WO2011022990A1 - 控制信息发送方法 - Google Patents

控制信息发送方法 Download PDF

Info

Publication number
WO2011022990A1
WO2011022990A1 PCT/CN2010/072611 CN2010072611W WO2011022990A1 WO 2011022990 A1 WO2011022990 A1 WO 2011022990A1 CN 2010072611 W CN2010072611 W CN 2010072611W WO 2011022990 A1 WO2011022990 A1 WO 2011022990A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
control information
home base
home
macro
Prior art date
Application number
PCT/CN2010/072611
Other languages
English (en)
French (fr)
Inventor
鲁照华
吕开颖
谢峰
刘扬
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011022990A1 publication Critical patent/WO2011022990A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning

Definitions

  • a base station is a device that provides services for a terminal, and a base station communicates with a terminal through an uplink/downlink.
  • the downlink (forward) refers to the direction from the base station to the terminal
  • the uplink (reverse) is Refers to the direction of the terminal to the base station.
  • multiple terminals can simultaneously transmit data to the base station through the uplink, or can simultaneously receive data from the base station through the downlink.
  • the quality of wireless coverage in mobile networks can affect users' enjoyment of high-speed data, voice services, and video services.
  • Femto Base Station referred to as Pico Cell or Pico BS
  • a small base station Micro Cell or Micro BS
  • the home base station can be further classified into a Closed Subscriber Group (CSG) - a CLOSE home base station, a CSG-OPEN home base station, an OPEN home base station, and a CSG-CLOSE home base station, depending on the type of service user.
  • CSG Closed Subscriber Group
  • CSG-OPEN home base station users Only authorized users or users who need to dial emergency services (for example, police, fire alarms, etc.) access, CSG-OPEN home base station users not only allow authorized users to access, but also allow unauthorized users to access, and priority to ensure authorized users
  • the quality of service, OPEN home base station allows any terminal access. There may be a large number of home base stations in the coverage area of a macro base station.
  • Acer Control information sent on a specific resource for example, Super Frame Header (SFH) in the IEEE 802.16 series of standards, because the CSG-CLOSE home base station sends control information on the corresponding resource (for example, the home base station itself)
  • the superframe header) and/or the interference caused by the data causes the terminal to fail to successfully obtain the control information sent by the macro base station.
  • SFH Super Frame Header
  • the present invention is directed to the problem in the related art that when a base station transmits control information because the home base station has transmitted data or control information on the corresponding resource, the terminal cannot successfully obtain the control information sent by the macro base station. Accordingly, it is a primary object of the present invention to provide a control information transmission scheme to solve at least one of the above problems.
  • a control information transmitting method is provided. According to the control information transmitting method of the present invention, the home base station transmits the control information of the base station on part or all of the resources used by the base station to transmit the control information of the base station.
  • the transmitting, by the home base station, the control information of the base station on the part or all resources used by the base station to send the control information of the base station includes: sending, by the base station, control information of the home base station at a time when the base station sends the control information of the base station When the time is the same, the home base station transmits the control information of the base station on part or all of the resources used by the base station to transmit the control information.
  • the transmitting, by the home base station, the control information of the base station on part or all of the resources used by the base station to send the control information includes: the time when the base station sends the control information of the base station is different from the time when the home base station sends the control information of the home base station
  • the home base station transmits control information of the base station on part or all of resources used by the base station to transmit control information.
  • the above control message is a super frame header.
  • the above time is in units of subframes.
  • the content sent by the home base station on the subcarriers of the resource is the same as the content sent by the base station on the corresponding subcarrier.
  • the base station is one of the following: a macro base station, a milli base station, a micro base station, and a relay station.
  • a control information transmitting method is also provided.
  • the control information transmitting method according to the present invention includes: the home base station transmits signaling and/or data only on resources other than part or all of the resources used by the base station to transmit the control information of the base station.
  • the home base station transmits signaling and/or data only on resources other than part or all of the resources used by the base station to transmit the control information of the base station, including: sending the home to the home base station when the base station sends the control information of the base station When the timing of the control information of the base station is different, the home base station transmits signaling and/or data only on resources other than part or all of the resources used by the base station to transmit the control information of the base station.
  • the above control message is a super frame header.
  • the control information transmitting method includes the base station transmitting signaling and/or data only on resources other than part or all of the resources used by the home base station to transmit the control information of the home base station.
  • the base station transmits signaling and/or data only on resources other than part or all of the resources used by the home base station to transmit the control information of the home base station, including: sending, by the base station, the base station when the base station sends the control information of the base station When the time of the control information of the home base station is the same, the base station transmits signaling and/or data only on resources other than part or all of the resources used by the home base station to transmit the control information of the home base station.
  • the base station transmits signaling and/or data only on resources other than part or all of the resources used by the home base station to transmit the control information of the home base station, including: sending, by the base station, the base station when the base station sends the control information of the base station
  • the base station transmits signaling and/or data only on resources other than part or all of the resources used by the home base station to transmit the control information of the home base station.
  • the above control message is a super frame header.
  • the above time is in units of subframes.
  • the content sent by the home base station on the subcarriers of the resource is the same as the content sent by the base station on the corresponding subcarrier.
  • control information transmitting method includes: the base station transmitting control information of the home base station on part or all of resources used by the home base station to transmit the control information of the home base station.
  • the transmitting, by the base station, the control information of the home base station on part or all of the resources used by the home base station to send the control information of the home base station includes: transmitting, by the base station, control of the home base station at a time when the base station sends the control information of the base station When the time of the information is different, the base station transmits the control information of the home base station on part or all of the resources used by the home base station to transmit the control information of the home base station.
  • the above control message is a super frame header.
  • the home base station transmits the control information of the base station on part or all of the resources used by the base station to transmit the control information of the base station; or the home base station transmits only the part used by the base station to control information of the base station or Transmitting signaling and/or data on resources other than all resources, which solves the problem that the base station cannot successfully obtain the macro base station because the base station has transmitted data or control information on the corresponding resource when the base station transmits the control information in the related art.
  • the problem of the transmitted control information can effectively reduce the coverage area of the control information and improve the service quality of the system.
  • FIG. 1 is a schematic diagram of a frame structure of an embodiment of the present invention
  • FIG. 2 is a flowchart of control information transmission according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of transmitting SFH by different types of base stations according to an embodiment of the present invention
  • Schematic diagram of resources used FIG.
  • FIG. 4 is a flow diagram of another implementation of control information transmission in accordance with an embodiment of the present invention.
  • 5 is a schematic diagram of resources used by different types of base stations to transmit SFH according to an embodiment of the present invention;
  • FIG. 6 is a schematic diagram of resources used by different types of base stations to transmit SFH according to an embodiment of the present invention;
  • FIG. 8 is a schematic diagram of another frame structure of an embodiment of the present invention;
  • FIG. 9 is a flowchart of another implementation of control information transmission according to an embodiment of the present invention;
  • FIG. 11 is a flow chart showing another implementation of control information transmission according to an embodiment of the present invention;
  • FIG. 11 is a flowchart of another implementation of control information transmission according to an embodiment of the present invention.
  • the present invention is implemented in consideration of the problem that the base station fails to obtain the control information sent by the macro base station because the base station has already transmitted data or control information on the corresponding resource when the base station transmits the control information.
  • the example provides a control information transmission scheme, which is related to other types of base stations or home base stations transmitting control information and data/signaling according to different times when other types of base stations and home base stations transmit control information. Through this solution, the coverage area of the control information can be effectively reduced, and the service quality of the system can be improved.
  • Mode 1 assumes that one type of base station transmitting control information is the same as the time at which the home base station sends control information, and the home base station transmits all or part of the type of base station transmission on all or part of resources used by the type of base station to transmit control information.
  • Mode 2 assumes that one type of base station sends control information at the same time as the home base station sends control information, and the base station of this type can only transmit signaling and/or resources other than all or part of resources used by the home base station to transmit control information. Or data.
  • Mode 3 assumes that one type of base station transmitting control information is different from the time at which the home base station sends control information, and the home base station can only transmit signaling on resources other than all or part of resources used by the base station to transmit control information.
  • Mode 4 assumes that one type of base station transmitting control information is different from the time when the home base station sends control information, and the base station of this type can only transmit signaling and/or resources other than all or part of resources used by the home base station to transmit control information.
  • Mode 5 assumes that one type of base station transmitting control information is different from the time at which the home base station transmits control information, and the home base station transmits control information of the type of base station on all or part of resources used by the base station to transmit control information.
  • Mode 6 assumes that one type of base station transmitting control information is different from the time at which the home base station transmits control information, and the base station of the type transmits the control information of the home base station on all or part of resources used by the home base station to transmit the control information.
  • the control information is a superframe header; the timing of transmitting the control information is in units of subframes.
  • the type of the base station mentioned in the above manner may be a macro base station, or a milli base station, or a micro base station, or a relay station.
  • the coverage of the home base station is at the base station of the type There is overlap in the coverage, or coverage of this type of base station.
  • FIG. 1 is a schematic diagram of a frame structure according to an embodiment of the present invention.
  • each super frame having a length of 20 ms is composed of four frames of 5 ms, and each frame is composed of thousands of frames.
  • the number of sub-frames is usually eight, and each frame uses one Orthogonal Frequency Division Multiplexing (OFDM) symbol to transmit prefix information (SA-Preamble or PA-Preamble, ie, Synchronization channel or primary synchronization channel).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the macro base station and the home base station transmit a super frame header (SFH) in the first sub frame of the first frame constituting the super frame, where the SFH carries important system parameter information (for example, a frequency set configuration) , duplex mode, etc.).
  • FIG. 2 is a flowchart of the control information transmission in the embodiment of the present invention. As shown in FIG. 2, the base station and the home base station send the control information at the same time.
  • Step 202 The home base station obtains a type The control information of the type of base station is to be sent, or has been sent;
  • Step 204 the home base station transmits all or part of the control sent by the base station of the type on all or part of the resources used by the base station to transmit the control information of the base station of the type. information.
  • the base station of this type is a macro base station, or a milli base station, or a micro base station, or a relay station.
  • the flow shown in Fig. 2 will be further described below with reference to Examples 1 to 2.
  • Example 1 Home base station (Femtocell BS-A, denoted as home base station-A) Obtain the main superframe header and/or auxiliary to be transmitted by the macro base station (Macro BS-B, denoted as macro base station-B) through the air interface or the bone network.
  • Superframe header information, and Femtocell BS-A knows the resource mapping mode used by Macro BS-B on the subframe in which the superframe header is transmitted.
  • the coverage of Femtocell BS-A can be located in the coverage of Macro BS-B. Within, or overlap with the coverage of the Macro BS-B.
  • Femtocell BS-A and Macro BS-B send superframe headers at the same time.
  • the resource used by the Macro BS-B to transmit the superframe header on the corresponding subframe is composed of N subcarriers (time domain X frequency domain), which is called subcarrier set B, and Femtocell BS-A is sent on the corresponding subframe.
  • the resource used by the superframe header is composed of M subcarriers (time domain X frequency domain), which is called subcarrier set A, and the number of subcarriers included in subcarrier set B is larger than subcarrier set A, subcarrier set B and subcarriers.
  • the intersection of the carrier set A is not empty, and is called the subcarrier set C.
  • the Femtocell BS-A selects all or part of the subcarriers other than the subcarriers included in the subcarrier set C in the subcarrier set B (referred to as subcarrier set D). All or part of the superframe header information of the Macro BS-B is transmitted, and the content transmitted by the Femtocell BS-A and the Macro BS-B on the relevant subcarriers on the subcarrier set D is the same.
  • the terminal MS-A Since the Femtocell BS-A transmits the superframe header of the Macro BS-B, the terminal MS-A that is within the coverage of the Femtocell BS-A and cannot obtain the service from the home base station (assuming that the serving base station is the Macro BS-B) can A certain macro diversity gain is obtained when receiving the super frame header of the Macro BS-B.
  • Example 2 Home base station (Femtocell BS-A, denoted as home base station-A) Obtain the main superframe header and/or auxiliary to be transmitted by the macro base station (Macro BS-B, denoted as macro base station-B) through the air interface or the bone network.
  • Superframe header information and Femtocell BS-A knows the resource mapping mode adopted by Macro BS-B on the subframe in which the superframe header is transmitted.
  • the coverage of Femtocell BS-A is within the coverage of Macro BS-B. , or overlap with the coverage of the Macro BS-B.
  • FIG. 3 is a schematic diagram of resources used by different types of base stations to transmit SFH according to an embodiment of the present invention; as shown in FIG. 3, a resource used by a Macro BS-B to transmit a super frame header on a corresponding subframe is composed of N subcarriers.
  • the domain frequency domain is configured as a subcarrier set B, and the resource used by the Femtocell BS-A to transmit the super frame header on the corresponding subframe is composed of M subcarriers (time domain X frequency domain), which is called a subcarrier set A.
  • the subcarrier set B includes the subcarrier set A, that is, the subcarrier set A is a subset of the subcarrier set B, and then the Femtocell BS-A in the subcarrier set B except all the subcarriers included in the subcarrier set A or All or part of the superframe header information of the Macro BS-B is transmitted on a part of the subcarriers (referred to as subcarrier set C), and the content transmitted by each of the subcarriers of the subcarrier set C by the Femtocell BS-A and the Macro BS-B the same.
  • FIG. 4 is a flowchart of another implementation of control information transmission according to an embodiment of the present invention. As shown in FIG. 4, it is assumed that one type of base station and a home base station transmit control information at the same time, and the specific steps are as follows.
  • the method includes: Step 402: The type of base station knows the resource used by the home base station to send the control information; Step 404: The base station of the type can only send all or part of the resources used by the home base station to transmit the control information of the home base station. Signaling and/or data is transmitted over the resource.
  • This type of base station is a macro base station, or a milli base station, or a micro base station, or a relay station. The flow shown in Fig. 4 will be further described below with reference to the embodiments 3 to 4.
  • Example 3 A macro base station (Macro BS-B, denoted as a macro base station-B) knows that a home base station (Femtocell BS-A, denoted as a home base station-A) transmits a resource of a primary superframe header and/or a secondary superframe header.
  • a home base station Femtocell BS-A, denoted as a home base station-A
  • the coverage of the Femtocell BS-A may be within the coverage of the Macro BS-B or overlap with the coverage of the Macro BS-B.
  • FIG. 5 is a schematic diagram of resources used by different types of base stations to transmit SFH according to an embodiment of the present invention.
  • a resource used by a Macro BS-B to transmit a super frame header in a corresponding subframe is N subcarriers.
  • i or frequency i or) constitutes a subcarrier set B
  • the resources used by the Femtocell BS-A to transmit the super frame header on the corresponding subframe are composed of M subcarriers (time domain X frequency domain), which are called subcarriers.
  • the Macro BS-B cannot use all or part of the subcarriers on the subcarrier set A to perform data, And/or the transmission of signaling. It should be noted that the Macro BS-B can send the superframe header sent by the Femtocell BS-A on the subframe in the subcarrier set A, and the Macro BS-B is on the subcarrier set A and the related subcarrier of the Femtocell BS-A. The content sent is the same.
  • the terminal MS-A with the Femtocell BS-A as the serving base station can obtain a certain macro diversity gain when receiving the super frame header transmitted by the Femtocell BS-A.
  • a macro base station (Macro BS-B, denoted as macro base station-B) knows the home base station (Femtocell BS-A, Recorded as the home base station-A) The resource for transmitting the primary superframe header and/or the secondary superframe header.
  • the coverage of the Femtocell BS-A can be within the coverage of the Macro BS-B, or with the Macro BS. There is overlap in the coverage of -B.
  • FIG. 6 is a schematic diagram of resources used by different types of base stations to transmit SFH according to an embodiment of the present invention. As shown in FIG. 6, the resources used by the Macro BS-B to transmit a super frame header in a corresponding subframe are N subcarriers.
  • the domain frequency domain is configured as a subcarrier set B, and the resource used by the Femtocell BS-A to transmit the super frame header on the corresponding subframe is composed of M subcarriers (time domain frequency domain), which is called a subcarrier set A,
  • the subcarrier set A includes the subcarrier set B, that is, the subcarrier set B is a subset of the subcarrier set A, and the transmission power, and/or the distribution of the user, the Macro BS-B cannot use the subcarrier set A except
  • the transmission of data, and/or signaling is performed on all or a part of subcarriers other than the subcarriers included in the subcarrier set B (referred to as subcarrier set C).
  • the Macro BS-B can send the superframe header sent by the Femtocell BS-A on the subframe in the subcarrier set A, and the Macro BS-B is on the subcarrier set C and the related subcarrier of the Femtocell BS-A.
  • the content sent is the same. Since the Macro BS-B transmits the super frame header of the Femtocell BS-A, the terminal MS-A with the Femtocell BS-A as the serving base station can obtain a certain macro diversity gain when receiving the super frame header transmitted by the Femtocell BS-A.
  • FIG. 7 and FIG. 8 are schematic diagrams showing another frame structure according to an embodiment of the present invention. As shown in FIG. 7 or FIG.
  • each super frame having a length of 20 ms is composed of four lengths of 5 ms.
  • Frame each frame is composed of thousands of sub-frames, usually eight, each frame transmits prefix information with one OFDM symbol (SA-Preamble or PA-Preamble, ie, secondary synchronization channel or Primary synchronization channel).
  • SA-Preamble or PA-Preamble ie, secondary synchronization channel or Primary synchronization channel.
  • Both the macro base station and the home base station send a super frame header (SFH) in the first sub frame of the first frame constituting the super frame, where the SFH carries important system parameter information (for example, a frequency set configuration, Duplex mode, etc.), it should be noted that the starting position of the super base station of the macro base station and the home base station is different (the superframe start position of the macro base station in FIG.
  • FIG. 7 is located in the previous frame of the frame where the PA-Preamble is located, and the superframe of the home base station The starting position is located in the next frame of the frame where the PA-Preamble is located.
  • the superframe start position of the macro base station is located in the previous frame of the frame where the PA-Preamble is located, and the superframe start position of the home base station is located in the frame where the PA-Preamble is located.
  • the frame structure shown in FIG. 8 is preferably used by the home base station, so the time at which the SFH is transmitted is not the same.
  • FIG. 9 is a flowchart of another implementation of the control information transmission according to the embodiment of the present invention. As shown in FIG.
  • Step 902 The home base station knows the time at which the type of base station sends the control information and the resources used; in step 904, the home base station can only transmit resources other than all or part of the resources used by the base station of the type of base station to transmit the control information of the type of base station. Transmit signaling and/or data.
  • This type of base station is a macro base station, or a milli base station, or a micro base station, or a relay station. The flow shown in Fig. 9 will be further described below with reference to the embodiments 5-6.
  • Example 5 A home base station (Femtocell BS-A, denoted as a home base station-A) knows that a macro base station (Macro BS-B, denoted as a macro base station-B) transmits a primary superframe header, and/or a secondary superframe header information. Subframes and resources (the above information is obtained by standard default configuration or by communication with other network elements), preferably, the coverage of Femtocell BS-A can be within the coverage of Macro BS-B, or with Macro BS-B There is overlap in coverage.
  • a macro base station the coverage of Femtocell BS-A can be within the coverage of Macro BS-B, or with Macro BS-B There is overlap in coverage.
  • Femtocell BS-A and Macro BS-B send superframe headers at different times.
  • the resource used by the Macro BS-B to transmit the superframe header on the subframe corresponding to the time T is composed of N subcarriers (time domain X frequency domain), which is called subcarrier set B, and is transmitted by the power, and/or the user.
  • the Femtocell BS-A does not use all or part of the subcarriers included in the subcarrier set B to transmit signaling, and/or data on the subframe corresponding to the time T (ie, no content is scheduled to be transmitted on the relevant resources).
  • a home base station (Femtocell BS-A, denoted as a home base station-A) knows that a macro base station (Macro BS-B, denoted as a macro base station-B) transmits a primary superframe header, and/or a secondary superframe header information.
  • Subframes and resources (the above information is obtained by standard default configuration or by communication with other network elements), preferably, the coverage of Femtocell BS-A can be within the coverage of Macro BS-B, or with Macro BS-B There is overlap in coverage.
  • Femtocell BS-A and Macro BS-B send superframe headers at different times.
  • FIG. 10 is a flowchart of another implementation of the control information transmission according to the embodiment of the present invention. As shown in FIG.
  • Step 1002 a type of base station knows the time at which the home base station sends the control information and the resources used; in step 1004, the base station of the type can only use resources other than all or part of the resources used by the home base station to transmit the control information of the home base station. Transmit signaling and/or data.
  • This type of base station is a macro base station, or a milli base station, or a micro base station, or a relay station. The flow shown in Fig. 10 will be further described below with reference to the embodiments 7 to 8.
  • Example 7 A macro base station (Macro BS-B, denoted as a macro base station-B) knows that a home base station (Femtocell BS-A, denoted as a home base station-A) transmits a primary superframe header and/or a secondary superframe header information. Subframes and resources (the above information is obtained by standard default configuration or by communication with other network elements), preferably, the coverage of Femtocell BS-A can be within the coverage of Macro BS-B, or with Macro BS-B There is overlap in coverage. Femtocell BS-A and Macro BS-B send superframe headers at different times.
  • the resource used by the Femtocell BS-A to transmit the superframe header in the subframe corresponding to the time T is composed of N subcarriers (time domain X frequency domain), which is called subcarrier set A, and is transmitted by the power, and/or the user.
  • the Macro BS-B does not use all or part of the subcarriers included in the subcarrier set A to transmit signaling, and/or data on the subframe corresponding to the time T (ie, no content is scheduled to be transmitted on the relevant resources).
  • the macro base station (Macro BS-B, denoted as macro base station-B) knows the home base station (Femtocell BS-A, Recorded as the home base station-A) transmitting the primary superframe header, and/or the subframe and resource used by the secondary superframe header information (the above information is obtained by standard default configuration or by communication with other network elements), preferably,
  • the coverage of the Femtocell BS-A can be within the coverage of the Macro BS-B or overlap with the coverage of the Macro BS-B.
  • Femtocell BS-A and Macro BS-B send superframe headers at different times.
  • FIG. 11 is a flowchart of another implementation of control information transmission according to an embodiment of the present invention. As shown in FIG. 11, assuming that a type of base station and a home base station send control information at different times, the specific step includes: 1102. The home base station knows a time when one type of base station sends control information, content of control information, and used resources.
  • Step 1104 The home base station sends all the control information of the base station of the type of base station at the base station of the type or The control information of the base station of this type is transmitted on some resources.
  • This type of base station is a macro base station, or a milli base station, or a micro base station, or a relay station.
  • the flow shown in Fig. 11 will be further described below with reference to the embodiment 9.
  • Example 9 A home base station (Femtocell BS-A, denoted as a home base station-A) knows that a macro base station (Macro BS-B, denoted as a macro base station-B) transmits a primary superframe header, and/or a secondary superframe header information.
  • Subframes and resources (the above information is obtained by standard default configuration or by communication with other network elements), preferably, the coverage of Femtocell BS-A can be within the coverage of Macro BS-B, or with Macro BS-B There is overlap in coverage.
  • Femtocell BS-A and Macro BS-B send superframe headers at different times.
  • the resource used by the Macro BS-B to transmit the superframe header on the subframe corresponding to the time T is composed of N subcarriers (time domain X frequency domain), which is called subcarrier set B, and is transmitted by the power, and/or the user.
  • Distribution, Femtocell BS-A sends Macro on subcarrier set B in subframe corresponding to time T All or part of the superframe header information of the BS-B, and the content transmitted by the Femtocell BS-A and the Macro BS-B on the relevant subcarriers on the subcarrier set B is the same.
  • FIG. 12 is a flowchart of another implementation of the control information transmission according to the embodiment of the present invention. As shown in FIG. 12, assuming that the time at which the type of the base station and the home base station send the control information is different, the specific steps include: Step 1202, a type of base station knows the time when the home base station transmits the control information, the content of the control information, and the used resource.
  • Step 1204 The base station of the type transmits all or part of resources used by the home base station to control information of the home base station.
  • the control information of the home base station is transmitted.
  • This type of base station is a macro base station, or a milli base station, or a micro base station, or a relay station.
  • the flow shown in Fig. 12 will be further explained below with reference to the example 10.
  • Example 10 A macro base station (Macro BS-B, denoted as a macro base station-B) knows that a home base station (Femtocell BS-A, denoted as a home base station-A) transmits a primary superframe header and/or a secondary superframe header information.
  • Subframes and resources (the above information is obtained by standard default configuration or by communication with other network elements), preferably, the coverage of Femtocell BS-A can be within the coverage of Macro BS-B, or with Macro BS-B There is overlap in coverage.
  • Femtocell BS-A and Macro BS-B send superframe headers at different times.
  • the resource used by the Femtocell BS-A to transmit the superframe header in the subframe corresponding to the time T is composed of N subcarriers (time domain X frequency domain), which is called subcarrier set A, and is transmitted by the power, and/or the user.
  • the Macro BS-B transmits all or part of the superframe header information of the Femtocell BS-A on the subframe set A corresponding to the time T, and the Femtocell BS-A and the Macro BS-B are on the subcarrier set A.
  • the content sent on the relevant subcarriers is the same.
  • the monthly base station is The terminal of the Femtocell BS-A can obtain the macro diversity gain when receiving the super frame header of the Femtocell BS-A.
  • the macro base station is used as an example, and the related embodiments are applicable to the base station types such as the micro base station, the milli base station, and the relay station, and details are not described herein again.
  • the super-frame headers are used as an example in the embodiments, and the related embodiments are also applicable to control information such as non-user-specific control mapping information, resource allocation mapping information, and extended broadcast signaling, and details are not described herein again.
  • Embodiments 1 to 10 can operate on the same carrier frequency.
  • the above-mentioned embodiments of the present invention solve the problem of interference of control information between different types of base stations, which can effectively reduce the coverage area of control information and improve the service quality of the system.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了控制信息发送方法,该方法包括:家庭基站在基站发送基站的控制信息所使用的部分或全部资源上传输基站的控制信息;或者,家庭基站只在基站发送基站的控制信息所使用的部分或全部资源以外的资源上传输信令和/或数据。通过本发明能够有效的减少控制信息的覆盖盲区,提高系统的服务质量。

Description

控制信息发送方法 技术领域 本发明涉及通信领域, 具体而言, 涉及控制信息发送方法。 背景技术 在无线通信系统中, 基站是为终端提供服务的设备, 基站通过上 /下行 链路与终端进行通信, 其中, 下行(前向)是指基站到终端的方向, 上行(反 向) 是指终端到基站的方向。 在基站与终端进行数据传输时, 多个终端可以 同时通过上行链路向基站发送数据, 也可以同时通过下行链路从基站接收数 据。 移动网络中的无线覆盖质量能够影响用户享受高速数据、语音服务和视 频服务。 为了实现无线网络的无缝覆盖, 需要解决室内及热点地区的覆盖问 题, 目前主要釆取以下两种方案来实现无线网络的无缝覆盖: 一种是增加宏 基站 ( Macro Base Station, 简称为 Macro BS或 Macro Cell ) 的数量和密度; 另一种是在室内或热点地区安装家庭基站( Femto Base Station,简称为 Femto Cell或 Femto BS或 Femtocell BS ) (也称为个人基站 ), 4啟基站 ( Pico Base Station, 简称为 Pico Cell或 Pico BS ), 毫基站 ( Micro Base Station, 简称为 Micro Cell或 Micro BS ) 等发射功率较低的小基站。 由于传统的宏基站已经接近频谱使用的容量极限, 因此, 如果再增加功 率较大的宏基站, 只会造成更多的辐射污染, 不会改善室内覆盖问题, 但釆 用 Femto BS、 Pico BS等小基站, 不但可以很好地解决室内及热点地区的覆 盖问题, 而且能够在现有的频谱资源上更大地提高系统容量。 通常, 家庭基站根据服务用户类型的不同, 可进一步分为非公开授权用 户组 ( Closed Subscriber Group, 简称 CSG ) -CLOSE家庭基站、 CSG-OPEN 家庭基站、 OPEN 家庭基站, 其中, CSG-CLOSE 家庭基站只允许授权用户 或需要拨打应急服务(例如, 匪警、 火警等) 的用户接入, CSG-OPEN家庭 基站用户不仅允许授权用户接入, 也允许非授权用户接入, 并且, 优先保证 授权用户的服务质量, OPEN家庭基站允许任何终端接入。 一个宏基站的覆盖区域内可能存在大量的家庭基站,以宏基站为服务基 站的终端进入到 CSG-CLOSE 家庭基站的覆盖区域内, 且该终端不是该 CSG-CLOSE家庭基站的授权用户时, 宏基站在特定资源上发送的控制信息, 例如, IEEE 802.16系列标准中的超帧头信息( Super frame header,简称 SFH ), 由于 CSG-CLOSE家庭基站在对应资源上发送控制信息 (例如, 家庭基站自 己的超帧头)和 /或数据造成的千扰的影响, 导致该终端无法成功获得宏基站 发送的控制信息。 发明内容 针对相关技术中基站在发送控制信息时由于家庭基站已经在对应的资 源上发送数据或控制信息造成千 4尤而导致终端无法成功获得宏基站发送的控 制信息的问题而提出本发明, 为此, 本发明的主要目的在于提供一种控制信 息发送方案, 以解决上述问题至少之一。 为了实现上述目的, 根据本发明的一个方面, 提供了一种控制信息发送 方法。 艮据本发明的控制信息发送方法包括:家庭基站在基站发送该基站的控 制信息所使用的部分或全部资源上发送该基站的控制信息。 优选地,家庭基站在基站发送该基站的控制信息所使用的部分或全部资 源上传输该基站的控制信息包括: 在基站发送该基站的控制信息的时刻与家 庭基站发送该家庭基站的控制信息的时刻相同的情况下, 该家庭基站在该基 站发送控制信息所使用的部分或全部资源上传输该基站的控制信息。 优选地,家庭基站在基站发送控制信息所使用的部分或全部资源上传输 该基站的控制信息包括: 在基站发送该基站的控制信息的时刻与家庭基站发 送该家庭基站的控制信息的时刻不同的情况下, 该家庭基站在该基站发送控 制信息所使用的部分或全部资源上传输该基站的控制信息。 优选地, 上述控制消息为超帧头。 优选地, 以上的时刻以子帧为单位。 优选地,家庭基站在上述资源的子载波上发送的内容与基站在对应子载 波上发送的内容相同。 优选地, 上述基站为以下之一: 宏基站、 毫基站、 微基站、 中继站。 为了实现上述目的, 根据本发明的一个方面, 还提供了一种控制信息发 送方法。 才艮据本发明的控制信息发送方法包括:家庭基站只在基站发送该基站的 控制信息所使用的部分或全部资源以外的资源上传输信令和 /或数据。 优选地,家庭基站只在基站发送该基站的控制信息所使用的部分或全部 资源以外的资源上传输信令和 /或数据包括: 在基站发送该基站的控制信息的 时刻与家庭基站发送该家庭基站的控制信息的时刻不同的情况下, 该家庭基 站只在基站发送该基站的控制信息所使用的部分或全部资源以外的资源上传 输信令和 /或数据。 优选地, 以上的控制消息为超帧头。 为了实现上述目的, 根据本发明的再一个方面, 提供了一种控制信息发 送方法。 根据本发明的控制信息发送方法包括:基站只在家庭基站发送该家庭基 站的控制信息所使用的部分或全部资源以外的资源上传输信令和 /或数据。 优选地,基站只在家庭基站发送该家庭基站的控制信息所使用的部分或 全部资源以外的资源上传输信令和 /或数据包括: 在基站发送该基站的控制信 息的时刻与家庭基站发送该家庭基站的控制信息的时刻相同的情况下, 基站 只在家庭基站发送家庭基站的控制信息所使用的部分或全部资源以外的资源 上传输信令和 /或数据。 优选地,基站只在家庭基站发送该家庭基站的控制信息所使用的部分或 全部资源以外的资源上传输信令和 /或数据包括: 在基站发送该基站的控制信 息的时刻与家庭基站发送该家庭基站的控制信息的时刻不同的情况下, 基站 只在家庭基站发送该家庭基站的控制信息所使用的部分或全部资源以外的资 源上传输信令和 /或数据。 优选地, 以上控制消息为超帧头。 优选地, 上述时刻以子帧为单位。 优选地,家庭基站在上述资源的子载波上发送的内容与基站在对应子载 波上发送的内容相同。 为了实现上述目的, 根据本发明的再一方面, 还提供了一种控制信息发 送方法。 根据本发明的控制信息发送方法包括:基站在家庭基站发送该家庭基站 的控制信息所使用的部分或全部资源上传输该家庭基站的控制信息。 优选地,基站在家庭基站发送该家庭基站的控制信息所使用的部分或全 部资源上传输该家庭基站的控制信息包括: 在基站发送该基站的控制信息的 时刻与家庭基站发送该家庭基站的控制信息的时刻不同的情况下, 基站在家 庭基站发送该家庭基站的控制信息所使用的部分或全部资源上传输该家庭基 站的控制信息。 优选地, 以上的控制消息为超帧头。 通过本发明,釆用了家庭基站在基站发送该基站的控制信息所使用的部 分或全部资源上传输该基站的控制信息; 或者, 家庭基站只在基站发送该基 站的控制信息所使用的部分或全部资源以外的资源上传输信令和 /或数据,解 决了相关技术中基站在发送控制信息时由于家庭基站已经在对应的资源上发 送数据或控制信息造成千扰而导致终端无法成功获得宏基站发送的控制信息 的问题, 进而能够有效的减少控制信息的覆盖盲区, 提高系统的服务质量。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是 居本发明实施例的帧结构的示意图; 图 2是 居本发明实施例的控制信息发送的流程图; 图 3是根据本发明实施例的不同类型基站发送 SFH所使用的资源的示 意图; 图 4是根据本发明实施例的控制信息发送的另一种实现的流程图; 图 5是根据本发明实施例的不同类型基站发送 SFH所使用的资源的示 意图; 图 6是根据本发明实施例的不同类型基站发送 SFH所使用的资源的示 意图; 图 7是 居本发明实施例的另一种帧结构的示意图; 图 8是 居本发明实施例的另一种帧结构的示意图; 图 9是根据本发明实施例的控制信息发送的另一种实现的流程图; 图 10是才艮据本发明实施例的控制信息发送的另一种实现的流程图; 图 11是才艮据本发明实施例的控制信息发送的另一种实现的流程图; 图 12是才艮据本发明实施例的控制信息发送的另一种实现的流程图。 具体实施方式 考虑到相关技术中基站在发送控制信息时由于家庭基站已经在对应的 资源上发送数据或控制信息造成千 4尤而导致终端无法成功获得宏基站发送的 控制信息的问题, 本发明实施例提供了一种控制信息发送方案, 该方案根据 其他类型的基站和家庭基站发送控制信息的时刻不同, 对其他类型的基站或 家庭基站发送控制信息、 数据 /信令进行相关的处理。 通过本方案进而能够有 效的减少控制信息的覆盖盲区, 提高系统的服务质量。 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。 在以下实施例中,在附图的流程图示出的步 4聚可以在诸如一组计算机可 执行指令的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但 是在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤。 方法实施例 才艮据本发明的实施例, 提供了以下几个处理方式, 下面对几种方式分别 进行说明。 方式一 假设一种类型的基站发送控制信息与家庭基站发送控制信息的时刻相 同, 则家庭基站在该类型的基站发送控制信息所使用的全部或部分资源上发 送该类型的基站发送的全部或部分控制信息。 方式二 假设一种类型的基站发送控制信息与家庭基站发送控制信息的时刻相 同, 则该类型的基站只能在家庭基站发送控制信息所使用的全部或部分资源 以外的资源上传输信令和 /或数据。 方式三 假设一种类型的基站发送控制信息与家庭基站发送控制信息的时刻不 同, 则家庭基站只能在该类型的基站发送控制信息所使用的全部或部分资源 以外的资源上传输信令和 /或数据。 方式四 假设一种类型的基站发送控制信息与家庭基站发送控制信息的时刻不 同, 则该类型的基站只能在家庭基站发送控制信息所使用的全部或部分资源 以外的资源上传输信令和 /或数据。 方式五 假设一种类型的基站发送控制信息与家庭基站发送控制信息的时刻不 同, 则家庭基站在该类型的基站发送控制信息所使用的全部或部分资源上传 输该类型基站的控制信息。 方式六 假设一种类型的基站发送控制信息与家庭基站发送控制信息的时刻不 同, 则该类型的基站在家庭基站发送控制信息所使用的全部或部分资源上传 输家庭基站的控制信息。 在上述的方式一至方式六中, 控制信息为超帧头; 发送控制信息的时刻 是以子帧为单位的。 上述方式中提到的基站的类型可以是是宏基站, 或毫基 站, 或微基站, 或中继站。 另外, 家庭基站的覆盖范围处于该类型的基站的 覆盖范围内, 或与该类型的基站的覆盖范围存在重叠部分。 下面将结合实例对本发明实施例的实现过程进行详细描述。 图 1是 居本发明实施例的帧结构的示意图, 如图 1所示, 每个长度为 20ms的超帧 ( Super frame ) 由四个为 5ms的帧 (frame )构成, 每个 frame 由若千个子帧 (Sub frame )构成, 通常为 8个, 每个 frame 用一个正交频 分复用 ( Orthogonal Frequency Division Multiplexing, 简称为 OFDM )符号传 输前缀信息 (SA-Preamble or PA-Preamble, 即, 辅同步信道或主同步信道)。 宏基站和家庭基站 卩在构成 Super frame的第一个 frame的第一个 sub frame 发送超帧头( Super Frame Header, 简称 SFH ), 所述 SFH中携带重要的系统 参数信息 (例如, 频率集合配置、 双工方式等)。 图 2是 居本发明实施例的控制信息发送的流程图, 如图 2所示, 设 一种类型的基站和家庭基站发送控制信息的时刻相同, 具体步骤包括: 步骤 202, 家庭基站获得一种类型的基站将要发送、 或已经发送的控制 信息; 步骤 204, 家庭基站在该类型的基站发送该类型的基站的控制信息所使 用的全部或部分资源上发送该类型的基站发送的全部或部分控制信息。 其中, 该类型的基站是宏基站, 或毫基站, 或微基站, 或中继站。 下面结合实例 1 ~ 2进一步说明图 2所示的流程。 实例 1 家庭基站 ( Femtocell BS-A, 记为家庭基站 -A ) 通过空口或骨千网获得 宏基站( Macro BS-B, 记为宏基站 -B )将要发送的主超帧头和 /或辅超帧头信 息, 且 Femtocell BS-A知道 Macro BS-B在发送超帧头的子帧上釆用的资源 映射方式, 优选地, Femtocell BS-A的覆盖范围可以位于 Macro BS-B的覆盖 范围内, 或与 Macro BS-B的覆盖范围存在重叠。 Femtocell BS-A和 Macro BS-B在相同的时刻发送超帧头。
Macro BS-B在对应子帧上发送超帧头所使用的资源由 N个子载波 (时 域 X频域 ) 构成, 称为子载波集合 B, 而 Femtocell BS-A在对应子帧上发送 超帧头所使用的资源由 M个子载波(时域 X频域)构成,称为子载波集合 A, 且子载波集合 B包含的子载波个数大于子载波集合 A,子载波集合 B与子载 波集合 A的交集非空, 称为子载波集合 C, 则 Femtocell BS-A在子载波集合 B中除子载波集合 C包含的子载波以外的全部或部分子载波(称为子载波集 合 D ) 上发送 Macro BS-B的全部或部分超帧头信息, 且 Femtocell BS-A和 Macro BS-B在子载波集合 D上的相关子载波上发送的内容相同。 由于 Femtocell BS-A发送了 Macro BS-B的超帧头,处于 Femtocell BS-A 覆盖范围内且不能从该家庭基站获得服务的终端 MS-A (假设其服务基站为 Macro BS-B ) 可以在接收 Macro BS-B的超帧头时获得一定的宏分集增益。 实例 2 家庭基站 ( Femtocell BS-A, 记为家庭基站 -A ) 通过空口或骨千网获得 宏基站( Macro BS-B, 记为宏基站 -B )将要发送的主超帧头和 /或辅超帧头信 息, 且 Femtocell BS-A知道 Macro BS-B在发送超帧头的子帧上釆用的资源 映射方式, 优选地, Femtocell BS-A的覆盖范围位于 Macro BS-B的覆盖范围 内, 或与 Macro BS-B的覆盖范围存在重叠。
Femtocell BS-A和 Macro BS-B在相同的时刻发送超帧头。 图 3是根据本发明实施例的不同类型基站发送 SFH所使用的资源的示 意图; 如图 3所示, Macro BS-B在对应子帧上发送超帧头所使用的资源由 N 个子载波(时域 频域) 构成, 称为子载波集合 B, 而 Femtocell BS-A在对 应子帧上发送超帧头所使用的资源由 M个子载波(时域 X频域)构成, 称为 子载波集合 A, 且子载波集合 B包含子载波集合 A, 即子载波集合 A为子载 波集合 B的子集, 则 Femtocell BS-A在子载波集合 B中除子载波集合 A包 含的子载波以外的全部或部分子载波 (称为子载波集合 C ) 上发送 Macro BS-B的全部或部分超帧头信息, 且 Femtocell BS-A和 Macro BS-B在子载波 集合 C上的每个子载波上发送的内容相同。 由于 Femtocell BS-A发送了 Macro BS-B的超帧头,处于 Femtocell BS-A 覆盖范围内且不能从该家庭基站获得服务的终端 MS-A (假设其服务基站为 Macro BS-B ) 可以在接收 Macro BS-B的超帧头时获得一定的宏分集增益。 图 4是 居本发明实施例的控制信息发送的另一种实现的流程图,如图 4 所示, 假设一种类型的基站和家庭基站发送控制信息的时刻相同, 具体步 骤包括: 步骤 402, —种类型的基站知道家庭基站发送控制信息所使用的资源; 步骤 404, 该类型的基站只能在家庭基站发送该家庭基站的控制信息所 使用的全部或部分资源以外的资源上传输信令和 /或数据。 该类型的基站是宏基站, 或毫基站, 或微基站, 或中继站。 下面结合实施例 3 ~ 4进一步说明图 4所示的流程。 实例 3 宏基站( Macro BS-B, 记为宏基站 -B )知道家庭基站( Femtocell BS-A, 记为家庭基站 -A ) 发送主超帧头、 和 /或辅超帧头釆用的资源, 优选地, Femtocell BS-A的覆盖范围可以位于 Macro BS-B的覆盖范围内,或与 Macro BS-B的覆盖范围存在重叠。
Femtocell BS-A和 Macro BS-B在相同的时刻发送超帧头。 图 5是根据本发明实施例的不同类型基站发送 SFH所使用的资源的示 意图, 如图 5所示, Macro BS-B在对应子帧上发送超帧头所使用的资源由 N 个子载波(时 i或 频 i或 ) 构成, 称为子载波集合 B, 而 Femtocell BS-A在对 应子帧上发送超帧头所使用的资源由 M个子载波(时域 X频域)构成, 称为 子载波集合 A,子载波集合 B与子载波集合 A的交集为空,则 居发射功率、 和 /或用户的分布情况, Macro BS-B不能使用子载波集合 A上的全部或部分 子载波进行数据、 和 /或信令的发送。 需要指出, Macro BS-B可以在子载波集合 A发送 Femtocell BS-A在该 子帧上发送的超帧头, 且 Macro BS-B在子载波集合 A上与 Femtocell BS-A 的相关子载波上发送的内容相同。 由于 Macro BS-B发送 Femtocell BS-A的超帧头,以 Femtocell BS-A为 服务基站的终端 MS-A可以在接收 Femtocell BS-A发送的超帧头时获得一定 的宏分集增益。 实例 4 宏基站( Macro BS-B, 记为宏基站 -B )知道家庭基站( Femtocell BS-A, 记为家庭基站 -A ) 发送主超帧头、 和 /或辅超帧头釆用的资源, 优选地, Femtocell BS-A的覆盖范围可以位于 Macro BS-B的覆盖范围内,或与 Macro BS-B的覆盖范围存在重叠。
Femtocell BS-A和 Macro BS-B在相同的时刻发送超帧头。 图 6是根据本发明实施例的不同类型基站发送 SFH所使用的资源的示 意图, 如图 6所示, Macro BS-B在对应子帧上发送超帧头所使用的资源由 N 个子载波(时域 频域) 构成, 称为子载波集合 B, 而 Femtocell BS-A在对 应子帧上发送超帧头所使用的资源由 M个子载波(时域 频域)构成, 称为 子载波集合 A, 且子载波集合 A包含子载波集合 B, 即子载波集合 B为子载 波集合 A的子集, 则 居发射功率、 和 /或用户的分布情况, Macro BS-B不 能使用子载波集合 A中除子载波集合 B包含的子载波以外的全部或部分子载 波(称为子载波集合 C ) 上进行数据、 和 /或信令的发送。 需要指出, Macro BS-B可以在子载波集合 A发送 Femtocell BS-A在该 子帧上发送的超帧头, 且 Macro BS-B在子载波集合 C上与 Femtocell BS-A 的相关子载波上发送的内容相同。 由于 Macro BS-B发送 Femtocell BS-A的超帧头,以 Femtocell BS-A为 服务基站的终端 MS-A可以在接收 Femtocell BS-A发送的超帧头时获得一定 的宏分集增益。 图 7、 图 8是才艮据本发明实施例的另一种帧结构的示意图, 如图 7或图 8所示,每个长度为 20ms的超帧( Super frame )由四个长度为 5ms的帧( frame ) 构成, 每个 frame由若千个子帧 ( sub frame )构成, 通常为 8个, 每个 frame 都用一个 OFDM符号传输前缀信息( SA-Preamble or PA-Preamble, 即辅同步 信道或主同步信道)。宏基站和家庭基站都在构成 Super frame的第一个 frame 的第一个 sub frame发送超帧头( Super Frame Header, 简称 SFH ), 所述 SFH 中携带重要的系统参数信息 (例如频率集合配置、 双工方式等), 需要注意, 由于宏基站和家庭基站超帧的起始位置不同 (图 7中宏基站的超帧起始位置 位于 PA-Preamble 所在帧的前一帧, 家庭基站的超帧起始位置位于 PA-Preamble 所在帧的后一帧, 图 8 中宏基站的超帧起始位置位于 PA-Preamble 所在帧的前一帧, 家庭基站的超帧起始位置位于 PA-Preamble 所在帧的后的第二帧, 考虑到家庭基站可以支持 low duty mode模式, 优选 图 8所示的帧结构供家庭基站使用), 所以导致发送 SFH的时刻并不相同。 图 9是 居本发明实施例的控制信息发送的另一种实现的流程图,如图 9 所示, 假设一种类型的基站和家庭基站发送控制信息的时刻不同, 具体步 骤包括: 步骤 902, 家庭基站知道一种类型的基站发送控制信息的时刻及所使用 的资源; 步骤 904, 该家庭基站只能在该类型的基站发送该类型基站的控制信息 所使用的全部或部分资源以外的资源上传输信令和 /或数据。 该类型的基站是宏基站, 或毫基站, 或微基站, 或中继站。 下面结合实施例 5 ~ 6进一步说明图 9所示的流程。 实例 5 家庭基站( Femtocell BS-A,记为家庭基站 -A )知道宏基站( Macro BS-B, 记为宏基站 -B )发送主超帧头、 和 /或辅超帧头信息所使用的子帧和资源 (由 标准缺省配置或通过与其它网元的通信获得上述信息), 优选地, Femtocell BS-A的覆盖范围可以位于 Macro BS-B的覆盖范围内, 或与 Macro BS-B的 覆盖范围存在重叠。
Femtocell BS-A和 Macro BS-B在不同的时刻发送超帧头。
Macro BS-B在时刻 T对应的子帧上发送超帧头所使用的资源由 N个子 载波(时域 X频域)构成, 称为子载波集合 B, 则 居发射功率、 和 /或用户 的分布情况, Femtocell BS-A在时刻 T对应的子帧上不使用子载波集合 B包 含的全部或部分子载波发送信令、 和 /或数据(即在相关资源上不调度传输任 何内容)。 实例 6 家庭基站( Femtocell BS-A,记为家庭基站 -A )知道宏基站( Macro BS-B, 记为宏基站 -B )发送主超帧头、 和 /或辅超帧头信息所使用的子帧和资源 (由 标准缺省配置或通过与其它网元的通信获得上述信息), 优选地, Femtocell BS-A的覆盖范围可以位于 Macro BS-B的覆盖范围内, 或与 Macro BS-B的 覆盖范围存在重叠。 Femtocell BS-A和 Macro BS-B在不同的时刻发送超帧头。
Macro BS-B在时刻 T对应的子帧发送超帧头, 则 Femtocell BS-A在时 刻 T对应的子帧上不发送信令、 和 /或数据(即在相关资源上不调度传输任何 内容)。 图 10是 居本发明实施例的控制信息发送的另一种实现的流程图, 如 图 10 所示, 假设一种类型的基站和家庭基站发送控制信息的时刻不同, 具 体步骤包括: 步骤 1002, —种类型的基站知道家庭基站发送控制信息的时刻及所使 用的资源; 步骤 1004, 该类型的基站只能在该家庭基站发送该家庭基站的控制信 息所使用的全部或部分资源以外的资源上传输信令和 /或数据。 该类型的基站是宏基站, 或毫基站, 或微基站, 或中继站。 下面结合实施例 7 ~ 8进一步说明图 10所示的流程。 实例 7 宏基站( Macro BS-B, 记为宏基站 -B )知道家庭基站( Femtocell BS-A, 记为家庭基站 -A )发送主超帧头、和 /或辅超帧头信息所使用的子帧和资源(由 标准缺省配置或通过与其它网元的通信获得上述信息), 优选地, Femtocell BS-A的覆盖范围可以位于 Macro BS-B的覆盖范围内, 或与 Macro BS-B的 覆盖范围存在重叠。 Femtocell BS-A和 Macro BS-B在不同的时刻发送超帧头。
Femtocell BS-A在时刻 T对应的子帧上发送超帧头所使用的资源由 N 个子载波 (时域 X频域) 构成, 称为子载波集合 A, 则 居发射功率、 和 / 或用户的分布情况, Macro BS-B在时刻 T对应的子帧上不使用子载波集合 A 包含的全部或部分子载波发送信令、 和 /或数据 (即在相关资源上不调度传输 任何内容)。 实例 8 宏基站( Macro BS-B, 记为宏基站 -B )知道家庭基站( Femtocell BS-A, 记为家庭基站 -A )发送主超帧头、和 /或辅超帧头信息所使用的子帧和资源(由 标准缺省配置或通过与其它网元的通信获得上述信息), 优选地, Femtocell BS-A的覆盖范围可以位于 Macro BS-B的覆盖范围内, 或与 Macro BS-B的 覆盖范围存在重叠。 Femtocell BS-A和 Macro BS-B在不同的时刻发送超帧头。
Femtocell BS-A在时刻 T对应的子帧上发送超帧头, 则 Macro BS-B在 时刻 T对应的子帧上不发送信令、 和 /或数据(即在相关资源上不调度传输任 何内容)。 图 11是 居本发明实施例的控制信息发送的另一种实现的流程图, 如 图 11所示,假设一种类型的基站和家庭基站发送控制信息的时刻不同, 具体 步 4聚包括: 步骤 1102, 家庭基站知道一种类型的基站发送控制信息的时刻、 控制 信息的内容及所使用的资源; 步骤 1104, 该家庭基站在该类型的基站发送该类型的基站的控制信息 所使用的全部或部分资源上传输该类型基站的控制信息。 该类型的基站是宏基站, 或毫基站, 或微基站, 或中继站。 下面结合实施例 9进一步说明图 11所示的流程。 实例 9 家庭基站( Femtocell BS-A,记为家庭基站 -A )知道宏基站( Macro BS-B, 记为宏基站 -B )发送主超帧头、 和 /或辅超帧头信息所使用的子帧和资源 (由 标准缺省配置或通过与其它网元的通信获得上述信息), 优选地, Femtocell BS-A的覆盖范围可以位于 Macro BS-B的覆盖范围内, 或与 Macro BS-B的 覆盖范围存在重叠。
Femtocell BS-A和 Macro BS-B在不同的时刻发送超帧头。 Macro BS-B在时刻 T对应的子帧上发送超帧头所使用的资源由 N个子 载波(时域 X频域)构成, 称为子载波集合 B, 则 居发射功率、 和 /或用户 的分布情况, Femtocell BS-A在时刻 T对应的子帧上子载波集合 B发送 Macro BS-B的全部或部分超帧头信息, 且 Femtocell BS-A和 Macro BS-B在子载波 集合 B上的相关子载波上发送的内容相同。 由于 Femtocell BS-A发送了 Macro BS-B的超帧头,处于 Femtocell BS-A 覆盖范围内且服务基站为 Macro BS-B的终端可以在接收 Macro BS-B的超帧 头时获得宏分集增益。 图 12是 居本发明实施例的控制信息发送的另一种实现的流程图, 如 图 12 所示, 假设一种类型的基站和家庭基站发送控制信息的时刻不同, 具 体步骤包括: 步骤 1202, —种类型的基站知道家庭基站发送控制信息的时刻、 控制 信息的内容及所使用的资源; 步骤 1204, 该类型的基站在所述家庭基站发送该家庭基站的控制信息 所使用的全部或部分资源上传输该家庭基站的控制信息。 该类型的基站是宏基站, 或毫基站, 或微基站, 或中继站。 下面结合实例 10进一步说明图 12所示的流程。 实例 10 宏基站( Macro BS-B, 记为宏基站 -B )知道家庭基站( Femtocell BS-A, 记为家庭基站 -A )发送主超帧头、和 /或辅超帧头信息所使用的子帧和资源(由 标准缺省配置或通过与其它网元的通信获得上述信息), 优选地, Femtocell BS-A的覆盖范围可以位于 Macro BS-B的覆盖范围内, 或与 Macro BS-B的 覆盖范围存在重叠。
Femtocell BS-A和 Macro BS-B在不同的时刻发送超帧头。
Femtocell BS-A在时刻 T对应的子帧上发送超帧头所使用的资源由 N 个子载波 (时域 X频域) 构成, 称为子载波集合 A, 则 居发射功率、 和 / 或用户的分布情况, Macro BS-B在时刻 T对应的子帧上子载波集合 A发送 Femtocell BS-A的全部或部分超帧头信息,且 Femtocell BS-A和 Macro BS-B 在子载波集合 A上的相关子载波上发送的内容相同。 由于 Macro BS-B 发送了 Femtocell BS-A 的超帧头, 则月艮务基站为 Femtocell BS-A的终端可以在接收 Femtocell BS-A的超帧头时获得宏分集增 益。 实施例 1 ~ 10中均以宏基站为例, 相关实施例同样适用于微基站、 毫基 站、 中继站等基站类型, 在此不再赘述。 实施例 1 ~ 10中均以超帧头为例,相关实施例同样适用于非用户专有控 制映射信息、 资源分配映射信息、 扩展广播信令等控制信息, 在此不再赘述。 优选地, 实施例 1 ~ 10中不同类型基站可以工作在相同的载频上。 综上所述, 通过本发明的上述实施例, 解决了不同类型基站之间控制信 息的千扰问题, 能够有效减少控制信息的覆盖盲区, 提高系统的服务质量。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种控制信息发送方法, 其特征在于, 包括:
家庭基站在基站发送所述基站的控制信息所使用的部分或全部资 源上发送所述基站的控制信息。
2. 居权利要求 1所述的方法, 其特征在于, 家庭基站在所述基站发送所 述基站的控制信息所使用的部分或全部资源上传输所述基站的控制信息 包括:
在所述基站发送所述基站的控制信息的时刻与所述家庭基站发送 所述家庭基站的控制信息的时刻相同的情况下, 所述家庭基站在所述基 站发送所述控制信息所使用的部分或全部资源上传输所述基站的控制信 息。
3. 居权利要求 1所述的方法, 其特征在于, 家庭基站在所述基站发送所 述控制信息所使用的部分或全部资源上传输所述基站的控制信息包括: 在所述基站发送所述基站的控制信息的时刻与所述家庭基站发送 所述家庭基站的控制信息的时刻不同的情况下, 所述家庭基站在所述基 站发送所述控制信息所使用的部分或全部资源上传输所述基站的控制信 息。
4. 根据权利要求 1至 3中任一项的方法, 其特征在于, 所述控制消息为超 帧头。
5. 根据权利要求 1至 3中任一项所述的方法, 其特征在于, 所述时刻以子 帧为单位。
6. 根据权利要求 1至 3中任一项所述的方法, 其特征在于, 所述家庭基站 在所述资源的子载波上发送的内容与所述基站在对应子载波上发送的内 容相同。
7. 根据权利要求 1至 3中任一项所述的方法, 其特征在于, 所述基站为以 下之一:
宏基站、 毫基站、 微基站、 中继站。
8. —种控制信息发送方法, 其特征在于, 包括:
家庭基站只在基站发送所述基站的控制信息所使用的部分或全部 资源以外的资源上传输信令和 /或数据。
9. 根据权利要求 8所述的方法, 其特征在于, 所述家庭基站只在所述基站 发送所述基站的控制信息所使用的部分或全部资源以外的资源上传输信 令和 /或数据包括:
在所述基站发送所述基站的控制信息的时刻与所述家庭基站发送 所述家庭基站的控制信息的时刻不同的情况下, 所述家庭基站只在所述 基站发送所述基站的控制信息所使用的部分或全部资源以外的资源上传 输信令和 /或数据。
10. 根据权利要求 8或 9所述的方法, 其特征在于, 所述控制消息为超帧头。
11 一种控制信息发送方法, 其特征在于, 包括:
基站只在家庭基站发送所述家庭基站的控制信息所使用的部分或 全部资源以外的资源上传输信令和 /或数据。
12. 根据权利要 11所述的方法, 其特征在于, 所述基站只在所述家庭基站发 送所述家庭基站的控制信息所使用的部分或全部资源以外的资源上传输 所述信令和 /或所述数据包括:
在所述基站发送所述基站的控制信息的时刻与所述家庭基站发送 所述家庭基站的控制信息的时刻相同的情况下, 所述基站只在所述家庭 基站发送所述家庭基站的控制信息所使用的部分或全部资源以外的资源 上传输所述信令和 /或所述数据。
13. 根据权利要求 11所述的方法, 其特征在于, 所述基站只在所述家庭基站 发送所述家庭基站的控制信息所使用的部分或全部资源以外的资源上传 输所述信令和 /或所述数据包括:
在所述基站发送所述基站的控制信息的时刻与所述家庭基站发送 所述家庭基站的控制信息的时刻不同的情况下, 所述基站只在所述家庭 基站发送所述家庭基站的控制信息所使用的部分或全部资源以外的资源 上传输所述信令和 /或所述数据。 根据权利要求 11至 13中任一项所述的方法, 其特征在于, 所述控制消 息为超帧头。
15. 根据权利要求 11至 13中任一项所述的方法, 其特征在于, 所述时刻以 子帧为单位。
16. 根据权利要求 11至 13中任一项所述的方法, 其特征在于, 所述家庭基 站在所述资源的子载波上发送的内容与所述基站在对应子载波上发送的 内容 目同。
17. —种控制信息发送方法, 其特征在于, 包括:
基站在家庭基站发送所述家庭基站的控制信息所使用的部分或全 部资源上传输所述家庭基站的控制信息。
18. 根据权利要求 17所述的方法, 其特征在于, 所述基站在所述家庭基站发 送所述家庭基站的控制信息所使用的部分或全部资源上传输所述家庭基 站的控制信息包括:
在所述基站发送所述基站的控制信息的时刻与所述家庭基站发送 所述家庭基站的控制信息的时刻不同的情况下, 所述基站在所述家庭基 站发送所述家庭基站的控制信息所使用的部分或全部资源上传输所述家 庭基站的控制信息。
19. 根据权利要求 17或 18所述的方法, 其特征在于, 所述控制消息为超帧 头。
PCT/CN2010/072611 2009-08-24 2010-05-11 控制信息发送方法 WO2011022990A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910167547.X 2009-08-24
CN200910167547XA CN101998703A (zh) 2009-08-24 2009-08-24 控制信息发送方法

Publications (1)

Publication Number Publication Date
WO2011022990A1 true WO2011022990A1 (zh) 2011-03-03

Family

ID=43627204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072611 WO2011022990A1 (zh) 2009-08-24 2010-05-11 控制信息发送方法

Country Status (2)

Country Link
CN (1) CN101998703A (zh)
WO (1) WO2011022990A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6294834B2 (ja) * 2012-12-28 2018-03-14 株式会社Nttドコモ ユーザ装置、基地局、干渉低減方法、及び干渉低減制御情報通知方法
EP3340714B1 (en) 2015-09-15 2020-05-06 Huawei Technologies Co., Ltd. Method and apparatus for sending or receiving control information

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311966A (zh) * 1998-07-28 2001-09-05 夸尔柯姆股份有限公司 提供个人基站通信的方法和系统
CN101442750A (zh) * 2007-11-23 2009-05-27 杰脉通信技术(上海)有限公司 一种自主配置第三代移动通信室内家用基站工作频率的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311966A (zh) * 1998-07-28 2001-09-05 夸尔柯姆股份有限公司 提供个人基站通信的方法和系统
CN101442750A (zh) * 2007-11-23 2009-05-27 杰脉通信技术(上海)有限公司 一种自主配置第三代移动通信室内家用基站工作频率的方法

Also Published As

Publication number Publication date
CN101998703A (zh) 2011-03-30

Similar Documents

Publication Publication Date Title
US11601936B2 (en) Method and device for configuring sidelink resources
TWI766308B (zh) 未授權頻譜中之通道利用方法、裝置及電腦可讀介質
JP5588508B2 (ja) フェムト基地局の低負荷モード動作方法
TWI641276B (zh) 用於使用另一種無線電存取技術(rat)來輔助rat通訊的技術(二)
TWI632825B (zh) 使用其他無線電存取技術協助無線電存取技術通訊的技術(一)
US8498227B2 (en) Method and apparatus for flexible spectrum usage in communications systems
CN110958620B (zh) 一种测量信号配置的方法及装置
TW201844058A (zh) 設備到設備通訊系統中的中繼
JP5793135B2 (ja) システム情報を受信及び送信する中継ノード、基地局及び方法
Chen et al. Embedding LTE-U within Wi-Fi bands for spectrum efficiency improvement
EP2213124B1 (en) Preamble design for a wireless signal
TW202107923A (zh) 未授權頻譜中之初始存取方法、裝置及電腦可讀介質
JP2012529839A5 (zh)
TWI747251B (zh) 頻寬部分操作方法、裝置和電腦可讀介質
JP7398458B2 (ja) Cot中で選択されるcoresetのサブセットのシグナリング
TW201921984A (zh) 在多子訊框drs中子訊框的csi-rs加擾
US20230134743A1 (en) Frequency domain resource configuration in iab
TW201637501A (zh) 用於使用另一種無線電存取技術(rat)來輔助rat通訊的技術(三)
US20240284362A1 (en) Modified synchronization signal block for network energy saving
CN102549942A (zh) 用于封闭订户群(csg)基站的id的管理
Zhang et al. An OFDMA-based joint reservation and cooperation MAC protocol for the next generation WLAN
Sankaran et al. Wi-Fi 6: Protocol and Network
WO2011022990A1 (zh) 控制信息发送方法
US11962543B2 (en) Wireless device full duplex cooperative schemes
US20240063867A1 (en) Relay selection for multi-relay communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811150

Country of ref document: EP

Kind code of ref document: A1