WO2013159442A1 - 一种控制信令发送方法及控制信令处理装置及终端 - Google Patents

一种控制信令发送方法及控制信令处理装置及终端 Download PDF

Info

Publication number
WO2013159442A1
WO2013159442A1 PCT/CN2012/077239 CN2012077239W WO2013159442A1 WO 2013159442 A1 WO2013159442 A1 WO 2013159442A1 CN 2012077239 W CN2012077239 W CN 2012077239W WO 2013159442 A1 WO2013159442 A1 WO 2013159442A1
Authority
WO
WIPO (PCT)
Prior art keywords
control signaling
evolved
radio frame
terminal
downlink subframes
Prior art date
Application number
PCT/CN2012/077239
Other languages
English (en)
French (fr)
Inventor
鲁照华
张晓丹
刘锟
宁迪浩
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/382,433 priority Critical patent/US9444602B2/en
Priority to EP12875626.9A priority patent/EP2814284B1/en
Publication of WO2013159442A1 publication Critical patent/WO2013159442A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a control signaling sending method, a control signaling processing apparatus, and a terminal.
  • the cellular mobile communication system is mainly designed for the traditional telecommunication service design of mobile and seamless handover.
  • IP Internet Protocol
  • the efficiency is low and the cost is too high.
  • LTE Long Term Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • the system control overhead is large, and the implementation complexity and cost of the product are increased.
  • the field of cellular mobile communications needs its own low cost, suitable for nomadic / local wireless data access solutions.
  • the physical downlink control signaling (basic type control signaling) of the LTE related standard needs to be transmitted through the physical downlink control channel in each downlink subframe, and the basic terminal in the "active state" (that is, the terminal supporting the LTE system standard) usually It is necessary to try to decode the downlink control signaling on each downlink subframe to determine whether the relevant signaling contains information related to itself.
  • the mechanism is characterized by short transmission interval and low spectrum efficiency of basic control signaling, which not only leads to the system. Downlink control is expensive, and It also increases the power consumption of the terminal and shortens the standby time of the terminal, which does not conform to the concept of green communication in the future.
  • the present invention aims to provide a control signaling sending method, a control signaling processing device and a terminal, which are used to solve the above problem, in view of the problem that the control signaling design defect existing in the communication system brings about a large system overhead and a high terminal energy consumption. problem.
  • the present invention further provides a control signaling sending method, which is applied to a long-term evolution standard communication system, in which a base station transmits an evolved to an evolved terminal in M downlink subframes in one radio frame.
  • Type control signaling M is an integer greater than or equal to 1 and less than N, and N is the number of downlink subframes included in the radio frame.
  • the above method may also have the following features:
  • the N can be divisible by the M
  • the M downlink subframes are the first M downlink subframes in the radio frame; or, when the N can be divisible by the M and M is greater than 1, used to send the evolved control signal. And adjacent two downlink subframe intervals ((N/M) - 1) subframes in the M downlink subframes;
  • the adjacent two downlink subframe intervals floor ((N) of the M downlink subframes used to send the evolved control signaling /M) - 1) sub-frames, where floor is a round-down function;
  • the above method may also have the following features:
  • the location of the M downlink subframes used to send the evolved control signaling in the radio frame is configured by default; or the base station notifies the evolved terminal to send the evolution by signaling The position of the M downlink subframes of the type control signaling in the radio frame.
  • the above method may also have the following features:
  • the base station sends the basic type control signaling only in the downlink subframes except the M downlink subframes in the radio frame; or the base station sends the basic type only on the M downlink subframes. Control signaling.
  • the above method may also have the following features:
  • the M downlink subframes are multicast broadcast single frequency network subframes.
  • the above method may also have the following features:
  • the base station transmits basic type control signaling having a broadcast or multicast nature only on the M downlink subframes.
  • the above method may also have the following features:
  • the orthogonal frequency division multiplexing symbol used by the base station to transmit the evolved control signaling on the M subframes is different from the orthogonal frequency division multiplexing symbol used in transmitting the basic type control signaling.
  • the above method may also have the following features:
  • the base station notifies the evolved terminal to decode the basic type control signaling on the radio frame by signaling; or the base station notifies whether the evolved terminal sends basic type control on the radio frame by signaling Signaling.
  • the above method may also have the following features:
  • the base station transmits only evolved control signaling in the radio frame.
  • the above method may also have the following features:
  • the time-frequency resource used by the base station to send the evolved control signaling is configured by default, or is notified by the base station to the evolved terminal by signaling.
  • the above method may also have the following features:
  • the downlink time-frequency resource allocated to the evolved terminal in the evolved control signaling is located on a multicast broadcast single-frequency network subframe of the radio frame; or the evolved control signaling is the evolved
  • the downlink time-frequency resources allocated by the type terminal are cross-subframe or cross-frame.
  • the above method may also have the following features:
  • the basic type control signaling is basic type control signaling related to the evolved terminal.
  • the evolved terminal is a terminal capable of decoding the evolved control signaling.
  • the present invention further provides a control signaling processing apparatus, which is located in a base station, wherein the control signaling processing apparatus includes a control signaling processing module; and the control signaling processing module is configured to: E-transformation control signaling is sent to the evolved terminal on the M downlink subframes in a radio frame, where M is an integer greater than or equal to 1 and less than N, and N is the number of downlink subframes included in the radio frame. .
  • the present invention further provides an evolved terminal, where the evolved terminal includes a signaling decoding processing module; the signaling decoding processing module is configured to: only transmit evolved control signaling at a base station Attempting to decode basic type control signaling on M downlink subframes of the radio frame and/or attempting to decode basic type control signaling on other downlink subframes except the M downlink subframes in the radio frame, where M is an integer greater than or equal to 1 and less than N, where N is the number of downlink subframes included in the radio frame.
  • the present invention further provides a control signaling sending method, which is applied to a long-term evolution standard communication system, wherein a base station notifies an evolved terminal whether to transmit one of the following information in a radio frame by signaling Or multiple: evolved control signaling, basic control signaling, and resources used to transmit evolved control signaling.
  • the above method may also have the following features:
  • the evolved terminal is a terminal capable of decoding evolved control signaling.
  • the above method may also have the following features:
  • the signaling is located in the frame before the radio frame or the radio frame.
  • 1 is a schematic diagram of an evolved control signaling sending method
  • 2(a)-G) are schematic diagrams showing locations for transmitting evolved control signaling in M subframes in a radio frame in an embodiment
  • FIG. 3 is a schematic diagram of another evolution type control signaling sending method in an embodiment. Preferred embodiment of the invention
  • the evolved terminal in this solution is a terminal capable of decoding evolved control signaling.
  • the evolved terminal is also capable of decoding basic control signaling.
  • a basic terminal can only decode basic control signaling and cannot decode evolved control signaling.
  • FIG. 1 is a flowchart of an implementation of an evolved control signaling method according to an embodiment of the present invention, which mainly includes the following processes: a base station sends an evolved control signaling to an evolved terminal in M downlink subframes in a radio frame, where M is an integer greater than or equal to 1 and less than N, where N is the number of downlink subframes included in the radio frame.
  • the evolved terminal receives the evolved control signaling.
  • the manner in which the positions of the M downlink subframes in the radio frame are set may be one of the following manners:
  • the N can be divisible by the M
  • the M downlink subframes are the first M downlink subframes in the radio frame
  • the base station sends basic type control signaling only in downlink subframes other than the M downlink subframes in the radio frame.
  • the base station transmits basic type control signaling only on the M downlink subframes.
  • the location of the M downlink subframes for transmitting the evolved control signaling in the radio frame is configured by default, or the base station notifies the evolved terminal to send the evolution by signaling The position of the M downlink subframes of the type control signaling in the radio frame.
  • the basic type control signaling is basic type control signaling related to the evolved terminal, that is, basic type control signaling that needs to be sent to the evolved terminal, for example, allocating wireless transmission resources to the evolved terminal.
  • Basic control signaling etc.
  • the basic type control signal irrelevant to the evolved terminal refers to the basic type control signaling of the target terminal being the basic type terminal.
  • the M downlink subframes are multicast broadcast single frequency network subframes.
  • the base station transmits basic type control signaling having a broadcast or multicast nature only on the M downlink subframes.
  • the orthogonal frequency division multiplexing symbol used by the base station to transmit the evolved control signaling on the M subframes is different from the orthogonal frequency division multiplexing symbol used in transmitting the basic type control signaling.
  • the base station notifies the evolved terminal to decode basic type control signaling on the radio frame by signaling.
  • the base station notifies whether the evolved terminal transmits basic type control signaling on the radio frame by signaling.
  • the base station transmits only evolved control signaling in the radio frame.
  • the time-frequency resource used by the base station to send the evolved control signaling is configured by default, or is notified by the base station to the evolved terminal by signaling.
  • the downlink time-frequency resource allocated to the evolved terminal in the evolved control signaling is located on a multicast broadcast single frequency network subframe of the radio frame.
  • the downlink time-frequency resources allocated to the evolved terminal in the evolved control signaling are cross-subframe or cross-frame.
  • the evolved terminal attempts to decode basic type control signaling only on the M downlink subframes in the radio frame.
  • the evolved terminal attempts to decode the basic type control signaling only in the downlink subframes except the M downlink subframes in the radio frame.
  • the control signaling processing apparatus for performing the foregoing method in the base station includes a control signaling processing module, and the control signaling processing module is configured to send the evolved control to the evolved terminal in M downlink subframes in one radio frame. Signaling, where M is an integer greater than or equal to 1 and less than N, and N is the number of downlink subframes included in the radio frame.
  • control signaling processing module is the same as that described in the foregoing method, and details are not described herein.
  • the evolved terminal in the solution includes a signaling decoding processing module, and the signaling decoding processing module is configured to try to decode basic control signaling only on M downlink subframes of a radio frame in which the base station sends the evolved control signaling And/or attempting to decode basic type control signaling on the downlink subframes other than the M downlink subframes in the radio frame, where M is an integer greater than or equal to 1 and less than N, where N is the wireless The number of downlink subframes included in the frame.
  • the base station notifies the location of the M downlink subframes of the evolved terminal by using the signaling, where M is an integer greater than or equal to 1 and less than N, and N is a downlink included in the radio frame.
  • M is an integer greater than or equal to 1 and less than N
  • N is a downlink included in the radio frame.
  • the number of frames, N can be divisible by M.
  • the base station sends the evolved control signaling to the evolved terminal on the M downlink subframes of the radio frame.
  • the evolved terminal receives the evolved control signaling.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where the M downlink subframes are the former M in the radio frame.
  • M is an integer greater than or equal to 1 and less than N
  • N is the number of downlink subframes included in the frame.
  • the evolved terminal receives the evolved control signaling.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where M is an integer greater than or equal to 1 and less than N, where N is The number of downlink subframes included in the radio frame.
  • N can be divisible by M and M is greater than 1, the two (two (N/M) - 1) subframes of the M downlink subframes in which the evolved control signaling is sent, as shown in FIG. 2 ( a )
  • the evolved terminal receives the evolved control signaling.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where M is an integer greater than or equal to 1 and less than N, where N is The number of downlink subframes included in the frame.
  • the evolved terminal receives the evolved control signaling.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where M is an integer greater than or equal to 1 and less than N, where N is The number of downlink subframes included in the frame.
  • the evolved terminal receives the evolved control signaling.
  • the M subframes for transmitting evolved control signaling in the above specific embodiments 1 to 5 are in the wireless
  • the method of setting the position in the frame is a preferred manner. Compared with the manner of transmitting the basic type control signaling in each downlink subframe in the prior art, the method can reduce the processing of the control signaling that the terminal detects to belong to itself. Process complexity, saving terminal power consumption and reducing system signaling overhead.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where the locations of the M downlink subframes are standard default configurations.
  • the base station is not required to notify the evolved terminal by signaling, and the value of M is an integer greater than or equal to 1 and less than N, where N is the number of downlink subframes included in the frame.
  • the position of the M subframes in the radio frame may be any one of the position setting modes in Embodiments 1 to 5.
  • the evolved terminal receives the evolved control signaling.
  • the base station In a communication system using the LTE series of standards, the base station notifies the location of the M downlink subframes in the radio frame by the eNodeB by using a signal, where M is an integer greater than or equal to 1 and less than N. , N is the number of downlink subframes included in the frame.
  • the base station sends the evolved control signaling to the evolved terminal on the M downlink subframes of the radio frame.
  • the position of the M subframes in the radio frame may be any one of the position setting modes in Embodiments 1 to 5.
  • the evolved terminal receives the evolved control signaling.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where M is an integer greater than or equal to 1 and less than N, where N is The number of downlink subframes included in the frame.
  • the positions of the M subframes in the radio frame may be the position setting parties in Embodiments 1 to 5. Any of the formulas.
  • the base station sends the basic type control signaling only in the downlink subframes except the M downlink subframes in the radio frame, and the base station sends the evolution on the subframe #0 as shown in FIG. 2(e).
  • Type control signaling transmitting basic control signaling on other subframes.
  • the basic type control signaling is basic type control signaling related to the evolved terminal.
  • the evolved terminal receives the evolved control signaling and/or basic type control signaling.
  • the evolved terminal does not need to attempt to decode the basic type control signal on the M downlink subframes.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where M is an integer greater than or equal to 1 and less than N, where N is The number of downlink subframes included in the frame.
  • the position of the M subframes in the radio frame may be any one of the position setting modes in Embodiments 1 to 5.
  • the base station sends the basic type control signaling only on the M downlink subframes. As shown in FIG. 2( f), the base station sends the evolved control signaling and the basic type control signaling on the subframe #0. Basic type control signaling is not transmitted on other subframes.
  • the evolved terminal receives the evolved control signaling and/or basic type control signaling.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where M is an integer greater than or equal to 1 and less than N, where N is The number of downlink subframes included in the frame.
  • the position of the M subframes in the radio frame may be any one of the position setting modes in Embodiments 1 to 5.
  • the base station sends basic type control signaling only on the M downlink subframes. As shown in FIG. 2(g), the base station sends evolved control signaling and/or on subframe #0, subframe #5.
  • the basic type control signaling related to the evolved terminal transmits basic type control signaling independent of the evolved terminal in other subframes.
  • the evolved terminal receives the evolved control signaling and/or basic type control signaling.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where the M downlink subframes are multicast broadcast single frequency network subframes.
  • the value of M is an integer greater than or equal to 1 and less than N, where N is the number of downlink subframes included in the frame.
  • the position of the M subframes in the radio frame may be any one of the position setting modes in Embodiments 1 to 5.
  • the evolved terminal receives the evolved control signaling.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where M is an integer greater than or equal to 1 and less than N, where N is the frame.
  • M is an integer greater than or equal to 1 and less than N, where N is the frame.
  • N is the frame.
  • Basic control signaling with broadcast or multicast nature is only sent by the base station on the M downlink subframes, and the basic control signaling with broadcast and multicast properties refers to its cyclic redundancy check.
  • the field is obtained by a random network temporary identifier with broadcast and multicast properties (corresponding to the terminal-specific random network temporary identifier).
  • the position of the M subframes in the radio frame may be any one of the position setting modes in Embodiments 1 to 5.
  • the evolved terminal receives the evolved control signaling.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where M is an integer greater than or equal to 1 and less than N, where N is the frame.
  • M is an integer greater than or equal to 1 and less than N, where N is the frame.
  • N is the frame.
  • the position of the M subframes in the radio frame may be any one of the position setting manners in Embodiments 1 to 5.
  • the OFDM symbol used by the base station to transmit the evolved control signaling on the M subframes is different from the OFDM symbol used in the basic control signaling, as shown in FIG. 2(h), the first shadow in the subframe #0
  • the area transmits basic type control signaling, and the second shaded area transmits evolved control signaling.
  • the time-frequency resource used by the base station to send the evolved control signaling is a standard default configuration, or the base station notifies the terminal by signaling.
  • the evolved terminal receives the evolved control signaling, and/or basic type control signaling.
  • Particular Example 14 is the evolved control signaling, and/or basic type control signaling.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where M is an integer greater than or equal to 1 and less than N, where N is the frame.
  • M is an integer greater than or equal to 1 and less than N, where N is the frame.
  • N is the frame.
  • the position of the M subframes in the radio frame may be any one of the position setting modes in Embodiments 1 to 5.
  • the OFDM symbol used by the base station to transmit the evolved control signaling on the M subframes is different from the OFDM symbol used in the basic control signaling, as shown in FIG. 2(h), the first shadow in the subframe #0
  • the area transmits basic type control signaling, and the second shaded area transmits evolved control signaling.
  • the evolved terminal receives the evolved control signaling and/or basic type control signaling.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where M is an integer greater than or equal to 1 and less than N, where N is the frame.
  • M is an integer greater than or equal to 1 and less than N, where N is the frame.
  • N is the frame.
  • the position of the M subframes in the radio frame may be any one of the position setting modes in Embodiments 1 to 5.
  • the base station notifies the evolved terminal to decode basic type control signaling on the radio frame by signaling.
  • the evolved terminal receives the evolved control signaling and basic control signaling.
  • a base station transmits on M downlink subframes of a radio frame.
  • the evolved control signaling is sent to the evolved terminal, where M is an integer greater than or equal to 1 and less than N, and N is the number of downlink subframes included in the frame.
  • the position of the M subframes in the radio frame may be any one of the position setting modes in Embodiments 1 to 5.
  • the base station transmits only evolved control signaling in the radio frame.
  • the evolved terminal receives the evolved control signaling.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where M is an integer greater than or equal to 1 and less than N, where N is the frame.
  • M is an integer greater than or equal to 1 and less than N, where N is the frame.
  • N is the frame.
  • the position of the M subframes in the radio frame may be any one of the position setting modes in Embodiments 1 to 5.
  • the downlink time-frequency resource allocated by the evolved control signaling to the evolved terminal is located on a multicast broadcast single-frequency network subframe of the radio frame, as shown in FIG. 2(i), sent on the subframe #0.
  • the evolved control signaling allocates resources on the subframes #2, #3, #4, and #5 to the evolved terminal, and the subframes are configured by the base station as MBSFN subframes.
  • the evolved terminal receives the evolved control signaling.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where M is an integer greater than or equal to 1 and less than N, where N is the frame.
  • M is an integer greater than or equal to 1 and less than N, where N is the frame.
  • N is the frame.
  • the position of the M subframes in the radio frame may be any one of the position setting modes in Embodiments 1 to 5.
  • the downlink time-frequency resources allocated by the evolved control signaling to the evolved terminal are cross-subframe or cross-frame. As shown in FIG. 2(i), the evolved control signaling is sent to the subframe #0.
  • the evolved terminal allocates resources on subframes #2, #3, #4, and #5, and transmits evolved control signaling to the evolved terminal to allocate radio frames on the radio frame subframe #0 as shown in FIG. 2(j). Subframes #8 and #9, the resources on the (F+1) frame subframes #8, #9.
  • the evolved terminal receives the evolved control signaling.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where M is an integer greater than or equal to 1 and less than N, where N is the frame.
  • M is an integer greater than or equal to 1 and less than N, where N is the frame.
  • N is the frame.
  • the position of the M subframes in the radio frame may be any one of the position setting modes in Embodiments 1 to 5.
  • the evolved terminal receives the evolved control signaling.
  • the evolved terminal attempts to decode basic type control signaling only on the M downlink subframes of the radio frame.
  • the base station sends the evolved control signaling to the evolved terminal in the M downlink subframes of the radio frame, where M is an integer greater than or equal to 1 and less than N, where N is the frame.
  • M is an integer greater than or equal to 1 and less than N, where N is the frame.
  • N is the frame.
  • the position of the M subframes in the radio frame may be any one of the position setting modes in Embodiments 1 to 5.
  • the evolved terminal receives the evolved control signaling.
  • the evolved terminal attempts to decode basic type control signaling only on downlink subframes other than the M downlink subframes.
  • an evolved terminal is a terminal capable of decoding evolved control signaling.
  • the time-frequency resource used by the base station to send the evolved control signaling is configured by default, or is notified to the terminal by the base station by signaling.
  • the manner in which the base station transmits the evolved control signaling and/or the basic control signaling in the radio frame provides a new communication system for the evolved control signaling and the basic control signaling compatibility. Signaling transmission solution.
  • the evolved terminal can receive and execute evolved system-specific evolved control signaling in a communication system compatible with evolved control signaling and basic control signaling, Basic type control signaling common to basic systems can also be received and executed.
  • FIG. 3 is a flowchart of an implementation of an evolved control signaling sending method according to an embodiment of the present invention, which mainly includes the following processes:
  • the base station notifies, by signaling, whether the evolved terminal sends one or more of the following information in a radio frame: Control signaling, basic control signaling, and resources used to transmit evolved control signaling.
  • the base station In a communication system using the LTE series standard, the base station notifies whether the evolved terminal transmits evolved control signaling and basic control signaling in the radio frame by signaling.
  • the evolved terminal receives the signaling, and if the signaling indicates that the evolved control signaling and the basic control signaling are not sent in the radio frame, the evolved terminal does not need to try to decode the related control on the radio frame. Signaling; if the signaling indicates that the evolved control signaling and the basic control signaling are sent in the radio frame, the evolved terminal needs to try to decode the relevant control signaling on the radio frame.
  • the base station In a communication system using the LTE series standard, the base station notifies whether the evolved terminal transmits evolved control signaling in the radio frame by signaling.
  • the evolved terminal receives the signaling, and if the signaling indicates that the evolved control signaling is not sent in the radio frame, the evolved terminal does not need to decode the attempt to decode the relevant control signaling on the radio frame, The evolved terminal also does not need to attempt to decode basic control signaling on the radio frame; if the signaling indicates that the evolved control signaling is sent in the radio frame, the evolved terminal needs to try to decode the relevant control signal on the radio frame. make.
  • the base station In a communication system using the LTE series standard, the base station notifies whether the evolved terminal transmits evolved control signaling in the radio frame by signaling.
  • the evolved terminal receives the signaling, and if the signaling indicates that the evolved control signaling is not sent in the radio frame, the evolved terminal does not need to decode the attempt to decode the relevant control signaling on the radio frame, The evolved terminal needs to attempt to decode the basic type control signaling on the radio frame; if the signaling indicates that the evolved control signaling is sent in the radio frame, the evolved terminal needs to try to decode on the radio frame.
  • Related control signaling is related to control signaling.
  • the base station In a communication system using the LTE series standard, the base station notifies whether the evolved terminal transmits basic type control signaling in the radio frame by signaling.
  • the evolved terminal receives the signaling, and if the signaling indicates that the basic type control signaling is not sent in the radio frame, the evolved terminal does not need to decode the attempt to decode the relevant control signaling on the radio frame, The evolved terminal does not need to try to decode the evolved control signaling on the radio frame; if the signaling indicates that the basic type control signaling is sent in the radio frame, the evolved terminal needs to try to decode the relevant control signaling on the radio frame. .
  • the base station In a communication system using the LTE series standard, the base station notifies whether the evolved terminal transmits basic type control signaling in the radio frame by signaling.
  • the evolved terminal receives the signaling, and if the signaling indicates that the basic type control signaling is not sent in the radio frame, the evolved terminal does not need to decode the attempt to decode the relevant control signaling on the radio frame, The evolved terminal needs to try to decode the evolved control signaling on the radio frame; if the signaling indicates that the basic type control signaling is sent in the radio frame, the evolved terminal needs to try to decode the relevant control signaling on the radio frame.
  • the base station In a communication system using the LTE series standard, the base station notifies the evolved terminal to transmit the evolved control signaling in the radio frame, and notifies the evolved terminal to send the resource information used by the evolved control signaling.
  • the evolved terminal receives the signaling and attempts to decode the evolved control signal on a radio frame.
  • the base station In a communication system using the LTE series standard, the base station notifies the evolved terminal to transmit the resource information used by the evolved control signaling in the radio frame by signaling.
  • the evolved terminal receives the signaling and attempts to decode the evolved control signaling on a radio frame.
  • the evolved terminal is a terminal capable of decoding evolved control signaling.
  • the signaling is located in a radio frame or a frame before it.
  • the evolved control signaling or the basic control signaling is control signaling related to the evolved terminal.
  • the evolved control signaling in this patent may also be referred to as enhanced control signaling, and the evolved terminal may also be referred to as an enhanced terminal.
  • the embodiments of the present invention solve the problem of high system overhead and high power consumption of the terminal caused by the wireless communication standard, and also fully consider the backward compatibility of the system, and better meet the high-speed development of data users and the wireless communication industry. The need for future development.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种控制信令发送方法及控制信令处理装置及终端,基站在一个无线帧中的M个下行子帧上向演进型终端发送演进型控制信令,M是大于等于1并且小于N的整数,N是所述无线帧中包含的下行子帧的个数。上述技术方案,对LTE系列标准的基本型控制信令进行增强,降低系统开销和终端能耗,满足未来产业发展需要。解决无线通信标准导致系统开销大、终端功耗高的问题,同时也充分考虑了系统的后向兼容性,更好地满足高速发展的数据用户和无线通信产业未来发展的需要。

Description

一种控制信令发送方法及控制信令处理装置及终端
技术领域
本发明属于无线通信领域, 具体地, 尤其涉及一种控制信令发送方法及 控制信令处理装置及终端。
背景技术
随着移动互联网的发展和智能手机的普及,移动数据流量需求飞速增长, 快速增长的数据业务对移动通信网络的传输能力提出了严峻挑战。 根据权威 机构预测, 未来十年内 (2011-2020年) , 移动数据业务量还将每年翻一番, 十年将增长一千倍。
大部分的移动数据业务主要发生在室内和热点环境, 体现为游牧 /本地无 线接入场景。 据统计, 目前移动数据业务量的近 70%发生在室内, 而且这一 比例还将继续增长,预计到 2012年将会超过 80%。数据业务主要为互联网业 务, 对服务质量的要求比较单一, 且远低于传统电信业务对服务质量的要求。
蜂窝移动通信系统主要面向的是移动, 无缝切换的传统电信业务设计, 当其承载大流量低速互联网协议(IP )数据包业务时, 效率偏低, 成本过高。 以釆用正交频分复用 OFDM ( Orthogonal Frequency Division Multiplexing )技 术的长期演进 LTE ( Long Term Evolution )标准为例,其在帧结构、 资源分配、 控制信道、 导频、 网络架构等方面均是为满足移动、 无缝切换的传统电信需 求设计的, 导致系统控制开销^大, 而且增加了产品的实现复杂度和成本。 为了适应市场发展趋势, 蜂窝移动通信领域需要有自己的低成本, 适合游牧 / 本地无线数据接入的解决方案。
LTE相关标准的物理下行控制信令(基本型控制信令)需要在每个下行 子帧上通过物理下行控制信道传输, 处于 "活跃态" 的基本型终端 (即支持 LTE系统标准的终端)通常需要尝试解码每一个下行子帧上的下行控制信令 已确定相关信令中是否包含与自己有关的信息, 这种机制的特点是传输间隔 短、 基本型控制信令频谱效率低, 不仅导致系统的下行控制开销很大, 而且 也增加了终端的耗电量缩短了终端的待机时间,不符合未来绿色通信的理念。
发明内容
针对通信系统中存在的控制信令设计缺陷带来系统开销大、 终端能耗高 的问题,本发明旨在提供一种控制信令发送方法及控制信令处理装置及终端, 用于解决解决上述问题。
为了解决上述技术问题, 本发明还提供了一种控制信令发送方法, 应用 于长期演进标准的通信系统中, 其中, 基站在一个无线帧中的 M个下行子帧 上向演进型终端发送演进型控制信令, M是大于等于 1并且小于 N的整数, N是所述无线帧中包含的下行子帧的个数。
优选地, 上述方法还可以具有以下特点:
所述 N能被所述 M整除;
或者, 所述 M个下行子帧为所述无线帧中的前 M个下行子帧; 或者, 当所述 N能被所述 M整除并且 M大于 1时, 用于发送所述演进 型控制信令的所述 M个下行子帧中相邻的两个下行子帧间隔 ((N/M) - 1)个子 帧;
或者, 当所述 N不能被所述 M整除并且 M大于 1时, 用于发送所述演 进型控制信令的所述 M个下行子帧中相邻的两个下行子帧间隔 floor((N/M) - 1)个子帧, 其中 floor为向下取整函数;
或者, 当所述 N不能被所述 M整除并且 M大于 1时, 用于发送所述演 进型控制信令的所述 M个下行子帧中相邻的两个下行子帧间隔 floor(N/M)个 子帧, 其中 floor为向下取整函数。
优选地, 上述方法还可以具有以下特点:
用于发送所述演进型控制信令的 M个下行子帧在所述无线帧中的位置是 缺省配置的; 或者, 所述基站通过信令通知所述演进型终端用于发送所述演 进型控制信令的 M个下行子帧在所述无线帧中的位置。
优选地, 上述方法还可以具有以下特点: 所述基站仅在所述无线帧中除所述 M个下行子帧以外的其他下行子帧上 发送基本型控制信令; 或者, 所述基站仅在所述 M个下行子帧上发送基本型 控制信令。
优选地, 上述方法还可以具有以下特点:
所述 M个下行子帧为组播广播单频网子帧。
优选地, 上述方法还可以具有以下特点:
所述基站仅在所述 M个下行子帧上发送具有广播或组播性质的基本型控 制信令。
优选地, 上述方法还可以具有以下特点:
所述基站在所述 M个子帧上发送演进型控制信令所使用的正交频分复用 符号不同于发送基本型控制信令所使用的正交频分复用符号。
优选地, 上述方法还可以具有以下特点:
所述基站通过信令通知所述演进型终端解码所述无线帧上的基本型控制 信令; 或者, 所述基站通过信令通知所述演进型终端是否在所述无线帧上发 送基本型控制信令。
优选地, 上述方法还可以具有以下特点:
所述基站在所述无线帧中仅发送演进型控制信令。
优选地, 上述方法还可以具有以下特点:
所述基站发送所述演进型控制信令使用的时频资源是缺省配置的, 或由 所述基站通过信令通知给所述演进型终端。
优选地, 上述方法还可以具有以下特点:
所述演进型控制信令中为所述演进型终端分配的下行时频资源位于所述 无线帧的组播广播单频网子帧上; 或者, 所述演进型控制信令中为所述演进 型终端分配的下行时频资源是跨子帧的或跨帧的。
优选地, 上述方法还可以具有以下特点:
所述基本型控制信令是与所述演进型终端有关的基本型控制信令。
优选地, 上述方法还可以具有以下特点: 所述演进型终端是有能力解码所述演进型控制信令的终端。
为了解决上述技术问题, 本发明还提供了一种控制信令处理装置, 位于 基站中, 其中, 所述控制信令处理装置包括控制信令处理模块; 所述控制信 令处理模块设置为: 在一个无线帧中的 M个下行子帧上向演进型终端发送演 进型控制信令, 其中, M是大于等于 1并且小于 N的整数, N是所述无线帧 中包含的下行子帧的个数。
为了解决上述技术问题, 本发明还提供了一种演进型终端, 其中, 所述 演进型终端包括信令解码处理模块; 所述信令解码处理模块设置为: 仅在基 站发送演进型控制信令的无线帧的 M个下行子帧上尝试解码基本型控制信令 和 /或在所述无线帧中除所述 M个下行子帧以外的其他下行子帧上尝试解码 基本型控制信令, 其中, M是大于等于 1并且小于 N的整数, N是所述无线 帧中包含的下行子帧的个数。
为了解决上述技术问题, 本发明还提供了一种控制信令发送方法, 应用 于长期演进标准的通信系统中, 其中, 基站通过信令通知演进型终端在无线 帧中是否发送以下信息中的一个或多个: 演进型控制信令、基本型控制信令、 发送演进型控制信令所使用的资源。
优选地, 上述方法还可以具有以下特点:
所述演进型终端是有能力解码演进型控制信令的终端。
优选地, 上述方法还可以具有以下特点:
所述信令位于所述无线帧或所述无线帧之前的帧中。
上述至少一个技术方案, 对 LTE系列标准的基本型控制信令进行增强, 降低系统开销和终端能耗, 满足未来产业发展需要。 附图概述
图 1是演进型控制信令发送方法的示意图;
图 2(a)-G)是实施例中在无线帧中 M个子帧中发送演进型控制信令的位置 示意图;
图 3是实施例中另一演进型控制信令发送方法的示意图。 本发明的较佳实施方式
以下结合附图对本发明的优选实施例进行说明, 如果不冲突, 本发明实 施例及实施例中的特征可以相互组合。
本方案中演进型终端是有能力解码演进型控制信令的终端。 演进型终端 也能够解码基本型控制信令。
基本型终端只能解码基本型控制信令, 不能解码演进型控制信令。
图 1为本发明实施例的演进型控制信令发送方法的实现流程图, 主要包 括如下处理: 基站在一个无线帧中的 M个下行子帧上向演进型终端发送演进 型控制信令, 其中, M是大于等于 1并且小于 N的整数, N是所述无线帧中 包含的下行子帧的个数。
在本方法中, 演进型终端接收所述演进型控制信令。
所述 M个下行子帧在所述无线帧中的位置的设置方式可以是以下方式中 的一种:
所述 N能被所述 M整除;
所述 M个下行子帧为所述无线帧中的前 M个下行子帧;
当所述 N能被所述 M整除并且 M大于 1时, 用于发送所述演进型控制 当所述 N不能被所述 M整除并且 M大于 1时, 用于发送所述演进型控 制信令的所述 M个下行子帧中相邻的两个下行子帧间隔 floor((N/M) - 1)个子 帧, 其中 floor为向下取整函数;
当所述 N不能被所述 M整除并且 M大于 1时, 用于发送所述演进型控 制信令的所述 M个下行子帧中相邻的两个下行子帧间隔 floor(N/M) 个子帧, 其中 floor为向下取整函数。
所述基站仅在所述无线帧中除所述 M个下行子帧以外的其他下行子帧上 发送基本型控制信令。
所述基站仅在所述 M个下行子帧上发送基本型控制信令。 用于发送所述演进型控制信令的 M个下行子帧在所述无线帧中的位置是 缺省配置的, 或者, 所述基站通过信令通知所述演进型终端用于发送所述演 进型控制信令的 M个下行子帧在所述无线帧中的位置。
所述基本型控制信令是与所述演进型终端有关的基本型控制信令, 即需 要发送至所述演进型终端的基本型控制信令, 例如为所述演进型终端分配无 线传输资源的基本型控制信令等。 同理, 与演进型终端无关的基本型控制信 令是指目标终端是基本型终端的基本型控制信令。
所述 M个下行子帧为组播广播单频网子帧。
所述基站仅在所述 M个下行子帧上发送具有广播或组播性质的基本型控 制信令。
所述基站在所述 M个子帧上发送演进型控制信令所使用的正交频分复用 符号不同于发送基本型控制信令所使用的正交频分复用符号。
所述基站通过信令通知所述演进型终端解码所述无线帧上的基本型控制 信令。
所述基站通过信令通知所述演进型终端是否在所述无线帧上发送基本型 控制信令。
所述基站在所述无线帧中仅发送演进型控制信令。
所述基站发送所述演进型控制信令使用的时频资源是缺省配置的, 或由 所述基站通过信令通知给所述演进型终端。
所述演进型控制信令中为所述演进型终端分配的下行时频资源位于所述 无线帧的组播广播单频网子帧上。
所述演进型控制信令中为所述演进型终端分配的下行时频资源是跨子帧 的或跨帧的。
所述演进型终端仅在所述无线帧中所述 M个下行子帧上尝试解码基本型 控制信令。
所述演进型终端仅在所述无线帧中除所述 M个下行子帧以外的其他下行 子帧上尝试解码基本型控制信令。 基站中用于执行上述方法的控制信令处理装置包括控制信令处理模块; 所述控制信令处理模块, 用于在一个无线帧中的 M个下行子帧上向演进型终 端发送演进型控制信令, 其中, M是大于等于 1并且小于 N的整数, N是所 述无线帧中包含的下行子帧的个数。
此控制信令处理模块的具体执行方式与上述方法中描述的相同, 此处不 再赘述。
本方案中的演进型终端包括信令解码处理模块;所述信令解码处理模块, 用于仅在基站发送演进型控制信令的无线帧的 M个下行子帧上尝试解码基本 型控制信令和 /或在所述无线帧中除所述 M个下行子帧以外的其他下行子帧 上尝试解码基本型控制信令, 其中, M是大于等于 1并且小于 N的整数, N 是所述无线帧中包含的下行子帧的个数。
信令解码处理模块的具体执行方式与上述方法中描述的相同, 此处不再 赘述。
下面结合具体实施例 1 ~ 20及图 2进一步说明本方案。
具体实施例 1
釆用 LTE系列标准的通信系统中,基站通过信令通知演进型终端 M个下 行子帧的位置, 其中, M取值为大于等于 1且小于 N的整数, N为无线帧中 包含的下行子帧个数, N能被 M整除。
基站在无线帧的 M个下行子帧上发送演进型控制信令给演进型终端。 演进型终端接收所述演进型控制信令。
具体实施例 2
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端, 其中, 所述 M个下行子帧为所述无线帧中的 前 M个下行子帧, M取值为大于等于 1且小于 N的整数, N为所述帧中包含 的下行子帧个数。
所述演进型终端接收所述演进型控制信令。
具体实施例 3 釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端,其中, M取值为大于等于 1且小于 N的整数, N为所述无线帧中包含的下行子帧个数。
当 N能被 M整除且 M大于 1时, 所述发送演进型控制信令的 M个下行 子帧中两两间隔 ((N/M) - 1)个子帧, 如图 2 ( a )所示, N=10, M = 2时, 相 邻的两个发送演进型控制信令的子帧 (子帧 #0、 子帧 #5 ) 间隔 4个子帧。
所述演进型终端接收所述演进型控制信令。
具体实施例 4
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端,其中, M取值为大于等于 1且小于 N的整数, N为所述帧中包含的下行子帧个数。
当 N不能被 M整除且 M大于 1时, 所述发送演进型控制信令的 M个下 行子帧中相邻的两个下行子帧间隔 floor((N/M) - 1)个子帧, 其中 floor为向下 取整操作, 如图 2 ( b )所示, N=10, M = 3时, 相邻的两个发送演进型控制 信令的子帧 (子帧 #0、 子帧 #3、 子帧 #6 ) 间隔 2个子帧, 或者如图 2 ( c )所 示, N=10, M = 3时, 相邻的两个发送演进型控制信令的子帧 (子帧 #1、 子 帧 #4、 子帧 #7 ) 间隔 2个子帧。
所述演进型终端接收所述演进型控制信令。
具体实施例 5
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端,其中, M取值为大于等于 1且小于 N的整数, N为所述帧中包含的下行子帧个数。
当 N不能被 M整除且 M大于 1时, 所述发送演进型控制信令的 M个下 行子帧中相邻的两个下行子帧间隔 floor(N/M)个子帧,其中 floor为向下取整 操作, 如图 2 ( d )所示, N=10, M = 3时, 相邻的两个发送演进型控制信令 的子帧 (子帧 #0、 子帧 #4、 子帧 #8 ) 间隔 3个子帧。
所述演进型终端接收所述演进型控制信令。
上述具体实施例 1至 5中的用于发送演进型控制信令的 M个子帧在无线 帧中的位置设置方式均是优选的方式, 相比于现有技术中在每个下行子帧中 发送基本型控制信令的方式, 本方法可降低终端检测到属于本身的控制信令 的处理过程复杂程度, 节省终端功耗, 并且降低系统信令开销。
具体实施例 6
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端, 其中, 所述 M个下行子帧的位置是标准缺省 配置的, 不需要所述基站通过信令通知所述演进型终端, M取值为大于等于 1且小于 N的整数, N为所述帧中包含的下行子帧个数。
其中, M个子帧在无线帧中的位置可以是实施例 1至 5中的位置设置方 式的任意一种。
所述演进型终端接收所述演进型控制信令。
具体实施例 7
釆用 LTE系列标准的通信系统中, 基站通过信令通知所述演进型终端所 述 M个下行子帧在所述无线帧中的位置, 其中, M取值为大于等于 1且小于 N的整数, N为所述帧中包含的下行子帧个数。
所述基站在无线帧的 M个下行子帧上发送演进型控制信令给演进型终 端。
其中, M个子帧在无线帧中的位置可以是实施例 1至 5中的位置设置方 式的任意一种。
所述演进型终端接收所述演进型控制信令。
上述具体实施例 6、 7中 M个子帧位置默认或由基站通知至演进型终端 的方式可以节省系统信令开销。
具体实施例 8
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端,其中, M取值为大于等于 1且小于 N的整数, N为所述帧中包含的下行子帧个数。
其中, M个子帧在无线帧中的位置可以是实施例 1至 5中的位置设置方 式的任意一种。
所述基站仅在所述无线帧中除所述 M个下行子帧以外的其他下行子帧上 发送基本型控制信令, 如图 2 ( e )所示, 基站在子帧 #0上发送演进型控制信 令, 在其他子帧上发送基本型控制信令。 优选地, 所述基本型控制信令为与 所述演进型终端有关的基本型控制信令。
所述演进型终端接收所述演进型控制信令和 /或基本型控制信令。
所述演进型终端在所述 M个下行子帧上不需要尝试解码基本型控制信 令。
具体实施例 9
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端,其中, M取值为大于等于 1且小于 N的整数, N为所述帧中包含的下行子帧个数。
其中, M个子帧在无线帧中的位置可以是实施例 1至 5中的位置设置方 式的任意一种。
所述基站仅在所述 M个下行子帧上发送基本型控制信令, 如图 2 ( f)所 示, 基站在子帧 #0上发送演进型控制信令和基本型控制信令, 在其他子帧上 不发送基本型控制信令。
所述演进型终端接收所述演进型控制信令和 /或基本型控制信令。
具体实施例 10
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端,其中, M取值为大于等于 1且小于 N的整数, N为所述帧中包含的下行子帧个数。
其中, M个子帧在无线帧中的位置可以是实施例 1至 5中的位置设置方 式的任意一种。
所述基站仅在所述 M个下行子帧上发送基本型控制信令, 如图 2 ( g )所 示,基站在子帧 #0、 子帧 #5上发送演进型控制信令和 /或与演进型终端有关的 基本型控制信令, 在其他子帧上发送与演进型终端无关的基本型控制信令。 所述演进型终端接收所述演进型控制信令和 /或基本型控制信令。
具体实施例 11
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端, 其中, 所述 M个下行子帧为组播广播单频网 子帧, M取值为大于等于 1且小于 N的整数, N为所述帧中包含的下行子帧 个数。
其中, M个子帧在无线帧中的位置可以是实施例 1至 5中的位置设置方 式的任意一种。
所述演进型终端接收所述演进型控制信令。
具体实施例 12
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端, M取值为大于等于 1且小于 N的整数, N 为所述帧中包含的下行子帧个数。
具有广播、或组播性质的基本型控制信令仅由所述基站在所述 M个下行 子帧上发送, 所述具有广播、 组播性质的基本型控制信令是指其循环冗余校 验字段是由具有广播、 组播性质的随机网络临时标识(与之对应的是终端专 有的随机网络临时标识)作用得到的。 这样做的好处是演进型终端不需要去 解码所述 M个子帧之外的其他子帧上的控制信息就可以很好地与系统进行通 信。
其中, M个子帧在无线帧中的位置可以是实施例 1至 5中的位置设置方 式的任意一种。
所述演进型终端接收所述演进型控制信令。
具体实施例 13
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端, M取值为大于等于 1且小于 N的整数, N 为所述帧中包含的下行子帧个数。
其中, M个子帧在无线帧中的位置可以是实施例 1至 5中的位置设置方 式的任意一种。 所述基站在所述 M个子帧上发送演进型控制信令使用的 OFDM符号不 同于基本型控制信令使用的 OFDM符号, 如图 2 ( h )所示, 子帧 #0中第一 个阴影区发送基本型控制信令, 第二个阴影区发送演进型控制信令。
优选地, 所述基站发送所述演进型控制信令使用的时频资源是标准缺省 配置的, 或由基站通过信令通知终端。
所述演进型终端接收所述演进型控制信令、 和 /或基本型控制信令。 具体实施例 14
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端, M取值为大于等于 1且小于 N的整数, N 为所述帧中包含的下行子帧个数。
其中, M个子帧在无线帧中的位置可以是实施例 1至 5中的位置设置方 式的任意一种。
所述基站在所述 M个子帧上发送演进型控制信令使用的 OFDM符号不 同于基本型控制信令使用的 OFDM符号, 如图 2 ( h )所示, 子帧 #0中第一 个阴影区发送基本型控制信令, 第二个阴影区发送演进型控制信令。
所述演进型终端接收所述演进型控制信令和 /或基本型控制信令。
具体实施例 15
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端, M取值为大于等于 1且小于 N的整数, N 为所述帧中包含的下行子帧个数。
其中, M个子帧在无线帧中的位置可以是实施例 1至 5中的位置设置方 式的任意一种。
所述基站通过信令通知所述演进型终端解码所述无线帧上的基本型控制 信令。
所述演进型终端接收所述演进型控制信令和基本型控制信令。
具体实施例 16
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端, M取值为大于等于 1且小于 N的整数, N 为所述帧中包含的下行子帧个数。
其中, M个子帧在无线帧中的位置可以是实施例 1至 5中的位置设置方 式的任意一种。
所述基站在所述无线帧中仅发送演进型控制信令。
所述演进型终端接收所述演进型控制信令。
具体实施例 17
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端, M取值为大于等于 1且小于 N的整数, N 为所述帧中包含的下行子帧个数。
其中, M个子帧在无线帧中的位置可以是实施例 1至 5中的位置设置方 式的任意一种。
所述演进型控制信令给所述演进型终端分配的下行时频资源位于所述无 线帧的组播广播单频网子帧上, 如图 2 ( i )所示, 子帧 #0上发送演进型控制 信令给演进型终端分配子帧 #2、 #3、 #4、 #5上的资源, 这些子帧被所述基站 配置为 MBSFN子帧。
所述演进型终端接收所述演进型控制信令。
具体实施例 18
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端, M取值为大于等于 1且小于 N的整数, N 为所述帧中包含的下行子帧个数。
其中, M个子帧在无线帧中的位置可以是实施例 1至 5中的位置设置方 式的任意一种。
所述演进型控制信令给所述演进型终端分配的下行时频资源是跨子帧的 或跨帧的, 如图 2 ( i )所示, 子帧 #0上发送演进型控制信令给演进型终端分 配子帧 #2、 #3、 #4、 #5上的资源, 又如图 2 (j )所示无线帧子帧 #0上发送演 进型控制信令给演进型终端分配无线帧子帧 #8 和 #9、 第 (F+1 ) 帧子帧 #8、 #9上的资源。 所述演进型终端接收所述演进型控制信令。
具体实施例 19
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端, M取值为大于等于 1且小于 N的整数, N 为所述帧中包含的下行子帧个数。
其中, M个子帧在无线帧中的位置可以是实施例 1至 5中的位置设置方 式的任意一种。
所述演进型终端接收所述演进型控制信令。
所述演进型终端仅在所述无线帧所述 M个下行子帧上尝试解码基本型控 制信令。
具体实施例 20
釆用 LTE系列标准的通信系统中,基站在无线帧的 M个下行子帧上发送 演进型控制信令给演进型终端, M取值为大于等于 1且小于 N的整数, N 为所述帧中包含的下行子帧个数。
其中, M个子帧在无线帧中的位置可以是实施例 1至 5中的位置设置方 式的任意一种。
所述演进型终端接收所述演进型控制信令。
所述演进型终端仅在除所述 M个下行子帧以外的其他下行子帧上尝试解 码基本型控制信令。
具体实施例 1〜具体实施例 20中, 演进型终端是有能力解码演进型控制 信令的终端。
具体实施例 1〜具体实施例 20中, 基站发送所述演进型控制信令使用的 时频资源是缺省配置的, 或由所述基站通过信令通知给所述终端。
具体实施例 8至 20中, 基站在无线帧中发送演进型控制信令和 /或基本 型控制信令的方式, 为演进型控制信令和基本型控制信令兼容的通信系统中 提供了新的信令传输解决方案。 演进型终端可在演进型控制信令和基本型控 制信令兼容的通信系统中接收到并执行演进型系统专用的演进型控制信令, 也可以接收到并执行基本型系统通用的基本型控制信令。
图 3为本发明实施例的演进型控制信令发送方法的实现流程图, 主要包 括如下处理: 基站通过信令通知演进型终端在无线帧中是否发送以下信息中 的一个或多个: 演进型控制信令、 基本型控制信令、 发送演进型控制信令所 使用的资源。
下面结合具体实施例 21 ~ 27进一步说明本方法。
具体实施例 21
釆用 LTE系列标准的通信系统中, 基站通过信令通知演进型终端在无线 帧中是否发送演进型控制信令和基本型控制信令。
所述演进型终端接收所述信令, 若所述信令指示无线帧中不发送演进型 控制信令和基本型控制信令, 则所述演进型终端不需要在无线帧上尝试解码 相关控制信令; 若所述信令指示无线帧中发送演进型控制信令和基本型控制 信令, 则所述演进型终端需要在无线帧上尝试解码相关控制信令。
具体实施例 22
釆用 LTE系列标准的通信系统中, 基站通过信令通知演进型终端在无线 帧中是否发送演进型控制信令。
所述演进型终端接收所述信令, 若所述信令指示无线帧中不发送演进型 控制信令,则所述演进型终端不需要解码在无线帧上尝试解码相关控制信令, 所述演进型终端也不需要在无线帧上尝试解码基本型控制信令; 若所述信令 指示无线帧中发送演进型控制信令, 则所述演进型终端需要在无线帧上尝试 解码相关控制信令。
具体实施例 23
釆用 LTE系列标准的通信系统中, 基站通过信令通知演进型终端在无线 帧中是否发送演进型控制信令。
所述演进型终端接收所述信令, 若所述信令指示无线帧中不发送演进型 控制信令,则所述演进型终端不需要解码在无线帧上尝试解码相关控制信令, 所述演进型终端需要在无线帧上尝试解码基本型控制信令; 若所述信令指示 无线帧中发送演进型控制信令, 则所述演进型终端需要在无线帧上尝试解码 相关控制信令。
具体实施例 24
釆用 LTE系列标准的通信系统中, 基站通过信令通知演进型终端在无线 帧中是否发送基本型控制信令。
所述演进型终端接收所述信令, 若所述信令指示无线帧中不发送基本型 控制信令,则所述演进型终端不需要解码在无线帧上尝试解码相关控制信令, 所述演进型终端不需要在无线帧上尝试解码演进型控制信令; 若所述信令指 示无线帧中发送基本型控制信令, 则所述演进型终端需要在无线帧上尝试解 码相关控制信令。
具体实施例 25
釆用 LTE系列标准的通信系统中, 基站通过信令通知演进型终端在无线 帧中是否发送基本型控制信令。
所述演进型终端接收所述信令, 若所述信令指示无线帧中不发送基本型 控制信令,则所述演进型终端不需要解码在无线帧上尝试解码相关控制信令, 所述演进型终端需要在无线帧上尝试解码演进型控制信令; 若所述信令指示 无线帧中发送基本型控制信令, 则所述演进型终端需要在无线帧上尝试解码 相关控制信令。
具体实施例 26
釆用 LTE系列标准的通信系统中, 基站通过信令通知演进型终端在无线 帧中发送演进型控制信令, 并通知所述演进型终端发送所述演进型控制信令 使用的资源信息。
所述演进型终端接收所述信令, 在无线帧上尝试解码所述演进型控制信 令。
具体实施例 27
釆用 LTE系列标准的通信系统中, 基站通过信令通知演进型终端在无线 帧中发送所述演进型控制信令使用的资源信息。
所述演进型终端接收所述信令, 在无线帧上尝试解码所述演进型控制信 令。 具体实施例 21~ 27中, 所述演进型终端是有能力解码演进型控制信令的 终端。
具体实施例 21~27中, 所述信令位于无线帧或其之前的帧中。
具体实施例 21~27中, 所述演进型控制信令或基本型控制信令为与所述 演进型终端有关的控制信令。
需要说明, 本专利中演进型控制信令也可以称为增强型控制信令, 演进 型终端也可以称为增强型终端。
需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互任意组合。
当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性 本发明实施例用以解决无线通信标准导致系统开销大、 终端功耗高的问 题, 同时也充分考虑了系统的后向兼容性, 更好地满足高速发展的数据用户 和无线通信产业未来发展的需要。

Claims

权 利 要 求 书
1、 一种控制信令发送方法, 应用于长期演进标准的通信系统中, 其中, 基站在一个无线帧中的 M个下行子帧上向演进型终端发送演进型控制信 令, M是大于等于 1并且小于 N的整数, N是所述无线帧中包含的下行子帧 的个数。
2、 如权利要求 1所述的方法, 其中,
所述 N能被所述 M整除;
或者, 所述 M个下行子帧为所述无线帧中的前 M个下行子帧; 或者, 当所述 N能被所述 M整除并且 M大于 1时, 用于发送所述演进 型控制信令的所述 M个下行子帧中相邻的两个下行子帧间隔 ((N/M) - 1)个子 帧;
或者, 当所述 N不能被所述 M整除并且 M大于 1时, 用于发送所述演 进型控制信令的所述 M个下行子帧中相邻的两个下行子帧间隔 floor((N/M) - 1)个子帧, 其中 floor为向下取整函数;
或者, 当所述 N不能被所述 M整除并且 M大于 1时, 用于发送所述演 进型控制信令的所述 M个下行子帧中相邻的两个下行子帧间隔 floor(N/M)个 子帧, 其中 floor为向下取整函数。
3、 如权利要求 1所述的方法, 其中,
用于发送所述演进型控制信令的 M个下行子帧在所述无线帧中的位置是 缺省配置的; 或者, 所述基站通过信令通知所述演进型终端用于发送所述演 进型控制信令的 M个下行子帧在所述无线帧中的位置。
4、 如权利要求 1所述的方法, 其中,
所述基站仅在所述无线帧中除所述 M个下行子帧以外的其他下行子帧上 发送基本型控制信令; 或者, 所述基站仅在所述 M个下行子帧上发送基本型 控制信令。
5、 如权利要求 1所述的方法, 其中, 所述 M个下行子帧为组播广播单频网子帧。
6、 如权利要求 1所述的方法, 其中,
所述基站仅在所述 M个下行子帧上发送具有广播或组播性质的基本型控 制信令。
7、 如权利要求 1所述的方法, 其中,
所述基站在所述 M个子帧上发送演进型控制信令所使用的正交频分复用 符号不同于发送基本型控制信令所使用的正交频分复用符号。
8、 如权利要求 1所述的方法, 其中,
所述基站通过信令通知所述演进型终端解码所述无线帧上的基本型控制 信令; 或者, 所述基站通过信令通知所述演进型终端是否在所述无线帧上发 送基本型控制信令。
9、 如权利要求 1所述的方法, 其中,
所述基站在所述无线帧中仅发送演进型控制信令。
10、 如权利要求 1所述的方法, 其中,
所述基站发送所述演进型控制信令使用的时频资源是缺省配置的, 或由 所述基站通过信令通知给所述演进型终端。
11、 如权利要求 1所述的方法, 其中,
所述演进型控制信令中为所述演进型终端分配的下行时频资源位于所述 无线帧的组播广播单频网子帧上; 或者, 所述演进型控制信令中为所述演进 型终端分配的下行时频资源是跨子帧的或跨帧的。
12、 如权利要求 4、 6、 7或 8所述的方法, 其中,
所述基本型控制信令是与所述演进型终端有关的基本型控制信令。
13、 如权利要求 1至 11中任一权利要求所述的方法, 其中,
所述演进型终端是有能力解码所述演进型控制信令的终端。
14、 一种控制信令处理装置, 位于基站中, 其中,
所述控制信令处理装置包括控制信令处理模块; 所述控制信令处理模块设置为: 在一个无线帧中的 M个下行子帧上向演 进型终端发送演进型控制信令, 其中, M是大于等于 1并且小于 N的整数,
N是所述无线帧中包含的下行子帧的个数。
15、 一种演进型终端, 其中, 所述演进型终端包括信令解码处理模块; 所述信令解码处理模块设置为: 仅在基站发送演进型控制信令的无线帧 的 M个下行子帧上尝试解码基本型控制信令和 /或在所述无线帧中除所述 M 个下行子帧以外的其他下行子帧上尝试解码基本型控制信令, 其中, M是大 于等于 1并且小于 N的整数, N是所述无线帧中包含的下行子帧的个数。
16、 一种控制信令发送方法,应用于长期演进标准的通信系统中,其中, 基站通过信令通知演进型终端在无线帧中是否发送以下信息中的一个或 多个: 演进型控制信令、 基本型控制信令、 发送演进型控制信令所使用的资 源。
17、 如权利要求 16所述的方法, 其中,
所述演进型终端是有能力解码演进型控制信令的终端。
18、 如权利要求 16所述的方法, 其中,
所述信令位于所述无线帧或所述无线帧之前的帧中。
PCT/CN2012/077239 2012-04-28 2012-06-20 一种控制信令发送方法及控制信令处理装置及终端 WO2013159442A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/382,433 US9444602B2 (en) 2012-04-28 2012-06-20 Control signaling transmission method, control signaling processing device, and terminal
EP12875626.9A EP2814284B1 (en) 2012-04-28 2012-06-20 Control signaling transmission method, control signaling processing device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210131932.0A CN103379594B (zh) 2012-04-28 2012-04-28 一种控制信令发送方法及控制信令处理装置及终端
CN201210131932.0 2012-04-28

Publications (1)

Publication Number Publication Date
WO2013159442A1 true WO2013159442A1 (zh) 2013-10-31

Family

ID=49464028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077239 WO2013159442A1 (zh) 2012-04-28 2012-06-20 一种控制信令发送方法及控制信令处理装置及终端

Country Status (4)

Country Link
US (1) US9444602B2 (zh)
EP (1) EP2814284B1 (zh)
CN (1) CN103379594B (zh)
WO (1) WO2013159442A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3831875A1 (en) 2019-12-05 2021-06-09 Borealis AG Flame retardant polymer composition
EP4166609A1 (en) 2021-10-14 2023-04-19 Borealis AG Flame retardant polymer composition
WO2023062062A1 (en) 2021-10-15 2023-04-20 Borealis Ag Halogen-free flame retardant polymer composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383657A (zh) * 2007-09-05 2009-03-11 中兴通讯股份有限公司 一种下行信道控制信令的发送和接收方法及其装置
CN101594205A (zh) * 2009-06-22 2009-12-02 中兴通讯股份有限公司 一种高级长期演进系统的下行控制信令发送方法
WO2011039408A1 (en) * 2009-09-30 2011-04-07 Nokia Corporation Enhanced control signaling for backhaul link

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309523B (zh) * 2008-06-23 2014-09-10 中兴通讯股份有限公司 一种传输物理下行控制信道信号的方法
US8855062B2 (en) 2009-05-28 2014-10-07 Qualcomm Incorporated Dynamic selection of subframe formats in a wireless network
CN102045843A (zh) * 2009-10-10 2011-05-04 中兴通讯股份有限公司 一种第二类中继站的下行子帧配置和传输方法及系统
CN102223604B (zh) * 2010-04-16 2013-11-06 中兴通讯股份有限公司 一种子帧配置方法及系统
GB2491857B (en) * 2011-06-14 2015-07-29 Sca Ipla Holdings Inc Wireless communications system and method
US9572146B2 (en) * 2011-07-15 2017-02-14 Lg Electronics Inc. Downlink signal receiving method and user equipment, and downlink signal transmitting method and base station
CN102355325B (zh) * 2011-08-11 2014-02-12 电信科学技术研究院 一种pucch资源映射的方法及装置
WO2013046375A1 (ja) * 2011-09-28 2013-04-04 富士通株式会社 無線信号送信方法、無線信号送信装置、無線信号受信装置、無線基地局装置及び無線端末装置
US9172626B2 (en) * 2012-03-12 2015-10-27 Ixia Methods, systems, and computer readable media for preventing traffic congestion within a long term evolution (LTE) multi-user equipment (multi-UE) simulator device
WO2013140448A1 (ja) * 2012-03-21 2013-09-26 富士通株式会社 無線通信システム、無線局および無線通信方法
CN103716274B (zh) * 2012-09-29 2018-08-07 中兴通讯股份有限公司 下行控制信息的传输方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383657A (zh) * 2007-09-05 2009-03-11 中兴通讯股份有限公司 一种下行信道控制信令的发送和接收方法及其装置
CN101594205A (zh) * 2009-06-22 2009-12-02 中兴通讯股份有限公司 一种高级长期演进系统的下行控制信令发送方法
WO2011039408A1 (en) * 2009-09-30 2011-04-07 Nokia Corporation Enhanced control signaling for backhaul link

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2814284A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3831875A1 (en) 2019-12-05 2021-06-09 Borealis AG Flame retardant polymer composition
EP4166609A1 (en) 2021-10-14 2023-04-19 Borealis AG Flame retardant polymer composition
WO2023061908A1 (en) 2021-10-14 2023-04-20 Borealis Ag Flame retardant polymer composition
WO2023062062A1 (en) 2021-10-15 2023-04-20 Borealis Ag Halogen-free flame retardant polymer composition

Also Published As

Publication number Publication date
EP2814284A1 (en) 2014-12-17
CN103379594A (zh) 2013-10-30
US9444602B2 (en) 2016-09-13
US20150098399A1 (en) 2015-04-09
CN103379594B (zh) 2018-01-30
EP2814284B1 (en) 2020-04-08
EP2814284A4 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP4772121B2 (ja) ダウンリンクブロードキャスト信号に対する干渉を減らすための方法、基地局、移動局及び媒体
TW201831001A (zh) 高效下行鏈路控制資訊傳輸方法及其使用者設備
CN102884739B (zh) 移动通信系统中用于激活载波的方法和装置
TWI658743B (zh) 在存在d2d傳輸的情況下的lte-tdd配置的動態訊號傳遞
JP6452088B2 (ja) サブフレームにおける伝送ブロックのサイズを確定する方法及び基地局
JP2018507659A (ja) 無線インターフェース技術、装置、および通信システムを使用するための方法
US8638743B2 (en) Method and apparatus that facilitates interference cancellation for control channels in heterogeneous networks
KR20200024950A (ko) 머신 타입 통신을 위한 통신 시스템 및 방법
KR20110102333A (ko) 적어도 하나 이상의 릴레이를 지원하는 무선 이동 통신 시스템에 있어서, 상기 적어도 하나 이상의 릴레이의 각각이 서비스하는 적어도 하나 이상의 사용자 기기를 위한 데이터와 상기 적어도 하나 이상의 릴레이를 위한 제어정보를 전송하는 방법
WO2015017999A1 (zh) 信息发送、接收方法及设备
WO2016070784A1 (zh) 非授权频谱通信的重传方法以及基站和用户设备
KR20160040595A (ko) 무선 프론트홀을 위한 송신 및 스케줄링 방식
US11711141B2 (en) Methods and infrastructure equipment
TW201534164A (zh) 用於頻寬聚合之多載波連接管理
JP2015507870A (ja) 半二重および全二重のための通信装置および通信方法
WO2020083039A1 (zh) 一种被用于无线通信的节点中的方法和装置
JP2019511879A (ja) 情報伝送方法およびデバイス
CN112997433B (zh) 用于harq传输的方法以及通信设备
US9083396B2 (en) OFDMA-based operation of a wireless subscriber terminal in a plurality of cells
WO2013159442A1 (zh) 一种控制信令发送方法及控制信令处理装置及终端
CN103546411B (zh) 上行授权信息发送方法、授权信息指示方法及基站
WO2020199514A1 (zh) 一种tbs的确定方法及装置
CN111316756A (zh) 用于混合自动重复请求肯定应答/否定应答捆绑的方法和设备
CA2985667C (en) Data transmission method, and apparatus
WO2011022990A1 (zh) 控制信息发送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14382433

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012875626

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE