WO2013157563A1 - Organic electroluminescence element - Google Patents

Organic electroluminescence element Download PDF

Info

Publication number
WO2013157563A1
WO2013157563A1 PCT/JP2013/061351 JP2013061351W WO2013157563A1 WO 2013157563 A1 WO2013157563 A1 WO 2013157563A1 JP 2013061351 W JP2013061351 W JP 2013061351W WO 2013157563 A1 WO2013157563 A1 WO 2013157563A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
layer
organic
emitting layer
Prior art date
Application number
PCT/JP2013/061351
Other languages
French (fr)
Japanese (ja)
Inventor
貴宗 服部
秀雄 ▲高▼
大久保 康
池水 大
貴之 飯島
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013157563A1 publication Critical patent/WO2013157563A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Definitions

  • the present invention relates to an organic electroluminescence element. More specifically, the present invention relates to an organic electroluminescence element having high luminous efficiency and a long life, and particularly relates to an organic electroluminescence element having excellent color rendering properties and stable chromaticity even at a low driving voltage.
  • organic electroluminescence elements using organic substances are promising for use as solid light-emitting inexpensive large-area full-color display elements and writing light source arrays. Research and development is actively underway.
  • the organic EL element is composed of an organic functional layer (single layer portion or multilayer portion) having a thickness of only about 0.1 ⁇ m containing an organic light emitting material between a pair of anode and cathode formed on a film. It is a thin film type all solid state device.
  • a relatively low voltage of about 2 to 20 V is applied to such an organic EL element, electrons are injected into the organic functional layer from the cathode and holes are injected from the anode. It is known that light emission can be obtained by releasing energy as light when these electrons and holes recombine in the light emitting layer and the formed excitons return to the ground state. It is a technology that is expected as lighting.
  • quantum dots are inorganic light emitting substances as the light emitting compounds.
  • quantum dots are inorganic and have good durability and can be dispersed in various solvents, so that they can be applied to coating processes.
  • Patent Document 1 white light emission is achieved by forming quantum dots on the emission side surface of the light emitting element and supplementing the emission color of the light emitting layer by light emission that is photoexcited in a down-conversion manner.
  • the light emission lifetime depends on the light emitting layer material, and a sufficiently long lifetime has not been obtained yet.
  • Patent Document 2 achieves white light emission by using two types of quantum dots or a polymer material exhibiting fluorescence emission in combination with the hole transport layer.
  • the hole mobility of the hole transport material constituting the hole transport layer is often larger than the electron mobility of the electron transport material constituting the electron transport layer.
  • the holes supplied from the anode penetrate the light emitting layer, and there are few opportunities for recombination in the light emitting layer.
  • a method for solving these problems there is a method of installing a hole blocking layer, an electron blocking layer, and an exciton blocking layer at the interface between the light emitting layer and the adjacent layer of the light emitting layer.
  • Patent Document 3 discloses a technique in which quantum dots are used as a light emitting layer material, the hole mobility of a hole transport material forming a hole transport layer is adjusted, and an electron blocking ability is provided.
  • Patent Document 4 discloses a light emitting device having an exciton generation layer sandwiched between two quantum dot monomolecular films.
  • the present invention has been made in view of the above problems and circumstances, and the problem to be solved is to provide an organic electroluminescence device with high luminous efficiency and long life, and in particular, excellent color rendering and low driving voltage. However, it is to provide an organic electroluminescence device having stable chromaticity.
  • the present inventor has found that at least one of the interface between the light-emitting layer and the hole transport layer and the interface between the light-emitting layer and the electron transport layer.
  • the present inventors have found that the light emission efficiency, the light emission life and the color rendering properties are improved by having the quantum dots in the present invention.
  • An organic electroluminescence device having at least an anode, a hole transport layer, a light-emitting layer containing a phosphorescent compound, an electron transport layer, and a cathode, wherein the interface between the light-emitting layer and the hole transport layer and the light emission
  • An organic electroluminescence device comprising a quantum dot on at least one of an interface between a layer and the electron transport layer.
  • quantum dots are made of at least Si, Ge, GaN, GaP, CdS, CdSe, CdTe, InP, InN, ZnS, In 2 S 3 , ZnO, CdO, or a mixture thereof.
  • the organic electroluminescent element according to any one of the items.
  • R 1 represents a substituent.
  • Z represents a group of nonmetallic atoms necessary to form a 5- to 7-membered ring.
  • N1 represents an integer of 0 to 5.
  • B 1 to B 5 represents a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, at least one represents a nitrogen atom, M 1 represents a group 8 to group 10 metal in the periodic table, and
  • X 1 and X 2 represent carbon Represents an atom, a nitrogen atom or an oxygen atom
  • L 1 represents an atomic group forming a bidentate ligand with X 1 and X 2
  • m1 represents an integer of 1, 2 or 3
  • m2 represents 0, (It represents an integer of 1 or 2, m1 + m2 is 2 or 3.) 8).
  • the light emitting layer contains a host compound represented by the following general formula (2).
  • X represents NR ′, O, S, CR′R ′′, or SiR′R ′′.
  • R ′ and R ′′ each represents a hydrogen atom or a substituent.
  • Ar 1 and Ar 2 represents an aromatic ring, which may be the same or different, and n represents an integer of 0 to 4.
  • X in the said General formula (2) represents an oxygen atom,
  • an organic electroluminescence device having a high luminous efficiency and a long lifetime, and particularly to provide an organic electroluminescence device having excellent color rendering properties and stable chromaticity even at a low driving voltage. it can.
  • the quantum dots are considered to function as a blocking layer that prevents electrons and holes from passing through the light emitting layer.
  • Schematic sectional view showing an example of the configuration of the organic electroluminescence element of the present invention Schematic sectional view showing a modification of FIG.
  • the organic electroluminescent device of the present invention is an organic electroluminescent device having at least an anode, a hole transport layer, a light-emitting layer containing a phosphorescent compound, an electron transport layer and a cathode, and the light-emitting layer and the positive electrode. Quantum dots are included in at least one of the interface with the hole transport layer and the interface between the light emitting layer and the electron transport layer. This feature is a technical feature common to the inventions according to claims 1 to 9.
  • the present invention from the viewpoint of manifesting the effect of the present invention, it is preferable to have quantum dots at both the interface between the light emitting layer and the hole transport layer and the interface between the light emitting layer and the electron transport layer. preferable.
  • the bandgap of the phosphorescent compound is 0.1 eV or more smaller than the bandgap of the quantum dots.
  • the light-emitting layer contains a host compound, and the bandgap of the host compound is The effect of the present invention is further enhanced by being larger than the band gap of the dots by 0.1 eV or more.
  • the quantum dots are at least Si, Ge, GaN, GaP, CdS, CdSe, CdTe, InP, InN, ZnS, In 2 S 3 , ZnO, CdO, or a mixture thereof. Preferably it consists of.
  • the average particle diameter of the quantum dots is preferably in the range of 1 to 20 nm.
  • the phosphorescent compound contained in the light emitting layer is preferably represented by the general formula (1).
  • the light emitting layer preferably contains a host compound represented by the general formula (2), and X in the general formula (2) is oxygen. Preferably it represents an atom.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • quantum dots are semiconductor microcrystals with a diameter of several to several tens of nanometers that are formed to confine electrons (and holes) in a minute space and exhibit a quantum size effect. Say crystals.
  • band gap of quantum dots refers to the energy difference (energy gap) between the valence band and conduction band of quantum dots.
  • the band gap of the host compound, dopant compound, etc. refers to the energy difference (energy gap) between the energy level of the highest occupied molecular orbital (HOMO) and the energy level of the lowest unoccupied molecular orbital (LUMO).
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the organic electroluminescence element of the present invention.
  • an organic electroluminescence element 100 (hereinafter also referred to as an organic EL element) according to a preferred embodiment of the present invention has a flexible support substrate 1.
  • An anode 2 is formed on the flexible support substrate 1
  • an organic functional layer 20 is formed on the anode 2
  • a cathode 8 is formed on the organic functional layer 20.
  • the organic functional layer 20 refers to each layer constituting the organic electroluminescence element 100 provided between the anode 2 and the cathode 8.
  • the organic functional layer 20 includes, for example, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, an electron injection layer 7, and in addition, a hole block layer, an electron block layer, and the like. May be included.
  • the anode 2, the organic functional layer 20, and the cathode 8 on the flexible support substrate 1 are sealed with a flexible sealing member 10 through a sealing adhesive 9.
  • the layer structure (refer FIG. 1) of the organic electroluminescent element 100 shows only the preferable specific example, and this invention is not limited to this.
  • the organic EL device of the present invention may have the following layer structures (i) to (viii).
  • injection layer hole injection layer, electron injection layer
  • the injection layer can be provided as necessary.
  • the injection layer there are an electron injection layer and a hole injection layer.
  • the injection layer may exist between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer.
  • the injection layer referred to in the present invention is a layer provided between the electrode and the organic functional layer in order to lower the driving voltage and improve the light emission luminance.
  • the organic EL element and its industrialization front line June 30, 1998, NT. The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “S.
  • Injection materials include triazole derivatives, oxadiazole derivatives, imidazole derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives.
  • the details of the electron injection layer are described in, for example, JP-A-6-325871, JP-A-9-17574, and JP-A-10-74586, and specific examples thereof include strontium and aluminum.
  • the buffer layer (injection layer) is desirably a very thin film, and potassium fluoride and sodium fluoride are preferable.
  • the film thickness is about 0.1 nm to 5 ⁇ m, preferably 0.1 to 100 nm, more preferably 0.5 to 10 nm, and most preferably 0.5 to 4 nm.
  • hole transport layer As the hole transport material constituting the hole transport layer, the same compounds as those applied in the hole injection layer can be used, but further, porphyrin compounds, aromatics It is preferable to use a tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • polymer materials in which these materials are introduced into polymer chains or these materials are used as polymer main chains can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can do.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • This hole transport layer may have a single layer structure composed of one or more of the above materials.
  • n described in the above exemplary compounds represents the degree of polymerization and represents an integer having a weight average molecular weight in the range of 50,000 to 200,000.
  • the weight average molecular weight is 50,000 or more, there is no concern of mixing with other layers during film formation due to solubility in a solvent. Also, the luminous efficiency is good.
  • the weight average molecular weight is 200,000 or less, synthesis and purification are easy. The emission efficiency, voltage, and life of the organic EL element are not deteriorated by the impurities.
  • Electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material used for an electron transport layer adjacent to the cathode side with respect to the light emitting layer is injected from the cathode.
  • any material can be selected and used from among conventionally known compounds.
  • fluorene derivatives, carbazole derivatives, azacarbazole And metal complexes such as derivatives, oxadiazole derivatives, triazole derivatives, silole derivatives, pyridine derivatives, pyrimidine derivatives, 8-quinolinol derivatives, and the like.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • carbazole derivatives azacarbazole derivatives, pyridine derivatives and the like are preferable in the present invention, and more preferably an azacarbazole derivative.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a spin coating method, a casting method, a printing method including an ink jet method, an LB method, and the like, preferably It can be formed by a wet process using a coating solution containing an electron transport material and a fluorinated alcohol solvent.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • n-type electron transport layer doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer in the present invention preferably contains an organic alkali metal salt.
  • organic alkali metal salt there are no particular restrictions on the type of organic substance, but formate, acetate, propionic acid, butyrate, valerate, caproate, enanthate, caprylate, oxalate, malonate, succinate Benzoate, phthalate, isophthalate, terephthalate, salicylate, pyruvate, lactate, malate, adipate, mesylate, tosylate, benzenesulfonate , Preferably formate, acetate, propionate, butyrate, valerate, caprate, enanthate, caprylate, oxalate, malonate, succinate, benzoate, more preferably Is preferably an alkali metal salt of an aliphatic carboxylic acid such as formate, acetate, propionate or butyrate, and the aliphatic carboxylic acid preferably has 4
  • the type of alkali metal of the organic alkali metal salt is not particularly limited, and examples thereof include Na, K, and Cs, preferably K, Cs, and more preferably Cs.
  • the alkali metal salt of the organic substance include a combination of the organic substance and the alkali metal, preferably, formic acid Li, formic acid K, formic acid Na, formic acid Cs, acetic acid Li, acetic acid K, Na acetate, acetic acid Cs, propionic acid Li, Propionic acid Na, propionic acid K, propionic acid Cs, oxalic acid Li, oxalic acid Na, oxalic acid K, oxalic acid Cs, malonic acid Li, malonic acid Na, malonic acid K, malonic acid Cs, succinic acid Li, succinic acid Na, succinic acid K, succinic acid Cs, benzoic acid Li, benzoic acid Na, benzoic acid K, benzoic acid Cs, more preferably Li
  • the content of these dope materials is preferably 1.5 to 35% by mass, more preferably 3 to 25% by mass, and most preferably 5 to 15% by mass with respect to the electron transport layer to be added.
  • the light emitting layer constituting the organic EL device of the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer.
  • the light emitting layer according to the present invention is not particularly limited in its configuration as long as the phosphorescent compound contained therein satisfies the above requirements.
  • the total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably 50 nm or less because a lower driving voltage can be obtained.
  • the sum total of the film thickness of the light emitting layer as used in this invention is a film thickness also including the said intermediate
  • the film thickness of each light emitting layer is preferably adjusted in the range of 1 to 50 nm.
  • the individual light emitting layers may emit blue, green, and red colors, and there is no particular limitation on the film thickness relationship of each light emitting layer.
  • a light emitting compound or a host compound is formed by forming a film by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. Can do.
  • a plurality of phosphorescent compounds may be mixed in each light emitting layer, or a phosphorescent compound and a fluorescent compound may be mixed and used in the same light emitting layer.
  • the structure of the light emitting layer preferably contains a host compound and a phosphorescent compound and emits light from the phosphorescent compound.
  • (4.1) Host compound As the host compound contained in the light emitting layer of the organic EL device of the present invention, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
  • known host compounds may be used alone or in combination of two or more.
  • the organic EL element can be made highly efficient.
  • the host compound used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (polymerizable host).
  • Compound may be used, but when a polymer material is used, since the compound is likely to take up the solvent and swell or gelate, the phenomenon that the solvent is unlikely to escape is likely to occur.
  • it is preferable to use a material having a molecular weight of 2,000 or less at the time of application and it is more preferable to use a material having a molecular weight of 1,000 or less at the time of application.
  • the known host compound a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
  • the glass transition point (Tg) is a value obtained by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • the host compound is preferably a compound represented by the general formula (2).
  • X represents NR ′, O, S, CR′R ′′ or SiR′R ′′.
  • R ′ and R ′′ each represent a hydrogen atom or a substituent.
  • Ar 1 and Ar 2 each represent an aromatic ring, which may be the same or different.
  • N represents an integer of 0 to 4.
  • the substituents represented by R ′ and R ′′ are each an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a t-butyl group, a pentyl group, a hexyl group).
  • cycloalkyl group eg cyclopentyl group, cyclohexyl group etc.
  • alkenyl group eg vinyl group, allyl group etc.
  • alkynyl group eg Ethynyl group, propargyl group, etc.
  • aromatic hydrocarbon ring group also called aromatic carbocyclic group, aryl group, etc.
  • phenyl group, p-chlorophenyl group mesityl group, tolyl group, xylyl group, naphthyl group, Anthryl, azulenyl, acenaphthenyl, fluorenyl, phenanthryl, indenyl, pyreth Group, biphenylyl group, etc.
  • aromatic heterocyclic group for example, pyrid
  • Fluoromethyl group trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.
  • cyano group nitro group, hydroxy group, mercapto group
  • silyl group for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group
  • phenyldiethylsilyl group etc.
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • X is preferably NR ′ or O, and more preferably, X is O, that is, the host compound used in the present invention is a dibenzofuran derivative.
  • R ′ is also referred to as an aromatic hydrocarbon group (aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, Azulenyl, acenaphthenyl, fluorenyl, phenanthryl, indenyl, pyrenyl, biphenylyl) or aromatic heterocyclic groups (eg furyl, thienyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl) Group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, phthalazinyl group, etc.) are particularly preferred.
  • aromatic hydrocarbon group aromatic hydrocarbon group
  • aryl group, etc. for example, pheny
  • aromatic hydrocarbon group and aromatic heterocyclic group may each have a substituent represented by R ′ or R ′′ in X of the general formula (2).
  • examples of the aromatic ring represented by Ar 1 and Ar 2 include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the aromatic ring may be a single ring or a condensed ring, and may be unsubstituted or may have a substituent represented by R ′ and R ′′ in X of the general formula (2).
  • the aromatic hydrocarbon ring represented by Ar 1 and Ar 2 is a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring.
  • Triphenylene ring Triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring , Pyrene ring, pyranthrene ring, anthraanthrene ring and the like.
  • These rings may further have substituents each represented by R ′ and R ′′ in X of the partial structure represented by the general formula (2).
  • examples of the aromatic heterocycle represented by Ar 1 and Ar 2 include a furan ring, a dibenzofuran ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, and a pyridazine.
  • the substituted ring For example).
  • These rings may further have substituents represented by R ′ and R ′′ in the general formula (2).
  • the aromatic ring represented by Ar 1 and Ar 2 is preferably a carbazole ring, carboline ring, dibenzofuran ring, or benzene ring, and more preferably used.
  • the aromatic rings represented by Ar 1 and Ar 2 are each preferably a condensed ring of 3 or more rings, and as an aromatic hydrocarbon condensed ring in which 3 or more rings are condensed.
  • aromatic heterocycle condensed with three or more rings include an acridine ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a carboline ring, a cyclazine ring, Kindin ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (any one of the carbon atoms constituting the carboline ring is a nitrogen atom Phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring, benzodifuran ring, benzod
  • n represents an integer of 0 to 4, preferably 0 to 2, and particularly preferably 1 to 2 when X is O or S.
  • a host compound having both a dibenzofuran ring and a carbazole ring is particularly preferable.
  • a phosphorescent compound As the luminescent compound (also referred to as a luminescent dopant) according to the present invention, at least a phosphorescent compound (also referred to as a phosphorescent compound) is contained in the light emitting layer.
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed, specifically a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of 25. Although it is defined as a compound of 0.01 or more at ° C., a preferable phosphorescence quantum yield is 0.1 or more.
  • the above phosphorescence quantum yield can be measured by the method described in Spectra II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence quantum yield (0.01 or more) should just be achieved in any solvent.
  • phosphorescent compounds There are two types of light emission principles of phosphorescent compounds. One is the recombination of carriers on the host compound to which carriers are transported, generating an excited state of the host compound, and this energy is phosphorescent. Transfer energy to the compound to obtain light emission from the phosphorescent compound. Another is the phosphorescent compound becomes a carrier trap, and recombination of carriers occurs on the phosphorescent compound, resulting in phosphorescence. Although it is a carrier trap type in which light emission from the light emitting compound can be obtained, in any case, the excited state energy of the phosphorescent light emitting compound is lower than the excited state energy of the host compound.
  • the phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of the organic EL device, and preferably a complex system containing a metal of group 8 to 10 in the periodic table of elements.
  • a compound more preferably an iridium compound, an osmium compound, a platinum compound (platinum complex compound), or a rare earth complex, and most preferably an iridium compound.
  • the phosphorescent compound according to this embodiment preferably includes at least one blue phosphorescent compound. More preferably, it contains at least one blue phosphorescent compound and at least one phosphorescent compound having a band gap energy lower than that of the blue phosphorescent compound.
  • the phosphorescent compound a known compound can be used, but preferably a metal complex having a pyridine derivative as a ligand (phosphorescent compound) or phosphorescence represented by the general formula (1)
  • the luminescent compound can be increased. More preferably, it is a phosphorescent compound represented by the general formula (1).
  • R 1 represents a substituent.
  • Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
  • n1 represents an integer of 0 to 5.
  • B 1 to B 5 represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one represents a nitrogen atom.
  • M 1 represents a group 8 to group 10 metal in the periodic table.
  • X 1 and X 2 represent a carbon atom, a nitrogen atom or an oxygen atom, and L 1 represents an atomic group which forms a bidentate ligand together with X 1 and X 2 .
  • m1 represents an integer of 1, 2, or 3
  • m2 represents an integer of 0, 1, or 2
  • m1 + m2 is 2 or 3.
  • the phosphorescent compound represented by the general formula (1) according to the present invention has a HOMO energy level of ⁇ 5.15 to ⁇ 3.50 eV and a LUMO energy level of ⁇ 1.25 to +1.00 eV. More preferably, the energy level of HOMO is ⁇ 4.80 to ⁇ 3.50 eV, and the energy level of LUMO is preferably ⁇ 0.80 to +1.00 eV.
  • examples of the substituent represented by R 1 include an alkyl group (eg, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group).
  • Pentyl group hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.
  • cycloalkyl group for example, cyclopentyl group, cyclohexyl group, etc.
  • alkenyl group for example, vinyl group, allyl group, etc.
  • Alkynyl group eg, ethynyl group, propargyl group, etc.
  • aromatic hydrocarbon ring group also called aromatic carbocyclic group, aryl group, etc.
  • phenyl group, p-chlorophenyl group mesityl group, tolyl group, xylyl Group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, Ndenyl group, pyrenyl
  • Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
  • the 5- to 7-membered ring formed by Z include a benzene ring, naphthalene ring, pyridine ring, pyrimidine ring, pyrrole ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring and thiazole ring. Of these, a benzene ring is preferred.
  • B 1 to B 5 represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one represents a nitrogen atom.
  • the aromatic nitrogen-containing heterocycle formed by these five atoms is preferably a monocycle. Examples include pyrrole ring, pyrazole ring, imidazole ring, triazole ring, tetrazole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, oxadiazole ring, and thiadiazole ring.
  • a pyrazole ring and an imidazole ring are preferable, and an imidazole ring in which B2 and B5 are nitrogen atoms is particularly preferable.
  • These rings may be further substituted with the above substituents.
  • Preferred as the substituent are an alkyl group and an aryl group, and more preferably an aryl group.
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • Specific examples of the bidentate ligand represented by X 1 -L 1 -X 2 include, for example, substituted or unsubstituted phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, picolinic acid And acetylacetone. These groups may be further substituted with the above substituents.
  • n1 represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • m1 + m2 is 2 or 3.
  • the case where m2 is 0 is preferable.
  • the metal represented by M 1 a transition metal element belonging to Group 8 to 10 of the periodic table (also simply referred to as a transition metal) is used, among which iridium and platinum are preferable, and iridium is more preferable.
  • Quantum dot In this invention, it has a quantum dot in at least any one of the interface of a light emitting layer and the said positive hole transport layer, and the interface of the said light emitting layer and the said electron transport layer.
  • quantum dots are semiconductor microcrystals having a diameter of several to several tens of nanometers formed to confine electrons (and holes) in a minute space and exhibit a quantum size effect. .
  • the quantum dot When the quantum dot is present at the interface between the light emitting layer and the hole transport layer, it functions as a hole blocking layer. When the quantum dot is present at the interface between the light emitting layer and the electron transport layer, the electron blocking layer is used. Function as. In the present invention, the quantum dots function as a block layer.
  • the light emission is preferably made from a phosphorescent compound, but does not prevent light emission from the quantum dots.
  • the quantum dots may exist at the interface between the light emitting layer and the hole transport layer as shown in FIG. 1, or may exist at the interface between the light emitting layer and the electron transport layer as shown in FIG. .
  • the quantum dot exists in the interface of a light emitting layer and a positive hole transport layer. This seems to be because holes have a higher mobility than electrons and effectively prevent holes from penetrating through the light emitting layer.
  • you may exist in the interface of both the light emitting layer and the layer adjacent to a light emitting layer.
  • the interface refers to a boundary surface between the light emitting layer and the hole transport layer or the light emitting layer and the electron transport layer, and the quantum dot exists in contact with the light emitting layer and the hole transport layer or the light emitting layer and the electron transport layer.
  • the quantum dot becomes a monomolecular layer, and a monomolecular layer may be formed between the light emitting layer and the hole transporting layer or between the light emitting layer and the electron transporting layer, which is a preferred embodiment.
  • the quantum dots are preferably uniformly dispersed at the interface.
  • the quantum dots are embedded in the light emitting layer, the hole transport layer, or the electron transport layer, the function as a block layer is effective. It becomes difficult and is not preferable.
  • the presence at the interface can be observed using a cross-sectional SEM (scanning electron microscope) or a transmission electron microscope (TEM).
  • the light emission efficiency of the organic EL element by having quantum dots at least at the interface between the hole transport layer or the electron transport layer adjacent to the light emitting layer, the light emission efficiency of the organic EL element, the low driving voltage and the long lifetime can be achieved.
  • the quantum dots are considered to function as a blocking layer that prevents electrons and holes from passing through the light emitting layer.
  • the band gap of the host compound in the light emitting layer is larger than the band gap of the quantum dots.
  • the band gap of the host compound is preferably 0.1 eV or more larger than the band gap of the quantum dots.
  • the band gap of the phosphorescent compound in the light emitting layer is preferably smaller than the band gap of the quantum dots.
  • the band gap of the phosphorescent compound is preferably 0.1 eV or more smaller than the band gap of the quantum dots.
  • the band gap of the host compound and the band gap of the phosphorescent compound are the energy between the energy level of the highest occupied molecular orbital (HOMO) and the energy level of the lowest unoccupied molecular orbital (LUMO). Difference (energy gap).
  • the band gap of a quantum dot means the energy difference (energy gap) of the valence band and conduction band of a quantum dot.
  • a band gap measuring method will be described.
  • Tauc plot which is known as one of photochemical measurement techniques, is used for band gap measurement.
  • the present invention is not limited to this method as long as a physically equivalent characteristic value can be obtained.
  • the measurement principle of band gap energy (E 0 ) using Tauc plot is shown below.
  • Observation of light absorption can be performed in a wavelength range of 350 to 800 nm using an ultraviolet-visible near-infrared spectrophotometer (“V-7200 type”, manufactured by JASCO Corporation). It can be measured by a transmission method using a sample thin film.
  • V-7200 type ultraviolet-visible near-infrared spectrophotometer
  • Quantum dots are particles of a predetermined size having a quantum confinement effect.
  • the particle diameter of the quantum dots is preferably 1 to 20 nm, and more preferably 1 to 10 nm.
  • the energy level E of such a fine particle is generally expressed by the formula (II) where the Planck constant is “h”, the effective mass of the electron is “m”, and the radius of the fine particle is “R”. .
  • Formula (II) E ⁇ h 2 / mR 2 As shown by the formula (II), the band gap of the fine particles increases in proportion to “R ⁇ 2 ”, and the so-called quantum dot effect is obtained.
  • the band gap value of a quantum dot can be controlled by controlling and defining the particle diameter of the quantum dot. That is, by controlling and defining the particle diameter of the fine particles, it is possible to provide diversity not found in ordinary atoms.
  • the block layer preferably has a wide band gap.
  • the particle size of the quantum dots is preferably 1 to 20 nm, more preferably 1 to 10 nm, and particularly preferably 1 to 3 nm.
  • a specific band gap is preferably in the range of 1.8 eV to 3.2 eV, more preferably 2.2 eV to 3.0 eV, and most preferably 2.6 eV to 3.0 eV.
  • the quantum dot particles are observed with a transmission electron microscope (TEM), and the number average particle size of the particle size distribution is obtained therefrom, or the particle size distribution of the quantum dots is measured by a dynamic light scattering method.
  • TEM transmission electron microscope
  • examples thereof include a method for obtaining the number average particle size and a method for deriving the particle size distribution from the spectrum obtained by the X-ray small angle scattering method using the particle size distribution simulation calculation of the quantum dots.
  • the particle size was measured by a dynamic scattering method using a particle size measuring device (“ZETASIZER Nano Series Nano-ZS” manufactured by Malvern).
  • Examples of the constituent material of the quantum dot include a simple substance of a group 14 element of the periodic table such as carbon, silicon, germanium, and tin, a simple substance of a group 15 element of the periodic table such as phosphorus (black phosphorus), and a periodicity of selenium, tellurium, and the like.
  • Table 16 group element simple substance, compound consisting of a plurality of periodic table group 14 elements such as silicon carbide (SiC), tin oxide (IV) (SnO 2 ), tin sulfide (II, IV) (Sn (II) Sn (IV) S 3 ), tin sulfide (IV) (SnS 2 ), tin sulfide (II) (SnS), tin selenide (II) (SnSe), tin telluride (II) (SnTe), lead sulfide (II) ) (PbS), lead selenide (II) (PbSe), lead telluride (II) (PbTe) periodic table group 14 element and periodic table group 16 element compound, boron nitride (BN), phosphorus Boron bromide (BP), boron arsenide (BAs), aluminum nitride (AlN), Aluminum nitride (AlP
  • arsenic sulfide (III) arsenic sulfide (III) (as 2 S 3), selenium arsenic (III) (as 2 Se 3 Telluride arsenic (III) (As 2 Te 3 ), antimony sulfide (III) (Sb 2 S 3 ), selenium antimony (III) (Sb 2 Se 3 ), antimony telluride (III) (Sb 2 Te 3 ), Bismuth sulfide (III) (Bi 2 S 3 ), bismuth selenide (III) (Bi 2 Se 3 ), bismuth telluride (III) (Bi 2 Te 3 ), etc.
  • the compounds of the group 16 element copper oxide (I) (Cu 2 O) , copper selenide (I) (Cu 2 Se) periodic table compounds of the group 11 element and periodic table group 16 element such as, chloride Periodic table Group 11 elements and periods such as copper (I) (CuCl), copper bromide (I) (CuBr), copper iodide (I) (CuI), silver chloride (AgCl), silver bromide (AgBr)
  • a compound with a group 17 element, a periodic table such as nickel (II) oxide (NiO), a group 10 element and a periodic table first The compounds of the group elements, cobalt oxide (II) (CoO), compounds of cobalt sulfide (II) (CoS) periodic table Group 9 element and Periodic Table Group 16 element such as, triiron tetraoxide (Fe 3 O 4 ), compounds of Group 8 elements of the periodic table such as iron (II) sulfide (FeS), and elements of Group 16 of the periodic
  • ZnO, ZnS, CdO, CdS are more preferable. . Since these substances do not contain highly toxic negative elements, they are excellent in environmental pollution resistance and biological safety, and are advantageous for the formation of light-emitting elements. Of these materials, CdSe, ZnSe, and CdS are preferable in terms of light emission stability. From the viewpoints of luminous efficiency, high refractive index, and safety, ZnO and ZnS quantum dots are preferable. Moreover, said material may be used by 1 type and may be used in combination of 2 or more type.
  • quantum dots may be doped with a small amount of various elements as impurities as necessary.
  • the surface of the quantum dot is preferably coated with an inert inorganic coating layer or a coating composed of an organic ligand. That is, the surface of the quantum dot preferably has a core region composed of quantum dots and a shell region composed of an inert inorganic coating layer or organic ligand.
  • the core / shell structure is preferably formed of at least two types of compounds, and a gradient structure may be formed of two or more types of compounds. This effectively prevents aggregation of the quantum dots in the coating liquid, improves the dispersibility of the quantum dots, improves the luminance efficiency, and prevents color shifts that occur when driven continuously. Can be suppressed. Further, the light emission characteristics can be stably obtained by the presence of the coating layer.
  • the thickness of the coating is not particularly limited, but is preferably 0.1 to 10 nm, and more preferably 0.1 to 5 nm. In general, if the emission color can be controlled by the size of the quantum dots and the thickness of the coating is within the above range, the thickness of the coating is less than one quantum dot from the thickness corresponding to several atoms. Thus, quantum dots can be filled with high density, and a sufficient amount of light emission can be obtained. Further, the presence of the coating can suppress the transfer of non-emissive electron energy due to the defects existing on the particle surfaces of the core particles and the electron traps on the dangling bonds, and the decrease in quantum efficiency can be suppressed.
  • the surface modifier has adhered to the surface vicinity of the quantum dot in the coating liquid. Thereby, especially the dispersibility of the quantum dot in a coating liquid can be made excellent. Also, by attaching a surface modifier to the surface of the quantum dots during the manufacture of the quantum dots, the shape of the formed quantum dots has a high sphericity, and the particle size distribution of the quantum dots can be kept narrow. Therefore, for example, it can be made particularly excellent.
  • These functional surface modifiers may be those directly attached to the surface of the quantum dot, or those attached via the shell (the surface modifier is directly attached to the shell, It may be that which is not in contact.
  • the surface modifier examples include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether; tripropylphosphine, tributylphosphine, trihexylphosphine, trioctylphosphine, and the like.
  • Trialkylphosphines polyoxyethylene alkylphenyl ethers such as polyoxyethylene n-octylphenyl ether and polyoxyethylene n-nonylphenyl ether; tri (n-hexyl) amine, tri (n-octyl) amine, tri ( tertiary amines such as n-decyl) amine; tripropylphosphine oxide, tributylphosphine oxide, trihexylphosphine oxide, trioctylphosphineoxy Organic phosphorus compounds such as tridecylphosphine oxide; polyethylene glycol diesters such as polyethylene glycol dilaurate and polyethylene glycol distearate; organic nitrogen compounds such as nitrogen-containing aromatic compounds such as pyridine, lutidine, collidine and quinolines; hexylamine; Aminoalkanes such as octylamine, decylamine, dodecyl
  • the surface modifier is coordinated to the fine particles in the high-temperature liquid phase.
  • trialkylphosphines, organic phosphorus compounds, aminoalkanes, tertiary amines, organic nitrogen compounds, dialkyl sulfides, dialkyl sulfoxides, organic sulfur compounds Higher fatty acids and alcohols are preferred.
  • the dispersibility of the quantum dots in the coating solution can be made particularly excellent.
  • the shape of the quantum dot formed at the time of manufacture of a quantum dot can be made into a higher sphericity, and the particle size distribution of a quantum dot can be made sharper.
  • an aqueous raw material is used, for example, alkanes such as n-heptane, n-octane, isooctane, or benzene, toluene.
  • Inverted micelles which exist as reverse micelles in non-polar organic solvents such as aromatic hydrocarbons such as xylene, and crystal growth in this reverse micelle phase, inject a thermally decomposable raw material into a high-temperature liquid-phase organic medium
  • examples thereof include a hot soap method for crystal growth and a solution reaction method involving crystal growth at a relatively low temperature using an acid-base reaction as a driving force, as in the hot soap method.
  • any method can be used from these production methods, and among these, the liquid phase production method is preferable.
  • an organic surface modifier present on the surface during the synthesis of quantum dots is referred to as an initial surface modifier.
  • examples of the initial surface modifier in the hot soap method include trialkylphosphines, trialkylphosphine oxides, alkylamines, dialkyl sulfoxides, alkanephosphonic acid and the like. These initial surface modifiers are preferably exchanged for the above-described functional surface modifiers by an exchange reaction.
  • the initial surface modifier such as trioctylphosphine oxide obtained by the above-described hot soap method is obtained by performing the functional surface modification described above by an exchange reaction performed in a liquid phase containing the functional surface modifier. It is possible to replace it with an agent.
  • the following shows an example of a method for producing quantum dots.
  • n-octanethiol added to TOA (210 ⁇ l in 6 ml) is injected at a rate of 1 ml / min using a syringe pump and reacted for 40 minutes.
  • a 16 ml aliquot of Zn-oleic acid solution (heated at 100 ° C.) is injected into the Cd-containing reaction medium at a rate of 2 ml / min.
  • 6.4 mmol of n-octanethiol in TOA (1.12 ml in 6 ml) is injected at a rate of 1 ml / min using a syringe pump.
  • TOPO fixed quantum dots nanoparticles with CdSe nanocrystals with TOPO fixed on the surface and ZnS as the core.
  • the quantum dot of this state is soluble in organic solvents, such as toluene and tetrahydrofuran (THF).
  • the prepared TOPO fixed quantum dots were dissolved in THF, heated to 85 ° C., and N-[(S) -3-mercapto-2-methylpropionyl] -L-proline (Sigma) dissolved in ethanol there. (Aldrich) 100 mg was added dropwise and refluxed for about 12 hours. After refluxing for 12 hours, an aqueous NaOH solution was added, and the mixture was heated at 90 ° C. for 2 hours to evaporate THF.
  • the obtained unpurified quantum dots are purified and concentrated using ultrafiltration (Millipore, “Microcon”) and Sephadex column (Amersham Biosciences, “MicroSpin G-25 Columns”).
  • a hydrophilic quantum dot in which N-[(S) -3-mercapto-2-methylpropionyl] -L-proline is immobilized on the surface of the quantum dot can be produced.
  • Quantum Dot Formation Method Quantum separated from various material layers by applying a mixture of materials such as hole transport materials, electron transport materials, light emitting layer materials and quantum dots by spin coating. A dot layer can be formed at the interface.
  • a dry method such as a microcontact printing method that transfers a self-assembled monolayer onto a substrate using a patterned PDMS (polydimethylsiloxane) stamp or the like, or a coating solution containing quantum dots Examples of the method include spin coating.
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode substances include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a desired shape pattern may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 ⁇ m or more)
  • a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually in the range of 10 to 1000 nm, preferably in the range of 10 to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture
  • Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or translucent cathode can be produced by forming the above metal on the cathode with a film thickness of 1 to 20 nm and then forming the conductive transparent material mentioned in the description of the anode thereon.
  • an organic EL element in which both the anode and the cathode are transmissive can be produced.
  • the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. Since the effect of suppressing high-temperature storage stability and chromaticity variation appears greatly in a flexible substrate than a rigid substrate, a particularly preferable support substrate has flexibility that can give flexibility to an organic EL element. Resin film.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (
  • the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992. , And a relative humidity (90 ⁇ 2)% RH) of 0.01 g / (m 2 ⁇ 24 h) or less is preferable, and oxygen permeability measured by a method according to JIS K 7126-1987 is also preferable.
  • the film is preferably a high barrier film having a degree of 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less and a water vapor permeability of 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less. More preferably, the degree is 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less.
  • any material may be used as long as it has a function of suppressing intrusion of factors that cause deterioration of the organic EL element such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like is used. Can do.
  • the method for forming the barrier film is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction efficiency of light emission at room temperature is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
  • Sealing sealing adhesive, sealing member
  • a sealing means applicable to the organic EL element of the present invention for example, a method of adhering a sealing member, an electrode, and a support substrate with an adhesive can be mentioned.
  • a sealing member it should just be arrange
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicone, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less, according to JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by the above method is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. Can be mentioned. Moreover, heat
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable. Further, a desiccant may be dispersed in the adhesive. Application
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • vacuum deposition method sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma
  • a polymerization method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, an inert gas such as fluorinated hydrocarbon or silicon oil is used. It is preferable to inject a liquid. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • Sealing includes casing type sealing (can sealing) and close contact type sealing (solid sealing), but solid sealing is preferable from the viewpoint of thinning. Moreover, when producing a flexible organic EL element, since sealing is also required for the sealing member, solid sealing is preferable.
  • thermosetting adhesive an ultraviolet curable resin, or the like
  • a thermosetting adhesive such as an epoxy resin, an acrylic resin, or a silicone resin, more preferably moisture resistant. It is an epoxy thermosetting adhesive resin that is excellent in water resistance and water resistance and has little shrinkage during curing.
  • the water content of the sealing adhesive according to the present invention is preferably 300 ppm or less, more preferably 0.01 to 200 ppm, and most preferably 0.01 to 100 ppm.
  • the moisture content referred to in the present invention may be measured by any method. For example, a volumetric moisture meter (Karl Fischer), an infrared moisture meter, a microwave transmission moisture meter, a heat-dry weight method, GC / MS , IR, DSC (differential scanning calorimeter), TDS (temperature programmed desorption analysis). Further, using a precision moisture meter AVM-3000 (Omnitech) or the like, moisture can be measured from a pressure increase caused by evaporation of moisture, and moisture content of a film or a solid film can be measured.
  • the moisture content of the sealing adhesive can be adjusted by, for example, placing it in a nitrogen atmosphere with a dew point temperature of ⁇ 80 ° C. or lower and an oxygen concentration of 0.8 ppm, and changing the time. Further, it can be dried in a vacuum state of 100 Pa or less while changing the time. Further, the sealing adhesive can be dried only with an adhesive, but can also be placed in advance on the sealing member and dried.
  • the sealing member for example, a 50 ⁇ m thick PET (polyethylene terephthalate) laminated with an aluminum foil (30 ⁇ m thick) is used. Using this as a sealing member, it is uniformly applied to the aluminum surface using a dispenser, a sealing adhesive is placed in advance, the resin substrate 1 and the sealing member 5 are aligned, and then both are crimped ( 0.1-3 MPa) and a temperature of 80-180 ° C. for close contact / bonding (adhesion), and close sealing (solid sealing).
  • Heating or pressure bonding time varies depending on the type, amount, and area of the adhesive, but temporary bonding is performed at a pressure of 0.1 to 3 MPa, and heat curing time is in the range of 5 seconds to 10 minutes at a temperature of 80 to 180 ° C. Just choose.
  • the use of a heated crimping roll is preferred because it allows simultaneous crimping (temporary bonding) and heating, and eliminates internal voids at the same time.
  • a coating method such as roll coating, spin coating, screen printing, or spray coating, or a printing method can be used depending on the material.
  • solid sealing is a form in which there is no space between the sealing member and the organic EL element substrate and the resin is covered with a cured resin.
  • the sealing member include metals such as stainless steel, aluminum, and magnesium alloys, polyethylene terephthalate, polycarbonate, polystyrene, nylon, plastics such as polyvinyl chloride, and composites thereof, glass, and the like.
  • a laminate of gas barrier layers such as aluminum, aluminum oxide, silicon oxide, and silicon nitride can be used as in the case of a resin substrate.
  • the gas barrier layer can be formed by sputtering, vapor deposition or the like on both surfaces or one surface of the sealing member before molding the sealing member, or may be formed on both surfaces or one surface of the sealing member after sealing by a similar method.
  • the oxygen permeability is 1 ⁇ 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less
  • the water vapor permeability 25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) is 1 It is preferable that it is below 10 ⁇ -3 > g / (m ⁇ 2 > * 24h).
  • the sealing member may be a film laminated with a metal foil such as aluminum.
  • a method for laminating the polymer film on one side of the metal foil a generally used laminating machine can be used.
  • the adhesive polyurethane-based, polyester-based, epoxy-based, acrylic-based adhesives and the like can be used. You may use a hardening
  • a hot melt lamination method, an extrusion lamination method and a coextrusion lamination method can also be used, but a dry lamination method is preferred.
  • the metal foil when the metal foil is formed by sputtering or vapor deposition and is formed from a fluid electrode material such as a conductive paste, it may be produced by a method of forming a metal foil on a polymer film as a base material. Good.
  • a protective film or a protective plate may be provided outside the sealing film on the side facing the support substrate with the organic functional layer interposed therebetween or on the outer side of the sealing film.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • a light extraction member between the flexible support substrate and the anode or at any position on the light emission side from the flexible support substrate.
  • the light extraction member include a prism sheet, a lens sheet, and a diffusion sheet.
  • the diffraction grating introduce
  • an organic electroluminescence element that emits light from a substrate
  • a part of the light emitted from the light emitting layer causes total reflection at the interface between the substrate and air, causing a problem of loss of light.
  • the prism surface, lens-like processing is applied to the surface of the substrate, or the prism sheet, the lens sheet and the diffusion sheet are attached to the surface of the substrate, thereby suppressing the total reflection and the light extraction efficiency.
  • a method of introducing a diffraction grating or a method of introducing a diffusion structure in an interface or any medium that causes total reflection is known.
  • a desired electrode material for example, a thin film made of an anode material is formed on a suitable substrate by a thin film forming method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably 10 to 200 nm.
  • An anode is produced.
  • an organic functional layer (organic compound thin film) of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, which are organic EL element materials, is formed thereon.
  • the step of forming the organic functional layer mainly includes: (i) a step of applying and laminating the coating liquid constituting the organic functional layer on the anode of the support substrate; and (ii) a coating liquid after coating and lamination. And drying.
  • a vapor deposition method for example, spin coating method, casting method, die coating method, blade coating method, roll coating method, ink jet method, printing method, spray coating.
  • a wet process is preferable in the present invention because it is easy to obtain a homogeneous film and it is difficult to generate pinholes.
  • Film formation by a coating method such as a method, a die coating method, a blade coating method, a roll coating method or an ink jet method is preferred.
  • liquid medium for dissolving or dispersing the organic EL material according to the present invention examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
  • Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as dimethylformamide (DMF) and dimethylsulfoxide (DMSO) can be used.
  • a dispersion method it can disperse
  • the preparation step for dissolving or dispersing the organic EL material according to the present invention and the application step until the organic EL material is applied on the substrate are preferably in an inert gas atmosphere. Since the film can be formed without degrading the performance of the organic EL element even if it is not carried out in step 1, it may not be carried out in an inert gas atmosphere. In this case, the manufacturing cost can be suppressed, which is more preferable.
  • the coated and laminated organic functional layer is dried.
  • drying refers to a reduction to 0.2% or less when the solvent content of the film immediately after coating is 100%.
  • a means for drying those generally used can be used, and examples thereof include reduced pressure or pressure drying, heat drying, air drying, IR drying, and electromagnetic wave drying.
  • heat drying is preferable, the temperature is equal to or higher than the boiling point of the solvent having the lowest boiling point in the organic functional layer coating solvent, and the temperature is lower than (Tg + 20) ° C. of the material having the lowest Tg among the Tg of the organic functional layer material. Most preferably, it is held at In the present invention, more specifically, it is preferable to hold and dry at 80 ° C. or higher and 150 ° C. or lower, and more preferable to hold and dry at 100 ° C. or higher and 130 ° C. or lower.
  • the atmosphere when drying the coating liquid after coating / lamination is preferably an atmosphere having a volume concentration of a gas other than the inert gas of 200 ppm or less, but it is not necessarily in an inert gas atmosphere as in the liquid preparation coating process. It may not be necessary. In this case, the manufacturing cost can be suppressed, which is more preferable.
  • the inert gas is preferably a rare gas such as nitrogen gas and argon gas, and most preferably nitrogen gas in terms of production cost.
  • the coating / laminating and drying processes of these layers may be single wafer manufacturing or line manufacturing. Further, the drying process may be performed while being conveyed on the line, but from the viewpoint of productivity, it may be deposited or rolled in a non-contact manner in a roll form.
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm.
  • a desired organic EL element can be obtained.
  • the organic EL element can be produced by adhering the close-sealing or sealing member to the electrode and the support substrate with an adhesive.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • Examples of light sources include home lighting, interior lighting, backlights for watches and liquid crystals, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. Furthermore, it can be used in a wide range of applications such as general household appliances that require a display device, but it can be used effectively as a backlight of a liquid crystal display device combined with a color filter, and as a light source for illumination. it can.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like at the time of film formation, if necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
  • Example 1 Provide of quantum dots> A quantum dot having an average particle diameter of 2.0 nm was produced as follows.
  • TOPO tri-n-octylphosphine oxide
  • stearic acid manufactured by Kanto Chemical Co., Ltd.
  • n-tetradecylphosphonic acid manufactured by AVOCADO
  • the amount of cadmium oxide and selenium was increased so as to obtain the target particle size by the above method, and quantum dots having average particle sizes of 2.7 nm and 4.0 nm were prepared by the same method.
  • the average particle size of these quantum dots was measured by a dynamic light scattering method.
  • a gas barrier film is formed to a thickness of 500 nm, and has a gas barrier property of oxygen permeability of 0.001 cm 3 / m 2 ⁇ day ⁇ atm or less and water vapor permeability of 0.001 g / m 2 ⁇ day ⁇ atm or less.
  • a film was prepared.
  • first electrode layer 120 nm thick ITO (Indium Tin Oxide) film is formed on the prepared gas barrier flexible film by sputtering, and patterned by photolithography. An electrode layer (anode) was formed. The pattern was such that the light emission area was 50 mm square.
  • ITO Indium Tin Oxide
  • a light-emitting layer composition having the following composition was formed by spin coating at 1500 rpm for 30 seconds, and then held at 120 ° C. for 30 minutes to form a light-emitting layer having a thickness of 40 nm. .
  • a sealing member As a sealing member, a flexible aluminum foil (made by Toyo Aluminum Co., Ltd.) having a thickness of 30 ⁇ m, a polyethylene terephthalate (PET) film (12 ⁇ m thickness) and an adhesive for dry lamination (two-component reaction type urethane) (Adhesive layer thickness of 1.5 ⁇ m) was used.
  • PET polyethylene terephthalate
  • Adhesive layer thickness 1.5 ⁇ m
  • thermosetting adhesive as a sealing adhesive was uniformly applied to the aluminum surface at a thickness of 20 ⁇ m along the adhesive surface (shiny surface) of the aluminum foil using a dispenser. This was dried under a vacuum of 100 Pa or less for 12 hours. Furthermore, it moved to a nitrogen atmosphere with a dew point temperature of ⁇ 80 ° C. or lower and an oxygen concentration of 0.8 ppm, dried for 12 hours or longer, and adjusted the water content of the sealing adhesive to 100 ppm or lower.
  • thermosetting adhesive an epoxy adhesive mixed with the following (A) to (C) was used.
  • the sealing substrate is closely attached and arranged so as to cover the joint between the extraction electrode and the electrode lead so as to be in the form shown in FIG. Using a roll, it was tightly sealed under thick deposition conditions, a pressure roll temperature of 120 ° C., a pressure of 0.5 MPa, and an apparatus speed of 0.3 m / min.
  • the organic EL device 1 having quantum dots with an average particle diameter of 4.0 nm at the interfaces of both the light emitting layer and the electron transport layer and between the light emitting layer and the hole transport layer was produced.
  • a relative light emission luminance was determined with the light emission luminance of the organic EL element 13 as a comparative example being 1.0, and this was used as a measure of the light emission efficiency (external extraction quantum efficiency). It represents that it is excellent in luminous efficiency, so that a numerical value is large.
  • the difference in the driving voltage of each organic electroluminescence element was determined based on the driving voltage of the organic EL element 13 as a comparative example.
  • the organic EL elements 1 to 12 of the present invention have higher emission luminance (emission efficiency) and lower driving voltage than the comparative organic EL element 13, and further have color rendering properties and lifetime. Improved and stable chromaticity. Moreover, it is more preferable to have a quantum dot in the interface of a light emitting layer and a hole transport layer than it is to have a quantum dot in the interface of a light emitting layer and an electron carrying layer, and also the organic EL element which has a quantum dot in both interfaces It can be seen that good results are obtained.
  • the organic electroluminescence element of the present invention has high luminous efficiency, long life, excellent color rendering, stable chromaticity even at low driving voltage, and can be suitably used for display devices, displays, and various light sources.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The purpose of the present invention is to provide an organic electroluminescence element having high light-emission efficiency and a long lifespan, and in particular, to provide an organic electroluminescence element having an excellent color-rendering performance and a stable chromaticity even at a low driving voltage. This organic electroluminescence element has at least a positive electrode, a hole transportation layer, a light-emitting layer including a phosphorescent compound, an electron transportation layer, and a negative electrode; the organic electroluminescence element being characterized in having quantum dots in the interface between the light-emitting layer and the hole transportation layer and/or the interface between the light-emitting layer and the electron transportation layer.

Description

有機エレクトロルミネッセンス素子Organic electroluminescence device
 本発明は、有機エレクトロルミネッセンス素子に関する。詳しくは、高発光効率で長寿命の有機エレクトロルミネッセンス素子であり、特に、演色性に優れ、低駆動電圧でも色度が安定した有機エレクトロルミネッセンス素子に関する。 The present invention relates to an organic electroluminescence element. More specifically, the present invention relates to an organic electroluminescence element having high luminous efficiency and a long life, and particularly relates to an organic electroluminescence element having excellent color rendering properties and stable chromaticity even at a low driving voltage.
 近年、有機物質を使用した有機エレクトロルミネッセンス素子(以下において、適宜、「有機EL素子」と略称する。)は、固体発光型の安価な大面積フルカラー表示素子や書き込み光源アレイとしての用途が有望視されており、研究開発が活発に進められている。 In recent years, organic electroluminescence elements using organic substances (hereinafter, abbreviated as “organic EL elements” where appropriate) are promising for use as solid light-emitting inexpensive large-area full-color display elements and writing light source arrays. Research and development is actively underway.
 有機EL素子は、フィルム上に形成された1対の陽極と陰極との間に、有機発光物質を含有する厚さ僅か0.1μm程度の有機機能層(単層部又は多層部)で構成する薄膜型の全固体素子である。このような有機EL素子に2~20V程度の比較的低い電圧を印加すると、有機機能層に陰極から電子が注入され、陽極から正孔が注入される。この電子と正孔とが発光層において再結合し、形成された励起子が基底状態に戻る際にエネルギーを光として放出することにより発光が得られることが知られており、次世代の平面ディスプレイや照明として期待されている技術である。 The organic EL element is composed of an organic functional layer (single layer portion or multilayer portion) having a thickness of only about 0.1 μm containing an organic light emitting material between a pair of anode and cathode formed on a film. It is a thin film type all solid state device. When a relatively low voltage of about 2 to 20 V is applied to such an organic EL element, electrons are injected into the organic functional layer from the cathode and holes are injected from the anode. It is known that light emission can be obtained by releasing energy as light when these electrons and holes recombine in the light emitting layer and the formed excitons return to the ground state. It is a technology that is expected as lighting.
 さらに、最近発見されたリン光発光を利用する有機EL素子では、以前の蛍光発光を利用するそれに比べ、原理的に約4倍の発光効率が実現可能であることから、その材料開発を始めとし、有機機能層の層構成や電極の研究開発が世界中で行われている。特に、地球温暖化防止策の1つとして、人類のエネルギー消費の多くを占める照明器具への応用が検討されはじめ、従来の照明器具に置き換わりうる白色発光パネルの実用化に向けて、性能向上やコストダウンの試みが盛んになっている。 In addition, recently discovered organic EL devices that use phosphorescence can realize a luminous efficiency that is approximately four times that of previous methods that use fluorescence. Research and development of organic functional layer layers and electrodes are conducted all over the world. In particular, as one of the measures to prevent global warming, application to lighting fixtures, which occupy much of human energy consumption, has begun to be studied. There are many attempts to reduce costs.
 照明用白色発光パネルにおいては、高効率・長寿命が求められ、特に長寿命化においては、有機EL素子は蛍光灯や白色LEDに対して性能が低いのが現状であり、さらなる高効率化、長寿命化の技術が求められている。 In white light emitting panels for lighting, high efficiency and long life are required.In particular, in the long life, organic EL elements have low performance against fluorescent lamps and white LEDs. There is a need for long-life technology.
 これらの問題を解決する方法として、発光性化合物に無機発光物質である「量子ドット」を用いる方法がある。量子ドットはシャープな発光スペクトルに加え、無機物であるために耐久性が良く、また各種溶媒に分散が可能である特徴を持つことから塗布プロセスに適用可能である。 As a method of solving these problems, there is a method of using “quantum dots” that are inorganic light emitting substances as the light emitting compounds. In addition to a sharp emission spectrum, quantum dots are inorganic and have good durability and can be dispersed in various solvents, so that they can be applied to coating processes.
 例えば、特許文献1では発光素子の放出側の側面に量子ドットを製膜し、ダウンコンバージョン的に光励起させた発光により、発光層の発光色を補うことで白色発光を達成している。しかしながら、この方法では、発光寿命が発光層材料に依存しており十分な長寿命化は依然として得られていない。他方、特許文献2では量子ドットを2種若しくは蛍光発光を示すポリマー材料を正孔輸送層に併用することで白色発光を達成している。 For example, in Patent Document 1, white light emission is achieved by forming quantum dots on the emission side surface of the light emitting element and supplementing the emission color of the light emitting layer by light emission that is photoexcited in a down-conversion manner. However, in this method, the light emission lifetime depends on the light emitting layer material, and a sufficiently long lifetime has not been obtained yet. On the other hand, Patent Document 2 achieves white light emission by using two types of quantum dots or a polymer material exhibiting fluorescence emission in combination with the hole transport layer.
 また、発光効率が低下する要因の一つとして、正孔輸送層を構成する正孔輸送材料の正孔移動度は、電子輸送層を構成する電子輸送材料の電子移動度よりも大きい場合が多く、その結果、陽極から供給された正孔が発光層を突き抜けてしまい、発光層での再結合の機会が少ないという点が挙げられる。 これらの問題を解決する方法として、発光層と発光層の隣接層との界面に、正孔ブロック層、電子ブロック層、励起子ブロック層を設置するという方法がある。例えば、特許文献3では量子ドットを発光層材料として用い、正孔輸送層を形成する正孔輸送材料の正孔移動度を調整し、電子ブロック能を持たせるという技術が開示されている。また特許文献4にて2つの量子ドット単分子膜で挟まれた励起子生成層を有する発光素子が開示されている。 In addition, as one of the factors that decrease the luminous efficiency, the hole mobility of the hole transport material constituting the hole transport layer is often larger than the electron mobility of the electron transport material constituting the electron transport layer. As a result, the holes supplied from the anode penetrate the light emitting layer, and there are few opportunities for recombination in the light emitting layer. As a method for solving these problems, there is a method of installing a hole blocking layer, an electron blocking layer, and an exciton blocking layer at the interface between the light emitting layer and the adjacent layer of the light emitting layer. For example, Patent Document 3 discloses a technique in which quantum dots are used as a light emitting layer material, the hole mobility of a hole transport material forming a hole transport layer is adjusted, and an electron blocking ability is provided. Patent Document 4 discloses a light emitting device having an exciton generation layer sandwiched between two quantum dot monomolecular films.
 しかしながら、これらの方法では、濃度消光を起こしやすい量子ドットの添加量に限りがあるため、輝度効率が十分とは言えない。また、良質の白色発光、すなわち演色性の高い白色発光を得るために粒子径の異なる多種の量子ドットを添加することが考えられるが、同様の理由で多種の量子ドットを多量に添加することが難しいために演色性が不十分である。また連続駆動時に色度が安定しない、いわゆる色ずれの問題もある。 However, in these methods, since the amount of quantum dots that easily cause concentration quenching is limited, it cannot be said that the luminance efficiency is sufficient. In addition, in order to obtain good quality white light emission, that is, white light emission with high color rendering properties, it is conceivable to add various kinds of quantum dots having different particle diameters. Because it is difficult, color rendering is insufficient. There is also a problem of so-called color misregistration in which chromaticity is not stable during continuous driving.
特開2006-190682号公報JP 2006-190682 A 特開2006-66395号公報JP 2006-66395 A 特開2009-88276号公報JP 2009-88276 A 特開2009-87754号公報JP 2009-87754 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、高発光効率で長寿命の有機エレクトロルミネッセンス素子を提供することであり、特に、演色性に優れ、低駆動電圧でも色度が安定した有機エレクトロルミネッセンス素子を提供することである。 The present invention has been made in view of the above problems and circumstances, and the problem to be solved is to provide an organic electroluminescence device with high luminous efficiency and long life, and in particular, excellent color rendering and low driving voltage. However, it is to provide an organic electroluminescence device having stable chromaticity.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、発光層と前記正孔輸送層との界面及び前記発光層と前記電子輸送層との界面の少なくともいずれか一方に量子ドットを有することで発光効率、発光寿命及び演色性が向上することを見いだし本発明に至った。 As a result of examining the cause of the above-mentioned problem in order to solve the above-mentioned problems, the present inventor has found that at least one of the interface between the light-emitting layer and the hole transport layer and the interface between the light-emitting layer and the electron transport layer. Thus, the present inventors have found that the light emission efficiency, the light emission life and the color rendering properties are improved by having the quantum dots in the present invention.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.少なくとも、陽極、正孔輸送層、リン光発光性化合物を含有する発光層、電子輸送層及び陰極を有する有機エレクトロルミネッセンス素子であって、前記発光層と前記正孔輸送層との界面及び前記発光層と前記電子輸送層との界面の少なくともいずれか一方に量子ドットを有することを特徴とする有機エレクトロルミネッセンス素子。 1. An organic electroluminescence device having at least an anode, a hole transport layer, a light-emitting layer containing a phosphorescent compound, an electron transport layer, and a cathode, wherein the interface between the light-emitting layer and the hole transport layer and the light emission An organic electroluminescence device comprising a quantum dot on at least one of an interface between a layer and the electron transport layer.
 2.前記発光層と前記正孔輸送層との界面及び前記発光層と前記電子輸送層との界面の両方に量子ドットを有することを特徴とする前記第1項に記載の有機エレクトロルミネッセンス素子。 2. 2. The organic electroluminescence device according to claim 1, wherein quantum dots are present at both the interface between the light emitting layer and the hole transport layer and the interface between the light emitting layer and the electron transport layer.
 3.前記リン光発光性化合物のバンドギャップが、前記量子ドットのバンドギャップより0.1eV以上小さいことを特徴とする前記第1又は2項に記載の有機エレクトロルミネッセンス素子。 3. 3. The organic electroluminescence device according to claim 1, wherein a band gap of the phosphorescent compound is 0.1 eV or more smaller than a band gap of the quantum dots.
 4.前記発光層がホスト化合物を含有し、該ホスト化合物のバンドギャップが前記量子ドットのバンドギャップより0.1eV以上大きいことを特徴とする前記第1~3項のいずれか一項に記載の有機エレクトロルミネッセンス素子。 4. 4. The organic electroluminescence device according to any one of the first to third aspects, wherein the light emitting layer contains a host compound, and the band gap of the host compound is larger than the band gap of the quantum dots by 0.1 eV or more. Luminescence element.
 5.前記量子ドットが、少なくともSi、Ge、GaN、GaP、CdS、CdSe、CdTe、InP、InN、ZnS、In23、ZnO、CdO又はこれらの混合物からなることを特徴とする前記第1~4項のいずれか一項に記載の有機エレクトロルミネッセンス素子。 5. The first to fourth aspects, wherein the quantum dots are made of at least Si, Ge, GaN, GaP, CdS, CdSe, CdTe, InP, InN, ZnS, In 2 S 3 , ZnO, CdO, or a mixture thereof. The organic electroluminescent element according to any one of the items.
 6.前記量子ドットの平均粒子径が、1~20nmの範囲内であることを特徴とする前記第1~5項のいずれか一項に記載の有機エレクトロルミネッセンス素子。 6. 6. The organic electroluminescence device according to any one of items 1 to 5, wherein an average particle size of the quantum dots is in a range of 1 to 20 nm.
 7.前記発光層中に含まれるリン光発光性化合物が、下記一般式(1)で表されることを特徴とする前記第1~6項のいずれか一項に記載の有機エレクトロルミネッセンス素子。 7. 7. The organic electroluminescent element according to any one of the first to sixth aspects, wherein the phosphorescent compound contained in the light emitting layer is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
 (一般式(1)中、R1は置換基を表す。Zは5~7員環を形成するのに必要な非金属原子群を表す。n1は0~5の整数を表す。B1~B5は炭素原子、窒素原子、酸素原子又は硫黄原子を表し、少なくとも一つは窒素原子を表す。M1は元素周期表における8族~10族の金属を表す。X1及びX2は炭素原子、窒素原子又は酸素原子を表す。L1はX1及びX2と共に2座の配位子を形成する原子群を表す。m1は1、2、又は3の整数を表し、m2は0、1又は2の整数を表すが、m1+m2は2又は3である。)
 8.前記発光層が、下記一般式(2)で表されるホスト化合物を含有していることを特徴とする前記第1~7項のいずれか一項に記載の有機エレクトロルミネッセンス素子。
(In the general formula (1), R 1 represents a substituent. Z represents a group of nonmetallic atoms necessary to form a 5- to 7-membered ring. N1 represents an integer of 0 to 5. B 1 to B 5 represents a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, at least one represents a nitrogen atom, M 1 represents a group 8 to group 10 metal in the periodic table, and X 1 and X 2 represent carbon Represents an atom, a nitrogen atom or an oxygen atom, L 1 represents an atomic group forming a bidentate ligand with X 1 and X 2 , m1 represents an integer of 1, 2 or 3, m2 represents 0, (It represents an integer of 1 or 2, m1 + m2 is 2 or 3.)
8). 8. The organic electroluminescent element according to any one of the first to seventh aspects, wherein the light emitting layer contains a host compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
 (一般式(2)中、XはNR′、O、S、CR′R″、又はSiR′R″を表す。R′及び、R″は各々水素原子又は置換基を表す。Ar1及びAr2は芳香環を表し、それぞれ同一でも異なっていても良い。nは0~4の整数を表す。)
 9.前記一般式(2)におけるXが、酸素原子を表すことを特徴とする前記第8項に記載の有機エレクトロルミネッセンス素子。
(In the general formula (2), X represents NR ′, O, S, CR′R ″, or SiR′R ″. R ′ and R ″ each represents a hydrogen atom or a substituent. Ar 1 and Ar 2 represents an aromatic ring, which may be the same or different, and n represents an integer of 0 to 4.)
9. X in the said General formula (2) represents an oxygen atom, The organic electroluminescent element of the said 8th item | term characterized by the above-mentioned.
 本発明の上記手段により、高発光効率で長寿命の有機エレクトロルミネッセンス素子を提供することであり、特に、演色性に優れ、低駆動電圧でも色度が安定した有機エレクトロルミネッセンス素子を提供することができる。 By the above means of the present invention, it is to provide an organic electroluminescence device having a high luminous efficiency and a long lifetime, and particularly to provide an organic electroluminescence device having excellent color rendering properties and stable chromaticity even at a low driving voltage. it can.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、発光層で生成した励起子、又は電子、正孔が拡散することなく発光層で効率よく発光できるようになったためと考えられる。量子ドットは電子や正孔が発光層を通り抜けることを防ぐブロック層として機能すると考えられる。 Although the manifestation mechanism or action mechanism of the effect of the present invention is not clarified, it is possible to emit light efficiently in the light emitting layer without diffusing excitons, electrons, or holes generated in the light emitting layer. it is conceivable that. The quantum dots are considered to function as a blocking layer that prevents electrons and holes from passing through the light emitting layer.
本発明の有機エレクトロルミネッセンス素子の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the organic electroluminescence element of the present invention 図1の変形例を示す概略断面図Schematic sectional view showing a modification of FIG. 図1の変形例を示す概略断面図Schematic sectional view showing a modification of FIG.
 本発明の有機エレクトロルミネッセンス素子は、少なくとも、陽極、正孔輸送層、リン光発光性化合物を含有する発光層、電子輸送層及び陰極を有する有機エレクトロルミネッセンス素子であって、前記発光層と前記正孔輸送層との界面及び前記発光層と前記電子輸送層との界面の少なくともいずれか一方に量子ドットを有することを特徴とする。この特徴は、請求項1から請求項9までの請求項に係る発明に共通する技術的特徴である。 The organic electroluminescent device of the present invention is an organic electroluminescent device having at least an anode, a hole transport layer, a light-emitting layer containing a phosphorescent compound, an electron transport layer and a cathode, and the light-emitting layer and the positive electrode. Quantum dots are included in at least one of the interface with the hole transport layer and the interface between the light emitting layer and the electron transport layer. This feature is a technical feature common to the inventions according to claims 1 to 9.
 本発明の実施態様としては、本発明の効果発現の観点から、前記発光層と前記正孔輸送層との界面及び前記発光層と前記電子輸送層との界面の両方に量子ドットを有することが好ましい。また、リン光発光性化合物のバンドギャップが、前記量子ドットのバンドギャップより0.1eV以上小さいことが、好ましく、さらに、前記発光層がホスト化合物を含有し、該ホスト化合物のバンドギャップが前記量子ドットのバンドギャップより0.1eV以上大きいことが本発明の効果を一層高める。 As an embodiment of the present invention, from the viewpoint of manifesting the effect of the present invention, it is preferable to have quantum dots at both the interface between the light emitting layer and the hole transport layer and the interface between the light emitting layer and the electron transport layer. preferable. In addition, it is preferable that the bandgap of the phosphorescent compound is 0.1 eV or more smaller than the bandgap of the quantum dots. Further, the light-emitting layer contains a host compound, and the bandgap of the host compound is The effect of the present invention is further enhanced by being larger than the band gap of the dots by 0.1 eV or more.
 また、本発明の効果発現の観点から、前記量子ドットが、少なくとも、Si、Ge、GaN、GaP、CdS、CdSe、CdTe、InP、InN、ZnS、In23、ZnO、CdO又はこれらの混合物からなることが好ましい。また、前記量子ドットの平均粒子径が、1~20nmの範囲内であることが、好ましい。 From the viewpoint of manifesting the effects of the present invention, the quantum dots are at least Si, Ge, GaN, GaP, CdS, CdSe, CdTe, InP, InN, ZnS, In 2 S 3 , ZnO, CdO, or a mixture thereof. Preferably it consists of. The average particle diameter of the quantum dots is preferably in the range of 1 to 20 nm.
 本発明においては、前記発光層中に含まれるリン光発光性化合物が、前記一般式(1)で表されることが好ましい。また、本発明の効果発現の観点から、前記発光層が、前記一般式(2)で表されるホスト化合物を含有していることが好ましく、さらに、前記一般式(2)におけるXが、酸素原子を表すことが好ましい。 In the present invention, the phosphorescent compound contained in the light emitting layer is preferably represented by the general formula (1). Moreover, from the viewpoint of manifesting the effect of the present invention, the light emitting layer preferably contains a host compound represented by the general formula (2), and X in the general formula (2) is oxygen. Preferably it represents an atom.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 なお、本願において、「量子ドット」とは、電子(及び正孔)を微小な空間に閉じ込めるために形成した直径数~数十ナノメートルの半導体微結晶であって、量子サイズ効果を発現する微結晶いう。 In this application, “quantum dots” are semiconductor microcrystals with a diameter of several to several tens of nanometers that are formed to confine electrons (and holes) in a minute space and exhibit a quantum size effect. Say crystals.
 また、「量子ドットのバンドギャップ」とは、量子ドットの価電子帯と伝導帯のエネルギー差(エネルギーギャップ)をいう。 Also, “band gap of quantum dots” refers to the energy difference (energy gap) between the valence band and conduction band of quantum dots.
 「ホスト化合物、ドーパント化合物等のバンドギャップ」とは、最高被占分子軌道(HOMO)のエネルギー準位と最低空分子軌道(LUMO)のエネルギー準位とのエネルギー差(エネルギーギャップ)をいう。 “The band gap of the host compound, dopant compound, etc.” refers to the energy difference (energy gap) between the energy level of the highest occupied molecular orbital (HOMO) and the energy level of the lowest unoccupied molecular orbital (LUMO).
 《有機エレクトロルミネッセンス素子の構成》
 本発明の有機エレクトロルミネッセンス素子の構成を、図を用いて説明する。
<< Structure of organic electroluminescence element >>
The configuration of the organic electroluminescence element of the present invention will be described with reference to the drawings.
 図1は本発明の有機エレクトロルミネッセンス素子の構成の一例を示す概略断面図である。図1に示すとおり、本発明の好ましい実施形態に係る有機エレクトロルミネッセンス素子100(以下、有機EL素子ともいう)は、可撓性支持基板1を有している。可撓性支持基板1上には陽極2が形成され、陽極2上には有機機能層20が形成され、有機機能層20上には陰極8が形成されている。 FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the organic electroluminescence element of the present invention. As shown in FIG. 1, an organic electroluminescence element 100 (hereinafter also referred to as an organic EL element) according to a preferred embodiment of the present invention has a flexible support substrate 1. An anode 2 is formed on the flexible support substrate 1, an organic functional layer 20 is formed on the anode 2, and a cathode 8 is formed on the organic functional layer 20.
 有機機能層20とは、陽極2と陰極8との間に設けられている有機エレクトロルミネッセンス素子100を構成する各層をいう。有機機能層20には、例えば、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7が含まれ、そのほかに正孔ブロック層や電子ブロック層等が含まれてもよい。可撓性支持基板1上の陽極2、有機機能層20、陰極8は封止接着剤9を介して可撓性封止部材10によって封止されている。 The organic functional layer 20 refers to each layer constituting the organic electroluminescence element 100 provided between the anode 2 and the cathode 8. The organic functional layer 20 includes, for example, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, an electron injection layer 7, and in addition, a hole block layer, an electron block layer, and the like. May be included. The anode 2, the organic functional layer 20, and the cathode 8 on the flexible support substrate 1 are sealed with a flexible sealing member 10 through a sealing adhesive 9.
 なお、有機エレクトロルミネッセンス素子100の層構造(図1参照)は単に好ましい具体例を示したものであり、本発明はこれに限定されない。例えば、本発明の有機EL素子は以下に述べる(i)~(viii)の層構造を有していてもよい。
(i)可撓性支持基板/陽極/発光層/電子輸送層/陰極/熱伝導層/封止用接着剤/封止部材
(ii)可撓性支持基板/陽極/正孔輸送層/発光層/電子輸送層/陰極/熱伝導層/封止用接着剤/封止部材
(iii)可撓性支持基板/陽極/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極/熱伝導層/封止用接着剤/封止部材
(iv)可撓性支持基板/陽極/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極バッファー層/陰極/熱伝導層/封止用接着剤/封止部材
(v)可撓性支持基板/陽極/陽極バッファー層/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極バッファー層/陰極/熱伝導層/封止用接着剤/封止部材
(vi)ガラス支持体/陽極/正孔注入層/発光層/電子注入層/陰極/封止部材
(vii)ガラス支持体/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極/封止部材
(viii)ガラス支持体/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極/封止部材
 《有機EL素子の有機機能層》
 次いで、本発明の有機EL素子を構成する前記有機機能層の詳細について説明する。
In addition, the layer structure (refer FIG. 1) of the organic electroluminescent element 100 shows only the preferable specific example, and this invention is not limited to this. For example, the organic EL device of the present invention may have the following layer structures (i) to (viii).
(I) Flexible support substrate / anode / light emitting layer / electron transport layer / cathode / thermal conductive layer / sealing adhesive / sealing member (ii) flexible support substrate / anode / hole transport layer / light emission Layer / electron transport layer / cathode / thermal conductive layer / sealing adhesive / sealing member (iii) flexible support substrate / anode / hole transport layer / light emitting layer / hole block layer / electron transport layer / cathode / Heat conduction layer / adhesive for sealing / sealing member (iv) flexible support substrate / anode / hole transport layer / light emitting layer / hole block layer / electron transport layer / cathode buffer layer / cathode / heat conduction Layer / adhesive for sealing / sealing member (v) flexible support substrate / anode / anode buffer layer / hole transport layer / light emitting layer / hole block layer / electron transport layer / cathode buffer layer / cathode / heat Conductive layer / sealing adhesive / sealing member (vi) glass support / anode / hole injection layer / light emitting layer / electron injection layer / cathode / sealing member (vii) glass support / Anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode / sealing member (viii) glass support / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / Electron injection layer / cathode / sealing member << Organic functional layer of organic EL element >>
Subsequently, the detail of the said organic functional layer which comprises the organic EL element of this invention is demonstrated.
 (1)注入層:正孔注入層、電子注入層
 本発明の有機EL素子においては、注入層は必要に応じて設けることができる。注入層としては電子注入層と正孔注入層があり、上記の如く陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。
(1) Injection layer: hole injection layer, electron injection layer In the organic EL device of the present invention, the injection layer can be provided as necessary. As the injection layer, there are an electron injection layer and a hole injection layer. As described above, the injection layer may exist between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer.
 本発明でいう注入層とは、駆動電圧低下や発光輝度向上のために電極と有機機能層間に設けられる層で、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。 The injection layer referred to in the present invention is a layer provided between the electrode and the organic functional layer in order to lower the driving voltage and improve the light emission luminance. “The organic EL element and its industrialization front line (November 30, 1998, NT. The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “S.
 正孔注入層は、例えば、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に適用可能な正孔注入材料としては、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体等を含むポリマーやアニリン系共重合体、ポリアリールアルカン誘導体、又は導電性ポリマーが挙げられ、好ましくはポリチオフェン誘導体、ポリアニリン誘導体、ポリピロール誘導体であり、さらに好ましくはポリチオフェン誘導体である。 The details of the hole injection layer are described, for example, in JP-A-9-45479, JP-A-9-260062, and JP-A-8-288069. Injection materials include triazole derivatives, oxadiazole derivatives, imidazole derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives. , Polymers containing silazane derivatives, aniline copolymers, polyarylalkane derivatives, or conductive polymers, preferably polythiophene derivatives, polyaniline derivatives, polypyrrole derivatives, more preferably It is a thiophene derivative.
 電子注入層は、例えば、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的には、ストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。本発明においては、上記バッファー層(注入層)はごく薄い膜であることが望ましく、フッ化カリウム、フッ化ナトリウムが好ましい。その膜厚は0.1nm~5μm程度、好ましくは0.1~100nm、さらに好ましくは0.5~10nm、最も好ましくは0.5~4nmである。 The details of the electron injection layer are described in, for example, JP-A-6-325871, JP-A-9-17574, and JP-A-10-74586, and specific examples thereof include strontium and aluminum. A metal buffer layer, an alkali metal compound buffer layer typified by lithium fluoride, an alkaline earth metal compound buffer layer typified by magnesium fluoride, and an oxide buffer layer typified by aluminum oxide. In the present invention, the buffer layer (injection layer) is desirably a very thin film, and potassium fluoride and sodium fluoride are preferable. The film thickness is about 0.1 nm to 5 μm, preferably 0.1 to 100 nm, more preferably 0.5 to 10 nm, and most preferably 0.5 to 4 nm.
 (2)正孔輸送層
 正孔輸送層を構成する正孔輸送材料としては、上記正孔注入層で適用するのと同様の化合物を使用することができるが、さらには、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
(2) Hole transport layer As the hole transport material constituting the hole transport layer, the same compounds as those applied in the hole injection layer can be used, but further, porphyrin compounds, aromatics It is preferable to use a tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、さらには、米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino -(2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenylcarbazole, as well as those described in US Pat. No. 5,061,569 Having four condensed aromatic rings in the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-3 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 8688 are linked in a starburst type ( MTDATA) and the like.
 さらに、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。また、特開平4-297076号公報、特開2000-196140号公報、特開2001-102175号公報、J.Appl.Phys.,95,5773(2004)、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)、特表2003-519432号公報に記載されているような、いわゆるp型半導体的性質を有するとされる正孔輸送材料を用いることもできる。 Furthermore, polymer materials in which these materials are introduced into polymer chains or these materials are used as polymer main chains can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material. JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004), JP-A-11-251067, J. MoI. Huang et. al. It is also possible to use a hole transport material that has so-called p-type semiconducting properties, as described in the literature (Applied Physics Letters 80 (2002), p. 139), JP 2003-519432 A. it can.
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については、特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。 The hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can do. The thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. This hole transport layer may have a single layer structure composed of one or more of the above materials.
 以下、本発明の有機EL素子の正孔輸送材料に用いられる化合物の好ましい具体例((1)~(60))を挙げるが、本発明はこれらに限定されない。 Hereinafter, preferred specific examples ((1) to (60)) of compounds used for the hole transport material of the organic EL device of the present invention will be given, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
 なお、上記例示化合物に記載のnは重合度を表し、重量平均分子量が50,000~200,000の範囲となる整数を表す。重量平均分子量が50,000以上の場合、溶媒への溶解性から製膜時に他の層と混合する懸念がない。また発光効率も良好である。重量平均分子量が200,000以下の場合は、合成、精製が容易であり。不純物により、有機EL素子の発光効率、電圧、寿命が悪化することがない。 Note that n described in the above exemplary compounds represents the degree of polymerization and represents an integer having a weight average molecular weight in the range of 50,000 to 200,000. When the weight average molecular weight is 50,000 or more, there is no concern of mixing with other layers during film formation due to solubility in a solvent. Also, the luminous efficiency is good. When the weight average molecular weight is 200,000 or less, synthesis and purification are easy. The emission efficiency, voltage, and life of the organic EL element are not deteriorated by the impurities.
 これらの高分子化合物は、Makromol.Chem.,193,909頁(1992)等に記載の公知の方法で合成することができる。 These polymer compounds are disclosed in Makromol. Chem. , Pages 193, 909 (1992) and the like.
 (3)電子輸送層
 電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔ブロック層も電子輸送層に含まれる。電子輸送層は単層又は複数層設けることができる。
(3) Electron transport layer The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔ブロック材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、フルオレン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、シロール誘導体、ピリジン誘導体、ピリミジン誘導体、8-キノリノール誘導体等の金属錯体等が挙げられる。 Conventionally, in the case of a single electron transport layer and a plurality of layers, an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the cathode side with respect to the light emitting layer is injected from the cathode. As long as it has a function of transmitting electrons to the light-emitting layer, any material can be selected and used from among conventionally known compounds. For example, fluorene derivatives, carbazole derivatives, azacarbazole And metal complexes such as derivatives, oxadiazole derivatives, triazole derivatives, silole derivatives, pyridine derivatives, pyrimidine derivatives, 8-quinolinol derivatives, and the like.
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。 In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
 これらの中でもカルバゾール誘導体、アザカルバゾール誘導体、ピリジン誘導体等が本発明では好ましく、アザカルバゾール誘導体であることがより好ましい。 Among these, carbazole derivatives, azacarbazole derivatives, pyridine derivatives and the like are preferable in the present invention, and more preferably an azacarbazole derivative.
 電子輸送層は、上記電子輸送材料を、例えば、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができ、好ましくは上記電子輸送材料,フッ化アルコール溶剤を含有する塗布液を用いたウェットプロセスにより形成することができる。 The electron transport layer can be formed by thinning the electron transport material by a known method such as a spin coating method, a casting method, a printing method including an ink jet method, an LB method, and the like, preferably It can be formed by a wet process using a coating solution containing an electron transport material and a fluorinated alcohol solvent.
 電子輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。電子輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。 The thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をゲスト材料としてドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use an n-type electron transport layer doped with impurities as a guest material. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 本発明における電子輸送層には、有機物のアルカリ金属塩を含有することが好ましい。有機物の種類としては特に制限はないが、ギ酸塩、酢酸塩、プロピオン酸、酪酸塩、吉草酸塩、カプロン酸塩、エナント酸塩、カプリル酸塩、シュウ酸塩、マロン酸塩、コハク酸塩、安息香酸塩、フタル酸塩、イソフタル酸塩、テレフタル酸塩、サリチル酸塩、ピルビン酸塩、乳酸塩、リンゴ酸塩、アジピン酸塩、メシル酸塩、トシル酸塩、ベンゼンスルホン酸塩が挙げられ、好ましくはギ酸塩、酢酸塩、プロピオン酸塩、酪酸塩、吉草酸塩、カプロン酸塩、エナント酸塩、カプリル酸塩、シュウ酸塩、マロン酸塩、コハク酸塩、安息香酸塩、より好ましくはギ酸塩、酢酸塩、プロピオン酸塩、酪酸塩等の脂肪族カルボン酸のアルカリ金属塩が好ましく、脂肪族カルボン酸の炭素数が4以下であることが好ましい。最も好ましくは酢酸塩である。 The electron transport layer in the present invention preferably contains an organic alkali metal salt. There are no particular restrictions on the type of organic substance, but formate, acetate, propionic acid, butyrate, valerate, caproate, enanthate, caprylate, oxalate, malonate, succinate Benzoate, phthalate, isophthalate, terephthalate, salicylate, pyruvate, lactate, malate, adipate, mesylate, tosylate, benzenesulfonate , Preferably formate, acetate, propionate, butyrate, valerate, caprate, enanthate, caprylate, oxalate, malonate, succinate, benzoate, more preferably Is preferably an alkali metal salt of an aliphatic carboxylic acid such as formate, acetate, propionate or butyrate, and the aliphatic carboxylic acid preferably has 4 or less carbon atoms. Most preferred is acetate.
 有機物のアルカリ金属塩のアルカリ金属の種類としては特に制限はないが、Na、K、Csが挙げられ、好ましくはK、Cs、さらに好ましくはCsである。有機物のアルカリ金属塩としては、前記有機物とアルカリ金属の組み合わせが挙げられ、好ましくは、ギ酸Li、ギ酸K、ギ酸Na、ギ酸Cs、酢酸Li、酢酸K、酢酸Na、酢酸Cs、プロピオン酸Li、プロピオン酸Na、プロピオン酸K、プロピオン酸Cs、シュウ酸Li、シュウ酸Na、シュウ酸K、シュウ酸Cs、マロン酸Li、マロン酸Na、マロン酸K、マロン酸Cs、コハク酸Li、コハク酸Na、コハク酸K、コハク酸Cs、安息香酸Li、安息香酸Na、安息香酸K、安息香酸Cs、より好ましくは酢酸Li、酢酸K、酢酸Na、酢酸Cs、最も好ましくは酢酸Csである。 The type of alkali metal of the organic alkali metal salt is not particularly limited, and examples thereof include Na, K, and Cs, preferably K, Cs, and more preferably Cs. Examples of the alkali metal salt of the organic substance include a combination of the organic substance and the alkali metal, preferably, formic acid Li, formic acid K, formic acid Na, formic acid Cs, acetic acid Li, acetic acid K, Na acetate, acetic acid Cs, propionic acid Li, Propionic acid Na, propionic acid K, propionic acid Cs, oxalic acid Li, oxalic acid Na, oxalic acid K, oxalic acid Cs, malonic acid Li, malonic acid Na, malonic acid K, malonic acid Cs, succinic acid Li, succinic acid Na, succinic acid K, succinic acid Cs, benzoic acid Li, benzoic acid Na, benzoic acid K, benzoic acid Cs, more preferably Li acetate, K acetate, Na acetate, Cs acetate, most preferably Cs acetate.
 これらドープ材の含有量は、添加する電子輸送層に対し、好ましくは1.5~35質量%であり、より好ましくは3~25質量%であり、最も好ましくは5~15質量%である。 The content of these dope materials is preferably 1.5 to 35% by mass, more preferably 3 to 25% by mass, and most preferably 5 to 15% by mass with respect to the electron transport layer to be added.
 (4)発光層
 本発明の有機EL素子を構成する発光層は、電極又は電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層である。
(4) Light emitting layer The light emitting layer constituting the organic EL device of the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer.
 本発明に係る発光層は、含まれるリン光発光性化合物が前記要件を満たしていれば、その構成には特に制限はない。 The light emitting layer according to the present invention is not particularly limited in its configuration as long as the phosphorescent compound contained therein satisfies the above requirements.
 また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。 Also, there may be a plurality of layers having the same emission spectrum or emission maximum wavelength.
 本発明における発光層の膜厚の総和は1~100nmの範囲にあることが好ましく、さらに好ましくは、より低い駆動電圧を得ることができることから50nm以下である。なお、本発明でいう発光層の膜厚の総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む膜厚である。個々の発光層の膜厚としては1~50nmの範囲に調整することが好ましい。 In the present invention, the total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably 50 nm or less because a lower driving voltage can be obtained. In addition, the sum total of the film thickness of the light emitting layer as used in this invention is a film thickness also including the said intermediate | middle layer, when a nonluminous intermediate | middle layer exists between light emitting layers. The film thickness of each light emitting layer is preferably adjusted in the range of 1 to 50 nm.
 個々の発光層は青、緑、赤の各色発光を示しても良く、各発光層の膜厚の関係については、特に制限はない。 The individual light emitting layers may emit blue, green, and red colors, and there is no particular limitation on the film thickness relationship of each light emitting layer.
 発光層の作製には、後述する発光性化合物やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により製膜して形成することができる。 For the production of the light emitting layer, a light emitting compound or a host compound, which will be described later, is formed by forming a film by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. Can do.
 本発明においては、各発光層には複数のリン光発光性化合物を混合してもよく、またリン光発光性化合物と蛍光発光性化合物を同一発光層中に混合して用いてもよい。 In the present invention, a plurality of phosphorescent compounds may be mixed in each light emitting layer, or a phosphorescent compound and a fluorescent compound may be mixed and used in the same light emitting layer.
 本発明においては、発光層の構成として、ホスト化合物、リン光発光性化合物を含有し、リン光発光性化合物より発光させることが好ましい。 In the present invention, the structure of the light emitting layer preferably contains a host compound and a phosphorescent compound and emits light from the phosphorescent compound.
 (4.1)ホスト化合物
 本発明の有機EL素子の発光層に含有されるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらに好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
(4.1) Host compound As the host compound contained in the light emitting layer of the organic EL device of the present invention, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光性化合物を複数種用いることで異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, known host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of the luminescent compound mentioned later, and can thereby obtain arbitrary luminescent colors.
 また、本発明に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位を持つ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(重合性ホスト化合物)でもよいが、高分子材料を用いた場合、化合物が溶媒を取り込んで膨潤やゲル化等、溶媒が抜けにくいと思われる現象が起こりやすいので、これを防ぐために分子量は高くない方が好ましく、具体的には塗布時での分子量が2,000以下の材料を用いることが好ましく、塗布時の分子量1,000以下の材料を用いることが更に好ましい。 The host compound used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (polymerizable host). Compound) may be used, but when a polymer material is used, since the compound is likely to take up the solvent and swell or gelate, the phenomenon that the solvent is unlikely to escape is likely to occur. Specifically, it is preferable to use a material having a molecular weight of 2,000 or less at the time of application, and it is more preferable to use a material having a molecular weight of 1,000 or less at the time of application.
 公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。 As the known host compound, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable. Here, the glass transition point (Tg) is a value obtained by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
 公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等が挙げられる。 Specific examples of known host compounds include compounds described in the following documents. For example, Japanese Patent Application Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060. No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, and the like.
 ホスト化合物は好ましくは一般式(2)で示される化合物が用いられる。 The host compound is preferably a compound represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000011
 
 一般式(2)中、XはNR′、O、S、CR′R″又はSiR′R″を表す。R′及びR″は各々水素原子又は置換基を表す。Ar1及びAr2は芳香環を表し、それぞれ同一でも異なっていても良い。nは0~4の整数を表す。 In the general formula (2), X represents NR ′, O, S, CR′R ″ or SiR′R ″. R ′ and R ″ each represent a hydrogen atom or a substituent. Ar 1 and Ar 2 each represent an aromatic ring, which may be the same or different. N represents an integer of 0 to 4.
 一般式(2)におけるXにおいて、R′及びR″で各々表される置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられる。 In X in the general formula (2), the substituents represented by R ′ and R ″ are each an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a t-butyl group, a pentyl group, a hexyl group). Group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group etc.), cycloalkyl group (eg cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg vinyl group, allyl group etc.), alkynyl group (eg Ethynyl group, propargyl group, etc.), aromatic hydrocarbon ring group (also called aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, Anthryl, azulenyl, acenaphthenyl, fluorenyl, phenanthryl, indenyl, pyreth Group, biphenylyl group, etc.), aromatic heterocyclic group (for example, pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4) -Triazol-1-yl group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, Benzofuryl group, dibenzofuryl group, benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom) Quinoxalinyl group, pyridazinyl group Triazinyl group, quinazolinyl group, phthalazinyl group, etc.), heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (eg, methoxy group, ethoxy group, propyloxy group, pentyloxy group, Hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, Methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (eg, phenyl) Thio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxy) Carbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecyl) Aminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethyl group) Rubonyl, propylcarbonyl, pentylcarbonyl, cyclohexylcarbonyl, octylcarbonyl, 2-ethylhexylcarbonyl, dodecylcarbonyl, phenylcarbonyl, naphthylcarbonyl, pyridylcarbonyl, etc.), acyloxy groups (eg acetyloxy) Group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propyl) Carbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group Dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group) Octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentyl) Ureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminourei Group), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.) ), Alkylsulfonyl groups (eg, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl groups or heteroarylsulfonyl groups (eg, phenylsulfonyl group) Naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopente) Luamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom etc.), fluorinated hydrocarbon group (eg. , Fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group) Group, phenyldiethylsilyl group, etc.).
 これらの置換基は上記の置換基によって更に置換されていてもよい。これらの置換基は複数が互いに結合して環を形成していてもよい。 These substituents may be further substituted with the above substituents. A plurality of these substituents may be bonded to each other to form a ring.
 中でも、XとしてはNR′又はOが好ましく、より好ましくは、XとしてはOの場合、即ち本発明に用いられるホスト化合物が、ジベンゾフラン誘導体であることである。 Among these, X is preferably NR ′ or O, and more preferably, X is O, that is, the host compound used in the present invention is a dibenzofuran derivative.
 また、R′としては、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基)、又は芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、フタラジニル基等)が特に好ましい。 R ′ is also referred to as an aromatic hydrocarbon group (aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, Azulenyl, acenaphthenyl, fluorenyl, phenanthryl, indenyl, pyrenyl, biphenylyl) or aromatic heterocyclic groups (eg furyl, thienyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl) Group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, phthalazinyl group, etc.) are particularly preferred.
 上記の芳香族炭化水素基、芳香族複素環基は、各々一般式(2)のXにおいて、R′、R″で各々表される置換基を有してもよい。 The above aromatic hydrocarbon group and aromatic heterocyclic group may each have a substituent represented by R ′ or R ″ in X of the general formula (2).
 一般式(2)において、Ar1及びAr2により表される芳香環としては、芳香族炭化水素環又は芳香族複素環が挙げられる。また、該芳香環は単環でもよく、縮合環でもよく、更に未置換でも、一般式(2)のXにおいて、R′及びR″で各々表される置換基を有してもよい。 In the general formula (2), examples of the aromatic ring represented by Ar 1 and Ar 2 include an aromatic hydrocarbon ring and an aromatic heterocyclic ring. The aromatic ring may be a single ring or a condensed ring, and may be unsubstituted or may have a substituent represented by R ′ and R ″ in X of the general formula (2).
 一般式(2)において、Ar1及びAr2により表される芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環は更に、一般式(2)で表される部分構造のXにおいて、R′及びR″で各々表される置換基を有してもよい。 In the general formula (2), the aromatic hydrocarbon ring represented by Ar 1 and Ar 2 is a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring. , Triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring , Pyrene ring, pyranthrene ring, anthraanthrene ring and the like. These rings may further have substituents each represented by R ′ and R ″ in X of the partial structure represented by the general formula (2).
 一般式(2)で表される部分構造において、Ar1及びAr2により表される芳香族複素環としては、例えば、フラン環、ジベンゾフラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。これらの環は、更に一般式(2)において、R′及びR″で各々表される置換基を有してもよい。 In the partial structure represented by the general formula (2), examples of the aromatic heterocycle represented by Ar 1 and Ar 2 include a furan ring, a dibenzofuran ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, and a pyridazine. Ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, indazole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, Quinoxaline ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, carbazole ring, carboline ring, diazacarbazole ring (one of the carbon atoms of the hydrocarbon ring constituting the carboline ring is a nitrogen atom) The substituted ring For example). These rings may further have substituents represented by R ′ and R ″ in the general formula (2).
 上記の中でも、一般式(2)において、Ar1及びAr2により表される芳香環として、好ましく用いられるのは、カルバゾール環、カルボリン環、ジベンゾフラン環、ベンゼン環であり、更に好ましく用いられるのは、カルバゾール環、カルボリン環、ベンゼン環であり、より好ましくは置換基を有するベンゼン環であり、特に好ましくはカルバゾリル基を有するベンゼン環が挙げられる。 Among the above, in the general formula (2), the aromatic ring represented by Ar 1 and Ar 2 is preferably a carbazole ring, carboline ring, dibenzofuran ring, or benzene ring, and more preferably used. , A carbazole ring, a carboline ring, and a benzene ring, more preferably a benzene ring having a substituent, and particularly preferably a benzene ring having a carbazolyl group.
 また、一般式(2)において、Ar1及びAr2により表される芳香環としては、各々3環以上の縮合環が好ましい一態様であり、3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、ナフタセン環、アントラセン環、テトラセン環、ペンタセン環、ヘキサセン環、フェナントレン環、ピレン環、ベンゾピレン環、ベンゾアズレン環、クリセン環、ベンゾクリセン環、アセナフテン環、アセナフチレン環、トリフェニレン環、コロネン環、ベンゾコロネン環、ヘキサベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセン環、ピラントレン環、コロネン環、ナフトコロネン環、オバレン環、アンスラアントレン環等が挙げられる。なお、これらの環は、更に上記の置換基を有していてもよい。 In the general formula (2), the aromatic rings represented by Ar 1 and Ar 2 are each preferably a condensed ring of 3 or more rings, and as an aromatic hydrocarbon condensed ring in which 3 or more rings are condensed. Specifically, naphthacene ring, anthracene ring, tetracene ring, pentacene ring, hexacene ring, phenanthrene ring, pyrene ring, benzopyrene ring, benzoazulene ring, chrysene ring, benzochrysene ring, acenaphthene ring, acenaphthylene ring, triphenylene ring, Coronene ring, benzocoronene ring, hexabenzocoronene ring, fluorene ring, benzofluorene ring, fluoranthene ring, perylene ring, naphthperylene ring, pentabenzoperylene ring, benzoperylene ring, pentaphen ring, picene ring, pyranthrene ring, coronene ring, naphthocoronene ring , Ovalene ring, Anslaan Examples include a torene ring. In addition, these rings may further have the above substituent.
 また、3環以上が縮合した芳香族複素環としては、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、カルボリン環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。なお、これらの環は更に置換基を有していてもよい。 Specific examples of the aromatic heterocycle condensed with three or more rings include an acridine ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a carboline ring, a cyclazine ring, Kindin ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (any one of the carbon atoms constituting the carboline ring is a nitrogen atom Phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring, benzodifuran ring, benzodithiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring, anthradifuran ring, Emissions tiger thiophene ring, anthradithiophene ring, thianthrene ring, phenoxathiin ring, such as thio fan train ring (naphthothiophene ring). In addition, these rings may further have a substituent.
 また、一般式(2)において、nは0~4の整数を表すが、0~2であることが好ましく、特にXがO、Sである場合には1~2であることが好ましい。 In the general formula (2), n represents an integer of 0 to 4, preferably 0 to 2, and particularly preferably 1 to 2 when X is O or S.
 本発明においては、特に、ジベンゾフラン環とカルバゾール環をともに有するホスト化合物が好ましい。 In the present invention, a host compound having both a dibenzofuran ring and a carbazole ring is particularly preferable.
 以下に、一般式(2)で表されるホスト化合物の具体例(a-1~a-41)を示すが、これらに限定されるものではない。 Specific examples (a-1 to a-41) of the host compound represented by the general formula (2) are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000019
 
 (4.2)発光性化合物
 本発明に係る発光性化合物(発光ドーパントともいう)としては、少なくともリン光発光性化合物(リン光性化合物ともいう)が発光層に含有される。本発明において、リン光発光性化合物とは励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
(4.2) Luminescent Compound As the luminescent compound (also referred to as a luminescent dopant) according to the present invention, at least a phosphorescent compound (also referred to as a phosphorescent compound) is contained in the light emitting layer. In the present invention, a phosphorescent compound is a compound in which light emission from an excited triplet is observed, specifically a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of 25. Although it is defined as a compound of 0.01 or more at ° C., a preferable phosphorescence quantum yield is 0.1 or more.
 上記リン光量子収率は第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 The above phosphorescence quantum yield can be measured by the method described in Spectra II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence quantum yield (0.01 or more) should just be achieved in any solvent.
 リン光発光性化合物の発光原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光発光性化合物に移動させることでリン光発光性化合物からの発光を得るというエネルギー移動型、もう一つはリン光発光性化合物がキャリアトラップとなり、リン光発光性化合物上でキャリアの再結合が起こりリン光発光性化合物からの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光発光性化合物の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。 There are two types of light emission principles of phosphorescent compounds. One is the recombination of carriers on the host compound to which carriers are transported, generating an excited state of the host compound, and this energy is phosphorescent. Transfer energy to the compound to obtain light emission from the phosphorescent compound. Another is the phosphorescent compound becomes a carrier trap, and recombination of carriers occurs on the phosphorescent compound, resulting in phosphorescence. Although it is a carrier trap type in which light emission from the light emitting compound can be obtained, in any case, the excited state energy of the phosphorescent light emitting compound is lower than the excited state energy of the host compound.
 リン光発光性化合物は、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、又は白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of the organic EL device, and preferably a complex system containing a metal of group 8 to 10 in the periodic table of elements. A compound, more preferably an iridium compound, an osmium compound, a platinum compound (platinum complex compound), or a rare earth complex, and most preferably an iridium compound.
 本実施形態にかかるリン光発光性化合物は、少なくとも1つの青色リン光発光性化合物を含むものあることが好ましい。より好ましくは少なくとも1つの青色リン光発光性化合物と、当該青色リン光発光性化合物よりもバンドギャップエネルギーが低い少なくとも1つのリン光発光性化合物とを、含むものである。 The phosphorescent compound according to this embodiment preferably includes at least one blue phosphorescent compound. More preferably, it contains at least one blue phosphorescent compound and at least one phosphorescent compound having a band gap energy lower than that of the blue phosphorescent compound.
 リン光発光性化合物としては、公知の化合物を用いることができるが、好ましくは配位子としてピリジン誘導体を有する金属錯体(リン光発光性化合物)や、一般式(1)で表されるリン光発光性化合物を上げることができる。より好ましくは一般式(1)で表されるリン光発光性化合物である。 As the phosphorescent compound, a known compound can be used, but preferably a metal complex having a pyridine derivative as a ligand (phosphorescent compound) or phosphorescence represented by the general formula (1) The luminescent compound can be increased. More preferably, it is a phosphorescent compound represented by the general formula (1).
 以下に、本発明に好ましく用いられる、一般式(1)で表されるリン光発光性化合物について説明する。 Hereinafter, the phosphorescent compound represented by the general formula (1), which is preferably used in the present invention, will be described.
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000020
 
 一般式(1)において、R1は置換基を表す。Zは5~7員環を形成するのに必要な非金属原子群を表す。n1は0~5の整数を表す。B1~B5は炭素原子、窒素原子、酸素原子又は硫黄原子を表し、少なくとも一つは窒素原子を表す。M1は元素周期表における8族~10族の金属を表す。X1及びX2は炭素原子、窒素原子又は酸素原子を表し、L1はX1及びX2と共に2座の配位子を形成する原子群を表す。m1は1、2又は3の整数を表し、m2は0、1、又は2の整数を表すが、m1+m2は2又は3である。 In the general formula (1), R 1 represents a substituent. Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring. n1 represents an integer of 0 to 5. B 1 to B 5 represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one represents a nitrogen atom. M 1 represents a group 8 to group 10 metal in the periodic table. X 1 and X 2 represent a carbon atom, a nitrogen atom or an oxygen atom, and L 1 represents an atomic group which forms a bidentate ligand together with X 1 and X 2 . m1 represents an integer of 1, 2, or 3, m2 represents an integer of 0, 1, or 2, and m1 + m2 is 2 or 3.
 本発明に係る一般式(1)で表されるリン光発光性化合物は、HOMOのエネルギー準位が-5.15~-3.50eV、LUMOのエネルギー準位が-1.25~+1.00eVであることが好ましく、より好ましくはHOMOのエネルギー準位が-4.80~-3.50eV、LUMOのエネルギー準位が-0.80~+1.00eVであることが好ましい。 The phosphorescent compound represented by the general formula (1) according to the present invention has a HOMO energy level of −5.15 to −3.50 eV and a LUMO energy level of −1.25 to +1.00 eV. More preferably, the energy level of HOMO is −4.80 to −3.50 eV, and the energy level of LUMO is preferably −0.80 to +1.00 eV.
 一般式(1)で表されるリン光発光性化合物において、R1で表される置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられる。これらの置換基のうち、好ましいものはアルキル基若しくはアリール基である。 In the phosphorescent compound represented by the general formula (1), examples of the substituent represented by R 1 include an alkyl group (eg, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group). Pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (for example, vinyl group, allyl group, etc.) Alkynyl group (eg, ethynyl group, propargyl group, etc.), aromatic hydrocarbon ring group (also called aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl Group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, Ndenyl group, pyrenyl group, biphenylyl group, etc.), aromatic heterocyclic group (for example, pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1, 2,4-triazol-1-yl group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, A quinolyl group, a benzofuryl group, a dibenzofuryl group, a benzothienyl group, a dibenzothienyl group, an indolyl group, a carbazolyl group, a carbolinyl group, a diazacarbazolyl group (one of the carbon atoms constituting the carboline ring of the carbolinyl group is a nitrogen atom) Quinoxalinyl group) , Pyridazinyl group, triazinyl group, quinazolinyl group, phthalazinyl group, etc.), heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (eg, methoxy group, ethoxy group, propyloxy group, Pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio Group (for example, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (for example, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group For example, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, Phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group) , Dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, Cetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group ( For example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonyl) Amino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylca Sulfonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, Cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethyl) Ureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pi Diylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group) Group), alkylsulfonyl group (eg methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group etc.), arylsulfonyl group or heteroarylsulfonyl group (eg phenyl Sulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butyryl Group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group) , Triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.). Of these substituents, preferred are an alkyl group and an aryl group.
 Zは、5~7員環を形成するのに必要な非金属原子群を表す。Zにより形成される5~7員環としては、例えば、ベンゼン環、ナフタレン環、ピリジン環、ピリミジン環、ピロール環、チオフェン環、ピラゾール環、イミダゾール環、オキサゾール環及びチアゾール環等が挙げられる。これらのうちで好ましいものは、ベンゼン環である。 Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring. Examples of the 5- to 7-membered ring formed by Z include a benzene ring, naphthalene ring, pyridine ring, pyrimidine ring, pyrrole ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring and thiazole ring. Of these, a benzene ring is preferred.
 B1~B5は、炭素原子、窒素原子、酸素原子若しくは硫黄原子を表し、少なくとも一つは窒素原子を表す。これら5つの原子により形成される芳香族含窒素複素環としては単環が好ましい。例えば、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、テトラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、オキサジアゾール環及びチアジアゾー環ル等が挙げられる。これらのうちで好ましいものは、ピラゾール環、イミダゾール環であり、特に好ましくはB2、B5が窒素原子であるイミダゾール環である。これらの環は上記の置換基によって更に置換されていてもよい。置換基として好ましいものはアルキル基及びアリール基であり、更に好ましくはアリール基である。 B 1 to B 5 represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one represents a nitrogen atom. The aromatic nitrogen-containing heterocycle formed by these five atoms is preferably a monocycle. Examples include pyrrole ring, pyrazole ring, imidazole ring, triazole ring, tetrazole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, oxadiazole ring, and thiadiazole ring. Among these, a pyrazole ring and an imidazole ring are preferable, and an imidazole ring in which B2 and B5 are nitrogen atoms is particularly preferable. These rings may be further substituted with the above substituents. Preferred as the substituent are an alkyl group and an aryl group, and more preferably an aryl group.
 L1は、X1、X2と共に2座の配位子を形成する原子群を表す。X1-L1-X2で表される2座の配位子の具体例としては、例えば、置換又は無置換のフェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボル、ピコリン酸及びアセチルアセトン等が挙げられる。これらの基は上記の置換基によって更に置換されていてもよい。 L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 . Specific examples of the bidentate ligand represented by X 1 -L 1 -X 2 include, for example, substituted or unsubstituted phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, picolinic acid And acetylacetone. These groups may be further substituted with the above substituents.
 m1は、1、2又は3の整数を表し、m2は0、1又は2の整数を表すが、m1+m2は2又は3である。中でも、m2は0である場合が好ましい。M1で表される金属としては、元素周期表の8~10族の遷移金属元素(単に遷移金属ともいう)が用いられるが、中でもイリジウム、白金が好ましく、更に好ましくはイリジウムである。 m1 represents an integer of 1, 2 or 3, m2 represents an integer of 0, 1 or 2, and m1 + m2 is 2 or 3. Especially, the case where m2 is 0 is preferable. As the metal represented by M 1 , a transition metal element belonging to Group 8 to 10 of the periodic table (also simply referred to as a transition metal) is used, among which iridium and platinum are preferable, and iridium is more preferable.
 以下に、本発明で好ましく用いられるリン光発光性化合物の具体的な化合物(D-1~D-133)を例示するが、本発明はこれらに限定されるものではない。 Hereinafter, specific compounds (D-1 to D-133) of phosphorescent compounds preferably used in the present invention are exemplified, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000037
 
 (4.3)量子ドット
 本発明において発光層と前記正孔輸送層との界面及び前記発光層と前記電子輸送層との界面の少なくともいずれか一方に量子ドットを有する。
(4.3) Quantum dot In this invention, it has a quantum dot in at least any one of the interface of a light emitting layer and the said positive hole transport layer, and the interface of the said light emitting layer and the said electron transport layer.
 本願において、「量子ドット」とは、電子(及び正孔)を微小な空間に閉じ込めるために形成した直径数~数十ナノメートルの半導体微結晶であって、量子サイズ効果を発現する微結晶いう。 In the present application, “quantum dots” are semiconductor microcrystals having a diameter of several to several tens of nanometers formed to confine electrons (and holes) in a minute space and exhibit a quantum size effect. .
 量子ドットが、発光層と正孔輸送層の界面に存在する場合は正孔ブロック層として機能し、量子ドットが、発光層と電子輸送層との界面に存在している場合は、電子ブロック層として機能する。本発明においては、量子ドットはブロック層として機能する。発光はリン光発光性化合物よりなされることが好ましいが、量子ドットから発光することを妨げるものではない。 When the quantum dot is present at the interface between the light emitting layer and the hole transport layer, it functions as a hole blocking layer. When the quantum dot is present at the interface between the light emitting layer and the electron transport layer, the electron blocking layer is used. Function as. In the present invention, the quantum dots function as a block layer. The light emission is preferably made from a phosphorescent compound, but does not prevent light emission from the quantum dots.
 量子ドットは図1に示すとおりに発光層と正孔輸送層との界面に存在していても良いし、図2に示すとおりに発光層と電子輸送層との界面に存在していても良い。この中では、量子ドットは発光層と正孔輸送層との界面に存在していることが好ましい。これは正孔の方が電子に比べ移動度が高く、正孔が発光層を突き抜けていくのを効果的に防ぐためである思われる。また図3に示すとおりに発光層と発光層に隣接する層との両方の界面に存在していてもよい。 The quantum dots may exist at the interface between the light emitting layer and the hole transport layer as shown in FIG. 1, or may exist at the interface between the light emitting layer and the electron transport layer as shown in FIG. . In this, it is preferable that the quantum dot exists in the interface of a light emitting layer and a positive hole transport layer. This seems to be because holes have a higher mobility than electrons and effectively prevent holes from penetrating through the light emitting layer. Moreover, as shown in FIG. 3, you may exist in the interface of both the light emitting layer and the layer adjacent to a light emitting layer.
 本発明において界面とは、発光層と正孔輸送層又は発光層と電子輸送層の境界面をいい、量子ドットは発光層と正孔輸送層又は発光層と電子輸送層に接して存在する。量子ドットが単分子層となり、発光層と正孔輸送層又は発光層と電子輸送層の間に単分子層を形成してもよく、好ましい態様である。 In the present invention, the interface refers to a boundary surface between the light emitting layer and the hole transport layer or the light emitting layer and the electron transport layer, and the quantum dot exists in contact with the light emitting layer and the hole transport layer or the light emitting layer and the electron transport layer. The quantum dot becomes a monomolecular layer, and a monomolecular layer may be formed between the light emitting layer and the hole transporting layer or between the light emitting layer and the electron transporting layer, which is a preferred embodiment.
 本発明においては、量子ドットは界面に均一に分散して存在することが好ましく、発光層、正孔輸送層又は電子輸送層中に量子ドットが埋め込まれた場合は、ブロック層としての機能が効きにくくなり、好ましくない。 In the present invention, the quantum dots are preferably uniformly dispersed at the interface. When the quantum dots are embedded in the light emitting layer, the hole transport layer, or the electron transport layer, the function as a block layer is effective. It becomes difficult and is not preferable.
 界面に存在していることは、断面SEM(走査型電子顕微鏡)や透過型電子顕微鏡(TEM)を用いて観察することができる。 The presence at the interface can be observed using a cross-sectional SEM (scanning electron microscope) or a transmission electron microscope (TEM).
 本発明では発光層に隣接する少なくとも正孔輸送層又電子輸送層の界面に量子ドットを有することで、有機EL素子の発光効率や低駆動電圧超寿命などを達成できた。 In the present invention, by having quantum dots at least at the interface between the hole transport layer or the electron transport layer adjacent to the light emitting layer, the light emission efficiency of the organic EL element, the low driving voltage and the long lifetime can be achieved.
 これは前記界面の一方、若しくは両方に量子ドットを含有させることで、発光層で生成した励起子、又は電子、正孔が拡散することなく発光層で効率よく発光できるようになったためと考えられる。本発明では、量子ドットは電子、正孔が発光層を通り抜けることを防ぐブロック層として機能すると考えられる。 This is thought to be due to the fact that it is possible to efficiently emit light in the light emitting layer without diffusing excitons, electrons, or holes generated in the light emitting layer by including quantum dots in one or both of the interfaces. . In the present invention, the quantum dots are considered to function as a blocking layer that prevents electrons and holes from passing through the light emitting layer.
 この効果は発光層中のホスト化合物のバンドギャップが量子ドットのバンドギャップより大きいと効果が大きい。具体的にはホスト化合物のバンドギャップが量子ドットのバンドギャップより0.1eV以上大きいことが好ましい。 This effect is significant when the band gap of the host compound in the light emitting layer is larger than the band gap of the quantum dots. Specifically, the band gap of the host compound is preferably 0.1 eV or more larger than the band gap of the quantum dots.
 また発光層中のリン光発光性化合物のバンドギャップが、前記量子ドットのバンドギャップより小さいことが好ましい。具体的には、リン光発光性化合物のバンドギャップが、前記量子ドットのバンドギャップより0.1eV以上小さいことが好ましい。 Further, the band gap of the phosphorescent compound in the light emitting layer is preferably smaller than the band gap of the quantum dots. Specifically, the band gap of the phosphorescent compound is preferably 0.1 eV or more smaller than the band gap of the quantum dots.
 なお、本発明において、ホスト化合物のバンドギャップ及びリン光発光性化合物のバンドギャップとは、最高被占分子軌道(HOMO)のエネルギー準位と最低空分子軌道(LUMO)のエネルギー準位とのエネルギー差(エネルギーギャップ)をいう。また量子ドットのバンドギャップとは、量子ドットの荷電子帯と伝導帯のエネルギー差(エネルギーギャップ)をいう。 In the present invention, the band gap of the host compound and the band gap of the phosphorescent compound are the energy between the energy level of the highest occupied molecular orbital (HOMO) and the energy level of the lowest unoccupied molecular orbital (LUMO). Difference (energy gap). Moreover, the band gap of a quantum dot means the energy difference (energy gap) of the valence band and conduction band of a quantum dot.
 バンドギャップ測定方法について説明する。本発明においてバンドギャップ測定には光化学的測定手法の一つとして知られるTaucプロットを利用する。ただし本発明では物理的に同義な特性値が得られるのであれば本手法に限定されない。Taucプロットを用いたバンドギャップエネルギー(E0)の測定原理を以下に示す。 A band gap measuring method will be described. In the present invention, Tauc plot, which is known as one of photochemical measurement techniques, is used for band gap measurement. However, the present invention is not limited to this method as long as a physically equivalent characteristic value can be obtained. The measurement principle of band gap energy (E 0 ) using Tauc plot is shown below.
 半導体材料の長波長側の光学吸収端近傍の比較的吸収の大きい領域において光吸収係数αと光エネルギーhν(ただし、hはプランク常数、νは振動数)、及びバンドキャップエネルギーE0の間には下記式(I)、が成り立つと考えられている。 In the region of relatively large absorption near the optical absorption edge on the long wavelength side of the semiconductor material, between the light absorption coefficient α and the light energy hν (where h is the Planck constant and ν is the frequency) and the bandcap energy E 0 . The following formula (I) is considered to hold.
  式(I)  αhν=B(hν-E02
 従って、吸収スペクトルを測定し、そこから(αhν)の0.5乗に対してhνをプロット(いわゆるTaucプロット)し、直線区間を外挿したα=0におけるhνの値が求めようとするバンドギャップエネルギーE0となる。
Formula (I) αhν = B (hν−E 0 ) 2
Therefore, an absorption spectrum is measured, and hν is plotted (so-called Tauc plot) with respect to (αhν) to the 0.5th power, and the value of hν at α = 0 obtained by extrapolating the straight line section is obtained. The gap energy E 0 is obtained.
 光吸収の観察は、紫外可視近赤外分光光度計(「V-7200型」、日本分光株式会社製)などを使用し、波長範囲350-800nmで行うことができる。試料薄膜を使用し、透過法によって測定することができる。 Observation of light absorption can be performed in a wavelength range of 350 to 800 nm using an ultraviolet-visible near-infrared spectrophotometer (“V-7200 type”, manufactured by JASCO Corporation). It can be measured by a transmission method using a sample thin film.
 量子ドットは、量子閉じ込め効果を有する所定の大きさの粒子である。量子ドット(微粒子)の粒子径は、具体的には1~20nmが好ましく、より好ましくは1~10nmである。このような微粒子のエネルギー準位Eは、一般に、プランク定数を「h」と、電子の有効質量を「m」と、微粒子の半径を「R」としたとき、式(II)で表される。 Quantum dots are particles of a predetermined size having a quantum confinement effect. Specifically, the particle diameter of the quantum dots (fine particles) is preferably 1 to 20 nm, and more preferably 1 to 10 nm. The energy level E of such a fine particle is generally expressed by the formula (II) where the Planck constant is “h”, the effective mass of the electron is “m”, and the radius of the fine particle is “R”. .
  式(II)   E∝h2/mR2
 式(II)で示されるように、微粒子のバンドギャップは、「R-2」に比例して大きくなり、いわゆる、量子ドット効果が得られる。このように、量子ドットの粒子径を制御、規定することによって、量子ドットのバンドギャップ値を制御することができる。すなわち、微粒子の粒子径を制御、規定することにより、通常の原子には無い多様性を持たせることができる。
Formula (II) E∝h 2 / mR 2
As shown by the formula (II), the band gap of the fine particles increases in proportion to “R −2 ”, and the so-called quantum dot effect is obtained. Thus, the band gap value of a quantum dot can be controlled by controlling and defining the particle diameter of the quantum dot. That is, by controlling and defining the particle diameter of the fine particles, it is possible to provide diversity not found in ordinary atoms.
 またブロック層としては、バンドギャップが広い方が好ましく、量子ドットの粒子径としては1~20nmが好ましく、1~10nmはさらに好ましく、1~3nmが特に好ましい。具体的なバンドギャップとしては1.8eV~3.2eVの範囲であることが好ましく、2.2eV~3.0eVであることが好ましく、2.6eV~3.0eVであることが最も好ましい。 The block layer preferably has a wide band gap. The particle size of the quantum dots is preferably 1 to 20 nm, more preferably 1 to 10 nm, and particularly preferably 1 to 3 nm. A specific band gap is preferably in the range of 1.8 eV to 3.2 eV, more preferably 2.2 eV to 3.0 eV, and most preferably 2.6 eV to 3.0 eV.
 平均粒子径の測定方法としては、公知の方法を用いることができる。例えば、透過型電子顕微鏡(TEM)により量子ドットの粒子観察を行い、そこから粒子径分布の数平均粒子径として求める方法や、動的光散乱法により量子ドットの粒子径分布を測定し、その数平均粒子径として求める方法、X線小角散乱法により得られたスペクトルから量子ドットの粒子径分布シミュレーション計算を用いて粒子径分布を導出する方法などが挙げられる。本発明においては、動的散乱法により、粒径測定装置(Malvern社製「ZETASIZER Nano Series Nano -ZS」)を用いて測定した。 As a method for measuring the average particle diameter, a known method can be used. For example, the quantum dot particles are observed with a transmission electron microscope (TEM), and the number average particle size of the particle size distribution is obtained therefrom, or the particle size distribution of the quantum dots is measured by a dynamic light scattering method. Examples thereof include a method for obtaining the number average particle size and a method for deriving the particle size distribution from the spectrum obtained by the X-ray small angle scattering method using the particle size distribution simulation calculation of the quantum dots. In the present invention, the particle size was measured by a dynamic scattering method using a particle size measuring device (“ZETASIZER Nano Series Nano-ZS” manufactured by Malvern).
 量子ドットの構成材料としては、例えば、炭素、ケイ素、ゲルマニウム、スズ等の周期表第14族元素の単体、リン(黒リン)等の周期表第15族元素の単体、セレン、テルル等の周期表第16族元素の単体、炭化ケイ素(SiC)等の複数の周期表第14族元素からなる化合物、酸化スズ(IV)(SnO2)、硫化スズ(II,IV)(Sn(II)Sn(IV)S3)、硫化スズ(IV)(SnS2)、硫化スズ(II)(SnS)、セレン化スズ(II)(SnSe)、テルル化スズ(II)(SnTe)、硫化鉛(II)(PbS)、セレン化鉛(II)(PbSe)、テルル化鉛(II)(PbTe)等の周期表第14族元素と周期表第16族元素との化合物、窒化ホウ素(BN)、リン化ホウ素(BP)、砒化ホウ素(BAs)、窒化アルミニウム(AlN)、リン化アルミニウム(AlP)、砒化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、砒化ガリウム(GaAs)、アンチモン化ガリウム(GaSb)、窒化インジウム(InN)、リン化インジウム(InP)、砒化インジウム(InAs)、アンチモン化インジウム(InSb)等の周期表第13族元素と周期表第15族元素との化合物(あるいはIII-V族化合物半導体)、硫化アルミニウム(Al23)、セレン化アルミニウム(Al2Se3)、硫化ガリウム(Ga23)、セレン化ガリウム(Ga2Se3)、テルル化ガリウム(Ga2Te3)、酸化インジウム(In23)、硫化インジウム(In23)、セレン化インジウム(In2Se3)、テルル化インジウム(In2Te3)等の周期表第13族元素と周期表第16族元素との化合物、塩化タリウム(I)(TlCl)、臭化タリウム(I)(TlBr)、ヨウ化タリウム(I)(TlI)等の周期表第13族元素と周期表第17族元素との化合物、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、硫化水銀(HgS)、セレン化水銀(HgSe)、テルル化水銀(HgTe)等の周期表第12族元素と周期表第16族元素との化合物(あるいはII-VI族化合物半導体)、硫化砒素(III)(As23)、セレン化砒素(III)(As2Se3)、テルル化砒素(III)(As2Te3)、硫化アンチモン(III)(Sb23)、セレン化アンチモン(III)(Sb2Se3)、テルル化アンチモン(III)(Sb2Te3)、硫化ビスマス(III)(Bi23)、セレン化ビスマス(III)(Bi2Se3)、テルル化ビスマス(III)(Bi2Te3)等の周期表第15族元素と周期表第16族元素との化合物、酸化銅(I)(Cu2O)、セレン化銅(I)(Cu2Se)等の周期表第11族元素と周期表第16族元素との化合物、塩化銅(I)(CuCl)、臭化銅(I)(CuBr)、ヨウ化銅(I)(CuI)、塩化銀(AgCl)、臭化銀(AgBr)等の周期表第11族元素と周期表第17族元素との化合物、酸化ニッケル(II)(NiO)等の周期表第10族元素と周期表第16族元素との化合物、酸化コバルト(II)(CoO)、硫化コバルト(II)(CoS)等の周期表第9族元素と周期表第16族元素との化合物、四酸化三鉄(Fe34)、硫化鉄(II)(FeS)等の周期表第8族元素と周期表第16族元素との化合物、酸化マンガン(II)(MnO)等の周期表第7族元素と周期表第16族元素との化合物、硫化モリブデン(IV)(MoS2)、酸化タングステン(IV)(WO2)等の周期表第6族元素と周期表第16族元素との化合物、酸化バナジウム(II)(VO)、酸化バナジウム(IV)(VO2)、酸化タンタル(V)(Ta25)等の周期表第5族元素と周期表第16族元素との化合物、酸化チタン(TiO2、Ti25、Ti23、Ti59等)等の周期表第4族元素と周期表第16族元素との化合物、硫化マグネシウム(MgS)、セレン化マグネシウム(MgSe)等の周期表第2族元素と周期表第16族元素との化合物、酸化カドミウム(II)クロム(III)(CdCr24)、セレン化カドミウム(II)クロム(III)(CdCr2Se4)、硫化銅(II)クロム(III)(CuCr24)、セレン化水銀(II)クロム(III)(HgCr2Se4)等のカルコゲンスピネル類、バリウムチタネート(BaTiO3)等が挙げられるが、SnS2、SnS、SnSe、SnTe、PbS、PbSe、PbTe等の周期表第14族元素と周期表第16族元素との化合物、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb等のIII-V族化合物半導体、Ga23、Ga23、Ga2Se3、Ga2Te3、In23、In23、In2Se3、In2Te3等の周期表第13族元素と周期表第16族元素との化合物、ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、HgO、HgS、HgSe、HgTe等のII-VI族化合物半導体、As23、As23、As2Se3、As2Te3、Sb23、Sb23、Sb2Se3、Sb2Te3、Bi23、Bi23、Bi2Se3、Bi2Te3等の周期表第15族元素と周期表第16族元素との化合物、MgS、MgSe等の周期表第2族元素と周期表第16族元素との化合物が好ましく、中でも、Si、Ge、GaN、GaP、InN、InP、Ga23、Ga23、In23、In23、ZnO、ZnS、CdO、CdSがより好ましい。これらの物質は、毒性の高い陰性元素を含まないので耐環境汚染性や生物への安全性に優れており、発光素子の形成に有利である。これらの材料のうち、CdSe、ZnSe、CdSは、発光の安定性の点で好ましい。発光効率、高屈折率、安全性の経済性の観点から、ZnO、ZnSの量子ドットが好ましい。また、上記の材料は、1種で用いるものであってもよいし、2種以上を組み合わせて用いてもよい。 Examples of the constituent material of the quantum dot include a simple substance of a group 14 element of the periodic table such as carbon, silicon, germanium, and tin, a simple substance of a group 15 element of the periodic table such as phosphorus (black phosphorus), and a periodicity of selenium, tellurium, and the like. Table 16 group element simple substance, compound consisting of a plurality of periodic table group 14 elements such as silicon carbide (SiC), tin oxide (IV) (SnO 2 ), tin sulfide (II, IV) (Sn (II) Sn (IV) S 3 ), tin sulfide (IV) (SnS 2 ), tin sulfide (II) (SnS), tin selenide (II) (SnSe), tin telluride (II) (SnTe), lead sulfide (II) ) (PbS), lead selenide (II) (PbSe), lead telluride (II) (PbTe) periodic table group 14 element and periodic table group 16 element compound, boron nitride (BN), phosphorus Boron bromide (BP), boron arsenide (BAs), aluminum nitride (AlN), Aluminum nitride (AlP), aluminum arsenide (AlAs), aluminum antimonide (AlSb), gallium nitride (GaN), gallium phosphide (GaP), gallium arsenide (GaAs), gallium antimonide (GaSb), indium nitride (InN) ), Indium phosphide (InP), indium arsenide (InAs), indium antimonide (InSb), etc., a compound of a periodic table group 13 element and a periodic table group 15 element (or III-V compound semiconductor), sulfide Aluminum (Al 2 S 3 ), Aluminum selenide (Al 2 Se 3 ), Gallium sulfide (Ga 2 S 3 ), Gallium selenide (Ga 2 Se 3 ), Gallium telluride (Ga 2 Te 3 ), Indium oxide ( In 2 O 3 ), indium sulfide (In 2 S 3 ), indium selenide (In 2 Se 3) ), Compounds of Group 13 elements of the periodic table and Group 16 elements of the periodic table, such as indium telluride (In 2 Te 3 ), thallium (I) chloride (TlCl), thallium bromide (I) (TlBr), iodine Compounds of periodic table group 13 elements and periodic table group 17 elements such as thallium (I) fluoride (TlI), zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride ( ZnTe), cadmium oxide (CdO), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), mercury sulfide (HgS), mercury selenide (HgSe), mercury telluride (HgTe), etc. the compounds of the periodic table group 12 element and periodic table group 16 element (or II-VI compound semiconductor), arsenic sulfide (III) (as 2 S 3), selenium arsenic (III) (as 2 Se 3 Telluride arsenic (III) (As 2 Te 3 ), antimony sulfide (III) (Sb 2 S 3 ), selenium antimony (III) (Sb 2 Se 3 ), antimony telluride (III) (Sb 2 Te 3 ), Bismuth sulfide (III) (Bi 2 S 3 ), bismuth selenide (III) (Bi 2 Se 3 ), bismuth telluride (III) (Bi 2 Te 3 ), etc. the compounds of the group 16 element, copper oxide (I) (Cu 2 O) , copper selenide (I) (Cu 2 Se) periodic table compounds of the group 11 element and periodic table group 16 element such as, chloride Periodic table Group 11 elements and periods such as copper (I) (CuCl), copper bromide (I) (CuBr), copper iodide (I) (CuI), silver chloride (AgCl), silver bromide (AgBr) A compound with a group 17 element, a periodic table such as nickel (II) oxide (NiO), a group 10 element and a periodic table first The compounds of the group elements, cobalt oxide (II) (CoO), compounds of cobalt sulfide (II) (CoS) periodic table Group 9 element and Periodic Table Group 16 element such as, triiron tetraoxide (Fe 3 O 4 ), compounds of Group 8 elements of the periodic table such as iron (II) sulfide (FeS), and elements of Group 16 of the periodic table, Group 7 elements of the periodic table such as manganese (II) (MnO) and periodic table Compounds with group 16 elements, compounds of group 6 elements of the periodic table and elements of group 16 of the periodic table, such as molybdenum (IV) sulfide (MoS 2 ), tungsten oxide (IV) (WO 2 ), vanadium (II) oxide (VO), vanadium oxide (IV) (VO 2 ), compounds of periodic table group 5 elements such as tantalum oxide (V) (Ta 2 O 5 ), etc., and titanium oxide (TiO 2 , Ti 2 O 5, Ti 2 O 3, Ti 5 O 9 , etc.) and the like of the periodic table group 4 element and a periodic table group 16 source Compound with magnesium sulfide (MgS), compounds of Group 2 elements and Periodic Table Group 16 element such as magnesium selenide (MgSe), cadmium oxide (II) chromium (III) (CdCr 2 O 4 ) , Cadmium selenide (II) chromium (III) (CdCr 2 Se 4 ), copper (II) sulfide (III) (CuCr 2 S 4 ), mercury (II) selenide (III) (HgCr 2 Se 4 ) Examples include chalcogen spinels such as barium titanate (BaTiO 3 ), etc., but compounds of group 14 elements of the periodic table and group 16 elements of the periodic table such as SnS 2 , SnS, SnSe, SnTe, PbS, PbSe, PbTe, etc. GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb and other III-V compound semiconductors, Ga 2 O 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3, In 2 O 3, In 2 S 3, In 2 Se 3, In 2 Te periodic table compounds of Group 13 elements and the periodic table group 16 elements such as 3, ZnO, ZnS, ZnSe, ZnTe, CdO, II-VI group compound semiconductors such as CdS, CdSe, CdTe, HgO, HgS, HgSe, HgTe, As 2 O 3 , As 2 S 3 , As 2 Se 3 , As 2 Te 3 , Sb 2 O 3 , Sb 2 S 3 , a compound of a group 15 element of the periodic table and a group 16 element of the periodic table, such as Sb 2 Se 3 , Sb 2 Te 3 , Bi 2 O 3 , Bi 2 S 3 , Bi 2 Se 3 , Bi 2 Te 3 , Compounds of Group 2 elements of the periodic table and Group 16 elements of the periodic table, such as MgS and MgSe, are preferred, among which Si, Ge, GaN, GaP, InN, InP, Ga 2 O 3 , Ga 2 S 3 , In 2. O 3 , In 2 S 3 , ZnO, ZnS, CdO, CdS are more preferable. . Since these substances do not contain highly toxic negative elements, they are excellent in environmental pollution resistance and biological safety, and are advantageous for the formation of light-emitting elements. Of these materials, CdSe, ZnSe, and CdS are preferable in terms of light emission stability. From the viewpoints of luminous efficiency, high refractive index, and safety, ZnO and ZnS quantum dots are preferable. Moreover, said material may be used by 1 type and may be used in combination of 2 or more type.
 なお、上述した量子ドットには、必要に応じて微量の各種元素を不純物としてドープしてもよい。 Note that the above-described quantum dots may be doped with a small amount of various elements as impurities as necessary.
 量子ドットの表面は、不活性な無機物の被覆層又は有機配位子で構成された被膜で被覆されたものであるのが好ましい。すなわち、量子ドットの表面は、量子ドットで構成されたコア領域と、不活性な無機物の被覆層又は有機配位子で構成されたシェル領域とを、有するものであるのが好ましい。コア/シェル構造は少なくとも2種類の化合物で形成されていることが好ましく、2種類以上の化合物でグラジエント構造を形成していても良い。これにより、塗布液中における量子ドットの凝集を効果的に防止することができ、量子ドットの分散性を向上させることができるとともに、輝度効率が向上し、連続駆動させた場合に生じる色ズレを抑制することができる。また、被覆層の存在により安定的に発光特性が得られる。 The surface of the quantum dot is preferably coated with an inert inorganic coating layer or a coating composed of an organic ligand. That is, the surface of the quantum dot preferably has a core region composed of quantum dots and a shell region composed of an inert inorganic coating layer or organic ligand. The core / shell structure is preferably formed of at least two types of compounds, and a gradient structure may be formed of two or more types of compounds. This effectively prevents aggregation of the quantum dots in the coating liquid, improves the dispersibility of the quantum dots, improves the luminance efficiency, and prevents color shifts that occur when driven continuously. Can be suppressed. Further, the light emission characteristics can be stably obtained by the presence of the coating layer.
 また、量子ドットの表面が被膜で被覆されていると、後述するような表面修飾剤を量子ドットの表面付近に確実に担持させることができる。被膜の厚さは、特に限定されないが、0.1~10nmであるのが好ましく、0.1~5nmであるのがより好ましい。一般に、量子ドットのサイズにより発光色が制御でき、被膜の厚さが前記範囲内の値であると、被膜の厚さが原子数個分に相当する厚さから量子ドット1個に満たない厚さであり、量子ドットを高密度で充填することができ、十分な発光量が得られる。また、被膜の存在によりお互いのコア粒子の粒子表面に存在する欠陥、ダングリングボンドへの電子トラップによる非発光の電子エネルギーの転移を抑制でき、量子効率の低下を抑えることができる。 Further, when the surface of the quantum dots is coated with a coating, a surface modifier as described later can be reliably supported in the vicinity of the surface of the quantum dots. The thickness of the coating is not particularly limited, but is preferably 0.1 to 10 nm, and more preferably 0.1 to 5 nm. In general, if the emission color can be controlled by the size of the quantum dots and the thickness of the coating is within the above range, the thickness of the coating is less than one quantum dot from the thickness corresponding to several atoms. Thus, quantum dots can be filled with high density, and a sufficient amount of light emission can be obtained. Further, the presence of the coating can suppress the transfer of non-emissive electron energy due to the defects existing on the particle surfaces of the core particles and the electron traps on the dangling bonds, and the decrease in quantum efficiency can be suppressed.
 (4.4)機能性表面修飾剤
 塗布液中において量子ドットの表面付近には、表面修飾剤が付着しているのが好ましい。これにより、塗布液中における量子ドットの分散性を特に優れたものとすることができる。また、量子ドットの製造時において量子ドットの表面に表面修飾剤を付着させることにより、形成される量子ドットの形状が真球度の高いものとなり、また、量子ドットの粒子径分布を狭く抑えられるため、例えば、特に優れたものとすることができる。
(4.4) Functional surface modifier It is preferable that the surface modifier has adhered to the surface vicinity of the quantum dot in the coating liquid. Thereby, especially the dispersibility of the quantum dot in a coating liquid can be made excellent. Also, by attaching a surface modifier to the surface of the quantum dots during the manufacture of the quantum dots, the shape of the formed quantum dots has a high sphericity, and the particle size distribution of the quantum dots can be kept narrow. Therefore, for example, it can be made particularly excellent.
 これらの機能性表面修飾剤は、量子ドットの表面に直接付着したものであってもよいし、シェルを介して付着したもの(表面修飾剤が直接付着するのはシェルで、量子ドットコアには接触していないもの)であってもよい。 These functional surface modifiers may be those directly attached to the surface of the quantum dot, or those attached via the shell (the surface modifier is directly attached to the shell, It may be that which is not in contact.
 表面修飾剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類;トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリオクチルホスフィン等のトリアルキルホスフィン類;ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル類;トリ(n-ヘキシル)アミン、トリ(n-オクチル)アミン、トリ(n-デシル)アミン等の第3級アミン類;トリプロピルホスフィンオキシド、トリブチルホスフィンオキシド、トリヘキシルホスフィンオキシド、トリオクチルホスフィンオキシド、トリデシルホスフィンオキシド等の有機リン化合物;ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のポリエチレングリコールジエステル類;ピリジン、ルチジン、コリジン、キノリン類の含窒素芳香族化合物等の有機窒素化合物;ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン等のアミノアルカン類;ジブチルスルフィド等のジアルキルスルフィド類;ジメチルスルホキシドやジブチルスルホキシド等のジアルキルスルホキシド類;チオフェン等の含硫黄芳香族化合物等の有機硫黄化合物;パルミチン酸、ステアリン酸、オレイン酸等の高級脂肪酸;アルコール類;ソルビタン脂肪酸エステル類;脂肪酸変性ポリエステル類;3級アミン変性ポリウレタン類;ポリエチレンイミン類等が挙げられるが、量子ドットが後述するような方法で調製されるものである場合、表面修飾剤は、高温液相において微粒子に配位して安定化する物質であるのが好ましく、具体的には、トリアルキルホスフィン類、有機リン化合物、アミノアルカン類、第3級アミン類、有機窒素化合物、ジアルキルスルフィド類、ジアルキルスルホキシド類、有機硫黄化合物、高級脂肪酸、アルコール類が好ましい。このような表面修飾剤を用いることにより、塗布液中における量子ドットの分散性を特に優れたものとすることができる。また、量子ドットの製造時において形成される量子ドットの形状をより真球度の高いものとし、量子ドットの粒度分布をよりシャープなものとすることができる。 Examples of the surface modifier include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether; tripropylphosphine, tributylphosphine, trihexylphosphine, trioctylphosphine, and the like. Trialkylphosphines; polyoxyethylene alkylphenyl ethers such as polyoxyethylene n-octylphenyl ether and polyoxyethylene n-nonylphenyl ether; tri (n-hexyl) amine, tri (n-octyl) amine, tri ( tertiary amines such as n-decyl) amine; tripropylphosphine oxide, tributylphosphine oxide, trihexylphosphine oxide, trioctylphosphineoxy Organic phosphorus compounds such as tridecylphosphine oxide; polyethylene glycol diesters such as polyethylene glycol dilaurate and polyethylene glycol distearate; organic nitrogen compounds such as nitrogen-containing aromatic compounds such as pyridine, lutidine, collidine and quinolines; hexylamine; Aminoalkanes such as octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine; dialkyl sulfides such as dibutyl sulfide; dialkyl sulfoxides such as dimethyl sulfoxide and dibutyl sulfoxide; sulfur-containing aromatics such as thiophene Organic sulfur compounds such as compounds; higher fatty acids such as palmitic acid, stearic acid and oleic acid; alcohols; sorbitan fatty acid esters; fatty acid-modified poly Stealtes; tertiary amine-modified polyurethanes; polyethyleneimines, and the like. When the quantum dots are prepared by the method described later, the surface modifier is coordinated to the fine particles in the high-temperature liquid phase. In particular, trialkylphosphines, organic phosphorus compounds, aminoalkanes, tertiary amines, organic nitrogen compounds, dialkyl sulfides, dialkyl sulfoxides, organic sulfur compounds Higher fatty acids and alcohols are preferred. By using such a surface modifier, the dispersibility of the quantum dots in the coating solution can be made particularly excellent. Moreover, the shape of the quantum dot formed at the time of manufacture of a quantum dot can be made into a higher sphericity, and the particle size distribution of a quantum dot can be made sharper.
 (4.5)量子ドットの製造方法
 量子ドットの製造方法としては、従来行われている下記のような量子ドットの製造方法等が挙げられるが、これらに限定されるものではなく公知の任意の方法を用いることができる。
(4.5) Manufacturing method of quantum dot As a manufacturing method of a quantum dot, the manufacturing method of the following quantum dots etc. which are performed conventionally are mentioned, However, It is not limited to these, Well-known arbitrary The method can be used.
 例えば、高真空下のプロセスとしては、分子ビームエピタキシー法、CVD法等;液相製造方法としては、原料水溶液を、例えば、n-ヘプタン、n-オクタン、イソオクタン等のアルカン類、又はベンゼン、トルエン、キシレン等の芳香族炭化水素等の非極性有機溶媒中の逆ミセルとして存在させ、この逆ミセル相中にて結晶成長させる逆ミセル法、熱分解性原料を高温の液相有機媒体に注入して結晶成長させるホットソープ法、さらに、ホットソープ法と同様に、酸塩基反応を駆動力として比較的低い温度で結晶成長を伴う溶液反応法等が挙げられる。 For example, as a process under high vacuum, a molecular beam epitaxy method, a CVD method, etc .; As a liquid phase production method, an aqueous raw material is used, for example, alkanes such as n-heptane, n-octane, isooctane, or benzene, toluene. Inverted micelles, which exist as reverse micelles in non-polar organic solvents such as aromatic hydrocarbons such as xylene, and crystal growth in this reverse micelle phase, inject a thermally decomposable raw material into a high-temperature liquid-phase organic medium Examples thereof include a hot soap method for crystal growth and a solution reaction method involving crystal growth at a relatively low temperature using an acid-base reaction as a driving force, as in the hot soap method.
 これらの製造方法から任意の方法を使用することができるが、中でも、液相製造方法が好ましい。 Any method can be used from these production methods, and among these, the liquid phase production method is preferable.
 なお、液相製造方法において、量子ドットの合成に際して表面に存在する有機表面修飾剤を初期表面修飾剤と呼ぶ。例えば、ホットソープ法における初期表面修飾剤の例としては、トリアルキルホスフィン類、トリアルキルホスフィンオキシド類、アルキルアミン類、ジアルキルスルホキシド類、アルカンホスホン酸等が挙げられる。これらの初期表面修飾剤は、交換反応により上述の機能性表面修飾剤に交換することが好ましい。 In the liquid phase production method, an organic surface modifier present on the surface during the synthesis of quantum dots is referred to as an initial surface modifier. For example, examples of the initial surface modifier in the hot soap method include trialkylphosphines, trialkylphosphine oxides, alkylamines, dialkyl sulfoxides, alkanephosphonic acid and the like. These initial surface modifiers are preferably exchanged for the above-described functional surface modifiers by an exchange reaction.
 具体的には、例えば、前述したホットソープ法により得られるトリオクチルホスフィンオキシド等の初期表面修飾剤は、機能性表面修飾剤を含有する液相中で行う交換反応により、上述の機能性表面修飾剤と交換することが可能である。 Specifically, for example, the initial surface modifier such as trioctylphosphine oxide obtained by the above-described hot soap method is obtained by performing the functional surface modification described above by an exchange reaction performed in a liquid phase containing the functional surface modifier. It is possible to replace it with an agent.
 以下に、量子ドットの製造方法の一例を示す。 The following shows an example of a method for producing quantum dots.
 〈1〉量子ドットの製造例1
 まず、CdOパウダー(1.6mmol、0.206g;Aldrich、+99.99%)とオレイン酸(6.4mmol、1.8g;Aldrich、95%)とを40mlのトリオクチルアミン(TOA、Aldrich、95%)中で混合する。混合された溶液を高速で撹拌しながら150℃で熱処理し、N2を流しながら300℃まで温度を上昇させた。次いで、300℃で、トリオクチルホスフィン(TOP、Strem、97%)に添加された2.0モル/LのSe(Alfa Aesar)0.2mlを、上記Cd-含有混合物に高速で注入する。
<1> Production example 1 of quantum dots
First, CdO powder (1.6 mmol, 0.206 g; Aldrich, + 99.99%) and oleic acid (6.4 mmol, 1.8 g; Aldrich, 95%) were mixed with 40 ml of trioctylamine (TOA, Aldrich, 95 %). The mixed solution was heat-treated at 150 ° C. while stirring at a high speed, and the temperature was raised to 300 ° C. while N 2 was allowed to flow. Then, at 300 ° C., 0.2 ml of 2.0 mol / L Se (Alfa Aesar) added to trioctylphosphine (TOP, Strem, 97%) is injected into the Cd-containing mixture at high speed.
 90秒後、TOA(210μl in6ml)に添加された1.2mmolのn-オクタンチオールを注射器ポンプ(syringe pump)を用いて1ml/minの速度で注入して40分間反応させる。 After 90 seconds, 1.2 mmol of n-octanethiol added to TOA (210 μl in 6 ml) is injected at a rate of 1 ml / min using a syringe pump and reacted for 40 minutes.
 次に、0.92gの酢酸亜鉛と2.8gのオレイン酸とを20mlのTOAに200℃で、N2雰囲気下で溶解させて0.25モル/LのZn前駆体溶液を調製する。 Next, 0.92 g of zinc acetate and 2.8 g of oleic acid are dissolved in 20 ml of TOA at 200 ° C. in an N 2 atmosphere to prepare a 0.25 mol / L Zn precursor solution.
 次いで、16mlのアリコート(aliquot)のZn-オレイン酸溶液(100℃で加熱された)を前記Cd-含有反応媒質に2ml/minの速度で注入する。その後、TOA(1.12ml in 6ml)中の6.4mmolのn-オクタンチオールを、注射器ポンプを用いて1ml/minの速度で注入する。 Next, a 16 ml aliquot of Zn-oleic acid solution (heated at 100 ° C.) is injected into the Cd-containing reaction medium at a rate of 2 ml / min. Thereafter, 6.4 mmol of n-octanethiol in TOA (1.12 ml in 6 ml) is injected at a rate of 1 ml / min using a syringe pump.
 全体反応は、2時間かけて行う。反応が終わった後、生成物を約50~60℃に冷却し、有機スラッジを遠心分離(5,600rpm)で除去する。不透明な塊がなくなるまでエタノール(Fisher、HPLC grade)を添加する。次いで、遠心分離して得られた沈殿物をトルエン(Sigma-Aldrich、Anhydrous 99.8%)中で溶解させることにより、CdSe/CdS/ZnSコア-シェル量子ドットコロイド溶液を得ることができる。 The entire reaction takes 2 hours. After the reaction is complete, the product is cooled to about 50-60 ° C. and the organic sludge is removed by centrifugation (5,600 rpm). Add ethanol (Fisher, HPLC grade) until there is no opaque mass. Next, the precipitate obtained by centrifugation is dissolved in toluene (Sigma-Aldrich, Anhydrous 99.8%) to obtain a CdSe / CdS / ZnS core-shell quantum dot colloidal solution.
 〈2〉量子ドットの製造例2
 CdSe/ZnSのコア/シェル構造を有する量子ドットを得ようとする場合、界面活性剤としてTOPO(trioctylphosphine oxide)を使用した有機溶媒に(CH32Cd(dimethyl cadmium)、TOPSe(trioctylphosphine selenide)などのコア(CdSe)に該当する前駆体物質を注入して結晶が生成されるようにし、結晶が一定の大きさで成長するように高温で一定時間維持した後、シェル(ZnS)に該当する前駆体物質を注入して既に生成されたコアの表面にシェルが形成されるようにすることで、TOPOでキャッピング(capping)されたCdSe/ZnSの量子ドットを得ることができる。
<2> Production example 2 of quantum dots
When a quantum dot having a core / shell structure of CdSe / ZnS is to be obtained, (CH 3 ) 2 Cd (dimethyl cadmium), TOPSe (tricylphosphine selenium) is used as an organic solvent using TOPO (trioctylphosphine oxide) as a surfactant. A precursor material corresponding to the core (CdSe) is injected to generate a crystal, and is maintained at a high temperature for a certain period of time so that the crystal grows at a certain size, and then corresponds to the shell (ZnS). CdSe / ZnS quantum dots capped with TOPO can be obtained by injecting the precursor material so that a shell is formed on the surface of the core already formed.
 〈3〉量子ドットの製造例3
 アルゴン気流下、トリ-n-オクチルホスフィンオキシド(TOPO)(関東化学社製)7.5gに、ステアリン酸(関東化学社製)2.9g、n-テトラデシルホスホン酸(AVOCADO社製)620mg、及び、酸化カドミニウム(和光純薬工業社製)250mgを加え、370℃に加熱混合した。これを270℃まで自然冷却させた後、あらかじめトリブチルホスフィン(関東化学社製)2.5mlにセレン(STREM CHEMICAL社製)200mgを溶解させた溶液を加え、減圧乾燥し、TOPOで被覆されたCdSe微粒子を得る。
<3> Production example 3 of quantum dots
Under an argon stream, 7.5 g of tri-n-octylphosphine oxide (TOPO) (manufactured by Kanto Chemical Co.), 2.9 g of stearic acid (manufactured by Kanto Chemical Co., Ltd.), 620 mg of n-tetradecylphosphonic acid (manufactured by AVOCADO), And 250 mg of cadmium oxide (made by Wako Pure Chemical Industries Ltd.) was added, and it heat-mixed at 370 degreeC. After naturally cooling this to 270 ° C., a solution of 200 mg of selenium (STREM CHEMICAL) dissolved in 2.5 ml of tributylphosphine (manufactured by Kanto Chemical Co.) was added in advance, dried under reduced pressure, and CdSe coated with TOPO. Get fine particles.
 次いで、得られたCdSe微粒子に、TOPO15gを加えて加熱し、引き続き270℃でトリオクチルホスフィン(シグマアルドリッチ社製)10mlにジエチルジチオカルバミン酸亜鉛(東京化成社製)1.1gを溶解した溶液を加え、表面にTOPOが固定された、CdSeのナノ結晶をコアとし、ZnSをシェルとするナノ粒子(以下、TOPO固定量子ドットともいう)を得た。なお、この状態の量子ドットは、トルエンやテトラヒドロフラン(THF)等の有機溶媒に可溶である。 Next, 15 g of TOPO was added to the obtained CdSe fine particles and heated, and subsequently, a solution of 1.1 g of zinc diethyldithiocarbamate (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 10 ml of trioctylphosphine (manufactured by Sigma Aldrich) was added at 270 ° C. Then, nanoparticles with CdSe nanocrystals with TOPO fixed on the surface and ZnS as the core (hereinafter also referred to as TOPO fixed quantum dots) were obtained. In addition, the quantum dot of this state is soluble in organic solvents, such as toluene and tetrahydrofuran (THF).
 その後、作製したTOPO固定量子ドットをTHFに溶解させて85℃に加温し、そこにエタノールに溶解させたN-[(S)-3-メルカプト-2-メチルプロピオニル]-L-プロリン(シグマアルドリッチ社製)100mgを滴下させ、12時間程度還流させた。12時間還流後、NaOH水溶液を加え、2時間、90℃で加熱してTHFを蒸発させた。得られた未精製の量子ドットを、限外濾過(Millipore社製、「Microcon」)及びセファデックスカラム(Amersham Biosciences社製、「MicroSpin G-25Columns」)を用いて精製と濃縮とを行うことで、量子ドットの表面にN-[(S)-3-メルカプト-2-メチルプロピオニル]-L-プロリンが固定された親水性の量子ドットを製造することができる。 Thereafter, the prepared TOPO fixed quantum dots were dissolved in THF, heated to 85 ° C., and N-[(S) -3-mercapto-2-methylpropionyl] -L-proline (Sigma) dissolved in ethanol there. (Aldrich) 100 mg was added dropwise and refluxed for about 12 hours. After refluxing for 12 hours, an aqueous NaOH solution was added, and the mixture was heated at 90 ° C. for 2 hours to evaporate THF. The obtained unpurified quantum dots are purified and concentrated using ultrafiltration (Millipore, “Microcon”) and Sephadex column (Amersham Biosciences, “MicroSpin G-25 Columns”). A hydrophilic quantum dot in which N-[(S) -3-mercapto-2-methylpropionyl] -L-proline is immobilized on the surface of the quantum dot can be produced.
 (4.6)量子ドットの製膜方法
 正孔輸送材料、電子輸送材料、発光層材料などの材料と量子ドットの混合液をスピンコートなどで塗布することで、各種材料層と層分離した量子ドット層を界面に形成することができる。その他にも、自己組織化単分子膜をパターニングされたPDMS(ポリジメチルシロキサン)スタンプ等を用いて基板上に転写する、マイクロコンタクトプリンティング法等のドライ法や、量子ドットを含有する塗工液をスピンコートする方法等を挙げることができる。
(4.6) Quantum Dot Formation Method Quantum separated from various material layers by applying a mixture of materials such as hole transport materials, electron transport materials, light emitting layer materials and quantum dots by spin coating. A dot layer can be formed at the interface. In addition, a dry method such as a microcontact printing method that transfers a self-assembled monolayer onto a substrate using a patterned PDMS (polydimethylsiloxane) stamp or the like, or a coating solution containing quantum dots Examples of the method include spin coating.
 《陽極》
 有機EL素子を構成する陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状パターンを形成してもよく、あるいはパターン精度を余り必要としない場合(100μm以上程度)は、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式製膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常は、10~1000nmの範囲であり、好ましくは10~200nmの範囲で選ばれる。
"anode"
As the anode constituting the organic EL device, an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode substances include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used. For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a desired shape pattern may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually in the range of 10 to 1000 nm, preferably in the range of 10 to 200 nm.
 《陰極》
 一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。
"cathode"
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the emission luminance is advantageously improved.
 また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に形成することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する有機EL素子を作製することができる。 In addition, a transparent or translucent cathode can be produced by forming the above metal on the cathode with a film thickness of 1 to 20 nm and then forming the conductive transparent material mentioned in the description of the anode thereon. By applying this, an organic EL element in which both the anode and the cathode are transmissive can be produced.
 《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。リジットな基板よりもフレキシブルな基板において、高温保存安定性や色度変動を抑制する効果が大きく現れるため、特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な可撓性を備えた樹脂フィルムである。
《Support substrate》
The support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. Since the effect of suppressing high-temperature storage stability and chromaticity variation appears greatly in a flexible substrate than a rigid substrate, a particularly preferable support substrate has flexibility that can give flexibility to an organic EL element. Resin film.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Can be mentioned.
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m2・24h)以下のバリア性フィルムであることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定した酸素透過度が、10-3cm3/(m2・24h・atm)以下、水蒸気透過度が10-3g/(m2・24h)以下の高バリア性フィルムであることが好ましく、前記の水蒸気透過度が10-5g/(m2・24h)以下であることがさらに好ましい。 The surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. , And a relative humidity (90 ± 2)% RH) of 0.01 g / (m 2 · 24 h) or less is preferable, and oxygen permeability measured by a method according to JIS K 7126-1987 is also preferable. The film is preferably a high barrier film having a degree of 10 −3 cm 3 / (m 2 · 24 h · atm) or less and a water vapor permeability of 10 −3 g / (m 2 · 24 h) or less. More preferably, the degree is 10 −5 g / (m 2 · 24 h) or less.
 バリア膜を形成する材料としては、水分や酸素等の有機EL素子の劣化を招く因子の浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機機能層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 As a material for forming the barrier film, any material may be used as long as it has a function of suppressing intrusion of factors that cause deterioration of the organic EL element such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like is used. Can do. In order to further improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of organic materials. Although there is no restriction | limiting in particular about the lamination order of an inorganic layer and an organic functional layer, It is preferable to laminate | stack both alternately several times.
 バリア膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。 The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。本発明の有機EL素子において、発光の室温における外部取り出し効率は、1%以上であることが好ましく、より好ましくは5%以上である。ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。 Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like. In the organic EL device of the present invention, the external extraction efficiency of light emission at room temperature is preferably 1% or more, more preferably 5% or more. Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element × 100.
 《封止(封止接着剤、封止部材)》
 本発明の有機EL素子に適用可能な封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。
<< Sealing (sealing adhesive, sealing member) >>
As a sealing means applicable to the organic EL element of the present invention, for example, a method of adhering a sealing member, an electrode, and a support substrate with an adhesive can be mentioned. As a sealing member, it should just be arrange | positioned so that the display area | region of an organic EL element may be covered, and concave plate shape or flat plate shape may be sufficient. Further, transparency and electrical insulation are not particularly limited.
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコーン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金からなるものが挙げられる。 Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicone, germanium, and tantalum.
 本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3cm3/(m2・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が1×10-3g/(m2・24h)以下のものであることが好ましい。 In the present invention, a polymer film and a metal film can be preferably used because the element can be thinned. Furthermore, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 cm 3 / (m 2 · 24 h · atm) or less, according to JIS K 7129-1992. The water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by the above method is preferably 1 × 10 −3 g / (m 2 · 24 h) or less.
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。 For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
 接着剤としては、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. Can be mentioned. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサを使ってもよいし、スクリーン印刷のように印刷してもよい。 In addition, since an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable. Further, a desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
 また、有機機能層を挟み支持基板と対向する側の電極の外側に該電極と有機機能層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 It is also preferable to cover the electrode and the organic functional layer on the outer side of the electrode facing the support substrate with the organic functional layer in between, and form an inorganic or organic layer in contact with the support substrate to form a sealing film Can be. In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can. Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. The method for forming these films is not particularly limited. For example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相を形成することを目的として、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 In order to form a gas phase and a liquid phase in the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, an inert gas such as fluorinated hydrocarbon or silicon oil is used. It is preferable to inject a liquid. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
 封止にはケーシングタイプの封止(缶封止)と密着タイプの封止(固体封止)があるが、薄型化の観点からは固体封止が好ましい。また、可撓性の有機EL素子を作製する場合は、封止部材にも可撓性が求められるため、固体封止が好ましい。 Sealing includes casing type sealing (can sealing) and close contact type sealing (solid sealing), but solid sealing is preferable from the viewpoint of thinning. Moreover, when producing a flexible organic EL element, since sealing is also required for the sealing member, solid sealing is preferable.
 以下に、固体封止を行う場合の好ましい態様を説明する。 In the following, a preferred embodiment when performing solid sealing will be described.
 本発明に係る封止用接着剤には、熱硬化接着剤や紫外線硬化樹脂などを用いることができるが、好ましくはエポキシ系樹脂、アクリル系樹脂、シリコーン樹脂など熱硬化接着剤、より好ましくは耐湿性、耐水性に優れ、硬化時の収縮が少ないエポキシ系熱硬化型接着性樹脂である。 As the sealing adhesive according to the present invention, a thermosetting adhesive, an ultraviolet curable resin, or the like can be used, but preferably a thermosetting adhesive such as an epoxy resin, an acrylic resin, or a silicone resin, more preferably moisture resistant. It is an epoxy thermosetting adhesive resin that is excellent in water resistance and water resistance and has little shrinkage during curing.
 本発明に係る封止用接着剤の含水率は、300ppm以下であることが好ましく、0.01~200ppmであることがより好ましく、0.01~100ppmであることが最も好ましい。本発明でいう含水率は、いかなる方法により測定しても構わないが、例えば容量法水分計(カールフィッシャ-)、赤外水分計、マイクロ波透過型水分計、加熱乾燥重量法、GC/MS、IR、DSC(示差走査熱量計)、TDS(昇温脱離分析)が挙げられる。また、精密水分計AVM-3000型(オムニテック社製)等を用い、水分の蒸発によって生じる圧力上昇から水分を測定でき、フィルムまた固形フィルム等の水分率の測定を行うことができる。 The water content of the sealing adhesive according to the present invention is preferably 300 ppm or less, more preferably 0.01 to 200 ppm, and most preferably 0.01 to 100 ppm. The moisture content referred to in the present invention may be measured by any method. For example, a volumetric moisture meter (Karl Fischer), an infrared moisture meter, a microwave transmission moisture meter, a heat-dry weight method, GC / MS , IR, DSC (differential scanning calorimeter), TDS (temperature programmed desorption analysis). Further, using a precision moisture meter AVM-3000 (Omnitech) or the like, moisture can be measured from a pressure increase caused by evaporation of moisture, and moisture content of a film or a solid film can be measured.
 本発明おいて、封止用接着剤の含水率は、例えば、露点温度が-80℃以下、酸素濃度0.8ppmの窒素雰囲気下に置き時間を変化させることで調整することができる。また、100Pa以下の真空状態で置き時間を変化させて乾燥させることもできる。また、封止用接着材は接着剤のみで乾燥させることもできるが、封止部材へあらかじめ配置し乾燥させることもできる。 In the present invention, the moisture content of the sealing adhesive can be adjusted by, for example, placing it in a nitrogen atmosphere with a dew point temperature of −80 ° C. or lower and an oxygen concentration of 0.8 ppm, and changing the time. Further, it can be dried in a vacuum state of 100 Pa or less while changing the time. Further, the sealing adhesive can be dried only with an adhesive, but can also be placed in advance on the sealing member and dried.
 密着封止(固体封止)を行う場合、封止部材としては、例えば、50μm厚のPET(ポリエチレンテレフタレート)にアルミ箔(30μm厚)をラミネートしたものを用いる。これを封止部材として、アルミニウム面にディスペンサを使用して均一に塗布し封止用接着剤をあらかじめ配置しておき、樹脂基板1と封止部材5を位置合わせ後、両者を圧着して(0.1~3MPa)、温度80~180℃で密着・接合(接着)して、密着封止(固体封止)する。 When close sealing (solid sealing) is performed, as the sealing member, for example, a 50 μm thick PET (polyethylene terephthalate) laminated with an aluminum foil (30 μm thick) is used. Using this as a sealing member, it is uniformly applied to the aluminum surface using a dispenser, a sealing adhesive is placed in advance, the resin substrate 1 and the sealing member 5 are aligned, and then both are crimped ( 0.1-3 MPa) and a temperature of 80-180 ° C. for close contact / bonding (adhesion), and close sealing (solid sealing).
 接着剤の種類また量、そして面積等によって加熱また圧着時間は変わるが0.1~3MPaの圧力で仮接着、また80~180℃の温度で、熱硬化時間は5秒~10分間の範囲で選べばよい。加熱した圧着ロールを用いると圧着(仮接着)と加熱が同時にでき、且つ内部の空隙も同時に排除でき好ましい。また、接着層の形成方法としては、材料に応じて、ディスペンサを用い、ロールコート、スピンコート、スクリーン印刷法、スプレーコートなどのコーティング法、印刷法を用いることができる。 Heating or pressure bonding time varies depending on the type, amount, and area of the adhesive, but temporary bonding is performed at a pressure of 0.1 to 3 MPa, and heat curing time is in the range of 5 seconds to 10 minutes at a temperature of 80 to 180 ° C. Just choose. The use of a heated crimping roll is preferred because it allows simultaneous crimping (temporary bonding) and heating, and eliminates internal voids at the same time. As a method for forming the adhesive layer, a coating method such as roll coating, spin coating, screen printing, or spray coating, or a printing method can be used depending on the material.
 固体封止は以上のように封止部材と有機EL素子基板との間に空間がなく硬化した樹脂で覆う形態である。封止部材としては、ステンレス、アルミニウム、マグネシウム合金等の金属、ポリエチレンテレフタレート、ポリカーボネート、ポリスチレン、ナイロン、ポリ塩化ビニル等のプラスチック、及びこれらの複合物、ガラス等が挙げられ、必要に応じて、特に樹脂フィルムの場合には、樹脂基板と同様、アルミニウム、酸化アルミニウム、酸化ケイ素、窒化ケイ素等のガスバリア層を積層したものを用いることができる。 As described above, solid sealing is a form in which there is no space between the sealing member and the organic EL element substrate and the resin is covered with a cured resin. Examples of the sealing member include metals such as stainless steel, aluminum, and magnesium alloys, polyethylene terephthalate, polycarbonate, polystyrene, nylon, plastics such as polyvinyl chloride, and composites thereof, glass, and the like. In the case of a resin film, a laminate of gas barrier layers such as aluminum, aluminum oxide, silicon oxide, and silicon nitride can be used as in the case of a resin substrate.
 ガスバリア層は、封止部材成形前に封止部材の両面若しくは片面にスパッタリング、蒸着等により形成することもできるし、封止後に封止部材の両面若しくは片面に同様な方法で形成してもよい。これについても、酸素透過度が1×10-3cm/(m2・24h・atm)以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下のものであることが好ましい。 The gas barrier layer can be formed by sputtering, vapor deposition or the like on both surfaces or one surface of the sealing member before molding the sealing member, or may be formed on both surfaces or one surface of the sealing member after sealing by a similar method. . Also in this case, the oxygen permeability is 1 × 10 −3 cm 3 / (m 2 · 24 h · atm) or less, the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is 1 It is preferable that it is below 10 < -3 > g / (m < 2 > * 24h).
 封止部材としては、アルミニウム等の金属箔をラミネートしたフィルム等でも良い。金属箔の片面にポリマーフィルムを積層する方法としては、一般に使用されているラミネート機を使用することができる。接着剤としてはポリウレタン系、ポリエステル系、エポキシ系、アクリル系等の接着剤を用いることができる。必要に応じて硬化剤を併用してもよい。ホットメルトラミネーション法やエクストルージョンラミネート法及び共押出しラミネーション法も使用できるがドライラミネート方式が好ましい。 The sealing member may be a film laminated with a metal foil such as aluminum. As a method for laminating the polymer film on one side of the metal foil, a generally used laminating machine can be used. As the adhesive, polyurethane-based, polyester-based, epoxy-based, acrylic-based adhesives and the like can be used. You may use a hardening | curing agent together as needed. A hot melt lamination method, an extrusion lamination method and a coextrusion lamination method can also be used, but a dry lamination method is preferred.
 また、金属箔をスパッタや蒸着等で形成し、導電性ペースト等の流動性電極材料から形成する場合は、逆にポリマーフィルムを基材としてこれに金属箔を製膜する方法で作製してもよい。 In addition, when the metal foil is formed by sputtering or vapor deposition and is formed from a fluid electrode material such as a conductive paste, it may be produced by a method of forming a metal foil on a polymer film as a base material. Good.
 《保護膜、保護板》
 有機機能層を挟み支持基板と対向する側の封止膜、あるいは封止用フィルムの外側に、有機EL素子の機械的強度を高めるため、保護膜あるいは保護板を設けてもよい。特に、封止が封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the organic EL element, a protective film or a protective plate may be provided outside the sealing film on the side facing the support substrate with the organic functional layer interposed therebetween or on the outer side of the sealing film. In particular, when sealing is performed with a sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
 本発明において、可撓性支持基板から陽極との間、あるいは可撓性支持基板から光出射側のいずれかの場所に光取出し部材を有することが好ましい。光取出し部材としては、プリズムシートやレンズシート及び拡散シートが挙げられる。また、全反射を起こす界面若しくはいずれかの媒質中に導入される回折格子や拡散構造等が挙げられる。 In the present invention, it is preferable to have a light extraction member between the flexible support substrate and the anode or at any position on the light emission side from the flexible support substrate. Examples of the light extraction member include a prism sheet, a lens sheet, and a diffusion sheet. Moreover, the diffraction grating introduce | transduced in the interface which raise | generates total reflection, or any medium, a diffusion structure, etc. are mentioned.
 通常、基板から光を放射するような有機エレクトロルミネッセンス素子においては、発光層から放射された光の一部が基板と空気との界面において全反射を起こし、光を損失するという問題が発生する。この問題を解決するために、基板の表面にプリズムやレンズ状の加工を施す、若しくは基板の表面にプリズムシートやレンズシート及び拡散シートを貼り付けることにより、全反射を抑制して光の取り出し効率を向上させる。また、光取り出し効率を高めるためには、全反射を起こす界面若しくはいずれかの媒質中に回折格子を導入する方法や拡散構造を導入する方法が知られている。 Usually, in an organic electroluminescence element that emits light from a substrate, a part of the light emitted from the light emitting layer causes total reflection at the interface between the substrate and air, causing a problem of loss of light. In order to solve this problem, the prism surface, lens-like processing is applied to the surface of the substrate, or the prism sheet, the lens sheet and the diffusion sheet are attached to the surface of the substrate, thereby suppressing the total reflection and the light extraction efficiency. To improve. In order to increase the light extraction efficiency, a method of introducing a diffraction grating or a method of introducing a diffusion structure in an interface or any medium that causes total reflection is known.
 《有機EL素子の製造方法》
 本発明の有機EL素子の製造方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の製造方法を説明する。
<< Method for Manufacturing Organic EL Element >>
As an example of the method for producing an organic EL device of the present invention, a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.
 はじめに、適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの膜厚になるように、蒸着やスパッタリング等の薄膜形成方法により形成させて、陽極を作製する。 First, a desired electrode material, for example, a thin film made of an anode material is formed on a suitable substrate by a thin film forming method such as vapor deposition or sputtering so as to have a thickness of 1 μm or less, preferably 10 to 200 nm. An anode is produced.
 次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層の有機機能層(有機化合物薄膜)を形成させる。 Next, an organic functional layer (organic compound thin film) of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, which are organic EL element materials, is formed thereon.
 有機機能層を形成する工程は、主に、(i)その有機機能層を構成する塗布液を、支持基板の陽極上に塗布・積層する工程と、(ii)塗布・積層後の塗布液を、乾燥させる工程と、で構成される。 The step of forming the organic functional layer mainly includes: (i) a step of applying and laminating the coating liquid constituting the organic functional layer on the anode of the support substrate; and (ii) a coating liquid after coating and lamination. And drying.
 (i)の工程では、各層の形成方法として、前記の如く蒸着法、ウェットプロセス(例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法)等を挙げることができる。)を用いることができ、少なくとも量子ドットはウェットプロセスを用いて形成することが好ましい。 In the step (i), as a method for forming each layer, as described above, a vapor deposition method, a wet process (for example, spin coating method, casting method, die coating method, blade coating method, roll coating method, ink jet method, printing method, spray coating). Method, curtain coating method, LB method (Langmuir Brodgett method and the like can be used), and at least quantum dots are preferably formed using a wet process.
 正孔注入層以外の有機機能層の形成においても、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、本発明においてはウェットプロセスが好ましく、中でも、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法等の塗布法による製膜が好ましい。 In the formation of the organic functional layer other than the hole injection layer, a wet process is preferable in the present invention because it is easy to obtain a homogeneous film and it is difficult to generate pinholes. Film formation by a coating method such as a method, a die coating method, a blade coating method, a roll coating method or an ink jet method is preferred.
 本発明に係る有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)等の有機溶媒を用いることができる。また分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。 Examples of the liquid medium for dissolving or dispersing the organic EL material according to the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene. Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as dimethylformamide (DMF) and dimethylsulfoxide (DMSO) can be used. Moreover, as a dispersion method, it can disperse | distribute by dispersion methods, such as an ultrasonic wave, high shear force dispersion | distribution, and media dispersion | distribution.
 また、本発明に係る有機EL材料を溶解又は分散する調液工程、基材上に塗布されるまでの塗布工程は不活性ガス雰囲気下であることが好ましいが、使用素材により不活性ガス雰囲気下で行わなくとも有機EL素子性能を落とさずに製膜できるため、必ずしも不活性ガス雰囲気下で行わなくても良い場合がある。この場合、製造コストを抑えることができより好ましい。 In addition, the preparation step for dissolving or dispersing the organic EL material according to the present invention and the application step until the organic EL material is applied on the substrate are preferably in an inert gas atmosphere. Since the film can be formed without degrading the performance of the organic EL element even if it is not carried out in step 1, it may not be carried out in an inert gas atmosphere. In this case, the manufacturing cost can be suppressed, which is more preferable.
 (ii)の工程では、塗布・積層された有機機能層の乾燥を行う。ここでいう乾燥とは、塗布直後の膜の溶媒含有量を100%とした場合に、0.2%以下まで低減されることを指す。 (Ii) In the step (ii), the coated and laminated organic functional layer is dried. The term “drying” as used herein refers to a reduction to 0.2% or less when the solvent content of the film immediately after coating is 100%.
 乾燥の手段としては一般的に汎用されているものを使用でき、減圧あるいは加圧乾燥、加熱乾燥、送風乾燥、IR乾燥及び電磁波による乾燥などが挙げられる。中でも加熱乾燥が好ましく、有機機能層塗布溶媒の中で最も低沸点の溶媒の沸点以上の温度であり、有機機能層材料のTgの中で最も低Tgである材料の(Tg+20)℃より低い温度で保持することが最も好ましい。本発明において、より具体的には80℃以上150℃以下で保持し乾燥することが好ましく、100℃以上130℃以下で保持し乾燥することがより好ましい。 As a means for drying, those generally used can be used, and examples thereof include reduced pressure or pressure drying, heat drying, air drying, IR drying, and electromagnetic wave drying. Of these, heat drying is preferable, the temperature is equal to or higher than the boiling point of the solvent having the lowest boiling point in the organic functional layer coating solvent, and the temperature is lower than (Tg + 20) ° C. of the material having the lowest Tg among the Tg of the organic functional layer material. Most preferably, it is held at In the present invention, more specifically, it is preferable to hold and dry at 80 ° C. or higher and 150 ° C. or lower, and more preferable to hold and dry at 100 ° C. or higher and 130 ° C. or lower.
 塗布・積層後の塗布液を乾燥させる際の雰囲気は、不活性ガス以外の気体の体積濃度が200ppm以下の雰囲気とすることが好ましいが、調液塗布工程と同様に必ずしも不活性ガス雰囲気下で行わなくても良い場合がある。この場合、製造コストを抑えることができ、より好ましい。不活性ガスは好ましくは窒素ガス及びアルゴンガス等の希ガスであり、製造コスト上最も好ましくは窒素ガスである。 The atmosphere when drying the coating liquid after coating / lamination is preferably an atmosphere having a volume concentration of a gas other than the inert gas of 200 ppm or less, but it is not necessarily in an inert gas atmosphere as in the liquid preparation coating process. It may not be necessary. In this case, the manufacturing cost can be suppressed, which is more preferable. The inert gas is preferably a rare gas such as nitrogen gas and argon gas, and most preferably nitrogen gas in terms of production cost.
 これらの層の塗布・積層及び乾燥工程は枚葉製造であっても、ライン製造であっても良い。更に、乾燥工程はライン上で搬送中に行っても良いが、生産性の観点から堆積あるいはロール状に非接触で巻き取り乾燥しても良い。 The coating / laminating and drying processes of these layers may be single wafer manufacturing or line manufacturing. Further, the drying process may be performed while being conveyed on the line, but from the viewpoint of productivity, it may be deposited or rolled in a non-contact manner in a roll form.
 これらの層を乾燥後、その上に陰極用物質からなる薄膜を、1μm以下、好ましくは50nm~200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより、所望の有機EL素子が得られる。該加熱処理後に前記密着封止あるいは封止部材と電極、支持基板とを接着剤で接着することで有機EL素子を製造することができる。 After these layers are dried, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 50 nm to 200 nm. By providing, a desired organic EL element can be obtained. After the heat treatment, the organic EL element can be produced by adhering the close-sealing or sealing member to the electrode and the support substrate with an adhesive.
 《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。
<Application>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
 発光光源として、例えば、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源、さらには表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられるが、特にカラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。本発明の有機EL素子においては、必要に応じ製膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。 Examples of light sources include home lighting, interior lighting, backlights for watches and liquid crystals, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. Furthermore, it can be used in a wide range of applications such as general household appliances that require a display device, but it can be used effectively as a backlight of a liquid crystal display device combined with a color filter, and as a light source for illumination. it can. In the organic EL device of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like at the time of film formation, if necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 (実施例1)
 《量子ドットの作製》
 以下のようにして平均粒子径2.0nmの量子ドットを作製した。
Example 1
<Production of quantum dots>
A quantum dot having an average particle diameter of 2.0 nm was produced as follows.
 アルゴン気流下で、トリ-n-オクチルホスフィンオキシド(TOPO)(関東化学社製)7.5gに、ステアリン酸(関東化学社製)2.9g、n-テトラデシルホスホン酸(AVOCADO社製)620mg、及び、酸化カドミニウム(和光純薬工業社製)250mgを加え、370℃に加熱混合した。これを270℃まで自然冷却させた後、あらかじめトリブチルホスフィン(関東化学社製)2.5mlに、セレン(STREM CHEMICAL社製)200mgを溶解させた溶液を加え、減圧乾燥し、TOPOで被覆されたCdSeの量子ドットを得た。 Under an argon stream, 7.5 g of tri-n-octylphosphine oxide (TOPO) (manufactured by Kanto Chemical Co.), 2.9 g of stearic acid (manufactured by Kanto Chemical Co., Ltd.), 620 mg of n-tetradecylphosphonic acid (manufactured by AVOCADO) Then, 250 mg of cadmium oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was heated and mixed at 370 ° C. After naturally cooling this to 270 ° C., a solution in which 200 mg of selenium (STREM CHEMICAL) was dissolved in 2.5 ml of tributylphosphine (manufactured by Kanto Chemical Co., Inc.) was added in advance, dried under reduced pressure, and coated with TOPO. CdSe quantum dots were obtained.
 さらに、上記の方法で目的の粒子径になるよう酸化カドミニウムとセレンの量を増やし、同様な方法で平均粒子径2.7nmと4.0nmの量子ドットを作製した。 Further, the amount of cadmium oxide and selenium was increased so as to obtain the target particle size by the above method, and quantum dots having average particle sizes of 2.7 nm and 4.0 nm were prepared by the same method.
 なお、これらの量子ドットの平均粒子径は、動的光散乱法により測定を行った。 The average particle size of these quantum dots was measured by a dynamic light scattering method.
 《有機EL素子の作製》
 (1)有機EL素子1の作製
 (1.1)ガスバリア性の可撓性フィルムの作製
 可撓性フィルム(支持基板)として、ポリエチレンナフタレートフィルム(帝人デュポン社製フィルム、以下、PENと略記する)の第1電極を形成する側の全面に、特開2004-68143号に記載の構成からなる大気圧プラズマ放電処理装置を用いて、連続して可撓性フィルム上に、SiOxからなる無機物のガスバリア膜を厚さ500nmとなるように形成し、酸素透過度0.001cm/m2・day・atm以下、水蒸気透過度0.001g/m2・day・atm以下のガスバリア性の可撓性フィルムを作製した。
<< Production of organic EL element >>
(1) Production of Organic EL Element 1 (1.1) Production of Gas Barrier Flexible Film As a flexible film (supporting substrate), a polyethylene naphthalate film (a film made by Teijin DuPont, hereinafter abbreviated as PEN). ) On the entire surface on the side where the first electrode is formed, using an atmospheric pressure plasma discharge treatment apparatus having the structure described in JP-A-2004-68143, an inorganic substance composed of SiOx is continuously formed on the flexible film. A gas barrier film is formed to a thickness of 500 nm, and has a gas barrier property of oxygen permeability of 0.001 cm 3 / m 2 · day · atm or less and water vapor permeability of 0.001 g / m 2 · day · atm or less. A film was prepared.
 (1.2)第1電極層の形成
 準備したガスバリア性の可撓性フィルム上に厚さ120nmのITO(インジウムチンオキシド)をスパッタ法により製膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層(陽極)を形成した。なお、パターンは発光面積が50mm平方になるようなパターンとした。
(1.2) Formation of first electrode layer A 120 nm thick ITO (Indium Tin Oxide) film is formed on the prepared gas barrier flexible film by sputtering, and patterned by photolithography. An electrode layer (anode) was formed. The pattern was such that the light emission area was 50 mm square.
 (1.3)正孔注入層の形成
 パターニング後のITO基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSSと略記、Bayer製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔注入層を設けた。
(1.3) Formation of hole injection layer The patterned ITO substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. On this substrate, a solution of poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (abbreviated as PEDOT / PSS, manufactured by Bayer, Baytron P Al 4083) diluted to 70% with pure water at 3000 rpm for 30 seconds. After film formation by a spin coating method, the film was dried at 200 ° C. for 1 hour to provide a hole injection layer having a thickness of 30 nm.
 (1.4)(正孔輸送層及び量子ドット単分子層の形成)
 この基板を、窒素ガス(グレードG1)を用いた窒素雰囲気下に移し、正孔輸送材料(例示化合物(60)(Mw=8000))と平均粒子径4.0nmの量子ドットとの混合液(1:1)をクロロベンゼンに0.5%分散した分散液を、1500rpm、30秒でスピンコート法により製膜した後、160℃で30分間保持し、膜厚30nmの正孔輸送層と層分離した量子ドットからなる単一分子層を形成した。
(1.4) (Formation of hole transport layer and quantum dot monolayer)
This substrate was transferred to a nitrogen atmosphere using nitrogen gas (grade G1), and a liquid mixture of a hole transport material (Exemplary Compound (60) (Mw = 8000)) and quantum dots having an average particle diameter of 4.0 nm ( A dispersion obtained by dispersing 0.5% of 1: 1) in chlorobenzene was formed by spin coating at 1500 rpm for 30 seconds, and then kept at 160 ° C. for 30 minutes to separate the hole transport layer having a thickness of 30 nm from the layer separation. A single molecular layer consisting of quantum dots was formed.
 (1.5)発光層の形成
 次いで、下記組成の発光層組成物を1500rpm、30秒でスピンコート法により製膜した後、120℃で30分間保持し膜厚40nmの発光層をそれぞれ形成した。
(1.5) Formation of Light-Emitting Layer Next, a light-emitting layer composition having the following composition was formed by spin coating at 1500 rpm for 30 seconds, and then held at 120 ° C. for 30 minutes to form a light-emitting layer having a thickness of 40 nm. .
 〈発光層組成物〉
例示化合物a-38(ホスト化合物)       13.950質量部
例示化合物D-66(青色リン光発光性化合物)   2.450質量部
例示化合物D-80(緑色リン光発光性化合物)   0.025質量部
例示化合物D-67(赤色リン光発光性化合物)   0.025質量部
トルエン                      2000質量部
 (1.6)量子ドット層の形成
 発光層上に上記作製した平均粒子径4.0nmの量子ドットの単分子膜を形成した。この単分子膜の形成はマイクロコンタクトプリンティング法によって行った。
<Light emitting layer composition>
Illustrative compound a-38 (host compound) 13.950 parts by mass Illustrative compound D-66 (blue phosphorescent compound) 2.450 mass parts Illustrative compound D-80 (green phosphorescent compound) 0.025 parts by mass Exemplified Compound D-67 (Red Phosphorescent Compound) 0.025 parts by mass Toluene 2000 parts by mass (1.6) Formation of Quantum Dot Layer Single quantum dots having an average particle size of 4.0 nm prepared above on the luminescent layer A molecular film was formed. This monomolecular film was formed by a microcontact printing method.
 (1.7)電子輸送層の形成
 続いて、電子輸送材料として20mgの下記化合物Aを、4mlのテトラフルオロプロパノール(TFPO)に溶解した溶液を、1500rpm、30秒でスピンコート法により製膜した後、120℃で30分間保持し、膜厚30nmの電子輸送層とした。
(1.7) Formation of Electron Transport Layer Subsequently, a solution prepared by dissolving 20 mg of the following compound A as an electron transport material in 4 ml of tetrafluoropropanol (TFPO) was formed by spin coating at 1500 rpm for 30 seconds. Then, it hold | maintained at 120 degreeC for 30 minute (s), and set it as the electron carrying layer with a film thickness of 30 nm.
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000038
 
 (1.8)電子注入層、陰極の形成
 続いて、基板を大気に曝露することなく真空蒸着装置へ取り付けた。また、モリブデン製抵抗加熱ボートにフッ化ナトリウム及びフッ化カリウムを入れたものを真空蒸着装置に取り付け、真空槽を4×10-5Paまで減圧した後、前記ボートに通電して加熱してフッ化ナトリウムを0.02nm/秒で前記電子輸送層上に膜厚1nmの薄膜を形成し、続けて同様にフッ化カリウムを0.02nm/秒でフッ化ナトリウム上に膜厚1.5nmの電子注入層を形成した。引き続き、アルミニウム100nmを蒸着して陰極を形成した。
(1.8) Formation of electron injection layer and cathode Subsequently, the substrate was attached to a vacuum deposition apparatus without being exposed to the atmosphere. A molybdenum resistance heating boat containing sodium fluoride and potassium fluoride is attached to a vacuum deposition apparatus, and the vacuum chamber is depressurized to 4 × 10 −5 Pa, and then the boat is energized and heated. A thin film having a thickness of 1 nm is formed on the electron transport layer at a rate of 0.02 nm / second with sodium fluoride, and then an electron with a thickness of 1.5 nm on the sodium fluoride at a rate of 0.02 nm / second in the same manner. An injection layer was formed. Subsequently, 100 nm of aluminum was deposited to form a cathode.
 (1.9)封止及び有機EL素子の作製
 引き続き、市販のロールラミネート装置を用いて封止部材を接着し、有機EL素子を製作した。
(1.9) Sealing and production of organic EL element Subsequently, a sealing member was bonded using a commercially available roll laminating apparatus to produce an organic EL element.
 なお、封止部材として、可撓性の厚さ30μmのアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)をドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いラミネートした(接着剤層の厚さ1.5μm)ものを用いた。 As a sealing member, a flexible aluminum foil (made by Toyo Aluminum Co., Ltd.) having a thickness of 30 μm, a polyethylene terephthalate (PET) film (12 μm thickness) and an adhesive for dry lamination (two-component reaction type urethane) (Adhesive layer thickness of 1.5 μm) was used.
 アルミニウム面に封止用接着剤として、熱硬化性接着剤を、ディスペンサを使用してアルミ箔の接着面(つや面)に沿って厚さ20μmで均一に塗布した。これを100Pa以下の真空下で12時間乾燥させた。さらに露点温度が-80℃以下、酸素濃度0.8ppmの窒素雰囲気下へ移動し、12時間以上乾燥させ、封止用接着剤の含水率を100ppm以下となるように調整した。 A thermosetting adhesive as a sealing adhesive was uniformly applied to the aluminum surface at a thickness of 20 μm along the adhesive surface (shiny surface) of the aluminum foil using a dispenser. This was dried under a vacuum of 100 Pa or less for 12 hours. Furthermore, it moved to a nitrogen atmosphere with a dew point temperature of −80 ° C. or lower and an oxygen concentration of 0.8 ppm, dried for 12 hours or longer, and adjusted the water content of the sealing adhesive to 100 ppm or lower.
 熱硬化接着剤としては下記の(A)~(C)を混合したエポキシ系接着剤を用いた。 As the thermosetting adhesive, an epoxy adhesive mixed with the following (A) to (C) was used.
 (A)ビスフェノールAジグリシジルエーテル(DGEBA)
 (B)ジシアンジアミド(DICY)
 (C)エポキシアダクト系硬化促進剤
 以上のようにして、図3に記載の形態になるよう、封止基板を、取り出し電極及び電極リードの接合部を覆うようにして密着・配置して、圧着ロールを用いて厚着条件、圧着ロール温度120℃、圧力0.5MPa、装置速度0.3m/minで密着封止した。
(A) Bisphenol A diglycidyl ether (DGEBA)
(B) Dicyandiamide (DICY)
(C) Epoxy adduct curing accelerator As described above, the sealing substrate is closely attached and arranged so as to cover the joint between the extraction electrode and the electrode lead so as to be in the form shown in FIG. Using a roll, it was tightly sealed under thick deposition conditions, a pressure roll temperature of 120 ° C., a pressure of 0.5 MPa, and an apparatus speed of 0.3 m / min.
 以上のようにして、発光層と電子輸送層、及び発光層と正孔輸送層の両方の界面に平均粒子径4.0nmの量子ドットを有する有機EL素子1を作製した。 As described above, the organic EL device 1 having quantum dots with an average particle diameter of 4.0 nm at the interfaces of both the light emitting layer and the electron transport layer and between the light emitting layer and the hole transport layer was produced.
 (2)有機EL素子2~13の作製
 表1に記載の粒子径を有する量子ドット、リン光発光性化合物、ホスト化合物をそれぞれ表1に示すように変えた以外は有機EL素子1と同様にして有機エレクトロルミネッセンス素子2~13を作製した。
(2) Preparation of organic EL devices 2 to 13 The same manner as in the organic EL device 1 except that the quantum dots, phosphorescent compounds and host compounds having the particle sizes shown in Table 1 were changed as shown in Table 1. Thus, organic electroluminescence elements 2 to 13 were produced.
Figure JPOXMLDOC01-appb-T000039
 
Figure JPOXMLDOC01-appb-T000039
 
 (3)各材料のバンドギャップの測定
 各材料のバンドギャップの測定は、前述したように吸収スペクトルを測定し、そこから(αhν)の0.5乗に対してhνをプロット(Taucプロット)し直線区間を外挿したα=0におけるhνの値から求めた。
(3) Measurement of the band gap of each material The band gap of each material is measured by measuring the absorption spectrum as described above, and plotting hν with respect to (αhν) to the 0.5th power (Tauc plot). It calculated | required from the value of h (nu) in (alpha) = 0 which extrapolated the linear area.
 測定結果を表2に示す。 Table 2 shows the measurement results.
Figure JPOXMLDOC01-appb-T000040
 
Figure JPOXMLDOC01-appb-T000040
 
 《有機EL素子の評価》
 有機EL素子1~13それぞれ下記の各評価を行った。
<< Evaluation of organic EL elements >>
Each of the organic EL elements 1 to 13 was evaluated as follows.
 (1)発光効率の測定
 上記作製した各有機EL素子を、室温(約23℃)で、2.5mA/cm2の定電流条件下で発光させ、発光開始直後の発光輝度Lを、分光放射輝度計CS-2000(コニカミノルタオプティクス社製)を用いて測定した。
(1) Measurement of luminous efficiency Each of the organic EL devices prepared above was allowed to emit light at room temperature (about 23 ° C.) under a constant current of 2.5 mA / cm 2 , and the emission luminance L immediately after the start of emission was measured as spectral emission. The luminance was measured using a luminance meter CS-2000 (manufactured by Konica Minolta Optics).
 次いで、比較例である有機EL素子13の発光輝度を1.0とした相対発光輝度を求め、これを発光効率(外部取り出し量子効率)の尺度とした。数値が大きいほど、発光効率に優れていることを表す。 Next, a relative light emission luminance was determined with the light emission luminance of the organic EL element 13 as a comparative example being 1.0, and this was used as a measure of the light emission efficiency (external extraction quantum efficiency). It represents that it is excellent in luminous efficiency, so that a numerical value is large.
 (2)駆動電圧の測定
 各有機EL素子を、室温(約23℃)で、2.5mA/cm2の定電流条件下で発光させたときの駆動電圧を測定した。
(2) Measurement of driving voltage The driving voltage was measured when each organic EL element was allowed to emit light at room temperature (about 23 ° C.) under a constant current condition of 2.5 mA / cm 2 .
 次いで、比較例である有機EL素子13の駆動電圧を基準としたときの、各有機エレクトロルミネッセンス素子の駆動電圧の差を求めた。数値が小さいほど、比較の有機EL素子13に対して駆動電圧が低く、低電圧駆動性に優れていることを表す。 Next, the difference in the driving voltage of each organic electroluminescence element was determined based on the driving voltage of the organic EL element 13 as a comparative example. The smaller the numerical value, the lower the driving voltage for the comparative organic EL element 13, and the lower the voltage driving performance.
 (3)演色性の評価
 上記分光放射輝度計で測定した分光分布特性結果から、各有機EL素子に対し、JIS Z 8726に基づいて演色評価数を求め、平均演色評価数を導出し、表3に記載した。
(3) Evaluation of color rendering properties From the spectral distribution characteristic results measured with the above spectral radiance meter, the color rendering index was obtained for each organic EL element based on JIS Z 8726, and the average color rendering index was derived. It was described in.
 (4)連続駆動安定性(寿命)の評価
 各サンプルを半径5cmの円柱に巻きつけ、その後各サンプルを折り曲げた状態で連続駆動させ、上記分光放射輝度計CS-2000を用いて輝度を測定し、測定した輝度が半減するまでに要する時間(LT50)を求めた。駆動条件は、連続駆動開始時に4000cd/m2となる電流値とした。
(4) Evaluation of continuous drive stability (life) Each sample is wound around a cylinder with a radius of 5 cm, and then continuously driven in a state where each sample is bent, and the luminance is measured using the above-mentioned spectral radiance meter CS-2000. The time (LT50) required for the measured luminance to be halved was determined. The driving condition was set to a current value of 4000 cd / m 2 at the start of continuous driving.
 比較例サンプル1のLT50を1.00とした相対値を求め、これを連続駆動安定性の尺度とした。その評価結果を表1に示す。表1中、数値が大きいほど、連続駆動安定性に優れている(長寿命である)ことを表す。 The relative value which set LT50 of the comparative example sample 1 to 1.00 was calculated | required, and this was made into the scale of continuous drive stability. The evaluation results are shown in Table 1. In Table 1, it shows that it is excellent in continuous drive stability (long life), so that a numerical value is large.
 (5)素子寿命評価前後における色度安定性の評価
 次いで、巻きつけ処理前後における色度(CIE表色系x、y)を、上記分光放射輝度計により測定し、巻きつけ処理前の色度(x,y)に対する巻きつけ処理前の色度(x,y)の各色差(Δx及びΔy)を求め、これを色度安定性の尺度とした。数値が小さほど色ずれが小さく、色度安定性に優れていることを表す。
(5) Evaluation of chromaticity stability before and after element lifetime evaluation Next, the chromaticity (CIE color system x, y) before and after the winding process was measured with the above spectral radiance meter, and the chromaticity before the winding process. Each color difference (Δx and Δy) of the chromaticity (x, y) before the winding process with respect to (x, y) was obtained and used as a measure of chromaticity stability. The smaller the numerical value, the smaller the color shift and the better the chromaticity stability.
 以上の結果を表3に示す。 The above results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000041
 
Figure JPOXMLDOC01-appb-T000041
 
 表1に示すとおり、本発明の有機EL素子1~12は、比較の有機EL素子13に比べ、発光輝度(発光効率)が高く、駆動電圧が低くなっており、さらには演色性や寿命も向上し、色度も安定している。また、発光層と正孔輸送層との界面に量子ドットを有する方が、発光層と電子輸送層との界面に量子ドットを有するより好ましく、さらに両方の界面で量子ドットを有する有機EL素子が良好な結果を得ていることが分かる。 As shown in Table 1, the organic EL elements 1 to 12 of the present invention have higher emission luminance (emission efficiency) and lower driving voltage than the comparative organic EL element 13, and further have color rendering properties and lifetime. Improved and stable chromaticity. Moreover, it is more preferable to have a quantum dot in the interface of a light emitting layer and a hole transport layer than it is to have a quantum dot in the interface of a light emitting layer and an electron carrying layer, and also the organic EL element which has a quantum dot in both interfaces It can be seen that good results are obtained.
 本発明の有機エレクトロルミネッセンス素子は、高発光効率で長寿命であり、演色性に優れ、低駆動電圧でも色度が安定しており、表示デバイス、ディスプレイ及び各種発光光源に好適に使用できる。 The organic electroluminescence element of the present invention has high luminous efficiency, long life, excellent color rendering, stable chromaticity even at low driving voltage, and can be suitably used for display devices, displays, and various light sources.
 1 可撓性支持基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 電子注入層
 8 陰極
 9 封止接着剤
 10 可撓性封止部材
 11 量子ドット
 20 有機機能層
 100 有機エレクトロルミネッセンス素子
DESCRIPTION OF SYMBOLS 1 Flexible support substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Electron transport layer 7 Electron injection layer 8 Cathode 9 Sealing adhesive 10 Flexible sealing member 11 Quantum dot 20 Organic functional layer 100 Organic electroluminescence device

Claims (9)

  1.  少なくとも、陽極、正孔輸送層、リン光発光性化合物を含有する発光層、電子輸送層及び陰極を有する有機エレクトロルミネッセンス素子であって、前記発光層と前記正孔輸送層との界面及び前記発光層と前記電子輸送層との界面の少なくともいずれか一方に量子ドットを有することを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescence device having at least an anode, a hole transport layer, a light-emitting layer containing a phosphorescent compound, an electron transport layer, and a cathode, wherein the interface between the light-emitting layer and the hole transport layer and the light emission An organic electroluminescence device comprising a quantum dot on at least one of an interface between a layer and the electron transport layer.
  2.  前記発光層と前記正孔輸送層との界面及び前記発光層と前記電子輸送層との界面の両方に量子ドットを有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。 2. The organic electroluminescence device according to claim 1, wherein quantum dots are provided at both an interface between the light emitting layer and the hole transport layer and an interface between the light emitting layer and the electron transport layer.
  3.  前記リン光発光性化合物のバンドギャップが、前記量子ドットのバンドギャップより0.1eV以上小さいことを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescence device according to claim 1, wherein a band gap of the phosphorescent compound is 0.1 eV or more smaller than a band gap of the quantum dots.
  4.  前記発光層がホスト化合物を含有し、該ホスト化合物のバンドギャップが前記量子ドットのバンドギャップより0.1eV以上大きいことを特徴とする請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence according to any one of claims 1 to 3, wherein the light emitting layer contains a host compound, and the band gap of the host compound is 0.1 eV or more larger than the band gap of the quantum dots. element.
  5.  前記量子ドットが、少なくとも、Si、Ge、GaN、GaP、CdS、CdSe、CdTe、InP、InN、ZnS、In23、ZnO、CdO又はこれらの混合物からなることを特徴とする請求項1~4のいずれか一項に記載の有機エレクトロルミネッセンス素子。 The quantum dot is composed of at least Si, Ge, GaN, GaP, CdS, CdSe, CdTe, InP, InN, ZnS, In 2 S 3 , ZnO, CdO, or a mixture thereof. 5. The organic electroluminescence device according to any one of 4 above.
  6.  前記量子ドットの平均粒子径が、1~20nmの範囲内であることを特徴とする請求項1~5のいずれか一項に記載の有機エレクトロルミネッセンス素子。 6. The organic electroluminescence device according to claim 1, wherein an average particle diameter of the quantum dots is in a range of 1 to 20 nm.
  7.  前記発光層中に含まれるリン光発光性化合物が、下記一般式(1)で表されることを特徴とする請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
     (一般式(1)中、R1は置換基を表す。Zは5~7員環を形成するのに必要な非金属原子群を表す。n1は0~5の整数を表す。B1~B5は炭素原子、窒素原子、酸素原子又は硫黄原子を表し、少なくとも一つは窒素原子を表す。M1は元素周期表における8族~10族の金属を表す。X1及びX2は炭素原子、窒素原子又は酸素原子を表す。L1はX1及びX2と共に2座の配位子を形成する原子群を表す。m1は1、2、又は3の整数を表し、m2は0、1又は2の整数を表すが、m1+m2は2又は3である。)
    7. The organic electroluminescence device according to claim 1, wherein the phosphorescent compound contained in the light emitting layer is represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), R 1 represents a substituent. Z represents a group of nonmetallic atoms necessary to form a 5- to 7-membered ring. N1 represents an integer of 0 to 5. B 1 to B 5 represents a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, at least one represents a nitrogen atom, M 1 represents a group 8 to group 10 metal in the periodic table, and X 1 and X 2 represent carbon Represents an atom, a nitrogen atom or an oxygen atom, L 1 represents an atomic group forming a bidentate ligand with X 1 and X 2 , m1 represents an integer of 1, 2 or 3, m2 represents 0, (It represents an integer of 1 or 2, m1 + m2 is 2 or 3.)
  8.  前記発光層が、下記一般式(2)で表されるホスト化合物を含有していることを特徴とする請求項1~7のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
     (一般式(2)中、XはNR′、O、S、CR′R″、又はSiR′R″を表す。R′及び、R″は各々水素原子又は置換基を表す。Ar1及びAr2は芳香環を表し、それぞれ同一でも異なっていても良い。nは0~4の整数を表す。)
    8. The organic electroluminescent device according to claim 1, wherein the light emitting layer contains a host compound represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (2), X represents NR ′, O, S, CR′R ″, or SiR′R ″. R ′ and R ″ each represents a hydrogen atom or a substituent. Ar 1 and Ar 2 represents an aromatic ring, which may be the same or different, and n represents an integer of 0 to 4.)
  9.  前記一般式(2)におけるXが、酸素原子を表すことを特徴とする請求項8に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 8, wherein X in the general formula (2) represents an oxygen atom.
PCT/JP2013/061351 2012-04-20 2013-04-17 Organic electroluminescence element WO2013157563A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-096267 2012-04-20
JP2012096267 2012-04-20

Publications (1)

Publication Number Publication Date
WO2013157563A1 true WO2013157563A1 (en) 2013-10-24

Family

ID=49383518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061351 WO2013157563A1 (en) 2012-04-20 2013-04-17 Organic electroluminescence element

Country Status (2)

Country Link
JP (1) JPWO2013157563A1 (en)
WO (1) WO2013157563A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035813A (en) * 2012-08-07 2014-02-24 Hiroshima Univ Light emission enhancement base plate and light-emitting device
WO2015056750A1 (en) * 2013-10-17 2015-04-23 株式会社村田製作所 Nano-particle material, and light-emitting device
JP2015149230A (en) * 2014-02-07 2015-08-20 コニカミノルタ株式会社 organic electroluminescent panel
WO2016125502A1 (en) * 2015-02-06 2016-08-11 富士フイルム株式会社 Polymerizable composition, wavelength conversion member, backlight unit, and liquid crystal display device
CN106450013A (en) * 2016-10-11 2017-02-22 Tcl集团股份有限公司 Qled device
CN107785496A (en) * 2017-11-06 2018-03-09 深圳市华星光电半导体显示技术有限公司 A kind of white light quanta point light emitting diode and electronic equipment
WO2021234894A1 (en) * 2020-05-21 2021-11-25 シャープ株式会社 Display device and display device production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510746A (en) * 2005-09-26 2009-03-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Interface conditioning to improve the efficiency and lifetime of organic electroluminescent devices
JP2009087754A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Light emitting element
JP2012023127A (en) * 2010-07-13 2012-02-02 Konica Minolta Holdings Inc Organic electroluminescent element, method for manufacturing the same, and lighting system
JP2012169460A (en) * 2011-02-15 2012-09-06 Konica Minolta Holdings Inc Organic electroluminescent element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510746A (en) * 2005-09-26 2009-03-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Interface conditioning to improve the efficiency and lifetime of organic electroluminescent devices
JP2009087754A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Light emitting element
JP2012023127A (en) * 2010-07-13 2012-02-02 Konica Minolta Holdings Inc Organic electroluminescent element, method for manufacturing the same, and lighting system
JP2012169460A (en) * 2011-02-15 2012-09-06 Konica Minolta Holdings Inc Organic electroluminescent element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y. Q. ZHANG ET AL.: "Electroluminescence of green CdSe/ZnS quantum dots enhanced by harvesting excitons from phosphorescent molecules", APPLIED PHYSICS LETTERS, vol. 97, 23 December 2010 (2010-12-23) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035813A (en) * 2012-08-07 2014-02-24 Hiroshima Univ Light emission enhancement base plate and light-emitting device
WO2015056750A1 (en) * 2013-10-17 2015-04-23 株式会社村田製作所 Nano-particle material, and light-emitting device
JPWO2015056750A1 (en) * 2013-10-17 2017-03-09 株式会社村田製作所 Nanoparticle material and light emitting device
US9722198B2 (en) 2013-10-17 2017-08-01 Murata Manufacturing Co., Ltd. Nanoparticle material and light-emitting device
JP2015149230A (en) * 2014-02-07 2015-08-20 コニカミノルタ株式会社 organic electroluminescent panel
WO2016125502A1 (en) * 2015-02-06 2016-08-11 富士フイルム株式会社 Polymerizable composition, wavelength conversion member, backlight unit, and liquid crystal display device
JP2016145269A (en) * 2015-02-06 2016-08-12 富士フイルム株式会社 Polymerizable composition, wavelength conversion member, backlight unit, and liquid crystal display device
KR20170102295A (en) * 2015-02-06 2017-09-08 후지필름 가부시키가이샤 A polymerizable composition, a wavelength converting member, a backlight unit, and a liquid crystal display
KR101890184B1 (en) 2015-02-06 2018-08-21 후지필름 가부시키가이샤 A polymerizable composition, a wavelength converting member, a backlight unit, and a liquid crystal display
CN106450013A (en) * 2016-10-11 2017-02-22 Tcl集团股份有限公司 Qled device
CN107785496A (en) * 2017-11-06 2018-03-09 深圳市华星光电半导体显示技术有限公司 A kind of white light quanta point light emitting diode and electronic equipment
WO2021234894A1 (en) * 2020-05-21 2021-11-25 シャープ株式会社 Display device and display device production method

Also Published As

Publication number Publication date
JPWO2013157563A1 (en) 2015-12-21

Similar Documents

Publication Publication Date Title
JP6237636B2 (en) Electroluminescence element
JP6079118B2 (en) Light-emitting layer forming ink composition, method for producing light-emitting element, and electroluminescence device
JP6237619B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP6168050B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP5664311B2 (en) Organic electroluminescence device
JP6052324B2 (en) Organic electroluminescence device
US9773993B2 (en) Electroluminescence element
JP6225912B2 (en) Electroluminescence element
JP6127436B2 (en) White electroluminescent device and method of manufacturing white electroluminescent device
JP6136175B2 (en) White electroluminescence device
JP5994551B2 (en) Electroluminescence device
WO2013157563A1 (en) Organic electroluminescence element
JP2015149230A (en) organic electroluminescent panel
JP5790536B2 (en) Organic electroluminescence device and method for manufacturing the same
JP5817490B2 (en) Organic electroluminescence element, display device and lighting device
JP2016001548A (en) Electroluminescence element and quantum dot material
JP2016001547A (en) Electroluminescence element and quantum dot material
JP6052326B2 (en) Organic electroluminescence element, display device and lighting device
WO2015111365A1 (en) Quantum dot material and electroluminescent element
JP2014103290A (en) Organic electroluminescent element, method for manufacturing organic electroluminescent element, and metal oxide particle-containing composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13777501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014511227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13777501

Country of ref document: EP

Kind code of ref document: A1