WO2013157798A1 - Subcritical reactor and subcritical reaction method using same - Google Patents

Subcritical reactor and subcritical reaction method using same Download PDF

Info

Publication number
WO2013157798A1
WO2013157798A1 PCT/KR2013/003156 KR2013003156W WO2013157798A1 WO 2013157798 A1 WO2013157798 A1 WO 2013157798A1 KR 2013003156 W KR2013003156 W KR 2013003156W WO 2013157798 A1 WO2013157798 A1 WO 2013157798A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
subcritical
fluid
stirrer
space
Prior art date
Application number
PCT/KR2013/003156
Other languages
French (fr)
Korean (ko)
Inventor
마승진
Original Assignee
목포대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120038871A external-priority patent/KR101326156B1/en
Application filed by 목포대학교산학협력단 filed Critical 목포대학교산학협력단
Priority claimed from KR1020130040970A external-priority patent/KR101517981B1/en
Publication of WO2013157798A1 publication Critical patent/WO2013157798A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/03Pressure vessels, or vacuum vessels, having closure members or seals specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/0015Controlling the temperature by thermal insulation means
    • B01J2219/00155Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure

Definitions

  • the present technology relates to a high temperature and high pressure reaction apparatus, and more particularly, to a subcritical reaction apparatus that can be utilized as an extraction apparatus.
  • subcritical water extraction is often used to extract specific ingredients in agricultural products or other organic substances.
  • the subcritical water extraction method is used as an extraction solvent for organic matters by mixing the organic substance to be extracted with a fluid such as water and processing it to a temperature and pressure state below the critical point where water liquid and gaseous coexist. This is how you do it.
  • This subcritical water extraction method requires continuous agitation inside the processing vessel in the process of converting to a subcritical state.
  • the stirring shaft is inserted into the processing vessel from the outside, and then rotates the internal processing object while rotating.
  • the inside of the processing vessel is a high pressure state, when the stirring shaft is rotated in the state directly inserted into the processing vessel, fine clearance is formed at the penetration point for smooth rotation. This has a problem that arises.
  • the conventional subcritical extraction apparatus cools down to room temperature depending on the natural cooling method after reaching the subcritical state, it is difficult to adjust the cooling rate or the temperature holding time according to the intention of the operator. It was difficult to organically derive various experimental data according to temperature variables.
  • the conventional cooling method by the cooling water may cause problems of durability degradation, such as the occurrence of cracks in the outer wall of the reactor due to rapid cooling.
  • the present invention has been made to overcome the problems of the prior art as described above, and an object thereof is to provide a subcritical reaction apparatus capable of experimenting at various angles after the subcritical state is reached without internal pressure loss. .
  • Another object of the present invention is to provide a subcritical reaction method capable of performing multi-degree experimental design after reaching the subcritical using the subcritical reaction device.
  • Subcritical reaction apparatus is a high temperature and high pressure reaction apparatus having a stirrer including a reaction chamber and a stirring shaft to provide a reaction space, the fluid flow path through which the fluid flowing from the outside can flow
  • a reaction outer wall formed in at least one region of the reaction space and partitioning the reaction space, a heat supply part formed on at least a part of the outer surface of the reaction outer wall and including a heating means, and engaged with the outer wall of the reaction chamber during the reaction to react the reaction.
  • the space is sealed and includes a cover body in which a stirring shaft of the stirrer is formed with a first passageway for penetrating and rotating, and converting the reaction space internal state into a subcritical pressure and temperature.
  • the fluid flow path may include a curved surface.
  • the subcritical reaction device blocks fluid inflow into the fluid flow path until the interior of the reaction space reaches a subcritical state and allows the fluid to enter after reaching the subcritical state.
  • the subcritical reaction device may be provided outside the reaction chamber, it may further include a temperature control means for adjusting the temperature of the fluid flowing into the fluid inlet.
  • One region of the reaction outer wall may include a plurality of fluid inlets through which fluid may be introduced into the fluid flow path.
  • An insulation member may be disposed in at least one region of the outer surface of the heat supply unit.
  • the cover body may include a gas discharge pipe and a gas discharge port for discharging the pressure inside the reaction space to the outside.
  • the subcritical reaction device is fastened to an upper surface of the cover body, and extends from the first through passage and provides a second through passage as a through and rotating space of the stirring shaft and a rotating space for rotating the head of the stirrer. It may further include a head body is formed. The head body is directly fastened and fixed to the upper surface of the cover body and is spaced apart from the head portion of the stirrer to surround the head portion of the stirrer, at least one opening is formed in at least one region facing the stirrer head portion And a second head body disposed on an outer surface of the first head body and capable of rotating by receiving rotational power from the outside.
  • the second head body includes a second magnetic body protruding toward the opening side in at least one region corresponding to the opening, and the agitator head portion includes a first magnetic body corresponding to the second magnetic body on at least one surface of the agitator head portion. It may include.
  • the subcritical reaction device may further include a plurality of power supply means disposed outside the reaction chamber and supplying power to the heat supply unit.
  • the step of introducing a reactant into the reaction space of the above-described subcritical reaction device, the subcritical reaction to boost and raise the subcritical reaction space to the pressure and temperature of the subcritical state And a cooling step of reducing the pressure in the reaction space and introducing the first fluid into the fluid flow path of the subcritical reaction device to cool the reaction space.
  • the temperature of the first fluid may be adjusted to change during the cooling step, and in the cooling step, after the inflow of the first fluid, a second fluid different from the first fluid may be introduced into the fluid flow path. have.
  • the outermost structure of the reaction device is fixed so that no leakage of internal gas occurs even when the stirrer is rotated, thereby thoroughly reducing the pressure loss of the reaction device. You can block.
  • the reaction apparatus can intentionally adjust the temperature change in the cooling process after reaching the subcritical state, and can experimentally utilize various state changes after the subcritical reaction, which is designed to take into account the various variables. It can be very useful to researchers.
  • the cooling method of the device is not a simple left cooling method or a rapid cooling method using coolant, it does not cause durability problems such as cracking of the chamber that may occur during the cooling process.
  • the temperature change after reaching the subcritical state can be variously designed according to the intention of the operator, and if necessary, when a fluid having a higher boiling point than water is used, 100 ° C. during the cooling process.
  • the above relatively high cooling temperature can be maintained for a certain time as desired.
  • FIG. 1 is a cross-sectional view for explaining the chamber region of the subcritical reaction apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a shape according to another exemplary embodiment of part 'A' of FIG. 1.
  • FIG. 3 is a cross-sectional view illustrating a state according to still another embodiment of portion 'A' of FIG. 1.
  • FIG. 4 is a cross-sectional view for explaining the upper region of the subcritical reaction apparatus according to an embodiment of the present invention.
  • 5 is a graph showing the temperature change after reaching the subcritical state according to an embodiment of the present invention.
  • FIG. 6 is a graph showing the temperature change after reaching the subcritical state according to another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view for explaining the chamber region of the subcritical reaction apparatus according to an embodiment of the present invention.
  • the subcritical reaction apparatus 1000 includes a reaction chamber 100 securing a reaction space 70 partitioned by the reaction outer wall 110.
  • the subcritical reaction device 1000 is a device for performing a reaction such as extracting a reaction target material introduced into the reaction space 70 of the reaction chamber 100 by using a solvent in a subcritical state. That is, the subcritical reaction device 1000 is a device for converting the internal pressure and temperature into a high pressure and high temperature environment below a critical point.
  • the reaction outer wall 110 includes a fluid flow path 120 which is an empty space formed in one region of the inside.
  • the fluid flow path 120 may be formed entirely on the three-dimensional surface of the reaction outer wall 110 or may be selectively formed only in a partial region, but in order to ensure cooling efficiency or temperature control ease, the front surface of the reaction outer wall 110 ( It is preferable to be formed along the entire surface.
  • the fluid flow path 120 is spatially connected to the fluid flow part 121 and the fluid flow part 121, which are hollow areas inside the reaction outer wall 110, and penetrates the reaction outer wall 110.
  • the fluid inlet 123 and the fluid flow part 121 that are spatially connected to each other, and flow through the reaction outer wall 110 to discharge the fluid to the outside after the fluid flow part 121 flows.
  • a fluid outlet 125 formed.
  • the fluid inlet 123 is formed below the reaction chamber 100, and the fluid outlet 125 is formed above the reaction chamber 100. Meanwhile, the fluid introduced into the fluid flow path 120 may be continuously reused in a circulation structure.
  • the fluid inlet 123 and the fluid outlet 125 are provided with fluid inlet and out adjusting means such as a valve that can control the entry and exit of the fluid.
  • the position of the fluid inlet 123 and the fluid outlet 125 is not particularly limited, but it is advantageous in terms of thermal efficiency to flow from the bottom to the top.
  • the subcritical reaction device 1000 includes a fluid temperature control means 50 disposed outside the reaction chamber 100 and connected to the fluid inlet 123.
  • the fluid temperature regulating means 50 may variably control the temperature of the fluid flowing into the fluid flow path 120, so that the temperature environment of the cooling step after the reaction is changed in various degrees.
  • the experimenter can design the experiment in consideration of various temperature variables after the subcritical state ends.
  • the temperature of the fluid flowing into the fluid flow path 120 may be 80 to 90 °C. However, depending on the experimenter, it may be intended to introduce a fluid of 100 °C or more, in this case, an organic solvent having a boiling point higher than water may be used as the fluid. For example, so-called heat medium oil and the like can be used.
  • the number of fluid inlets 123 through which fluid is introduced into the fluid flow unit 121 is described as being singular.
  • the fluid inlets 123 may be designed in plural numbers. Therefore, heterogeneous fluids having different boiling points along the plurality of fluid inlets 123 may be introduced into the fluid flow path 120 sequentially or simultaneously. Through the design parameters of the fluid inlet 123 may be more experimental design of multiple angles.
  • a heat supply unit 130 including heating means is disposed on an outer circumferential surface of the reaction outer wall 120.
  • the heat supply unit 130 serves to supply a heat source to the reaction space 70 such that the inside of the reaction space 70 becomes a subcritical temperature condition.
  • the heat source generated from the heat supply unit 130 is transferred to the reaction space 70 using air inside the fluid flow unit 121 of the reaction outer wall 110 as a heat transfer medium.
  • the volume or width of the fluid flow portion 121 may be determined in consideration of such heat transfer efficiency.
  • a band heater or the like may be used as the heat supply unit 130.
  • the heat supply unit 130 receives power from an external power supply means P to convert electricity into heat.
  • an external power supply means P As the power supply means P, two or more powers P 1 and P 2 may be used, and after the subcritical state is reached, the internal cooling rate is easily diversified by sequentially shutting down the power without collectively shutting down the power. To adjust. This also serves to provide the experimenter with various experimental design factors.
  • a first heat insulating member 140 is disposed on an outer wall of the heat supply unit 130 to prevent heat loss inside as an outermost portion of the reaction chamber 100.
  • the material of the first heat insulating member 140 is not particularly limited, and various heat insulating materials known to those skilled in the art may be used.
  • a stirrer 30 for agitating the reactants is inserted and disposed for uniform reaction of the reactants.
  • the stirrer 30 includes a stirring shaft 31 and the stirring blade (32).
  • the upper portion of the reaction outer wall 110 is formed with a fastening groove 113 that can be fastened to the cover body 200 to be described later.
  • the cover body 200 is firmly fastened with the reaction outer wall 110 during the reaction, and is separated from the reaction outer wall 110 before the reaction ends or before the reaction. That is, the cover body 200 is a means for tightly sealing the reaction space 70, and the opening and closing means of the reaction chamber 100.
  • the cover body 200 surrounds the cover member 210 and the cover member 210 in which the protrusion 212 that can be fastened to the fastening groove 113 and the second heat insulation to prevent internal heat loss.
  • the member 220 is included.
  • a first through passage 215 is provided to provide a rotation space in which the stirring shaft 31 of the stirrer 30 is inserted and rotated.
  • the stirrer 30 is not an accessory of the reaction chamber 100 but an accessory of the head body (see 300 of FIG. 4) that is fastened to the cover body 200 and the cover body 200. Therefore, when the cover body 200 is separated from the reaction chamber 100, the cover body 200 is separated from the reaction chamber 100 along the reaction chamber 100.
  • FIG. 2 is a cross-sectional view illustrating a shape according to another exemplary embodiment of part 'A' of FIG. 1.
  • 3 is a cross-sectional view illustrating a state according to still another embodiment of portion 'A' of FIG. 1.
  • a fluid flow part 461 is formed inside the reaction outer wall 450 according to the present embodiment, and the fluid flow part 461 includes a curved surface.
  • the aspect of the curved surface is not particularly limited but may have a regular curved structure for uniform supply of heat or uniform cooling, and an inner surface of the fluid flow portion 461 may have a wavy structure, for example.
  • the heat supply part 470 and the heat insulation member 480 are sequentially arranged outside the reaction outer wall 450. Since the heat supply unit 470 and the heat insulating member 480 have already been described, a detailed description thereof will be omitted.
  • a fluid flow part 561 is formed inside the reaction outer wall 550 according to the present embodiment, and the fluid flow part 561 includes an inclined structure that gradually narrows upward.
  • the inclination angle ⁇ of the inclined structure is not particularly limited, but is preferably about 5 m or less. Since the fluid flow portion 561 has an inclined structure that becomes thinner toward the top, the cooling efficiency of the lower region where the sediment may be concentrated may be relatively enhanced.
  • the heat supply part 570 and the heat insulating member 580 are sequentially arranged outside the reaction outer wall 550. Since the heat supply unit 570 and the heat insulating member 580 have already been described, a detailed description thereof will be omitted.
  • fluid flow portions 461 and 561 including the curved structure or the inclined structure have been described, but the three-dimensional shape of the fluid flow portion may be appropriately designed and manufactured according to the operator's experimental environment.
  • FIG. 4 is a cross-sectional view for explaining the upper region of the subcritical reaction apparatus according to an embodiment of the present invention.
  • the cover member 210 of the cover body 200 is formed with at least one gas discharge pipe 216 formed for the discharge of the gas generated from the reaction chamber 100 described above, the gas discharge pipe 216 to the outside
  • the end 218 of the exposed gas discharge pipe 216 is provided with a means such as a valve that can block or allow the discharge of gas.
  • a gas outlet 222 is formed in a corresponding region of the second heat insulating member 220 corresponding to the end 218 of the gas discharge pipe.
  • the extension part 211 formed to extend from the protrusion 212 into the cover member 210 may have a structure integrated with the cover member 210, or alternatively inserted into the cover member 210 to be assembled. It may be a structure.
  • the upper surface of the cover body 200 is fastened with the head body 300 and extends along the longitudinal direction of the stirring shaft 31 of the stirrer 30 and a rotating space for the rotation of the stirring shaft 31 ( 92, a second through hole) is formed in the opening hole 230 in the upper surface.
  • the head body 300 is inserted into the opening hole 230 of the cover body 200 and is firmly coupled to the cover body 200.
  • the coupling portion B of the cover body 200 and the head body 300 may be introduced into a variety of fastening grooves or coupling means that can be considered at the level of those skilled in the art.
  • the stirring shaft 31 extends along the space 92 completely enclosed by the cover body 200 and the head body 300.
  • the head body 300 includes a cylindrical first head body 310 and second head body 320 each having an outer circumferential surface.
  • the first head body 310 is a portion which is directly coupled to the cover body 200, the first passage of the fastening body 200 for smooth rotation of the stirring shaft 31 (215 of FIG. 1). And a second passageway 92 formed extending from).
  • a stirring head 34 integrated with the stirring shaft is formed at an upper end of the stirring shaft 31, and the stirring head 34 is recessed inside the stirring head 40.
  • the stirring head 34 and the stirring head 40 may have an integrated structure for efficient transmission of rotational force.
  • An upper portion of the first head body 310 accommodates the stirring head portion 40 corresponding to the shape of the stirring head portion 40 and is spaced apart from the stirring head portion 40. That is, the first head body 310 is formed with a rotary cavity 94 which is a space for accommodating the stirring head portion 40. At least one opening 312 is formed in at least one region of the outer circumferential surface of the first head body 310.
  • the second head body 320 is disposed to surround the outer circumferential surface and the upper portion of the upper portion of the first head body 310. Since the second head body 310 is not coupled to the first head body 310, the second head body 310 may rotate along the outer circumferential surface of the first head body 310.
  • a second magnetic body 322 is formed in an area of the second head body 320 facing the opening 312. Meanwhile, a first magnetic body 42 is formed in an area of the stirring head 40 that faces the opening 312. The first magnetic body 42 and the second magnetic body 322 are firmly attached or recessed to one region of the second head body 320 and the stirring head 40, respectively.
  • the durability of the magnetic bodies 42 and 322 is, after all, very important as a factor in determining the rotational durability of the stirrer 30. Therefore, it is important to arrange the magnetic bodies 42 and 322 to ensure maximum durability.
  • the first magnetic body 42 and the second magnetic body 322 are magnetically attracted to each other through the opening 312 (M) acts to rotate the second head body 320 in accordance with the stirring head portion ( 40) will rotate.
  • the rotational force of the stirring head portion 40 is transmitted to the stirring shaft 31 as it is.
  • the second head body 320 may be connected to an external rotational power transmission device (not shown) and the belt 5 to receive a rotational force.
  • the head body 300 has a boundary surface between the first head body 310 and the second head body 320, which is a boundary surface R from which the second head body 320 is separated from each other. It has a structural feature that can rotate along R).
  • the first head body 310 is firmly fastened and fixed to the cover body 200, and the second head body 320 is free to rotate by being supplied with external rotational force.
  • the subcritical reaction apparatus 1000 according to the present invention can sufficiently prevent the loss of the internal gas pressure by easily transmitting the rotational force through the magnetic force while ensuring sufficient internal airtightness.
  • Subcritical reaction method is based on the above-described subcritical reaction apparatus (1000).
  • the method includes a subcritical reaction step of introducing the injected reactant into the reaction space 70 and raising and raising the pressure and temperature to a subcritical pressure and temperature.
  • a fluid is introduced into the fluid flow path 120 to undergo a cooling step of cooling the reaction space.
  • 5 is a graph showing the temperature change after reaching the subcritical state according to an embodiment of the present invention.
  • 6 is a graph showing the temperature change after reaching the subcritical state according to another embodiment of the present invention.
  • the use of the same fluid (first fluid) during the cooling process may also change the slope on the cooling curve by inducing a temperature change of the first fluid.
  • two fluids first fluid and second fluid
  • first fluid and second fluid may be sequentially used to change the slope on the cooling curve.
  • the third fluid having a high boiling point may be continuously used and the temperature may be prevented from being lowered, thereby maintaining a constant environment of 100 ° C. or higher, which is a relatively high temperature during the cooling process. have.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The present invention provides a subcritical reactor and, more particularly, to a high-temperature and high-pressure reactor provided with a reaction chamber for providing a reaction space and a stirrer including a stirring shaft, wherein the reactor comprises: a reactive outer wall in which a fluid-moving path through which a fluid introduced from the outside can flow is formed in at least one internal area thereof, and which partitions the reaction space; a heat supply unit which is formed on at least a partial outer side of the reactive outer wall, and which includes a heating means; and a cover body which seals the reaction space in connection with the outer wall of the reaction chamber during the reaction, and which has a first penetration path through which the stirring shaft of the stirrer can penetrate and rotate, wherein an internal state of the reaction space can be converted into the pressure and temperature of a subcritical state.

Description

아임계 반응 장치 및 이를 이용한 아임계 반응 방법Subcritical reaction apparatus and subcritical reaction method using the same
본 기술은 고온 고압 반응 장치에 관한 기술로서, 더욱 구체적으로는 추출 장치 등으로 활용될 수 있는 아임계 반응 장치에 관한 기술이다.The present technology relates to a high temperature and high pressure reaction apparatus, and more particularly, to a subcritical reaction apparatus that can be utilized as an extraction apparatus.
일반적으로 농산물이나 기타 유기물질에 함유된 특정성분을 추출할 때 아임계 수추출법(subcritical water extraction)이 많이 사용된다. 아임계 수추출법은 해당 추출대상 유기물을 물 등의 유체와 혼합한 뒤 물의 액체, 기체상태가 공존하는 임계점 이하의 온도와 압력 상태로 가공하여 물의 유전상수가 감수됨에 따라 해당 유기물의 추출용매로 사용되도록 하는 방식이다. 이러한 아임계 수추출법은 아임계 상태로 변환하는 과정에서 가공용기 내부에서 지속적인 교반이 필요한데, 이를 위해 교반축이 외부로부터 가공용기 내부로 삽입 설치된 후 회전하면서 내부 가공대상물을 교반한다. 그런데 가공용기 내부는 고압상태이기 때문에 이렇게 교반축이 직접 가공용기에 관통삽입된 상태에서 회전될 경우 원활한 회전을 위해 관통지점에서는 미세 유격이 형성될 수밖에 없어, 결국 해당 유격을 통해 가공용기 내부 압력손실이 발생되는 문제점을 갖는다. In general, subcritical water extraction is often used to extract specific ingredients in agricultural products or other organic substances. The subcritical water extraction method is used as an extraction solvent for organic matters by mixing the organic substance to be extracted with a fluid such as water and processing it to a temperature and pressure state below the critical point where water liquid and gaseous coexist. This is how you do it. This subcritical water extraction method requires continuous agitation inside the processing vessel in the process of converting to a subcritical state. For this purpose, the stirring shaft is inserted into the processing vessel from the outside, and then rotates the internal processing object while rotating. However, since the inside of the processing vessel is a high pressure state, when the stirring shaft is rotated in the state directly inserted into the processing vessel, fine clearance is formed at the penetration point for smooth rotation. This has a problem that arises.
또한, 종래의 아임계 추출 장치는 아임계 상태에 도달 한 후, 자연 냉각 방식에 의존하여 상온까지 냉각하므로 냉각 속도나 온도 유지 시간 등을작업자의 의도대로 조절하기 어려웠으며 이로 인하여 아임계 상태 도달 이후에 온도 변수에 따른 다양한 실험적 데이터를 유기적으로 도출하는 데 어려움이 있었다. 또한, 종래 냉각수에 의한 냉각 방식의 경우에는 급격한 냉각으로 인하여 반응로 외벽의 균열 발생 등 내구성 저하의 문제를 야기할 수 있다. In addition, since the conventional subcritical extraction apparatus cools down to room temperature depending on the natural cooling method after reaching the subcritical state, it is difficult to adjust the cooling rate or the temperature holding time according to the intention of the operator. It was difficult to organically derive various experimental data according to temperature variables. In addition, in the case of the conventional cooling method by the cooling water may cause problems of durability degradation, such as the occurrence of cracks in the outer wall of the reactor due to rapid cooling.
본 발명은 상기와 같은 종래 기술의 문제점을 극복하기 위하여 도출된 발명으로서, 내부 압력 손실이 없고 아임계 상태 도달 이후의 상태 변화를 다각도로 실험할 수 있는 아임계 반응 장치를 제공하는 것을 목적으로 한다.The present invention has been made to overcome the problems of the prior art as described above, and an object thereof is to provide a subcritical reaction apparatus capable of experimenting at various angles after the subcritical state is reached without internal pressure loss. .
본 발명은 또한, 상기 아임계 반응 장치를 이용하여 아임계 도달 이후 다각도의 실험 설계를 할 수 있는 아임계 반응 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a subcritical reaction method capable of performing multi-degree experimental design after reaching the subcritical using the subcritical reaction device.
본 발명의 일 실시예에 따른 아임계 반응 장치는 반응 공간을 제공하는 반응 챔버 및 교반축을 포함하는 교반기를 구비한 고온 고압 반응 장치로서, 외부로부터 유입된 유체가 유동할 수 있는 유체 유동로가 내부의 적어도 일 영역에 형성되어 있고 상기 반응 공간을 구획하는 반응 외벽, 상기 반응 외벽의 적어도 일부 외측면 상에 형성되고 가열수단을 포함하는 열 공급부, 및 반응 시 상기 반응 챔버의 외벽과 체결되어 상기 반응 공간을 밀폐하며, 상기 교반기의 교반축이 관통 및 회전하기 위한 제1 관통로가 형성되어 있는 커버 몸체를 포함하고, 상기 반응 공간 내부 상태를 아임계 상태의 압력 및 온도로 변환할 수 있다. 상기 유체 유동로는 곡면을 포함할 수 있다. Subcritical reaction apparatus according to an embodiment of the present invention is a high temperature and high pressure reaction apparatus having a stirrer including a reaction chamber and a stirring shaft to provide a reaction space, the fluid flow path through which the fluid flowing from the outside can flow A reaction outer wall formed in at least one region of the reaction space and partitioning the reaction space, a heat supply part formed on at least a part of the outer surface of the reaction outer wall and including a heating means, and engaged with the outer wall of the reaction chamber during the reaction to react the reaction. The space is sealed and includes a cover body in which a stirring shaft of the stirrer is formed with a first passageway for penetrating and rotating, and converting the reaction space internal state into a subcritical pressure and temperature. The fluid flow path may include a curved surface.
상기 아임계 반응 장치는 상기 반응 공간 내부가 아임계 상태에 도달할 때까지 상기 유체 유동로에 대한 유체 유입을 차단하고, 상기 아임계 상태 도달 이후에 상기 유체의 유입을 허용한다.  The subcritical reaction device blocks fluid inflow into the fluid flow path until the interior of the reaction space reaches a subcritical state and allows the fluid to enter after reaching the subcritical state.
한편, 상기 아임계 반응 장치는 상기 반응 챔버 외부에 구비되고, 상기 유체 유입로로 유입되는 유체의 온도를 조절하는 온도 조절 수단을 더 포함할 수 있다.  On the other hand, the subcritical reaction device may be provided outside the reaction chamber, it may further include a temperature control means for adjusting the temperature of the fluid flowing into the fluid inlet.
상기 반응 외벽의 일 영역에는 상기 유체 유동로로 유체가 유입될 수 있는 유체 유입구를 복수개 포함할 수 있다.  One region of the reaction outer wall may include a plurality of fluid inlets through which fluid may be introduced into the fluid flow path.
상기 열 공급부의 외측면의 적어도 일 영역에는 단열부재가 배치될 수 있다.  An insulation member may be disposed in at least one region of the outer surface of the heat supply unit.
상기 커버 몸체에는 상기 반응 공간 내부의 압력을 외부로 배출하는 가스 배출관 및 가스 배출구를 포함할 수 있다. 상기 아임계 반응 장치는 상기 커버 몸체의 상면에 체결되어 있고, 상기 제1 관통로로부터 연장되고 상기 교반축의 관통 및 회전 공간으로서의 제2 관통로 및 상기 교반기의 헤드부의 회전 공간을 제공하는 회전 공동(空洞)이 형성되어 있는 헤드 몸체를 더 포함할 수 있다. 상기 헤드 몸체는 상기 커버 몸체의 상면과 직접 체결되어 고정되고 상기 교반기의 헤드부로부터 이격 배치되어 상기 교반기의 헤드부를 감싸며, 상기 교반기 헤드부와 마주보는 적어도 일 영역에 적어도 하나의 개구부가 형성되어 있는 제1 헤드 몸체, 및 상기 제1 헤드 몸체의 외면에 배치되고 외부로부터 회전동력을 제공받아 회전할 수 있는 제2 헤드 몸체를 포함한다. 상기 제2 헤드 몸체는 상기 개구부에 대응한 적어도 일 영역에 상기 개구부 측으로 돌출된 제2 자성체를 포함하고, 상기 교반기 헤드부는 상기 교반기 헤드부의 적어도 일 면에 상기 제2 자성체에 대응한 제1 자성체를 포함할 수 있다.  The cover body may include a gas discharge pipe and a gas discharge port for discharging the pressure inside the reaction space to the outside. The subcritical reaction device is fastened to an upper surface of the cover body, and extends from the first through passage and provides a second through passage as a through and rotating space of the stirring shaft and a rotating space for rotating the head of the stirrer. It may further include a head body is formed. The head body is directly fastened and fixed to the upper surface of the cover body and is spaced apart from the head portion of the stirrer to surround the head portion of the stirrer, at least one opening is formed in at least one region facing the stirrer head portion And a second head body disposed on an outer surface of the first head body and capable of rotating by receiving rotational power from the outside. The second head body includes a second magnetic body protruding toward the opening side in at least one region corresponding to the opening, and the agitator head portion includes a first magnetic body corresponding to the second magnetic body on at least one surface of the agitator head portion. It may include.
상기 아임계 반응 장치는 반응 챔버 외부에 배치되고 상기 열 공급부에 전력을 공급하는 복수개의 전력 공급수단을 더 포함할 수 있다.  The subcritical reaction device may further include a plurality of power supply means disposed outside the reaction chamber and supplying power to the heat supply unit.
본 발명의 일 실시예에 따른 아임계 반응 방법은 전술한 아임계 반응 장치의 반응공간에 반응물을 투입하는 단계, 상기 아임계 반응 공간을 아임계 상태의 압력 및 온도가 되도록 승압 및 승온하는 아임계 반응 단계, 상기 반응 공간의 압력을 감압하고 상기 아임계 반응 장치의 유체 유동로로 제1 유체를 유입시켜 상기 반응 공간을 냉각하는 냉각 단계를 포함한다.  In the subcritical reaction method according to an embodiment of the present invention, the step of introducing a reactant into the reaction space of the above-described subcritical reaction device, the subcritical reaction to boost and raise the subcritical reaction space to the pressure and temperature of the subcritical state And a cooling step of reducing the pressure in the reaction space and introducing the first fluid into the fluid flow path of the subcritical reaction device to cool the reaction space.
상기 제1 유체의 온도는 냉각 단계 동안 변화되도록 조절될 수 있으며, 상기 냉각 단계에서, 상기 제1 유체의 유입 이후에 상기 제1 유체와 비점이 다른 제2 유체를 상기 유체 유동로에 유입시킬 수도 있다. The temperature of the first fluid may be adjusted to change during the cooling step, and in the cooling step, after the inflow of the first fluid, a second fluid different from the first fluid may be introduced into the fluid flow path. have.
본 발명의 아임계 반응 장치에 따르면, 교반기가 반응 챔버 외부로 돌출되어 있음에도 상기 반응 장치의 최외곽 구조가 고정되어 있어 교반기 회전에 의하여도 내부 가스의 누출이 일어나지 않아 상기 반응 장치의 압력 손실을 철저히 차단할 수 있다. According to the subcritical reaction device of the present invention, even though the stirrer protrudes out of the reaction chamber, the outermost structure of the reaction device is fixed so that no leakage of internal gas occurs even when the stirrer is rotated, thereby thoroughly reducing the pressure loss of the reaction device. You can block.
또한, 상기 반응 장치는 아임계 상태 도달 이후의 냉각 과정에서 온도변화를 작업자가 의도적으로 조절할 수 있어 아임계 반응 이후의 다양한 상태변화를 실험적으로 활용할 수 있고, 이는 다양한 변수를 고려하여 실험 설계를 하는 연구자에게 매우 유용할 수 있다. 나아가 본 장치의 냉각 방식은 단순한 방치 냉각 또는 냉각수에 의한 급속한 냉각 방식이 아니기 때문에 냉각 과정에서 발생할 수 있는 챔버의 균열 등 내구성 문제를 야기하지 않는다. In addition, the reaction apparatus can intentionally adjust the temperature change in the cooling process after reaching the subcritical state, and can experimentally utilize various state changes after the subcritical reaction, which is designed to take into account the various variables. It can be very useful to researchers. Furthermore, since the cooling method of the device is not a simple left cooling method or a rapid cooling method using coolant, it does not cause durability problems such as cracking of the chamber that may occur during the cooling process.
본 발명에 따른 아임계 반응 방법에 의하면, 아임계 상태 도달 이후의 온도 변화를 작업자의 의도대로 다양하게 설계할 수 있을 뿐만 아니라 필요에 따라서는 물보다 비점이 높은 유체를 활용할 경우 냉각 과정 중 100℃ 이상의 상대적으로 높은 냉각 온도도 원하는 시간만큼 일정 시간 유지시킬 수 있다.According to the subcritical reaction method according to the present invention, the temperature change after reaching the subcritical state can be variously designed according to the intention of the operator, and if necessary, when a fluid having a higher boiling point than water is used, 100 ° C. during the cooling process. The above relatively high cooling temperature can be maintained for a certain time as desired.
도 1은 본 발명의 일 실시예에 따른 아임계 반응 장치의 챔버 영역을 설명하기 위하여 도시된 단면도이다. 1 is a cross-sectional view for explaining the chamber region of the subcritical reaction apparatus according to an embodiment of the present invention.
도 2는 도 1의 'A' 부분의 다른 실시예에 따른 모습을 설명하기 위하여 도시된 단면도이다. FIG. 2 is a cross-sectional view illustrating a shape according to another exemplary embodiment of part 'A' of FIG. 1.
도 3은 도 1의 'A' 부분의 또 다른 실시예에 따른 모습을 설명하기 위하여 도시된 단면도이다.3 is a cross-sectional view illustrating a state according to still another embodiment of portion 'A' of FIG. 1.
도 4는 본 발명의 일 실시예에 따른 아임계반응 장치의 상부 영역을 설명하기 위하여 도시된 단면도이다. 4 is a cross-sectional view for explaining the upper region of the subcritical reaction apparatus according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 아임계 상태 도달 후의 온도 변화를 도시한 그래프이다. 5 is a graph showing the temperature change after reaching the subcritical state according to an embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따른 아임계 상태 도달 후의 온도 변화를 도시한 그래프이다.6 is a graph showing the temperature change after reaching the subcritical state according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명에 따른 아임계 반응 장치의 구조에 대하여 자세하게 설명하도록 한다. 그러나 하기 설명들은 본 발명에 대한 예시적인 기재일 뿐, 하기 설명에 의하여 본 발명의 기술사상이 국한되는 것은 아니며, 본 발명의 기술사상은 후술할 청구범위에 의하여 정해진다.Hereinafter, the structure of the subcritical reaction apparatus according to the present invention with reference to the accompanying drawings to be described in detail. However, the following descriptions are merely illustrative of the present invention, and the technical idea of the present invention is not limited by the following description, which is defined by the claims to be described later.
한편, 이하에서 사용되는 각 구성 요소의 명칭은 예시적인 것에 불과하고, 이러한 명칭의 개념에 의하여 본 발명의 기술적 특징이 한정되는 것은 아니다. On the other hand, the names of the components used below are merely exemplary, and the technical features of the present invention are not limited by the concept of such names.
도 1은 본 발명의 일 실시예에 따른 아임계 반응 장치의 챔버 영역을 설명하기 위하여 도시된 단면도이다. 1 is a cross-sectional view for explaining the chamber region of the subcritical reaction apparatus according to an embodiment of the present invention.
도 1을 참조하면, 아임계 반응 장치(1000)는 반응 외벽(110)에 의하여 구획된 반응 공간(70)을 확보한 반응 챔버(100)를 포함한다. 상기 아임계 반응 장치(1000)는 상기 반응 챔버(100)의 반응 공간(70)에 투입되는 반응 대상 물질을 아임계 상태의 용매에 의하여 추출하는 등의 반응을 수행하는 장치이다. 즉, 상기 아임계 반응 장치(1000)는 내부의 압력 및 온도를 임계점 이하의 고압 및 고온 환경으로 변환하는 장치이다.  Referring to FIG. 1, the subcritical reaction apparatus 1000 includes a reaction chamber 100 securing a reaction space 70 partitioned by the reaction outer wall 110. The subcritical reaction device 1000 is a device for performing a reaction such as extracting a reaction target material introduced into the reaction space 70 of the reaction chamber 100 by using a solvent in a subcritical state. That is, the subcritical reaction device 1000 is a device for converting the internal pressure and temperature into a high pressure and high temperature environment below a critical point.
상기 반응 외벽(110)은 내부의 일 영역에 형성된 빈 공간인 유체 유동로(120)을 포함한다. 상기 유체 유동로(120)는 반응 외벽(110)의 입체면에 전체적으로 형성될 수도 있고 일부 영역에만 선택적으로 형성될 수 있으나 냉각 효율이나 온도 조절 용이성을 확보하기 위해서는 상기 반응 외벽(110)의 전면(全面)을 따라 형성되는 것이 바람직하다. The reaction outer wall 110 includes a fluid flow path 120 which is an empty space formed in one region of the inside. The fluid flow path 120 may be formed entirely on the three-dimensional surface of the reaction outer wall 110 or may be selectively formed only in a partial region, but in order to ensure cooling efficiency or temperature control ease, the front surface of the reaction outer wall 110 ( It is preferable to be formed along the entire surface.
상기 반응 챔버(100) 내부가 아임계 상태에 도달할 때까지 상기 유체 유동로(120)에는 유체가 유입되지 않도록 유체 유입이 차단된다. 상기 유체는 반응 종료, 즉 반응 챔버(100) 내부가 아임계 상태에 도달한 이후부터 상기 유체 유동로(120)로 유입된다. 상기 유체 유동로(120)는 상기 반응 외벽(110) 내부의 공동(空洞)영역인 유체 유동부(121), 상기 유체 유동부(121)와 공간적으로 연결되어 있고 상기 반응 외벽(110)을 관통하여 형성된 유체 유입구(123) 및, 상기 유체 유동부(121)와 공간적으로 연결되어 있고 상기 유체 유동부(121)를 유동한 후 외부로 상기 유체를 배출하기 위하여 상기 반응 외벽(110)을 관통하여 형성된 유체 배출구(125)를 포함한다. 상기 유체 유입구(123)는 상기 반응 챔버(100)의 하부에 형성되어 있고, 상기 유체 배출구(125)는 상기 반응 챔버(100)의 상부에 형성되어 있다. 한편, 상기 유체 유동로(120)에 유입된 유체는 순환구조로 연속적으로 재사용 될 수 있다. 또한, 상기 유체 유입구(123) 및 유체 배출구(125)는 유체의 출입을 조절할 수 있는 밸브 등의 유체 입출 조절 수단을 구비한다.  Until the inside of the reaction chamber 100 reaches a subcritical state, fluid inflow is blocked so that no fluid flows into the fluid flow path 120. The fluid flows into the fluid flow path 120 from the end of the reaction, that is, after the inside of the reaction chamber 100 reaches a subcritical state. The fluid flow path 120 is spatially connected to the fluid flow part 121 and the fluid flow part 121, which are hollow areas inside the reaction outer wall 110, and penetrates the reaction outer wall 110. The fluid inlet 123 and the fluid flow part 121 that are spatially connected to each other, and flow through the reaction outer wall 110 to discharge the fluid to the outside after the fluid flow part 121 flows. And a fluid outlet 125 formed. The fluid inlet 123 is formed below the reaction chamber 100, and the fluid outlet 125 is formed above the reaction chamber 100. Meanwhile, the fluid introduced into the fluid flow path 120 may be continuously reused in a circulation structure. In addition, the fluid inlet 123 and the fluid outlet 125 are provided with fluid inlet and out adjusting means such as a valve that can control the entry and exit of the fluid.
상기 유체 유입구(123) 및 유체 배출구(125)의 위치는 특별히 제한되지는 않으나, 하부에서 상부 방향으로 유동하는 것이 열 효율 면에서 유리하다.  The position of the fluid inlet 123 and the fluid outlet 125 is not particularly limited, but it is advantageous in terms of thermal efficiency to flow from the bottom to the top.
상기 아임계 반응 장치(1000)는 상기 반응 챔버(100)의 외부에 배치되어 상기 유체 유입구(123)와 연결된 유체 온도 조절수단(50)을 포함한다. 상기 유체 온도 조절수단(50)은 상기 유체 유동로(120)으로 유입되는 유체의 온도를 가변적으로 조절할 수 있어, 반응 종료 후 냉각 단계의 온도 환경을 다각도로 변경할 수 있다. 이러한 온도 조절수단(50)에 의하여 실험자는 아임계 상태 종료 후의 다양한 온도 변수를 고려한 실험설계를 할 수 있다.  The subcritical reaction device 1000 includes a fluid temperature control means 50 disposed outside the reaction chamber 100 and connected to the fluid inlet 123. The fluid temperature regulating means 50 may variably control the temperature of the fluid flowing into the fluid flow path 120, so that the temperature environment of the cooling step after the reaction is changed in various degrees. By the temperature control means 50, the experimenter can design the experiment in consideration of various temperature variables after the subcritical state ends.
상기 유체 유동로(120)에 유입되는 유체의 온도는 80 내지 90℃일 수 있다. 그러나 실험자에 따라서는, 100℃ 이상의 유체의 유입을 의도할 수 있으며 이 경우 비점이 물보다 높은 유기 용매 등이 유체로서 사용될 수 있다. 예를 들면, 소위 열매체유 등이 사용될 수 있다.  The temperature of the fluid flowing into the fluid flow path 120 may be 80 to 90 ℃. However, depending on the experimenter, it may be intended to introduce a fluid of 100 ℃ or more, in this case, an organic solvent having a boiling point higher than water may be used as the fluid. For example, so-called heat medium oil and the like can be used.
한편, 본 실시예에서는 유체 유동부(121)로 유체가 유입되는 유체 유입구(123)의 개수가 단수인 것으로 설명하였으나, 이와 다르게 상기 유체 유입구(123)는 복수개로 설계될 수 있다. 따라서, 복수의 유체 유입구(123)를 따라 비점이 서로 다른 이종(異種)의 유체가 순차적 또는 동시적으로 상기 유체 유동로(120)로 유입될 수 있다. 이러한 유체 유입구(123)의 설계 변수를 통하여 보다 다각도의 실험설계가 가능할 수 있다.  Meanwhile, in the present exemplary embodiment, the number of fluid inlets 123 through which fluid is introduced into the fluid flow unit 121 is described as being singular. Alternatively, the fluid inlets 123 may be designed in plural numbers. Therefore, heterogeneous fluids having different boiling points along the plurality of fluid inlets 123 may be introduced into the fluid flow path 120 sequentially or simultaneously. Through the design parameters of the fluid inlet 123 may be more experimental design of multiple angles.
상기 반응 외벽(120)의 외주면에는 가열 수단을 포함하는 열 공급부(130)가 배치되어 있다. 상기 열 공급부(130)는 상기 반응 공간(70) 내부가 아임계 상태의 온도 조건이 되도록 열원을 상기 반응 공간(70)에 공급하는 역할을 수행한다. 상기 열 공급부(130)로부터 발생된 열원은 상기 반응 외벽(110)의 유체 유동부(121) 내부의 공기를 열 전달 매질로 사용하여 상기 반응 공간(70)으로 전달된다. 상기 유체 유동부(121)의 부피 또는 폭 등은 이러한 열 전달 효율을 고려하여 결정될 수 있다.  A heat supply unit 130 including heating means is disposed on an outer circumferential surface of the reaction outer wall 120. The heat supply unit 130 serves to supply a heat source to the reaction space 70 such that the inside of the reaction space 70 becomes a subcritical temperature condition. The heat source generated from the heat supply unit 130 is transferred to the reaction space 70 using air inside the fluid flow unit 121 of the reaction outer wall 110 as a heat transfer medium. The volume or width of the fluid flow portion 121 may be determined in consideration of such heat transfer efficiency.
상기 열 공급부(130)로서 예를 들면 밴드 히터 등이 사용될 수 있다. 상기 열 공급부(130)는 외부의 전력 공급 수단(P)으로부터 전력을 공급받아 전기를 열로 전환시킨다. 상기 전력 공급 수단(P)으로서 2개 이상의 복수 파워(P1, P2)를 사용할 수 있으며, 이는 아임계 상태 도달 후에 전원을 일괄하여 차단하지 않고 순차적으로 차단함으로써 내부 냉각 속도를 용이하게 다각도로 조절하기 위함이다. 이 또한, 실험자에게 다양한 실험설계 인자를 제공하는 역할을 한다. For example, a band heater or the like may be used as the heat supply unit 130. The heat supply unit 130 receives power from an external power supply means P to convert electricity into heat. As the power supply means P, two or more powers P 1 and P 2 may be used, and after the subcritical state is reached, the internal cooling rate is easily diversified by sequentially shutting down the power without collectively shutting down the power. To adjust. This also serves to provide the experimenter with various experimental design factors.
상기 열 공급부(130)의 외벽에는 상기 반응 챔버(100)의 최외각부로서 내부의 열 손실을 방지하기 위한 제1 단열부재(140)가 배치되어 있다. 상기 제1 단열 부재로(140)의 재질은 특별히 한정되지 않으며 당업자에게 자명한 공지된 다양한 단열재료를 사용할 수 있다. A first heat insulating member 140 is disposed on an outer wall of the heat supply unit 130 to prevent heat loss inside as an outermost portion of the reaction chamber 100. The material of the first heat insulating member 140 is not particularly limited, and various heat insulating materials known to those skilled in the art may be used.
상기 반응 공간(70)에는 반응물의 균일한 반응을 위하여 반응물을 교반하는 교반기(30)가 삽입 배치되어 있다. 상기 교반기(30)은 교반축(31) 및 교반날개(32)를 포함한다.  In the reaction space 70, a stirrer 30 for agitating the reactants is inserted and disposed for uniform reaction of the reactants. The stirrer 30 includes a stirring shaft 31 and the stirring blade (32).
상기 반응 외벽(110)의 상부에는 후술할 커버 몸체(200)와 체결될 수 있는 체결홈(113)이 형성되어 있다. 상기 커버 몸체(200)는 반응 시에는 상기 반응 외벽(110)과 견고하게 체결되며, 반응이 종료되거나 반응 전에는 상기 반응 외벽(110)과 분리된다. 즉, 상기 커버 몸체(200)는 상기 반응 공간(70)을 견고하게 밀폐하는 수단이자, 상기 반응 챔버(100)의 개폐 수단이 된다.  The upper portion of the reaction outer wall 110 is formed with a fastening groove 113 that can be fastened to the cover body 200 to be described later. The cover body 200 is firmly fastened with the reaction outer wall 110 during the reaction, and is separated from the reaction outer wall 110 before the reaction ends or before the reaction. That is, the cover body 200 is a means for tightly sealing the reaction space 70, and the opening and closing means of the reaction chamber 100.
상기 커버 몸체(200)는 상기 체결홈(113)과 체결될 수 있는 돌출부(212)가 형성되어 있는 커버 부재(210) 및 상기 커버 부재(210)를 감싸서 내부 열 손실을 방지하기 위한 제2 단열 부재(220)을 포함한다. The cover body 200 surrounds the cover member 210 and the cover member 210 in which the protrusion 212 that can be fastened to the fastening groove 113 and the second heat insulation to prevent internal heat loss. The member 220 is included.
상기 커버 부재(210)의 중앙부에는 상기 교반기(30)의 교반축(31)이 삽입되어 회전할 수 있는 회전 공간을 제공하는 제1 관통로(215)가 형성되어 있다.  In the central portion of the cover member 210, a first through passage 215 is provided to provide a rotation space in which the stirring shaft 31 of the stirrer 30 is inserted and rotated.
후술하겠지만 상기 교반기(30)는 상기 반응 챔버(100)의 부속물이 아니며 상기 커버 몸체(200) 및 상기 커버 몸체(200)와 체결되어 있는 헤드 몸체(도 4의 300 참조)의 부속물이다. 따라서 상기 커버 몸체(200)가 상기 반응 챔버(100)와 분리될 경우, 상기 반응 챔버(100)를 따라 상기 반응 챔버(100)로부터 분리된다. As will be described later, the stirrer 30 is not an accessory of the reaction chamber 100 but an accessory of the head body (see 300 of FIG. 4) that is fastened to the cover body 200 and the cover body 200. Therefore, when the cover body 200 is separated from the reaction chamber 100, the cover body 200 is separated from the reaction chamber 100 along the reaction chamber 100.
도 2는 도 1의 'A' 부분의 다른 실시예에 따른 모습을 설명하기 위하여 도시된 단면도이다. 도 3은 도 1의 'A' 부분의 또 다른 실시예에 따른 모습을 설명하기 위하여 도시된 단면도이다. FIG. 2 is a cross-sectional view illustrating a shape according to another exemplary embodiment of part 'A' of FIG. 1. 3 is a cross-sectional view illustrating a state according to still another embodiment of portion 'A' of FIG. 1.
도 2를 참조하면, 본 실시예에 따른 반응 외벽(450)의 내부에는 유체 유동부(461)가 형성되어 있으며, 상기 유체 유동부(461)는 표면에 곡면을 포함한다. 상기 곡면의 양태(樣態)는 특별히 제한되지는 않으나 열의 균일한 공급 또는 균일한 냉각을 위하여 규칙적인 곡면 구조를 가질 수 있으며, 상기 유체 유동부(461)의 내부 표면은 예를 들면 물결 구조를 가질 수 있다. 이처럼, 상기 유체 유동부(461)가 곡면을 포함하므로써 열 전달 또는 냉각의 접촉 면적을 증가시킴으로써 열의 출입 효율을 향상시킬 수 있다. 상기 반응 외벽(450)의 외부에는 차례로 열 공급부(470) 및 단열 부재(480)이 배치되어 있다. 상기 열 공급부(470) 및 단열 부재(480)에 대하여는 이미 설명하였으므로 구체적인 설명은 생략하도록 한다.  2, a fluid flow part 461 is formed inside the reaction outer wall 450 according to the present embodiment, and the fluid flow part 461 includes a curved surface. The aspect of the curved surface is not particularly limited but may have a regular curved structure for uniform supply of heat or uniform cooling, and an inner surface of the fluid flow portion 461 may have a wavy structure, for example. Can have As such, since the fluid flow portion 461 includes a curved surface, heat inflow efficiency may be improved by increasing the contact area of heat transfer or cooling. The heat supply part 470 and the heat insulation member 480 are sequentially arranged outside the reaction outer wall 450. Since the heat supply unit 470 and the heat insulating member 480 have already been described, a detailed description thereof will be omitted.
도 3을 참조하면, 본 실시예에 따른 반응 외벽(550)의 내부에는 유체 유동부(561)가 형성되어 있으며, 상기 유체 유동부(561)는 상부로 갈수록 점차 좁아지는 경사 구조를 포함한다. 상기 경사 구조의 경사각(θ)은 특별히 제한 되지는 않으나 대략 5ㅀ이하인 것이 바람직하다. 상기 유체 유동부(561)가 상부로 갈수록 가늘어지는 경사 구조를 가지므로 침전물이 집중될 수 있는 하부 영역의 냉각 효율을 상대적으로 강화할 수 있다. 상기 반응 외벽(550)의 외부에는 차례로 열 공급부(570) 및 단열 부재(580)이 배치되어 있다. 상기 열 공급부(570) 및 단열 부재(580)에 대하여는 이미 설명하였으므로 구체적인 설명은 생략하도록 한다. Referring to FIG. 3, a fluid flow part 561 is formed inside the reaction outer wall 550 according to the present embodiment, and the fluid flow part 561 includes an inclined structure that gradually narrows upward. The inclination angle θ of the inclined structure is not particularly limited, but is preferably about 5 m or less. Since the fluid flow portion 561 has an inclined structure that becomes thinner toward the top, the cooling efficiency of the lower region where the sediment may be concentrated may be relatively enhanced. The heat supply part 570 and the heat insulating member 580 are sequentially arranged outside the reaction outer wall 550. Since the heat supply unit 570 and the heat insulating member 580 have already been described, a detailed description thereof will be omitted.
이상에서, 곡면 구조 또는 경사 구조를 포함하는 유체 유동부(461, 561)를 설명하였으나, 상기 유체 유동부의 입체 형상은 작업자의 실험 환경에 맞게 적절히 설계 제작될 수 있다.  In the above description, the fluid flow portions 461 and 561 including the curved structure or the inclined structure have been described, but the three-dimensional shape of the fluid flow portion may be appropriately designed and manufactured according to the operator's experimental environment.
도 4는 본 발명의 일 실시예에 따른 아임계반응 장치의 상부 영역을 설명하기 위하여 도시된 단면도이다.  4 is a cross-sectional view for explaining the upper region of the subcritical reaction apparatus according to an embodiment of the present invention.
전술한 바와 같이, 반응 외벽(110)의 체결홈(113)과 상기 커버 몸체(200)의 돌출부(212)의 체결 및 기타 부위의 정교한 체결에 의하여 상기 반응 외벽(110)과 상기 커버 몸체(200)는 미세한 이격도 허용하지 않도록 체결된다. 상기 커버 몸체(200)의 커버 부재(210)에는 전술한 반응 챔버(100)로부터 발생된 가스의 배출을 위하여 형성된 가스 배출관(216)이 적어도 하나 형성되어 있으며, 상기 가스 배출관(216)은 외부로 노출된 가스 배출관(216)의 말단(218)에 가스의 배출을 차단 또는 허용할 수 있는 밸브 등의 수단이 구비되어 있다. 상기 가스 배출관의 말단(218)에 대응한 상기 제2 단열 부재(220)의 해당 영역은 가스 배출구(222)가 형성되어 있다. As described above, the reaction outer wall 110 and the cover body 200 by the fastening of the fastening groove 113 of the reaction outer wall 110 and the protrusion 212 of the cover body 200 and other precise fastenings. ) Is fastened so as not to allow minute spacing. The cover member 210 of the cover body 200 is formed with at least one gas discharge pipe 216 formed for the discharge of the gas generated from the reaction chamber 100 described above, the gas discharge pipe 216 to the outside The end 218 of the exposed gas discharge pipe 216 is provided with a means such as a valve that can block or allow the discharge of gas. A gas outlet 222 is formed in a corresponding region of the second heat insulating member 220 corresponding to the end 218 of the gas discharge pipe.
상기 돌출부(212)로부터 상기 커버 부재(210)의 내부로 연장되어 형성된 연장 부위(211)는 상기 커버 부재(210)와 일체화된 구조일 수도 있고, 이와 다르게 상기 커버 부재(210)에 삽입되어 조립된 구조체일 수도 있다. 상기 커버 몸체(200)의 상부 면은 헤드 몸체(300)와의 체결 및 상기 교반기(30)의 교반축(31)의 길이 방향을 따라 연장되도록 하며 상기 교반축(31)의 회전을 위한 회전 공간(92, 제2 관통로)을 제공하기 위하여 상부 면에 개구홀(230)이 형성되어 있다. The extension part 211 formed to extend from the protrusion 212 into the cover member 210 may have a structure integrated with the cover member 210, or alternatively inserted into the cover member 210 to be assembled. It may be a structure. The upper surface of the cover body 200 is fastened with the head body 300 and extends along the longitudinal direction of the stirring shaft 31 of the stirrer 30 and a rotating space for the rotation of the stirring shaft 31 ( 92, a second through hole) is formed in the opening hole 230 in the upper surface.
상기 헤드 몸체(300)는 상기 상기 커버 몸체(200)의 개구홀(230)에 삽입되어 상기 커버 몸체(200)와 견고하게 체결되어 결합된다. 상기 커버 몸체(200)와 상기 헤드 몸체(300)의 결합 부위(B)에는 당업자 수준에서 고려될 수 있는 다양한 체결 홈 또는 결합 수단이 도입될 수 있다.  The head body 300 is inserted into the opening hole 230 of the cover body 200 and is firmly coupled to the cover body 200. The coupling portion B of the cover body 200 and the head body 300 may be introduced into a variety of fastening grooves or coupling means that can be considered at the level of those skilled in the art.
이처럼, 상기 교반축(31)은 상기 커버 몸체(200) 및 상기 헤드 몸체(300)에 의하여 완전하게 밀폐된 공간(92)을 따라 연장되어 있다. As such, the stirring shaft 31 extends along the space 92 completely enclosed by the cover body 200 and the head body 300.
상기 헤드 몸체(300)는 각각 외주면을 갖는 원통형상의 제1 헤드 몸체(310) 및 제2 헤드 몸체(320)를 포함한다. The head body 300 includes a cylindrical first head body 310 and second head body 320 each having an outer circumferential surface.
상기 제1 헤드 몸체(310)는 상기 커버 몸체(200)와 직접 체결되는 부위로서, 상기 교반축(31)의 원할한 회전을 위하여 상기 체결 몸체(200)의 제1 관통로(도 1의 215)로부터 연장되어 형성된 제2 관통로(92)를 포함한다.  The first head body 310 is a portion which is directly coupled to the cover body 200, the first passage of the fastening body 200 for smooth rotation of the stirring shaft 31 (215 of FIG. 1). And a second passageway 92 formed extending from).
상기 교반축(31)의 상부 말단에는 상기 교반축과 일체화된 교반 헤드(34)가 형성되어 있고, 상기 교반 헤드(34)는 교반 헤드부(40) 내부에 함몰되어 있다. 상기 교반 헤드(34)와 교반 헤드부(40)는 회전력의 효율적 전달을 위하여 일체화된 구조를 가질 수도 있다.  A stirring head 34 integrated with the stirring shaft is formed at an upper end of the stirring shaft 31, and the stirring head 34 is recessed inside the stirring head 40. The stirring head 34 and the stirring head 40 may have an integrated structure for efficient transmission of rotational force.
상기 제1 헤드 몸체(310)의 상부는 상기 교반 헤드부(40)의 형상에 대응하여 상기 교반 헤드부(40)를 수용하고, 상기 교반 헤드부(40)와 이격되어 형성되어 있다. 즉, 상기 제1 헤드 몸체(310)에는 상기 교반 헤드부(40)의 수용을 위한 공간인 회전 공동(空洞)(94)이 형성되어 있다. 상기 제1 헤드 몸체(310)의 외주 면의 적어도 일 영역에는 적어도 하나의 개구부(312)가 형성되어 있다.  An upper portion of the first head body 310 accommodates the stirring head portion 40 corresponding to the shape of the stirring head portion 40 and is spaced apart from the stirring head portion 40. That is, the first head body 310 is formed with a rotary cavity 94 which is a space for accommodating the stirring head portion 40. At least one opening 312 is formed in at least one region of the outer circumferential surface of the first head body 310.
상기 제2 헤드 몸체(320)는 상기 제1 헤드 몸체(310) 상부의 외주면 및 상부를 감싸도록 배치되어 있다. 상기 제2 헤드 몸체(310)는 상기 제1 헤드 몸체(310)와 결합되어 있지 않으므로, 상기 제1 헤드 몸체(310)의 외주면을 따라 회전할 수 있다. The second head body 320 is disposed to surround the outer circumferential surface and the upper portion of the upper portion of the first head body 310. Since the second head body 310 is not coupled to the first head body 310, the second head body 310 may rotate along the outer circumferential surface of the first head body 310.
상기 제2 헤드 몸체(320) 중 상기 개구부(312)와 마주보는 영역에는 제2 자성체(322)가 형성되어 있다. 한편, 상기 교반 헤드부(40) 중 상기 개구부(312)에 마주보는 영역에는 제1 자성체(42)가 형성되어 있다. 상기 제1 자성체(42) 및 제2 자성체(322)는 각각 제2 헤드 몸체(320) 및 상기 교반 헤드부(40)의 일 영역에 견고하게 부착되거나 함몰되어 배치된다. A second magnetic body 322 is formed in an area of the second head body 320 facing the opening 312. Meanwhile, a first magnetic body 42 is formed in an area of the stirring head 40 that faces the opening 312. The first magnetic body 42 and the second magnetic body 322 are firmly attached or recessed to one region of the second head body 320 and the stirring head 40, respectively.
상기 자성체(42, 322)의 내구성은 결국, 교반기(30)의 회전 내구성을 결정짓는 요소로서 매우 중요하다. 따라서 최대한 내구성이 확보되도록 상기 자성체(42, 322)를 배치하는 것이 중요하다. The durability of the magnetic bodies 42 and 322 is, after all, very important as a factor in determining the rotational durability of the stirrer 30. Therefore, it is important to arrange the magnetic bodies 42 and 322 to ensure maximum durability.
상기 제1 자성체(42) 및 상기 제2 자성체(322)는 상기 개구부(312)를 통하여 서로 자기적인 인력(M)이 작용하여 상기 제2 헤드 몸체(320)의 회전에 따라 상기 교반 헤드부(40)가 회전하게 된다. 상기 교반 헤드부(40)의 회전력은 그대로 교반축(31)에 전달된다. The first magnetic body 42 and the second magnetic body 322 are magnetically attracted to each other through the opening 312 (M) acts to rotate the second head body 320 in accordance with the stirring head portion ( 40) will rotate. The rotational force of the stirring head portion 40 is transmitted to the stirring shaft 31 as it is.
상기 제2 헤드 몸체(320)는 외부 회전동력 전달장치(미 도시) 등과 벨트(5)로 연결되어 회전력을 전달받을 수 있다. The second head body 320 may be connected to an external rotational power transmission device (not shown) and the belt 5 to receive a rotational force.
결국, 본 발명의 일 실시예에 따른 헤드 몸체(300)은 제2 헤드 몸체(320)가 서로 분리된 경계면(R)인 제1 헤드 몸체(310) 및 제2 헤드 몸체(320)의 경계면(R)을 따라 회전할 수 있는 구조적 특징을 가지고 있다. As a result, the head body 300 according to the embodiment of the present invention has a boundary surface between the first head body 310 and the second head body 320, which is a boundary surface R from which the second head body 320 is separated from each other. It has a structural feature that can rotate along R).
이상을 종합하면, 상기 제1 헤드 몸체(310)는 상기 커버 몸체(200)와 견고하게 체결되어 고정된 상태이며, 상기 제2 헤드 몸체(320)는 외부의 회전력을 공급받아 자유롭게 회전할 수 있는 구조를 갖는다. 따라서, 본 발명에 따른 아임계 반응 장치(1000)는 내부 기밀성을 충분히 확보하면서도, 자력을 통하여 내부에 회전력을 용이하게 전달함으로써, 내부 가스 압력의 손실을 완전하게 방지할 수 있다.In summary, the first head body 310 is firmly fastened and fixed to the cover body 200, and the second head body 320 is free to rotate by being supplied with external rotational force. Has a structure. Therefore, the subcritical reaction apparatus 1000 according to the present invention can sufficiently prevent the loss of the internal gas pressure by easily transmitting the rotational force through the magnetic force while ensuring sufficient internal airtightness.
본 발명의 일 실시예에 따른 아임계 반응 방법은 전술한 아임계 반응 장치(1000)를 근간으로 한다. 상기 방법은 투입된 반응물을 상기 반응 공간(70)에 투입하고 아임계 상태의 압력 및 온도가 되도록 승압 및 승온하는 아임계 반응 단계를 포함한다. 아임계 반응이 완료되면 상기 유체 유동로(120) 내에 유체를 유입시켜 상기 반응 공간을 냉각하는 냉각 단계를 거친다.  Subcritical reaction method according to an embodiment of the present invention is based on the above-described subcritical reaction apparatus (1000). The method includes a subcritical reaction step of introducing the injected reactant into the reaction space 70 and raising and raising the pressure and temperature to a subcritical pressure and temperature. When the subcritical reaction is completed, a fluid is introduced into the fluid flow path 120 to undergo a cooling step of cooling the reaction space.
전술한 아임계 반응 장치(1000)를 사용하면, 유입되는 유체의 온도를 조절함으로써 냉각 단계 동안의 내부 온도 감소 경향을 다양하게 변화시킬 수 있다. 또한, 이종의 유체를 사용함으로써, 실험설계의 변수를 다각화할 수 있고, 경우에 따라서는 100℃ 이상의 높은 비점을 갖는 유체를 사용함으로써, 냉각 시 100℃ 이상의 환경을 충분하게 경험할 수 있다.  Using the above-described subcritical reaction apparatus 1000, it is possible to vary the tendency of the internal temperature decrease during the cooling step by adjusting the temperature of the incoming fluid. In addition, by using heterogeneous fluids, it is possible to diversify the variables of the experimental design, and in some cases, by using a fluid having a high boiling point of 100 ° C or higher, the environment of 100 ° C or higher can be sufficiently experienced during cooling.
도 5는 본 발명의 일 실시예에 따른 아임계 상태 도달 후의 온도 변화를 도시한 그래프이다. 도 6은 본 발명의 다른 실시예에 따른 아임계 상태 도달 후의 온도 변화를 도시한 그래프이다.5 is a graph showing the temperature change after reaching the subcritical state according to an embodiment of the present invention. 6 is a graph showing the temperature change after reaching the subcritical state according to another embodiment of the present invention.
도 5를 참조하면, 일 실시예로서 냉각 과정 동안 동일 유체(제1 유체)만의 사용으로도 상기 제1 유체의 온도 변화를 유도함으로써 냉각 곡선 상의 기울기를 변화시킬 수 있다. 이와 다르게, 도 5에서 보는 바와 같이 2종의 유체(제1 유체, 제2 유체)를 순차적으로 사용하여 냉각 곡선 상의 기울기를 변화시킬 수 있다. Referring to FIG. 5, as an example, the use of the same fluid (first fluid) during the cooling process may also change the slope on the cooling curve by inducing a temperature change of the first fluid. Alternatively, as shown in FIG. 5, two fluids (first fluid and second fluid) may be sequentially used to change the slope on the cooling curve.
도 6을 참조하면, 제1 유체를 사용한 제1 냉각 이후, 고비 점의 제3 유체를 지속적으로 사용하고 온도 저하를 방지하도록 함으로써 냉각 과정 중 상대적으로 높은 온도인 100℃ 이상의 환경을 일정하게 유지할 수도 있다.Referring to FIG. 6, after the first cooling using the first fluid, the third fluid having a high boiling point may be continuously used and the temperature may be prevented from being lowered, thereby maintaining a constant environment of 100 ° C. or higher, which is a relatively high temperature during the cooling process. have.
도 5 및 도 6은 예시적인 냉각 과정을 설명한 것에 불과한 것으로서, 실험 설계자는 외부 온도조절 수단(도 1의 50)의 활용, 전력 공급 수단(도 1의 P1, P2)의 선택적 차단, 비점이 서로 다른 복수 유체의 사용 등을 통하여, 아임계 상태 도달 이후(반응 종료 이후)의 실험 변수를 다각화할 수 있고 나아가 다양한 실험설계를 구상할 수 있다.5 and 6 are merely illustrative of an exemplary cooling process, the experimental designer can utilize the external temperature control means (50 in FIG. 1), selective shutdown of the power supply means (P 1 , P 2 in Figure 1, boiling point Through the use of a plurality of different fluids, experimental variables after reaching the subcritical state (after completion of the reaction) can be diversified and various experimental designs can be envisioned.

Claims (14)

  1. 반응 공간을 제공하는 반응 챔버 및 교반축을 포함하는 교반기를 구비한 고온 고압 반응 장치에 있어서,In the high temperature and high pressure reaction device having a stirrer including a reaction chamber and a stirring shaft for providing a reaction space,
    외부로부터 유입된 유체가 유동할 수 있는 유체 유동로가 내부의 적어도 일 영역에 형성되어 있고 상기 반응 공간을 구획하는 반응 외벽; A reaction outer wall having a fluid flow path through which a fluid flowing from the outside flows and formed in at least one region therein and partitioning the reaction space;
    상기 반응 외벽의 적어도 일부 외측면 상에 형성되고 가열수단을 포함하는 열 공급부; 및 A heat supply unit formed on at least a part of an outer surface of the reaction outer wall and including heating means; And
    반응 시 상기 반응 챔버의 외벽과 체결되어 상기 반응 공간을 밀폐하며, 상기 교반기의 교반축이 관통 및 회전하기 위한 제1 관통로가 형성되어 있는 커버 몸체를 포함하고, When the reaction is coupled to the outer wall of the reaction chamber to seal the reaction space, the stirring shaft of the stirrer includes a cover body formed with a first through passage for penetrating and rotating,
    상기 반응 공간 내부 상태를 아임계 상태의 압력 및 온도로 변환할 수 있는 아임계 반응 장치.  A subcritical reaction device capable of converting the state inside the reaction space into the pressure and temperature of the subcritical state.
  2. 제1항에 있어서, The method of claim 1,
    상기 유체 유동로는 곡면을 포함하는 것을 특징으로 하는 아임계 반응 장치. And the fluid flow path comprises a curved surface.
  3. 제1항에 있어서, The method of claim 1,
    상기 반응 공간 내부가 아임계 상태에 도달할 때까지 상기 유체 유동로에 대한 유체 유입을 차단하고, 상기 아임계 상태 도달 이후에 상기 유체의 유입을 허용하는 것을 특징으로 하는 아임계 반응 장치.  Subcritical reaction device, characterized in that to block the flow of fluid into the fluid flow path until the interior of the reaction space reaches a subcritical state, and to allow the flow of the fluid after reaching the subcritical state.
  4. 제1항에 있어서, The method of claim 1,
    상기 반응 챔버 외부에 구비되고, 상기 유체 유입로로 유입되는 유체의 온도를 조절하는 온도 조절 수단을 더 포함하는 것을 특징으로 하는 아임계 반응 장치. Subcritical reaction apparatus is provided outside the reaction chamber, the temperature control means for adjusting the temperature of the fluid flowing into the fluid inlet.
  5. 제1항에 있어서, The method of claim 1,
    상기 반응 외벽의 일 영역에는 상기 유체 유동로로 유체가 유입될 수 있는 유체 유입구를 복수개 포함하는 것을 특징으로 하는 아임계 반응 장치. And a plurality of fluid inlets for introducing fluid into the fluid flow path in one region of the reaction outer wall.
  6. 제1항에 있어서, The method of claim 1,
    상기 열 공급부의 외측면의 적어도 일 영역에는 단열부재가 배치되어 있는 것을 특징으로 하는 아임계 반응 장치. Subcritical reaction apparatus, characterized in that the heat insulating member is disposed in at least one region of the outer surface of the heat supply.
  7. 제1항에 있어서, The method of claim 1,
    상기 커버 몸체에는 상기 반응 공간 내부의 압력을 외부로 배출하는 가스 배출관 및 가스 배출구를 포함하는 것을 특징으로 하는 아임계 반응 장치. The cover body subcritical reactor, characterized in that it comprises a gas discharge pipe and a gas discharge port for discharging the pressure inside the reaction space to the outside.
  8. 제1항에 있어서, The method of claim 1,
    상기 커버 몸체의 상면에 체결되어 있고, 상기 제1 관통로로부터 연장되고 상기 교반축의 관통 및 회전 공간으로서의 제2 관통로 및 상기 교반기의 헤드부의 회전 공간을 제공하는 회전 공동(空洞)이 형성되어 있는 헤드 몸체를 더 포함하는 것을 특징으로 하는 아임계 반응 장치. It is fastened to the upper surface of the cover body, and is formed with a rotary cavity extending from the first through passage and providing a second through passage as the through and rotating space of the stirring shaft and the rotating space of the head portion of the stirrer. Subcritical reaction device further comprises a head body.
  9. 제8항에 있어서, The method of claim 8,
    상기 헤드 몸체는 상기 커버 몸체의 상면과 직접 체결되어 고정되고 상기 교반기의 헤드부로부터 이격 배치되어 상기 교반기의 헤드부를 감싸며, 상기 교반기 헤드부와 마주보는 적어도 일 영역에 적어도 하나의 개구부가 형성되어 있는 제1 헤드 몸체; 및 The head body is directly fastened and fixed to the upper surface of the cover body and is spaced apart from the head portion of the stirrer to surround the head portion of the stirrer, at least one opening is formed in at least one region facing the stirrer head portion A first head body; And
    상기 제1 헤드 몸체의 외면에 배치되고 외부로부터 회전동력을 제공받아 회전할 수 있는 제2 헤드 몸체를 포함하는 것을 특징으로 하는 아임계 반응 장치. And a second head body disposed on an outer surface of the first head body and capable of rotating by receiving rotational power from the outside.
  10. 제9항에 있어서, The method of claim 9,
    상기 제2 헤드 몸체는 상기 개구부에 대응한 적어도 일 영역에 상기 개구부 측으로 돌출된 제2 자성체를 포함하고, The second head body includes a second magnetic body protruding toward the opening portion in at least one region corresponding to the opening portion,
    상기 교반기 헤드부는 상기 교반기 헤드부의 적어도 일 면에 상기 제2 자성체에 대응한 제1 자성체를 포함하는 것을 특징으로 하는 아임계 반응 장치.  And the stirrer head portion includes a first magnetic body corresponding to the second magnetic body on at least one surface of the stirrer head portion.
  11. 제1항에 있어서, The method of claim 1,
    상기 반응 챔버 외부에 배치되고 상기 열 공급부에 전력을 공급하는 복수개의 전력 공급수단을 더 포함하는 것을 특징으로 하는 아임계 반응 장치. And a plurality of power supply means disposed outside the reaction chamber and supplying power to the heat supply unit.
  12. 제1항의 아임계 반응 장치의 반응공간에 반응물을 투입하는 단계; Injecting a reactant into the reaction space of the subcritical reaction apparatus of claim 1;
    상기 반응 공간을 아임계 상태의 압력 및 온도가 되도록 승압 및 승온하는 아임계 반응 단계; 및 A subcritical reaction step of elevating and raising the reaction space to be a subcritical pressure and temperature; And
    상기 반응 공간의 압력을 감압하고 제1항의 유체 유동로로 제1 유체를 유입시켜 상기 반응 공간을 냉각하는 냉각 단계를 포함하는 아임계 반응 방법.  And a cooling step of reducing the pressure in the reaction space and introducing the first fluid into the fluid flow path of claim 1 to cool the reaction space.
  13. 제12항에 있어서, The method of claim 12,
    상기 제1 유체의 온도는 냉각 단계 동안 변화되도록 조절되는 것을 특징으로 하는 아임계 반응 방법. And the temperature of the first fluid is adjusted to vary during the cooling step.
  14. 제12항에 있어서, The method of claim 12,
    상기 냉각 단계에서, 상기 제1 유체의 유입 이후에 상기 제1 유체와 비점이 다른 제2 유체를 상기 유체 유동로에 유입시키는 것을 특징으로 하는 아임계 반응 방법. In the cooling step, the subcritical reaction method, characterized in that the second fluid having a boiling point different from the first fluid after the introduction of the first fluid to the fluid flow path.
PCT/KR2013/003156 2012-04-16 2013-04-15 Subcritical reactor and subcritical reaction method using same WO2013157798A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020120038871A KR101326156B1 (en) 2012-04-16 2012-04-16 Reaction machine for subcritical
KR10-2012-0038871 2012-04-16
KR1020130040970A KR101517981B1 (en) 2013-04-15 2013-04-15 Apparatus for supercritical reaction and method of supercritical reaction using the same
KR10-2013-0040970 2013-04-15

Publications (1)

Publication Number Publication Date
WO2013157798A1 true WO2013157798A1 (en) 2013-10-24

Family

ID=49383692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003156 WO2013157798A1 (en) 2012-04-16 2013-04-15 Subcritical reactor and subcritical reaction method using same

Country Status (1)

Country Link
WO (1) WO2013157798A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990046137A (en) * 1999-03-29 1999-06-25 성진현 Continuous reaction method using in-out valves of reactor
EP0974395A2 (en) * 1998-07-23 2000-01-26 Praxair Technology, Inc. Reactor system
KR20070096378A (en) * 2006-03-23 2007-10-02 (주)리메이크 Apparatus and method processing for high pressure and high temperature
KR100859200B1 (en) * 2008-04-22 2008-09-18 한국지질자원연구원 High-temperature extracting apparatus with ultrasonic waves
JP2009226357A (en) * 2008-03-25 2009-10-08 Niigata Univ Subcritical extraction apparatus
JP2011104561A (en) * 2009-11-20 2011-06-02 Tohzai Chemical Industry Co Ltd Subcritical water treatment apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0974395A2 (en) * 1998-07-23 2000-01-26 Praxair Technology, Inc. Reactor system
KR19990046137A (en) * 1999-03-29 1999-06-25 성진현 Continuous reaction method using in-out valves of reactor
KR20070096378A (en) * 2006-03-23 2007-10-02 (주)리메이크 Apparatus and method processing for high pressure and high temperature
JP2009226357A (en) * 2008-03-25 2009-10-08 Niigata Univ Subcritical extraction apparatus
KR100859200B1 (en) * 2008-04-22 2008-09-18 한국지질자원연구원 High-temperature extracting apparatus with ultrasonic waves
JP2011104561A (en) * 2009-11-20 2011-06-02 Tohzai Chemical Industry Co Ltd Subcritical water treatment apparatus

Similar Documents

Publication Publication Date Title
US5968276A (en) Heat exchange passage connection
US6059567A (en) Semiconductor thermal processor with recirculating heater exhaust cooling system
WO2011129492A1 (en) Gas injection unit and a thin-film vapour-deposition device and method using the same
CN1228910A (en) Device using microwaves to carry out large-scale chemical reactions
KR101569523B1 (en) Temperature control of stirred tank
CN208098010U (en) Agitating device with function of temperature control
WO2013157798A1 (en) Subcritical reactor and subcritical reaction method using same
CN110090576A (en) Solid-liquid mixing and heating device
WO2011043513A1 (en) Outer-wall cooling apparatus of reactor vessel
US11986870B2 (en) Reactor for the hydrothermal oxidation treatment of an organic material in a reaction medium
CN217188699U (en) POU electric heating reaction device and equipment thereof
KR101517981B1 (en) Apparatus for supercritical reaction and method of supercritical reaction using the same
CN216855380U (en) Warm air type bioreactor thermostat
CN109704529A (en) A kind of sludge hot hydrolysis device
CN210385780U (en) Small-sized high-pressure reaction kettle
CN206951190U (en) A kind of new chemical reaction kettle for being rapidly heated or cooling
WO2012070746A1 (en) Structure for cooling a combustion chamber using supplied air
WO2010114184A1 (en) Continuous extraction apparatus
CN110631982B (en) Test equipment
CN209123925U (en) A kind of temperature, pressure controllable high-voltage reaction kettle
WO2018026129A1 (en) Water cooling type surface-wave plasma generation apparatus
CN212396657U (en) Cooling and heating cylinder
CN221122284U (en) Leakage detection system for furnace detection fan and hearth of thermal power generating unit
CN214810717U (en) One-pot aerogel preparation container
WO2018128251A1 (en) Supercritical carbon dioxide multi-stage dye mixing chamber using pulse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778134

Country of ref document: EP

Kind code of ref document: A1