WO2013159441A1 - Barre de contrôle grise perfectionnée et absorbeur - Google Patents

Barre de contrôle grise perfectionnée et absorbeur Download PDF

Info

Publication number
WO2013159441A1
WO2013159441A1 PCT/CN2012/077214 CN2012077214W WO2013159441A1 WO 2013159441 A1 WO2013159441 A1 WO 2013159441A1 CN 2012077214 W CN2012077214 W CN 2012077214W WO 2013159441 A1 WO2013159441 A1 WO 2013159441A1
Authority
WO
WIPO (PCT)
Prior art keywords
bismuth
component
alloy
control rod
compound
Prior art date
Application number
PCT/CN2012/077214
Other languages
English (en)
Chinese (zh)
Inventor
卢俊强
汤春桃
黎辉
杨波
李继威
丁谦学
朱丽兵
刘家正
Original Assignee
上海核工程研究设计院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海核工程研究设计院 filed Critical 上海核工程研究设计院
Publication of WO2013159441A1 publication Critical patent/WO2013159441A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/24Selection of substances for use as neutron-absorbing material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/10Construction of control elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention belongs to the technical field of nuclear power plant reactive control, and particularly relates to an advanced gray control rod and absorber material.
  • Nuclear power plants typically use the lifting and insertion of control rod assemblies to control the power of the reactor.
  • the control rods used in nuclear power stations are generally divided into two categories, black control rods and gray control rods.
  • the neutron absorber of the ash control rod has a weaker absorption capacity, so its reactivity value is lower than that of the black control rod.
  • reactive control is performed using the mechanical compensation (MSHIM) mode of operation, ie the use of ash control rods instead of chemical compensation (adjusting boron concentration) provides reactive control for the load tracking process and reactive control for full power operation, Minimizes the need for daily handling of primary reactor coolant, greatly simplifying chemical and volume control systems and their operation.
  • MSHIM mechanical compensation
  • the existing ash control rods are designed using Ag-In-Cd alloy (in mass fraction of In is about 15%, mass fraction of Cd is about 5%, and balance is Ag) as the absorber material.
  • the Ag-In-Cd alloy has a relatively large neutron absorption cross section, especially the naturally occurring isotope analytic cross-section of the three elements of Ag, In and Cd.
  • the neutron absorption cross section of the product is significantly reduced, which will result in a gray control rod assembly.
  • the reactivity value is reduced to about 80% of the initial value in about 5 years, and the MSHIM mode is no longer required to meet the reactivity value of the gray control rod assembly, so a new gray control rod assembly must be replaced.
  • An advanced absorbing body for a gray control rod wherein the material of the absorber contains a compound of ruthenium, osmium alloy or ruthenium, wherein the ruthenium element accounts for the mass percentage of the material of the absorber 10 to 95% of the ratio.
  • An advanced ash control rod absorber comprising an A component and a B component in the absorbent material;
  • the A component is: one of a compound of ruthenium, osmium alloy or ruthenium or
  • the B component is: silver, silver alloy, silver compound, bismuth, bismuth alloy, bismuth compound, bismuth, bismuth alloy, bismuth compound, bismuth, bismuth alloy, bismuth compound, bismuth, bismuth An alloy or a bismuth compound; wherein, for each component of the A component, 1 to 9 parts of silver, or 0.05 to 3 parts of lanthanum, or 0.1 to 2 lanthanum elements are added to the B component. , or 0.6 to 4 parts of strontium, or 0.6 to 4 parts of bismuth; in parts by mass.
  • the ratio of the mass content of the lanthanum element in the A component to the silver component in the B component is 1: (0.1-9); the mass content ratio of the lanthanum element in the A component to the lanthanum element in the B component 1: (0.05-3); the mass content ratio of the lanthanum element in the A component to the lanthanum element in the B component is 1: (0.1-2);
  • the mass content ratio of lanthanum element is 1: (0.6-4); the mass content ratio of lanthanum element in component A to
  • the gray control rod is a slender solid tubular structure, and the gray control rod is made of a material containing a compound of bismuth, bismuth alloy or bismuth, wherein strontium element accounts for gray control
  • the gray control rod is a concentrically arranged inner and outer two-layered elongated solid tubular structure, and the inner tube or/and the outer layer tube of the gray control rod is composed of a tantalum and niobium alloy.
  • a material of a ruthenium compound, wherein the lanthanum element accounts for 10 to 95% of the total mass of the ash control rod.
  • the material of the ash control rod comprising the A component and the B component:
  • the A component is: one of a compound of ruthenium, osmium alloy or ruthenium.
  • the B component is: silver, silver alloy, silver compound, bismuth, bismuth alloy, bismuth compound, bismuth, bismuth alloy, bismuth compound, bismuth, bismuth alloy, bismuth compound, bismuth, bismuth, One or more of a bismuth alloy or a bismuth compound.
  • the material of the ash control rod comprising the A component and the B component:
  • the A component is: one of a compound of ruthenium, osmium alloy or ruthenium.
  • the B component is: silver, silver alloy, silver compound, bismuth, bismuth alloy, bismuth compound, bismuth, bismuth alloy, bismuth compound, bismuth, bismuth alloy, bismuth compound, bismuth, a compound of bismuth alloy or bismuth; wherein, for each component of component A, one component of yttrium is used, and correspondingly, 0.1 to 9 parts of silver element, or 0.05 to 3 parts of lanthanum element, or 0.1 to 2 parts of lanthanum are added to component B.
  • the material of the ash control rod comprising the A component and the B component is: cerium oxide; the B component is : silver, silver alloy, silver oxide, niobium, tantalum alloy, niobium oxide, tantalum, niobium alloy, tantalum oxide, tantalum, niobium alloy, niobium oxide, tantalum, niobium alloy or tantalum oxide
  • the ratio of the mass content of the lanthanum element in the A component to the silver component in the B component is 1: (0.1-9); the mass content ratio of the lanthanum element in the A component to the lanthanum element in the B component 1: (0.05-3); the mass content ratio of the lanthanum element in the A component to the lanthanum element in the B component is 1: (0.1-2);
  • the mass content ratio of lanthanum element is 1: (0.6-4); the mass content ratio of lanthanum element in component A to lanthanum element in component
  • the material of the gray control rod is made of niobium alloy, wherein the mass ratio of niobium element to niobium element is 1: (0.6 ⁇ 4).
  • An advanced gray control rod as described above, the ash control rod is covered with stainless steel or nickel base A cladding tube made of alloy.
  • the effect of the invention is that: the advanced gray control rod and the absorber according to the invention adopts a compound of ruthenium or iridium alloy or ruthenium, and the ash control rod assembly thus obtained is applied to the reactor, and the reactivity value thereof hardly follows the fuel consumption.
  • the change has resulted in a ash control rod assembly that has a service life of more than 20 years.
  • neutron absorber materials alloys or compounds of silver, antimony, bismuth, antimony or bismuth
  • fuel consumption is used to counteract the gradual increase in reactivity of compounds of cerium, lanthanum or cerium with increasing fuel consumption. value.
  • Fig. 1 is a graph showing the reactivity value of a conventional Ag-In-Cd alloy and a niobium alloy of Example 1 as a fuel consumption change.
  • An advanced gray control rod according to the present invention is an elongated solid tubular structure made of iridium alloy.
  • the ash control rod is covered with a cladding tube made of stainless steel or a nickel-based alloy.
  • the composition of the ruthenium alloy is shown in Table 1 below. (The niobium alloy may also contain impurities of not more than 2% of Ho, Fe, Ca, Si, CI, etc.)
  • the conventional ash control rod uses an Ag-In-Cd alloy as an absorber.
  • the Ag-In-Cd alloy has a relatively large neutron absorption cross section.
  • the neutron absorption cross section of the naturally occurring isotope anamorphic products of the three elements Ag, In and Cd is significantly reduced, so Ag-In-Cd is used.
  • the reactivity value of the ash control rod of the alloy as the absorber decreases very rapidly with the fuel consumption, and it decreases to about 80% of the initial value in about 5 years, which no longer satisfies the MSHIM mode's reactivity value to the gray control rod assembly. Requirements.
  • a bismuth alloy (Tb is 75%, Dy is 25%) is used as an absorber of the gray control rod, and the naturally occurring isotope of the Tb element is 100% 159Tb, which is transformed.
  • the neutron absorption cross section of the latter progeny product increases, that is, the neutron absorption capacity gradually increases, and the overall effect of Dy's naturally occurring isotopes after enthalpy is that the neutron absorption capacity is gradually weakened, which offsets the reactivity due to Tb fuel consumption.
  • the effect of rising value. Therefore, the absorbent material still has a reactivity value similar to that before the fuel consumption after the fuel consumption, that is, the reactivity value does not substantially change with the fuel consumption.
  • the advanced ash control rod absorbent material according to the present invention comprises an A component and a B component, and the specific composition and composition are as shown in Table 2 below.
  • the absorber material may also contain impurities of not more than 2% of Ho, Y, Fe, Ca, Si, CI, etc.
  • Example 21 ⁇ ⁇ ⁇ ⁇ Bin element: ⁇ element 1 : 2 28 %
  • Example 22 ⁇ ⁇ ⁇ ⁇ Bin element: ⁇ element 9 : 1 76 %
  • Example 25 yttrium oxide yttrium yt element: ytrium element 15: 1 79%
  • Example 27 ⁇ ⁇ ⁇ : element: ⁇ element 1 : 4 17%
  • Example 28 ⁇ ⁇ ⁇ : element: ⁇ element 9: 1 76%
  • Example 29 Cerium oxide yttrium oxide and bin element:
  • the gray control rod is a concentrically arranged inner and outer two-layered elongated solid tubular structure; the gray control rod is covered with a cladding tube made of stainless steel or a nickel-based alloy.
  • the inner tube is made of tantalum, and the inner tube has a diameter of 2 mm ;
  • the outer tube is made of an Ag-In-Cd alloy having an inner diameter of 2 mm and an outer diameter of 5 mm.
  • the gray control rod is a concentrically arranged inner and outer two-layered elongated solid tubular structure; the gray control rod is covered with a cladding tube made of stainless steel or a nickel-based alloy.
  • the inner tube is made of yttria, and the inner tube has a diameter of 6 mm ;
  • the outer tube is made of tantalum having an inner diameter of 6 mm and an outer diameter of 7 mm.
  • the invention relates to an advanced gray control rod, which is a concentrically arranged inner and outer two-layered solid tubular structure; the gray control rod is covered with a cladding tube made of stainless steel or a nickel-based alloy.
  • the inner tube is made of tantalum, and the inner tube has a diameter of 5 mm ;
  • the outer tube is made of tantalum having an inner diameter of 8 mm and an outer diameter of 8 mm.
  • ⁇ element 3 : 2 (mass ratio); ⁇ element accounts for the gray control

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

L'invention concerne un absorbeur destiné à une barre de contrôle grise. Le matériau de l'absorbeur comprend du terbium, un alliage de terbium ou un composé de terbium, la teneur en élément terbium valant 10-95 % en poids du matériau de l'absorbeur. Une barre de contrôle grise présente une structure de tube solide mince et est constituée par un matériau comprenant du terbium, un alliage de terbium ou un composé de terbium, la teneur en élément terbium valant 10-95 % en poids du matériau de l'absorbeur. L'assemblage de la barre de contrôle grise obtenu à partir de la barre de contrôle grise et de l'absorbeur est utilisé dans un réacteur, la valeur de la réactivité de l'assemblage de la barre de contrôle grise ne change presque pas avec le taux de combustion, par conséquent, la durée de vie de l'assemblage de la barre de contrôle grise est supérieure à 20 ans.
PCT/CN2012/077214 2012-04-27 2012-06-20 Barre de contrôle grise perfectionnée et absorbeur WO2013159441A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210127037.1A CN103374678B (zh) 2012-04-27 2012-04-27 一种灰控制棒及吸收体
CN201210127037.1 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013159441A1 true WO2013159441A1 (fr) 2013-10-31

Family

ID=49460507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077214 WO2013159441A1 (fr) 2012-04-27 2012-06-20 Barre de contrôle grise perfectionnée et absorbeur

Country Status (2)

Country Link
CN (1) CN103374678B (fr)
WO (1) WO2013159441A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106480349B (zh) * 2015-08-24 2018-04-03 湖南稀土院有限责任公司 一种核反应堆用Y‑Tb‑RE合金棒材及其制备方法
CN106480348B (zh) * 2015-08-24 2018-03-20 湖南稀土院有限责任公司 一种灰控制棒用吸收体材料及其制备方法
CN106282713B (zh) * 2016-09-14 2018-06-19 厦门大学 一种核反应堆灰控制棒用钼基氧化镝材料及其应用
CN106297910B (zh) * 2016-09-14 2018-01-30 厦门大学 一种核反应堆灰控制棒用钼基氧化铽材料及其应用
CN111933313B (zh) * 2020-07-21 2023-06-02 上海核工程研究设计院有限公司 一种长寿命中子吸收材料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3185652A (en) * 1960-04-29 1965-05-25 Nuclear Corp Of America Refractory rare earth material
GB1169322A (en) * 1967-03-24 1969-11-05 Commissariat Energie Atomique Process for Making Graphitic Neutron Absorbing Articles
JPS61159191A (ja) * 1984-12-30 1986-07-18 株式会社東芝 高速増殖炉用制御棒
US5156804A (en) * 1990-10-01 1992-10-20 Thermal Technology, Inc. High neutron-absorbing refractory compositions of matter and methods for their manufacture
EP0337736B1 (fr) * 1988-04-14 1994-06-08 General Electric Company Barre de contrôle d'un réacteur nucléaire ayant une durée de vie prolongée
WO1999043005A2 (fr) * 1998-02-02 1999-08-26 Lockheed Martin Idaho Technologies Company Materiaux absorbeurs de neutrons ameliores
CN1332885A (zh) * 1998-12-30 2002-01-23 法玛通公司 一种用于核反应堆控制群的吸收杆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118972A (ja) * 1997-10-16 1999-04-30 Toshiba Corp 原子炉用制御棒及びその製造方法
US7309807B2 (en) * 2003-02-28 2007-12-18 The Nanosteel Company, Inc. Method of containing radioactive contamination
US8532246B2 (en) * 2007-08-17 2013-09-10 Westinghouse Electric Company Llc Nuclear reactor robust gray control rod

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3185652A (en) * 1960-04-29 1965-05-25 Nuclear Corp Of America Refractory rare earth material
GB1169322A (en) * 1967-03-24 1969-11-05 Commissariat Energie Atomique Process for Making Graphitic Neutron Absorbing Articles
JPS61159191A (ja) * 1984-12-30 1986-07-18 株式会社東芝 高速増殖炉用制御棒
EP0337736B1 (fr) * 1988-04-14 1994-06-08 General Electric Company Barre de contrôle d'un réacteur nucléaire ayant une durée de vie prolongée
US5156804A (en) * 1990-10-01 1992-10-20 Thermal Technology, Inc. High neutron-absorbing refractory compositions of matter and methods for their manufacture
WO1999043005A2 (fr) * 1998-02-02 1999-08-26 Lockheed Martin Idaho Technologies Company Materiaux absorbeurs de neutrons ameliores
CN1332885A (zh) * 1998-12-30 2002-01-23 法玛通公司 一种用于核反应堆控制群的吸收杆

Also Published As

Publication number Publication date
CN103374678B (zh) 2017-02-22
CN103374678A (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
WO2013159441A1 (fr) Barre de contrôle grise perfectionnée et absorbeur
JP6961719B2 (ja) 核燃料ペレット、燃料棒、および燃料アセンブリ
US5787142A (en) Pressurized water reactor nuclear fuel assembly
US5768332A (en) Nuclear fuel rod for pressurized water reactor
JP4674312B2 (ja) 核燃料ペレットの製造方法および核燃料ペレット
JPS62168092A (ja) 可燃性熱中性子吸収要素
CN102915772B (zh) 一种长寿命灰控制棒及吸收体
CN103451474B (zh) 核电站燃料包壳用含铋锆合金
CN106929706A (zh) 一种用于核反应堆高温环境中的锆基合金
CA2170068A1 (fr) Alliage pour ameliorer la resistance a la corrosion des composants de reacteurs nucleaires
EP0867888B1 (fr) Gaine composite pour crayons de combustible nucléaire
CN102915773B (zh) 一种灰控制棒及吸收体
RU2688086C1 (ru) Сплав для поглощения тепловых нейтронов на основе циркония
JP2001158928A (ja) 高純度ジルコニウム合金および原子炉炉心用構造材
US10650930B2 (en) Gray control rod having a neutron absorber comprising terbium and dysprosium
US6511556B1 (en) High strength zirconium alloys containing bismuth and niobium
US5772798A (en) High strength zirconium alloys containing bismuth
EP0964407B1 (fr) Alliages de zirconium à haute résistance contenant du bismuth, de l'étain et du niobium
EP1157391A1 (fr) Procede permettant de produire un materiau con u pour etre fritte sur un element de combustible nucleaire a base d'oxyde
Rudling et al. Impact of manufacturing changes on Zr alloy in-pile performance
JPH095473A (ja) 原子炉制御棒
JPH1088260A (ja) 耐食性ジルコニウム基合金及び原子炉用炉心構造部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875026

Country of ref document: EP

Kind code of ref document: A1