WO2013159566A1 - 一种气液两相分布器熄焦炉及其熄焦方法 - Google Patents

一种气液两相分布器熄焦炉及其熄焦方法 Download PDF

Info

Publication number
WO2013159566A1
WO2013159566A1 PCT/CN2013/000464 CN2013000464W WO2013159566A1 WO 2013159566 A1 WO2013159566 A1 WO 2013159566A1 CN 2013000464 W CN2013000464 W CN 2013000464W WO 2013159566 A1 WO2013159566 A1 WO 2013159566A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
coke
quenching
phase distributor
Prior art date
Application number
PCT/CN2013/000464
Other languages
English (en)
French (fr)
Inventor
张永发
田波
刘振民
马建安
董跃
杨文超
王丽秀
Original Assignee
太原理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210119489.5A external-priority patent/CN102618300B/zh
Priority claimed from CN201210119511.6A external-priority patent/CN103131435B/zh
Application filed by 太原理工大学 filed Critical 太原理工大学
Publication of WO2013159566A1 publication Critical patent/WO2013159566A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B39/00Cooling or quenching coke
    • C10B39/02Dry cooling outside the oven
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B39/00Cooling or quenching coke
    • C10B39/04Wet quenching

Definitions

  • the invention relates to a quenching furnace and a quenching method thereof, in particular to a gas-liquid two-phase distributor quenching in which a gas-liquid two-phase distributor is connected in a quenching furnace and a gas and a liquid are connected to simultaneously distribute quenching. Furnace and its quenching method.
  • U.S. Patent No. 1 discloses "process for utilizing waste heat and for obtaining water gas during the cooling of incandescent coke".
  • the device is composed of a front chamber, a cooling chamber, a quenching chamber and a discharge chamber.
  • the cooling water mist is sprayed into the quenching chamber to cool the medium temperature coke, and the coke releases a large amount of heat during the cooling process, so that the cooling water gas is cooled. It turns into water vapor, and some of the water vapor rises. When the water vapor rises, it reacts with the red hot coke to produce a synthesis gas.
  • Syngas and water vapor and some other dust are led out from the high-temperature gasification gas outlet on the front chamber, heat is recovered by the waste heat boiler, and some of the initially cooled synthesis gas and water vapor mixture is returned to the cooling chamber of the quenching device to continue to cool the coke. Part of the mixture is further cooled by direct contact with the cooling water through the throttle valve, and the cooling water directly enters the quenching device for spraying and quenching, and the syngas is taken out for external use. The descending part of the water vapor is extracted by the blower, the cyclone is dedusted, and finally introduced into the quenching chamber to continue the reaction.
  • This invention combines dry quenching with wet quenching, simplifies equipment, and reduces environmental pollution.
  • the gas quenching device is not provided with a gas distributor, which causes the gas distribution of the quenching medium water vapor and the water gas (C HH 2 ) mixed gas to pass through the coke, and the gas distribution is obviously segregated, resulting in a "dead angle" and a high resistance.
  • the gas is in a thin flow field area, so that the temperature of a part of the coke entering the quenching stage of the cooling water is too high, which affects the coke cooling effect.
  • the spray device is installed on both sides of the upper portion of the quenching chamber, which also causes uneven coke cooling.
  • the prior art discloses "a device for quenching coke and producing by-product syngas and water vapor and a process thereof".
  • the device is a stainless steel device with a water jacket. During the process of falling inside the device, the red hot coke heats the water in the water jacket and generates water vapor, and then introduces the generated water vapor into the quenching device and red. The hot coke reacts with water and gas to form syngas.
  • the method of indirectly cooling coke by water produces water vapor, which can obtain water vapor but increases the coke cooling time, that is, the coke cooling efficiency is low, and the temperature of the water vapor is not high enough.
  • the prior art discloses "a coke cooling device and method".
  • the device is pre-stored, gasified and cooled Segment, transition section, physical cooling section and discharge section.
  • the method of cooling coke by steam and coke oven gas, the water vapor is evenly distributed in the entire gasification cooling section by the cooling gasifier distributor, and gasification reaction is generated by the gasification cooling section and the red hot coke to generate synthesis gas.
  • the reaction is an endothermic reaction to reduce the temperature of the coke; the coke oven gas is distributed by the coolant distributor throughout the physical cooling section, and the coke oven gas and the coke are physically exchanged to absorb the sensible heat of the coke.
  • the device effectively controls the temperature of the coke in the device, and has the advantages of dry quenching, and the device is relatively simple, but the distributor cannot rotate, so that coke accumulates on the distributor and affects the coke drop; in the physical cooling section, After the coke oven gas absorbs the sensible heat of the coke, the temperature is not high enough, so the heat utilization in the coke oven gas is difficult, the heat efficiency utilization is low, the outlet coke temperature is high, and the heat recovery is incomplete.
  • the prior art discloses a patent for invention of a "dry and wet combined quenching device".
  • the device consists of a combined quenching furnace, a liquid phase carrier heat recovery system, an inert gas heat recovery system, and a vapor recovery system.
  • the combined quenching furnace is composed of a feeding section, an indirect dry quenching section, a steam quenching section, a water spray section and a discharge section.
  • the liquid medium in the liquid phase carrier heat recovery system indirectly contacts the red hot coke to transfer heat to recover most of the coke sensible heat, and the inert gas directly contacts the coke to transfer heat to recover a small amount of heat energy, and finally uses water spray to complete the quenching .
  • the device first uses the liquid carrier to recover sensible heat, and the heat transfer between the liquid and solid is slow, the coke cooling time is long, the quenching effect is not good, and the implementation is difficult. ⁇ Recovering heat in three steps, the process is complicated.
  • the present invention provides a gas-liquid based on the existing quenching device and its quenching method in the quenching process, due to the uneven distribution of gas and liquid, resulting in uneven coke quality after quenching and low quenching efficiency.
  • Two-phase distributor quenching furnace and its quenching method Two-phase distributor quenching furnace and its quenching method.
  • the measures taken by the present invention are a gas-liquid two-phase distributor quenching furnace and a quenching method thereof, comprising a gas-liquid two-phase distributor; a quenching machine containing a gas-liquid two-phase distributor a furnace; and a quenching method for implementing a gas-liquid two-phase distributor quenching furnace, wherein:
  • a gas-liquid two-phase distributor is configured to: the gas-liquid two-phase distributor is composed of a gas distribution tower and a liquid distribution plate connected through a gas-liquid separation tank;
  • the gas-liquid separation tank is provided with a coke oven mixed gas inlet and a coke oven liquid inlet on both sides thereof, and a gas distribution tower is disposed on the upper side thereof, and a liquid distribution disc is disposed under the gas separation tank;
  • the gas distribution tower is a rotating disc in which a plurality of gas passages are uniformly disposed on an upper top surface of the gas-liquid separation tank, and a rotating rod is fixed on a lower central surface of the rotating disc and connected with a support member to support rotation;
  • the circumference of the disc is fixed with a conical carbon plate which is tapered upwards, and is sequentially sleeved down through an annular support ring layer provided with a plurality of gas outlets, and then a circular baffle cap is used to form a tower-shaped distribution structure.
  • the liquid distribution plate is provided with a circular liquid storage distribution groove on the lower bottom surface of the gas-liquid separation tank, and is uniformly arranged with a plurality of "S" type liquid sealing tubes, and the lower bottom surface of the circular liquid storage distribution groove is uniformly distributed.
  • a plurality of cooling water nozzles are provided, and support rod supports are provided around the periphery.
  • the mixed gas inlet and the liquid inlet are horizontally disposed, and are higher than the bottom surface of the gas-liquid separation tank by 30 00 mm ; the conical carbon barrier and the horizontal plane are formed.
  • the angle is 45° ⁇ 70°, and the number of layers is 3 ⁇ 10 layers;
  • the total cross-sectional area of the "S" type liquid sealing tube accounts for 1/20 of the bottom area of the gas-liquid separation tank;
  • the cooling water nozzle The total area is 1/10 of the bottom area of the circular liquid storage distribution groove;
  • the ratio of the upwardly tapered conical carbon plate to the diameter of the lower end of the circular baffle is 1/5-2/5 o
  • a quenching furnace comprising a gas-liquid two-phase distributor, comprising a high temperature coke pre-existing zone, a first cooling zone, a cooling medium distribution zone, a second cooling zone and a discharge zone; wherein the high temperature mixed gas outlet is Provided in an upper portion of the first cooling zone; the mixed gas inlet and the liquid inlet are gas-liquid two-phase distributors disposed in a cooling medium distribution zone of the quenching furnace;
  • the gas-liquid two-phase distributor is composed of a gas distribution tower and a liquid distribution plate communicating through the gas-liquid separation tank, and is supported by the support rod fixed on the inner wall surface of the quenching furnace to the center of the quenching furnace;
  • the gas-liquid separation tank is provided with a coke oven mixed gas inlet and a coke oven liquid inlet on both sides thereof, and a gas distribution tower is disposed on the upper side thereof, and a liquid distribution disc is disposed under the gas separation tank;
  • the gas distribution tower is a rotating disc in which a plurality of gas passages are uniformly disposed on an upper top surface of the gas-liquid separation tank, and a rotating rod is fixed on a lower central surface of the rotating disc and connected with a support member to support rotation;
  • the circumference of the disc is fixed with a conical carbon plate which is tapered upwards, and is sequentially sleeved down through an annular support ring layer provided with a plurality of gas outlets, and then a circular baffle cap is used to form a tower-shaped distribution structure. ;
  • the liquid distribution plate is provided with a circular liquid storage distribution groove on the lower bottom surface of the gas-liquid separation tank, and is uniformly arranged with a plurality of "S" type liquid sealing tubes, and the lower bottom surface of the circular liquid storage distribution groove is uniformly distributed.
  • the quenching furnace is an upright cylindrical structure, and the outer wall of the quenching furnace and the outer edge of the gas-liquid two-phase distributor are 200mm ⁇ 650mm.
  • a quenching method for implementing a gas-liquid two-phase distributor quenching furnace characterized in that: the quenching method is a gas phase quenching method and a liquid phase quenching by a gas-liquid two-phase distributor provided in a quenching furnace
  • the coke methods are grouped together, and the gas-liquid two-phase distribution quenching is simultaneously performed by a gas-liquid two-phase distributor, wherein:
  • the gas phase quenching method is that the mixed gas enters from the lower portion of the quenching furnace, and the gas in the gas-liquid two-phase distributor
  • the liquid separation tank mixes and separates from the liquid, and the gas rises and enters the gas distribution tower through a plurality of gas passages of the rotating disc, and then flows out through at least two annular support rings and a plurality of gas outlets thereof;
  • the carbon plate is evenly distributed to cool the red coke, and then is derived from the high temperature mixed gas outlet at the upper portion of the quenching furnace;
  • the liquid phase quenching method is a gas-liquid separation tank through which the cooling water enters from the lower portion of the quenching furnace and passes through the gas-liquid two-phase distributor. After the separation, at least two or more cooling water nozzles entering the circular liquid storage distribution tank by at least two or more "S" type liquid sealing tubes are sprayed downward to distribute the cooled medium temperature coke, and the vapor evaporation rises.
  • the gas phase quenching method of the quenching furnace is that the mixed gas enters from the mixed gas inlet of the lower portion of the quenching furnace, and the gas and liquid are introduced.
  • the two-phase distributor After the two-phase distributor is distributed, it enters the first cooling zone in the reverse cross flow of the gaseous cooling medium during the ascending process, and contacts with the red hot coke, absorbs heat, vaporizes with red hot coke, generates syngas, and coke cools.
  • the mixed gas is exported through the high-temperature mixed gas outlet, and the dust is removed by the dust collector.
  • the waste heat boiler recovers the heat, and the heat pump compresses the mixed gas.
  • a part of the mixed gas enters the gas-liquid separator for gas-liquid separation, and the separated gas is introduced.
  • the liquid phase quenching method of the quenching furnace is that the cooling water entering the quenching furnace and the syngas extracted from the external heat exchange heat in the heat exchanger, and then sent to the venturi injector by the make-up water pump, and the mixed gas compressed by the heat pump Gas-liquid mixing is carried out, and the gas-liquid mixture enters the gas-liquid separator for gas-liquid separation.
  • the separated water is sent to the gas-liquid two-phase distributor of the quenching furnace by the feed water pump for spraying and quenching; in the coke flow cooling in the hot coke
  • the medium is uniformly sprayed radially to the second cooling zone, and the coke is cooled from 400'C to 100'C, and the cooling water is evaporated into the first cooling zone for gas phase quenching.
  • a further additional technical feature is: the gas-liquid mass ratio of the mixed gas entering from the lower portion of the quenching furnace to the cooling water entering from the lower portion of the quenching furnace is 1.5 to 2.5;
  • the outlet temperature of the upper mixture is 700' (: ⁇ 1000'C;
  • the inlet temperature of the mixture below the coke oven is 120 ° (: ⁇ 190.
  • the gas-liquid two-phase distributor quenching furnace and the quenching method thereof for realizing the above-mentioned invention compared with the existing quenching equipment, the gas-liquid two-phase distributor quenching furnace of the present invention is based on water vapor and red
  • the hot coke undergoes an endothermic reaction, and at the same time of quenching the coke, it can produce syngas, and at the same time avoids environmental pollution and a large amount of waste of water in the process of wet quenching, and avoids the disadvantage of coke dry quenching.
  • the gas-liquid two-phase distributor disposed in the middle of the central portion of the quenching furnace cooling section can be uniformly distributed in the cooling zone, so that the coke temperature in the first cooling zone is uniformly decreased, and the step of entering the second cooling zone is avoided.
  • Cold and affecting coke The cooling water sprayed by the cooling water nozzle of the gas-liquid two-phase distributor directly contacts the medium-temperature coke, which can quickly quench the coke, and the gas and liquid quenching can avoid the quenching "dead angle".
  • the gas-liquid two-phase distributor used has a conical structure as a whole, and has small resistance and large flow rate, which can form a uniform gas-solid and liquid-solid stable field in the quenching furnace, and can distribute the gas and liquid. In the entire cooling zone, the quenching effect is affected by the uneven distribution of gas and liquid.
  • the gas-liquid two-phase distributor and its quenching furnace used use cheap water and steam as a cooling medium, and a large amount of residual heat of coke is recovered, saving resources.
  • the coke quenching furnace organically integrates the water-gas two-phase distributor, the multi-stage grading coke oven and the mixed cooling medium circulation technology to form a new water gas quenching process, which greatly reduces the quenching equipment and operating costs.
  • the steam reacts with the red hot coke to form a synthesis gas.
  • the synthesis gas is purified and dedusted, it is used for synthetic fuel.
  • the device can also conveniently adjust the flow rate of water vapor and water, so that the temperature of each section in the quenching furnace can be conveniently and quickly controlled.
  • the quenching method of the above-mentioned gas-liquid two-phase distributor quenching furnace compares the existing quenching method with the gas-liquid two-phase distribution water and steam as a cooling medium, and recovers the high temperature coke.
  • a large amount of heat energy saves resources;
  • the use of water vapor quenching coke, in favor of coke quality has the incomparable advantage of dry quenching, that is, no need for air separation, induced draft fan and other equipment, saving equipment and operating costs;
  • the coke quality is greatly improved, and the environment is not polluted, and the heat is recovered while saving water resources.
  • Fig. 1 is a schematic view showing the main structure of a gas-liquid two-phase distributor gas distribution tower.
  • FIG. 2 is a schematic view showing the structure of a liquid distribution plate of a gas-liquid two-phase distributor.
  • Figure 3 is a schematic view showing the structure of the main body of the gas-liquid two-phase distributor.
  • Figure 4 is a schematic top plan view of a gas-liquid two-phase distributor.
  • Fig. 5 is a schematic view showing the structure of the main body of the gas-liquid two-phase distributor quenching furnace.
  • Fig. 6 is a flow chart showing the quenching method of the gas-liquid two-phase distributor quenching furnace.
  • the present invention provides a gas-liquid two-phase distributor 22, wherein the gas-liquid two-phase distributor 22 is composed of a gas distribution tower 1 and a liquid distribution plate 5 connected through a gas-liquid separation tank 3;
  • the upper end surface of the circular liquid storage distribution groove 10 of the disk 5 is uniformly provided with a plurality of "S" type liquid sealing tubes 15, and the lower end surface is uniformly provided with a plurality of cooling water nozzles 14;
  • the circular liquid storage distribution groove 10 is for storing
  • the liquid separated by the "S" type liquid sealing tube 15 is sprayed and distributed through the cooling water nozzle 14 connected to the small hole of the bottom plate; the upper port of the "S" type liquid sealing tube 15 is connected to the bottom liquid lowering hole of the gas-liquid separation tank 3.
  • the lower liquid hole is used for cooling water to enter the "S" type liquid seal 15, the lower port is suspended in the circular liquid storage distribution tank 10, and the "S" type liquid sealing tube 15 has a water column therein to prevent gas from passing through, the water column
  • the height is determined by the length of the "S" type liquid sealing tube 15, and the length of the "S” type liquid sealing tube 15 is designed by the pressure drop in the quenching furnace; gas is disposed above the circular liquid storage distribution tank 10.
  • the gas-liquid separation tank 3 is an upper hollow portion and is provided with coke oven mixing on both sides thereof
  • the body gas inlet 2 and the coke oven liquid inlet 4 are provided with a rotating disc 16 with a gas passage 9 at the upper portion thereof; the rotating disc 16 is rotated by the lower support member 12 through the rotating rod 11, and the rotating rod 11 is rotated.
  • the rotation of the disk 16 can drive the rotation of the lowermost conical carbon plate 8, so that the entire gas distribution tower 1 rotates, that is, the entire conical carbon plate 8 and its upper portion rotate; there is a tapered cone around the gas-liquid separation groove 3.
  • the carbon plate 8 is shaped to change the flow of the top gas in the gas distribution tower 1 and block the coke from entering the gas-liquid two-phase distributor 22, and sequentially down-down to the annular support ring 7 provided with a plurality of gas outlets 17 And the fixed connection; the thickness and size of the annular support ring 7 should fully consider the weight that the supported conical carbon block 8 needs to bear; finally, the circular baffle 6 is capped to form a tower structure.
  • the mixed gas inlet 2 and the liquid inlet 4 of the gas-liquid two-phase distributor 22 are disposed in parallel on the left and right sides of the gas-liquid separation tank 3, so as to enter
  • the mixed gas is in contact with the liquid and the temperature is lowered, part of the cooling water is evaporated, and when the mixed gas is in contact with the coke, more coke heat can be absorbed, the coke temperature entering the second cooling zone 23 is prevented from being too high, and the coke is made when the cooling water is sprayed and quenched. Quenching affects and improves coke quality.
  • the bottom surface of the gas-liquid separation tank 3 is designed to be lower than the mixed gas inlet 2 and the quenching furnace liquid inlet 4 to prevent the cooling water from flowing back into the mixed gas inlet 2, reducing the flow of gas and liquid into the gas-liquid separation tank 3.
  • the resistance is designed to be lower than the mixed gas inlet 2 and the quenching furnace liquid inlet 4 to prevent the cooling water from flowing back into the mixed gas inlet 2, reducing the flow of gas and liquid into the gas-liquid separation tank 3.
  • the angle between the conical carbon block 8 and the horizontal plane is set to 45° ⁇ 70°, and the number of layers is set to 3 ⁇ 10 layers, so as to reduce the height of the gas-liquid two-phase distributor 22 and increase quenching
  • the effective quenching volume in the furnace, the distance between the bottommost conical carbon block 8 and the inner wall of the quenching furnace is set to 200mm ⁇ 650mm, so that the coke can fall freely, and the cone is set according to the coke oven treatment capacity and the tower diameter.
  • the number of layers of the carbon block is 8 to 10 layers.
  • the present invention sets the total area of the "S" type liquid sealing tube 15 to 1/20 of the bottom area of the gas-liquid separation tank 3, so that the liquid can quickly enter the circular liquid storage distribution tank 10, thereby reducing the mixing.
  • the distribution resistance of the gas is set to 1/20 of the bottom area of the gas-liquid separation tank 3, so that the liquid can quickly enter the circular liquid storage distribution tank 10, thereby reducing the mixing.
  • the invention sets the total area of the cooling water nozzles 14 to 1/10 of the bottom area of the circular liquid storage distribution tank 10, so that the cooling water is sprayed on the medium temperature coke as uniformly as possible, so that all the drops fall to the discharge opening.
  • the coke is cooled to around 100'C.
  • the invention sets the ratio of the diameter of the tapered carbon plate 8 of the tapered structure to the lower end of the circular baffle 6 to be 1/5 ⁇ 2/5, and the conical coke oven has a small amount of processing or inner diameter, and the conical carbon
  • the ratio of the plate 8 to the circular baffle 6 is 2/5, which can meet the quenching requirement.
  • the ratio of the conical carbon plate 8 to the circular baffle 6 is 1/5. This arrangement can more effectively distribute the mixed gas and effectively cool the high temperature coke.
  • the present invention provides a quenching furnace using a gas-liquid two-phase distributor 22, wherein the quenching furnace applies the gas-liquid two-phase distributor 22 to a quenching furnace, which is sequentially heated by a high temperature.
  • Coke pre-existing zone 19 high-temperature coke and gaseous cooling medium reverse cross-flow contact first cooling zone 21, cooling medium distribution zone 29, hot coke co-flow liquid cooling medium radial uniform spraying second cooling zone 23 and discharge zone 24
  • the high temperature mixed gas outlet 30 is disposed at an upper end of the upper mixed gas passage 20 of the first cooling zone 21 in a reverse cross flow contact between the high temperature coke and the gaseous cooling medium; the gas-liquid two-phase distributor 22, the mixed gas inlet 2, and the liquid inlet 4 are disposed at The coke oven cooling medium distribution area 29 is provided.
  • the gas-liquid two-phase distributor 22 is disposed in the middle and lower portions of the quenching furnace.
  • the specific implementation is as follows:
  • the gas-liquid two-phase distributor 22 is disposed in the cooling medium distribution area 29 of the quenching furnace, and the support rods 13 fixed on the inner wall surface of the quenching furnace through the lower end are evenly distributed and supported in the center of the middle and lower parts of the quenching furnace;
  • the upper end of the support rod 13 is fixedly connected with a closed circular liquid storage distribution groove 10, and the support rod 13 is supported.
  • the weight of the gas-liquid two-phase distributor 22 and the gas-liquid two-phase distributor 22; on the upper end surface of the circular liquid storage distribution tank 10, a plurality of "S" type liquid sealing tubes are uniformly arranged according to the designed area 15.
  • a plurality of cooling water nozzles 14 are uniformly disposed according to the designed area; and a gas-liquid separation tank 3 is disposed on the upper surface of the circular liquid storage distribution tank 10; A cylinder of the quenching furnace is disposed on both sides of the gas-liquid separation tank 3 with a coke oven mixed gas inlet 2 and a coke oven liquid inlet 4; and a rotation with a plurality of gas passages 9 is uniformly disposed at an upper portion of the gas-liquid separation tank 3.
  • the annular support ring 7 with a plurality of gas outlets 17 is fixedly connected and overlapped, and then closed by a circular baffle 6 to form a tower structure; the tower gas distribution structure can uniformly mix the gas entering the coke oven Distributed in the coke oven, the hot coke is carried down to the next On timely and appropriate cooling, improves the uniformity of the amount of coke is cooled, so that the cooling of coke quality greatly improved.
  • the motor 27 disposed on the side corridor 28 of the quenching furnace is started to drive the rotation of the rotating rod 11, the rotating disc 16 and the gas distribution tower 1, thereby avoiding the accumulation of coke in the quenching furnace, and further improving the quenching furnace The uniformity of coke cooling within.
  • the quenching furnace is designed as an upright cylindrical structure, and the inner diameter of the quenching furnace and the gas-liquid two-phase distribution are arranged.
  • the ratio of the diameter of the device 22 is set to 1.05 to 1.15, that is, the distance between the outer edge of the gas-liquid two-phase distributor 22 and the inner wall of the quenching furnace is 200 mm to 650 mm, which is used to match the falling of the coke with the quenching of the mixed gas;
  • the design of the distance can make the coke fall smoothly without affecting the quenching efficiency, so as to prevent coke from accumulating inside the quenching furnace.
  • the temperature of the mixed gas inlet 2 of the lower portion of the quenching furnace is set to be within a range of 120 ° C to 190 ° C to avoid the gas of the high temperature mixed gas outlet 30 caused by the water content of the mixed gas being too high.
  • the lower temperature also keeps the higher temperature entering the second cooling zone 23 at around 400'C.
  • the red hot coke enters the high temperature coke preserving area 19 from the coke inlet 18 at the top of the quenching furnace, and the high temperature coke preserving area 19 functions to buffer the coke.
  • a first cooling zone 21 is disposed under the high temperature coke pre-existing zone 19
  • a gas-liquid two-phase distributor 22 is disposed in the middle of the cooling medium distribution zone 29, and a coke suspended by the crushing component of the high temperature coke preserving zone 19 falling in the high temperature coke preserving zone 19
  • the steam rising from the conical carbon barrier 8 of the gas-liquid two-phase distributor 22 meets in the first cooling zone 21, the water vapor absorbs heat, the temperature rises, the coke emits heat, the temperature drops, and a water gas reaction occurs to generate syngas.
  • the water vapor continuously reacts with the hot coke to absorb the coke heat until the syngas enters the mixed gas passage 20 around the high temperature coke pre-stored zone 19, A mixture of about 850 ° C is taken out from the high temperature mixed gas outlet 30.
  • the medium temperature coke at about 400 ° C enters the second cooling zone 23 during the falling process; the first cooling zone 21, the cooling medium distribution zone 29, and the second cooling zone 23 are in the vertical cylinder and are directly connected, thereby ensuring the device.
  • the structural integration reduces the coke drop resistance; in the upper portion of the second cooling zone 23, the water sprayed by the cooling water nozzles 14 of the gas-liquid two-phase distributor 22 is cooled by coke.
  • the red hot coke is changed to a medium temperature coke of about 400 ° C. Therefore, in the process of direct contact between the evaporative cooling section and the water, only water can be turned into water vapor, and cannot The gasification reaction occurs, which avoids the quenching of the coke and affects the quality of the coke, thereby improving the quality of the coke.
  • the water vapor generated in the second cooling zone 23 rises into the first cooling zone 21 to perform a water gas reaction with the red hot coke.
  • the lower portion of the second cooling zone 23 is an inverted cone-connected discharge zone 24 for discharging cooled coke; the cooled coke discharged from the discharge zone 24 is conveyed by the belt conveyor 25 through the rotary discharge valve 26.
  • the coke oven is fed separately by gas and liquid, and the cooling water is adjusted according to the coke temperature and humidity at the outlet of the discharge zone 24 to realize convenient and quick control.
  • the previous two reactions are mainly, the total amount of gas generated by other reactions is less than 1% of the total gas content, and the first two reactions need to absorb a large amount of heat when the first two reactions occur, thereby completing the coke .
  • the high temperature coke pre-storage zone 19 has a height of 900 mm and an inner diameter of 600 mm, and the top cover is lined with a heat-insulating steel plate.
  • the high-temperature coke pre-stored zone 19 has a valve at the junction of the cooling zone, and the valve inner diameter is ⁇ 300, The upper and lower 150mm high, 45'C inclined cones, so that the gas is better exported to the quenching furnace; when the coke is placed in the high temperature coke pre-storage area 19, the valve is closed and opened 5mm below the valve
  • the cooling zone height is 1200mm
  • the inner diameter is 600mm
  • the discharge zone 24 is 300mm in height
  • the outlet diameter is 150mm
  • the bottom of the gas-liquid two-phase distributor 22 having three layers of conical carbon barriers 8 is located 800mm from the upper valve.
  • the gas-liquid two-phase distributor 22 has a height of 300 mm, the outer diameter of the circular baffle 6 is 100 mm, and the conical carbon plate 8 is at a 45' C clamp with the horizontal plane.
  • the angle, the mixed gas inlet 2, the high temperature mixed gas outlet 30 is a steel pipe of ⁇ 20, the liquid inlet 4 is a steel pipe of ⁇ 15; the mixed gas derived from the high temperature mixed gas outlet 30 is indirectly cooled, and a part of the coke treatment amount is discharged, and the remaining cycle is used.
  • the inside of the device is a high temperature resistant material, and the external unit is insulated by the heat insulating material, and the coke is heated in the high temperature coke pre-storage area 19 to keep the coke in the area at about 1000 °C.
  • the coke is charged into the quenching furnace high temperature coke pre-storage zone 19 by the coke inlet 18, and when the high temperature coke pre-stored zone 19 of the quenching furnace is filled with coke, the coke falls at a speed of 500 g/min, when the coke falls to the gas-liquid two-phase distributor Cooling water is introduced into the circular liquid storage tank 10 at 22, and the cooling water is distributed by the bottom plate of the circular liquid storage tank 10, and then uniformly sprayed on the coke by the cooling water nozzle 14, and the generated water vapor rises during the process.
  • the red hot coke of the first cooling zone 21 undergoes a water gas reaction, and the gas generated by the water gas reaction is taken out by the high temperature mixed gas outlet 30.
  • the quenching furnace When the coke temperature is lowered to about 100'C, the quenching furnace is discharged.
  • the gas extracted from the high-temperature mixed gas outlet 30 is subjected to dust removal, heat recovery, gas-liquid separation, and then introduced into the gas-liquid two-phase distributor 22 from the mixed gas inlet 2, and the mixed gas is uniformly distributed by the gas-liquid two-phase distributor 22 throughout the first cooling.
  • the gas derived from the high temperature mixed gas outlet 30 is recovered by the waste heat boiler 23, and after passing through the heat pump 24, part of the gas enters the gas-liquid separator 25 and is returned to the mixed gas inlet 2, and a part thereof After the gas is sufficiently mixed with the cooling water to transfer heat, the gas is taken out for external use.
  • the amount of 13 ⁇ 4 and CO is continuously increased, and the coke temperature is continuously lowered.
  • the water vapor generated by the water vapor in the circulating gas and the cooled coke reacts with the coke to make the coke in the first cooling zone 21, the temperature is lowered from 1000'C to 400'C; in the second cooling zone 23, the coke is exchanged After heat 6 (TC cooling water cools the coke to 10 (TC.
  • a quenching method for a quenching furnace of a gas-liquid two-phase distributor according to the present invention the gas-liquid two-phase distributor used in the quenching method, as shown in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5 6 and the method of the present invention, the high temperature mixed gas of about 850 ° C from the quenching furnace is dedusted by the dust remover 31, and after the waste heat boiler 33 recovers heat, the temperature is lowered to 150 ° C, and the superheated steam generated by the waste heat boiler is overheated.
  • the steam outlet 32 is led out for external use; after the waste gas of about 150 ° C is passed from the waste heat boiler 33, first through the heat pump 34, the pressure is increased, part of the water vapor of the mixed gas is released into liquid water, and the water vapor is cooled and released to make the temperature of the mixture a part of the gas enters the gas-liquid separator 35; in the gas-liquid separator 35, the high-boiling substance and the water are condensed and separated from the gas, and the separated gas is sent from the pipe to the gas-liquid two-phase distributor in the quenching furnace
  • the distribution quenching is carried out in 22; the liquid separated by the gas-liquid separator 35 enters the heat exchanger 36 and exchanges heat with the softened water entering the waste heat boiler 33, and is introduced into the cooling water pipe, and the new softened water inlet 37 of the heat exchanger 36 is softened to the outside.
  • the other part of the heat pump 34 and the cooling water input from the makeup water pump 44 are mixed in the venturi injector 43 and sent to the gas-liquid separator 42 for gas-liquid separation.
  • the use of the venturi injector 43 not only provides power to the gas, The gas and liquid are also thoroughly mixed; the syngas separated by the gas-liquid separator 42 is cooled by the cooling water in the heat exchanger 40 and then taken out from the syngas outlet 39 for external use, and the syngas is exchanged with the cooling water to reduce the temperature of the syngas.
  • the water content of the syngas is also reduced; the new cooling water inlet of the heat exchanger 40 is connected to the external water supply pipe of 38, and after the new cooling water exchanges heat with the syngas for external use, the cooling water absorbs the heat of the gas and then passes through the makeup water pump 44 through the Venturi.
  • the ejector 43 is mixed with the gas and then sent to the gas-liquid separator 42.
  • the liquid separated by the gas-liquid separator 42 is sent from the makeup water pump 44 through the cooling water pipe to the gas-liquid two-phase distributor 22 in the quenching furnace.
  • the gas-liquid mixture is gas-liquid separated in the upper space of the gas-liquid separation tank 3, and the gas enters the gas distribution tower in the gas-liquid separation tank 3 through the gas passage 9 of the rotating disc 16. 1; the gas is changed by the gas outlet 17 on the annular support ring 7 through the conical carbon barrier 8 and then enters the first cooling zone 21 to be in contact with the red hot coke. Since the gas outlets 17 in the gas distribution tower 1 are in communication with each other, the gas outlet pressures at the gas outlets 17 of the annular support ring 7 are the same, thereby making the gas uniform. It is distributed throughout the first cooling zone 21.
  • High temperature coke pre-existing zone 19 falling coke and gas-liquid two-phase distributor 22 The mixed gas flowing out of the conical carbon barrier 8 meets in the first cooling zone 21, the gas absorbs heat, the temperature rises, the coke emits heat, the temperature drops, the water vapor A water gas reaction with coke occurs to produce syngas. During the ascending process of syngas and water vapor, the water vapor continuously reacts with the coke, and the mixed gas absorbs the coke heat until the mixture enters the mixed gas passage 20 around the high temperature coke preserving zone 19, and finally is derived from the high temperature mixed gas outlet 30. .
  • the dust is removed, and the dust is removed to the waste heat boiler 33 to recover the heat.
  • the liquid separated by the gas-liquid mixture enters the liquid distribution plate 5 for distribution.
  • the liquid is discharged from the lower end outlet of the "S" type liquid sealing tube 15 into the circular liquid storage distribution tank 10, and finally sprayed through the cooling water nozzle 14; in the "S" type In the liquid sealing tube 15, since a liquid water is present, gas such as water vapor is prevented from entering the circular liquid storage tank 10.
  • the cooling water is in contact with the medium temperature coke, the cooling water absorbs the coke heat, and is evaporated into water vapor for the first cooling zone 21 to react; since the water gas reaction occurs in the first cooling zone 21, the red hot coke becomes the medium temperature coke, so in the first During the direct contact between the two cooling zones 23 and the water, only the water can be turned into water vapor, and the gasification reaction cannot occur, which avoids the quenching of the coke and affects the quality of the coke. After the coke is cooled by the cooling water, the temperature is lowered to about 100'C, discharged through the rotary discharge valve 26 at the end of the discharge zone 24, and transported by the belt conveyor 25 to the coke storage place.
  • the motor 27 on the corridor 28 is activated, and the motor 27 drives the rotating rod 11 and the rotating disc 16 to rotate, so that the gas distribution tower 1 in the upper part of the gas-liquid two-phase distributor 22 is rotated, so that the coke accumulated in the quenching furnace can be dropped. And the coke can be uniformly dropped from around the gas-liquid two-phase distributor 22.
  • Embodiment 5
  • the quenching method of the present invention realizes gas-liquid simultaneous distribution and quenching by the gas-liquid two-phase distributor 22 inside the quenching furnace, and after passing through the gas-liquid two-phase distributor 22, the gas-liquid two-phase distributor 22 gas distribution tower 1
  • the gas outlets 17 of the annular support ring 7 are hooked out, the conical carbon plate 8 is evenly distributed in the cooling medium distribution area 29, and rises into the first cooling zone 21 to evenly distribute quenching, so that the first cooling of the quenching furnace Zone 21 coke is continuously decreasing in temperature during the falling process.
  • the temperature is about 400'C; the coke accumulated on the circular baffle 6 of the gas-liquid two-phase distributor is used as gas.
  • the cooling water nozzles 14 of the gas-liquid two-phase distributor 22 are evenly distributed over the second cooling zone 23, so that the cooling water sprayed by the cooling water nozzles 14 can be uniformly sprayed on the medium temperature coke of about 400 ° C. It does not cause quenching of coke and affects the quality of coke.
  • the coke is cooled by spray cooling of the cooling water, and the temperature is lowered to 10 (TC, and then discharged to the quenching furnace; since the sprayed cooling water is evenly distributed in the second cooling zone 23, After the cooling water evaporates and rises into the first cooling zone 21, it is evenly distributed in the first cooling zone 21, so that the first cooling zone 21 coke can be gasified with water vapor to avoid quenching "dead angle".
  • the synthesis gas and the recycled gas generated by the gasification reaction are led out through the high-temperature mixed gas outlet 30 at the upper portion of the first cooling zone 21, and a large amount of heat is released at the waste heat boiler 33, and at the same time, high-temperature steam is produced; the mixed gas is compressed by the heat pump 34.
  • the gas flow is also powered, so that the mixed gas entering the gas-liquid separator 35 can separate a part of the water and the high-boiling substance, and at the same time, the temperature of the mixture entering the quenching furnace is increased;
  • the external mixture is thoroughly mixed with the cooling water by the suction of the venturi ejector 43 and exchanges heat, so that the gas is lowered to 80 ° C.
  • the gas and the cooling water are exchanged.
  • the cooling water for absorbing the heat of the gas is sent from the feed water pump 41 to the gas distribution plate 5 at the lower portion of the gas-liquid separation tank 3 of the gas-liquid two-phase distributor 22 in the quenching furnace, Finally, the cooling water nozzle 14 is sprayed and quenched.
  • the experimental device of the embodiment of the present invention has the following conditions:
  • the high temperature coke pre-existing area 19 has a height of 900 mm and an inner diameter of 600 mm, and the cover is a steel plate lined with a heat insulating material, and a high temperature coke pre-storage area 19 has a valve at a joint with the cooling zone, and the valve inner diameter is ⁇ 300.
  • the upper and lower sides are 150mm high, and the cone is inclined at 45 °C, so that the gas can be better exported to the quenching furnace; when the coke is placed in the high temperature coke pre-storage area 19, the valve is closed, and 5mm below the valve Open high temperature mixed gas outlet 30; cooling zone height 1200mm, inner diameter 600mm, discharge zone 24 height 300mm, outlet diameter 150mm; three-layer conical carbon block 8 gas-liquid two-phase distributor 22 bottom located 800mm from the upper valve
  • the gas-liquid two-phase distributor 22 has a height of 300 mm, the outer diameter of the circular baffle 6 is 100 mm, the conical carbon plate 8 is at an angle of 45'C with the horizontal plane, the mixed gas inlet 2, and the high-temperature mixed gas outlet 30 is a steel pipe of ⁇ 20.
  • the liquid inlet 4 is a steel pipe of ⁇ 15; after the indirect cooling of the mixed gas from the high-temperature mixed gas outlet 30, a part of the coke treatment is discharged, and the remaining cycle is used.
  • the inside of the device is a high temperature resistant material, the external uniform is the thermal insulation material, and the coke is heated in the preheating zone 19 of the temperature, so that the coke in this area is maintained at about 1000'C.
  • the coke of the present invention is charged into the quenching furnace high temperature coke preserving zone 19 from the coke inlet 18, and when the high temperature coke preserving zone 19 of the quenching furnace is filled with a certain amount of coke, the coke falls at a speed of 500 g min, when the coke falls to the gas and liquid
  • the cooling liquid is supplied to the circular liquid storage tank 10 of the two-phase distributor 22, and the cooling water is distributed by the bottom plate of the circular liquid storage tank 10, and then uniformly sprayed on the coke by the cooling water nozzle 14, and the generated steam is During the ascending process, a water gas reaction occurs with the red hot coke of the first cooling zone 21, and the gas generated by the water gas reaction is taken out from the high temperature mixed gas outlet 30.
  • the quenching furnace When the coke temperature is lowered to about 100'C, the quenching furnace is discharged.
  • the gas extracted from the high-temperature mixed gas outlet 30 is subjected to dust removal, heat recovery, gas-liquid separation, and then introduced into the gas-liquid two-phase distributor 22 from the mixed gas inlet 2, and the mixed gas is supplied from the gas-liquid two-phase distributor 22
  • the gas is uniformly distributed throughout the first cooling zone 21.
  • the gas derived from the high temperature mixed gas outlet 30 is recovered by the waste heat boiler 23, and after passing through the heat pump 24, a part of the gas enters the gas-liquid separator 25 and is returned.
  • To the mixed gas inlet 2, and a part of the gas is subjected to heat transfer by thorough mixing with the cooling water, and is taken out for external use.
  • the balance experiment data is as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Industrial Gases (AREA)

Abstract

一种气液两相分布器熄焦炉及其熄焦方法,气液两相分布器熄焦炉包含由气液分离槽(3),连通气体分布塔(1)和液体分布盘(5)构成的气液两相分布器(22),所述熄焦方法是通过气液两相分布器(22)同时向上和向下进行分布熄焦,熄焦后的高温混合气体和液体通过进一步处理循环利用。采用气液两相多段分级分布结构熄焦,分布阻力小,熄焦效率高,回收了熄焦热量,避免了环境污染。

Description

一种气液两相分布器熄焦炉及其熄焦方法
技术领域
本发明涉及一种熄焦炉及其熄焦方法, 尤其是在熄焦炉内设置有气液两相 分布器连通有气体和液体进行同时分布熄焦的一种气液两相分布器熄焦炉及其 熄焦方法。
技术背景
US 4437936, 美国专禾 lj公开了 "process for utilizing waste heat and for obtaining water gas during the cooling of incandescent coke"。该装置由前置室、冷 却室、 骤冷室、 排料室构成; 采用在骤冷室中喷入冷却水水雾冷却中温焦炭, 焦炭在冷却的过程中释放出大量热量, 使冷却水气化成水蒸气, 部分水蒸气上 升, 水蒸气在上升的过程中, 与红热焦炭发生水煤气反应, 生成合成气。 合成 气与水蒸气以及其他的一些粉尘由前置室上的高温气化气出口导出, 通过废热 锅炉回收热量, 部分初步冷却的合成气与水蒸气混合物回流到熄焦装置的冷却 室继续冷却焦炭, 部分混合物经过节流阀与冷却水直接接触进行进一步冷却, 而冷却水直接进入熄焦装置进行喷洒熄焦, 合成气引出外用。 而下降的部分水 蒸气通过鼓风机抽取、 旋风分离器除尘, 最后引入骤冷室继续反应。 此发明使 干熄焦与湿熄焦结合, 简化了设备, 且减少了对环境的污染。 该专利熄焦装置 中未设置有气体分布器, 造成熄焦介质水蒸气与水煤气 (C HH2) 混合气通过 焦炭时气体分布不均匀, 气流分布形成明显的偏析, 产生"死角"一高阻力气体 稀薄流场区, 从而使得进入冷却水熄焦阶段的部分焦炭温度过高, 影响焦炭冷 却效果。 另外, 喷雾装置安装在骤冷室的上部两侧, 同样会造成焦炭冷却不均 匀。
现有文献公开了"一种熄焦并带副产合成气及水蒸气的装置及其工艺"。 该 装置是一种带水夹套的不锈钢装置, 红热焦炭在装置内部下落的过程中, 将水 夹套中的水加热并产生水蒸气, 然后把产生的水蒸气引入熄焦装置内与红热焦 炭发生水煤气反应, 生成合成气。 采用水间接冷却焦炭的方法产生水蒸气, 可 得到水蒸气但增加了焦炭冷却时间即焦炭冷却效率低, 并且水蒸气的温度不够 高, 熄焦时, 水蒸气先升温再发生气化反应, 降低了合成气的产率; 由于采用 冷却水与焦炭间接接触进行传热,故最后熄焦装置中心位置的焦炭温度比较高, 无法完成熄焦并且没有回收这部分焦炭的热量。
现有文献公开了"一种焦炭冷却装置及方法"。 该装置由预存段、 气化冷却 段、 过渡段、 物理冷却段及排料段构成。 采用水蒸气和焦炉煤气冷却焦炭的方 法, 水蒸气由冷却气化剂分布器均匀分布在整个气化冷却段区域, 通过气化冷 却段与红热焦炭发生气化反应, 生成合成气, 利用该反应为吸热反应而使焦炭 温度降低; 焦炉煤气由冷却剂分布器分布在整个物理冷却段, 利用焦炉煤气与 焦炭进行物理换热吸收焦炭显热。 该装置有效地控制了装置内焦炭的温度, 并 且具有干熄焦的优点, 设备也较简单, 但分布器不能转动, 致使焦炭积留在分 布器上面, 影响焦炭下落; 在物理冷却段, 用焦炉煤气吸收焦炭显热后温度不 够高, 故焦炉煤气中的热量利用困难, 热效率利用低, 且出口焦炭温度较高, 热量回收不完全。
现有文献公开了一种"干湿组合熄焦装置"的发明专利。 该装置由组合熄焦 炉、 液相载体热能回收系统、 惰性气体热能回收系统、 蒸汽回收系统构成。 组 合熄焦炉由进料段、 间接干熄焦段、 蒸汽熄焦段、 水喷淋段和排料段构成。 液 相载体热能回收系统中的液相介质与红热焦炭间接接触传热而回收大部分的焦 炭显热, 惰性气体与焦炭直接接触传热而回收少量热能, 最后采用水喷淋而完 成熄焦。本装置先采用液相载体回收显热,而液固间传热慢,焦炭冷却时间长, 熄焦效果不好, 实施难度大。 釆用三步回收热量, 工艺复杂。
发明内容
基于现有熄焦装置及其熄焦方法在熄焦过程中, 由于气液分布不均勾, 造 成了熄焦后的焦炭质量不均匀, 熄焦效率低的问题, 本发明提供一种气液两相 分布器熄焦炉及其熄焦方法。
实现上述目的, 本发明所采取的措施是一种气液两相分布器熄焦炉及其熄 焦方法, 包括一种气液两相分布器; 一种含有气液两相分布器的熄焦炉; 以及 一种实施气液两相分布器熄焦炉的熄焦方法, 其中:
一种气液两相分布器, 其构成在于: 所述气液两相分布器是由气体分布塔 和液体分布盘通过气液分离槽连通构成;
所述气液分离槽是其两侧设置有焦炉混合气体入口和焦炉液体入口, 其上 面设置有气体分布塔, 其下面设置有液体分布盘;
所述气体分布塔是气液分离槽的上顶面均布设置有若干个气体通道的转动 圆盘, 在转动圆盘的下中心面固接有转动杆并连接有支撑件支撑转动; 在转动 圆盘的圆周边固接有向上渐縮的圆锥形档炭板, 并依次向下通过设置有若干个 气体出口的环形支撑圈层层套接, 再由圆形挡板封顶构成塔状分布结构; 所述液体分布盘是气液分离槽的下底面设置有圆形储液分布槽, 并均布设 置有若干个 "S"型液封管连通, 其圆形储液分布槽的下底面均布设置有若干个 冷却水喷嘴, 周边设置有支撑杆支撑。
在上述一种气液两相分布器的技术方案中, 所述混合气体入口和液体入口 是水平设置, 并高于气液分离槽底面 30 00mm; 所述圆锥形挡炭板与水平面 所构成的夹角为 45°~70°, 所设层数为 3~10层; 所述 "S"型液封管的通道截面 积总和占气液分离槽底面积的 1/20; 所述冷却水喷嘴的总面积占圆形储液分布 槽底面积的 1/10; 所述向上渐缩的圆锥形档炭板与圆形挡板下端直径之比为 1/5-2/5 o
一种含有气液两相分布器的熄焦炉, 包括高温焦炭预存区、 第一冷却区、 冷却介质分布区、 第二冷却区和排料区; 其构成在于: 所述高温混合气体出口 是设置于第一冷却区的上部; 其所述混合气入口和液体入口是设置于熄焦炉冷 却介质分布区的气液两相分布器;
所述气液两相分布器是由气体分布塔和液体分布盘通过气液分离槽连通构 成, 并由固定在熄焦炉内壁面上的支撑杆支撑于熄焦炉的中央;
所述气液分离槽是其两侧设置有焦炉混合气体入口和焦炉液体入口, 其上 面设置有气体分布塔, 其下面设置有液体分布盘;
所述气体分布塔是气液分离槽的上顶面均布设置有若干个气体通道的转动 圆盘, 在转动圆盘的下中心面固接有转动杆并连接有支撑件支撑转动; 在转动 圆盘的圆周边固接有向上渐縮的圆锥形档炭板, 并依次向下通过设置有若干个 气体出口的环形支撑圈层层套接, 再由圆形挡板封顶构成塔状分布结构;
所述液体分布盘是气液分离槽的下底面设置有圆形储液分布槽, 并均布设 置有若干个 "S"型液封管连通, 其圆形储液分布槽的下底面均布设置有若干个 冷却水喷嘴。
在上述一种含有气液两相分布器的熄焦炉的技术方案中, 所述熄焦炉是直 立式圆筒型结构, 熄焦炉的内壁与气液两相分布器的外沿距离为 200mm〜650mm。
一种实施气液两相分布器熄焦炉的熄焦方法, 其特征在于: 所述熄焦方法 是通过在熄焦炉内设置的气液两相分布器将气相熄焦方法和液相熄焦方法集于 一起, 并通过气液两相分布器同时进行气液两相分布熄焦, 其中:
所述气相熄焦方法是混合气体由熄焦炉下部进入, 在气液两相分布器的气 液分离槽内混合并与液体分离, 气体上升经转动圆盘的若干个气体通道进入气 体分布塔后, 经至少两个以上的环形支撑圈及其若干个气体出口分布流出; 再 经圆锥形挡炭板均匀分布冷却红焦,后由熄焦炉上部的高温混合气体出口导出; 所述液相熄焦方法是冷却水由熄焦炉下部进入, 经气液两相分布器的气液 分离槽分离后,由至少两个以上的 "S"型液封管进入圆形储液分布槽的至少两个 以上的冷却水喷嘴向下喷洒分布冷却中温焦炭, 其蒸气蒸发上升。
在上述一种实施气液两相分布器熄焦炉的熄焦方法的技术方案中, 所述熄 焦炉的气相熄焦方法是混合气由熄焦炉下部的混合气体入口进入, 经气液两相 分布器分布后,在上升过程中进入气态冷却介质逆向交叉流动接触第一冷却区, 与红热焦炭接触、 吸热、 水蒸气与红热焦炭发生气化反应, 生成合成气, 焦炭 冷却到 400eC ; 混合气体经高温混合气体出口导出, 经除尘器除尘, 废热锅炉 回收热量, 热泵压縮混合气, 其中, 一部分混合气进入气液分离器进行气液分 离, 分离出的气体导入熄焦炉的气液两相分布器; 另一部分由热泵压縮的混合 气进入文丘里喷射器与冷却水进行混合、 换热, 在气液分离器进行气液分离, 分离的合成气在换热器内与输入的冷却水进行换热后, 引出外用;
所述熄焦炉的液相熄焦方法是进入熄焦炉的冷却水与引出外用的合成气在 换热器中换热后, 由补给水泵送入文丘里喷射器, 与热泵压缩的混合气进行气 液混合, 气液混合物进入气液分离器进行气液分离, 分离出的水由补给水泵送 入熄焦炉的气液两相分布器进行喷洒熄焦; 在热焦炭同向流液态冷却介质径向 均匀喷洒第二冷却区,将焦炭由 400'C冷却到 100'C,冷却水蒸发进入第一冷却 区进行气相熄焦。
在上述技术方案中, 迸一步的附加技术特征在于: 所述由熄焦炉下部进入 的混合气与由熄焦炉下部进入的冷却水的气液质量比为 1.5〜2.5; 所述熄焦炉 上部混合气的出口温度是 700' (:〜 1000'C ; 所述熄焦炉下部混合气的入口温度 是 120° (:〜 190。 ( 。
实现本发明上述的一种气液两相分布器熄焦炉及其熄焦方法, 与现有熄焦 设备相比较, 本发明所述气液两相分布器熄焦炉是根据水蒸气与红热焦炭发生 吸热反应, 在熄焦的同时, 能够生产合成气, 同时避免了在湿熄焦过程中产生 环境污染和水资源的大量浪费, 也避免了干熄焦的缺点。 设置在熄焦炉冷却段 中部中央的气液两相分布器分布的混合气, 能够均匀地分布在冷却区, 使得第 一冷却区的焦炭温度下降均匀, 避免了进入第二冷却区时因骤冷而影响焦炭质 量; 气液两相分布器的冷却水喷嘴喷洒的冷却水, 直接与中温焦炭接触, 能迅 速的熄焦, 气、 液熄焦均可避免出现熄焦 "死角"。
所使用的气液两相分布器整体成圆锥形结构, 具有阻力小, 流量大, 可使 熄焦炉内形成均匀的气 -固、 液 -固稳定场, 可使气体和液体均勾的分布在整个 冷却区域内, 避免了因气体、 液体分布不均而影响熄焦效果。 所使用的气液两 相分布器及其熄焦炉, 使用廉价的水、 蒸汽作为冷却介质, 回收了焦炭的大量 余热, 节约了资源。 熄焦炉将水气两相分布器、 多段分级熄焦炉和混合冷却介 质循环技术有机集成, 形成了新的水气熄焦工艺, 使熄焦设备和运行费用有较 大幅度的降低。 水蒸气与红热焦炭反应, 生成合成气, 合成气净化除尘后, 用 于合成燃料, 与单纯的气或液熄焦相比, 具有结构简单, 熄焦效率高、 处理能 力大等特点。 本装置还能够方便的调节水蒸气和水的流量, 以使熄焦炉内各段 的温度方便快捷的实现控制。
本发明上述的一种气液两相分布器熄焦炉的熄焦方法, 与现有熄焦方法相 比较, 本熄焦方法利用气液两相分布水、 蒸汽作为冷却介质, 回收了高温焦炭 的大量热能, 节约了资源; 采用水汽熄焦, 在有利于焦炭质量的同时, 具有干 熄焦不可比拟的优势, 即不需空分、 引风机等设备, 节约了设备和运行成本; 与湿熄焦相比,很大程度上提高了焦炭质量, 且不污染环境, 回收热量的同时, 节约了水资源。
附图说明
图 1是气液两相分布器气体分布塔主体结构示意图。
图 2是气液两相分布器液体分布盘主体结构示意图。
图 3是气液两相分布器主体结构示意图。
图 4是气液两相分布器俯视结构示意图。
图 5是气液两相分布器熄焦炉主体结构示意图。
图 6是气液两相分布器熄焦炉熄焦方法流程示意图。
图中: 1、 气体分布塔; 2、 混合气体入口; 3、气液分离槽; 4、液体入口; 5、 液体分布盘; 6、 圆形挡板; 7、 环形支撑圈; 8、 圆锥形挡炭板; 9、气体通 道; 10、 圆形储液分布槽; 11、 转动杆; 12、 支撑件; 13、 支撑杆; 14、 冷却 水喷嘴; 15、 "S"型液封管; 16、转动圆盘; 17、气体出口; 18、焦炭入口; 19、 高温焦炭预存区; 20、混合气体通道; 21、第一冷却区; 22、气液两相分布器; 23、 第二冷却区; 24、 排料区; 25、 皮带运输机; 26、 旋转排料阀; 27、 电机; 28、 走廊; 29、 冷却介质分布区; 30、 高温混合气体出口; 31、 除尘器; 32、 过热蒸汽出口; 33、 废热锅炉; 34、热泵; 35、 气液分离器; 36、 换热器; 37、 软化水入口; 38、 新冷却水入口; 39、合成气出口; 40、 换热器; 41、补给水 泵; 42、 气液分离器; 43、 文丘里喷射器; 44、 补给水泵。
具体实施方式
下面结合附图对本发明的一种气液两相分布器熄焦炉的具体实施方式作出 进一步的说明如下:
实施方式一
实施本发明所提供的一种气液两相分布器 22,其所述一种气液两相分布器 22由气体分布塔 1和液体分布盘 5通过气液分离槽 3连通构成;在液体分布盘 5的圆形储液分布槽 10上端面均布设置有若干个 "S"型液封管 15、下端面均布 设置有若干个冷却水喷嘴 14; 圆形储液分布槽 10用以存储" S"型液封管 15分 离出的液体, 并通过其底板的小孔连接的冷却水喷嘴 14进行喷洒分布; "S"型 液封管 15上端口连接气液分离槽 3底部下液孔, 下液孔用以冷却水进入" S"型 液封 15, 下端口悬空在圆形储液分布槽 10内, 且" S"型液封管 15里面有一水 柱, 用以阻止气体通过, 水柱的高低由 "S"型液封管 15的长短决定, "S"型液封 管 15的长短由熄焦炉内的压力降大小而设计; 在圆形储液分布槽 10的上面设 置有气液分离槽 3; 所述气液分离槽 3是上部中空部位其两侧设置有焦炉混合 体气入口 2和焦炉液体入口 4, 其上部设置有带有气体通道 9的转动圆盘 16; 所述转动圆盘 16是由下面的支撑件 12通过转动杆 11转动, 转动杆 11转动圆 盘 16转动可带动最下层圆锥形档炭板 8转动, 从而使整个气体分布塔 1转动, 即整个圆锥形档炭板 8及其以上部分转动; 在气液分离槽 3周边有渐縮的圆锥 形档炭板 8, 用以改变气体分布塔 1 内顶部气体流向和遮挡焦炭进入气液两相 分布器 22内, 并依次向下倒扣于设置有若干个气体出口 17的环形支撑圈 7上 并固定连接; 环形支撑圈 7厚度及大小应该充分考虑所支撑的圆锥形挡炭板 8 需要承受的重量; 最后由圆形挡板 6封顶构成塔状结构。
在上述气液两相分布器 22技术方案的基础上, 将所述气液两相分布器 22 的混合气体入口 2和液体入口 4平行设置于气液分离槽 3的左右两侧, 使进入 的混合气与液体接触而温度降低, 蒸发部分冷却水, 混合气与焦炭接触时, 可 吸收更多的焦炭热量,避免进入第二冷却区 23的焦炭温度过高,冷却水喷洒熄 焦时使得焦炭骤冷而影响并提高焦炭质量。 本发明将所述气液分离槽 3底面设计成低于混合气体入口 2和熄焦炉液体 入口 4,以避免冷却水回流入混合气体入口 2,减少其气体和液体流入气液分离 槽 3所受的阻力。
本发明将所述圆锥形挡炭板 8与水平面所构成的夹角设置为 45°〜70°, 层 数设置为 3~10层, 以减少气液两相分布器 22的高度, 增加熄焦炉内有效熄焦 体积, 最底层的圆锥形挡炭板 8 与熄焦炉内壁的间隔距离设置为 200mm~650mm, 以使焦炭自由下落, 并根据其熄焦炉处理量及塔径设定圆锥 形挡炭板 8层数为 3到 10层。
本发明将所述 "S"型液封管 15的总面积设置为占气液分离槽 3底面积的 1/20, 以使液体能迅速进入圆形储液分布槽 10内, 从而减少对混合气体的分布 阻力。
本发明将所述冷却水喷嘴 14的总面积设置成为圆形储液分布槽 10底面积 的 1/10, 以使冷却水尽量均匀的喷洒在中温焦炭上, 从而使得所有下落至排料 口的焦炭冷却到 100'C左右。
本发明将所述渐縮结构的圆锥形档炭板 8与圆形挡板 6下端直径之比设置 为 1/5~2/5,熄焦炉处理量或内径较少时, 圆锥形档炭板 8与圆形挡板 6之比为 2/5, 可满足熄焦要求, 熄焦炉处理量或内径较大时, 圆锥形档炭板 8与圆形挡 板 6之比为 1/5; 此种布置能更有效地均勾分布混合气体, 对高温焦炭进行有 效地冷却。
实施方式二
实施本发明所提供的一种应用气液两相分布器 22的熄焦炉,该熄焦炉是将 所述的气液两相分布器 22应用于熄焦炉,该熄焦炉依次由高温焦炭预存区 19、 高温焦炭与气态冷却介质逆向交叉流动接触第一冷却区 21、 冷却介质分布区 29、热焦炭同向流液态冷却介质径向均匀喷洒第二冷却区 23和排料区 24构成; 高温混合气体出口 30设在高温焦炭与气态冷却介质逆向交叉流动接触第一冷 却区 21的上部混合气体通道 20的上端; 气液两相分布器 22、 混合气体入口 2 和液体入口 4设置在熄焦炉冷却介质分布区 29。其构成是在熄焦炉的中下部设 置气液两相分布器 22。 其具体实施方式如下:
本发明将所述气液两相分布器 22设置在熄焦炉的冷却介质分布区 29, 通 过下端固定在熄焦炉内壁面上的支撑杆 13均匀分布支撑于熄焦炉的中下部中 央; 支撑杆 13的上端头固定连接有封闭的圆形储液分布槽 10, 支撑杆 13支撑 气液两相分布器 22及气液两相分布器 22所承受的重量;在圆形储液分布槽 10 的上端面, 根据所设计的面积, 均布设置若干个 "S"型液封管 15, 在圆形储液 分布槽 10的下端面, 根据所设计的面积, 均布设置若干个冷却水喷嘴 14; 在 圆形储液分布槽 10的上面重叠设置有气液分离槽 3;并在气液分离槽 3的两侧 通过熄焦炉的筒体设置有焦炉混合气体入口 2和焦炉液体入口 4; 在气液分离 槽 3的上部均匀设置带有若干个气体通道 9的转动圆盘 16;并在所述转动圆盘 16下面设置有支撑件 12通过转动杆 11转动;在气液分离槽 3周边设置有逐渐 縮小的圆锥形档炭板 3,并依次向下层层倒扣于带有若干个气体出口 17的环形 支撑圈 7上并固定连接重叠设置, 再由圆形挡板 6封顶构成塔状结构; 该塔状 气体分布结构能够将进入焦炉内的混合气体均匀地分布于吸焦炉内, 对炽热的 焦炭进行至下而上的适时适度的冷却, 提高了焦炭冷却的均匀性量, 使得冷却 焦炭的质量大为提高。 启动熄焦炉侧面走廊 28上所设置的的电机 27, 带动转 动杆 11、转动圆盘 16及气体分布塔 1的转动, 避免了焦炭在熄焦炉内的积留, 进一步提高了熄焦炉内的焦炭冷却的均匀性。
在上述一种应用气液两相分布器 22的熄焦炉得技术方案的基础上,将所述 熄焦炉设计为直立式圆筒型结构,将熄焦炉的内径与气液两相分布器 22的直径 之比设置为 1.05~1.15, 即气液两相分布器 22 外沿与熄焦炉的内壁距离为 200mm~650mm, 用以将焦炭的下落与混合气体熄焦得以匹配相应; 此种距离 的设计在不影响熄焦效率的同时, 可使焦炭的顺利下落, 从而避免焦炭积留在 熄焦炉内部。
本发明根据工艺条件, 将所述熄焦炉下部混合气体入口 2 的温度设置为 120°C~190°C的范围之内, 避免因混合气含水量太高而导致高温混合气体出口 30的气体温度偏低, 也使得进入第二冷却区 23的较高温度保持在 400'C左右。
在本发明所设计的熄焦炉结构中,红热焦炭由熄焦炉顶部焦炭入口 18进入 高温焦炭预存区 19, 高温焦炭预存区 19起缓存焦炭的作用。 高温焦炭预存区 19下面设置有第一冷却区 21 , 冷却介质分布区 29的中部设置有气液两相分布 器 22;高温焦炭预存区 19下落的经过高温焦炭预存区 19破碎部件破碎过的焦 炭与气液两相分布器 22圆锥形挡炭板 8上升的蒸汽在第一冷却区 21相遇, 水 蒸气吸收热量, 温度上升, 焦炭放出热量, 温度下降, 发生水煤气反应, 生成 合成气。合成气与水蒸气在上升的过程中,水蒸气不断地与炽热焦炭发生反应, 吸收焦炭热量, 直至合成气进入高温焦炭预存区 19周围的混合气体通道 20, 将 850'C左右的混合气由高温混合气体出口 30导出。 400°C左右的中温焦炭在 下落过程中, 进入第二冷却区 23; 第一冷却区 21、 冷却介质分布区 29、 第二 冷却区 23处于一直立圆筒内并直接连通,从而保证了装置的结构一体化,减少 了焦炭下落阻力; 在第二冷却区 23上部, 有气液两相分布器 22的冷却水喷嘴 14喷淋的水对焦炭进行冷却。 由于在第一冷却区 21发生了水煤气反应, 使得 红热焦炭变成 400°C左右的中温焦炭,故在蒸发冷却段与水直接接触的过程中, 只能使水变成水蒸气, 而不能发生气化反应, 这就避免了焦炭的骤冷而影响焦 炭的质量,从而提高了焦炭质量。在第二冷却区 23生成的水蒸气上升进入第一 冷却区 21, 与红热焦炭进行水煤气反应。 第二冷却区 23下部为倒锥连接的排 料区 24,用以排出冷却的焦炭;排料区 24排出的冷却焦炭经过旋转排料阀 26, 由皮带运输机 25运出。 熄焦炉采用气液分别进料, 根据排料区 24出口的焦炭 温度及湿度调节冷却水量, 实现方便快捷控制。
由于水蒸气与红热焦炭可发生水煤气反应, 该反应为吸热反应, 而整个熄 焦炉内发生的反应有:
C+H20=CO+H2- 118821 ( J/mol ),
C+2H20=C02+2H2-76841 ( J/mol ),
C+ C02=2CO
CO+H20=C02+H2
Figure imgf000011_0001
在熄焦过程中, 主要是以前 2个反应为主, 其他的反应所产生的气体总量 不到总气含量的 1%, 利用前 2个反应发生时需要吸收大量的热量, 从而完成 媳焦。
实施方式三
本实施例实验装置条件为: 高温焦炭预存区 19 高度为 900mm, 内径 600mm, 顶盖上面衬有隔热材料的钢板, 高温焦炭预存区 19与冷却区连接处 有阀门, 阀门内径为 Φ300, 其上下均有 150mm高的, 成 45'C倾斜的圆锥筒, 以使气体更好的导出熄焦炉; 当往高温焦炭预存区 19放入焦炭时, 阀门闭合, 且在阀门的下方 5mm处开有高温混合气体出口 30; 冷却区高度 1200mm, 内 径 600mm, 排料区 24高度 300mm, 出口直径 150mm; 有三层圆锥形挡炭板 8 的气液两相分布器 22底部位于距上部阀门 800mm处, 气液两相分布器 22高 度 300mm, 圆形挡板 6外沿直径 100mm, 圆锥形挡炭板 8与水平面成 45'C夹 角,混合气体入口 2、高温混合气体出口 30为 Φ20的钢管,液体入口 4为 Φ15 的钢管;高温混合气体出口 30导出的混合气经间接冷却后,按焦炭处理量排出 一部分, 其余的循环使用。 本装置内部是耐高温材料, 外部统一是保温材料保 温, 且在高温焦炭预存区 19给焦炭加热, 使此区焦炭保持在 1000°C左右。
焦炭由焦炭入口 18装入熄焦炉高温焦炭预存区 19, 当熄焦炉的高温焦炭 预存区 19装入焦炭时, 焦炭以 500g/min的速度下落, 当焦炭下落到气液两相 分布器 22的圆形储液分布槽 10处时通入冷却水,冷却水由圆形储液分布槽 10 底板分布后, 由冷却水喷嘴 14均匀喷洒在焦炭上,产生的水蒸气在上升过程中 与第一冷却区 21的红热焦炭发生水煤气反应,水煤气反应产生的气体由高温混 合气体出口 30引出。 当焦炭温度降低到 100'C左右时, 排出熄焦炉。 高温混合 气体出口 30引出气体经过除尘、 热量回收、 气液分离后, 由混合气体入口 2 导入气液两相分布器 22, 混合气体由气液两相分布器 22均匀的分布在整个第 一冷却区 21内, 当气体流量稳定后, 由高温混合气体出口 30导出的气体经过 废热锅炉 23回收热量,在经过热泵 24后,部分气体进入气液分离器 25后回流 至混合气体入口 2, 而部分气体在经过与冷却水的充分混合传热后, 引出外用。
随着水蒸气的分解和 C02还原反应的进行, 1¾和 CO的生成量不断增加, 焦炭温度不断降低。 利用循环气体中的水蒸气和冷却焦炭生成的水蒸气与焦炭 发生水煤气反应, 使焦炭在第一冷却区 21 , 温度从 1000'C降到 400'C ; 在第二 冷却区 23, 与焦炭换热后 6(TC的冷却水把焦炭冷却到 10(TC。
由实验得到当焦炭损耗为 1.15%时, 产生的混合气体冷却下来后其产量为 41Nm3/t, 当焦炭损耗为 0.725%时, 产生的混合气体冷却下来后其产量为 29Nm3/t, 当焦炭损耗为 2.9%时, 产生的混合气体冷却下来后其产量为
Figure imgf000012_0001
反应性:
原焦 (:02反应性: 27.26%。
水气熄焦后 <:02反应性: 25.36%。
转鼓强度:
Figure imgf000012_0002
由实验可知, 小装置在不利的实验条件下, 熄焦效果显著, 装置放大后, 更能满足熄焦要求。 下面结合附图对本发明的一种气液两相分布器熄焦炉的熄焦方法的具体实 施方式作出进一步的说明如下:
实施方式四
实施本发明一种气液两相分布器的熄焦炉的熄焦方法, 该熄焦方法中所采 用的气液两相分布器, 如图 1、 图 2、 图 3、 图 4、 图 5和图 6, 本发明方法由 熄焦炉出来的 850°C左右的高温混合气经过除尘器 31除尘, 废热锅炉 33回收 热量后,温度降到 150'C, 而废热锅炉产生的过热蒸汽由过热蒸汽出口 32导出 外用; 150°C左右的混合气体由废热锅炉 33后, 首先经过热泵 34, 压力增大, 混合气的部分水蒸气放热变成液态水, 水蒸气冷却放热使得混合气温度上升; 一部分气体进入气液分离器 35; , 在气液分离器 35中, 高沸点物质和水冷凝后 与气体分离,分离后的气体由管道送入熄焦炉内的气液两相分布器 22中进行分 布熄焦;气液分离器 35分离的液体进入换热器 36与进入废热锅炉 33的软化水 换热后, 导入冷却水管道, 换热器 36的新软化水入口 37与外部软化水管道连 接。 热泵 34的另一部分气体与补给水泵 44输入的冷却水在文丘里喷射器 43 混合后, 送入气液分离器 42进行气液分离, 文丘里喷射器 43的使用, 不仅给 气体提供了动力,还使得气液充分混合;气液分离器 42分离出的合成气在换热 器 40中经冷却水冷却后由合成气出口 39引出外用, 合成气与冷却水换热, 降 低合成气温度的同时,也降低了合成气的含水量;换热器 40的新冷却水入口连 接 38外部供水管道,新冷却水与引出外用的合成气换热后,冷却水吸收气体热 量后由补给水泵 44通过文丘里喷射器 43与气体混合,然后送入气液分离器 42, 气液分离器 42分离出的液体由补给水泵 44通过冷却水管送入熄焦炉内的气液 两相分布器 22。 在气液两相分布器 22内部分混合,气液混合物在气液分离槽 3的上部空间进行 气液分离,气体在气液分离槽 3内通过转动圆盘 16的气体通道 9进入气体分布 塔 1;气体由环形支撑圈 7上的气体出口 17经圆锥形挡炭板 8改变流向后, 进 入第一冷却区 21与红热焦炭接触。 由于气体分布塔 1中各气体出口 17相互连 通,使得环形支撑圈 7的气体出口 17处气体出口压力相同,从而使气体均匀的 分布于整个第一冷却区 21中。 高温焦炭预存区 19下落的焦炭与气液两相分布 器 22圆锥形挡炭板 8流出的混合气在第一冷却区 21相遇, 气体吸收热量, 温 度上升, 焦炭放出热量, 温度下降, 水蒸气与焦炭发生水煤气反应, 生成合成 气。 合成气与水蒸气在上升的过程中, 水蒸气不断地与焦炭发生反应, 混合气 吸收焦炭热量, 直至混合气进入高温焦炭预存区 19周围的混合气体通道 20, 最后由高温混合气体出口 30导出。合成气与未反应的水蒸气上升经高温混合气 体出口 30导出后, 进行除尘, 除尘后进入废热锅炉 33回收热量阶段。 气液混 合物分离出来的液体则进入液体分布盘 5进行分布, 液体由 "S"型液封管 15下 端出口进入圆形储液分布槽 10, 最后通过冷却水喷嘴 14喷洒; 在" S"型液封管 15中,由于有一段液态水的存在,避免了水蒸气等气体进入圆形储液分布槽 10。 冷却水与中温焦炭接触, 冷却水吸收焦炭热量, 蒸发成水蒸气供第一冷却区 21 反应;由于在第一冷却区 21发生了水煤气反应,使得红热焦炭变成了中温焦炭, 故在第二冷却区 23与水直接接触的过程中,只能使水变成水蒸气,而不能发生 气化反应, 这就避免了焦炭的骤冷而影响焦炭的质量。 焦炭经过冷却水的冷却 后温度降到 100'C左右, 经排料区 24末端的旋转排料阀 26排出, 由皮带运输 机 25运输至焦炭存放处。启动走廊 28上的电机 27, 电机 27带动转动杆 11及 转动圆盘 16转动, 从而使气液两相分布器 22上部的气体分布塔 1转动, 可使 积留在熄焦炉内的焦炭下落, 并可使焦炭从气液两相分布器 22周围均匀下落。 实施方式五
本发明熄焦方法通过熄焦炉内部的气液两相分布器 22 实现气液同时进行 分布熄焦, 气体在经过气液两相分布器 22后, 由气液两相分布器 22气体分布 塔 1环形支撑圈 7的气体出口 17均勾流出、圆锥形挡碳板 8均匀的分布在冷却 介质分布区 29, 并上升进入第一冷却区 21均匀分布熄焦, 使得熄焦炉的第一 冷却区 21 焦炭在下降的过程中温度不断地降低, 当焦炭进入冷却介质分布区 29时, 温度为 400'C左右; 积留在气液两相分布器圆形挡板 6上的焦炭, 当气 液两相分布器 22的气体分布塔 1转动时, 下落进入第二冷却 23区。 气液两相 分布器 22的冷却水喷嘴 14均勾的分布在第二冷却区 23的上空,使得冷却水喷 嘴 14喷洒的冷却水能均匀的喷洒在 400'C左右的中温焦炭上,该温度不会导致 焦炭的骤冷而影响焦炭的质量, 焦炭经过冷却水的喷洒冷却, 温度降到 10(TC, 然后排出熄焦炉; 由于喷洒的冷却水均匀的分布在第二冷却区 23, 故冷却水蒸 发后上升进入第一冷却区 21后均匀的分布在第一冷却区 21, 使得第一冷却区 21的焦炭均可与水蒸气发生气化反应, 避免出现熄焦 "死角"。气化反应生成的 合成气和循环的气体, 经过第一冷却区 21上部的高温混合气出口 30导出, 在 废热锅炉 33处放出大量热量, 并同时生产高温水蒸气; 混合气体经过热泵 34 压縮, 压力增大的同时, 也给气体流动提供了动力, 使得进入气液分离器 35 的混合气体可分离出一部分水和高沸点物质, 同时也使得进入熄焦炉的混合气 温度升高; 引出外用的混合气由文丘里喷射器 43的吸力而与冷却水充分混合、 换热, 使得气体降到 80°C , 为进一步减少气体的含水量和利用此部分热量, 气 体与冷却水在换热器 40中进一步换热,最后由管道引出外用;吸收气体热量的 冷却水, 由补给水泵 41送入熄焦炉内气液两相分布器 22的气液分离槽 3下部 的气体分布盘 5, 最后又冷却水喷嘴 14进行喷洒熄焦。
实施方式六
本发明实施例实验装置条件为: 高温焦炭预存区 19高度为 900mm, 内径 600mm, 盖子是上面衬有隔热材料的钢板, 高温焦炭预存区 19与冷却区连接 处有阀门,阀门内径为 Φ300,其上下均有 150mm高的,成 45°C倾斜的圆锥筒, 以使气体更好的导出熄焦炉; 当往高温焦炭预存区 19放入焦炭时, 阀门闭合, 且在阀门的下方 5mm处开有高温混合气体出口 30; 冷却区高度 1200mm, 内 径 600mm, 排料区 24高度 300mm, 出口直径 150mm; 有三层圆锥形挡炭板 8 的气液两相分布器 22底部位于距上部阀门 800mm处, 气液两相分布器 22高 度 300mm, 圆形挡板 6外沿直径 100mm, 圆锥形挡炭板 8与水平面成 45'C夹 角,混合气体入口 2、高温混合气体出口 30为 Φ20的钢管,液体入口 4为 Φ15 的钢管;高温混合气体出口 30导出的混合气经间接冷却后,按焦炭处理量排出 一部分, 其余的循环使用。 本装置内部是耐高温材料, 外部统一是保温材料保 温, 且在髙温焦炭预存区 19给焦炭加热, 使此区焦炭保持在 1000'C左右。
本发明方法焦炭由焦炭入口 18装入熄焦炉高温焦炭预存区 19, 当熄焦炉 的高温焦炭预存区 19装入一定量焦炭时, 焦炭以 500g min的速度下落, 当焦 炭下落到气液两相分布器 22的圆形储液分布槽 10处时通入冷却水, 冷却水由 圆形储液分布槽 10底板分布后, 由冷却水喷嘴 14均匀喷洒在焦炭上, 产生的 水蒸气在上升过程中与第一冷却区 21的红热焦炭发生水煤气反应,水煤气反应 产生的气体由高温混合气体出口 30引出。 当焦炭温度降低到 100'C左右时,排 出熄焦炉。 高温混合气体出口 30引出气体经过除尘、 热量回收、 气液分离后, 由混合气体入口 2导入气液两相分布器 22, 混合气体由气液两相分布器 22均 匀的分布在整个第一冷却区 21 内, 当气体流量稳定后, 由高温混合气体出口 30导出的气体经过废热锅炉 23回收热量, 在经过热泵 24后, 部分气体进入气 液分离器 25后回流至混合气体入口 2,而部分气体在经过与冷却水的充分混合 传热后, 引出外用。
本发明方法随着水蒸气的分解和 C02还原反应的进行, 1¾和 CO的生成量 不断增加, 焦炭温度不断降低。 利用循环气体中的水蒸气和冷却焦炭生成的水 蒸气与焦炭发生水煤气反应, 使焦炭在第一冷却区 21, 温度从 1000'C降到 400'C ; 在第二冷却区 23, 与焦炭换热后 6CTC的冷却水把焦炭冷却到 100 'C。 由于水蒸气与红热焦炭可发生水煤气反应, 该反应为吸热反应, 而整个熄焦装 置发生的反应有:
C+H20=CO+H2- 118821 ( J/mol ) ,
C+2H20=C02+2H2-76841 ( J/mol ),
C+ C02=2CO
CO+H20=C02+H2
Figure imgf000016_0001
在熄焦过程中, 主要是以前两个反应为主, 其他的反应所产生的气体总量 不到总气含量的 1%, 利用前两个反应发生时需要吸收大量的热量, 从而完成 熄焦。 其平衡实验数据如下:
表 1 基本参数
名称 特性 名称 特性 焦炭特性
焦炭量 /kg 1000 焦炭入干熄炉温度 /'C 1000 焦炭入第二冷却区温度 /'C 400 焦炭出干熄炉温度 /°C 100 气化反应碳消耗率 2%
液态水特性
进水量 /kg 166 水入干熄炉温度 /'C 60 汽化蒸汽入第一冷却区温 170
度 /'C
水蒸气特性
水蒸气通入量 /kg 30 水蒸气加入温度 /'C 170 气化反应消耗水蒸气量/ kg 30 气体出炉温度 /'C 850 锅炉特性
锅炉给水温度 /'C 105 过热蒸汽温度 /'C 450
105'C蒸汽焓 kJ/kg 436 450'C蒸汽焓 kJ/kg 3323 气体出锅炉温度 /'C 150 产生蒸汽量/ kg 268 蒸汽产率 t/t 26.8% 锅炉散热系数 1.2%
表 2炭转化 2%的干熄炉物料平衡表 物料收入/ kg 物料支出/ kg
焦炭进量 1000 焦炭排出量 980 进水量 166 出炉蒸汽量 149 蒸汽加入量 30 排出 CO量 352 加入量 /kg 24 排出 ¾量 27
CO加入量 /kg 305 排水量 17 合计 1525 合计 1525 表 3干熄炉第一冷却区热量平衡表
热量收入 / KJ 热量支出 / KJ
焦炭放出的热量 1038160 气化反应吸热 198035 水蒸气带入的热量 57510 H2带出的热量 340213
CO带入的热量 54230 CO带出的热量 330664
¾带入的热量 58683 ¾0蒸汽带出的热量 265460
― ― 损失的热量 72058 合计 1208583 合计 1208887 表 4干熄炉第二冷却区热量平衡表
热量收入 / KJ 热量支出 / KJ
焦炭放出的热量 368911 水汽化热 337345 水带入的热量 41613 汽化蒸汽带出的热量 470893
-- -- 损失的热量 24631 合计 410524 合计 409870 表 5锅炉热量平衡表
热量收入 / KJ 热量支出 / KJ 气体带入锅炉的热量 938337 产生蒸汽热量 773716
-- -- 气体出锅炉带出热量 156156
- -- 锅炉散热 9285 合计 9238337 合计 939156 由上述实验数据得到当焦炭损耗为 1.15%时, 产生的混合气体冷却下来后 其产量为 41Nm3/t, 当焦炭损耗为 0.725%时, 产生的混合气体冷却下来后其产 量为 29Nm3/t, 当焦炭损耗为 2.9%时, 产生的混合气体冷却下来后其产量为
Figure imgf000018_0001
反应性:
原焦 C02反应性: 27.26%。
水气熄焦后(:02反应性: 25.36%。
转鼓强度:
Figure imgf000018_0002
由实验可知, 小装置在不利的实验条件下, 熄焦效果显著, 装置放大后, 更能满足熄焦要求。

Claims

权利要求书
1、 一种气液两相分布器, 其特征在于: 所述气液两相分布器(22)是由气 体分布塔(1 )和液体分布盘 (5)通过气液分离槽(3 )连通构成;
所述气液分离槽(3) 是其两侧设置有焦炉混合气体入口 (2)和焦炉液体 入口 (4), 其上面设置有气体分布塔(1 ), 其下面设置有液体分布盘(5);
所述气体分布塔(1 ) 是气液分离槽(3 ) 的上顶面均布设置有若干个气体 通道(9)的转动圆盘(16), 在转动圆盘(16)的下中心面固接有转动杆(11 ) 并连接有支撑件(12)支撑转动; 在转动圆盘(16) 的圆周边固接有向上渐缩 的圆锥形档炭板(8), 并依次向下通过设置有若干个气体出口 (17) 的环形支 撑圈 (7)层层套接, 再由圆形挡板(6)封顶构成塔状分布结构;
所述液体分布盘(5) 是气液分离槽(3) 的下底面设置有圆形储液分布槽 ( 10),并均布设置有若干个 "S"型液封管(15)连通,其圆形储液分布槽(10) 的下底面均布设置有若干个冷却水喷嘴 (14), 周边设置有支撑杆(13)支撑。
2、如权利要求 1所述的气液两相分布器,其特征在于:所述混合气体入口 (2)和液体入口 (4) 是水平设置, 并高于气液分离槽(3 )底面 30~400mm。
3、如权利要求 1所述的气液两相分布器,其特征在于:所述圆锥形挡炭板 (8)与水平面所构成的夹角为 45°~70°, 所设层数为 3~10层。
4、如权利要求 1所述的气液两相分布器,其特征在于:所述 "S"型液封管 ( 15 ) 的通道截面积总和占气液分离槽 (3 )底面积的 1/20。
5、如权利要求 1所述的气液两相分布器,其特征在于:所述冷却水喷嘴(14) 的总面积占圆形储液分布槽(10)底面积的 1/10。
6、如权利要求 1所述的气液两相分布器,其特征在于:所述向上渐缩的圆 锥形档炭板(8) 与圆形挡板 (6) 下端直径之比为 1/5~2/5。
7、一种含有权利要求 1的气液两相分布器的熄焦炉,包括高温焦炭预存区 ( 19)、第一冷却区(21 )、冷却介质分布区(29)、第二冷却区(23 )和排料区 (24); 其特征在于: 所述高温混合气体出口 (30) 是设置于第一冷却区(21 ) 的上部; 其所述混合气入口 (2)和液体入口 (4) 是设置于熄焦炉冷却介质分 布区 (29) 的气液两相分布器(22);
所述气液两相分布器(22) 是由气体分布塔(1 )和液体分布盘 (5)通过 气液分离槽(3 )连通构成, 并由固定在熄焦炉内壁面上的支撑杆(13)支撑于 熄焦炉的中央; 所述气液分离槽(3) 是其两侧设置有焦炉混合气体入口 (2)和焦炉液体 入口 (4), 其上面设置有气体分布塔(1 ), 其下面设置有液体分布盘(5);
所述气体分布塔(1 ) 是气液分离槽(3) 的上顶面均布设置有若干个气体 通道(9) 的转动圆盘(16), 在转动圆盘(16)的下中心面固接有转动杆(11 ) 并连接有支撑件(12)支撑转动; 在转动圆盘(16) 的圆周边固接有向上渐縮 的圆锥形档炭板(8), 并依次向下通过设置有若干个气体出口 (17) 的环形支 撑圈 (7)层层套接, 再由圆形挡板(6)封顶构成塔状分布结构;
所述液体分布盘(5) 是气液分离槽(3 ) 的下底面设置有圆形储液分布槽 ( 10),并均布设置有若干个 "S"型液封管(15)连通,其圆形储液分布槽(10) 的下底面均布设置有若干个冷却水喷嘴 (14)。
8、如权利要求 7所述的气液两相分布器的熄焦炉,其特征在于:所述熄焦 炉是直立式圆筒型结构, 熄焦炉的内壁与气液两相分布器 (22) 的外沿距离为 200mm~650mmo
9、一种实施权利要求 7所述的气液两相分布器熄焦炉的熄焦方法,其特征 在于: 所述熄焦方法是通过在熄焦炉内设置的气液两相分布器(22)将气相熄 焦方法和液相熄焦方法集于一起, 并通过气液两相分布器 (22) 同时进行气液 两相分布熄焦, 其中:
所述气相熄焦方法是混合气体由熄焦炉下部进入,在气液两相分布器(22) 的气液分离槽(3 ) 内混合并与液体分离, 气体上升经转动圆盘(16)的若干个 气体通道(9)进入气体分布塔(1 )后, 经至少两个以上的环形支撑圈(7)及 其若干个气体出口(17)分布流出;再经圆锥形挡炭板(8)均匀分布冷却红焦, 后由熄焦炉上部的高温混合气体出口 (30) 导出;
所述液相熄焦方法是冷却水由熄焦炉下部进入, 经气液两相分布器(22) 的气液分离槽(3 ) 分离后, 由至少两个以上的" S"型液封管 (15)进入圆形储 液分布槽 (10) 的至少两个以上的冷却水喷嘴(14) 向下喷洒分布冷却中温焦 炭, 其蒸气蒸发上升。
10、如权利要求 9所述的气液两相分布器熄焦炉的熄焦方法,其特征在于: 所述熄焦炉的气相熄焦方法是混合气由熄焦炉下部的混合气体入口 (2)进入, 经气液两相分布器 (22)分布后, 在上升过程中进入气态冷却介质逆向交叉流 动接触第一冷却区(21 ), 与红热焦炭接触、吸热、水蒸气与红热焦炭发生气化 反应, 生成合成气, 焦炭冷却到 400°C ; 混合气体经高温混合气体出口 (30) 导出, 经除尘器 (31 ) 除尘, 废热锅炉 (33 ) 回收热量, 热泵 (34) 压縮混合 气, 其中, 一部分混合气进入气液分离器 (35 )进行气液分离, 分离出的气体 导入熄焦炉的气液两相分布器(22); 另一部分由热泵(34)压缩的混合气进入 文丘里喷射器 (43 ) 与冷却水进行混合、 换热, 在气液分离器 (42) 进行气液 分离, 分离的合成气在换热器(40)内与输入的冷却水进行换热后, 引出外用; 所述熄焦炉的液相熄焦方法是进入熄焦炉的冷却水与引出外用的合成气在 换热器(40)中换热后, 由补给水泵(44)送入文丘里喷射器(43 ),与热泵(34) 压縮的混合气进行气液混合, 气液混合物进入气液分离器(42)进行气液分离, 分离出的水由补给水泵 (44) 送入熄焦炉的气液两相分布器 (22)进行喷洒熄 焦; 在热焦炭同向流液态冷却介质径向均匀喷洒第二冷却区 (23 ), 将焦炭由 400eC冷却到 100°C, 冷却水蒸发进入第一冷却区 (21 ) 进行气相熄焦。
11、如权利要求 10所述的气液两相分布器熄焦炉的熄焦方法,其特征在于: 所述由熄焦炉下部进入的混合气与由熄焦炉下部进入的冷却水的气液质量比为 1.5〜2.5。
12、如权利要求 11所述的气液两相分布器熄焦炉的熄焦方法,其特征在于: 所述熄焦炉上部混合气的出口温度是 700eC〜 1000'C。
13、如权利要求 11所述的气液两相分布器熄焦炉的熄焦方法,其特征在于: 所述熄焦炉下部混合气的入口温度是 120°C〜190'C。
PCT/CN2013/000464 2012-04-23 2013-04-23 一种气液两相分布器熄焦炉及其熄焦方法 WO2013159566A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210119511.6 2012-04-23
CN201210119489.5 2012-04-23
CN201210119489.5A CN102618300B (zh) 2012-04-23 2012-04-23 具有气液两相分布器的熄焦炉的熄焦方法
CN201210119511.6A CN103131435B (zh) 2012-04-23 2012-04-23 气液两相分布器及应用该分布器的熄焦炉

Publications (1)

Publication Number Publication Date
WO2013159566A1 true WO2013159566A1 (zh) 2013-10-31

Family

ID=49482196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000464 WO2013159566A1 (zh) 2012-04-23 2013-04-23 一种气液两相分布器熄焦炉及其熄焦方法

Country Status (1)

Country Link
WO (1) WO2013159566A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437936A (en) * 1981-03-27 1984-03-20 Hartung, Kuhn & Co. Maschinenfabrik Gmbh Process for utilizing waste heat and for obtaining water gas during the cooling of incandescent coke
CN1752180A (zh) * 2004-09-23 2006-03-29 中国科学院过程工程研究所 用焦炉煤气干熄焦和焦炭脱硫的方法
JP2007262293A (ja) * 2006-03-29 2007-10-11 Jfe Steel Kk コークス乾式消火設備の冷却方法
CN101289620A (zh) * 2008-05-12 2008-10-22 烟台同业化工技术有限公司 干熄焦联产合成气及其下游产品甲醇一体化工艺
CN101705101A (zh) * 2009-10-29 2010-05-12 太原理工大学 一种焦炭冷却装置及方法
CN102618300A (zh) * 2012-04-23 2012-08-01 太原理工大学 具有气液两相分布器的熄焦炉的熄焦方法
CN103131435A (zh) * 2012-04-23 2013-06-05 太原理工大学 气液两相分布器及应用该分布器的熄焦炉

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437936A (en) * 1981-03-27 1984-03-20 Hartung, Kuhn & Co. Maschinenfabrik Gmbh Process for utilizing waste heat and for obtaining water gas during the cooling of incandescent coke
CN1752180A (zh) * 2004-09-23 2006-03-29 中国科学院过程工程研究所 用焦炉煤气干熄焦和焦炭脱硫的方法
JP2007262293A (ja) * 2006-03-29 2007-10-11 Jfe Steel Kk コークス乾式消火設備の冷却方法
CN101289620A (zh) * 2008-05-12 2008-10-22 烟台同业化工技术有限公司 干熄焦联产合成气及其下游产品甲醇一体化工艺
CN101705101A (zh) * 2009-10-29 2010-05-12 太原理工大学 一种焦炭冷却装置及方法
CN102618300A (zh) * 2012-04-23 2012-08-01 太原理工大学 具有气液两相分布器的熄焦炉的熄焦方法
CN103131435A (zh) * 2012-04-23 2013-06-05 太原理工大学 气液两相分布器及应用该分布器的熄焦炉

Similar Documents

Publication Publication Date Title
CN201258312Y (zh) 内热式多层布气干馏炉
CN102911683B (zh) 一种木质原料的炭化系统及炭化工艺
CN102776007B (zh) 一种连续式生物质热解炭气油多联产系统
CN87107590A (zh) 外热式煤气化方法及实施该方法的沸腾床气化炉
CN103224234A (zh) 一种循环利用高温烟气生产活性炭的工艺
CN105176563A (zh) 生物质快速热解的系统和方法
CN202865173U (zh) 一种木质原料的炭化系统
CN104560100B (zh) 废旧轮胎热解系统和热解方法
CN103131435B (zh) 气液两相分布器及应用该分布器的熄焦炉
CN101063053A (zh) 循环煤流化床煤气发生炉系统
CN107603646A (zh) 一种移动式内外组合加热生物质热解炭油联产系统
CN104789244A (zh) 一种带煤气循环的回转炉粉煤热解生产无烟煤方法
WO2014044084A1 (zh) 一种低变质烟煤的煤热解炉
CN202116518U (zh) 一种二次催化裂解生物质气化炉
CN2793079Y (zh) 内热立式干馏炉
CN102816611A (zh) 一种煤热解气体的综合循环利用方法
CN105834442B (zh) 液态合金干法粒化及甲烷水蒸气重整余热回收装置和方法
CN102796568A (zh) 一种生产纯净水煤气和一氧化碳的装置及工艺
CN105018121B (zh) 一种煤气、焦油和活性炭的联产系统
CN102618300B (zh) 具有气液两相分布器的熄焦炉的熄焦方法
CN101993703A (zh) 油页岩干馏炉及干馏工艺
CN107267176A (zh) 一种高效生物质处理焦油多联产热解炉
CN204897829U (zh) 一种煤气、焦油和活性炭的联产系统
CN106947541A (zh) 一种基于低阶煤热解水蒸汽熄焦水煤气制氢的组合方法及系统
WO2013159566A1 (zh) 一种气液两相分布器熄焦炉及其熄焦方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782013

Country of ref document: EP

Kind code of ref document: A1