WO2013159297A1 - 一种激光加工系统 - Google Patents

一种激光加工系统 Download PDF

Info

Publication number
WO2013159297A1
WO2013159297A1 PCT/CN2012/074679 CN2012074679W WO2013159297A1 WO 2013159297 A1 WO2013159297 A1 WO 2013159297A1 CN 2012074679 W CN2012074679 W CN 2012074679W WO 2013159297 A1 WO2013159297 A1 WO 2013159297A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
fiber
ranging
emitting unit
double
Prior art date
Application number
PCT/CN2012/074679
Other languages
English (en)
French (fr)
Inventor
成学平
刘猛
刘健
黄治家
Original Assignee
深圳市杰普特电子技术有限公司
惠州市杰普特电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市杰普特电子技术有限公司, 惠州市杰普特电子技术有限公司 filed Critical 深圳市杰普特电子技术有限公司
Priority to PCT/CN2012/074679 priority Critical patent/WO2013159297A1/zh
Priority to CN201280002928.2A priority patent/CN103313817B/zh
Publication of WO2013159297A1 publication Critical patent/WO2013159297A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • B23K26/048Automatically focusing the laser beam by controlling the distance between laser head and workpiece

Definitions

  • the present invention relates to the field of laser processing technology, and more particularly to a laser processing system. Background technique
  • Laser processing which is widely used in modern industry, is a high-energy laser beam and material interaction that produces various physical and chemical effects on the surface of the material to achieve high precision, high accuracy and contactlessness.
  • High-tech technology for processing After the laser of the focusing system, the spot size is on the order of micrometers, which is much smaller than other traditional processing methods, such as mechanical processing methods, and the processing efficiency is high and the speed is fast, so the laser processing is more suitable for the development trend of modern industry.
  • the laser beam needs to collimate, expand, and then focus the spot to a high-energy-density spot of the order of micrometers through an optical focusing system, while the material needs to be placed in the laser spot.
  • the spot diameter is the smallest, so that the high-energy density characteristics of the laser beam can be fully utilized to achieve efficient laser processing.
  • the propagation map of the Gaussian spot near the focus is shown in Figure 1. From the propagation theory of Gaussian beams, we know that after the transmission of the fundamental Gaussian spot by the Rayleigh distance, the spot area will increase to 2 times the focus (the radius increases to ⁇ times the focal radius, ie ⁇ ). In a laser system, a 2x Rayleigh distance is defined as the confocal range, or Depth of Focus. For a single mode Gaussian beam, the depth of focus is For conventional laser processing systems, the depth of focus is approximately between microns and millimeters. In order to achieve high efficiency and high quality of laser processing, how to ensure that the material to be processed is placed in the depth of focus of the processing laser system is an urgent technical problem to be solved.
  • the surface of the workpiece is not necessarily flat. Even if the flat surface is subjected to laser processing, micro-deformation may occur due to thermal effects, resulting in defocusing of the machined surface. All this indicates high-performance laser processing. It is necessary to dynamically control and stabilize the distance from the surface of the material being processed to the exiting laser.
  • the methods for realizing autofocus can be divided into active and passive.
  • the active type usually uses the transmitted signal to the surface of the material to be processed, and the feedback of the reflected signal is used to realize the feedback and control of the focus distance; the passive type is image processing. Method to achieve auto focus.
  • the available solutions include laser ranging, ultrasonic ranging, and contact ranging.
  • the laser ranging solution is the most widely used.
  • the laser ranging scheme can use a semiconductor laser to emit a laser beam to the surface of the material, and the partially reflected laser light is received by a detector and converted into an electrical signal. By analyzing and processing the electrical signal, the distance of the surface of the material can be obtained. Information is fed back to the control unit of the entire system for dynamic autofocus control.
  • the semiconductor laser emitting unit and the detector receiving unit need to be mounted on the optical head of the laser processing system, which will occupy the space of the laser processing optical head and will be unchanged for practical applications.
  • a method of using two fibers to conduct a laser signal and collect reflections allows the semiconductor laser and detector to be moved away from the laser processing optical head, thereby avoiding an increase in the size of the optical head, but additional fiber will add cost and system complexity. Summary of the invention
  • the technical problem to be solved by the present invention is that, in the prior art, adding a laser emitting unit and a detector to a laser optical head causes a complicated structure of the laser optical head or uses two optical fibers to respectively transmit a laser signal and collect the reflected laser light to cause a cost increase.
  • a laser processing system capable of achieving automatic focusing without increasing the structure of the laser optical head and saving cost.
  • the technical solution adopted by the present invention to solve the technical problem is to construct a laser processing system, including a ranging laser emitting unit, a ranging signal receiving and analyzing unit, a processing energy laser emitting unit, an optical fiber combining module, and a laser processing optical head.
  • System the ranging laser emitting unit, ranging signal receiving The analysis unit, the processing energy laser emitting unit connects the fiber combining module through an optical fiber, and the fiber combining module is connected to the laser processing optical head system through a double-clad fiber; the ranging signal receiving and analyzing unit receives the surface from the material to be processed The laser light reflected and sequentially transmitted through the laser processing optical head system and the fiber combining module is analyzed and analyzed.
  • the double clad fiber comprises a core, an inner cladding, and an outer cladding.
  • the fiber combining module includes a first fiber combiner, the first fiber combiner comprising three inputs and an output; the first fiber combiner The three input ends are respectively connected to the ranging laser emitting unit, the ranging signal receiving and analyzing unit, and the processing energy laser emitting unit through an optical fiber, and the output end of the first optical fiber combiner is connected to the double-clad fiber.
  • the fiber combining module includes a second fiber combiner and a third fiber combiner, the second fiber combiner comprising two inputs and an output, The input ends of the second fiber combiner are respectively connected to the ranging laser emitting unit and the ranging signal receiving and analyzing unit through an optical fiber; the third fiber combiner includes two input ends and one output end, and the third optical fiber is combined The two input ends of the beam combiner are respectively connected to the processing energy laser emitting unit and the output end of the second fiber combiner, and the output end of the third fiber combiner is connected to the double-clad fiber.
  • the distance measuring laser emitted by the ranging laser emitting unit is a single mode laser signal
  • the single mode laser signal is transmitted in the core of the double clad fiber.
  • the ranging laser emitted by the ranging laser emitting unit is a multimode laser signal, and the multimode laser signal is transmitted in an inner cladding of the double clad fiber.
  • the laser for ranging emitted by the ranging laser emitting unit is visible light.
  • the laser processing optical head system includes a fiber collimating head, a beam expanding unit, a reflecting lens, and a focusing lens unit, and the fiber collimating head is connected to the double-clad fiber for
  • the laser signal outputted by the cladding fiber is converted into a parallel light output;
  • the beam expanding unit amplifies the parallel light outputted by the fiber collimating head, and the amplified parallel light is focused to the surface of the processing material through the reflecting lens and the focusing lens unit.
  • the laser processing system embodying the invention has the following beneficial effects: 1.
  • the laser processing optical head that uses the optical fiber to distance the ranging laser emitting unit and the ranging signal receiving and analyzing unit away from the laser processing system, The complexity and size of the laser processing optical head are improved; 2.
  • the same double-clad fiber is used to simultaneously transmit the processing energy laser signal and the ranging laser signal, thereby reducing the system cost and simplifying the system structure; 3.
  • the laser signal for ranging It also has a laser pointing function that facilitates the practical application without increasing the complexity of the processing system.
  • FIG. 2 is a block diagram showing the structure of the laser processing system of the present invention.
  • Figure 3a is a light transmission diagram of a double-clad fiber of the laser processing system of the present invention.
  • Figure 3b is a cross-sectional view of a double clad fiber of the laser processing system of the present invention.
  • Figure 4 is a first embodiment of the laser processing system of the present invention.
  • FIG. 5 is a second embodiment of the laser processing system of the present invention. detailed description
  • the distance measuring laser emitting unit 1, the ranging signal receiving and analyzing unit 2, the processing energy laser emitting unit 3, the fiber combining module 4, and the laser processing optical head are included.
  • System 5 ranging laser emitting unit 1, ranging signal receiving and analyzing unit 2, processing energy laser emitting unit 3 is connected to the fiber combining module 4 through the optical fiber 7, and the fiber combining module 4 is connected to the laser processing optical head through the double-clad fiber 6.
  • System 5. The ranging laser emitting unit 1 and the processing energy laser emitting unit 3 respectively emit laser signals and are injected into the fiber combining module 4 through different optical fibers 7, and the laser signals after the combining of the fiber combining modules 4 are coupled into the double-clad fiber 6.
  • the structure of the double-clad fiber 6 is as shown in Figs. 3a and 3b, and includes a core 61, an inner cladding 62, an outer cladding 63, 611 for core signal output, 612 for cladding signal output, and core and inner cladding optimization.
  • the design maintains high quality transmission of the laser signal without any impact.
  • Ranging laser emitting unit 1 The laser for ranging measurement is a single mode laser signal or a multimode laser signal. If it is a single mode laser signal, the emitted single mode laser signal is transmitted in the core 61 of the double-clad fiber 6, if it is a multimode laser signal.
  • the transmitted multimode laser signal is transmitted in the inner cladding 62 of the double clad fiber 6.
  • the laser processing optical head system 5 collimates, expands, and focuses the laser light output from the double-clad fiber 6 to transmit the laser light onto the surface of the material to be processed. According to the optical path reversible principle, a portion of the laser signal reflected from the surface of the material to be processed passes through the optical components of the laser processing optical head system 5 and returns to the inner cladding 62 of the double-clad fiber 6 along the original path because of the double-clad fiber.
  • the inner cladding 62 of 6 has a large numerical aperture, so it is easy to receive the reflected laser signal and transmit it backward along the inner cladding 62 of the double-clad fiber, and then reflect it after being split by the fiber combining module 4
  • the returned laser signal is output to the ranging signal receiving analysis unit 2.
  • the laser light emitted by the ranging laser emitting unit 1 is visible light, such as red light or green light.
  • the laser processing system using the optical fiber to distance the ranging laser emitting unit and the ranging signal receiving and analyzing unit away from the laser processing optical head of the laser processing system, simplifying the complexity and size of the laser processing optical head; using the same double-clad fiber At the same time, the processing energy laser signal and the ranging laser signal transmission reduce the system cost and simplify the system structure; the laser signal for ranging can also have the laser indicating function, which is convenient for processing practical applications without increasing the complexity of the processing system.
  • the laser processing system comprises a ranging laser emitting unit 1, a ranging signal receiving and analyzing unit 2, a processing energy laser emitting unit 3, a first fiber combining unit 41, a laser processing optical head system 5, a ranging laser emitting unit 1, and a measuring
  • the signal receiving and analyzing unit 2 and the processing energy laser emitting unit 3 are connected to the first fiber combiner 41 via an optical fiber 7, and the first fiber combiner 41 is connected to the laser processing optical head system 5 via the double-clad fiber 6.
  • the structure of the double-clad fiber 6 is shown in Figures 3a and 3b.
  • the first fiber combiner 41 includes three input ends and one output end, and the three input ends are respectively connected to the ranging laser emitting unit 1, the ranging signal receiving and analyzing unit 2, the processing energy laser emitting unit 3 through the optical fiber, and the output end. Connect the double-clad fiber 6.
  • the ranging laser emitting unit 1 and the processing energy laser emitting unit 3 respectively emit laser signals and are injected into the first fiber combiner 41 through different optical fibers, and the laser signals combined by the first fiber combiner 41 are coupled to the double package.
  • the layered fiber 6 is radially transported along the double-clad fiber 6.
  • the structure of the double-clad fiber 6 is as shown in FIG.
  • the optimized design of the core and inner cladding of the double-clad fiber 6 maintains high-quality transmission of the energy laser signal for processing without any impact.
  • the laser for ranging emitted by the ranging laser emitting unit 1 is a single mode laser
  • the signal or multimode laser signal if it is a single mode laser signal, transmits the transmitted single mode laser signal in the core. If it is a multimode laser signal, the transmitted multimode laser signal is transmitted in the inner cladding 62.
  • the laser processing optical head system 5 includes a fiber collimating head 51, a beam expanding unit 52, a reflecting lens 53, and a focusing lens unit 54, and the fiber collimating head 51 is made of a fiber optic device such as a ball lens or a self-focusing lens.
  • the beam expanding unit 52 amplifies the parallel light output from the fiber collimating head 51, and then passes through the reflecting lens 53. It is refracted and finally focused by the focus lens unit 54 onto the surface of the material 8 to be processed.
  • a portion of the laser signal reflected from the surface of the material to be processed 8 passes through the respective optical devices of the laser processing optical head system 5 and returns to the inner cladding 62 of the double-clad fiber 6 along the original path because of the double package.
  • the inner cladding 62 of the layer fiber 6 has a large numerical aperture, so that it is easy to receive the reflected laser signal and transmit it backward along the inner cladding 62 of the double-clad fiber 6, and then reverse through the first fiber combiner 41.
  • the reflected laser signal is output to the ranging signal receiving and analyzing unit 2 after the splitting.
  • the ranging signal receiving and analyzing unit 2 passes the model processing on the detected laser signal, removes the influence of the processing energy laser signal, and then performs ranging analysis; the feedback control signal after the ranging analysis can be applied to the laser processing optical head system or placed
  • the position of the workbench of the material to be processed is adjusted in time to ensure consistent and ideal laser processing quality.
  • the laser light emitted by the ranging laser emitting unit 1 is visible light, such as red light or green light. Therefore, the laser light emitted by the ranging laser emitting unit 1 can also be used as an indicator light during laser processing, thereby providing convenience for the user without increasing the complexity of the laser processing system.
  • the laser processing system includes a ranging laser emitting unit 1, a ranging signal receiving and analyzing unit 2, a processing energy laser emitting unit 3, a second fiber combiner 42, a third fiber combiner 43, and a laser processing optical head system 5,
  • the ranging laser emitting unit 1 and the ranging signal receiving and analyzing unit 2 are respectively connected to the two input ends of the second optical fiber combiner 42 through the optical fiber 7, and the output ends of the processing energy laser emitting unit 3 and the second optical fiber combiner 42 are respectively
  • the input end of the third fiber combiner 43 is connected through the optical fiber 7, and the output end of the third fiber combiner 43 is connected to the double-clad fiber 6.
  • the laser light for transmitting the ranging by the ranging laser emitting unit 1 passes through the second fiber combiner 42 and is coupled to the double-clad fiber 6 through the third fiber combiner 43 together with the laser light emitted by the processing energy laser emitting unit 3. transmission.
  • the structure of the double-clad fiber 6 is shown in Figures 3a and 3b.
  • the optimized design of the core and inner cladding of the double-clad fiber 6 maintains high-quality transmission of the energy laser signal for processing without any impact.
  • the ranging laser emitted by the ranging laser emitting unit 1 is a single mode laser signal or a multimode laser signal.
  • the laser processing optical head system 5 includes a fiber collimating head 51, a beam expanding unit 52, a reflecting lens 53, and a focusing lens unit 54, and the fiber collimating head 51 is made of a fiber optic device such as a ball lens or a self-focusing lens.
  • the beam expanding unit 52 amplifies the parallel light output from the fiber collimating head, and then refractions through the reflecting lens 53 Finally, it is focused by the focus lens unit 54 onto the surface of the material to be processed 8.
  • part of the laser signal reflected from the surface of the material to be processed passes through the optical components of the laser processing optical head system and returns to the inner cladding 62 of the double-clad fiber 6 along the original path, because the double-clad fiber 6
  • the inner cladding 62 has a large numerical aperture, so it is easy to receive the reflected laser signal and transmit it backward along the inner cladding 62 of the double-clad fiber 6, after the third fiber combiner 43 is reverse-split.
  • the reflected laser signal is output to the ranging signal receiving and analyzing unit 2 after passing through the second fiber combiner 42.
  • the ranging signal receiving and analyzing unit 2 passes the model processing on the detected laser signal, removes the influence of the processing energy laser signal, and then performs ranging analysis; the feedback control signal after the ranging analysis can be applied to the laser processing optical head system or placed
  • the position of the workbench of the material to be processed is adjusted in time to ensure consistent and ideal laser processing quality.
  • the laser light emitted by the ranging laser emitting unit 1 is visible light, such as red light or green light. Therefore, the laser light emitted by the ranging laser emitting unit 1 can also be used as an indicator light during laser processing, thereby providing convenience for the user without increasing the complexity of the laser processing system.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光加工系统,包括测距激光发射单元(1)、测距信号接收分析单元(2)、加工能量激光发射单元(3)、光纤合束模块(4)、激光加工光学头系统(5)。测距激光发射单元(1)、测距信号接收分析单元(2)、加工能量激光发射单元(3)通过光纤(7)连接光纤合束模块(4),光纤合束模块(4)通过双包层光纤(6)连接激光加工光学头系统(5)。使用这种激光加工系统,简化了激光加工光学头的复杂性和尺寸,降低了系统成本。

Description

一种激光加工系统 技术领域
本发明涉及激光加工技术领域, 更具体地说, 涉及一种激光加工系统。 背景技术
1960年,美国人 Maiman研制成红宝石激光器,这是世界上第一台激光器。 激光新技术的诞生使光学这门古老的学科跨出了划时代的一步,也是人类历史 上最重大的科学技术成果之一。 短短不到 50年的时间, 激光器已经广泛地使 用在工业加工、 生物医学、 军事国防、 科学研究、 测量及标准等人类生活的各 个领域。
目前广泛应用在现代工业中的激光加工, 是一种利用高能量激光光束和材 料相互作用,对材料表面产生各种物理和化学作用,来实现对材料进行高精密、 高准确度、 无接触地进行加工的高科技技术。经过聚焦系统的激光, 其光斑大 小为微米量级, 远远小于其他传统加工方法, 比如机械式的加工手段, 而且加 工效率高, 速度快, 所以激光加工更加适应现代工业发展趋势。
为了有效对材料进行激光加工, 激光束需要通过空间光学系统将激光光斑 准直、扩束、然后通过光学聚焦系统将光斑聚焦成微米量级的高能量密度光斑, 同时材料需要放置在激光光斑的焦点所处的焦平面处, 此时光斑直径最小, 这 样才能够充分利用激光光束的高能量密度特性实现高效激光加工。
如图 1所示高斯光斑在焦点附近的传播图。 由高斯光束的传播理论, 我们 知道基模高斯光斑在经过瑞利距离 的传输后,光斑面积将增加为焦点处的 2 倍(半径增加为焦点半径 。的^倍, 即 = ^^ )。在激光系统中, 2倍瑞利 距离被定义为共焦范围, 或者说焦深 (Depth of Focus )。 对单模高斯光束, 焦 深为 对于常规的激光加工系统, 其焦深大致在微米至毫米之间。 为了实现激光 加工的高效其高质量,如何保证将被加工材料放置在加工用激光系统的焦深范 围内, 是个急待解决的技术问题。而实际加工过程中, 被加工件的表面不一定 平整, 即使平整的表面在被激光加工过程中也可能因为热效应产生微形变, 从 而导致加工表面产生离焦,这一切都说明高性能的激光加工需要动态控制并稳 定加工材料的表面到出射激光的距离。目前用于实现自动聚焦的方法可分为主 动式和被动式, 主动式通常是利用发射信号到被加工材料表面,通过测试反射 回来的信号来实现对焦距的反馈和控制;被动式是采用图像处理的方法来实现 自动聚焦。对于使用较为广泛的主动式自动聚焦系统中, 可采用的方案包括激 光测距、 超声测距、 以及接触式测距等。 而激光测距方案的应用最为广泛。
激光测距方案可利用半导体激光器发射激光光束到材料表面,其部分反射 回来的激光被一探测器接受, 并转变成为电信号,通过对电信号进行信号分析 和处理, 就可以得到材料表面的距离信息并反馈给整个系统的控制单元,从而 实现动态的自动聚焦控制。该半导体激光器发射单元和探测器接受单元需要安 装在激光加工系统的光学头上面, 这样将占用激光加工光学头的空间, 给实际 应用带了不变。一种利用两根光纤来传导激光信号和并收集反射的方法可以让 半导体激光器和探测器远离激光加工光学头, 从而避免增加光学头的体积,但 是额外的光纤将增加成本以及系统的复杂性。 发明内容
本发明要解决的技术问题在于,针对现有技术的在激光光学头增加激光器 发射单元和探测器导致激光光学头结构复杂或利用两根光纤分别传送激光信 号和并收集反射激光造成成本增加的缺陷,提供一种在不增加激光光学头结构 及节约成本的基础上, 即可实现自动聚焦的激光加工系统。
本发明解决其技术问题所采用的技术方案是:构造一种激光加工系统,包 括包括测距激光发射单元、 测距信号接收分析单元、 加工能量激光发射单元、 光纤合束模块、激光加工光学头系统, 所述测距激光发射单元、 测距信号接收 分析单元、加工能量激光发射单元通过光纤连接所述光纤合束模块,所述光纤 合束模块通过双包层光纤连接激光加工光学头系统;所述测距信号接收分析单 元接收从被加工材料表面反射并依次通过激光加工光学头系统及光纤合束模 块传送回来的激光, 并进行分析。
在本发明的激光加工系统中,所述双包层光纤包括纤芯、内包层、外包层。 在本发明的激光加工系统中,所述光纤合束模块包括第一光纤合束器,所 述第一光纤合束器包括三个输入端和一个输出端;所述第一光纤合束器的三个 输入端分别通过光纤与测距激光发射单元、测距信号接收分析单元、加工能量 激光发射单元连接, 所述第一光纤合束器的输出端连接双包层光纤。
在本发明的激光加工系统中,所述光纤合束模块包括第二光纤合束器和第 三光纤合束器,所述第二光纤合束器包括两个输入端和一个输出端,所述第二 光纤合束器的输入端分别通过光纤连接测距激光发射单元、测距信号接收分析 单元; 所述第三光纤合束器包括两个输入端和一个输出端,所述第三光纤合束 器两个输入端分别与加工能量激光发射单元、所述第二光纤合束器的输出端连 接, 所述第三光纤合束器的输出端连接双包层光纤。
在本发明的激光加工系统中,所述测距激光发射单元发射的测距用激光是 单模激光信号, 所述单模激光信号在双包层光纤的纤芯中传输。
在本发明的激光加工系统中,所述测距激光发射单元发射的测距用激光是 多模激光信号, 所述多模激光信号在双包层光纤的内包层中传输。
在本发明的激光加工系统中,所述测距激光发射单元发射的测距用激光是 可见光。
在本发明的激光加工系统中, 所述激光加工光学头系统包括光纤准直头、 扩束单元、 反射透镜、 聚焦透镜单元, 所述光纤准直头与双包层光纤连接, 用 于将双包层光纤输出的激光信号转换成平行光输出;所述扩束单元将通过光纤 准直头输出的平行光放大,放大后的平行光通过反射透镜和聚焦透镜单元后聚 焦到加工材料表面。
实施本发明的激光加工系统, 具有以下有益效果: 1、 利用光纤将测距激 光发射单元和测距信号接收分析单元远离激光加工系统的激光加工光学头,简 化了激光加工光学头的复杂性和尺寸; 2、 利用同一根双包层光纤同时对加工 能量激光信号和测距激光信号传输, 降低系统成本, 简化系统结构; 3、 测距 用的激光信号还可以兼具激光指示功能, 为加工实际应用提供便利, 不增加加 工系统的复杂性。 附图说明
下面将结合附图及实施例对本发明作进一步说明, 附图中:
图 1是现有技术中高斯光斑在焦点附近的传播图;
图 2是本发明的激光加工系统结构框图;
图 3a是本发明的激光加工系统的双包层光纤的光线传输图;
图 3b是本发明的激光加工系统的双包层光纤的截面图;
图 4是本发明的激光加工系统的第一实施例;
图 5是本发明的激光加工系统的第二实施例。 具体实施方式
为了使本发明的目的更加清楚明白, 以下结合附图及实施例,对本发明进 行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。
如图 2所示,在本发明的激光加工系统结构框图中,包括测距激光发射单 元 1、 测距信号接收分析单元 2、 加工能量激光发射单元 3、 光纤合束模块 4、 激光加工光学头系统 5, 测距激光发射单元 1、 测距信号接收分析单元 2、 加 工能量激光发射单元 3通过光纤 7连接光纤合束模块 4, 光纤合束模块 4通过 双包层光纤 6连接激光加工光学头系统 5。测距激光发射单元 1和加工能量激 光发射单元 3分别发射激光信号并通过不同光纤 7注入到光纤合束模块 4, 光 纤合束模块 4合束后的激光信号被耦合到双包层光纤 6中沿着双包层光纤径向 传输。 双包层光纤 6的结构如图 3a和图 3b所示, 包括纤芯 61、 内包层 62、 外包层 63, 611表示纤芯信号输出, 612表示包层信号输出, 纤芯和内包层的 优化设计可以维持激光信号高质量传输而不受任何影响。测距激光发射单元 1 发射的测距用激光是单模激光信号或者多模激光信号, 如果是单模激光信号, 那么发射的单模激光信号在双包层光纤 6的纤芯 61中传输, 如果是多模激光 信号, 则发射的多模激光信号在双包层光纤 6内包层 62中传输。 激光加工光 学头系统 5将双包层光纤 6输出的激光进行准直、扩束、聚焦后将激光传送到 被加工材料表面上。根据光路可逆原理, 从被加工材料表面反射回来的部分激 光信号经过激光加工光学头系统 5 的各个光学器件将沿着原路返回到双包层 光纤 6的内包层 62中, 因为双包层光纤 6的内包层 62数值孔径较大,所以很 容易接收反射回来的激光信号并将其沿着双包层光纤的内包层 62反向传输, 再经过光纤合束模块 4 反向分束后将反射回来的激光信号输出至测距信号接 收分析单元 2。 测距激光发射单元 1发射的激光是可见光, 比如红光、 绿光。 使用该激光加工系统:利用光纤将测距激光发射单元和测距信号接收分析单元 远离激光加工系统的激光加工光学头, 简化了激光加工光学头的复杂性和尺 寸; 利用同一根双包层光纤同时对加工能量激光信号和测距激光信号传输, 降 低系统成本, 简化系统结构; 测距用的激光信号还可以兼具激光指示功能, 为 加工实际应用提供便利, 不增加加工系统的复杂性。
请参照图 4, 本发明激光加工系统的第一实施例。 该激光加工系统包括测 距激光发射单元 1、 测距信号接收分析单元 2、 加工能量激光发射单元 3、 第 一光纤合束器 41、 激光加工光学头系统 5, 测距激光发射单元 1、 测距信号接 收分析单元 2、 加工能量激光发射单元 3通过光纤 7连接第一光纤合束器 41, 第一光纤合束器 41通过双包层光纤 6连接激光加工光学头系统 5。 双包层光 纤 6的结构如图 3a和图 3b所示。 第一光纤合束器 41包括三个输入端和一个 输出端, 三个输入端分别通过光纤与测距激光发射单元 1、 测距信号接收分析 单元 2、 加工能量激光发射单元 3连接, 输出端连接双包层光纤 6。 测距激光 发射单元 1和加工能量激光发射单元 3分别发射激光信号并通过不同光纤注入 到第一光纤合束器 41, 经过第一光纤合束器 41合束后的激光信号被耦合到双 包层光纤 6中沿着双包层光纤 6径向传输。 双包层光纤 6的结构如图 3所示。 双包层光纤 6 中纤芯和内包层的优化设计可以维持加工用的能量激光信号高 质量传输而不受任何影响。测距激光发射单元 1发射的测距用激光是单模激光 信号或者多模激光信号, 如果是单模激光信号,那么发射的单模激光信号在纤 芯中传输,如果是多模激光信号, 则发射的多模激光信号在内包层中 62传输。 激光加工光学头系统 5包括光纤准直头 51、 扩束单元 52、 反射透镜 53、 聚焦 透镜单元 54, 光纤准直头 51由球透镜或者自聚焦透镜等光纤器件制成, 该光 纤准直头 51连接双包层光纤 6的末端, 将从双包层光纤 6末端输出的激光信 号转换成平行光输出; 扩束单元 52将光纤准直头 51输出的平行光进行放大, 然后通过反射透镜 53折光并最终经过聚焦透镜单元 54聚焦到被加工材料 8 的表面上。根据光路可逆原理, 从被加工材料 8的表面反射回来的部分激光信 号经过激光加工光学头系统 5的各个光学器件将沿着原路返回到双包层光纤 6 的内包层 62中, 因为双包层光纤 6的内包层 62数值孔径较大,所以很容易接 收反射回来的激光信号并将其沿着双包层光纤 6的内包层 62反向传输, 再经 过第一光纤合束器 41反向分束后将反射回来的激光信号输出至测距信号接收 分析单元 2。 测距信号接收分析单元 2对检测到的激光信号经过虑模处理, 去 除加工用能量激光信号的影响, 然后进行测距分析; 测距分析后的反馈控制信 号可以对激光加工光学头系统或者放置被加工材料的工作台的位置进行及时 调整, 从而保证一致且理想的激光加工质量。测距激光发射单元 1发射的激光 是可见光, 比如红光、 绿光。 因此该测距激光发射单元 1发射的激光还可以用 作激光加工时的指示灯, 从而为用户提供了便利, 且没有增加激光加工系统的 复杂度。
请参照图 5, 本发明激光加工系统的第二实施例。 该激光加工系统包括测 距激光发射单元 1、 测距信号接收分析单元 2、 加工能量激光发射单元 3、 第 二光纤合束器 42、 第三光纤合束器 43、 激光加工光学头系统 5, 测距激光发 射单元 1、 测距信号接收分析单元 2分别通过光纤 7连接第二光纤合束器 42 的两个输入端, 加工能量激光发射单元 3、 第二光纤合束器 42的输出端分别 通过光纤 7连接第三光纤合束器 43的输入端,第三光纤合束器 43的输出端连 接双包层光纤 6。测距激光发射单元 1发射测距用的激光信号通过第二光纤合 束器 42后再和加工能量激光发射单元 3发射的激光一起通过第三光纤合束器 43耦合到双包层光纤 6中传输。 双包层光纤 6的结构如图 3a和图 3b所示。 双包层光纤 6 中纤芯和内包层的优化设计可以维持加工用的能量激光信号高 质量传输而不受任何影响。测距激光发射单元 1发射的测距用激光是单模激光 信号或者多模激光信号, 如果是单模激光信号,那么发射的单模激光信号在纤 芯中传输,如果是多模激光信号, 则发射的多模激光信号在内包层 62中传输。 激光加工光学头系统 5包括光纤准直头 51、 扩束单元 52、 反射透镜 53、 聚焦 透镜单元 54, 光纤准直头 51由球透镜或者自聚焦透镜等光纤器件制成, 该光 纤准直头 51连接双包层光纤 6的末端, 将从双包层光纤 6末端输出的激光信 号转换成平行光输出; 扩束单元 52将光纤准直头输出的平行光进行放大, 然 后通过反射透镜 53折光并最终经过聚焦透镜单元 54聚焦到被加工材料 8的表 面上。根据光路可逆原理,从被加工材料表面反射回来的部分激光信号经过激 光加工光学头系统的各个光学器件将沿着原路返回到双包层光纤 6 的内包层 62中, 因为双包层光纤 6的内包层 62数值孔径较大, 所以很容易接收反射回 来的激光信号并将其沿着双包层光纤 6的内包层 62反向传输, 经过第三光纤 合束器 43反向分束后再经过第二光纤合束器 42后将反射回来的激光信号输出 至测距信号接收分析单元 2。测距信号接收分析单元 2对检测到的激光信号经 过虑模处理, 去除加工用能量激光信号的影响, 然后进行测距分析; 测距分析 后的反馈控制信号可以对激光加工光学头系统或者放置被加工材料的工作台 的位置进行及时调整, 从而保证一致且理想的激光加工质量。测距激光发射单 元 1发射的激光是可见光, 比如红光、 绿光。 因此该测距激光发射单元 1发射 的激光还可以用作激光加工时的指示灯, 从而为用户提供了便利,且没有增加 激光加工系统的复杂度。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明,凡在本发 明的精神和原则之内所作的任何修改、等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求 书
1、 一种激光加工系统, 其特征在于, 包括测距激光发射单元 (1)、 测距 信号接收分析单元(2)、 加工能量激光发射单元(3)、 光纤合束模块(4)、 激 光加工光学头系统(5), 所述测距激光发射单元(1)、 测距信号接收分析单元
(2)、 加工能量激光发射单元 (3) 通过光纤连接所述光纤合束模块 (4), 所 述光纤合束模块(4)通过双包层光纤(6)连接激光加工光学头系统(5); 所 述测距信号接收分析单元 (2) 接收从被加工材料表面反射并依次通过激光加 工光学头系统 (5) 及光纤合束模块 (4) 传送回来的激光, 并进行分析。
2、 根据权利要求 1所述的激光加工系统, 其特征在于, 所述双包层光纤 (6) 包括纤芯 (61)、 内包层 (62)、 外包层 (63)。
3、 根据权利要求 2所述的激光加工系统, 其特征在于, 所述光纤合束模 块(4)包括第一光纤合束器(41), 所述第一光纤合束器(41)包括三个输入 端和一个输出端; 所述第一光纤合束器(41)的三个输入端分别通过光纤与测 距激光发射单元(1)、测距信号接收分析单元(2)、加工能量激光发射单元(3) 连接, 所述第一光纤合束器 (41) 的输出端连接双包层光纤 (6)。
4、 根据权利要求 2所述的激光加工系统, 其特征在于, 所述光纤合束模 块(4)包括第二光纤合束器(42)和第三光纤合束器(43), 所述第二光纤合 束器(42)包括两个输入端和一个输出端, 所述第二光纤合束器(42) 的输入 端分别通过光纤连接测距激光发射单元(1)、 测距信号接收分析单元(2); 所 述第三光纤合束器(43)包括两个输入端和一个输出端, 所述第三光纤合束器
(43)两个输入端分别与加工能量激光发射单元 (3)、所述第二光纤合束器 (42) 的输出端连接, 所述第三光纤合束器 (43) 的输出端连接双包层光纤 (6)。
5、 根据权利要求 3或 4所述的激光加工系统, 其特征在于, 所述测距激 光发射单元 (1) 发射的测距用激光是单模激光信号, 所述单模激光信号在双 包层光纤 (6) 的纤芯中传输。
6、 根据权利要求 3或 4所述的激光加工系统, 其特征在于, 所述测距激 光发射单元 (1) 发射的测距用激光是多模激光信号, 所述多模激光信号在双 包层光纤 (6) 的内包层中传输。
7、 根据权利要求 3或 4所述的激光加工系统, 其特征在于, 所述测距激 光发射单元 (1 ) 发射的测距用激光是可见光。
8、 根据权利要求 3或 4所述的激光加工系统, 其特征在于, 所述激光加 工光学头系统包括光纤准直头、 扩束单元、 反射透镜、 聚焦透镜单元, 所述光 纤准直头与双包层光纤连接, 用于将双包层光纤 (6) 输出的激光信号转换成 平行光输出; 所述扩束单元将通过光纤准直头输出的平行光放大,放大后的平 行光通过反射透镜和聚焦透镜单元后聚焦到加工材料表面。
PCT/CN2012/074679 2012-04-25 2012-04-25 一种激光加工系统 WO2013159297A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/074679 WO2013159297A1 (zh) 2012-04-25 2012-04-25 一种激光加工系统
CN201280002928.2A CN103313817B (zh) 2012-04-25 2012-04-25 一种激光加工系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/074679 WO2013159297A1 (zh) 2012-04-25 2012-04-25 一种激光加工系统

Publications (1)

Publication Number Publication Date
WO2013159297A1 true WO2013159297A1 (zh) 2013-10-31

Family

ID=49138228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074679 WO2013159297A1 (zh) 2012-04-25 2012-04-25 一种激光加工系统

Country Status (2)

Country Link
CN (1) CN103313817B (zh)
WO (1) WO2013159297A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104907690A (zh) * 2015-05-27 2015-09-16 上海大族新能源科技有限公司 激光焦点定位装置及方法
CN106226902A (zh) * 2016-07-18 2016-12-14 深圳珑璟光电技术有限公司 用于增强现实显示的交互头戴显示设备
DE102017114033B4 (de) * 2017-06-23 2021-11-25 Precitec Gmbh & Co. Kg Vorrichtung und Verfahren zur Abstandsmessung für ein Laserbearbeitungssystem, und Laserbearbeitungssystem
DE102017116110A1 (de) * 2017-07-18 2019-01-24 ConsultEngineerIP AG Optikkopf
CN114160968A (zh) * 2021-12-29 2022-03-11 南京萃智激光应用技术研究院有限公司 一种预测距随动式激光加工装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290965A (ja) * 2002-04-08 2003-10-14 Nippon Steel Corp レーザ加工装置
US20100133243A1 (en) * 2008-12-01 2010-06-03 Disco Corporation Laser processing apparatus
CN101905378A (zh) * 2010-08-19 2010-12-08 上海市激光技术研究所 光纤激光金属薄片焊接装置
TW201043917A (en) * 2009-05-18 2010-12-16 Disco Corp Height detection device
WO2012022951A1 (en) * 2010-08-16 2012-02-23 Gsi Group Limited Method of and material processing apparatus for optimising the focus of a fibre laser; method of measuring changes in the focus of a fibre laser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290965A (ja) * 2002-04-08 2003-10-14 Nippon Steel Corp レーザ加工装置
US20100133243A1 (en) * 2008-12-01 2010-06-03 Disco Corporation Laser processing apparatus
TW201043917A (en) * 2009-05-18 2010-12-16 Disco Corp Height detection device
WO2012022951A1 (en) * 2010-08-16 2012-02-23 Gsi Group Limited Method of and material processing apparatus for optimising the focus of a fibre laser; method of measuring changes in the focus of a fibre laser
CN101905378A (zh) * 2010-08-19 2010-12-08 上海市激光技术研究所 光纤激光金属薄片焊接装置

Also Published As

Publication number Publication date
CN103313817A (zh) 2013-09-18
CN103313817B (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
EP2787382B1 (en) Optical device and module for light transmission and attenuation
WO2013159297A1 (zh) 一种激光加工系统
JP6420237B2 (ja) 高性能空間フィルタ
JP2007219514A (ja) 光タップモジュール
JPH07281053A (ja) ファイバ光結合装置
CN109366015A (zh) 带内同轴定位的切割装置
CN102044826A (zh) 一种光纤激光器
CN103252575B (zh) 一种用于激光材料加工的光学传输方法及系统
CN109244816B (zh) 一种带功率监控装置的光纤合束器及其功率监控方法
US10502911B2 (en) Laser arrangement with auxiliary ring
JP6596544B1 (ja) 光検出装置及びレーザ装置
JP2000275568A (ja) ビームモード変換光学系
CN103513427B (zh) 一种产生环形指示光的激光器
CN108333688B (zh) 用于自由空间光传播的波分复用解复用光器件
CA2724342C (en) Hollow core waveguide for laser generation of ultrasonic waves
JP7398649B2 (ja) レーザ加工装置およびレーザ加工方法
JP7213499B2 (ja) 光結合器
JP2001208924A (ja) 光ファイバ
TWI364889B (en) Laser device and laser system using the same
CN102938534A (zh) 一种半导体激光器及其产生高质量和高稳定光束的方法
JP5539330B2 (ja) 超音波のレーザ発生のためのブロック端末ファイバ
CN206161897U (zh) 用于高功率全光纤激光器的反馈光隔离器
JP2021082748A (ja) レーザ装置
CN220450036U (zh) 一种玻璃切割装置
CN218240569U (zh) 一种光学模组和医疗装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874941

Country of ref document: EP

Kind code of ref document: A1