WO2013155947A1 - 一种直线电机单自由度隔振装置及其运动控制方法 - Google Patents

一种直线电机单自由度隔振装置及其运动控制方法 Download PDF

Info

Publication number
WO2013155947A1
WO2013155947A1 PCT/CN2013/074194 CN2013074194W WO2013155947A1 WO 2013155947 A1 WO2013155947 A1 WO 2013155947A1 CN 2013074194 W CN2013074194 W CN 2013074194W WO 2013155947 A1 WO2013155947 A1 WO 2013155947A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motor
balance block
drift
grating
scale
Prior art date
Application number
PCT/CN2013/074194
Other languages
English (en)
French (fr)
Inventor
杨开明
朱煜
余东东
成荣
张鸣
李鑫
穆海华
胡金春
徐登峰
尹文生
季国锋
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to US14/395,471 priority Critical patent/US9310797B2/en
Publication of WO2013155947A1 publication Critical patent/WO2013155947A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41117Cancel vibration during positioning of slide

Definitions

  • the invention relates to a linear motor single degree of freedom vibration isolation device and a motion control method thereof, and belongs to the field of semiconductor equipment technology.
  • the scanning process of the workpiece table of the lithography machine can be divided into three stages of acceleration, scanning and deceleration.
  • the end of the acceleration stage to the start of scanning is defined as the adjustment time of the workpiece stage.
  • the value of this value directly affects the productivity of the lithography machine.
  • the linear motor of the workpiece table In the acceleration section, the linear motor of the workpiece table generates a large reaction force on the stator of the linear motor. When the stator of the linear motor is fixed to the base, the reaction force causes the vibration of the base and is coupled to the measurement on the base. In the system, the adjustment time of the workpiece table is increased, which restricts the working efficiency.
  • the object of the present invention is to provide a linear motor single-degree-of-freedom vibration isolation device and a motion control method thereof, which can ensure that the balance block does not generate one-side drift during the movement of the linear motor, and can avoid transmitting a large reaction force to On the pedestal.
  • the vibration isolation device includes a balance block that moves in the X-axis direction, an anti-drift drive unit, and a control unit; the upper surface of the balance block is fixed to the stator of the linear motor, and the lower surface of the balance block passes through the first air-floating bearing Connected to the base, one side of the balance block is mounted with a first grating scale, the grating stripe of the first scale is arranged along the X-axis direction, and the first grating read head corresponding to the first grating scale is mounted on the linear motor mover ;
  • the anti-drift driving unit comprises an anti-drift linear motor, a grating ruler and a guide rail;
  • the guide rail is fixedly connected with the mover of the anti-drift linear motor, and one end of the guide rail is balanced with the said air-floating bearing through the second air-floating bearing in the YZ plane Block connection, the guide rail is connected to the stator of the anti-drift linear motor through the second air bearing on one side of the XY plane, and the rail is connected to the stator of the anti-drift linear motor through the second air bearing on one side of the XZ plane; the anti-drift linear motor
  • the stator is fixedly connected to the base, a second grating ruler is mounted on one side of the guide rail, and the grating stripe of the second grating scale is along the X-axis direction, and a second corresponding to the second grating scale is mounted on the stator of the anti-drift linear motor Scale reading head;
  • the control unit comprises an industrial computer including a control program, a raster counting card, a D/A card and a driver, and the grating counting card respectively acquires the first grating scale and the second grating scale signal, and the grating counting card collects the two grating signals Input to the industrial computer, the industrial computer controls the anti-drift linear motor with the two grating signals as the position feedback signal, and the control command is output to the driver through the D/A card.
  • an industrial computer including a control program, a raster counting card, a D/A card and a driver, and the grating counting card respectively acquires the first grating scale and the second grating scale signal, and the grating counting card collects the two grating signals Input to the industrial computer, the industrial computer controls the anti-drift linear motor with the two grating signals as the position feedback signal, and the control command is output to the driver through the D/A card.
  • the first air bearing is a vacuum preload bearing, a permanent magnet preload bearing or a gravity preload bearing; the second air bearing is a vacuum preload bearing or a permanent magnet preload bearing.
  • the first nonlinear link is used to process the displacement deviation.
  • the first nonlinear link expression is:
  • the output signal of the first nonlinear link is processed by the balance block linear controller to obtain the control of the anti-drift motor
  • the control command is digital-to-analog converted by the D/A card and input to the driver, and the driver proportionally outputs the current-driven anti-drift motor; repeating steps 1) to 3) in the next servo cycle, thereby driving the balance block to the set position motion.
  • the linear motor and the balance block At the beginning of the servo cycle, set the linear motor and the balance block to have a mass center displacement of zero. Then, the grating scale card is used to separately acquire the signals of the first grating scale signal and the second grating scale, respectively, and obtain the linear motor mover relative to the balance block respectively. The displacement signal and the displacement signal of the balance block relative to the base are calculated by the two signals to obtain the centroid displacement of the balance block and the linear motor, and as the feedback signal, the displacement deviation of the combined centroid is obtained ;
  • the linear link processes the displacement deviation, and the second nonlinear link expression is: ⁇ e b ⁇ ⁇ S
  • is the nonlinear gain coefficient, which is the displacement deviation of the center of mass, which is the set threshold.
  • a control command of the anti-drift motor is obtained, and the control command is digital-to-analog converted by the D/A card and input to the driver, and the driver is proportionally output.
  • the current drives the anti-drift motor; the steps 1) to 3) are repeated in the next servo cycle, and the balance block is driven to move to the set position.
  • the balance block linear controller uses a PID controller, a lead lag controller or a robust controller.
  • the linear motor single-degree-of-freedom vibration isolation device provided by the invention can effectively eliminate the influence of the linear motor reaction force on the pedestal, and the proposed anti-drift motion control method can ensure the balance block There is no one-sided drift during the movement of the linear motor, and it is possible to avoid transmitting a large reaction force to the base.
  • Fig. 1 is a schematic view showing the structure of the vibration isolating device of the present invention (axial drawing).
  • FIG. 2 is a top plan view of the vibration damping device of the present invention.
  • FIG. 3 is a schematic structural view (axial view) of the anti-drift driving unit of the present invention.
  • FIG. 4 is a top plan view of the anti-drift driving unit of the present invention.
  • FIG. 5 is a block diagram showing the control principle of the vibration isolating device of the present invention.
  • FIG. 6 is a block diagram of a program flow of a first motion control method of the vibration isolation device of the present invention.
  • FIG. 7 is a block diagram of a program flow of a second motion control method of the vibration isolation device of the present invention.
  • 2a-first grating scale reading head 2b-first grating scale; 4a-first air bearing; 4b-second air bearing; 4c-third air bearing; 4d-fourth air bearing; 5a-second grating head; 5b-second grating;
  • the second nonlinear link The second nonlinear link.
  • a balance block is added to the workpiece table, and the upper surface of the balance block is fixed to the stator of the linear motor, and the lower surface of the balance block is connected to the base through the air bearing, so that the balance block It can move freely without friction on the base.
  • the linear motor When the linear motor generates thrust, its reaction force causes the balance weight to move proportionally in the opposite direction.
  • the balance block will return to the corresponding initial position, but Due to factors such as machining and installation errors and external disturbances, the balance block will have a positional drift during the movement.
  • an anti-drift drive unit In order to control the position of the balance block so that it does not exceed the set stroke, an anti-drift drive unit is designed, as shown in Figure 3.
  • the anti-drift drive unit ensures that the balance block does not drift on one side, and on the other hand, minimizes the reaction force of the linear motor to be transmitted to the base. Therefore, the present invention also provides a motion control method for the vibration isolation device.
  • the linear motor of the present invention comprises a linear motor mover 13 and a linear motor stator 12, the vibration isolating device comprising a balance block 11 movable in the X-axis direction, an anti-drift drive unit and a control unit.
  • the upper surface of the weight 11 is fixed to the stator 12 of the linear motor, and the lower surface of the weight 11 is connected to the base 1 through the first air bearing 4a, so that the weight 11 can be undamped on the surface of the base 1, when the straight line
  • the reaction force acting on the stator 12 of the linear motor pushes the balance block 11 to move in the negative direction in the Y direction, and the motion of both follows the law of conservation of momentum, and one side of the balance block 11 is mounted.
  • first grating scale 2b There is a first grating scale 2b, a grating stripe of the first scale 2b is arranged along the X-axis direction, and a first grating read head 2a corresponding to the first scale 2b is mounted on the linear motor mover 12, and the linear motor mover 13 is measured. The displacement relative to the weight 11 .
  • FIG 3 is a schematic diagram of the structure of the anti-drift drive unit (axial view), and Figure 4 is a top view of the anti-drift drive unit.
  • the anti-drift drive unit comprises an anti-drift linear motor, a grating ruler and a guide rail 10; the guide rail 10 is fixedly connected with the mover 9 of the anti-drift linear motor, and one end of the guide rail 10 passes through the second air bearing 4b at the YZ plane.
  • the balance block 11 is connected, and the guide rail 10 is connected to the anti-drift linear motor stator 7 via a third air bearing 4c on one side of the XY plane, and the guide rail 10 passes through the fourth air bearing 4d and the anti-drift straight line on one side of the XZ plane.
  • the stator 7 of the motor is connected; the stator 7 of the drift-proof linear motor is fixed to the base 1, and the second grating scale 5b is mounted on one side of the guide rail 10, and the grating stripe of the second grating scale 5b is along the X-axis A second scale reading head 5a corresponding to the second scale 5b is mounted on the anti-drift linear motor stator 7. Since the guide rail 10 is connected to the balance block 11, the second scale 5b measures the balance block 11 relative to the base. The displacement of the seat 1.
  • the anti-drift motor mover 9 drives the guide rail 10 to move, and the guide rail 10 further pushes the balance block 11 to prevent the balance block 11 from generating a one-sided drift, but at the same time, the anti-drift linear motor generates a reaction force. Drifting the linear motor stator 7, and then transmitting the reaction force to the base 1, causing the base 1 to vibrate;
  • FIG. 5 is a block diagram showing the control principle of the vibration isolating device of the present invention.
  • the control unit comprises an industrial computer including a control program, a raster counting card, a D/A card and a driver.
  • the control unit respectively acquires the first grating scale 2b and the second grating scale 5b signal through the grating counting card, and the first grating scale 2b measures the linear electricity.
  • the second scale 5b measures the displacement of the balance block 11 relative to the base 1 by the second scale 5b, and the control unit controls the anti-drift linear motor with the above two grating signals as feedback, and the control program is in the industrial control
  • the control unit When the machine is running, when the displacement feedback signal is received, a displacement deviation is generated. After the displacement deviation is processed, a control command is generated.
  • the control command is then output to the driver through the D/A card, and then the anti-drift linear motor is driven to make the balance block reach the designated position. ;
  • FIG. 6 is a block diagram of a program flow of a first motion control method of the vibration isolation device of the present invention, the method comprising the following steps:
  • the first nonlinear link is used to process the displacement deviation, and the first nonlinear link expression is:
  • the displacement deviation of the balance block is the offset coefficient
  • b p is the amplification factor, which is the rising rate coefficient
  • the output of the first nonlinear link increases with the increase of the control error of the balance block. Hours, the first nonlinear link output is almost close to zero;
  • the linear controller of the balancing block uses a PID controller, a lead lag controller or a robust controller. Together with the first nonlinear loop, the equivalent stiffness of the balancing block closed-loop controller increases as the displacement deviation increases.
  • FIG. 7 is a flow chart of a second motion control method of the vibration isolation device, and the method includes the following steps:
  • is a nonlinear gain coefficient, which is the displacement deviation of the centroid, which is a set threshold. Ideally, when the combined centroid displacement is greater than the set threshold, the controller generates a control signal to drive the anti-drift linear motor to work, otherwise the control output Zero.
  • a control command of the anti-drift motor is obtained, and the control command is digital-to-analog converted by the D/A card and input to the driver, and the driver is proportionally output.
  • the current drives the anti-drift motor; the steps 1) to 3) are repeated in the next servo cycle, and the balance block is driven to move to the set position.
  • the linear controller of the balancing block uses a PID controller, a lead lag controller or a robust controller to implement a nonlinear anti-drift control based on the combined centroid displacement together with the second nonlinear loop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Position Or Direction (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Linear Motors (AREA)

Abstract

一种直线电机单自由度隔振装置及其运动控制方法,该隔振装置包括一个平衡块(11)、一个防漂移驱动单元以及控制单元。平衡块(11)的上表面与直线电机的定子(12)固连,平衡块(11)的下表面通过第一气浮轴承(4a)与基座(1)连接;防漂移驱动单元用于平衡块(11)的位置控制,驱动单元与平衡块(11)之间采用第二气浮轴承(4b)连接,防漂移驱动单元包括一个防漂移直线电机、一个光栅尺(5b)和一个导轨(10);运动控制方法有两种:第一技术方案采用第二光栅尺信号作为反馈信号输入至控制单元,对平衡块(11)进行变刚度非线性控制;第二技术方案采用第一光栅尺信号和第二光栅尺信号作为反馈信号输入至控制单元,获取直线电机动子(13)与平衡块(11)的合质心位移信号,对平衡块(11)进行非线性防漂移控制。

Description

一种直线电机单自由度隔振装置及其运动控制方法
本发明涉及一种直线电机单自由度隔振装置及其运动控制方法, 属于半导体装备技术领 域。
背景技术
光刻机工件台扫描过程可分为加速、 扫描、 减速三个阶段, 将加速段结束至扫描开始定 义为工件台调整时间, 该值的大小直接影响着光刻机整机的生产率。 在加速段, 工件台直线 电机会产生较大的反作用力作用在直线电机定子上, 当直线电机定子与基座固定时, 该反作 用力会引起基座的振动, 进而耦合至基座上的测量系统中, 增大了工件台的调整时间, 制约 了其工作效率。
发明内容
本发明的目的是提供一种直线电机单自由度隔振装置及其运动控制方法,既能保证平衡块 在直线电机运动过程中不产生单侧漂移, 又能够避免将较大的反作用力传递至基座上。
本发明的技术方案如下:
该隔振装置包括一个沿 X轴方向运动的平衡块、 一个防漂移驱动单元以及控制单元; 所述平衡块的上表面与直线电机的定子固连, 平衡块的下表面通过第一气浮轴承与基座 连接, 平衡块的一侧安装有第一光栅尺, 第一光栅尺的光栅条纹沿 X轴方向布置, 在直线电 机动子上安装有与第一光栅尺对应的第一光栅读数头;
所述防漂移驱动单元包括一个防漂移直线电机、 一个光栅尺和一个导轨; 导轨与防漂移 直线电机的动子相固连, 导轨的一端在 YZ平面通过第二气浮轴承与所述的平衡块连接, 导 轨在 XY平面的一侧通过第二气浮轴承与防漂移直线电机定子连接, 导轨在 XZ平面的一侧 通过第二气浮轴承与防漂移直线电机的定子连接; 防漂移直线电机的定子与基座相固连, 导 轨的一侧安装有第二光栅尺, 第二光栅尺的光栅条纹沿 X轴方向, 在防漂移直线电机定子上 安装有与第二光栅尺对应的第二光栅尺读数头;
所述控制单元包括含有控制程序的工控机、 光栅计数卡、 D/A卡和驱动器, 光栅计数卡 分别采集第一光栅尺和第二光栅尺信号,光栅计数卡将采集到的两路光栅信号输入至工控机, 工控机以所述两路光栅信号为位置反馈信号对防漂移直线电机进行控制, 控制指令通过 D/A 卡输出至驱动器。
第一气浮轴承采用真空预载轴承、 永磁预载轴承或重力预载轴承; 第二气浮轴承采用真 空预载轴承或者永磁预载轴承。
所述直线电机单自由度隔振装置的控制方法有两种:
第一技术方案包括如下步骤:
1 )在伺服周期开始,设定平衡块位移为零,然后采用光栅计数卡采集第二光栅尺的信号, 得到平衡块相对于基座的位移信号, 并将该位移信号输入工控机作为位置反馈信号, 得到平 衡块的位移偏差 eb;
2) 采用第一非线性环节对位移偏差 进行处理, 第一非线性环节表达式为:
其中 为平衡块的位移偏差, 为偏置系数, bp为放大系数, 为上升速率系数; 3 )将第一非线性环节的输出信号通过平衡块线性控制器处理后, 得到防漂移电机的控制 指令, 该控制指令由 D/A卡进行数模转换后输入至驱动器, 驱动器成比例地输出电流驱动防 漂移电机; 在下一个伺服周期重复 1 ) 至 3 ) 步骤, 进而驱动平衡块向设定位置运动。
第二技术方案包括如下步骤:
1 )在伺服周期开始, 设定直线电机和平衡块合质心位移为零, 然后采用光栅计数卡分别 采集第一光栅尺信号和第二光栅尺的信号, 分别得到直线电机动子相对于平衡块的位移信号 和平衡块相对于基座的位移信号, 由两路信号计算得到平衡块与直线电机合质心位移, 作为 反馈信号, 得到合质心的位移偏差 ;
线性环节对位移偏差 进行处理, 第二非线性环节 表达式为:
Figure imgf000004_0001
\eb\ < S
其中 α为非线性增益系数, 为合质心的位移偏差, 为设定阈值。
3 )将第二非线性环节的输出信号通过平衡块线性控制器处理后, 得到防漂移电机的控制 指令, 该控制指令由 D/A卡进行数模转换后输入至驱动器, 驱动器成比例地输出电流驱动防 漂移电机; 在下一个伺服周期重复 1 ) 至 3 ) 步骤, 进而驱动平衡块向设定位置运动。
平衡块线性控制器采用 PID控制器、 超前滞后控制器或鲁棒控制器。
本发明具有以下优点及突出性的技术效果:本发明提供的直线电机单自由度隔振装置能够 有效消除直线电机反作用力对基座的影响, 所提出的防漂移运动控制方法既能保证平衡块在 直线电机运动过程中不产生单侧漂移, 又能够避免将较大的反作用力传递至基座上。
附图说明
图 1为本发明隔振装置结构原理示意图 (轴测图)。
图 2为本发明隔振装置俯视图。
图 3为本发明防漂移驱动单元结构原理示意图 (轴测图)。
图 4为本发明防漂移驱动单元俯视图。
图 5为本发明隔振装置控制原理框图。
图 6为本发明隔振装置第一运动控制方法程序流程框图。
图 7为本发明隔振装置第二运动控制方法程序流程框图。
图中:
1-基座;
2a-第一光栅尺读数头; 2b-第一光栅尺; 4a-第一气浮轴承; 4b-第二气浮轴承; 4c-第三气浮轴承; 4d-第四气浮轴承; 5a-第二光栅尺读数头; 5b-第二光栅尺;
7-防漂移直线电机定子;
9-防漂移直线电机动子;
10-导轨;
11-平衡块;
12-直线电机定子;
13-直线电机动子;
第一非线性环节;
第二非线性环节。
具体实施方式
下面结合附图对本发明的原理、 结构和工作过程来进一步说明本发明。
为避免直线电机反作用力作用在基座上, 在工件台中增加了平衡块, 平衡块的上表面与 直线电机的定子固连, 平衡块的下表面通过气浮轴承与基座连接, 使平衡块能够在基座上无 摩擦自由运动。 当直线电机产生推力时, 其反作用力会使平衡块成比例地朝相反的方向运动, 理想情况下, 当直线电机往复运动回到初始位置时, 平衡块也会回到对应初始位置, 但由于 加工安装误差、 外界扰动等因素, 平衡块在运动过程中会产生位置漂移。 为控制平衡块的位 置, 使其不超出设定行程, 设计了防漂移驱动单元, 如图 3所示。 防漂移驱动单元一方面要 确保平衡块不发生单侧漂移, 另一方面要尽量减小直线电机的反作用力传递至基座上, 因而 本发明还提供了隔振装置运动控制方法。
图 1、 图 2为本发明隔振装置结构原理示意图。 本发明所述的直线电机包含直线电机动 子 13和直线电机定子 12, 该隔振装置包括一个可沿 X轴方向运动的平衡块 11、 一个防漂 移驱动单元以及控制单元。
平衡块 11的上表面与直线电机的定子 12固连, 平衡块 11的下表面通过第一气浮轴承 4a与基座 1连接, 使得平衡块 11能够在基座 1表面无阻尼运动, 当直线电机动子 13沿 Y 向正向运动时, 作用在直线电机定子 12上的反作用力会推动平衡块 11沿 Y向负向运动, 两者的运动遵循动量守恒定律, 平衡块 11的一侧安装有第一光栅尺 2b, 第一光栅尺 2b的 光栅条纹沿 X轴方向, 在直线电机动子 12上安装有与第一光栅尺 2b对应的第一光栅读数 头 2a, 测量直线电机动子 13相对于平衡块 11的位移。
图 3为防漂移驱动单元结构示意图 (轴测图), 图 4为防漂移驱动单元俯视图。 防漂移驱 动单元包括一个防漂移直线电机、 一个光栅尺和一个导轨 10; 导轨 10与防漂移直线电机的 动子 9相固连, 导轨 10的一端在 YZ平面通过第二气浮轴承 4b与所述的平衡块 11连接, 导 轨 10在 XY平面的一侧通过第三气浮轴承 4c与防漂移直线电机定子 7连接, 导轨 10在 XZ 平面的一侧通过第四气浮轴承 4d与防漂移直线电机的定子 7连接; 防漂移直线电机的定子 7 与基座 1相固连, 导轨 10的一侧安装有第二光栅尺 5b, 第二光栅尺 5b的光栅条纹沿 X轴方 向, 在防漂移直线电机定子 7上安装有与第二光栅尺 5b对应的第二光栅尺读数头 5a, 由于 导轨 10与平衡块 11相连, 故第二光栅尺 5b测量平衡块 11相对于基座 1的位移。 防漂移电 机工作时, 防漂移电机动子 9带动导轨 10运动, 导轨 10进而推动平衡块 11运动, 防止平衡 块 11产生单侧漂移,但与此同时防漂移直线电机会产生反作用力作用在防漂移直线电机定子 7上, 然后将该反作用力传递至基座 1上, 引起基座 1振动;
图 5为本发明隔振装置控制原理框图。 控制单元包括含有控制程序的工控机、 光栅计数 卡、 D/A卡和驱动器, 控制单元通过光栅计数卡分别采集第一光栅尺 2b和第二光栅尺 5b信 号, 第一光栅尺 2b测量直线电机动子 13相对于平衡块 11的位移, 第二光栅尺 5b测量平衡 块 11相对于基座 1的位移,控制单元以上述两路光栅信号为反馈对防漂移直线电机进行控制, 控制程序在工控机中运行, 当接收到位移反馈信号后, 产生位移偏差, 位移偏差经过处理后 产生控制指令, 控制指令然后通过 D/A卡输出至驱动器, 继而驱动防漂移直线电机, 使得平 衡块达到指定位置;
图 6为本发明隔振装置第一种运动控制方法程序流程框图, 该方法包括如下步骤:
1 )在伺服周期开始,设定平衡块位移为零,然后采用光栅计数卡采集第二光栅尺的信号, 得到平衡块相对于基座的位移信号, 并将该位移信号输入工控机作为位置反馈信号 , 得到平 衡块的位移偏差 eb ;
2 ) 采用第一非线性环节对位移偏差 进行处理, 第一非线性环节表达式为:
其中 为平衡块的位移偏差, 为偏置系数, bp为放大系数, 为上升速率系数, 第一 非线性环节的输出随着平衡块控制偏差 的增大而增大, 当平衡块控制偏差 较小时, 第一 非线性环节输出几乎接近于零;
3 ) 将第一非线性环节的输出信号通过平衡块的线性控制器处理后, 得到防漂移电机的 控制指令, 该控制指令由 D/A卡进行数模转换后输入至驱动器, 驱动器成比例地输出电流驱 动防漂移电机; 在下一个伺服周期重复 1 ) 至 3 ) 步骤, 进而驱动平衡块向设定位置运动。
平衡块的线性控制器采用 PID控制器、 超前滞后控制器或鲁棒控制器, 与第一非线性环 节一起使得平衡块闭环控制器的等效刚度随着位移偏差的增大而增大。
图 7为隔振装置第二种运动控制方法程序流程框, 该方法包括如下步骤:
1 )在伺服周期开始, 设定直线电机和平衡块合质心位移为零, 然后采用光栅计数卡分别 采集第一光栅尺信号和第二光栅尺的信号, 分别得到直线电机动子相对于平衡块的位移信号 和平衡块相对于基座的位移信号, 由两路信号计算得到平衡块与直线电机合质心位移, 作为 反馈信号, 得到合质心的位移偏差 , 其中合质心位移的计算表达式为:
; 其中 为合质心位移, 为直线电机动子相对于平衡块的位移, 为平衡块相对于基 座的位移, mc为直线电机动子质量, 为直线电机定子、 平衡块与导轨的质量之和。 2 ) 采用第二非线性环节对位移偏差 进行处理, 第二非线性环节^ 2表达式为:
Figure imgf000007_0001
其中 α为非线性增益系数, 为合质心的位移偏差, 为设定阈值, 理想情况下, 当合 质心位移大于设定阈值时, 控制器产生控制信号, 驱动防漂移直线电机工作, 否则控制输出 为零。
3 )将第二非线性环节的输出信号通过平衡块线性控制器处理后, 得到防漂移电机的控制 指令, 该控制指令由 D/A卡进行数模转换后输入至驱动器, 驱动器成比例地输出电流驱动防 漂移电机; 在下一个伺服周期重复 1 ) 至 3 ) 步骤, 进而驱动平衡块向设定位置运动。
平衡块的线性控制器采用 PID控制器、 超前滞后控制器或鲁棒控制器, 与第二非线性环 节一起实现基于合质心位移的非线性防漂移控制。

Claims

权 利 要 求 书
1. 一种直线电机单自由度隔振装置, 所述的直线电机包含直线电机动子 (13)和直线电 机定子 (12), 其特征在于: 该隔振装置包括一个沿 X轴方向运动的平衡块 (11)、 一个防漂 移驱动单元以及控制单元;
所述平衡块 (11) 的上表面与直线电机的定子 (12) 固连, 平衡块 (11) 的下表面通过 第一气浮轴承 (4a) 与基座 (1) 连接, 平衡块 (11) 的一侧安装有第一光栅尺 (2b), 第一 光栅尺(2b)的光栅条纹沿 X轴方向布置,在直线电机动子(13)上安装有与第一光栅尺(2b) 对应的第一光栅读数头 (2a);
所述防漂移驱动单元包括一个防漂移直线电机、一个光栅尺和一个导轨(10); 导轨(10) 与防漂移直线电机的动子(9)相固连, 导轨(10)的一端在 YZ平面通过第二气浮轴承(4b) 与所述的平衡块 (11) 连接, 导轨 (10) 在 XY平面的一侧通过第三气浮轴承 (4c) 与防漂 移直线电机定子 (7) 连接, 导轨 (10)在 XZ平面的一侧通过第四气浮轴承 (4d) 与防漂移 直线电机的定子 (7)连接; 防漂移直线电机的定子 (7) 与基座 (1)相固连, 导轨 (10) 的 一侧安装有第二光栅尺 (5b), 第二光栅尺 (5b) 的光栅条纹沿 X轴方向, 在防漂移直线电 机定子 (7) 上安装有与第二光栅尺 (5b) 对应的第二光栅尺读数头 (5a);
所述控制单元包括含有控制程序的工控机、 光栅计数卡、 D/A卡和驱动器, 光栅计数卡 分别采集第一光栅尺 (2b) 和第二光栅尺 (5b) 信号, 光栅计数卡将采集到的两路光栅信号 输入至工控机, 工控机以所述两路光栅信号为位置反馈信号对防漂移直线电机进行控制, 控 制指令通过 D/A卡输出至驱动器。
2. 如权利要求 1所述的直线电机单自由度隔振装置, 其特征在于: 第一气浮轴承 (4a) 采用真空预载轴承、 永磁预载轴承或重力预载轴承; 第二气浮轴承 (4b) 采用真空预载轴承 或者永磁预载轴承。
3.一种如权利要求 1所述直线电机单自由度隔振装置的控制方法, 其特征在于该方法包 括如下步骤:
1) 在伺服周期开始, 设定平衡块位移为零, 然后采用光栅计数卡采集第二光栅尺 (5b) 的信号, 得到平衡块相对于基座的位移信号, 并将该位移信号输入工控机作为位置反馈信号, 得到平衡块的位移偏差 eb;
2) 采用第一非线性环节对位移偏差 进行处理, 第一非线性环节表达式为:
其中 为平衡块的位移偏差, 为偏置系数, bp为放大系数, 为上升速率系数; 3)将第一非线性环节的输出信号通过平衡块线性控制器处理后, 得到防漂移电机的控制 指令, 该控制指令由 D/A卡进行数模转换后输入至驱动器, 驱动器成比例地输出电流驱动防 漂移电机; 在下一个伺服周期, 重复 1) 至 3) 步骤, 进而驱动平衡块向设定位置运动。
4. 一种如权利要求 1所述直线电机单自由度隔振装置的控制方法, 其特征在于该方法包 括如下步骤:
1 )在伺服周期开始, 设定直线电机和平衡块合质心位移为零, 然后采用光栅计数卡分别 采集第一光栅尺 (2b ) 信号和第二光栅尺 (5b ) 的信号, 分别得到直线电机动子相对于平衡 块的位移信号和平衡块相对于基座的位移信号, 由两路信号计算得到平衡块与直线电机合质 心位移, 作为反馈信号, 得到合质心的位移偏差 ;
2 ) 采用第二非线性环节对位移偏差 进行处理, 第二非线性环节^ 2表达式为:
Figure imgf000009_0001
其中 α为非线性增益系数, 为合质心的位移偏差, 为设定阈值。
3 )将第二非线性环节的输出信号通过平衡块线性控制器处理后, 得到防漂移电机的控制 指令, 该控制指令由 D/A卡进行数模转换后输入至驱动器, 驱动器成比例地输出电流驱动防 漂移电机; 在下一个伺服周期, 重复 1 ) 至 3 ) 步骤, 进而驱动平衡块向设定位置运动。
5. 如权利要求 3或 4所述的直线电机单自由度隔振装置控制方法, 其特征在于: 平衡块 线性控制器采用 PID控制器、 超前滞后控制器或鲁棒控制器。
PCT/CN2013/074194 2012-04-19 2013-04-15 一种直线电机单自由度隔振装置及其运动控制方法 WO2013155947A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/395,471 US9310797B2 (en) 2012-04-19 2013-04-15 Single degree of freedom vibration isolating device of linear motor and motion control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210116967.7A CN102647143B (zh) 2012-04-19 2012-04-19 一种直线电机单自由度隔振装置及其运动控制方法
CN201210116967.7 2012-04-19

Publications (1)

Publication Number Publication Date
WO2013155947A1 true WO2013155947A1 (zh) 2013-10-24

Family

ID=46659773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074194 WO2013155947A1 (zh) 2012-04-19 2013-04-15 一种直线电机单自由度隔振装置及其运动控制方法

Country Status (3)

Country Link
US (1) US9310797B2 (zh)
CN (1) CN102647143B (zh)
WO (1) WO2013155947A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220208585A1 (en) * 2020-12-29 2022-06-30 Magtronics Technology Inc. X-Y Stage
CN115562017A (zh) * 2022-10-07 2023-01-03 中国计量科学研究院 一种传感器低频振动校准系统的迭代学习控制方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647143B (zh) 2012-04-19 2014-11-26 清华大学 一种直线电机单自由度隔振装置及其运动控制方法
CN103323271B (zh) * 2013-05-14 2016-03-02 北京航空航天大学 一种新型的直线电动加载系统
CN105676597B (zh) * 2016-04-14 2017-11-14 清华大学 一种掩模台平衡块合质心防飘移运动控制方法
CN107222144B (zh) * 2017-06-26 2023-06-20 华南理工大学 一种双直线电机驱动同步跟踪控制装置与方法
CN109904991B (zh) * 2019-03-07 2024-08-09 国奥科技(深圳)有限公司 直线旋转电机及其位移和旋转角度测量方法
CN109968052B (zh) * 2019-04-01 2021-12-14 哈尔滨工业大学 一种无线缆直线电机进给系统
CN114229657B (zh) * 2021-12-29 2022-08-02 中国科学院宁波材料技术与工程研究所 直线电机模组及电梯门机
CN218829567U (zh) * 2022-11-29 2023-04-07 瑞声科技(南京)有限公司 多动子直驱传输系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012538A (ja) * 1996-06-18 1998-01-16 Canon Inc 走査ステージ装置およびこれを用いた露光装置
US6359679B1 (en) * 1999-01-11 2002-03-19 Canon Kabushiki Kaisha Positioning device, exposure device, and device manufacturing method
CN1595299A (zh) * 2004-06-25 2005-03-16 清华大学 带有平衡块消振装置的超精密硅片定位系统
CN101290477A (zh) * 2008-05-20 2008-10-22 上海微电子装备有限公司 平衡减震台
CN102647143A (zh) * 2012-04-19 2012-08-22 清华大学 一种直线电机单自由度隔振装置及其运动控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6788385B2 (en) * 2001-06-21 2004-09-07 Nikon Corporation Stage device, exposure apparatus and method
CN101571675B (zh) * 2009-06-09 2011-02-02 上海微电子装备有限公司 光刻机工件台平衡定位系统
CN102185558B (zh) * 2011-05-23 2013-03-20 桂林电子科技大学 直线电机滑模控制中系统抖振消除控制方法与装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012538A (ja) * 1996-06-18 1998-01-16 Canon Inc 走査ステージ装置およびこれを用いた露光装置
US6359679B1 (en) * 1999-01-11 2002-03-19 Canon Kabushiki Kaisha Positioning device, exposure device, and device manufacturing method
CN1595299A (zh) * 2004-06-25 2005-03-16 清华大学 带有平衡块消振装置的超精密硅片定位系统
CN101290477A (zh) * 2008-05-20 2008-10-22 上海微电子装备有限公司 平衡减震台
CN102647143A (zh) * 2012-04-19 2012-08-22 清华大学 一种直线电机单自由度隔振装置及其运动控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220208585A1 (en) * 2020-12-29 2022-06-30 Magtronics Technology Inc. X-Y Stage
CN115562017A (zh) * 2022-10-07 2023-01-03 中国计量科学研究院 一种传感器低频振动校准系统的迭代学习控制方法

Also Published As

Publication number Publication date
US9310797B2 (en) 2016-04-12
CN102647143A (zh) 2012-08-22
US20150077032A1 (en) 2015-03-19
CN102647143B (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
WO2013155947A1 (zh) 一种直线电机单自由度隔振装置及其运动控制方法
CN104440344A (zh) 直线电机共定子多驱动宏微一体化高速精密运动二维平台
CN103170845A (zh) 一种同轴宏微复合直线运动平台装置及其精度补偿方法
CN100509307C (zh) 六维力传感器装配机械手姿态及力的控制方法
CN203092144U (zh) 一种同轴宏微复合直线运动平台装置
CN102629122B (zh) 一种大行程高速双重驱动纳米定位系统
WO2019007202A1 (zh) 线性传输系统及其控制装置和多动子协同控制系统
CN104440343A (zh) 直线电机共定子双驱动宏微一体化高速精密运动一维平台
CN104440345A (zh) 异构电机共定子多驱动宏微一体化高速精密运动二维平台
CN104748840A (zh) 柔性关节柔性臂杆振动特性分析与控制的方法及实验装置
CN204262872U (zh) 直线电机共定子双驱动宏微一体化高速精密运动一维平台
CN103163823A (zh) 一种数控机床用多磁悬浮系统同步稳定悬浮的控制方法
CN101290477B (zh) 平衡减震台
CN202634339U (zh) 双电机并联驱动装置
CN204221489U (zh) 直线电机共定子多驱动宏微一体化高速精密运动二维平台
CN103397174B (zh) 模态宽频振动消除应力设备及方法
CN207036383U (zh) 基于激光位移传感器的柔性臂振动测量及控制装置
CN109129427A (zh) 一种双五杆机构驱动的平面并联机构装置与控制方法
CN203382805U (zh) 模态宽频振动消除应力设备
CN105334610A (zh) 永磁同步直线电机驱动的自动控制显微镜载物平台
CN102723303A (zh) Xy两坐标气浮定位平台
CN211333063U (zh) 基于刚性并联机构和柔顺并联机构的新型宏微结合平台
CN108279696B (zh) 一种平面运动倒立摆及其控制系统和控制方法
CN208713963U (zh) 一种双柔性机器人同步运动控制装置
JP2016045753A (ja) 加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13777684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14395471

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13777684

Country of ref document: EP

Kind code of ref document: A1