WO2013157252A1 - Method for producing porous sheet, heat storage sheet, and chemical heat storage system - Google Patents

Method for producing porous sheet, heat storage sheet, and chemical heat storage system Download PDF

Info

Publication number
WO2013157252A1
WO2013157252A1 PCT/JP2013/002569 JP2013002569W WO2013157252A1 WO 2013157252 A1 WO2013157252 A1 WO 2013157252A1 JP 2013002569 W JP2013002569 W JP 2013002569W WO 2013157252 A1 WO2013157252 A1 WO 2013157252A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
sheet
chemical heat
chemical
storage material
Prior art date
Application number
PCT/JP2013/002569
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 木上
伸治 九鬼
大輔 北川
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2013157252A1 publication Critical patent/WO2013157252A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/24Calendering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/16Materials undergoing chemical reactions when used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/222Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length characterised by the shape of the surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00

Definitions

  • the present invention relates to a method for producing a porous sheet, a heat storage sheet, and a chemical heat storage system including the heat storage sheet.
  • High-efficiency heat storage technology includes chemical heat storage. Conventionally, it has a chemical heat storage reactor filled with a chemical heat storage material, stores heat by an endothermic reaction by adding a thermal fluid when storing heat, and generates a thermal fluid by reaction heat when radiating heat, and evaporation condensation filled with a solution
  • An evaporative condensing unit that generates a thermal fluid due to condensation heat during heat storage and generates a cold fluid due to latent heat of evaporation during heat dissipation, and a pipe and a valve that connect the chemical heat storage reactor and the evaporative condenser.
  • a chemical heat pump container that is a chemical heat storage system is known (see Patent Document 1).
  • a reactor in which engine heat is used as vehicle exhaust heat and a reaction material that stores a chemical heat storage reaction using engine heat as reaction heat is stored in the reactor, and the reactor communicates with each other via a communication path.
  • a chemical heat storage comprising: a condenser that condenses the gas medium that has moved from the reactor due to a pressure difference when an endothermic reaction occurs in the reaction material and releases the gas medium during heat storage for heating the reactor by engine heat
  • Patent Document 2 A system is known (see Patent Document 2).
  • an object of the present invention is to provide a heat storage member that can easily install a chemical heat storage material in a reactor and can realize sufficient heat conversion efficiency.
  • the inventors of the present invention have made extensive research and have made it easy to install a chemical heat storage material in a reactor and can be used as a heat storage member that can realize sufficient heat conversion efficiency. To achieve a shaped member.
  • the first aspect of the present invention is: (I) a step of preparing a plurality of sheet-like molded bodies containing polytetrafluoroethylene and a chemical heat storage material; (II) a step of superposing and rolling a plurality of the sheet-like molded bodies, A method for producing a porous sheet is provided.
  • the second aspect of the present invention provides a heat storage sheet produced using a porous sheet obtained by the production method according to the first aspect of the present invention.
  • the third aspect of the present invention provides a heat storage sheet containing polytetrafluoroethylene and a chemical heat storage material and having porosity.
  • the fourth aspect of the present invention provides a chemical heat storage system including the heat storage sheet according to the second aspect or the third aspect of the present invention.
  • the production method of the present invention it is possible to produce a porous sheet capable of supporting a sufficient amount of chemical heat storage material for realizing high heat storage efficiency. Furthermore, since the porous sheet obtained by the production method of the present invention has self-adhesiveness, for example, when installed in the reactor, high adhesion to the reactor can be obtained, and the heat conversion efficiency can be improved. it can. Therefore, the porous sheet obtained by the production method of the present invention can be used as a heat storage member capable of implementing sufficient heat conversion efficiency. Furthermore, since the chemical heat storage material is included in the porous sheet, it can be easily installed in the reactor.
  • the heat storage sheet of the present invention includes a chemical heat storage material, heat storage with high efficiency is possible. Furthermore, since the heat storage sheet of the present invention has self-adhesive properties, for example, when installed in a reactor, high adhesion to the reactor can be obtained, and heat conversion efficiency can be improved. Furthermore, since the heat storage sheet of the present invention is in the form of a sheet, it can be easily installed in the reactor and has excellent handling properties. Moreover, according to the chemical heat storage system of this invention provided with such a heat storage sheet, the heat conversion efficiency can be further improved.
  • the method for producing the porous sheet of the present embodiment is as follows: (I) a step of preparing a plurality of sheet-like molded bodies containing polytetrafluoroethylene (hereinafter referred to as PTFE) and a chemical heat storage material; (II) a step of superposing and rolling a plurality of the sheet-like molded bodies, including.
  • PTFE polytetrafluoroethylene
  • PTFE a chemical heat storage material
  • a heat conduction aid a molding aid
  • a molding aid are mixed to prepare a paste-like mixture.
  • PTFE may be a dispersion or a fine powder. It is desirable that this mixing be performed under conditions that suppress fiber formation of PTFE as much as possible. Specifically, it is desirable to reduce the number of rotations, shorten the mixing time, and mix without kneading. By mixing in this way, processing of a sheet-like material having PTFE as a matrix becomes easy.
  • the chemical heat storage material is supported on the PTFE matrix without dropping off.
  • a dehydration endothermic reaction is caused by heat of about 100 to 350 ° C. such as Mg (OH) 2 and CaSO 4 .1 / 2H 2 O, and a hydration exothermic reaction is caused by exposure to water vapor.
  • Metal hydroxides and hydrates can be used.
  • the amount of the chemical heat storage material added is desirably, for example, 50% by weight or more in the state of the finally obtained porous sheet. By making the chemical heat storage material contained in the porous sheet 50% by weight or more, higher heat storage efficiency can be realized when the porous sheet is used as the heat storage sheet.
  • the addition amount of the chemical heat storage material is more desirably 70% by weight or more.
  • the amount of the chemical heat storage material added is desirably 90% by weight or less, for example, in the state of the finally obtained porous sheet.
  • heat conduction aid for example, metal particles and silver particles having a higher thermal conductivity than chemical heat storage materials, and carbon materials such as graphite and carbon fibers can be used.
  • the amount of heat conduction aid added is, for example, 1 to 50% by weight.
  • the molding aid when using fine powder in PTFE, for example, saturated hydrocarbons such as dodecane and decane can be used. Moreover, when using a dispersion for PTFE, water can be used, for example.
  • the amount of the molding aid added is, for example, 0.1 to 1.4 times (weight ratio) with respect to the solid content.
  • a mother sheet obtained by forming the mixture as described above into a sheet by extrusion and rolling can be used as a sheet-like molded article of the present invention (first example of a sheet-like molded article).
  • the thickness of the sheet-like molded body thus obtained is, for example, 0.5 to 10 mm.
  • a laminated sheet (second example of the sheet-like molded body) obtained by rolling a plurality of the above-described mother sheets is also given. It is done.
  • the number of laminated sheets is not particularly limited, and can be appropriately determined in consideration of the number of constituent layers of the porous sheet to be manufactured (the number of layers constituting the porous sheet).
  • the sheet-like molded object demonstrated in addition to PTFE and a chemical heat storage material, the example further including a heat-conducting adjuvant and a shaping
  • the heat conduction aid may be added when it is necessary to further increase the heat conductivity according to the use of the porous sheet.
  • a sheet-like molded body can be prepared.
  • step (II) Next, an example of step (II) will be described.
  • step (II) a plurality of sheet-like molded bodies prepared in step (I) are overlaid and rolled. Specifically, a plurality of sheet-like molded bodies prepared in step (I) are laminated, and the laminate is rolled to obtain a laminated sheet.
  • the sheet-like molded body may be the mother sheet (sheet-like molded body of the first example) or a laminated sheet (first sheet) obtained by rolling a plurality of mother sheets.
  • the sheet-like molded body of the example of 2) may be used.
  • the number of sheet-like molded bodies to be overlaid in step (II) is not particularly limited, and can be, for example, about 2 to 6 sheets. In order to achieve high strength, it is desirable to roll the sheet-like molded bodies on top of each other.
  • step (I) and the step (II) may be alternately repeated.
  • a specific example in this case will be described below.
  • step (I) a plurality of (for example, 2 to 6) mother sheets are prepared (step (I)).
  • a plurality of mother sheets are laminated, and the laminate is rolled to obtain a laminated sheet (first laminated sheet) (step (II)).
  • a plurality of (for example, 2 to 6) first laminated sheets obtained here are prepared, and the first laminated sheet is used as a sheet-like molded body in step (I).
  • a plurality of (for example, 2 to 6) first laminated sheets are laminated, and the laminated product is rolled to obtain a laminated sheet (second laminated sheet) (step (II)).
  • step (I) a plurality of (for example, 2 to 6) second laminated sheets obtained are prepared, and the second laminated sheet is used as a sheet-like molded body in the step (I).
  • a plurality of (for example, 2 to 6) second laminated sheets are laminated, and the laminated product is rolled to obtain a laminated sheet (third laminated sheet) (step (II)).
  • the step (I) and the step (II) can be alternately repeated until the desired number of constituent layers of the porous sheet is reached.
  • the lamination sheets having the same number of laminations first lamination sheets, second lamination sheets, etc.
  • the lamination numbers are different from each other. It is also possible to roll the sheets by overlapping them.
  • the rolling direction may be changed by 90 degrees from the direction of rolling performed to obtain the first laminated sheet.
  • the PTFE network extends vertically and horizontally, and the sheet strength can be improved and the chemical heat storage material can be firmly fixed to the PTFE matrix.
  • the number of constituent layers of the porous sheet is represented by the total number of mother sheets included in the porous sheet
  • the number of constituent layers can be, for example, 100 to 800 layers.
  • the number of layers is preferably 100 or more.
  • the number of layers is desirably 800 or less. The greater the number of constituent layers, the higher the strength of the resulting sheet.
  • the laminated structure (number of constituent layers) is also related to the expansion resistance of the obtained sheet. Accordingly, in order to obtain a sheet having sufficient expansion resistance, the number of constituent layers is preferably 200 to 600.
  • a sheet having a thickness of about 0.5 to 2 mm is prepared. After that, when a dispersion is used for the molding aid and further PTFE, the dispersion medium is heated and removed. The porous sheet can be obtained.
  • the porous sheet of this Embodiment should just have a porosity of the grade which the gas (for example, water vapor
  • the porous sheet of the present embodiment desirably has a porosity of, for example, 5 vol% or more in order to achieve good gas diffusion, and for example, 50 vol% or less because of the amount of heat conversion per unit volume. It is desirable to have a porosity.
  • the porous sheet obtained by the manufacturing method of the present embodiment can carry the chemical heat storage material even when the amount of the chemical heat storage material contained is large, high heat storage efficiency can be realized. Furthermore, since this porous sheet has porosity, a gas (for example, water vapor) necessary for the chemical heat storage reaction of the chemical heat storage material can reach the inside of the sheet. Therefore, not only the chemical heat storage material present on the sheet surface but also the chemical heat storage reaction of the chemical heat storage material present inside the sheet is efficiently performed. Since the porous sheet of the present embodiment further has self-adhesiveness, higher adhesion to the reactor can be obtained than when the chemical heat storage material particles are filled into the reactor.
  • a gas for example, water vapor
  • the porous sheet of the present embodiment can be used as a heat storage member (heat storage sheet) having sufficient heat conversion efficiency using a chemical heat storage reaction.
  • heat storage sheet heat storage sheet
  • the chemical heat storage material is included in the sheet, it is easy to install the chemical heat storage material in the reactor.
  • the volume expansion at the time of reaction is large, so it is necessary to provide a sufficient space in the reactor, resulting in an increase in the size of the device There was a problem.
  • the sheet having a laminated structure like the porous sheet of the present embodiment can also have expansion resistance, the volume expansion of the chemical heat storage material can be suppressed.
  • porous sheet of the present embodiment it is possible to provide a heat storage sheet in which the chemical heat storage material can be easily installed in the reactor and sufficient heat conversion efficiency can be realized.
  • the heat storage sheet of the present embodiment can be a heat storage sheet that includes polytetrafluoroethylene and a chemical heat storage material and has porosity from another viewpoint. According to this heat storage sheet, high heat storage efficiency can be realized by a chemical heat storage reaction using a chemical heat storage material. Furthermore, since this heat storage sheet has porosity, a gas (for example, water vapor) necessary for the chemical heat storage reaction of the chemical heat storage material can reach the inside of the sheet. Therefore, not only the chemical heat storage material present on the sheet surface but also the chemical heat storage reaction of the chemical heat storage material present inside the sheet is efficiently performed.
  • a gas for example, water vapor
  • the heat storage sheet of the present embodiment further has self-adhesiveness, higher adhesion to the reactor can be obtained than when the chemical heat storage material particles are filled into the reactor.
  • the heat storage sheet of the present embodiment can realize sufficient heat conversion efficiency using a chemical heat storage reaction.
  • the chemical heat storage material is included in the sheet, it is easy to install the chemical heat storage material in the reactor.
  • the chemical heat storage material included in the porous sheet can be used as the chemical heat storage material included in the heat storage sheet.
  • the heat storage sheet includes a chemical heat storage material in an amount of, for example, 50% by weight to 90% by weight.
  • the addition amount of the chemical heat storage material is more desirably 70% by weight or more.
  • This heat storage sheet may further contain a heat conduction aid.
  • the heat conduction aid desirably has higher thermal conductivity than the chemical heat storage material. Since the thermal conductivity of the thermal storage sheet is further improved by further including a heat conduction aid, the thermal conversion efficiency of the thermal storage sheet is further improved and the thermal conversion efficiency of the entire chemical thermal storage system configured using this thermal storage sheet It leads to improvement.
  • the heat storage sheet of the present embodiment has excellent characteristics as described above. Therefore, it is possible to provide a chemical heat storage system provided with the heat storage sheet of the present embodiment.
  • a chemical heat storage system is, for example, a chemical heat storage in a known chemical heat storage system such as the chemical heat storage system described in Patent Documents 1 and 2, for example, a laminate in which a plurality of heat storage sheets according to the present embodiment are stacked. This can be done by placing it in a reactor instead of particles of material. At this time, in order to further improve the heat conversion efficiency, a laminated body in which a plurality of heat storage sheets are stacked via a metal plate may be used.
  • the heat storage sheet of the present embodiment may be directly wound around the heat transfer tube.
  • the heat storage sheet may be directly wound around the heat transfer tube.
  • this preform was extruded at about 10 MPa to form a round bar having a diameter of 15 mm. Furthermore, this round bar was rolled between a pair of metal rolling rolls (surface temperature 40 ° C.) to obtain a mother sheet (sheet-like formed body) having a thickness of 5 mm and a width of 25 mm.
  • first laminated sheet two mother sheets were laminated, and this laminate was rolled to produce a laminated sheet (first laminated sheet).
  • first laminated sheet two sheets of the obtained first laminated sheet were prepared as sheet-like molded bodies. These two first laminated sheets were superposed and laminated, and this laminate was rolled to produce a new laminated sheet (second laminated sheet).
  • second laminated sheet two sheets of the obtained second laminated sheet were prepared as sheet-like molded bodies. These two second laminated sheets were superposed and laminated, and the laminate was rolled to produce a new laminated sheet (third laminated sheet).
  • third laminated sheet three laminated sheet.
  • the sheet is then heated at 75 ° C. for 3 hours to remove the PTFE dispersion dispersion medium and the molding aid, so that the calcium sulfate hydrate changes from dihydrate to 1 ⁇ 2 hydrate. Dry at 120 ° C.
  • the obtained sheet was a porous sheet, and this porous sheet was used as a heat storage sheet in the following hydration heat radiation experiment.
  • FIG. 1 is a graph showing the measured temperature at this time. It was confirmed that the internal temperature of the heat storage sheet increased to a maximum of about 60 ° C. This means that water vapor penetrated into the heat storage sheet and an efficient reaction was performed.
  • FIG. 2 is a graph showing the measured temperature at this time
  • FIG. 3 is a graph showing the temperature rise relative to the environmental temperature in the first and second hydration heat radiation experiments. Even in the second time, it was confirmed that the internal temperature of the heat storage sheet had increased to about 66 ° C. at the maximum. In addition, it was confirmed that the rising temperature with respect to the environmental temperature changed in the same manner between the first time and the second time. This means that the heat storage sheet can be cycled during the heat storage and heat release process in the reactor of the chemical heat storage system.
  • the porous sheet obtained by the present invention can be used as a heat storage member capable of realizing high heat conversion efficiency, and is excellent in handleability because it is in the form of a sheet. Therefore, the porous sheet obtained by this invention can be utilized for all apparatuses as a heat storage member which comprises a chemical heat storage system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

This method for producing a porous sheet comprises (I) a step for preparing a plurality of sheet-shaped moldings comprising a polytetrafluoroethylene and a chemical heat storage material, and a step (II) for overlapping and rolling the plurality of sheet-shaped moldings. In this method for producing a porous sheet, the step (I) and the step (II) may be repeated in alternation. Also, as the sheet-shaped moldings used in this method of production, it would be possible to use, for example, a parent sheet obtained by modling a mixture comprising a polytetrafluoroethylene and a chemical heat storage material into a sheet, or it would also be possible to use a multilayered sheet obtained by overlapping and rolling a plurality of parent sheets.

Description

多孔質シートの製造方法、蓄熱シート及び化学蓄熱システムPorous sheet manufacturing method, heat storage sheet, and chemical heat storage system
 本発明は、多孔質シートの製造方法と、蓄熱シート及びそれを備えた化学蓄熱システムとに関する。 The present invention relates to a method for producing a porous sheet, a heat storage sheet, and a chemical heat storage system including the heat storage sheet.
 近年、化石燃料の使用削減(二酸化炭素排出規制)が求められており、各プロセスの省エネルギー化に加え、排熱の利用を進める必要がある。例えば、自動車用のガソリンエンジンの場合、燃料がもつエネルギーのうち走行に利用されるのは約20%で、残る約80%は排気熱として大気中へ放出されている。このような排気熱を貯蔵し、排気ガスの元の温度に近い100~300℃で利用できる技術があれば、エネルギー回収、エネルギー再利用の点で非常に有効である。排気ガス源としては、ガソリンエンジンの他に、ガスエンジン、ディーゼルエンジン、各種燃料電池等もある。また、工場、ごみ焼却場等からは多くの熱エネルギーが未利用のまま排出されており、100~300℃程度の比較的質の高い熱も少なくない。排熱利用の手段としては、水を利用した100℃以下の温水蓄熱が知られている。しかし、温水蓄熱には、(1)放熱損失があるため長時間の蓄熱が不可能である、(2)水顕熱量が小さいため大量の水が必要であり、蓄熱設備のコンパクト化が困難である、(3)出力温度が利用量に応じて非定常で、次第に降下する、等の問題がある。したがって、このような排熱の民生利用を進めるためには、より効率の高い蓄熱技術を開発する必要がある。 In recent years, there has been a demand for reducing the use of fossil fuels (carbon dioxide emission regulations), and in addition to energy saving in each process, it is necessary to promote the use of waste heat. For example, in the case of a gasoline engine for automobiles, about 20% of the energy of fuel is used for running, and the remaining about 80% is released into the atmosphere as exhaust heat. Any technology that can store such exhaust heat and can be used at 100 to 300 ° C. close to the original temperature of the exhaust gas is very effective in terms of energy recovery and energy reuse. As an exhaust gas source, there are a gas engine, a diesel engine, various fuel cells and the like in addition to a gasoline engine. In addition, a large amount of heat energy is discharged from factories, waste incinerators, etc. without being used, and relatively high-quality heat of about 100 to 300 ° C. is not small. As means for using exhaust heat, warm water storage at 100 ° C. or less using water is known. However, for hot water heat storage, (1) long-term heat storage is impossible due to heat dissipation loss, and (2) a large amount of water is required because the amount of sensible water is small, making it difficult to make the heat storage equipment compact. There is a problem that (3) the output temperature is unsteady according to the amount of use and gradually drops. Therefore, it is necessary to develop a more efficient heat storage technology in order to promote consumer use of such waste heat.
 効率の高い蓄熱技術としては、化学蓄熱法が挙げられる。従来、化学蓄熱材を充填した化学蓄熱反応器を有し、蓄熱時には温熱流体を加えることで吸熱反応により蓄熱し、放熱時には反応熱により温熱流体を発生する反応部と、溶液を充填した蒸発凝縮器を有し、蓄熱時には凝縮熱による温熱流体を発生し、放熱時には蒸発潜熱による冷熱流体を発生する蒸発凝縮部と、化学蓄熱反応器と蒸発凝縮器とを接続するパイプ及びバルブと、を有する、化学蓄熱システムであるケミカルヒートポンプコンテナが知られている(特許文献1参照)。 High-efficiency heat storage technology includes chemical heat storage. Conventionally, it has a chemical heat storage reactor filled with a chemical heat storage material, stores heat by an endothermic reaction by adding a thermal fluid when storing heat, and generates a thermal fluid by reaction heat when radiating heat, and evaporation condensation filled with a solution An evaporative condensing unit that generates a thermal fluid due to condensation heat during heat storage and generates a cold fluid due to latent heat of evaporation during heat dissipation, and a pipe and a valve that connect the chemical heat storage reactor and the evaporative condenser. A chemical heat pump container that is a chemical heat storage system is known (see Patent Document 1).
 また車両用においては、車両排熱としてエンジン熱を利用し、エンジン熱を反応熱として化学蓄熱反応する反応材を内部に貯留した反応器と、前記反応器とは連通路を介して互いに連通し、エンジン熱により前記反応器を加熱する蓄熱時、反応材に吸熱反応が起こりガス媒体を放出すると、圧力差により前記反応器から移動してきたガス媒体を凝縮する凝縮器と、を備えた化学蓄熱システムが知られている(特許文献2参照)。 In the case of a vehicle, a reactor in which engine heat is used as vehicle exhaust heat and a reaction material that stores a chemical heat storage reaction using engine heat as reaction heat is stored in the reactor, and the reactor communicates with each other via a communication path. A chemical heat storage comprising: a condenser that condenses the gas medium that has moved from the reactor due to a pressure difference when an endothermic reaction occurs in the reaction material and releases the gas medium during heat storage for heating the reactor by engine heat A system is known (see Patent Document 2).
特開2008-25853号公報JP 2008-255853 A 特開2009-57933号公報JP 2009-57933 A
 しかしながら、上記従来の技術では、反応器に粉体状又は粒子状の化学蓄熱材を充填する必要があるため、製造時の取扱いが非常に困難であった。また、化学蓄熱材を充填するだけでは、化学蓄熱材と反応器との接触が悪いため、熱抵抗が大きく、十分な熱変換効率が得られないという課題があった。 However, in the above conventional technique, it is necessary to fill the reactor with a powdery or particulate chemical heat storage material, so that handling at the time of manufacture is very difficult. Moreover, since the contact between the chemical heat storage material and the reactor is poor only by filling the chemical heat storage material, there is a problem that the thermal resistance is large and sufficient heat conversion efficiency cannot be obtained.
 そこで、本発明は、反応器への化学蓄熱材の設置が容易であり、かつ、十分な熱変換効率を実現できる蓄熱用部材を提供することを目的とする。 Therefore, an object of the present invention is to provide a heat storage member that can easily install a chemical heat storage material in a reactor and can realize sufficient heat conversion efficiency.
 上記目的を達成するため、本発明者らは、鋭意研究により、反応器への化学蓄熱材の設置が容易であり、かつ、十分な熱変換効率を実現できる蓄熱用部材として利用し得る、シート状の部材を達成するに至った。 In order to achieve the above object, the inventors of the present invention have made extensive research and have made it easy to install a chemical heat storage material in a reactor and can be used as a heat storage member that can realize sufficient heat conversion efficiency. To achieve a shaped member.
 本発明の第1の態様は、
 (I)ポリテトラフルオロエチレンと化学蓄熱材とを含むシート状成形体を複数準備する工程と、
 (II)複数の前記シート状成形体を重ね合わせて圧延する工程と、
を含む、多孔質シートの製造方法を提供する。
The first aspect of the present invention is:
(I) a step of preparing a plurality of sheet-like molded bodies containing polytetrafluoroethylene and a chemical heat storage material;
(II) a step of superposing and rolling a plurality of the sheet-like molded bodies,
A method for producing a porous sheet is provided.
 本発明の第2の態様は、本発明の第1の態様に係る製造方法によって得られる多孔質シートを用いて作製された蓄熱シートを提供する。 The second aspect of the present invention provides a heat storage sheet produced using a porous sheet obtained by the production method according to the first aspect of the present invention.
 本発明の第3の態様は、ポリテトラフルオロエチレンと化学蓄熱材とを含み、かつ、多孔性を有する蓄熱シートを提供する。 The third aspect of the present invention provides a heat storage sheet containing polytetrafluoroethylene and a chemical heat storage material and having porosity.
 本発明の第4の態様は、本発明の第2の態様又は第3の態様に係る蓄熱シートを備えた化学蓄熱システムを提供する。 The fourth aspect of the present invention provides a chemical heat storage system including the heat storage sheet according to the second aspect or the third aspect of the present invention.
 本発明の製造方法によれば、高い蓄熱効率の実現に十分な量の化学蓄熱材を担持し得る多孔質シートを製造することができる。さらに、本発明の製造方法によって得られる多孔質シートは、自己接着性を有するので、例えば反応器内に設置した際に反応器との高い密着性が得られ、熱変換効率を向上させることもできる。したがって、本発明の製造方法によって得られる多孔質シートは、十分な熱変換効率を実施できる蓄熱用部材として利用し得る。さらに、化学蓄熱材は、多孔質シートに含まれた状態であるため、反応器への設置も容易である。 According to the production method of the present invention, it is possible to produce a porous sheet capable of supporting a sufficient amount of chemical heat storage material for realizing high heat storage efficiency. Furthermore, since the porous sheet obtained by the production method of the present invention has self-adhesiveness, for example, when installed in the reactor, high adhesion to the reactor can be obtained, and the heat conversion efficiency can be improved. it can. Therefore, the porous sheet obtained by the production method of the present invention can be used as a heat storage member capable of implementing sufficient heat conversion efficiency. Furthermore, since the chemical heat storage material is included in the porous sheet, it can be easily installed in the reactor.
 本発明の蓄熱シートは、化学蓄熱材を含んでいるので、高い効率での蓄熱が可能である。さらに、本発明の蓄熱シートは、自己接着性を有するので、例えば反応器内に設置した際に反応器との高い密着性が得られ、熱変換効率を向上させることもできる。さらに、本発明の蓄熱シートは、シート状であるので反応器への設置も容易であり、優れた取扱い性を備えている。また、このような蓄熱シートを備えた本発明の化学蓄熱システムによれば、熱変換効率のさらなる向上が可能となる。 Since the heat storage sheet of the present invention includes a chemical heat storage material, heat storage with high efficiency is possible. Furthermore, since the heat storage sheet of the present invention has self-adhesive properties, for example, when installed in a reactor, high adhesion to the reactor can be obtained, and heat conversion efficiency can be improved. Furthermore, since the heat storage sheet of the present invention is in the form of a sheet, it can be easily installed in the reactor and has excellent handling properties. Moreover, according to the chemical heat storage system of this invention provided with such a heat storage sheet, the heat conversion efficiency can be further improved.
実施例において、水和放熱反応1回目のシートの測定温度を示したグラフである。In an Example, it is the graph which showed the measurement temperature of the sheet | seat of the hydration heat dissipation reaction 1st time. 実施例において、水和放熱反応2回目のシートの測定温度を示したグラフである。In an Example, it is the graph which showed the measurement temperature of the 2nd sheet | seat of hydration heat dissipation reaction. 実施例において、水和放熱反応1回目及び2回目の環境温度に対するシートの上昇温度を示したグラフである。In an Example, it is the graph which showed the raise temperature of the sheet | seat with respect to the environmental temperature of the hydration heat dissipation reaction 1st time and 2nd time.
 以下、本発明の実施の形態について説明する。なお、以下の記載は本発明を限定するものではない。 Hereinafter, embodiments of the present invention will be described. The following description does not limit the present invention.
 本実施の形態の多孔質シートの製造方法は、
 (I)ポリテトラフルオロエチレン(以下、PTFEと記載する。)と化学蓄熱材とを含むシート状成形体を複数準備する工程と、
 (II)複数の前記シート状成形体を重ね合わせて圧延する工程と、
を含む。
The method for producing the porous sheet of the present embodiment is as follows:
(I) a step of preparing a plurality of sheet-like molded bodies containing polytetrafluoroethylene (hereinafter referred to as PTFE) and a chemical heat storage material;
(II) a step of superposing and rolling a plurality of the sheet-like molded bodies,
including.
 工程(I)の例について説明する。 An example of the process (I) will be described.
 まず、工程(I)において準備するシート状成形体の一例について説明する。PTFE、化学蓄熱材、熱伝導助剤及び成形助剤を混合して、ペースト状の混合物を作製する。この時、PTFEはディスパージョンであっても、ファインパウダーであってもよい。この混合は、PTFEの繊維化を極力抑制する条件で行うことが望ましい。具体的には、回転数を小さくし、混合時間を短くして、混練せずに混合することが望ましい。このように混合することによって、PTFEをマトリックスとするシート状物の加工が容易となる。化学蓄熱材は、脱落することなくPTFEマトリックスに担持される。 First, an example of a sheet-like molded body prepared in step (I) will be described. PTFE, a chemical heat storage material, a heat conduction aid and a molding aid are mixed to prepare a paste-like mixture. At this time, PTFE may be a dispersion or a fine powder. It is desirable that this mixing be performed under conditions that suppress fiber formation of PTFE as much as possible. Specifically, it is desirable to reduce the number of rotations, shorten the mixing time, and mix without kneading. By mixing in this way, processing of a sheet-like material having PTFE as a matrix becomes easy. The chemical heat storage material is supported on the PTFE matrix without dropping off.
 化学蓄熱材としては、例えば、Mg(OH)及びCaSO・1/2HO等の、100~350℃程度の温熱で脱水吸熱反応を起こし、かつ、水蒸気暴露により水和発熱反応を起こす金属水酸化物及び水和物等を使用できる。化学蓄熱材の添加量は、最終的に得られる多孔質シートの状態において、例えば50重量%以上が望ましい。多孔質シートに含まれる化学蓄熱材を50重量%以上とすることにより、多孔質シートを蓄熱シートとして利用する際に、より高い蓄熱効率を実現できる。化学蓄熱材の添加量は、より望ましくは70重量%以上である。化学蓄熱材の添加量は、最終的に得られる多孔質シートの状態において、例えば90重量%以下が望ましい。多孔質シートに含まれる化学蓄熱材を90重量%以下とすることにより、化学蓄熱材の脱落が抑制された信頼性の高いシートとできる。 As a chemical heat storage material, for example, a dehydration endothermic reaction is caused by heat of about 100 to 350 ° C. such as Mg (OH) 2 and CaSO 4 .1 / 2H 2 O, and a hydration exothermic reaction is caused by exposure to water vapor. Metal hydroxides and hydrates can be used. The amount of the chemical heat storage material added is desirably, for example, 50% by weight or more in the state of the finally obtained porous sheet. By making the chemical heat storage material contained in the porous sheet 50% by weight or more, higher heat storage efficiency can be realized when the porous sheet is used as the heat storage sheet. The addition amount of the chemical heat storage material is more desirably 70% by weight or more. The amount of the chemical heat storage material added is desirably 90% by weight or less, for example, in the state of the finally obtained porous sheet. By setting the chemical heat storage material contained in the porous sheet to 90% by weight or less, it is possible to obtain a highly reliable sheet in which the chemical heat storage material is prevented from falling off.
 熱伝導助剤には、例えば、化学蓄熱材に比べて高い熱伝導率を有する金属粒子及び銀粒子等や、グラファイト及び炭素繊維等の炭素材料を使用できる。熱伝導助剤の添加量は、例えば1~50重量%である。 As the heat conduction aid, for example, metal particles and silver particles having a higher thermal conductivity than chemical heat storage materials, and carbon materials such as graphite and carbon fibers can be used. The amount of heat conduction aid added is, for example, 1 to 50% by weight.
 成形助剤には、PTFEにファインパウダーを使用する場合は例えばドデカン及びデカン等の飽和炭化水素を使用できる。また、PTFEにディスパージョンを使用する場合は、例えば水を使用することができる。成形助剤の添加量は、例えば固形分に対して0.1~1.4倍(重量比)である。 As the molding aid, when using fine powder in PTFE, for example, saturated hydrocarbons such as dodecane and decane can be used. Moreover, when using a dispersion for PTFE, water can be used, for example. The amount of the molding aid added is, for example, 0.1 to 1.4 times (weight ratio) with respect to the solid content.
 以上のような混合物を、押出し及び圧延によってシート状に成形して得られる母シートを、本発明のシート状成形体(シート状成形体の第1の例)として用いることができる。このようにして得られるシート状成形体の厚みは、例えば0.5~10mmである。 A mother sheet obtained by forming the mixture as described above into a sheet by extrusion and rolling can be used as a sheet-like molded article of the present invention (first example of a sheet-like molded article). The thickness of the sheet-like molded body thus obtained is, for example, 0.5 to 10 mm.
 また、工程(I)において準備するシート状成形体の別の例として、上記母シートが複数重ね合わされて圧延されることによって得られた積層シート(シート状成形体の第2の例)も挙げられる。積層シートの積層数は、特には限定されず、製造しようとする多孔質シートの構成層数(多孔質シートを構成する層の数)を考慮して、適宜決定することができる。 Moreover, as another example of the sheet-like molded body prepared in the step (I), a laminated sheet (second example of the sheet-like molded body) obtained by rolling a plurality of the above-described mother sheets is also given. It is done. The number of laminated sheets is not particularly limited, and can be appropriately determined in consideration of the number of constituent layers of the porous sheet to be manufactured (the number of layers constituting the porous sheet).
 なお、本実施の形態では、シート状成形体がPTFE及び化学蓄熱材に加えて、熱伝導助剤及び成形助剤をさらに含む例について説明したが、これに限定されない。例えば、熱伝導助剤は、多孔質シートの用途に応じて熱伝導性をさらに高める必要がある場合等に添加されればよい。 In addition, in this Embodiment, although the sheet-like molded object demonstrated in addition to PTFE and a chemical heat storage material, the example further including a heat-conducting adjuvant and a shaping | molding adjuvant was demonstrated, it is not limited to this. For example, the heat conduction aid may be added when it is necessary to further increase the heat conductivity according to the use of the porous sheet.
 以上のようにして、シート状成形体を準備できる。 Thus, a sheet-like molded body can be prepared.
 次に、工程(II)の例について説明する。 Next, an example of step (II) will be described.
 工程(II)では、工程(I)で準備した複数のシート状成形体を重ね合わせて圧延する。具体的には、工程(I)で準備した複数のシート状成形体を積層し、この積層物を圧延して積層シートを得る。上述したように、シート状成形体は、上記母シート(第1の例のシート状成形体)であってもよいし、母シートを複数重ね合わせて圧延することによって得られた積層シート(第2の例のシート状成形体)であってもよい。工程(II)において重ね合わせるシート状成形体の数は、特には限定されず、例えば2~6枚程度が可能である。高い強度を実現するために、シート状成形体を1つずつ重ね合わせて圧延することが望ましい。 In step (II), a plurality of sheet-like molded bodies prepared in step (I) are overlaid and rolled. Specifically, a plurality of sheet-like molded bodies prepared in step (I) are laminated, and the laminate is rolled to obtain a laminated sheet. As described above, the sheet-like molded body may be the mother sheet (sheet-like molded body of the first example) or a laminated sheet (first sheet) obtained by rolling a plurality of mother sheets. The sheet-like molded body of the example of 2) may be used. The number of sheet-like molded bodies to be overlaid in step (II) is not particularly limited, and can be, for example, about 2 to 6 sheets. In order to achieve high strength, it is desirable to roll the sheet-like molded bodies on top of each other.
 本実施の形態の多孔質シートの製造方法では、工程(I)と工程(II)とが交互に繰り返されてもよい。この場合の具体例を、以下に説明する。 In the method for manufacturing a porous sheet of the present embodiment, the step (I) and the step (II) may be alternately repeated. A specific example in this case will be described below.
 まず、複数(例えば2~6枚)の母シートを準備する(工程(I))。次に、複数の母シートを積層し、この積層物を圧延して積層シート(第1の積層シート)を得る(工程(II))。ここで得られた第1の積層シートを複数(例えば2~6枚)準備し、当該第1の積層シートを工程(I)におけるシート状成形体として用いる。次に、複数(例えば2~6枚)の第1の積層シートを積層し、この積層物を圧延して積層シート(第2の積層シート)を得る(工程(II))。さらに、得られた第2の積層シートを複数(例えば2~6枚)準備し、当該第2の積層シートを工程(I)におけるシート状成形体として用いる。次に、複数(例えば2~6枚)の第2の積層シートを積層し、この積層物を圧延して積層シート(第3の積層シート)を得る(工程(II))。このように、目的とする多孔質シートの構成層数になるまで、工程(I)と工程(II)とを交互に繰り返すことができる。なお、ここで説明した例では、積層数が同じである積層シート同士(第1の積層シート同士、第2の積層シート同士等)を重ね合わせて圧延しているが、積層数が互いに異なる積層シート同士を重ね合わせて圧延することも可能である。 First, a plurality of (for example, 2 to 6) mother sheets are prepared (step (I)). Next, a plurality of mother sheets are laminated, and the laminate is rolled to obtain a laminated sheet (first laminated sheet) (step (II)). A plurality of (for example, 2 to 6) first laminated sheets obtained here are prepared, and the first laminated sheet is used as a sheet-like molded body in step (I). Next, a plurality of (for example, 2 to 6) first laminated sheets are laminated, and the laminated product is rolled to obtain a laminated sheet (second laminated sheet) (step (II)). Further, a plurality of (for example, 2 to 6) second laminated sheets obtained are prepared, and the second laminated sheet is used as a sheet-like molded body in the step (I). Next, a plurality of (for example, 2 to 6) second laminated sheets are laminated, and the laminated product is rolled to obtain a laminated sheet (third laminated sheet) (step (II)). Thus, the step (I) and the step (II) can be alternately repeated until the desired number of constituent layers of the porous sheet is reached. In the example described here, the lamination sheets having the same number of laminations (first lamination sheets, second lamination sheets, etc.) are overlapped and rolled, but the lamination numbers are different from each other. It is also possible to roll the sheets by overlapping them.
 工程(II)を繰り返す際に、圧延方向を変更することが望ましい。例えば、第2の積層シートを得るために行う圧延では、その圧延方向を、第1の積層シートを得るために行った圧延の方向から90度変更するとよい。このように方向を変えながら圧延することによって、PTFEのネットワークが縦横に延び、シート強度の向上及び化学蓄熱材のPTFEマトリックスへの強固な固定が可能になる。 It is desirable to change the rolling direction when repeating step (II). For example, in rolling performed to obtain the second laminated sheet, the rolling direction may be changed by 90 degrees from the direction of rolling performed to obtain the first laminated sheet. By rolling in such a direction, the PTFE network extends vertically and horizontally, and the sheet strength can be improved and the chemical heat storage material can be firmly fixed to the PTFE matrix.
 多孔質シートの構成層数を、当該多孔質シートに含まれる母シートの総数で表すとき、構成層数は、例えば100~800層とできる。シート強度を上げるためには、層数は100層以上が望ましい。また、薄膜化(例えば1mm以下のシートとする)のためには、層数は800層以下が望ましい。構成層数を多くするほど、得られるシートの強度を高くできる。 When the number of constituent layers of the porous sheet is represented by the total number of mother sheets included in the porous sheet, the number of constituent layers can be, for example, 100 to 800 layers. In order to increase the sheet strength, the number of layers is preferably 100 or more. In order to reduce the thickness (for example, a sheet having a thickness of 1 mm or less), the number of layers is desirably 800 or less. The greater the number of constituent layers, the higher the strength of the resulting sheet.
 圧延初期(含まれる母シートの総数が少ない段階)は、強度が低く高倍率の圧延に耐えることが困難であるが、シート状成形体の積層及び圧延を繰り返すにしたがって圧延倍率が上がり、シート強度の向上及び化学蓄熱材のPTFEマトリックスへの強固な固定が可能になる。また、積層構造(構成層数)は、得られるシートの耐膨張性にも関係する。したがって、十分な耐膨張性を備えたシートを得るために、構成層数は200~600層が好ましい。 At the beginning of rolling (the stage where the total number of mother sheets included is small), it is difficult to withstand high-strength rolling with low strength. And the solid fixation of the chemical heat storage material to the PTFE matrix becomes possible. The laminated structure (number of constituent layers) is also related to the expansion resistance of the obtained sheet. Accordingly, in order to obtain a sheet having sufficient expansion resistance, the number of constituent layers is preferably 200 to 600.
 最終的に、厚さ0.5~2mm程度のシートを作製し、その後、成形助剤、さらにPTFEにディスパージョンを用いた場合はその分散媒を加熱して除去することによって、本実施の形態の多孔質シートを得ることができる。 Finally, a sheet having a thickness of about 0.5 to 2 mm is prepared. After that, when a dispersion is used for the molding aid and further PTFE, the dispersion medium is heated and removed. The porous sheet can be obtained.
 本実施の形態の多孔質シートは、化学蓄熱材の化学蓄熱反応に必要な気体(例えば水蒸気)がシート内に拡散する程度の気孔率を有していればよいので、その気孔率は特には限定されない。しかし、本実施の形態の多孔質シートは、良好な気体の拡散を実現するために例えば5vol%以上の気孔率を有することが望ましく、単位体積当たりの熱変換量の理由から例えば50vol%以下の気孔率を有することが望ましい。 Since the porous sheet of this Embodiment should just have a porosity of the grade which the gas (for example, water vapor | steam) required for the chemical thermal storage reaction of a chemical thermal storage material diffuses in a sheet | seat, the porosity is especially It is not limited. However, the porous sheet of the present embodiment desirably has a porosity of, for example, 5 vol% or more in order to achieve good gas diffusion, and for example, 50 vol% or less because of the amount of heat conversion per unit volume. It is desirable to have a porosity.
 本実施の形態の製造方法によって得られる多孔質シートは、含まれる化学蓄熱材の量が多い場合でもその化学蓄熱材を担持することができるので、高い蓄熱効率を実現できる。さらに、この多孔質シートは、多孔性を有するので、化学蓄熱材の化学蓄熱反応に必要な気体(例えば水蒸気)をシート内部にまで到達させることができる。したがって、シート表面に存在する化学蓄熱材だけでなく、シート内部に存在する化学蓄熱材の化学蓄熱反応も効率良く行われる。本実施の形態の多孔質シートは、さらに自己接着性も有しているため、化学蓄熱材の粒子を反応器に充填する場合よりも、反応器との高い密着性が得られる。したがって、本実施の形態の多孔質シートは、化学蓄熱反応を利用した十分な熱変換効率を有する蓄熱用部材(蓄熱シート)として利用することができる。また、本実施の形態の多孔質シートでは、化学蓄熱材がシートに含まれた状態であるため、化学蓄熱材の反応器への設置が容易である。また、化学蓄熱材の粒子を反応器に充填する場合、使用する化学蓄熱材によっては反応時の体積膨張が大きいため、反応器に十分な空間を設ける必要があり、その結果装置が大型化してしまう問題があった。しかし、本実施の形態の多孔質シートのように積層構造を有するシートは、耐膨張性も有することができるので、化学蓄熱材の体積膨張を抑えることも可能となる。 Since the porous sheet obtained by the manufacturing method of the present embodiment can carry the chemical heat storage material even when the amount of the chemical heat storage material contained is large, high heat storage efficiency can be realized. Furthermore, since this porous sheet has porosity, a gas (for example, water vapor) necessary for the chemical heat storage reaction of the chemical heat storage material can reach the inside of the sheet. Therefore, not only the chemical heat storage material present on the sheet surface but also the chemical heat storage reaction of the chemical heat storage material present inside the sheet is efficiently performed. Since the porous sheet of the present embodiment further has self-adhesiveness, higher adhesion to the reactor can be obtained than when the chemical heat storage material particles are filled into the reactor. Therefore, the porous sheet of the present embodiment can be used as a heat storage member (heat storage sheet) having sufficient heat conversion efficiency using a chemical heat storage reaction. In the porous sheet of the present embodiment, since the chemical heat storage material is included in the sheet, it is easy to install the chemical heat storage material in the reactor. Also, when filling the reactor with particles of chemical heat storage material, depending on the chemical heat storage material used, the volume expansion at the time of reaction is large, so it is necessary to provide a sufficient space in the reactor, resulting in an increase in the size of the device There was a problem. However, since the sheet having a laminated structure like the porous sheet of the present embodiment can also have expansion resistance, the volume expansion of the chemical heat storage material can be suppressed.
 以上のように、本実施の形態の多孔質シートによれば、反応器への化学蓄熱材の設置が容易であり、かつ、十分な熱変換効率を実現できる蓄熱シートを提供できる。 As described above, according to the porous sheet of the present embodiment, it is possible to provide a heat storage sheet in which the chemical heat storage material can be easily installed in the reactor and sufficient heat conversion efficiency can be realized.
 本実施の形態の蓄熱シートは、別の観点から、ポリテトラフルオロエチレンと化学蓄熱材とを含み、かつ、多孔性を有する蓄熱シートとすることもできる。この蓄熱シートによれば、化学蓄熱材による化学蓄熱反応によって高い蓄熱効率を実現できる。さらに、この蓄熱シートは、多孔性を有するので、化学蓄熱材の化学蓄熱反応に必要な気体(例えば水蒸気)をシート内部にまで到達させることができる。したがって、シート表面に存在する化学蓄熱材だけでなく、シート内部に存在する化学蓄熱材の化学蓄熱反応も効率良く行われる。本実施の形態の蓄熱シートは、さらに自己接着性も有しているため、化学蓄熱材の粒子を反応器に充填する場合よりも、反応器との高い密着性が得られる。このように、本実施の形態の蓄熱シートは、化学蓄熱反応を利用した十分な熱変換効率を実現できる。また、本実施の形態の蓄熱シートによれば、化学蓄熱材がシートに含まれた状態であるため、化学蓄熱材の反応器への設置も容易である。 The heat storage sheet of the present embodiment can be a heat storage sheet that includes polytetrafluoroethylene and a chemical heat storage material and has porosity from another viewpoint. According to this heat storage sheet, high heat storage efficiency can be realized by a chemical heat storage reaction using a chemical heat storage material. Furthermore, since this heat storage sheet has porosity, a gas (for example, water vapor) necessary for the chemical heat storage reaction of the chemical heat storage material can reach the inside of the sheet. Therefore, not only the chemical heat storage material present on the sheet surface but also the chemical heat storage reaction of the chemical heat storage material present inside the sheet is efficiently performed. Since the heat storage sheet of the present embodiment further has self-adhesiveness, higher adhesion to the reactor can be obtained than when the chemical heat storage material particles are filled into the reactor. Thus, the heat storage sheet of the present embodiment can realize sufficient heat conversion efficiency using a chemical heat storage reaction. Moreover, according to the heat storage sheet of the present embodiment, since the chemical heat storage material is included in the sheet, it is easy to install the chemical heat storage material in the reactor.
 この蓄熱シートに含まれる化学蓄熱材には、上記の多孔質シートに含まれる化学蓄熱材を使用することができる。また、この蓄熱シートは、化学蓄熱材を、例えば50重量%以上90重量%以下で含むことが望ましい。蓄熱シートに含まれる化学蓄熱材を50重量%以上とすることにより、高い蓄熱効率を実現できる。化学蓄熱材の添加量は、より望ましくは70重量%以上である。また、蓄熱シートに含まれる化学蓄熱材を90重量%以下とすることにより、化学蓄熱材の脱落が抑制された信頼性の高いシートとできる。この蓄熱シートは、熱伝導助剤をさらに含んでいてもよい。この熱伝導助剤は、化学蓄熱材よりも高い熱伝導性を有することが望ましい。熱伝導助剤がさらに含まれることにより蓄熱シートの熱伝導性が向上するので、蓄熱シートの熱変換効率がさらに向上すると共に、この蓄熱シートを用いて構成された化学蓄熱システム全体の熱変換効率の向上にもつながる。 The chemical heat storage material included in the porous sheet can be used as the chemical heat storage material included in the heat storage sheet. In addition, it is desirable that the heat storage sheet includes a chemical heat storage material in an amount of, for example, 50% by weight to 90% by weight. By setting the chemical heat storage material contained in the heat storage sheet to 50% by weight or more, high heat storage efficiency can be realized. The addition amount of the chemical heat storage material is more desirably 70% by weight or more. Moreover, by setting the chemical heat storage material contained in the heat storage sheet to 90% by weight or less, a highly reliable sheet in which the chemical heat storage material is prevented from falling off can be obtained. This heat storage sheet may further contain a heat conduction aid. The heat conduction aid desirably has higher thermal conductivity than the chemical heat storage material. Since the thermal conductivity of the thermal storage sheet is further improved by further including a heat conduction aid, the thermal conversion efficiency of the thermal storage sheet is further improved and the thermal conversion efficiency of the entire chemical thermal storage system configured using this thermal storage sheet It leads to improvement.
 本実施の形態の蓄熱シートは上記のような優れた特性を有している。したがって、本実施の形態の蓄熱シートを備えた化学蓄熱システムを提供することが可能である。このような化学蓄熱システムは、例えば、本実施の形態の蓄熱シートを複数重ね合わせた積層体を、例えば特許文献1及び2に記載された化学蓄熱システムのような公知の化学蓄熱システムにおける化学蓄熱材の粒子の代わりに反応器内に設置することによって、実施されることができる。このとき、熱変換効率をさらに向上させるために、複数の蓄熱シートを金属板を介して重ね合わせた積層体を用いてもよい。また、本実施の形態の化学蓄熱システムとして、公知の化学蓄熱システムの反応器の内部に温熱流体からの熱を伝えるために設置される伝熱管に、本実施の形態の蓄熱シートを巻きつける構成も例示される。伝熱管に本実施の形態の蓄熱シートを巻きつける構成の場合、蓄熱シートを伝熱管に直接巻きつけてもよい。または、蓄熱シートの内部へ反応に要する気体をより導入しやすくするために、気体を透過させるためのスペーサを介して蓄熱シートを伝熱管に巻きつけてもよい。また、熱変換効率をさらに向上させるために、熱伝導性の高い金属板を介して互いに重ね合わせた蓄熱シートを、伝熱管に巻きつけてもよい。 The heat storage sheet of the present embodiment has excellent characteristics as described above. Therefore, it is possible to provide a chemical heat storage system provided with the heat storage sheet of the present embodiment. Such a chemical heat storage system is, for example, a chemical heat storage in a known chemical heat storage system such as the chemical heat storage system described in Patent Documents 1 and 2, for example, a laminate in which a plurality of heat storage sheets according to the present embodiment are stacked. This can be done by placing it in a reactor instead of particles of material. At this time, in order to further improve the heat conversion efficiency, a laminated body in which a plurality of heat storage sheets are stacked via a metal plate may be used. In addition, as the chemical heat storage system of the present embodiment, a configuration in which the heat storage sheet of the present embodiment is wound around a heat transfer tube installed to transmit heat from a thermal fluid inside a reactor of a known chemical heat storage system Are also illustrated. In the case of the configuration in which the heat storage sheet of the present embodiment is wound around the heat transfer tube, the heat storage sheet may be directly wound around the heat transfer tube. Or in order to make it easier to introduce | transduce the gas required for reaction into the inside of a thermal storage sheet, you may wind a thermal storage sheet around a heat exchanger tube through the spacer for permeate | transmitting gas. Moreover, in order to further improve heat conversion efficiency, you may wind the thermal storage sheet | seat piled up mutually through the metal plate with high heat conductivity around a heat exchanger tube.
 次に、本発明の多孔質シートの製造方法及び蓄熱シートについて、実施例を用いて具体的に説明する。 Next, the method for producing the porous sheet and the heat storage sheet of the present invention will be specifically described using examples.
 (シートの作製)
 PTFEと硫酸カルシウム二水和物の重量比が2:8になるよう、固形分(PTFE樹脂粒子分)濃度60重量%であるPTFEディスパージョン(商品名「AD938E」、旭硝子株式会社製)を66重量部、化学蓄熱材としての硫酸カルシウム二水和物(和光純薬社製)を160重量部、成形助剤としての水を5重量部を、ミキサーにて混合した。混合条件は、回転数2000rpm、温度20℃、混合時間30秒間とした。混合物を、圧力0.3MPaで圧縮し予備成形した。次に、この予備成形体を約10MPaで押出して、直径15mmの丸棒を成形した。さらにこの丸棒を一対の金属製圧延ロール(表面温度40℃)間に通して圧延し、厚さ5mm、幅25mmの母シート(シート状成形体)を得た。
(Production of sheet)
66 PTFE dispersion (trade name “AD938E” manufactured by Asahi Glass Co., Ltd.) having a solid content (PTFE resin particle content) concentration of 60% by weight so that the weight ratio of PTFE to calcium sulfate dihydrate is 2: 8. 160 parts by weight of calcium sulfate dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) as a chemical heat storage material and 5 parts by weight of water as a molding aid were mixed in a mixer. The mixing conditions were a rotation speed of 2000 rpm, a temperature of 20 ° C., and a mixing time of 30 seconds. The mixture was compressed and preformed at a pressure of 0.3 MPa. Next, this preform was extruded at about 10 MPa to form a round bar having a diameter of 15 mm. Furthermore, this round bar was rolled between a pair of metal rolling rolls (surface temperature 40 ° C.) to obtain a mother sheet (sheet-like formed body) having a thickness of 5 mm and a width of 25 mm.
 まず、母シートを2枚積層し、この積層物を圧延して、積層シート(第1の積層シート)を作製した。次に、得られた第1の積層シートをシート状成形体として2枚準備した。これら2枚の第1の積層シートを重ね合わせて積層し、この積層物を圧延して、新たな積層シート(第2の積層シート)を作製した。次に、得られた第2の積層シートをシート状成形体として2枚準備した。これら2枚の第2の積層シートを重ね合わせて積層し、この積層物を圧延して新たな積層シート(第3の積層シート)を作製した。このように、得られた積層シートをシート状成形体として用いて、重ね合わせて圧延する工程を8回繰り返すことによって、積層数が256層のシートを作製した。最終的に得られたシートは、厚さ1mm、幅250mm、長さ2mであった。 First, two mother sheets were laminated, and this laminate was rolled to produce a laminated sheet (first laminated sheet). Next, two sheets of the obtained first laminated sheet were prepared as sheet-like molded bodies. These two first laminated sheets were superposed and laminated, and this laminate was rolled to produce a new laminated sheet (second laminated sheet). Next, two sheets of the obtained second laminated sheet were prepared as sheet-like molded bodies. These two second laminated sheets were superposed and laminated, and the laminate was rolled to produce a new laminated sheet (third laminated sheet). In this way, by using the obtained laminated sheet as a sheet-like formed body and repeating the process of overlapping and rolling eight times, a sheet having 256 layers was produced. The finally obtained sheet had a thickness of 1 mm, a width of 250 mm, and a length of 2 m.
 次いで、このシートを75℃で3時間加熱して、PTFEディスパージョンの分散媒及び成形助剤を除去した後、硫酸カルシウムの水和物が二水和物から1/2水和物になるよう120℃で乾燥した。得られたシートは多孔質シートであり、この多孔質シートを以下の水和放熱実験において蓄熱シートとして用いた。 The sheet is then heated at 75 ° C. for 3 hours to remove the PTFE dispersion dispersion medium and the molding aid, so that the calcium sulfate hydrate changes from dihydrate to ½ hydrate. Dry at 120 ° C. The obtained sheet was a porous sheet, and this porous sheet was used as a heat storage sheet in the following hydration heat radiation experiment.
 (水和放熱実験)
 硫酸カルシウム1/2水和物になるよう調整した蓄熱シートを、温度40℃湿度92%の恒温恒湿乾燥機に投入して、水和放熱実験(1回目)を行った。この時、蓄熱シートの内部に熱電対を設置し、蓄熱シートの温度変化を10秒ごとにデータロガーで記録した。図1は、この時の測定温度を示したグラフである。蓄熱シートの内部温度は最大で約60℃まで温度上昇していることが確認できた。これは蓄熱シート内部まで水蒸気が侵入し、効率的な反応が行われたことを意味する。
(Hydration heat dissipation experiment)
The heat storage sheet adjusted to become calcium sulfate hemihydrate was put into a constant temperature and humidity dryer having a temperature of 40 ° C. and a humidity of 92%, and a hydration heat radiation experiment (first time) was conducted. At this time, a thermocouple was installed inside the heat storage sheet, and the temperature change of the heat storage sheet was recorded by a data logger every 10 seconds. FIG. 1 is a graph showing the measured temperature at this time. It was confirmed that the internal temperature of the heat storage sheet increased to a maximum of about 60 ° C. This means that water vapor penetrated into the heat storage sheet and an efficient reaction was performed.
 続いて、2時間水和反応させた後の蓄熱シートを、再度硫酸カルシウムの水和物が1/2水和物になるよう120℃で加熱し、同様にして水和放熱実験(2回目)を行った。図2は、この時の測定温度を示したグラフであり、図3は、1回目と2回目の水和放熱実験における環境温度に対する上昇温度を示したグラフである。2回目においても、蓄熱シートの内部温度は最大で約66℃まで上昇していることが確認できた。また、それぞれ環境温度に対する上昇温度は1回目と2回目とでほぼ同様に変化していることが確認できた。これは化学蓄熱システムの反応器内の蓄熱・放熱過程において、蓄熱シートがサイクル稼働できることを意味している。 Subsequently, the heat storage sheet after the hydration reaction for 2 hours was heated again at 120 ° C. so that the hydrate of calcium sulfate became 1/2 hydrate, and the hydration heat radiation experiment (second time) was performed in the same manner. Went. FIG. 2 is a graph showing the measured temperature at this time, and FIG. 3 is a graph showing the temperature rise relative to the environmental temperature in the first and second hydration heat radiation experiments. Even in the second time, it was confirmed that the internal temperature of the heat storage sheet had increased to about 66 ° C. at the maximum. In addition, it was confirmed that the rising temperature with respect to the environmental temperature changed in the same manner between the first time and the second time. This means that the heat storage sheet can be cycled during the heat storage and heat release process in the reactor of the chemical heat storage system.
 本発明によって得られる多孔質シートは、高い熱変換効率を実現できる蓄熱用部材として利用し得るものであり、さらにシート状であるので取扱い性にも優れている。したがって、本発明によって得られる多孔質シートは、化学蓄熱システムを構成する蓄熱用部材として、あらゆる機器へ利用することができる。 The porous sheet obtained by the present invention can be used as a heat storage member capable of realizing high heat conversion efficiency, and is excellent in handleability because it is in the form of a sheet. Therefore, the porous sheet obtained by this invention can be utilized for all apparatuses as a heat storage member which comprises a chemical heat storage system.

Claims (14)

  1.  (I)ポリテトラフルオロエチレンと化学蓄熱材とを含むシート状成形体を複数準備する工程と、
     (II)複数の前記シート状成形体を重ね合わせて圧延する工程と、
    を含む、多孔質シートの製造方法。
    (I) a step of preparing a plurality of sheet-like molded bodies containing polytetrafluoroethylene and a chemical heat storage material;
    (II) a step of superposing and rolling a plurality of the sheet-like molded bodies,
    A method for producing a porous sheet, comprising:
  2.  前記工程(I)と前記工程(II)とが交互に繰り返される、
    請求項1に記載の多孔質シートの製造方法。
    The step (I) and the step (II) are repeated alternately.
    The method for producing a porous sheet according to claim 1.
  3.  前記工程(II)を繰り返す際に、圧延方向を変更する、
    請求項2に記載の多孔質シートの製造方法。
    When repeating the step (II), the rolling direction is changed.
    A method for producing a porous sheet according to claim 2.
  4.  前記化学蓄熱材が、100~350℃の温熱で脱水吸熱反応を起こし、かつ、水蒸気暴露により水和発熱反応を起こす化学蓄熱材である、
    請求項1に記載の多孔質シートの製造方法。
    The chemical heat storage material is a chemical heat storage material that undergoes a dehydration endothermic reaction at a temperature of 100 to 350 ° C. and a hydration exothermic reaction by exposure to water vapor.
    The method for producing a porous sheet according to claim 1.
  5.  前記工程(I)において、前記シート状成形体が熱伝導助剤をさらに含む、
    請求項1に記載の多孔質シートの製造方法。
    In the step (I), the sheet-like molded body further contains a heat conduction aid,
    The method for producing a porous sheet according to claim 1.
  6.  前記熱伝導助剤が、前記化学蓄熱材よりも高い熱伝導性を有する、
    請求項5に記載の多孔質シートの製造方法。
    The heat conduction aid has a higher thermal conductivity than the chemical heat storage material,
    The method for producing a porous sheet according to claim 5.
  7.  請求項1に記載の方法によって得られる多孔質シートを用いて作製された蓄熱シート。 A heat storage sheet produced using the porous sheet obtained by the method according to claim 1.
  8.  ポリテトラフルオロエチレンと化学蓄熱材とを含み、かつ、多孔性を有する、蓄熱シート。 A heat storage sheet containing polytetrafluoroethylene and a chemical heat storage material and having porosity.
  9.  前記化学蓄熱材を50重量%以上90重量%以下含む、
    請求項8に記載の蓄熱シート。
    Containing 50 wt% or more and 90 wt% or less of the chemical heat storage material,
    The heat storage sheet according to claim 8.
  10.  前記化学蓄熱材が、100~350℃の温熱で脱水吸熱反応を起こし、かつ、水蒸気暴露により水和発熱反応を起こす化学蓄熱材である、
    請求項8に記載の蓄熱シート。
    The chemical heat storage material is a chemical heat storage material that undergoes a dehydration endothermic reaction at a temperature of 100 to 350 ° C. and a hydration exothermic reaction by exposure to water vapor.
    The heat storage sheet according to claim 8.
  11.  熱伝導助剤をさらに含む、
    請求項8に記載の蓄熱シート。
    Further comprising a heat transfer aid,
    The heat storage sheet according to claim 8.
  12.  前記熱伝導助剤が、前記化学蓄熱材よりも高い熱伝導性を有する、
    請求項11に記載の蓄熱シート。
    The heat conduction aid has a higher thermal conductivity than the chemical heat storage material,
    The heat storage sheet according to claim 11.
  13.  請求項7に記載の蓄熱シートを備えた化学蓄熱システム。 A chemical heat storage system comprising the heat storage sheet according to claim 7.
  14.  請求項8に記載の蓄熱シートを備えた化学蓄熱システム。 A chemical heat storage system comprising the heat storage sheet according to claim 8.
PCT/JP2013/002569 2012-04-18 2013-04-16 Method for producing porous sheet, heat storage sheet, and chemical heat storage system WO2013157252A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-094967 2012-04-18
JP2012094967A JP2013221130A (en) 2012-04-18 2012-04-18 Method for producing porous sheet, heat storage sheet and chemical heat storage system

Publications (1)

Publication Number Publication Date
WO2013157252A1 true WO2013157252A1 (en) 2013-10-24

Family

ID=49383223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002569 WO2013157252A1 (en) 2012-04-18 2013-04-16 Method for producing porous sheet, heat storage sheet, and chemical heat storage system

Country Status (2)

Country Link
JP (1) JP2013221130A (en)
WO (1) WO2013157252A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099197A1 (en) * 2015-12-10 2017-06-15 国立大学法人京都大学 Hydrate of rare earth metal sulfate, method for producing same, and chemical thermal storage material
JP6988660B2 (en) * 2018-04-13 2022-01-05 王子ホールディングス株式会社 Functional seats and functional seat kits
JP2021188873A (en) * 2020-06-03 2021-12-13 三菱パワー株式会社 Heat accumulation body cartridge and heat accumulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207164A (en) * 2000-01-27 2001-07-31 Sekisui Chem Co Ltd Heat-storing sheet
JP2008095017A (en) * 2006-10-13 2008-04-24 Furukawa Co Ltd Heat storage material
JP2009269214A (en) * 2008-04-30 2009-11-19 Nitto Denko Corp Porous sheet and method of manufacturing the same, and heat insulating sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207164A (en) * 2000-01-27 2001-07-31 Sekisui Chem Co Ltd Heat-storing sheet
JP2008095017A (en) * 2006-10-13 2008-04-24 Furukawa Co Ltd Heat storage material
JP2009269214A (en) * 2008-04-30 2009-11-19 Nitto Denko Corp Porous sheet and method of manufacturing the same, and heat insulating sheet

Also Published As

Publication number Publication date
JP2013221130A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
Wang et al. Bioinspired Aerogel with Vertically Ordered Channels and Low Water Evaporation Enthalpy for High‐Efficiency Salt‐Rejecting Solar Seawater Desalination and Wastewater Purification
Sdanghi et al. Towards non-mechanical hybrid hydrogen compression for decentralized hydrogen facilities
Makhanya et al. Recent advances on thermal energy storage using metal-organic frameworks (MOFs)
Ristić et al. The Performance of Small‐Pore Microporous Aluminophosphates in Low‐Temperature Solar Energy Storage: The Structure–Property Relationship
Li et al. Ammonia decomposition in catalytic membrane reactors: Simulation and experimental studies
Yanagita et al. Kinetics of water vapor adsorption and desorption in MIL-101 metal–organic frameworks
Gai et al. Hydrogen generation by the reaction of Al with water using oxides as catalysts
TW463023B (en) A hydrogen cooled hydride storage unit
Calabrese et al. Adsorption performance and thermodynamic analysis of SAPO-34 silicone composite foams for adsorption heat pump applications
WO2013157252A1 (en) Method for producing porous sheet, heat storage sheet, and chemical heat storage system
KR20150097788A (en) A hydrogen storage pellet
CN105129927A (en) Preparing method of graphene/carbon nanotube aerogel composite capacitive type desalting electrode
Wang et al. Recent advances in developing mixed matrix membranes based on covalent organic frameworks
Gao et al. Energy harvesting and storage blocks based on 3D oriented expanded graphite and stearic acid with high thermal conductivity for solar thermal application
CN101823897A (en) Composite mesoporous material
Wu et al. Adsorbed natural gas storage for onboard applications
Jiang et al. Fabrication of crystalline microporous membrane from 2D MOF nanosheets for gas separation
CN104194735B (en) A kind of carbon-based chemical heat accumulation nanocomposite and preparation method thereof
Ülker et al. Applications of aerogels and their composites in energy-related technologies
Zhang et al. Pure H 2 production through hollow fiber hydrogen‐selective MFI zeolite membranes using steam as sweep gas
JP2011162746A (en) Molded article of chemical heat storage material and method for producing the same
Shen et al. 3D graphene and boron nitride structures for nanocomposites with tailored thermal conductivities: recent advances and perspectives
Ovalle-Encinia et al. CO2 separation improvement produced on a ceramic–carbonate dense membrane superficially modified with Au–Pd
Kallenberger et al. Magnesium sulfate/polymer composites for seasonal, thermochemical energy storage
JP2014224668A (en) Reactive material molded body and heat accumulating-radiating unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778966

Country of ref document: EP

Kind code of ref document: A1