ultraviolet irradiation device (Fusion UV manufactured by Fusion UV Systems Japan Co., Ltd., light source: H bulb), the hard coat layer is semi-cured, and the film thickness is 10 ⁇ m.
  • the hard coat layer was prepared on a resin film.
  • the resin composition for forming a hard coat layer was bar-coated on a resin film that was unwound from (unrolled from) the original resin film, and the solvent was removed by drying. Thereafter, UV irradiation is performed at an irradiation dose of about 20 mJ / cm 2 using an ultraviolet irradiation device (Fusion UV manufactured by Fusion UV Systems Japan Co., Ltd., light source: H bulb), the hard coat layer is semi-cured, and the film thickness is 10 ⁇ m.
  • the hard coat layer was prepared on a resin film.
  • the resin composition for forming a low refractive index layer was bar-coated, and the solvent was removed by drying. Thereafter, ultraviolet irradiation was performed using the ultraviolet irradiation apparatus at an irradiation dose of about 200 mJ / cm 2 to cure the coating film, and a low refractive index layer having a thickness of about 100 nm was produced on the hard coat layer.
  • an antireflection layer composed of a hard coat layer and a low refractive index layer was formed on the resin film.
  • the film in which the antireflection layer is formed on the resin film is an antireflection film.
  • the resin composition for forming an antiglare layer was bar-coated on a resin film unwound from (unrolled from) a resin film original, and the solvent was removed by drying. Then, ultraviolet rays are irradiated at an irradiation dose of about 100 mJ / cm 2 using an ultraviolet irradiation device (Fusion UV manufactured by Fusion UV Systems Japan Co., Ltd., light source: H bulb), the coating film is cured, and the antiglare layer is resin. Made on film. A film in which an antiglare layer is formed on this resin film is an antiglare film.
  • a coating solution having the same composition as the coating solution used when forming the optically anisotropic layer described in the above publication is continuously applied, dried and heated on the alignment film using a bar coater. (Orientation ripening) was further performed, and an optically anisotropic layer having a thickness of about 1 ⁇ m was formed by irradiation with an ultraviolet ray of 600 mJ / cm 2 in an air atmosphere.
  • the optically anisotropic layer had a slow axis in the direction of 45 ° with respect to the longitudinal direction of the transparent support, and the retardation value (Re550) at 550 nm was about 135 nm.
  • the film obtained as described above is a retardation plate ( ⁇ / 4 plate), which is an optically anisotropic film.
  • Example 1 and Comparative Examples 1 and 2 are hard coat films in which a hard coat (HC) layer is formed on the resin film unwound from the resin film original fabric by the above method. is there.
  • Example 2 Comparative Examples 3 and 4, and Reference Examples 1 to 3 are antireflection films in which an antireflection (AR) layer is formed on the resin film unwound from the resin film original fabric by the above method. .
  • Example 3 and Comparative Examples 5 and 6 are antiglare films in which an antiglare (AG) layer is formed on the resin film unwound from the resin film original fabric by the above method.
  • Example 4 and Comparative Examples 7 and 8 are optically anisotropic films in which an optically anisotropic layer is formed by the above-described method on a resin film that has been unwound from a raw resin film.
  • the core A was used as the core member of the resin film original.
  • Comparative Examples 1, 3, 5, and 7 and Reference Example 2 the core B is used as the core member of the resin film original.
  • Comparative Examples 2, 4, 6, 8 and Reference Example 3 use the core C as the core member of the resin film original.
  • resin films containing polymer additives are used.
  • Reference Examples 1 to 3 use resin films that do not contain polymer additives.
  • a black matrix pattern plate (105 ppi) in which a black matrix pattern was formed on a glass plate having a thickness of 0.7 mm was placed on a viewer (Light Viewer 7000PRO manufactured by Hakuba Photo Industry Co., Ltd.) with the pattern surface facing down. And it mounted so that the surface on the opposite side to the surface in which the functional layer (coating layer) of the obtained optical film was formed may be contacted on the black matrix pattern board. Then, the optical film was visually observed in a dark room with the viewer operated while lightly pressing the edge of the optical film with a finger so that the optical film did not float.
  • optical films having an optical function such as an antireflection film, an antiglare film, and an optically anisotropic film
  • the suppression of the occurrence of interference fringes, glare, and moire, which are the effects of the present invention was remarkable. .
  • a resin film raw material capable of unwinding a resin film that can produce an optical film in which the occurrence of image defects when used in an image display device is sufficiently suppressed. Moreover, the manufacturing method of the optical film using such a resin film original fabric is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

One aspect of the present invention is a resin film web provided with: a cylindrical core member; and a continuous resin film wrapped around, in a roll form, the outer circumferential surface of the core member, the resin film containing a polymer-based additive, and the core member being provided with an insulating layer, and a conducting layer positioned on the inside of the insulating layer.

Description

樹脂フィルム原反、及び光学フィルムの製造方法Resin film original and optical film manufacturing method
 本発明は、樹脂フィルム原反、及び光学フィルムの製造方法に関する。 The present invention relates to a resin film original fabric and a method for producing an optical film.
 液晶表示装置やプラズマディスプレイ装置等の画像表示装置に用いられる光学フィルムの製造に用いられる樹脂フィルムは、一般的に、長尺状のものを、コア部材にロール状に巻き回した樹脂フィルム原反(フィルムロール)として、保存及び輸送等に供されている。そして、樹脂フィルムを使用する際には、樹脂フィルム原反から樹脂フィルムを順次巻き出して使用している。 In general, a resin film used for manufacturing an optical film used in an image display device such as a liquid crystal display device or a plasma display device is a resin film raw material obtained by winding a long one around a core member in a roll shape. (Film roll) is used for storage and transportation. And when using a resin film, it unwinds and uses the resin film from the resin film original fabric one by one.
 また、このような光学フィルムとしては、種々の機能を発揮させるために、樹脂フィルムの表面に機能層を備えたものが用いられる。機能層としては、例えば、ハードコート層、屈折率を調整した反射防止層、表面に凹凸形状が形成された防眩層、及び液晶分子の配向方向を制御した液晶層(光学異方性層)等が挙げられる。また、このような機能層は、機能層を構成する材料を含む機能層形成用の塗布液を樹脂フィルムの表面に塗布することによって、形成することができる。このような場合、均一な機能層を形成するために、塗布液が、樹脂フィルムに均一に塗れ広がることが求められる。例えば、塗布液が、樹脂フィルム上ではじかれる現象、すなわち塗布はじきにより、形成される機能層にむらが発生することを抑制する必要がある。 In addition, as such an optical film, a film provided with a functional layer on the surface of a resin film is used in order to exhibit various functions. Examples of the functional layer include a hard coat layer, an antireflection layer with an adjusted refractive index, an antiglare layer having a concavo-convex shape formed on the surface, and a liquid crystal layer (optically anisotropic layer) in which the orientation direction of liquid crystal molecules is controlled. Etc. Such a functional layer can be formed by applying a functional layer forming coating liquid containing a material constituting the functional layer to the surface of the resin film. In such a case, in order to form a uniform functional layer, it is required that the coating solution be uniformly applied and spread on the resin film. For example, it is necessary to suppress the occurrence of unevenness in the formed functional layer due to the phenomenon that the coating solution is repelled on the resin film, that is, the repelling.
 このような塗布はじきを抑制する方法として、例えば、特許文献1に記載の方法が挙げられる。 As a method for suppressing such application repelling, for example, the method described in Patent Document 1 can be mentioned.
 特許文献1には、連続した帯状のフィルムを巻き取る際、コア表層又はコア全体に静電防止処理が施されている筒状のコアを用いて巻き取るフィルム原反の製造方法が記載されている。特許文献1によれば、連続した帯状のフィルムを長期に保存した場合でもフィルムが帯電することがなく、接着剤や塗料を塗布した場合にはじきが発生しないフィルムを提供することが可能であることが開示されている。 Patent Document 1 describes a method of manufacturing a film raw material that is wound using a cylindrical core in which an antistatic treatment is applied to the core surface layer or the entire core when winding a continuous band-shaped film. Yes. According to Patent Document 1, it is possible to provide a film that is not charged even when a continuous belt-like film is stored for a long period of time and does not generate repellency when an adhesive or paint is applied. Is disclosed.
特開2007-176034号公報 Japanese Patent Laid-Open No. 2007-176034
 本発明は、画像表示装置に用いた場合における画像欠陥の発生が充分に抑制された光学フィルムを製造できる樹脂フィルムを巻き出し可能な樹脂フィルム原反を提供することを目的とする。また、このような樹脂フィルム原反を用いた光学フィルムの製造方法を提供することを目的とする。 An object of the present invention is to provide a resin film raw material capable of unwinding a resin film capable of producing an optical film in which the occurrence of an image defect is sufficiently suppressed when used in an image display device. Moreover, it aims at providing the manufacturing method of the optical film using such a resin film original fabric.
 本発明の一局面は、円筒状のコア部材と、前記コア部材の外周面にロール状に巻き回された長尺状の樹脂フィルムとを備え、前記樹脂フィルムが、ポリマー系添加剤を含有し、前記コア部材が、絶縁層と、前記絶縁層の内側に位置する導電層とを備えることを特徴とする樹脂フィルム原反である。 One aspect of the present invention includes a cylindrical core member and a long resin film wound in a roll around the outer peripheral surface of the core member, and the resin film contains a polymer additive. The core member includes an insulating layer and a conductive layer located inside the insulating layer.
 また、本発明の他の一局面は、前記樹脂フィルム原反から、前記樹脂フィルムを巻き出す工程と、巻き出された樹脂フィルム上に、機能層を構成する材料を含む塗布液を塗布して、前記機能層を形成する工程とを備えることを特徴とする光学フィルムの製造方法である。 In another aspect of the present invention, a step of unwinding the resin film from the original film of the resin film, and applying a coating liquid containing a material constituting the functional layer on the unwound resin film. And a step of forming the functional layer.
 本発明の目的、特徴、局面、及び利点は、以下の詳細な記載と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
図1は、本実施形態に係る樹脂フィルム原反を示す概略図である。FIG. 1 is a schematic view showing a resin film original fabric according to this embodiment. 図2は、本実施形態に係る樹脂フィルム原反のコア部材を示す概略斜視図である。FIG. 2 is a schematic perspective view showing the core member of the resin film original fabric according to this embodiment. 図3は、溶液流延法による樹脂フィルムの製造装置の基本的な構成を示す概略図である。FIG. 3 is a schematic view showing a basic configuration of a resin film manufacturing apparatus by a solution casting method. 図4は、光学フィルムの製造装置の基本的な構成を示す概略図である。FIG. 4 is a schematic diagram showing a basic configuration of an optical film manufacturing apparatus.
 本発明者の検討によれば、上記のような、機能層を備えた光学フィルムの場合、要求される品質が非常に高く、特許文献1に記載の方法で塗布はじきを抑制しただけでは不充分であった。すなわち、得られた光学フィルムを画像表示装置に用いた場合、種々の画像欠陥を発生させる場合があることが明らかとなった。例えば、反射防止層を備えた光学フィルムである反射防止フィルムの場合、塗布はじきを抑制しただけでは不充分であり、反射防止層の厚みむらがわずかに発生しただけで、反射防止性能が大きく変化してしまう。このため、画像表示装置において、モアレ縞等の干渉縞や色むら等の不具合が発生する場合があった。また、微粒子を分散させて、表面に凹凸形状が形成された防眩層を形成させる場合や、液晶分子を分散させ、その配向方向を制御して光学異方性層を形成させる場合等も、これらの機能層の厚みむらによる影響が出てしまう。さらに、これらの場合、厚みむらの影響だけではなく、微粒子や液晶分子の凝集、及び液晶分子の配向方向の乱れも、画像欠陥となって発生してしまう場合があった。 According to the study of the present inventor, in the case of the optical film provided with the functional layer as described above, the required quality is very high, and it is not sufficient to suppress the application repelling by the method described in Patent Document 1. Met. That is, when the obtained optical film was used for an image display device, it became clear that various image defects may occur. For example, in the case of an antireflection film, which is an optical film provided with an antireflection layer, it is not sufficient to suppress the application of repelling, and the antireflection performance greatly changes with only a slight uneven thickness of the antireflection layer. Resulting in. For this reason, in the image display device, there are cases where problems such as interference fringes such as moire fringes and color unevenness occur. In addition, when fine particles are dispersed to form an antiglare layer with irregularities formed on the surface, or when liquid crystal molecules are dispersed and the orientation direction is controlled to form an optically anisotropic layer, The influence of the thickness unevenness of these functional layers comes out. Further, in these cases, not only the influence of the thickness unevenness but also aggregation of fine particles and liquid crystal molecules and disturbance of the alignment direction of the liquid crystal molecules may occur as image defects.
 また、樹脂フィルムには、その柔軟性等の性状を調整するために、ポリマー系添加剤を含有させることがある。このようなポリマー系添加剤を含有する樹脂フィルムの場合、上記のような画像欠陥に関する不具合は、より顕著に発生した。 In addition, the resin film may contain a polymer additive in order to adjust properties such as flexibility. In the case of a resin film containing such a polymer-based additive, the above-described defects related to image defects occurred more remarkably.
 そこで、本発明者は、画像表示装置に用いた場合における画像欠陥が発生する原因を検討した結果、光学フィルムの基材である樹脂フィルムの帯電量を小さくするだけでは、画像欠陥の発生を充分に抑制できる光学フィルムを得るには、不充分であることがわかった。そして、本発明者は、樹脂フィルムの帯電むらが原因であり、このような帯電むらは、樹脂フィルム原反の保存時や、樹脂フィルム原反から樹脂フィルムを巻き出す際に発生すると推察した。 Therefore, as a result of examining the cause of the occurrence of image defects when used in an image display device, the present inventor can sufficiently generate image defects only by reducing the charge amount of the resin film that is the base material of the optical film. It was found to be insufficient to obtain an optical film that can be suppressed to a low level. And this inventor presumed that it was due to the nonuniformity of the charging of the resin film, and such charging nonuniformity occurred when the resin film original was stored or when the resin film was unwound from the resin film original.
 また、ポリマー系添加剤を含有する樹脂フィルムの場合、上記のような画像欠陥に関する不具合がより顕著に発生した原因も、このような樹脂フィルムが、帯電むらの保持されやすいフィルムであることによると考えられる。また、ポリマー系添加剤を含有する樹脂フィルムの帯電むらが保持されやすい原因は、樹脂フィルムを構成する成分である樹脂と、それに混入するポリマー系添加剤とでは比抵抗(電気抵抗率)が異なり、比抵抗の小さい方の成分に電荷が集中し帯電むらが生じると考えられる。すなわち、樹脂フィルムを構成する成分である樹脂に、比抵抗が樹脂とは異なるポリマー系添加剤が混入されていることにより、帯電むらが保持されやすくなっていると考えられる。 Further, in the case of a resin film containing a polymer-based additive, the cause of the above-mentioned defects related to image defects more significantly is that such a resin film is a film that easily retains uneven charging. Conceivable. Also, the reason why non-uniform charging of a resin film containing a polymer additive is easily maintained is that the specific resistance (electrical resistivity) is different between the resin that is a component of the resin film and the polymer additive mixed in the resin film. It is considered that the charge is concentrated on the component having the smaller specific resistance, resulting in uneven charging. That is, it is considered that charging unevenness is easily maintained by mixing a polymer additive having a specific resistance different from that of the resin into the resin which is a component constituting the resin film.
 また、樹脂フィルムを巻き回させるコア部材の導電性を高めた場合、例えば、特許文献1に記載の方法において、静電防止処理として、導電性付与処理をした場合、樹脂フィルムに帯電された電荷は、コア部材を介して移動するため、樹脂フィルムの帯電量は、低くなると考えられる。このコア部材の導電性が高ければ、樹脂フィルムの帯電量は、非常に低くなり、例えば、ほぼ0kVになると考えられる。このような場合であっても、樹脂フィルム原反の保存時や、樹脂フィルム原反から樹脂フィルムを巻き出す際に、摩擦帯電や剥離帯電が発生することが考えられる。このような帯電が発生すると、発生した電荷が、コア部材と樹脂フィルムとの間を移動して、局所的にわずかであっても帯電を発生させたり、微小帯電むらが発生してしまう。これらが起因して、画像欠陥の原因となりうる塗布むらの発生を誘起してしまうと考えられる。 Further, when the conductivity of the core member around which the resin film is wound is increased, for example, in the method described in Patent Document 1, when the conductivity is imparted as an antistatic treatment, the charge charged on the resin film Since it moves via a core member, it is thought that the charge amount of a resin film becomes low. If the conductivity of the core member is high, the charge amount of the resin film becomes very low, for example, approximately 0 kV. Even in such a case, it is conceivable that frictional charge or peeling charge occurs when the resin film original is stored or when the resin film is unwound from the resin film original. When such charging occurs, the generated charge moves between the core member and the resin film, and even if the charge is locally small, charging is generated or micro-charging unevenness occurs. This is considered to induce the occurrence of coating unevenness that can cause image defects.
 一方、絶縁性のコア部材を用いると、コア部材を電荷が移動できないため、コア部材に巻き回された樹脂フィルムは、非常に高い電位で帯電すると考えられる。このとき、樹脂フィルム内では、不均一に帯電して、局所的な帯電むらが発生し、それが起因して塗布むらが発生すると考えられる。 On the other hand, if an insulating core member is used, the charge cannot move through the core member, so the resin film wound around the core member is considered to be charged at a very high potential. At this time, it is considered that the resin film is charged non-uniformly and local charging unevenness occurs, which causes uneven coating.
 また、樹脂フィルム原反から巻き出した樹脂フィルムに対して、除電処理や逆電荷を付与することによって、樹脂フィルムに発生した帯電むらを低減させる方法も考えられる。樹脂フィルムに逆電荷を付与しても、帯電むらを解消することは困難であり、樹脂フィルム原反に巻き回された状態の樹脂フィルムに蓄積された帯電むらを、樹脂フィルムの巻き出し後に、解消することは困難であった。また、除電処理を充分に行おうとすれば、設備の大型化や、製造速度の低下を招く原因にもなりうる。 Also, a method of reducing the uneven charging generated in the resin film by applying a charge-removing treatment or a reverse charge to the resin film unwound from the resin film original fabric may be considered. Even if a reverse charge is applied to the resin film, it is difficult to eliminate the charging unevenness, and the charging unevenness accumulated in the resin film wound around the resin film original is unwound after unwinding the resin film. It was difficult to eliminate. Moreover, if the charge removal process is sufficiently performed, it may cause an increase in the size of equipment and a decrease in production speed.
 そこで、本発明者は、コア部材の構成を検討することによって、ポリマー系添加剤を含有する樹脂フィルムを巻き回した樹脂フィルム原反であっても、そこから巻き出された樹脂フィルムの帯電むらの発生を充分に抑制可能な樹脂フィルム原反に想到するに到った。すなわち、本発明者は、ポリマー系添加剤を含有する樹脂フィルムを巻き回した樹脂フィルム原反であっても、そこから巻き出された樹脂フィルム上に機能層を形成させて光学フィルムを製造しても、画像表示装置における画像欠陥の発生の抑制された光学フィルムが得られる樹脂フィルム原反に想到するに到った。 Therefore, the present inventor has examined the configuration of the core member, so that the resin film unrolled from the resin film original wound around the resin film containing the polymer additive is charged unevenly. The inventors have arrived at a resin film raw material capable of sufficiently suppressing the occurrence of the above. That is, the present inventor manufactures an optical film by forming a functional layer on a resin film unwound from a resin film raw film obtained by winding a resin film containing a polymer additive. However, the inventors have arrived at a resin film original fabric from which an optical film in which the occurrence of image defects in the image display device is suppressed can be obtained.
 以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。 Hereinafter, embodiments according to the present invention will be described, but the present invention is not limited thereto.
 本発明の実施形態に係る樹脂フィルム原反は、円筒状のコア部材と、前記コア部材の外周面にロール状に巻き回された長尺状の樹脂フィルムとを備えており、前記樹脂フィルムが、ポリマー系添加剤を含有し、前記コア部材が、絶縁層と、前記絶縁層の内側に位置する導電層とを備えることを特徴とする。なお、長尺とは、例えば、長さが、幅に対して5倍程度以上であることをいう。そして、ここでの長尺とは、樹脂フィルムの長さが、樹脂フィルムの幅に対して、5倍程度以上であることをいい、好ましくは10倍以上であることをいう。 The resin film original fabric according to the embodiment of the present invention includes a cylindrical core member and a long resin film wound around the outer peripheral surface of the core member in a roll shape. And a polymer-based additive, wherein the core member includes an insulating layer and a conductive layer located inside the insulating layer. In addition, long means that length is about 5 times or more with respect to a width | variety, for example. And the elongate here means that the length of the resin film is about 5 times or more, preferably 10 times or more, with respect to the width of the resin film.
 このような、外周側に絶縁層を備え、その内側に導電層を備えるコア部材を用いることによって、樹脂フィルム原反の保存時や、樹脂フィルムの繰り出し時に発生した、樹脂フィルムの電荷が、コア部材の導電層に移動し、導電層内に拡散されると考えられる。この際、樹脂フィルムに発生した電荷が、絶縁層を介して、導電層に移動するので、緩やかに移動し、樹脂フィルムの帯電むらの発生を抑制できると考えられる。また、樹脂フィルム原反を保存している際等に、導電層に帯電や帯電むらが発生しても、導電性に発生した電荷が、導電層より導電性の低い樹脂フィルムに、絶縁層を介して、移動しにくいと考えられる。さらに、絶縁層に発生した電荷は、樹脂フィルムに移動するのではなく、導電性の高い導電層のほうに移動しやすいと考えられる。これらのことから、樹脂フィルムの帯電量を低下させるとともに、樹脂フィルムが帯電したとしても、帯電むらが充分に抑制された状態になると考えられる。このことから、樹脂フィルム原反から巻き出した樹脂フィルムを用いると、画像表示装置に用いた場合における画像欠陥の発生が充分に抑制された光学フィルムを製造することができる。具体的には、モアレ縞等の干渉縞やギラつきの発生が充分に抑制された光学フィルムを製造することができる。 By using such a core member having an insulating layer on the outer peripheral side and a conductive layer on the inner side, the charge of the resin film generated when the resin film is stored or when the resin film is unwound is reduced. It is thought that it moves to the conductive layer of the member and diffuses into the conductive layer. At this time, since the charge generated in the resin film moves to the conductive layer through the insulating layer, it is considered that the charge moves slowly and the occurrence of uneven charging of the resin film can be suppressed. In addition, when the resin film is stored, even if charging or uneven charging occurs in the conductive layer, the insulating layer is applied to the resin film that is less conductive than the conductive layer. It is thought that it is difficult to move through. Furthermore, it is considered that the electric charge generated in the insulating layer does not move to the resin film but easily moves to the conductive layer having high conductivity. From these facts, it is considered that the charging amount of the resin film is reduced, and even when the resin film is charged, the uneven charging is sufficiently suppressed. From this, when the resin film unwound from the resin film original fabric is used, an optical film in which the occurrence of image defects when used in an image display device is sufficiently suppressed can be produced. Specifically, an optical film in which generation of interference fringes such as moire fringes and glare is sufficiently suppressed can be manufactured.
 以上のことから、上記のような樹脂フィルム原反は、画像表示装置に用いた場合における画像欠陥の発生が充分に抑制された光学フィルムを製造可能な樹脂フィルムを巻き出すことができる。 From the above, the resin film original as described above can unwind a resin film capable of producing an optical film in which the occurrence of image defects is sufficiently suppressed when used in an image display device.
 また、前記樹脂フィルム原反は、上述したように、前記コア部材の外周面にロール状に巻き回されたフィルムロールであり、具体的には、例えば、図1に示すような樹脂フィルム原反等が挙げられる。なお、図1は、本実施形態に係る樹脂フィルム原反10を示す概略図である。また、図1(a)は、樹脂フィルム原反10を示す概略斜視図であり、図1(b)は、樹脂フィルム原反10の保存状態について説明するための概略斜視図であり、図1(c)は、樹脂フィルム原反10の保存状態について説明するための上面図である。 Further, as described above, the resin film original is a film roll wound around the outer peripheral surface of the core member in a roll shape. Specifically, for example, the resin film original as shown in FIG. Etc. FIG. 1 is a schematic view showing a resin film original fabric 10 according to this embodiment. 1A is a schematic perspective view showing the resin film original fabric 10, and FIG. 1B is a schematic perspective view for explaining the storage state of the resin film original fabric 10, FIG. (C) is a top view for demonstrating the preservation | save state of the resin film original fabric 10. FIG.
 樹脂フィルム原反10は、図1(a)に示すように、円筒状のコア部材11と、コア部材11の外周面にロール状に巻き回された長尺状の樹脂フィルム12とを備える。また、樹脂フィルム原反10の保存は、図1(b)及び図1(c)に示すように、コア部材11の両端部を軸支可能な保持部14を備えた架台15に載置して保存する方法等が挙げられる。このように、樹脂フィルム原反10を保存したり、この樹脂フィルム原反10から樹脂フィルム12を繰り出す際に、樹脂フィルムが帯電することがある。本実施形態に係る樹脂フィルム原反は、このような樹脂フィルムにおける帯電むらの発生を充分に抑制できるものである。 As shown in FIG. 1A, the resin film original fabric 10 includes a cylindrical core member 11 and a long resin film 12 wound around the outer peripheral surface of the core member 11 in a roll shape. In addition, as shown in FIGS. 1B and 1C, the resin film original fabric 10 is stored on a gantry 15 provided with holding portions 14 that can pivotally support both ends of the core member 11. And the like. Thus, when the resin film original fabric 10 is stored or when the resin film 12 is fed out from the resin film original fabric 10, the resin film may be charged. The resin film original fabric according to the present embodiment can sufficiently suppress the occurrence of uneven charging in such a resin film.
 まず、樹脂フィルム原反10のコア部材11について説明する。 First, the core member 11 of the resin film original fabric 10 will be described.
 また、前記コア部材は、絶縁層と、前記絶縁層の内側に位置する導電層とを備えるものであれば、特に限定されない。前記コア部材11としては、例えば、図2に示すような、絶縁層21と、その絶縁層21の内側に位置する導電層22とを備えるコア部材等が挙げられる。なお、図2は、本実施形態に係る樹脂フィルム原反のコア部材11を示す概略斜視図であり、コア部材11の一部を切断して断面を示している。また、図2は、絶縁層と導電層との位置関係を示すための図面であり、各層の厚みは、図2に示す厚みに限定されるものではない。 The core member is not particularly limited as long as it includes an insulating layer and a conductive layer located inside the insulating layer. Examples of the core member 11 include a core member including an insulating layer 21 and a conductive layer 22 positioned inside the insulating layer 21 as shown in FIG. FIG. 2 is a schematic perspective view showing the core member 11 of the raw resin film according to the present embodiment, and shows a cross section by cutting a part of the core member 11. FIG. 2 is a drawing for showing the positional relationship between the insulating layer and the conductive layer, and the thickness of each layer is not limited to the thickness shown in FIG.
 なお、ここで、絶縁層とは、絶縁性を有する層であり、具体的には、表面抵抗率が、1012Ω/cm以上の層等が挙げられる。また、導電層とは、導電性を有する層であり、具体的には、表面抵抗率が、10Ω/cm以下の層等が挙げられる。また、ここでの表面抵抗率は、一般的な抵抗率計で測定することができ、例えば、Monroe Electronics社製のポータブル表面抵抗率/抵抗計272A等を用いて測定することができる。 Here, the insulating layer is an insulating layer, and specifically includes a layer having a surface resistivity of 10 12 Ω / cm 2 or more. Moreover, a conductive layer is a layer which has electroconductivity, Specifically, the layer etc. whose surface resistivity is 10 < 9 > ohm / cm < 2 > or less are mentioned. The surface resistivity here can be measured with a general resistivity meter, for example, using a portable surface resistivity / resistance meter 272A manufactured by Monroe Electronics.
 また、前記コア部材11は、図2に示すような、絶縁層21と導電層22とからなるものに限定されず、それ以外の層を備えるものであってもよい。例えば、導電層22の内側に、他の層を備えるものであってもよい。また、絶縁層21の表面に、保護層や、潤滑性を高めるための潤滑剤層等を備えるものであってもよい。 Further, the core member 11 is not limited to the insulating layer 21 and the conductive layer 22 as shown in FIG. 2, and may include other layers. For example, another layer may be provided inside the conductive layer 22. The surface of the insulating layer 21 may be provided with a protective layer, a lubricant layer for improving lubricity, and the like.
 また、前記コア部材は、前記最外層が絶縁層であるものが好ましい。そうすることによって、樹脂フィルムと直接接触するのが、この絶縁層となり、樹脂フィルムでの帯電むらの発生をより抑制でき、本発明の効果を好適に発揮できる。すなわち、樹脂フィルム原反から巻き出された樹脂フィルムを、光学フィルムの製造に供した場合、得られた光学フィルムを、画像表示装置に用いた場合における画像欠陥の発生をより抑制できる。 Further, the core member is preferably such that the outermost layer is an insulating layer. By doing so, it becomes this insulating layer that is in direct contact with the resin film, the generation of uneven charging in the resin film can be further suppressed, and the effects of the present invention can be suitably exhibited. That is, when the resin film unwound from the raw resin film is used for the production of an optical film, the occurrence of image defects when the obtained optical film is used in an image display device can be further suppressed.
 また、前記コア部材は、絶縁層と導電層とが直接接触していることが好ましい。そうすることによって、樹脂フィルムで発生した電荷が、絶縁層を介して、導電層に移動しやすく、本発明の効果を好適に発揮できると考えられる。 Moreover, it is preferable that the insulating layer and the conductive layer are in direct contact with the core member. By doing so, it is considered that charges generated in the resin film can easily move to the conductive layer through the insulating layer, and the effects of the present invention can be suitably exhibited.
 また、前記絶縁層は、絶縁性を有する層であれば、特に限定されない。具体的には、エポキシ樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ABS樹脂、ポリエステル樹脂、ポリスチレン樹脂、アクリル樹脂などの樹脂層等が挙げられる。この中でも、耐久性の観点から、エポキシ樹脂層が好ましい。 The insulating layer is not particularly limited as long as it is an insulating layer. Specific examples include resin layers such as epoxy resins, polyurethane resins, polycarbonate resins, polyethylene resins, polypropylene resins, ABS resins, polyester resins, polystyrene resins, and acrylic resins. Among these, an epoxy resin layer is preferable from the viewpoint of durability.
 また、前記絶縁層の厚みは、特に限定されないが、例えば、3mm以下が好ましく、0.5mm以上2mm以下であることがより好ましい。このような厚みであれば、樹脂フィルムで発生した電荷の、絶縁層を介した導電層への移動を、より好適に行うことができる。すなわち、樹脂フィルムと導電層との間に絶縁層が介在する効果をより発揮することができる。 The thickness of the insulating layer is not particularly limited, but is preferably 3 mm or less, and more preferably 0.5 mm or more and 2 mm or less. With such a thickness, the charge generated in the resin film can be more suitably transferred to the conductive layer through the insulating layer. That is, the effect that an insulating layer intervenes between the resin film and the conductive layer can be further exhibited.
 また、前記導電層は、導電性を有する層であれば、特に限定されない。具体的には、樹脂フィルム原反のコア部材として、一般的に用いられるものであって、導電性を有するコア部材等が挙げられる。より具体的には、導電材を含有した樹脂と繊維とを含む繊維強化樹脂(FRP)、導電性ポリマーを含有した樹脂、及び金属等が挙げられる。この中でも、製造や取り扱いの容易性の観点から、導電材を含有したFRP層が好ましい。前記樹脂は、FRPの樹脂として用いることができるものであれば、特に限定されない。具体的には、エポキシ樹脂等が挙げられる。また、前記繊維は、FRPの繊維として用いることができるものであれば、特に限定されない。具体的には、ガラス繊維等が挙げられる。また、前記導電材としては、FRPに含有させて、導電性を有するFRPを得ることができるものであれば、特に限定されず、例えば、カーボン繊維やカーボンブラックのカーボン部材、及びイオン系界面活性剤や非イオン系界面活性剤の静電防止剤等が挙げられる。また、これらの含有量は、特に限定されない。前記樹脂と前記繊維との含有量は、例えば、樹脂フィルム原反のコア部材として用いられる円筒状のFRP層と同様の組成であればよい。また、前記導電材の含有量は、FRP層が、コア材として用いることができる強度等を維持しながら、導電性を発揮できる量であれば、特に限定されない。また、前記絶縁層の厚みは、一般的に用いられるコア部材の厚み程度であればよく、特に限定されない。 The conductive layer is not particularly limited as long as it is a conductive layer. Specifically, it is generally used as the core member of the resin film raw material, and includes a core member having conductivity. More specifically, a fiber reinforced resin (FRP) including a resin containing a conductive material and fibers, a resin containing a conductive polymer, a metal, and the like can be given. Among these, an FRP layer containing a conductive material is preferable from the viewpoint of ease of production and handling. The resin is not particularly limited as long as it can be used as an FRP resin. Specifically, an epoxy resin etc. are mentioned. Moreover, the said fiber will not be specifically limited if it can be used as a fiber of FRP. Specifically, glass fiber etc. are mentioned. The conductive material is not particularly limited as long as it can be contained in FRP to obtain conductive FRP. For example, carbon fiber or carbon black carbon member, and ionic surface activity And antistatic agents such as nonionic surfactants. Moreover, these content is not specifically limited. Content of the said resin and the said fiber should just be the same composition as the cylindrical FRP layer used as a core member of a resin film original fabric, for example. Further, the content of the conductive material is not particularly limited as long as the FRP layer can exhibit conductivity while maintaining the strength that can be used as the core material. Moreover, the thickness of the said insulating layer should just be the thickness of the core member generally used, and is not specifically limited.
 また、前記静電防止剤をコア内部に塗布、乾燥させる方法を用いてもよい。静電防止剤としては各種イオン系界面活性剤やフッ素系界面活性剤に代表される非イオン系界面活性剤が一般的であるが、静電防止剤の具体例としては、ムロマチテクノス(株)製MU-003、イチコウエンジニアリング(株)製MX-50、アキレス(株)製SL-10などが挙げられる。静電防止剤の塗布厚みは特に限定されないが、静電効果を十分発揮できる厚みであることが重要であり、0.001μm以上、好ましくは0.01μm以上、最も好ましくは0.1μm以上の厚みで形成するのがよい。 Alternatively, a method of applying the antistatic agent inside the core and drying it may be used. As the antistatic agent, various ionic surfactants and nonionic surfactants typified by fluorine surfactants are generally used. Specific examples of antistatic agents include Muromachi Technos Co., Ltd. MU-003 manufactured by Ichiko Engineering Co., Ltd., MX-50, SL-10 manufactured by Achilles Co., Ltd., and the like. The coating thickness of the antistatic agent is not particularly limited, but it is important that the thickness be sufficient to exert the electrostatic effect, and the thickness is 0.001 μm or more, preferably 0.01 μm or more, and most preferably 0.1 μm or more. It is good to form with.
 また、コア部材の形状は、図2に示すように、円筒状である。円筒状であれば、内部が空洞であるので、軽量化できる。また、内部が空洞であると、樹脂フィルムを巻き取って、外周面に樹脂フィルムが巻き回された樹脂フィルム原反にする際、コア部材を回転させる回転装置を設置しやすい。 The core member has a cylindrical shape as shown in FIG. If it is cylindrical, since the inside is hollow, the weight can be reduced. Moreover, when the inside is a hollow, it is easy to install a rotating device that rotates the core member when the resin film is wound up to form a resin film with the resin film wound around the outer peripheral surface.
 また、コア部材の製造方法としては、絶縁層と、前記絶縁層の内側に位置する導電層とを備えるコア部材を製造できる方法であれば、特に限定されない。具体的には、上述したような導電層の表面に、絶縁層を構成する樹脂を含む塗布液を塗布し、乾燥させる方法等が挙げられる。そうすることによって、絶縁層の表面上に、絶縁層を形成することができる。また、前記乾燥後に、絶縁層の硬化のため等に、加熱処理を施してもよい。 Further, the core member manufacturing method is not particularly limited as long as it is a method capable of manufacturing a core member including an insulating layer and a conductive layer located inside the insulating layer. Specifically, a method of applying a coating liquid containing a resin constituting the insulating layer to the surface of the conductive layer as described above and drying the surface can be used. By doing so, an insulating layer can be formed on the surface of the insulating layer. In addition, after the drying, heat treatment may be performed for curing the insulating layer.
 次に、樹脂フィルム原反10の樹脂フィルム12について説明する。 Next, the resin film 12 of the raw resin film 10 will be described.
 前記樹脂フィルムは、ポリマー系添加剤を含有する樹脂フィルムであれば、特に限定されない。このようなポリマー系添加剤を含有する樹脂フィルムをコア部材に巻き回した樹脂フィルム原反は、この樹脂フィルム原反から巻き出した樹脂フィルム上に機能層を形成させて光学フィルムを製造した場合、得られた光学フィルムは、画像欠陥の発生しやすいものである傾向があった。そこで、本実施形態に係る樹脂フィルム原反であれば、樹脂フィルムとして、ポリマー系添加剤を含有する樹脂フィルムを用いても、画像欠陥の発生が充分に抑制された光学フィルムを製造することができる。 The resin film is not particularly limited as long as it is a resin film containing a polymer additive. When a resin film original fabric in which a resin film containing such a polymer-based additive is wound around a core member is used to produce an optical film by forming a functional layer on the resin film unwound from the resin film original fabric The obtained optical film tended to be prone to image defects. Then, if it is the resin film original fabric which concerns on this embodiment, even if it uses the resin film containing a polymer-type additive as a resin film, it can manufacture the optical film by which generation | occurrence | production of the image defect was fully suppressed. it can.
 また、樹脂フィルムとしては、例えば、光学フィルムの基材として用いる樹脂フィルム等が挙げられ、具体的には、セルロースエステル系樹脂含有フィルムやアクリル系樹脂含有フィルム等が挙げられる。すなわち、ポリマー系添加剤を含有する、セルロースエステル系樹脂含有フィルムやアクリル系樹脂含有フィルム等が挙げられる。この中でも、光学フィルムの基材として、好適な性状であり、光学特性に優れた光学フィルムを製造できる点で、ポリマー系添加剤を含有するセルロースエステル系樹脂含有フィルムが好ましい。また、本実施形態に係る樹脂フィルム原反の形態にすることによって、樹脂フィルム原反から巻き出した樹脂フィルム上に機能層を形成して、光学フィルムを製造すると、画像欠陥の発生を充分に抑制した光学フィルムが得られる。 In addition, examples of the resin film include a resin film used as a base material of an optical film, and specific examples include a cellulose ester resin-containing film and an acrylic resin-containing film. That is, examples include a cellulose ester resin-containing film and an acrylic resin-containing film containing a polymer additive. Among these, a cellulose ester-based resin-containing film containing a polymer-based additive is preferable in that an optical film having suitable properties and excellent optical properties can be produced as a substrate for an optical film. In addition, when the optical film is produced by forming the functional film on the resin film unwound from the resin film original by making the form of the resin film original according to the present embodiment, image defects are sufficiently generated. A suppressed optical film is obtained.
 また、ポリマー系添加剤は、特に限定されないが、例えば、樹脂フィルムに含有させることによって、その性状を、光学フィルムの基材として好適なものに変質させることができるもの等が挙げられる。本発明におけるポリマー系添加剤は、数平均分子量が200以上50000以下のものを含み、好ましくは300以上10000以下の範囲であり、更に好ましくは300以上5000以下の範囲のものが用いられる。具体的には、ポリエステル系可塑剤やアクリル樹脂系可塑剤等の、比較的高分子量の可塑剤等が挙げられる。この中でも、ポリエステル系可塑剤が好ましい。 Further, the polymer-based additive is not particularly limited, and examples thereof include those that can be transformed into a material suitable for a substrate of an optical film by being contained in a resin film. The polymer additives in the present invention include those having a number average molecular weight of 200 or more and 50000 or less, preferably 300 or more and 10000 or less, and more preferably 300 or more and 5000 or less. Specific examples include relatively high molecular weight plasticizers such as polyester plasticizers and acrylic resin plasticizers. Among these, a polyester plasticizer is preferable.
 ポリエステル系可塑剤とは、少なくとも一種の多塩基酸と少なくとも一種の多価アルコールとを重縮合したものであり、好ましくは一種の二塩基酸と少なくとも一種の二価アルコールとを重縮合したものである。二塩基酸としては、脂肪族の二塩基酸及び芳香族の二塩基酸のいずれでもよく、脂肪族の二塩基酸としては、脂肪族ジカルボン酸である、マロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、アゼライン酸、シクロヘキサンジカルボン酸、マレイン酸またはフマル酸等が好ましく用いられ、芳香族二塩基酸としては、芳香族ジカルボン酸であるフタル酸、イソフタル酸、テレフタル酸、1,5-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,8-ナフタレンジカルボン酸又は2,6-ナフタレンジカルボン酸等が好ましく用いられる。二価アルコールとしては、二価の脂肪族アルコール(脂肪族ジオール)及び二価の芳香族アルコール(芳香族環含有ジオール)のいずれでもよいが、脂肪族ジオールが好ましい。脂肪族ジオールとしては、エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、1,4-ヘキサンジオール、1,4-シクロヘキサンジオールまたは1,4-シクロヘキサンジメタノール等が好ましく用いられ、芳香族環含有ジオールとしてはビスフェノールA、1,4-ジヒドロキシフノールまたはベンゼン-1,4-ジメタノール等が好ましく用いられる。また、ポリエステル系可塑剤の末端は、未封止でも封止されていてもよいが、封止される場合は、炭素数1~22の脂肪族基、炭素数6~20の芳香族環含有基から選ばれた置換基で封止されることが好ましく、中でもモノアルコール残基やモノカルボン酸残基が好ましい。モノアルコール残基としては炭素数1~30の置換、無置換のモノアルコール残基が好ましく、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ペンタノール、イソペンタノール、ヘキサノール、イソヘキサノール、シクロヘキシルアルコール、オクタノール、イソオクタノール、2-エチルヘキシルアルコール、ノニルアルコール、イソノニルアルコール、tert-ノニルアルコール、デカノール、ドデカノール、ドデカヘキサノール、ドデカオクタノール、アリルアルコール、オレイルアルコールなどの脂肪族アルコール、ベンジルアルコール、3-フェニルプロパノールなどの置換アルコールなどが挙げられ、更に、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、イソペンタノール、ヘキサノール、イソヘキサノール、シクロヘキシルアルコール、イソオクタノール、2-エチルヘキシルアルコール、イソノニルアルコール、オレイルアルコール、ベンジルアルコールであることが好ましく、メタノール、エタノール、プロパノール、イソブタノール、シクロヘキシルアルコール、2-エチルヘキシルアルコール、イソノニルアルコール、ベンジルアルコールであることが特に好ましい。また、モノカルボン酸残基として使用されるモノカルボン酸としては、炭素数1~30の置換、無置換のモノカルボン酸が好ましい。これらは、脂肪族モノカルボン酸でも芳香族環含有カルボン酸でもよい。好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、ブタン酸、カプリル酸、カプロン酸、デカン酸、ドデカン酸、ステアリン酸、オレイン酸が挙げられ、好ましい芳香族環含有モノカルボン酸としては、例えば安息香酸、p-tert-ブチル安息香酸、p-tert-アミル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等が挙げられ、これらはそれぞれ1種単独で用いても2種以上を使用してもよい。 The polyester plasticizer is a polycondensation of at least one polybasic acid and at least one polyhydric alcohol, preferably a polycondensation of one dibasic acid and at least one dihydric alcohol. is there. The dibasic acid may be either an aliphatic dibasic acid or an aromatic dibasic acid, and the aliphatic dibasic acid may be an aliphatic dicarboxylic acid, such as malonic acid, succinic acid, glutaric acid, or adipine. Acid, sebacic acid, azelaic acid, cyclohexanedicarboxylic acid, maleic acid or fumaric acid are preferably used. As the aromatic dibasic acid, aromatic dicarboxylic acid phthalic acid, isophthalic acid, terephthalic acid, 1,5- Naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,8-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid and the like are preferably used. The dihydric alcohol may be either a divalent aliphatic alcohol (aliphatic diol) or a divalent aromatic alcohol (aromatic ring-containing diol), but is preferably an aliphatic diol. Aliphatic diols include ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1, 4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 1,4-hexanediol, 1,4-cyclohexanediol or 1,4-cyclohexanedi Methanol is preferably used, and bisphenol A, 1,4-dihydroxyfunol or benzene-1,4-dimethanol is preferably used as the aromatic ring-containing diol. Further, the end of the polyester plasticizer may be unsealed or sealed, but in the case of sealing, it contains an aliphatic group having 1 to 22 carbon atoms and an aromatic ring having 6 to 20 carbon atoms. It is preferably sealed with a substituent selected from a group, and among them, a monoalcohol residue or a monocarboxylic acid residue is preferable. The monoalcohol residue is preferably a substituted or unsubstituted monoalcohol residue having 1 to 30 carbon atoms. Methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentanol, isopentanol, hexanol, isohexanol, cyclohexyl Alcohol, octanol, isooctanol, 2-ethylhexyl alcohol, nonyl alcohol, isononyl alcohol, tert-nonyl alcohol, decanol, dodecanol, dodecahexanol, aliphatic alcohol such as dodecaoctanol, allyl alcohol, oleyl alcohol, benzyl alcohol, 3- And substituted alcohols such as phenylpropanol, and methanol, ethanol, propanol, isopropanol, butanol , Isobutanol, isopentanol, hexanol, isohexanol, cyclohexyl alcohol, isooctanol, 2-ethylhexyl alcohol, isononyl alcohol, oleyl alcohol, benzyl alcohol, methanol, ethanol, propanol, isobutanol, cyclohexyl alcohol 2-ethylhexyl alcohol, isononyl alcohol, and benzyl alcohol are particularly preferable. The monocarboxylic acid used as the monocarboxylic acid residue is preferably a substituted or unsubstituted monocarboxylic acid having 1 to 30 carbon atoms. These may be aliphatic monocarboxylic acids or aromatic ring-containing carboxylic acids. Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butanoic acid, caprylic acid, caproic acid, decanoic acid, dodecanoic acid, stearic acid, and oleic acid. Preferred aromatic ring-containing monocarboxylic acids include, for example, Benzoic acid, p-tert-butylbenzoic acid, p-tert-amylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid, etc. Each of these may be used alone or in combination of two or more.
 また、ポリエステル系可塑剤を含有する樹脂フィルムは、光学フィルムの基材として、好適な性状である。また、本実施形態に係る樹脂フィルム原反の形態にすることによって、樹脂フィルム原反から巻き出した樹脂フィルム上に機能層を形成して、光学フィルムを製造すると、画像欠陥の発生を充分に抑制した光学フィルムが得られる。特に、セルロースエステル系樹脂含有フィルムの場合、相溶性の観点からも、ポリエステル系可塑剤が好ましい。 In addition, a resin film containing a polyester plasticizer has suitable properties as a substrate for an optical film. In addition, when the optical film is produced by forming the functional film on the resin film unwound from the resin film original by making the form of the resin film original according to the present embodiment, image defects are sufficiently generated. A suppressed optical film is obtained. In particular, in the case of a cellulose ester resin-containing film, a polyester plasticizer is preferable from the viewpoint of compatibility.
 また、前記樹脂フィルムとしては、例えば、溶液流延製膜法等によって得られた樹脂フィルムを用いることができる。このような樹脂フィルムであれば、膜厚が均一であって、光学フィルムとして好適に使用できる。 Moreover, as the resin film, for example, a resin film obtained by a solution casting film forming method or the like can be used. If it is such a resin film, a film thickness is uniform and it can be conveniently used as an optical film.
 溶液流延製膜法とは、透明性樹脂を溶解した樹脂溶液(ドープ)を、走行する支持体上に流延して流延膜(ウェブ)を形成する流延工程と、前記流延膜を前記支持体から剥離する剥離工程と、剥離した流延膜を乾燥させる乾燥工程とを備える製膜法である。例えば、図3に示すような溶液流延製膜法による樹脂フィルムの製造装置によって行われる。なお、樹脂フィルムの製造装置としては、図3に示すものに限定されず、他の構成のものであってもよい。なお、図3は、溶液流延法による樹脂フィルムの製造装置の基本的な構成を示す概略図である。樹脂フィルムの製造装置30は、無端ベルト支持体31、流延ダイ32、剥離ローラ33、乾燥装置34、及び巻取装置35等を備えている。前記流延ダイ32は、透明性樹脂を溶解した樹脂溶液(ドープ)36を前記無端ベルト支持体31の表面上に流延する。前記無端ベルト支持体31は、一対の駆動ローラ及び従動ローラによって駆動可能に支持され、流延ダイ32から流延された樹脂溶液36からなる流延膜を形成し、搬送しながら乾燥させる。そして、前記剥離ローラ33は、乾燥された流延膜を前記無端ベルト支持体31から剥離する。剥離された流延膜は、前記乾燥装置34によってさらに乾燥され、乾燥された流延膜を樹脂フィルムとして前記巻取装置35に巻き取る。このようにして得られた樹脂フィルムは、前記巻取装置35で、コア部材に巻き取られているので、樹脂フィルム原反として得られる。 The solution casting film forming method is a casting process in which a resin solution (dope) in which a transparent resin is dissolved is cast on a traveling support to form a casting film (web), and the casting film It is a film forming method provided with the peeling process which peels from the said support body, and the drying process which dries the cast film which peeled. For example, it is performed by a resin film manufacturing apparatus using a solution casting film forming method as shown in FIG. In addition, as a manufacturing apparatus of a resin film, it is not limited to what is shown in FIG. 3, The thing of another structure may be sufficient. FIG. 3 is a schematic view showing a basic configuration of an apparatus for producing a resin film by a solution casting method. The resin film manufacturing apparatus 30 includes an endless belt support 31, a casting die 32, a peeling roller 33, a drying device 34, a winding device 35, and the like. The casting die 32 casts a resin solution (dope) 36 in which a transparent resin is dissolved onto the surface of the endless belt support 31. The endless belt support 31 is supported to be drivable by a pair of driving rollers and driven rollers, forms a casting film made of the resin solution 36 cast from the casting die 32, and is dried while being conveyed. The peeling roller 33 peels the dried cast film from the endless belt support 31. The peeled cast film is further dried by the drying device 34, and the dried cast film is wound around the winding device 35 as a resin film. Since the resin film thus obtained is wound around the core member by the winding device 35, it is obtained as a resin film original.
 前記樹脂フィルムは、上記溶液流延製膜法によって形成された樹脂フィルムに限定されず、溶融流延製膜法によって形成された樹脂フィルムであってもよい。 The resin film is not limited to the resin film formed by the solution casting film forming method, and may be a resin film formed by a melt casting film forming method.
 また、前記樹脂フィルム原反の製造方法は、図1に示すような、前記コア部材11と、そのコア部材11の外周面にロール状に巻き回された長尺状の樹脂フィルム12とを備える樹脂フィルム原反を製造することができれば、特に限定されない。具体的には、コア部材を回転させ、その回転しているコア部材の外周面上に、樹脂フィルムを供給することによって、コア部材の外周面上に樹脂フィルムを巻き取る方法等が挙げられる。そうすることによって、長尺状の樹脂フィルムが、コア部材の外周面上にロール状に巻き回された樹脂フィルム原反(フィルムロール)が得られる。具体的には、コア部材を巻取装置に設置し、前記巻取装置で前記コア部材を回転させる方法等が挙げられる。より具体的には、図3に示すような溶液流延製膜法による樹脂フィルムの製造装置の巻取装置を用いる方法等が挙げられる。 Moreover, the manufacturing method of the said resin film original fabric is equipped with the said core member 11 as shown in FIG. 1, and the elongate resin film 12 wound by the outer peripheral surface of the core member 11 in roll shape. If the resin film original fabric can be manufactured, it will not specifically limit. Specifically, a method of winding the resin film on the outer peripheral surface of the core member by rotating the core member and supplying the resin film onto the outer peripheral surface of the rotating core member can be mentioned. By doing so, the resin film original fabric (film roll) by which the elongate resin film was wound by roll shape on the outer peripheral surface of the core member is obtained. Specifically, a method of installing a core member in a winding device and rotating the core member with the winding device can be used. More specifically, a method using a winding device of a resin film manufacturing apparatus by a solution casting film forming method as shown in FIG.
 また、本発明の他の一実施形態に係る光学フィルムの製造方法は、前記樹脂フィルム原反から、前記樹脂フィルムを巻き出す巻出工程と、巻き出された樹脂フィルム上に、機能層を構成する材料を含む塗布液を塗布して、前記機能層を形成する機能層形成工程とを備えることを特徴とする。このような製造方法によれば、前記樹脂フィルム原反から巻き出した樹脂フィルム上に機能層を形成して光学フィルムを製造するので、画像表示装置に用いた場合における画像欠陥の発生が充分に抑制された光学フィルムを製造できる。 Moreover, the manufacturing method of the optical film which concerns on other one Embodiment of this invention comprises a functional layer on the unwinding process which unwinds the said resin film from the said resin film original fabric, and the unwinded resin film And a functional layer forming step of forming the functional layer by applying a coating liquid containing the material to be formed. According to such a manufacturing method, since an optical film is manufactured by forming a functional layer on the resin film unwound from the resin film original fabric, image defects are sufficiently generated when used in an image display device. A suppressed optical film can be produced.
 前記光学フィルムの製造方法は、巻出工程及び機能層形成工程を備える方法であれば、特に限定されない。 The method for producing the optical film is not particularly limited as long as the method includes an unwinding step and a functional layer forming step.
 前記巻出工程は、樹脂フィルム原反から樹脂フィルムを順次巻き出す工程であれば、特に限定されない。具体的には、樹脂フィルム原反のコア部材を、樹脂フィルムを巻き取るときとは反対方向に回転させ、樹脂フィルム原反から樹脂フィルムを巻き出す方法等が挙げられる。具体的には、樹脂フィルム原反のコア部材を巻出装置に設置し、前記巻出装置で前記コア部材を回転させる方法等が挙げられる。 The unwinding step is not particularly limited as long as the resin film is sequentially unwound from the resin film original. Specifically, a method of rotating the core member of the resin film original in the direction opposite to the direction of winding the resin film and unwinding the resin film from the resin film original can be mentioned. Specifically, a method in which a core member of a resin film original fabric is installed in an unwinding device, and the core member is rotated by the unwinding device.
 また、前記機能層形成工程は、巻き出された樹脂フィルム上に、機能層を構成する材料を含む塗布液を塗布して、前記機能層を形成することができる工程であれば、特に限定されない。塗布液の種類に応じて、塗布した後に、加熱処理や、硬化処理等を施す場合がある。 Moreover, the said functional layer formation process will not be specifically limited if it is a process which can apply | coat the coating liquid containing the material which comprises a functional layer on the unwound resin film, and can form the said functional layer. . Depending on the type of coating solution, there may be a case where a heat treatment or a curing treatment is performed after the coating.
 また、塗布液の塗布方法としては、特に限定されず、公知の塗布方法を用いることができる。具体的には、例えば、グラビアコータ、スピナーコータ、ワイヤーバーコータ、ロールコータ、リバースコータ、押出コータ、エアードクターコータ、ダイコータ、ディップコータ及びインクジェット法等の塗布装置を用いたものが挙げられる。 Further, the application method of the application liquid is not particularly limited, and a known application method can be used. Specific examples include a gravure coater, a spinner coater, a wire bar coater, a roll coater, a reverse coater, an extrusion coater, an air doctor coater, a die coater, a dip coater, and an ink jet method.
 また、前記光学フィルムの製造方法の具体例としては、例えば、図4に示すような光学フィルムの製造装置によって行う方法等が挙げられる。なお、光学フィルムの製造装置は、図4に示すものに限定されず、他の構成のものであってもよい。また、形成させる機能層の種類によっても、構成が異なる。 Moreover, as a specific example of the method for producing the optical film, for example, a method performed by an optical film producing apparatus as shown in FIG. In addition, the manufacturing apparatus of an optical film is not limited to what is shown in FIG. 4, The thing of another structure may be sufficient. Also, the configuration differs depending on the type of functional layer to be formed.
 図4は、光学フィルムの製造装置40の基本的な構成を示す概略図である。光学フィルムの製造装置40は、巻出装置41、塗布装置42、温度調整装置43,44、硬化装置45、及び巻取装置46を備える。 FIG. 4 is a schematic diagram showing a basic configuration of the optical film manufacturing apparatus 40. The optical film manufacturing apparatus 40 includes an unwinding device 41, a coating device 42, temperature adjusting devices 43 and 44, a curing device 45, and a winding device 46.
 前記巻出装置41は、樹脂フィルムを塗布装置42等に供給する。前記巻出装置41は、例えば、前記樹脂フィルム原反を回転させることによって、樹脂フィルムを巻き出し、塗布装置42に供給する装置である。 The unwinding device 41 supplies a resin film to the coating device 42 and the like. The unwinding device 41 is a device that unwinds the resin film and supplies it to the coating device 42, for example, by rotating the resin film original.
 前記塗布装置42は、前記巻出装置41から供給された樹脂フィルムの表面上に、機能層を構成する材料を含む塗布液を塗布する。前記塗布装置42は、一般的な塗布装置を限定なく使用できる。また、樹脂フィルム上に複数の層を塗布形成する場合には、マルチマニホールドを有するエクストルージョンダイのように一台の塗布装置で多層同時塗布してもよく、また、1層を塗布する塗布装置を複数並べて逐次塗布するようにしてもよい。 The coating device 42 applies a coating solution containing a material constituting the functional layer onto the surface of the resin film supplied from the unwinding device 41. As the coating device 42, a general coating device can be used without limitation. In addition, when a plurality of layers are applied and formed on a resin film, multiple layers may be simultaneously applied by a single application device such as an extrusion die having a multi-manifold, or a coating device for applying one layer. You may make it apply | coat one by one in succession.
 前記温度調整装置43,44は、樹脂フィルム上に塗布された塗布液の層に対して、加熱処理や冷却処理を施す。例えば、まず、温度調整装置43で加熱して、樹脂フィルム上に塗布された塗布液を乾燥させる。その後、温度調整装置44で冷却して、硬化処理前に、塗布液層の粘度を低下させる。 The temperature adjusting devices 43 and 44 perform heat treatment or cooling treatment on the coating liquid layer applied on the resin film. For example, first, the coating liquid applied on the resin film is dried by heating with the temperature adjusting device 43. Then, it cools with the temperature control apparatus 44, and reduces the viscosity of a coating liquid layer before a hardening process.
 前記硬化装置45は、樹脂フィルム上に塗布され、上記加熱処理や冷却処理が施された塗布液層に対して、硬化処理が施される。例えば、紫外線等の活性線を照射したり、前記温度調整装置による加熱より高温の加熱処理等を施す。そうすることによって、樹脂フィルム上に機能層が形成された光学フィルムが得られる。 The curing device 45 is applied on a resin film and subjected to a curing process on the coating liquid layer that has been subjected to the heat treatment or the cooling process. For example, actinic rays such as ultraviolet rays are irradiated, or heat treatment is performed at a temperature higher than that by the temperature adjusting device. By doing so, the optical film in which the functional layer was formed on the resin film is obtained.
 前記巻取装置46は、上述のようにして得られた光学フィルムを巻き取る。前記巻取装置46は、例えば、回転可能な巻取ローラを備え、前記巻取ローラを回転させることによって、光学フィルムを巻き取る装置である。 The winding device 46 winds up the optical film obtained as described above. The winding device 46 is, for example, a device that includes a rotatable winding roller and winds the optical film by rotating the winding roller.
 また、光学フィルムの機能層は、樹脂フィルム上に形成して、光学フィルムとして求められる性能を発揮させるための層であれば、特に限定されない。具体的には、ハードコート層、反射防止層、防眩層、及び液晶層等が挙げられる。また、各機能層は、それぞれ、光学フィルムの機能層として用いられる層であれば、特に限定されない。光学フィルムは、樹脂フィルム上に、これらの層のうち、1種類のみを形成したものであってもよいし、2種類以上の層を積層したものであってもよい。本実施形態に係る光学フィルムの製造方法であれば、このような種々の機能を有する機能層を形成しても、画像表示装置に用いた場合における画像欠陥の発生が充分に抑制された光学フィルムを製造できる。よって、画像欠陥の発生が充分に抑制され、種々の機能を発揮できる光学フィルムを製造することができる。 Further, the functional layer of the optical film is not particularly limited as long as it is a layer for forming on the resin film and exhibiting the performance required as the optical film. Specific examples include a hard coat layer, an antireflection layer, an antiglare layer, and a liquid crystal layer. Moreover, each functional layer will not be specifically limited if it is a layer respectively used as a functional layer of an optical film. The optical film may be one in which only one of these layers is formed on a resin film, or may be a laminate of two or more types of layers. If it is the manufacturing method of the optical film which concerns on this embodiment, even if it forms the functional layer which has such a various function, generation | occurrence | production of the image defect at the time of using for an image display apparatus was fully suppressed Can be manufactured. Therefore, it is possible to produce an optical film in which the occurrence of image defects is sufficiently suppressed and various functions can be exhibited.
 また、得られた光学フィルムは、偏光素子に貼り付けることによって、偏光板が得られる。すなわち、偏光板は、偏光素子と、前記偏光素子の表面上に配置された透明保護フィルムとを備え、前記透明保護フィルムが、前記光学フィルムであるものが挙げられる。このような偏光板は、画像表示装置に用いたときに画像欠陥の発生が充分に抑制された上記光学フィルムを用いている。このため、この偏光板を用いると、画像欠陥の少ない画像表示装置が得られる。 Further, the obtained optical film is attached to a polarizing element to obtain a polarizing plate. That is, the polarizing plate includes a polarizing element and a transparent protective film disposed on the surface of the polarizing element, and the transparent protective film is the optical film. Such a polarizing plate uses the above optical film in which the occurrence of image defects is sufficiently suppressed when used in an image display device. For this reason, when this polarizing plate is used, an image display apparatus with few image defects is obtained.
 前記偏光板としては、例えば、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬して延伸することによって作製される偏光素子の少なくとも一方の表面に、完全鹸化型ポリビニルアルコール水溶液を用いて、前記光学フィルムを貼り合わせたものが好ましい。また、偏光板は、偏光素子の一方の面に、光学フィルムを貼り付けていればよいが、前記偏光素子のもう一方の表面にも、前記光学フィルムを積層させてもよいし、別の偏光板用の透明保護フィルムを積層させてもよい。 As the polarizing plate, for example, a completely saponified polyvinyl alcohol aqueous solution is used on at least one surface of a polarizing element produced by immersing and stretching a polyvinyl alcohol film in an iodine solution. A laminate is preferred. Further, the polarizing plate may be formed by attaching an optical film to one surface of the polarizing element, but the optical film may be laminated on the other surface of the polarizing element, or another polarized light. A transparent protective film for a plate may be laminated.
 また、前記偏光板は、上述のように、偏光素子の少なくとも一方の表面側に、光学フィルムを積層したものである。その際、前記光学フィルムが位相差フィルム等の光学補償フィルムとして働く場合、光学フィルムの遅相軸が偏光素子の吸収軸に実質的に平行または直交するように配置されていることが好ましい。 The polarizing plate is obtained by laminating an optical film on at least one surface side of the polarizing element as described above. In that case, when the optical film functions as an optical compensation film such as a retardation film, the optical film is preferably disposed so that the slow axis of the optical film is substantially parallel or orthogonal to the absorption axis of the polarizing element.
 また、前記偏光素子の具体例としては、例えば、ポリビニルアルコール系偏光フィルムが挙げられる。ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものとがある。前記ポリビニルアルコール系フィルムとしては、エチレンで変性された変性ポリビニルアルコール系フィルムが好ましく用いられる。 Further, specific examples of the polarizing element include, for example, a polyvinyl alcohol polarizing film. Polyvinyl alcohol polarizing films include those obtained by dyeing iodine on polyvinyl alcohol films and those obtained by dyeing dichroic dyes. As the polyvinyl alcohol film, a modified polyvinyl alcohol film modified with ethylene is preferably used.
 また、前記偏光板は、液晶表示装置等の画像表示装置に用いることができる。このような液晶表示装置は、液晶セルと、前記液晶セルを挟むように配置された2枚の偏光板とを備え、前記2枚の偏光板のうち少なくとも一方が、前記偏光板であるものが挙げられる。なお、液晶セルとは、一対の電極間に液晶物質が充填されたものであり、この電極に電圧を印加することで、液晶の配向状態が変化され、透過光量が制御される。このような液晶装置は、前記偏光板が用いられているので、画像欠陥の少ない画像表示装置となる。 The polarizing plate can be used for an image display device such as a liquid crystal display device. Such a liquid crystal display device includes a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates is the polarizing plate. Can be mentioned. Note that the liquid crystal cell is a cell in which a liquid crystal substance is filled between a pair of electrodes, and by applying a voltage to the electrodes, the alignment state of the liquid crystal is changed and the amount of transmitted light is controlled. Such a liquid crystal device is an image display device with few image defects since the polarizing plate is used.
 また、前記光学フィルムを用いた画像表示装置は、前記液晶表示装置に限らず、画像欠陥の少ない画像表示装置となる。 Also, the image display device using the optical film is not limited to the liquid crystal display device, and becomes an image display device with few image defects.
 本明細書は、上述したように、様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 本発明の一局面は、円筒状のコア部材と、前記コア部材の外周面にロール状に巻き回された長尺状の樹脂フィルムとを備え、前記樹脂フィルムが、ポリマー系添加剤を含有し、前記コア部材が、絶縁層と、前記絶縁層の内側に位置する導電層とを備えることを特徴とする樹脂フィルム原反である。 One aspect of the present invention includes a cylindrical core member and a long resin film wound in a roll around the outer peripheral surface of the core member, and the resin film contains a polymer additive. The core member includes an insulating layer and a conductive layer located inside the insulating layer.
 このような構成によれば、この樹脂フィルム原反は、画像表示装置に用いた場合における画像欠陥の発生が充分に抑制された光学フィルムを製造可能な樹脂フィルムを巻き出すことができる。すなわち、画像表示装置に用いた場合における画像欠陥の発生が充分に抑制された光学フィルムを製造できる樹脂フィルムを巻き出し可能な樹脂フィルム原反を提供することができる。 According to such a configuration, this resin film original fabric can unwind a resin film capable of producing an optical film in which occurrence of image defects is sufficiently suppressed when used in an image display device. That is, it is possible to provide a resin film raw material capable of unwinding a resin film that can produce an optical film in which the occurrence of an image defect is sufficiently suppressed when used in an image display device.
 また、前記樹脂フィルム原反において、前記絶縁層が、前記コア部材の最外層であることが好ましい。 Also, in the resin film original fabric, the insulating layer is preferably the outermost layer of the core member.
 このような構成によれば、この樹脂フィルム原反から巻き出された樹脂フィルムを、光学フィルムの製造に供した場合、得られた光学フィルムを、画像表示装置に用いた場合における画像欠陥の発生をより抑制できる。 According to such a configuration, when the resin film unwound from the resin film raw material is subjected to the production of an optical film, the occurrence of image defects when the obtained optical film is used in an image display device Can be further suppressed.
 また、前記樹脂フィルム原反において、前記樹脂フィルムが、セルロースエステル系樹脂含有フィルムであることが好ましい。 In the resin film original fabric, the resin film is preferably a cellulose ester resin-containing film.
 このような構成によれば、光学フィルムの基材として好適に用いられるセルロースエステル系樹脂含有フィルムを、樹脂フィルムとして巻き出して、画像表示装置に用いた場合における画像欠陥の充分に抑制された光学フィルムを製造することができる。 According to such a configuration, an optical film in which image defects are sufficiently suppressed when a cellulose ester resin-containing film that is suitably used as a base material for an optical film is unwound as a resin film and used in an image display device. A film can be produced.
 また、前記樹脂フィルム原反において、前記樹脂フィルムに含有される前記ポリマー系添加剤が、ポリエステル系可塑剤であることが好ましい。 Further, in the resin film original fabric, the polymer additive contained in the resin film is preferably a polyester plasticizer.
 ポリエステル系可塑剤を含有する樹脂フィルムは、樹脂フィルム原反から巻き出して、光学フィルムの製造に用いると、得られた光学フィルムが、画像表示装置に用いた場合における画像欠陥が発生しやすいという課題があった。このようなポリエステル系可塑剤を含有する樹脂フィルムの課題に対して、前記コア部材に巻き回した樹脂フィルム原反であれば、画像欠陥の発生を充分に抑制した光学フィルムが得られる。 When the resin film containing the polyester plasticizer is unwound from the original resin film and used for the production of an optical film, the obtained optical film is prone to image defects when used in an image display device. There was a problem. With respect to the problem of the resin film containing such a polyester-based plasticizer, an optical film in which the occurrence of image defects is sufficiently suppressed can be obtained if the resin film is wound around the core member.
 また、本発明の他の一局面は、前記樹脂フィルム原反から、前記樹脂フィルムを巻き出す工程と、巻き出された樹脂フィルム上に、機能層を構成する材料を含む塗布液を塗布して、前記機能層を形成する工程とを備えることを特徴とする光学フィルムの製造方法である。 In another aspect of the present invention, a step of unwinding the resin film from the original film of the resin film, and applying a coating liquid containing a material constituting the functional layer on the unwound resin film. And a step of forming the functional layer.
 このような構成によれば、画像表示装置に用いた場合における画像欠陥の発生が充分に抑制された光学フィルムを製造できる。 According to such a configuration, it is possible to manufacture an optical film in which occurrence of image defects is sufficiently suppressed when used in an image display device.
 また、前記光学フィルムの製造方法において、前記機能層が、ハードコート層、反射防止層、防眩層、及び液晶層からなる群から選ばれる少なくとも1つであることが好ましい。 In the method for producing an optical film, it is preferable that the functional layer is at least one selected from the group consisting of a hard coat layer, an antireflection layer, an antiglare layer, and a liquid crystal layer.
 このような構成によれば、このような種々の機能を有する機能層を形成しても、画像表示装置に用いた場合における画像欠陥の発生が充分に抑制された光学フィルムを製造できる。よって、画像欠陥の発生が充分に抑制され、種々の機能を発揮できる光学フィルムを製造することができる。 According to such a configuration, even if such a functional layer having various functions is formed, an optical film in which the occurrence of image defects when used in an image display device can be sufficiently suppressed can be produced. Therefore, it is possible to produce an optical film in which the occurrence of image defects is sufficiently suppressed and various functions can be exhibited.
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明は、これらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 [コア部材の作製]
 まず、コア部材の作製について説明する。
[Production of core member]
First, the production of the core member will be described.
 なお、表面抵抗率は、抵抗率計(Monroe Electronics製のポータブル表面抵抗率/抵抗計272A)を用いて測定した。 The surface resistivity was measured using a resistivity meter (a portable surface resistivity / resistance meter 272A manufactured by Monroe Electronics).
 (コアA)
 図2に示すように、最表面が絶縁層で、その内部が導電層であるコアAを作製した。
(Core A)
As shown in FIG. 2, a core A having an insulating layer on the outermost surface and a conductive layer on the inside was fabricated.
 具体的には、まず、マトリックス樹脂として熱硬化性のエポキシ樹脂を用い、ガラス繊維及びカーボンロービング(炭素繊維)にマトリックス樹脂を含浸させて得られた半硬化状のシートを金型上に巻きつけて熱硬化させた後に、金型から分離することで、内径152mm、外径165mm、長さ1450mmの導電性を有するFRP(繊維強化プラスチック)製の巻芯(円筒状のFRP層)を、内側層として用意した。この表面抵抗率は、表1に示すように、7×10Ω/cmであり、導電性であった。次に、この円筒状のFRP層(内側層)に対して、エポキシ樹脂を含む塗布液を、乾燥後の厚みが2mmとなるように塗布し、乾燥させた。そうすることによって、円筒状のFRP層上に、熱硬化性のエポキシ樹脂を塗布して、平均膜厚2mmのエポキシ樹脂層を、絶縁性の外側層(最表層)として形成させた。この表面抵抗率は、表1に示すように、2×1014Ω/cmであり、絶縁性であった。 Specifically, first, a thermosetting epoxy resin is used as the matrix resin, and a semi-cured sheet obtained by impregnating the glass resin and carbon roving (carbon fiber) with the matrix resin is wound around a mold. After being thermally cured, the FRP (fiber reinforced plastic) winding core (cylindrical FRP layer) having an inner diameter of 152 mm, an outer diameter of 165 mm, and a length of 1450 mm is separated from the mold. Prepared as a layer. As shown in Table 1, this surface resistivity was 7 × 10 7 Ω / cm 2 and was conductive. Next, a coating solution containing an epoxy resin was applied to the cylindrical FRP layer (inner layer) so that the thickness after drying was 2 mm and dried. By doing so, the thermosetting epoxy resin was apply | coated on the cylindrical FRP layer, and the epoxy resin layer with an average film thickness of 2 mm was formed as an insulating outer layer (outermost layer). As shown in Table 1, this surface resistivity was 2 × 10 14 Ω / cm 2 and was insulating.
 (コアB)
 最表面が導電層で、その内部が絶縁層であるコアBを作製した。
(Core B)
A core B in which the outermost surface was a conductive layer and the inside was an insulating layer was produced.
 まず、静電防止剤(ムロマチテクノス株式会社製のMU-003、ポリオキシエチレントリアルキルエーテル類とフッ素系界面活性剤との混合物)を、内径152mm、外径165mm、長さ1450mmのポリカーボネート製のコアの表面に均一に吹きつけた。その後、30℃で5分間乾燥させた。そうすることによって、コア上に、平均膜厚0.1μmの静電防止層を形成させた。この表面抵抗率は、表1に示すように、7×10Ω/cmであり、導電性であった。なお、ポリカーボネート製のコアの表面抵抗率は、表1に示すように、2×1014Ω/cmであり、絶縁性であった。 First, an antistatic agent (MU-003 manufactured by Muromachi Technos Co., Ltd., a mixture of polyoxyethylene trialkyl ethers and a fluorosurfactant) is made of polycarbonate having an inner diameter of 152 mm, an outer diameter of 165 mm, and a length of 1450 mm. It sprayed uniformly on the surface of the core. Then, it was dried at 30 ° C. for 5 minutes. By doing so, an antistatic layer having an average film thickness of 0.1 μm was formed on the core. As shown in Table 1, this surface resistivity was 7 × 10 7 Ω / cm 2 and was conductive. As shown in Table 1, the surface resistivity of the polycarbonate core was 2 × 10 14 Ω / cm 2 and was insulative.
 (コアC)
 最表面が絶縁層で、その内部も絶縁層であるコアCを作製した。
(Core C)
A core C in which the outermost surface was an insulating layer and the inside was also an insulating layer was produced.
 具体的には、まず、内径152mm、外径165mm、長さ1450mmのFRP製の巻芯(円筒状のFRP層)を、内側層として用意した。なお、この円筒状のFRP層は、カーボンロービングを用いずに、ガラス繊維とマトリックス樹脂のみで形成した。そして、この表面抵抗率は、表1に示すように、2×1014Ω/cmであり、絶縁性であった。次に、この円筒状のFRP層(内側層)に対して、エポキシ樹脂を含む塗布液を、乾燥後の厚みが2mmとなるように塗布し、乾燥、硬化させた。そうすることによって、円筒状のFRP層上に、平均膜厚2mmのエポキシ樹脂層を、外側層(最表層)として形成させた。この表面抵抗率は、表1に示すように、2×1014Ω/cmであり、絶縁性であった。 Specifically, first, an FRP core (cylindrical FRP layer) having an inner diameter of 152 mm, an outer diameter of 165 mm, and a length of 1450 mm was prepared as an inner layer. The cylindrical FRP layer was formed only of glass fibers and matrix resin without using carbon roving. And as shown in Table 1, this surface resistivity was 2 × 10 14 Ω / cm 2 and was insulating. Next, a coating liquid containing an epoxy resin was applied to the cylindrical FRP layer (inner layer) so that the thickness after drying was 2 mm, and dried and cured. By doing so, an epoxy resin layer having an average film thickness of 2 mm was formed as an outer layer (outermost layer) on the cylindrical FRP layer. As shown in Table 1, this surface resistivity was 2 × 10 14 Ω / cm 2 and was insulating.
 上記各層の表面抵抗率を、素材とともに、表1にまとめて示す。 The surface resistivity of each layer is shown together with the materials in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [樹脂フィルム原反の作製]
 <ポリマー系添加剤を含有する樹脂フィルムを巻き回した樹脂フィルム原反>
 (ポリマー系添加剤の調製)
 まず、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに、1,2-プロピレングリコール251g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを投入した。そして、窒素気流中230℃になるまで、撹拌しながら徐々に昇温させ、230℃で15時間、攪拌した。そうすることで、脱水縮合反応を進行させた。その後、200℃で減圧留去した。そうすることで、未反応の1,2-プロピレングリコール等が除去され、ポリエステル系添加剤(ポリエステル系可塑剤)が得られた。
[Preparation of raw resin film]
<Resin film stock wound with a resin film containing a polymer additive>
(Preparation of polymer additives)
First, in a 2 L four-necked flask equipped with a thermometer, a stirrer, and a slow cooling tube, 251 g of 1,2-propylene glycol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, tetraisopropyl titanate as an esterification catalyst 0.191 g was charged. And it heated up gradually, stirring until it became 230 degreeC in nitrogen stream, and stirred at 230 degreeC for 15 hours. By doing so, the dehydration condensation reaction was advanced. Then, it depressurizingly distilled at 200 degreeC. By doing so, unreacted 1,2-propylene glycol and the like were removed, and a polyester-based additive (polyester plasticizer) was obtained.
 (ドープの調製)
 まず、メチレンクロライド440質量部及びエタノール40質量部を入れた密閉可能な溶解タンクに、セルロースエステル系樹脂であるトリアセチルセルロース100質量部、ポリエステル系添加剤10質量部、チヌビン109(チバ・ジャパン株式会社製)1質量部、及びシリカ粒子(日本アエロジル株式会社製のアエロジル972V)0.2質量部を添加した。そして、液温が80℃になるまで昇温させた後、3時間攪拌した。そうすることによって、セルロースエステル系樹脂が溶解された樹脂溶液が得られた。その後、攪拌を終了し、液温が43℃になるまで放置した。そして、得られた樹脂溶液を、濾過精度0.005mmの濾紙を使用して濾過した。濾過後の樹脂溶液を一晩放置することにより、樹脂溶液中の気泡を脱泡させた。このようにして得られた樹脂溶液を、ドープとして使用して、以下のように、樹脂フィルムを製造した。
(Preparation of dope)
First, in a sealable dissolution tank containing 440 parts by mass of methylene chloride and 40 parts by mass of ethanol, 100 parts by mass of cellulose ester resin triacetyl cellulose, 10 parts by mass of polyester additive, Tinuvin 109 (Ciba Japan Co., Ltd.) 1 part by mass of company) and 0.2 part by mass of silica particles (Aerosil 972V manufactured by Nippon Aerosil Co., Ltd.) were added. And after raising the liquid temperature to 80 ° C., the mixture was stirred for 3 hours. By doing so, the resin solution in which the cellulose ester resin was dissolved was obtained. Then, stirring was complete | finished and it was left until the liquid temperature became 43 degreeC. Then, the obtained resin solution was filtered using a filter paper having a filtration accuracy of 0.005 mm. Air bubbles in the resin solution were degassed by allowing the resin solution after filtration to stand overnight. Using the resin solution thus obtained as a dope, a resin film was produced as follows.
 (樹脂フィルム原反の製造)
 まず、得られたドープの温度を35℃に、無端ベルト支持体の温度を25℃に調整した。そして、樹脂フィルムの製造装置を用い、流延ダイから無端ベルト支持体にドープを流延した。そうすることによって、無端ベルト支持体上にウェブを形成し、ウェブの剥離時の残留溶媒量が100質量%となるように乾燥させながら、搬送した。そして、無端ベルト支持体からウェブをフィルムとして剥離し、剥離したフィルムを35℃でさらに乾燥させながら搬送した。その後、幅1500mmのフィルムとなるように、フィルムの両端部を切断(スリット)した。そして、テンター方式の延伸装置を用いて、フィルムの両端をクリップで把持して、幅保持しながら、130℃の乾燥温度(熱処理温度・延伸温度)で乾燥させた。なお、この乾燥を始めたときの残留溶媒量が20質量%であった。その後、100℃の乾燥装置内を多数のロールで搬送させながら、15分間乾燥させた。その後、幅1330mmのフィルムになるように、両端部を切断(スリット)し、フィルム両端に幅15mm、高さ10μmのナーリング加工を施した。このナーリング加工を施した樹脂フィルムを、巻き取り初期張力220N/m、テーパー40%で、長さ500m分、上記コア部材(コアA~C)にそれぞれ巻き取った。そうすることによって、樹脂フィルム原反が得られた。この樹脂フィルム原反に巻き回された樹脂フィルムの残留溶剤量は、0.2質量%であり、膜厚は40μmであった。
(Manufacture of resin film stock)
First, the temperature of the obtained dope was adjusted to 35 ° C., and the temperature of the endless belt support was adjusted to 25 ° C. And the dope was cast from the casting die to the endless belt support using the resin film manufacturing apparatus. By doing so, a web was formed on the endless belt support, and the web was transported while being dried so that the residual solvent amount at the time of peeling of the web was 100% by mass. Then, the web was peeled off as a film from the endless belt support, and the peeled film was conveyed while being further dried at 35 ° C. Thereafter, both end portions of the film were cut (slit) so as to form a film having a width of 1500 mm. Then, using a tenter type stretching apparatus, both ends of the film were gripped with clips and dried at a drying temperature (heat treatment temperature / stretching temperature) of 130 ° C. while maintaining the width. In addition, the residual solvent amount when starting this drying was 20 mass%. Then, it was made to dry for 15 minutes, conveying the inside of a 100 degreeC drying apparatus with many rolls. Then, both ends were cut (slit) so that a film with a width of 1330 mm was formed, and knurling with a width of 15 mm and a height of 10 μm was applied to both ends of the film. The knurling resin film was wound around the core members (cores A to C) for a length of 500 m at an initial winding tension of 220 N / m and a taper of 40%. By doing so, the resin film original fabric was obtained. The residual solvent amount of the resin film wound around the resin film original fabric was 0.2% by mass, and the film thickness was 40 μm.
 <ポリマー系添加剤を含有しない樹脂フィルムを巻き回した樹脂フィルム原反>
 まず、メチレンクロライド440質量部及びエタノール40質量部を入れた密閉可能な溶解タンクに、セルロースエステル系樹脂であるトリアセチルセルロース100質量部、トリフェニルフォスフェート8質量部、エチルフタリルエチルグリコレート2質量部、チヌビン109(チバ・ジャパン株式会社製)1質量部、及びシリカ粒子(日本アエロジル株式会社製のアエロジル972V)0.2質量部を添加した。そして、液温が80℃になるまで昇温させた後、3時間攪拌した。そうすることによって、セルロースエステル系樹脂が溶解された樹脂溶液が得られた。その後、攪拌を終了し、液温が43℃になるまで放置した。そして、得られた樹脂溶液を、濾過精度0.005mmの濾紙を使用して濾過した。濾過後の樹脂溶液を一晩放置することにより、樹脂溶液中の気泡を脱泡させた。このようにして得られた樹脂溶液を、ドープとして使用したこと以外、ポリマー系添加剤を含有する樹脂フィルムを巻き回した樹脂フィルム原反を製造する方法と同様の方法で製造した。
<Resin film stock wound with a resin film containing no polymer-based additive>
First, in a sealable dissolution tank containing 440 parts by mass of methylene chloride and 40 parts by mass of ethanol, 100 parts by mass of cellulose ester-based triacetyl cellulose, 8 parts by mass of triphenyl phosphate, ethylphthalylethyl glycolate 2 Part by mass, 1 part by mass of Tinuvin 109 (manufactured by Ciba Japan Co., Ltd.), and 0.2 part by mass of silica particles (Aerosil 972V manufactured by Nippon Aerosil Co., Ltd.) were added. And after raising the liquid temperature to 80 ° C., the mixture was stirred for 3 hours. By doing so, the resin solution in which the cellulose ester resin was dissolved was obtained. Then, stirring was complete | finished and it was left until liquid temperature became 43 degreeC. Then, the obtained resin solution was filtered using a filter paper having a filtration accuracy of 0.005 mm. Air bubbles in the resin solution were degassed by allowing the resin solution after filtration to stand overnight. The resin solution thus obtained was produced in the same manner as the method for producing a resin film raw material wound with a resin film containing a polymer additive, except that the resin solution was used as a dope.
 [光学フィルムの作製(機能層の形成)]
 <ハードコート(HC)層の形成>
 (ハードコート層形成用樹脂組成物の調製)
 ペンタエリスリトールトリアクリレート(PETA)30質量部、及び光重合開始剤(チバ・ジャパン株式会社製のイルガキュア907(商品名))1.5質量部を、メチルイソブチルケトン73.5質量部に溶解して、ハードコート層形成用樹脂組成物を得た。
[Production of optical film (formation of functional layer)]
<Formation of hard coat (HC) layer>
(Preparation of resin composition for forming hard coat layer)
30 parts by mass of pentaerythritol triacrylate (PETA) and 1.5 parts by mass of a photopolymerization initiator (Irgacure 907 (trade name) manufactured by Ciba Japan KK) were dissolved in 73.5 parts by mass of methyl isobutyl ketone. A resin composition for forming a hard coat layer was obtained.
 (ハードコートフィルムの作製)
 樹脂フィルム原反から巻き出した(繰り出した)樹脂フィルム上に、前記ハードコート層形成用樹脂組成物をバーコーティングし、乾燥により溶剤を除去した。その後、紫外線照射装置(フュージョンUVシステムズジャパン株式会社製のフュージョンUV、光源:Hバルブ)を用いて照射線量約20mJ/cmで紫外線照射を行い、ハードコート層を半硬化させて、膜厚10μmのハードコート層を樹脂フィルム上に作製した。
(Preparation of hard coat film)
The resin composition for forming a hard coat layer was bar-coated on a resin film that was unwound from (unrolled from) the original resin film, and the solvent was removed by drying. Thereafter, UV irradiation is performed at an irradiation dose of about 20 mJ / cm 2 using an ultraviolet irradiation device (Fusion UV manufactured by Fusion UV Systems Japan Co., Ltd., light source: H bulb), the hard coat layer is semi-cured, and the film thickness is 10 μm. The hard coat layer was prepared on a resin film.
 <反射防止(AR)層の形成>
 (低屈折率層形成用樹脂組成物の調製)
 中空シリカ分散液(粒径50nm、固形分20質量%、溶剤:メチルイソブチルケトン)15質量部、ペンタエリスリトールトリアクリレート(PETA)2質量部、及び光重合開始剤(チバ・ジャパン株式会社製のイルガキュア127(商品名))0.08質量部を、メチルイソブチルケトン82.9質量部に溶解して、低屈折率層形成用樹脂組成物を得た。
<Formation of antireflection (AR) layer>
(Preparation of low refractive index layer-forming resin composition)
Hollow silica dispersion (particle size 50 nm, solid content 20% by mass, solvent: methyl isobutyl ketone) 15 parts by mass, pentaerythritol triacrylate (PETA) 2 parts by mass, and photopolymerization initiator (Irgacure manufactured by Ciba Japan Co., Ltd.) 0.08 parts by mass of 127 (trade name) was dissolved in 82.9 parts by mass of methyl isobutyl ketone to obtain a resin composition for forming a low refractive index layer.
 (ハードコート層形成用樹脂組成物の調製)
 ペンタエリスリトールトリアクリレート(PETA)30質量部、及び光重合開始剤(チバ・ジャパン株式会社製のイルガキュア907(商品名))1.5質量部を、メチルイソブチルケトン73.5質量部に溶解して、ハードコート層形成用樹脂組成物を得た。
(Preparation of resin composition for forming hard coat layer)
30 parts by mass of pentaerythritol triacrylate (PETA) and 1.5 parts by mass of a photopolymerization initiator (Irgacure 907 (trade name) manufactured by Ciba Japan KK) were dissolved in 73.5 parts by mass of methyl isobutyl ketone. A resin composition for forming a hard coat layer was obtained.
 (反射防止フィルムの作製)
 樹脂フィルム原反から巻き出した(繰り出した)樹脂フィルム上に、前記ハードコート層形成用樹脂組成物をバーコーティングし、乾燥により溶剤を除去した。その後、紫外線照射装置(フュージョンUVシステムズジャパン株式会社製のフュージョンUV、光源:Hバルブ)を用いて照射線量約20mJ/cmで紫外線照射を行い、ハードコート層を半硬化させて、膜厚10μmのハードコート層を樹脂フィルム上に作製した。
(Preparation of antireflection film)
The resin composition for forming a hard coat layer was bar-coated on a resin film that was unwound from (unrolled from) the original resin film, and the solvent was removed by drying. Thereafter, UV irradiation is performed at an irradiation dose of about 20 mJ / cm 2 using an ultraviolet irradiation device (Fusion UV manufactured by Fusion UV Systems Japan Co., Ltd., light source: H bulb), the hard coat layer is semi-cured, and the film thickness is 10 μm. The hard coat layer was prepared on a resin film.
 次いで、前記低屈折率層形成用樹脂組成物をバーコーティングし、乾燥により溶剤を除去した。その後、前記紫外線照射装置を用いて照射線量約200mJ/cmで紫外線照射を行い、塗膜を硬化させて、ハードコート層上に約100nmの低屈折率層を作製した。 Next, the resin composition for forming a low refractive index layer was bar-coated, and the solvent was removed by drying. Thereafter, ultraviolet irradiation was performed using the ultraviolet irradiation apparatus at an irradiation dose of about 200 mJ / cm 2 to cure the coating film, and a low refractive index layer having a thickness of about 100 nm was produced on the hard coat layer.
 このようにして、ハードコート層と低屈折率層とからなる反射防止層が樹脂フィルム上に形成された。この樹脂フィルム上に反射防止層が形成されたフィルムは、反射防止フィルムである。 Thus, an antireflection layer composed of a hard coat layer and a low refractive index layer was formed on the resin film. The film in which the antireflection layer is formed on the resin film is an antireflection film.
 <防眩(AG)層の形成>
 (防眩層形成用樹脂組成物の調製)
 コロイダルシリカ分散液(平均粒子径5μm、固形分50質量%、溶剤:メチルイソブチルケトン)20質量部、ペンタエリスリトールトリアクリレート(PETA)85質量部、透過性微粒子(アクリルビーズ、粒径3.5μm)5質量部、及び光重合開始剤(チバ・ジャパン株式会社製のイルガキュア184(商品名))5質量部を、トルエン40質量部及びメチルイソブチルケトン150質量部からなる混合溶媒に溶解して、防眩層形成用樹脂組成物を得た。
<Formation of anti-glare (AG) layer>
(Preparation of antiglare layer forming resin composition)
Colloidal silica dispersion (average particle size 5 μm, solid content 50 mass%, solvent: methyl isobutyl ketone) 20 mass parts, pentaerythritol triacrylate (PETA) 85 mass parts, transparent fine particles (acrylic beads, particle size 3.5 μm) 5 parts by mass and 5 parts by mass of a photopolymerization initiator (Irgacure 184 (trade name) manufactured by Ciba Japan Co., Ltd.) were dissolved in a mixed solvent consisting of 40 parts by mass of toluene and 150 parts by mass of methyl isobutyl ketone to prevent A resin composition for forming a glare layer was obtained.
 (防眩フィルムの作製)
 樹脂フィルム原反から巻き出した(繰り出した)樹脂フィルム上に、前記防眩層形成用樹脂組成物をバーコーティングし、乾燥により溶剤を除去した。その後、紫外線照射装置(フュージョンUVシステムズジャパン株式会社製のフュージョンUV、光源:Hバルブ)を用いて照射線量約100mJ/cmで紫外線照射を行い、塗膜を硬化させて、防眩層を樹脂フィルム上に作製した。この樹脂フィルム上に防眩層が形成されたフィルムは、防眩フィルムである。
(Preparation of antiglare film)
The resin composition for forming an antiglare layer was bar-coated on a resin film unwound from (unrolled from) a resin film original, and the solvent was removed by drying. Then, ultraviolet rays are irradiated at an irradiation dose of about 100 mJ / cm 2 using an ultraviolet irradiation device (Fusion UV manufactured by Fusion UV Systems Japan Co., Ltd., light source: H bulb), the coating film is cured, and the antiglare layer is resin. Made on film. A film in which an antiglare layer is formed on this resin film is an antiglare film.
 <光学異方性フィルムの作成>
 特開2004-125841号公報の実施例1に記載された配向膜塗布液Aを、樹脂フィルム原反から巻き出した(繰り出した)樹脂フィルム上に連続的に塗布、乾燥し、厚さ1μmの配向膜を形成した。次いで、透明支持体の長手方向に対し45°の方向に連続的に配向膜上にラビング処理を実施した。
<Creation of optically anisotropic film>
The alignment film coating solution A described in Example 1 of Japanese Patent Application Laid-Open No. 2004-125841 is continuously applied on a resin film unwound from the original film of the resin film (dried), dried, and dried to a thickness of 1 μm. An alignment film was formed. Next, a rubbing treatment was performed on the alignment film continuously in a direction of 45 ° with respect to the longitudinal direction of the transparent support.
 次いで、配向膜の上に、上記公報に記載の光学異方性層を形成する際に用いている塗布液と同様の組成の塗布液を、バーコーターを用いて連続的に塗布、乾燥および加熱(配向熟成)し、さらに照射量として大気雰囲気下で600mJ/cm2紫外線照射して厚さ約1μmの光学的異方性層を形成した。光学的異方性層は透明支持体の長手方向に対して45°の方向に遅相軸を有しており、550nmにおけるレターデーション値(Re550)はおよそ135nmであった。 Next, a coating solution having the same composition as the coating solution used when forming the optically anisotropic layer described in the above publication is continuously applied, dried and heated on the alignment film using a bar coater. (Orientation ripening) was further performed, and an optically anisotropic layer having a thickness of about 1 μm was formed by irradiation with an ultraviolet ray of 600 mJ / cm 2 in an air atmosphere. The optically anisotropic layer had a slow axis in the direction of 45 ° with respect to the longitudinal direction of the transparent support, and the retardation value (Re550) at 550 nm was about 135 nm.
 上記のようにして得られたフィルムは、位相差板(λ/4板)であり、光学異方性フィルムである。 The film obtained as described above is a retardation plate (λ / 4 plate), which is an optically anisotropic film.
 以上のような製造方法により、種々の光学フィルムを作製した。具体的には、表2に示すような、実施例1~4、比較例1~8、及び参考例1~3に係る光学フィルムを作製した。より具体的には、実施例1、比較例1,2、は、樹脂フィルム原反から巻き出された樹脂フィルム上に、上記の方法により、ハードコート(HC)層を形成したハードコートフィルムである。実施例2、比較例3,4及び参考例1~3は、樹脂フィルム原反から巻き出された樹脂フィルム上に、上記の方法により、反射防止(AR)層を形成した反射防止フィルムである。また、実施例3、及び比較例5,6は、樹脂フィルム原反から巻き出された樹脂フィルム上に、上記の方法により、防眩(AG)層を形成した防眩フィルムである。また、実施例4、及び比較例7,8は、樹脂フィルム原反から巻き出された樹脂フィルム上に、上記の方法により、光学異方性層を形成した光学異方性フィルムである。また、実施例1~4、及び参考例1は、樹脂フィルム原反のコア部材として、コアAを用いたものである。また、比較例1,3,5,7及び参考例2は、樹脂フィルム原反のコア部材として、コアBを用いたものである。また、比較例2,4,6,8及び参考例3は、樹脂フィルム原反のコア部材として、コアCを用いたものである。また、実施例1~4、及び比較例1~8は、ポリマー系添加剤が含有された樹脂フィルムを用いたものである。また、参考例1~3は、ポリマー系添加剤を含有していない樹脂フィルムを用いたものである。 Various optical films were produced by the manufacturing method as described above. Specifically, as shown in Table 2, optical films according to Examples 1 to 4, Comparative Examples 1 to 8, and Reference Examples 1 to 3 were produced. More specifically, Example 1 and Comparative Examples 1 and 2 are hard coat films in which a hard coat (HC) layer is formed on the resin film unwound from the resin film original fabric by the above method. is there. Example 2, Comparative Examples 3 and 4, and Reference Examples 1 to 3 are antireflection films in which an antireflection (AR) layer is formed on the resin film unwound from the resin film original fabric by the above method. . Moreover, Example 3 and Comparative Examples 5 and 6 are antiglare films in which an antiglare (AG) layer is formed on the resin film unwound from the resin film original fabric by the above method. In addition, Example 4 and Comparative Examples 7 and 8 are optically anisotropic films in which an optically anisotropic layer is formed by the above-described method on a resin film that has been unwound from a raw resin film. In Examples 1 to 4 and Reference Example 1, the core A was used as the core member of the resin film original. In Comparative Examples 1, 3, 5, and 7 and Reference Example 2, the core B is used as the core member of the resin film original. Comparative Examples 2, 4, 6, 8 and Reference Example 3 use the core C as the core member of the resin film original. In Examples 1 to 4 and Comparative Examples 1 to 8, resin films containing polymer additives are used. Reference Examples 1 to 3 use resin films that do not contain polymer additives.
 これらの光学フィルムは、以下のような基準で評価した。 These optical films were evaluated according to the following criteria.
 [評価]
 (干渉縞評価)
 得られた光学フィルムの機能層(塗布層)が形成された面とは反対側の面に、裏面反射を防止するための黒色テープを貼った。その状態の光学フィルムを、機能層(塗布層)が形成された面側から目視で観察した。
[Evaluation]
(Interference fringe evaluation)
The black tape for preventing back surface reflection was stuck on the surface on the opposite side to the surface in which the functional layer (coating layer) of the obtained optical film was formed. The optical film in this state was visually observed from the surface side on which the functional layer (coating layer) was formed.
 その結果、干渉縞の発生が確認されなかった場合は、「○」と評価し、干渉縞の発生がわずかに確認された場合は、「△」と評価し、干渉縞の発生が広い範囲で確認された場合は、「×」と評価した。 As a result, when the occurrence of interference fringes is not confirmed, it is evaluated as “◯”, and when the occurrence of interference fringes is slightly confirmed, it is evaluated as “△”, and the occurrence of interference fringes is observed in a wide range. When it was confirmed, it was evaluated as “×”.
 (ギラつき評価)
 ビュアー(ハクバ写真産業株式会社製のライトビュアー7000PRO)上に、厚み0.7mmのガラス板にブラックマトリクスパターンが形成されたブラックマトリクスパターン板(105ppi)を、パターン面を下にして載置した。そして、そのブラックマトリクスパターン板の上に、得られた光学フィルムの機能層(塗布層)が形成された面とは反対側の面を接触させるように載置した。そして、光学フィルムが浮かないように、光学フィルムの縁を指で軽く押さえながら、暗室で、ビュアーを作動させた状態で、光学フィルムを目視で観察した。
(Evaluation with glare)
A black matrix pattern plate (105 ppi) in which a black matrix pattern was formed on a glass plate having a thickness of 0.7 mm was placed on a viewer (Light Viewer 7000PRO manufactured by Hakuba Photo Industry Co., Ltd.) with the pattern surface facing down. And it mounted so that the surface on the opposite side to the surface in which the functional layer (coating layer) of the obtained optical film was formed may be contacted on the black matrix pattern board. Then, the optical film was visually observed in a dark room with the viewer operated while lightly pressing the edge of the optical film with a finger so that the optical film did not float.
 その結果、ギラつきが確認されなかった場合は、「○」と評価し、わずかにギラつきが確認された場合は、「△」と評価し、ギラつきが広い範囲で確認された場合は、「×」と評価した。 As a result, if glare is not confirmed, evaluate as `` ○ '', if slightly glare is confirmed, evaluate as `` △ '', if glare is confirmed in a wide range, Evaluated as “x”.
 (モアレ評価)
 画像表示装置(ソニー株式会社製のBRAVIA(KDL32EX700))の偏光板表面(視認側)に粘着剤を介して、光学フィルムを貼合し、画像表示装置に表示される画像を目視で確認した。
(Moire evaluation)
An optical film was bonded to the polarizing plate surface (viewing side) of an image display device (BRAVIA (KDL32EX700) manufactured by Sony Corporation) via an adhesive, and an image displayed on the image display device was visually confirmed.
 その結果、モアレが確認されなかった場合は、「○」と評価し、わずかにモアレが確認された場合は、「△」、広い範囲でモアレが確認された場合は、「×」と評価した。 As a result, when moire was not confirmed, it was evaluated as “◯”, when slightly moire was confirmed, “△”, and when moire was confirmed in a wide range, it was evaluated as “x”. .
 これらの結果を、樹脂フィルム、コア、及び機能層の種類とともに、表2に示す。なお、樹脂フィルムにポリマー系添加剤を含有している場合は、「含有」と示し、含有していない場合は、「不含有」と示す。 These results are shown in Table 2 together with the types of resin film, core and functional layer. In addition, when a polymer-type additive is contained in the resin film, it shows as "contained", and when not containing, it shows as "not containing".
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、絶縁層と、前記絶縁層の内側に位置する導電層とを備えるコアAを備えた樹脂フィルム原反を用いて、光学フィルムを製造した場合(実施例1~4)は、光学フィルムの機能層の種別にかかわらず、干渉縞、ギラつき、及びモアレの発生が十分に抑制されたものが得られる。これに対して、最外層が絶縁層ではなく導電層のコアBを用いた場合(比較例1,3,5,7)や絶縁層からなるコアCを用いた場合(比較例2,4,6,8)には、干渉縞、ギラつき、及びモアレの発生が十分に抑制できなかった。 As can be seen from Table 2, when an optical film was produced using a resin film original fabric provided with a core A comprising an insulating layer and a conductive layer located inside the insulating layer (Examples 1 to 4) Can be obtained in which interference fringes, glare and moire are sufficiently suppressed regardless of the type of the functional layer of the optical film. In contrast, when the outermost layer is not the insulating layer but the core B of the conductive layer (Comparative Examples 1, 3, 5, and 7), or when the core C made of the insulating layer is used (Comparative Examples 2, 4, and 5). 6, 8), the occurrence of interference fringes, glare, and moire could not be sufficiently suppressed.
 また、反射防止フィルム、防眩フィルム、光学異方性フィルムなど光学的機能を付与した光学フィルムにおいては、本発明の効果である干渉縞、ギラつき、及びモアレの発生の抑制が顕著であった。 Further, in optical films having an optical function such as an antireflection film, an antiglare film, and an optically anisotropic film, the suppression of the occurrence of interference fringes, glare, and moire, which are the effects of the present invention, was remarkable. .
 また、樹脂フィルムとして、ポリマー系添加剤を含有しないものを用いた場合(参考例1~3)は、コア部材による有意差がほとんどなかった。このことから、ポリマー系添加剤を含有した樹脂フィルムを備える樹脂フィルム原反において、コアAを用いることが有意義であることがわかった。 Further, when a resin film containing no polymer additive was used (Reference Examples 1 to 3), there was almost no significant difference depending on the core member. From this, it turned out that it is meaningful to use the core A in the resin film original fabric provided with the resin film containing the polymer-based additive.
 本発明によれば、画像表示装置に用いた場合における画像欠陥の発生が充分に抑制された光学フィルムを製造できる樹脂フィルムを巻き出し可能な樹脂フィルム原反が提供される。また、このような樹脂フィルム原反を用いた光学フィルムの製造方法が提供される。 According to the present invention, there is provided a resin film raw material capable of unwinding a resin film that can produce an optical film in which the occurrence of image defects when used in an image display device is sufficiently suppressed. Moreover, the manufacturing method of the optical film using such a resin film original fabric is provided.

Claims (6)

  1.  円筒状のコア部材と、前記コア部材の外周面にロール状に巻き回された長尺状の樹脂フィルムとを備え、
     前記樹脂フィルムが、ポリマー系添加剤を含有し、
     前記コア部材が、絶縁層と、前記絶縁層の内側に位置する導電層とを備えることを特徴とする樹脂フィルム原反。
    A cylindrical core member, and a long resin film wound around the outer peripheral surface of the core member in a roll shape,
    The resin film contains a polymer additive,
    The said core member is equipped with an insulating layer and the conductive layer located inside the said insulating layer, The resin film original fabric characterized by the above-mentioned.
  2.  前記絶縁層が、前記コア部材の最外層である請求項1に記載の樹脂フィルム原反。 The resin film original fabric according to claim 1, wherein the insulating layer is an outermost layer of the core member.
  3.  前記樹脂フィルムが、セルロースエステル系樹脂含有フィルムである請求項1又は請求項2に記載の樹脂フィルム原反。 The resin film original fabric according to claim 1 or 2, wherein the resin film is a cellulose ester resin-containing film.
  4.  前記ポリマー系添加剤が、ポリエステル系可塑剤である請求項1~3のいずれか1項に記載の樹脂フィルム原反。 The resin film original fabric according to any one of claims 1 to 3, wherein the polymer-based additive is a polyester-based plasticizer.
  5.  請求項1~4のいずれか1項に記載の樹脂フィルム原反から、前記樹脂フィルムを巻き出す工程と、
     巻き出された樹脂フィルム上に、機能層を構成する材料を含む塗布液を塗布して、前記機能層を形成する工程とを備えることを特徴とする光学フィルムの製造方法。
    A step of unwinding the resin film from the resin film original fabric according to any one of claims 1 to 4,
    Applying the coating liquid containing the material constituting the functional layer onto the unrolled resin film to form the functional layer. A method for producing an optical film, comprising:
  6.  前記機能層が、ハードコート層、反射防止層、防眩層、及び液晶層からなる群から選ばれる少なくとも1つである請求項5に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 5, wherein the functional layer is at least one selected from the group consisting of a hard coat layer, an antireflection layer, an antiglare layer, and a liquid crystal layer.
PCT/JP2013/002302 2012-04-24 2013-04-03 Resin film web and method for manufacturing optical film WO2013161192A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012099131 2012-04-24
JP2012-099131 2012-04-24

Publications (1)

Publication Number Publication Date
WO2013161192A1 true WO2013161192A1 (en) 2013-10-31

Family

ID=49482547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002302 WO2013161192A1 (en) 2012-04-24 2013-04-03 Resin film web and method for manufacturing optical film

Country Status (1)

Country Link
WO (1) WO2013161192A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018188249A (en) * 2017-04-28 2018-11-29 株式会社昭和丸筒 Winding core

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016323A (en) * 2009-07-10 2011-01-27 Konica Minolta Opto Inc Method for manufacturing acrylic resin film, acrylic resin film, polarization plate, and liquid crystal display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016323A (en) * 2009-07-10 2011-01-27 Konica Minolta Opto Inc Method for manufacturing acrylic resin film, acrylic resin film, polarization plate, and liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018188249A (en) * 2017-04-28 2018-11-29 株式会社昭和丸筒 Winding core

Similar Documents

Publication Publication Date Title
JP5202819B2 (en) Method for producing antireflection film
WO2014141734A1 (en) Organic electroluminescent display device and method for manufacturing same
KR101224731B1 (en) Polarization plate with antireflection function, process for producing the same, and image display unit utilizing the same
WO2013038807A1 (en) Circularly polarizing plate and three-dimensional image display apparatus
JP5347406B2 (en) Manufacturing method of optical film
JP4797810B2 (en) Laminated thermoplastic resin film and laminated thermoplastic resin film roll
KR102353400B1 (en) Method for manufacturing optical film
JPWO2015159679A1 (en) Polarizing plate, manufacturing method of polarizing plate, liquid crystal display device, and organic electroluminescence display device
JP2010134440A (en) Method and installation for manufacturing retardation film
WO2013161192A1 (en) Resin film web and method for manufacturing optical film
JP6269650B2 (en) Manufacturing method of optical film roll
JP2014058393A (en) Core member for resin film original fabric, resin film original fabric using core member for resin film original fabric, and method for producing optical film
JP5948750B2 (en) Antiglare film, method for producing antiglare film, polarizing plate and stereoscopic image display device
JP2005111669A (en) Manufacturing method for polymer film
TWI483837B (en) Resin film and resin film manufacturing method
JP6164050B2 (en) Optical film, polarizing plate, manufacturing method thereof, and image display device
CN110562779B (en) Method for manufacturing polarizing film roll
JP5346969B2 (en) Method for producing antiglare film
JP2012014115A (en) Optical film and method of manufacturing the same
JP2010134439A (en) Method and installation for manufacturing retardation film
JP2019108527A (en) Polyester film
JP6973415B2 (en) Film roll and its manufacturing method
JP2020114758A (en) Package, storage or transportation method of polyvinyl alcohol film, polyvinyl alcohol film, and polarizing film
JP2008080552A (en) Apparatus for manufacturing optical film
JP2010139585A (en) Optical film, method for producing the optical film, polarizing plate, and liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP