WO2013155725A1 - 一种锂电割草机 - Google Patents

一种锂电割草机 Download PDF

Info

Publication number
WO2013155725A1
WO2013155725A1 PCT/CN2012/074565 CN2012074565W WO2013155725A1 WO 2013155725 A1 WO2013155725 A1 WO 2013155725A1 CN 2012074565 W CN2012074565 W CN 2012074565W WO 2013155725 A1 WO2013155725 A1 WO 2013155725A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
main control
resistor
lithium battery
voltage
Prior art date
Application number
PCT/CN2012/074565
Other languages
English (en)
French (fr)
Inventor
陈坚跃
何小太
张小荣
李玉红
刘小菲
Original Assignee
常州合力电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州合力电器有限公司 filed Critical 常州合力电器有限公司
Priority to DE112012001559.2T priority Critical patent/DE112012001559T5/de
Publication of WO2013155725A1 publication Critical patent/WO2013155725A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/18Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual dc motor

Definitions

  • the invention relates to a garden tool, in particular to a lithium electric lawn mower.
  • lithium battery tools Due to the limitation of battery capacity, the use time is limited; and if the battery capacity is increased, the volume and weight of the machine are inevitably increased, which affects the portability and greatly increases the cost.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a lithium electric lawn mower powered by a lithium battery.
  • a lithium electric lawn mower comprising a motor for driving a cutting blade, the motor is connected to the control system, and the control system is connected to the power source;
  • the motor is a DC motor, the power source is a lithium battery pack, and the DC motor passes the control system Connected to a lithium battery pack;
  • the control system includes: a main control chip: for receiving and processing various data, and transmitting the information to the relevant circuit; a single battery voltage measuring circuit: for measuring a single section in the lithium battery pack The battery voltage, and the voltage value of each single cell is continuously transmitted to the main control chip, and the main control chip judges whether the voltage of each single cell is overcharged, overdischarged, or the voltage difference between the single cells is too large; the charging equalization circuit : used to adjust the voltage balance of each single battery in the lithium battery pack.
  • the charging equalization circuit can be based on the main Control chip feedback results, the highest voltage single cell is discharged until the highest voltage single cell and the lowest voltage single cell The voltage difference is less than 50mV, so that the voltage of each battery of the lithium battery pack is balanced; the linear step-down circuit: stabilizes the voltage of the whole circuit; the power supply is supplied from the latch circuit: used to control the linear step-down circuit, thereby controlling the entire control system
  • the power supply and the power supply are self-latching. When the main control chip is not working, the power supply is self-latching, and the power is cut off from the main control chip.
  • the power self-latching circuit is turned on for the whole control system.
  • Circuit power supply temperature measurement circuit: used to measure the temperature of the lithium battery pack, and continuously feedback the temperature information to the main control chip, the main control chip determines whether the lithium battery pack is within the normal operating temperature range; LED capacity display circuit: for display Current lithium battery pack remaining capacity; PWM adjustment circuit: used to control No. 1 discharge switch tube Q1 and No. 2 discharge switch tube Q2, and control brake switch tube Q3; discharge current detection circuit: used to measure the discharge current of the lithium battery pack, And outputting the current value to the main control chip; charging control switch: for controlling the opening of the charging circuit Shutdown; discharge trigger switch: used to detect whether it is necessary to open the No.
  • the input terminals of the single-cell battery voltage measurement circuit are respectively connected to the positive and negative poles of each battery of the lithium battery pack, The output end of the battery voltage measuring circuit is connected to the input end of the main control chip; the input end of the charging equalizing circuit is respectively connected between the positive and negative terminals of each single battery of the lithium battery pack; the power supply is supplied from the input end of the latch circuit and The main control chip is connected, and the output end of the power supply from the latch circuit is connected to the input end of the linear buck circuit, and the output end of the linear buck circuit is respectively connected to the positive electrode of the lithium battery pack and the main control chip; the input end of the temperature measuring circuit is The positive and negative poles of the lithium battery pack are connected, and the output end of the temperature measuring circuit is connected with the input end of the main control chip; the main control chip is also connected with the LED capacity display circuit, the PWM adjusting circuit, the discharging current detecting circuit and the discharge triggering switch, respectively.
  • the output end of the adjustment circuit is connected in parallel with a discharge switch Q1, a discharge switch Q2 and a brake switch Q3.
  • the other end of the tube Q1, the second discharge switch tube Q2 and the brake switch tube Q3 is connected to the discharge negative pole;
  • the input end of the discharge current detecting circuit is connected in parallel at both ends of the resistor R1 and the resistor R2, and serves as the positive and negative poles of the current sampling respectively;
  • the other end of the discharge trigger switch is connected to the start switch; the main control chip and the positive electrode of the lithium battery pack are connected to the charge control switch; the charge positive electrode and the discharge negative electrode are respectively connected to the charger circuit.
  • the single-cell voltage measuring circuit comprises a field effect transistor Q4 functioning as an electronic switch, and an operational amplifier U1A for voltage adjustment and differential amplification; one end of the resistor R3 is connected to the anode of the single-cell battery, and the other end is connected to the field.
  • the 6th leg of the effect transistor Q4 is connected; the 3rd leg of the field effect transistor Q4 is connected to the resistor R4, the other end of the resistor R4 is connected to the negative pole of the single cell; the 1st leg of the field effect transistor Q4 and the resistor R5, 3 of the operational amplifier U1A
  • the other end of the resistor R5 is connected to the negative pole of the power supply; the 4th leg of the FET Q4 is connected to the resistor R6 and the 2 pin of the operational amplifier U1A, and the other end of the resistor R6 is connected to the 1 pin of the operational amplifier U1A;
  • the pin 1 of the U1A of the appliance is connected to the resistor R7.
  • the resistor R8 is connected, the other end of the resistor R7 is connected to the capacitor C1, the other end of the capacitor C1 is connected to the other end of the resistor R8 and is connected to the negative pole of the power source, and the AN1 terminal outputs the voltage of the single cell.
  • the PWM adjustment circuit includes an adjustment chip U7, and the 2 and 3 pins of the adjustment chip U7 are connected to the output end of the main control chip through a resistor R14.
  • the 1 pin of the adjustment chip U7 is respectively connected to the anode of the diode D5 and the capacitor C3, the other end of the capacitor C3 is grounded, the cathode of the diode D5 is connected to the 8th pin of the adjustment chip U7 and the capacitor C4, and the other end of the capacitor C4 is connected to the resistor R15 and the output.
  • Terminal Moto- the other end of the resistor R15 is connected to the 6-pin of the adjustment chip U7, the 7-pin of the adjustment chip U7 is connected to the anode of the diode D6 and the base of the transistor Q6, and the cathode of the diode D6 is respectively connected to the emitter of the transistor Q6, the resistor R16, and the brake
  • the G pole of the switch tube Q3 is connected, and the collector of the transistor Q6 is respectively connected with the resistor R16, the S pole of the brake switch tube Q3, and the output terminal Moto-, for controlling the emergency stop of the motor for braking;
  • the 5 pin of the adjustment chip U7 is connected to the diode
  • the anode of D7 is connected to the base of transistor Q5, and the cathode of diode D7 is connected to the emitter of transistor Q5, the resistor R17, the G pole of discharge switch Q1, the G pole of discharge switch Q2, and the set of transistor Q5.
  • the other end of the electrode, the resistor R17, the S pole of the No. 1 discharge switch tube Q1, and the S pole of the No. 2 discharge switch tube Q2 are connected to the negative pole of the power supply, and are used for controlling the PWM adjustment of the No. 1 discharge switch tube Q1 and the No. 2 discharge switch tube Q2.
  • the D pole of the first discharge switch Q1, the D pole of the second discharge switch Q2 are connected to the output terminal Moto-
  • the D pole of the brake switch Q3 is connected to the output terminal Moto+
  • the output terminals Moto+ and Moto- are respectively connected to the motor.
  • the negative pole realizes the function of the PWM adjustment circuit.
  • the utility model further comprises a charging temperature probe, wherein the charging temperature probe has one end connected to the main control chip and the other end connected to the charger circuit.
  • the normal working range of the lithium battery pack when charging is 0 to 45 ° C; the normal working range when discharging is -10 to 65 ° C.
  • the present invention applies a lithium battery and a DC motor to a lawn mower, so that the lithium battery can adapt to the special condition of the lawn mower, that is, the special case of the interval use, which meets the requirements of energy saving and environmental protection in the market today.
  • the invention adopts a soft start circuit, and when the motor is just started, the current is gradually increased from small to large, thereby avoiding damage to the motor and the control board and prolonging the service life; under load, the current is increased to The largest, both to meet the requirements of use, but also to save energy, while greatly reducing noise.
  • the present invention adopts a power self-latch circuit, and when the main control chip is not working, the power supply to the control board is cut off, so that the power consumption of the control board is extremely low, and the current in the non-operating state is only 2 uA.
  • the discharge trigger switch of the present invention first sends a trigger signal to the main control chip, and the main control chip controls the PWM adjustment circuit to start the motor, and only needs a small current to trigger the main control chip, thereby triggering the mower to work, avoiding large
  • the current traces pass through longer traces and facilitate the selection of the start switch.
  • FIG. 1 is a circuit block diagram of a control system of the present invention
  • FIG. 2 is a circuit diagram of a single cell voltage measurement circuit of the present invention
  • FIG. 5 is a schematic diagram of the charger circuit of the present invention
  • the lithium electric lawn mower of the present invention comprises a DC motor for driving a cutting blade, the DC motor is connected to the control system, and the control system is connected to the power source; the power source is a lithium battery pack, and the DC motor is connected to the lithium battery pack through a control system.
  • the lithium battery pack power supply drives the DC motor through the control system, which in turn drives the cutting blade to cut grass.
  • the lithium battery pack is formed by connecting lithium batteries in series.
  • the control system includes a main control chip 5 for receiving and processing various data (for example, can be produced by PIC16F887 chip, manufactured by Microchip, USA).
  • the control system of the present invention further comprises: a single cell voltage measuring circuit 1, a charging equalization circuit 2, and a linear The step-down circuit 3, the power supply self-latching circuit 4, the temperature measuring circuit 6, the LED capacity display circuit 7, the PWM adjusting circuit 8, the discharge current detecting circuit 9, the charging control switch 10, the discharge trigger switch 11, and the charging temperature probe 12.
  • the input terminals of the single-cell voltage measuring circuit 1 are respectively connected to the positive and negative poles of each battery of the lithium battery, and the output of the single-cell voltage measuring circuit 1 is connected to the input of the main control chip 5.
  • the charge equalization circuit 2 is connected between the positive and negative terminals of the single battery of the lithium battery;
  • the main control chip 5 is connected to the input end of the power supply from the latch circuit 4, and the power supply is supplied from the output terminal of the latch circuit 4 and linearly descends.
  • the input ends of the voltage circuit 3 are connected, and the output ends of the linear step-down circuit 3 are respectively connected to the positive electrode of the lithium battery pack and the main control chip 5.
  • the input end of the temperature measuring circuit 6 is connected to the positive and negative poles of the lithium battery pack, the output end of the temperature measuring circuit 6 is connected to the input end of the main control chip 5; the output end of the main control chip 5 is also connected with the LED capacity display circuit 7; The main control chip 5 is also connected to the PWM adjustment circuit 8, the discharge current detection circuit 9, and the discharge trigger switch 11, respectively.
  • the output end of the PWM adjustment circuit 8 is connected in parallel with a discharge switch Q1, a discharge switch Q2 and a brake switch tube.
  • the other end of the discharge switch Q1, the second discharge switch Q2 and the brake switch Q3 are connected to the discharge negative pole;
  • the input ends of the discharge current detecting circuit 9 are respectively connected in parallel with the two ends of the resistor R1 and the resistor R2, respectively The positive and negative poles of the sampling current;
  • the other end of the discharge triggering switch 11 is connected to the starting switch;
  • the main control chip 5 and the positive electrode of the lithium battery pack are connected to the charging control switch 10;
  • one end of the charging temperature probe 12 is connected to the main control chip 5, and One end is connected to the charger circuit;
  • the charging positive electrode and the discharging negative electrode are respectively connected to the charger circuit.
  • the input terminals of the single-cell battery voltage measuring circuit 1 are respectively connected to the positive and negative terminals of each of the lithium battery packs, and the output terminal of the single-cell battery voltage measuring circuit 1 is connected to the input terminal of the main control chip 5.
  • the single-cell voltage measuring circuit 1 includes a field effect transistor Q4 functioning as an electronic switch, and an operational amplifier device U1A for voltage adjustment and differential amplification; one end of the resistor R3 is connected to the anode of the single cell. The other end is connected to the 6 pin of the FET Q4.
  • the 2nd leg of the FET Q4 is connected to the 5th pin
  • the 3rd leg of the FET Q4 is connected to the resistor R4, and the other end of the resistor R4 is connected to the negative pole of the single cell.
  • the 1 pin of the FET Q4 is connected to the resistor R5 and the 3 pin of the operational amplifier U1A, and the other end of the resistor R5 is connected to the negative pole of the power supply.
  • the 4th leg of the FET Q4 is connected to the resistor R6 and the 2 pin of the operational amplifier U1A, and the other end of the resistor R6 is connected to the 1 pin of the operational amplifier U1A.
  • the 1 pin of the operational amplifier U1A is connected to the resistor R7 and the resistor R8, the other end of the resistor R7 is connected to the capacitor C1, the other end of the capacitor C1 is connected to the other end of the resistor R8 and connected to the negative pole of the power supply, and the output voltage of the AN1 terminal The voltage of the battery.
  • the single-cell voltage measuring circuit 1 of the present invention employs a differential amplifying circuit, which greatly improves the measurement accuracy.
  • the measurement accuracy of the existing single-cell voltage measuring circuit is generally plus or minus 50 millivolts, and the measurement accuracy of the present invention is plus or minus 25 millivolts.
  • the single cell voltage measuring circuit 2 of the present invention can disconnect the FET Q4 when not measuring, and reduce the measured power consumption.
  • the single-cell voltage measuring circuit 1 sends the detected voltage information of the single-cell battery to the main control chip 5, and the main control chip 5 determines whether there is overcharging or over-discharging according to the measured voltage value.
  • Phenomenon When the single-cell battery charging voltage exceeds 4.2V, it is over-charged. When the single-cell battery discharge voltage is lower than 2.7V, it will be over-discharged. If the voltage value indicates an overcharging phenomenon, the main control chip 5 drives the charging control switch 10 to be turned off, thereby turning off the charging, so that the charging circuit is zero, and the overcharge protection purpose is achieved. If an overdischarge phenomenon occurs, the main control chip 5 notifies the PWM adjustment circuit 8 to turn off the motor and stop discharging.
  • the control system of the present invention further includes a charge equalization circuit 2 for adjusting the voltage balance of the individual battery cells of the lithium battery pack.
  • the main control chip 5 measures the individual battery cells according to the single cell voltage measuring circuit 1. Voltage, when it is judged that the voltage difference between each single cell is greater than or equal to 50 mV, discharge is required; the charge equalization circuit 2 discharges the battery with the highest voltage according to the feedback of the main control chip 5 until the highest voltage single cell and voltage The voltage difference between the lowest single cells is less than 50mV, which balances the voltage of each battery in the battery.
  • the battery voltage (capacity) is unbalanced due to environmental factors and the consistency of the battery pack, which leads to a decrease in the capacity of the entire battery pack, and the battery pack is detected by the single-cell battery voltage measuring circuit 1.
  • the battery with the highest voltage is discharged by the charging equalization circuit 2, and when the battery is discharged to the rated equalization voltage, the discharge is stopped, and each battery in the battery pack is balanced.
  • the linear buck circuit 3 in the control system is used for voltage regulation, and the power supply from the latch circuit 4 is used to control the power supply switch of the linear buck circuit 3 in order to control the power supply of the entire control circuit.
  • the power supply is supplied from the input terminal of the latch circuit 4 to the main control chip 5, the output terminal of the source supply latch circuit 4 is connected to the input terminal of the linear buck circuit 3, and the output terminals of the linear buck circuit 3 are respectively connected to the lithium battery.
  • the positive electrode of the group is connected to the main control chip 5.
  • the power supply from the latch circuit 4 turns off the power supply from the latch circuit 4 when the main control chip 5 is inactive, turns off the power switch circuit, and thereby cuts off the power supply of the entire control system; when the main control chip 5 operates,
  • the power supply self-latching circuit 4 is turned on to supply power to the entire circuit.
  • the working power of the whole circuit is provided by the power supply from the latch circuit 4 and the linear step-down circuit 3.
  • the power supply is supplied from the latch circuit 4 to output the control linear step-down circuit 3, so that the circuit is powered.
  • the circuit starts normal operation, performs charge/discharge protection and other protection; when the discharge current measurement circuit 9 and the charge temperature probe 12 are not detected for charging or discharging for a period of time, the output of the main control chip 5 is connected behind the main control chip 5.
  • the power supply is supplied from the latch circuit 4, so that the linear buck circuit 3 is not energized, and the circuit is turned off, so that the entire circuit operating voltage is turned off, and the ultra-low power standby mode is entered, and the current is only 2 uA.
  • the temperature measuring circuit 6 is used to measure whether the temperature of the lithium battery pack is within the normal working range, and feed back the new information to the main control chip 5.
  • the main control chip 5 measures the battery temperature through the battery temperature detecting circuit 6, and measures whether the temperature of the lithium battery pack is in the normal working range, and the normal working range when the lithium battery pack is charged is 0 to 45 ° C; the normal working range during discharging It is -10 to 65 °C. In general, the upper and lower parts are further released at 5 °C.
  • the charging control switch 10 when charging, if the temperature of the lithium battery pack is greater than 50 ° C or less than -5 ° C, then the charging control switch 10 is turned off, no longer charging; if the temperature of the lithium battery pack is greater than 70 ° C or less than -20 ° C when discharging, then The main control chip 5 turns off the discharge circuit by driving the PWM adjustment circuit 8, and no longer discharges.
  • the invention also provides a charging temperature probe 12 for detecting the temperature of the lithium battery pack when the charger is charged, the charger detecting the output signal of the sensor, and calculating the temperature of the battery pack.
  • the charging temperature probe 12 is connected to the main control chip 5 at one end and to the charger chip 17 of the charger circuit at the other end.
  • the LED capacity display circuit 7 is used to display the current remaining capacity of the battery pack, that is, the current remaining voltage of the battery pack.
  • the LED capacity display circuit 7 displays the single-cell capacity of the battery pack having the lowest capacity.
  • Each lithium battery pack is formed by connecting a plurality of single-cell batteries in series, and the LED capacity display circuit 7 is displayed according to the voltage of the single-cell battery having the lowest voltage among the series-connected battery packs.
  • the LED capacity display circuit 7 has four display lights, three green lights D1, D2 after one button S1 is pressed. D3 displays the current capacity of the battery pack and keeps it on for about 5 seconds. At the same time, the capacity of the single-cell battery with the lowest voltage can be judged according to the number of green lights.
  • three green lights are all on, indicating that the remaining battery capacity of the lowest voltage is More than 80%, two green lights indicate that the remaining battery capacity of the lowest voltage is 60%, a green light indicates that the remaining battery capacity of the lowest voltage is 30%; when the battery voltage is too low or fault occurs, press the button The red D4 light is on once.
  • the control system further includes a charge control switch 10 for controlling the opening and closing of the charging circuit; and a discharge trigger switch 11 for detecting whether the first discharge switch tube Q1 and the second discharge switch tube Q2 need to be opened.
  • the control system of the present invention further includes a PWM adjustment circuit 8 for controlling the No. 1 discharge switch tube Q1 and the No. 2 discharge switch tube Q2, and controlling the brake switch tube Q3, that is, a soft start circuit, when the discharge is finished or due to discharge overcurrent protection
  • the PWM adjustment circuit 8 turns off the No. 1 discharge switch tube Q1 and the No. 2 discharge switch tube Q2, and simultaneously drives the brake switch tube Q3 to brake the motor to an emergency stop.
  • the traditional starting method is to directly add voltage to both ends of the motor, and the motor starts immediately with maximum power.
  • the starting current will be more than three times the rated current of the motor or higher; since it is full power starting At the time of starting, the machine will vibrate violently and may be dangerous. Therefore, full power startup for the lithium battery pool power supply system, excessive starting current will have a great impact on the life and safety of the lithium battery.
  • the soft start circuit of the present invention that is, the PWM adjustment circuit 8 can solve the above problems.
  • the main control chip 5 receives the start signal, it will first drive the first discharge switch Q1 and the second discharge switch Q2 with a small power output.
  • the motor runs at a lower speed and lower power, and the PWM width is uninterrupted and stepless.
  • the adjustment makes the motor speed rise to the maximum value.
  • the circuit When the discharge trigger switch 11 sends a start signal to the main control chip 5, the circuit considers that the machine should start normally. In order to avoid the large current impact on the lithium battery pack and the sudden jump of the device when the motor is started, a soft start circuit is adopted.
  • the soft start circuit adopts a PWM (Pulse Width Modulation) mode.
  • the main control chip 5 outputs with a minimum duty ratio of 1%, and the 1% duty ratio is transmitted to the PWM adjustment circuit 8 to amplify the drive signal.
  • the processing and re-output drive No. 1 discharge switch tube Q1 and the second discharge switch tube Q2 are turned on at a 1% duty ratio.
  • the PWM duty ratio outputted by the main control chip 5 is gradually increased in width, so that the motor speed is gradually increased.
  • the boost to 85% duty cycle the PWM duty cycle adjustment is stopped and the startup is completed; at light load, the output is stabilized with an 85% duty cycle.
  • the discharge current detecting circuit 9 detects the current discharge current value, and corresponds to different PWM duty ratios according to different current magnitudes.
  • the duty ratio is output at 85%, the motor speed is reduced, and energy saving is simultaneously reduced.
  • the PWM duty cycle is adjusted accordingly.
  • the duty ratio is 100%, and the motor speed reaches the maximum.
  • the PWM adjustment circuit 8 includes an adjustment chip U7 for performing signal amplification.
  • the adjustment chip U7 may be an IR2103 type chip
  • the PWM adjustment circuit 8 includes an adjustment chip U7
  • the 2 and 3 pins of the adjustment chip U7 are connected to the output end of the main control chip 5 through a resistor R14.
  • the function of the PWM adjustment circuit 8 is mainly performed by the adjustment chip U7. Adjust the chip 1 of the chip U7 to the capacitor C3 and the anode of the diode D5. The other end of the capacitor C3 is grounded.
  • the cathode of the diode D5 is connected to the 8 pin of the adjustment chip U7 and the capacitor C4.
  • the other end of the capacitor C4 is connected to the resistor R15 and the output terminal Moto-.
  • the other end of the resistor R15 is connected to the 6-pin of the U7; the 7-pin of the adjustment chip U7 is connected to the anode of the diode D6, the base of the transistor Q6, and the cathode of the diode D6 is respectively connected to the emitter of the transistor Q6, the resistor R16, and the G of the brake switch Q3.
  • the pole of the transistor Q6 is connected with the resistor R16, the S pole of the brake switch tube Q3, and the output terminal Moto- for controlling the motor to stop and brake;
  • the 5 pin of the adjustment chip U7 is connected to the anode of the diode D7, and the transistor Q5
  • the base of the diode D7 is connected to the emitter of the transistor Q5, the resistor R17, the G pole of the first discharge switch Q1, the G pole of the second discharge switch Q2, the collector of the transistor Q5, and the resistor R17.
  • One end, the S pole of the first discharge switch Q1, the S pole of the second discharge switch Q2 is connected to the negative pole of the power supply, and is used to control the PWM adjustment function of the No. 1 discharge switch Q1 and the No.
  • the PWM adjustment circuit 8 fully utilizes the driving function of the adjustment chip U7, and the turn-off time of the brake switch tube Q3 and the first discharge switch tube Q1 and the second discharge switch tube Q2 is increased by 1 microsecond through the transistor circuit, and the adjustment chip U7 is enhanced.
  • the driving speed of the dead zone is such that the brake switch tube Q3 and the first discharge switch tube Q1 and the second discharge switch tube Q2 do not produce a simultaneous conduction phenomenon.
  • the present invention also includes a discharge current detecting circuit 9 for measuring a discharge current of a lithium battery pack, an input end of the main control chip 5 is connected to an output end of the discharge current detecting circuit 9, and a discharge current detecting circuit 9 measures the current electric lithium battery group
  • the discharge current is output to the main control chip 5, the main control chip 5 determines that the current reaches the discharge overcurrent protection value, and the time reaches the protection time, the main control chip 5 outputs a signal to the PWM adjustment circuit 8, and turns off the first discharge switch tube Q1 and two.
  • the discharge current detecting circuit 9 includes a detecting circuit main control chip U2B, the detecting circuit main control chip U2B is an operational amplifier, and the seventh output end of the detecting circuit main control chip U2B is connected to the main control chip 5 through a resistor R9. I-in input for the input of the main control chip 5 to the discharge current.
  • a capacitor C2 is connected between the main control chip 5 and the resistor R9, and the other end of the capacitor C2 is grounded.
  • the fifth input end of the detection circuit main control chip U5B is connected to the resistor R11, the resistor R11 is connected to the positive pole of the resistor R1 and the resistor R2 as the positive pole of the current sampling; one end of the resistor R12 is connected to the fifth pin of the detection circuit main control chip U5B.
  • One end of the resistor R13 is connected to the sixth pin of the detecting circuit main control chip U5B, and the other end of the resistor R12 and the resistor R13 is connected to the resistor R1 and the resistor R2, and serves as a negative pole for current sampling.
  • One end of the resistor R10 is connected to the 6-pin of the detection circuit main control chip U5B, and the other end is connected to the 7-pin of the detection circuit main control chip U5B to perform discharge current detection.
  • the invention also includes a charger circuit for charging a lithium battery pack.
  • the charger circuit is composed of a switching power supply circuit and a charger chip 17 .
  • the switching power supply converts the input AC power into a DC power output to charge the lithium battery pack.
  • the PWM control has the advantages of small size and high efficiency.
  • the charger circuit includes:
  • Electromagnetic anti-interference circuit 13 used to suppress electromagnetic interference generated by its own circuit and suppress external electromagnetic interference signals
  • Inverter transformer 14 The input high voltage is changed to the set charging voltage, that is, the input 220V The AC voltage becomes an output 42VAC voltage, electrically isolated;
  • the rectifying and filtering circuit 15 changing the alternating voltage outputted by the inverter transformer 14 into a DC charging voltage of the charger;
  • Control switch 16 Use the relay as the charging control switch. When charging is completed, turn off the charger and battery circuit to protect the battery; when the charger is faulty or the battery is faulty, turn off the charger and battery circuit to protect the battery;
  • the charger chip 17 detects parameters such as a voltage charged during charging, a temperature of the battery, a current of charging, and the like; a control switch 16; a state indication for charging the battery; and a charging time control.
  • Status display circuit 18 indicating the state of the rechargeable battery, four states of the rechargeable battery: battery not connected, battery charging completed, battery temperature state, battery fault state;
  • the feedback circuit 19 detects the voltage and current signals of the rectifying and filtering circuit 15, and feeds back the detected signal to the PWM control circuit 20 to control the voltage and current of the rectifying and filtering circuit 15 within the specification range;
  • PWM control circuit 20 controlling the pulse width of the field effect transistor 21;
  • Field effect transistor 21 Controls the turn-on and turn-off of the inverter transformer.
  • the charger circuit includes an input port M1 connected to the alternating current, and the input port M1 sequentially connects the electromagnetic anti-interference circuit 13, the inverter transformer 14, the control switch 16, and the output terminal M2; the control switch 16 and the charging
  • the chip 17 is connected, the charger chip 17 is connected to the state display circuit 18 and the feedback circuit 19, the feedback circuit 19 is connected to the field effect transistor 21 through the PWM control circuit 20, and the inverter transformer 14 is also connected to the field effect transistor 21;
  • the circuit is also connected to the feedback circuit 19.
  • the charger circuit of the present invention pre-charges the battery when the voltage of any single-cell battery is lower than 2.5V, that is, the small current charging, thereby preventing the lithium battery pack from being damaged and prolonging the service life of the lithium battery pack.
  • the charging current during pre-charging is 200mA, and the pre-charging time is 30 minutes. After 30 minutes, the main control chip 5 detects whether the voltage of all single-cell batteries returns to normal, that is, restores to 2.5V or more, when the voltage of all single-cell batteries is restored. When the voltage is higher than 2.5V, the lithium battery pack is normally charged.
  • the charging current for normal charging is 4A. If the voltage of the single battery is lower than 2.5V after 30 minutes, the charger should stop charging and indicate the battery is damaged. .
  • the charger adopts the most advanced PWM control chip and charger chip to realize the conversion of the AC voltage into the DC voltage of the battery charging, and through the feedback circuit 19, the voltage and current of the battery charging are controlled. Then, the programmable charger chip and the communication of the innovative charger chip and the battery management chip are used to realize the intelligent control of the charging process.
  • the advantages of communication between the charger chip and the battery management chip are: prolonging the service life of the rechargeable battery; communication between the charger chip and the battery management chip to improve the safety of charging; and the charging can be completed quickly within 1 hour.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种锂电割草机,包括驱动切割刀片的电机,电机与控制系统相连,控制系统与电源相连。其中电机为直流电机,电源为锂电池组,直流电机通过控制系统与锂电池组相连。本发明将锂电池和直流电机应用在割草机上,使锂电池能够适应割草机的特殊情况,即间隔性使用的特殊情况,符合当今市场节能环保的要求;本发明采用软启动电路,在电动机刚启动时,使电流由小到大,逐步增大,避免对电机和控制板造成伤害,延长了使用寿命;在负载情况下,电流增大到最大,既满足使用要求,又节能,同时大大降低了噪音;采用电源自锁存电路(4),在主控制芯片(5)不工作时,切断对控制板供电,使控制板能耗极低,非工作状态的电流只有2uA。

Description

一种锂电割草机 技术领域
本发明涉及一种园林工具,具体说是一种锂电割草机。
背景技术
国外常用的割草机一般是汽油式割草机和电动式割草机。汽油式割草机会产生废气,在提倡节能环保的欧洲,人们更倾向于是用清洁节能的电动式割草机。现有的电动式割草机一般使用交流电,需要使用电线与家用电源接通,由于电线的使用,限制了割草机的工作范围,以及使用的灵活性。还有使用铅酸电池供电的,但由于铅酸电池的生产制造会污染环境,因此也在逐步淘汰。
随着电动工具、园林工具行业的不断发展,在国外,家庭用电动及园林工具无绳化、便携化渐成趋势,锂电类工具也越来越受到国外消费者的欢迎,锂电池是一种轻便的新型供电方式,已在电动车等多个领域使用。然而锂电工具在使用上存在如下不足:受到电池容量的制约,使用时间受到限制;而若增加电池容量,势必增加机器的体积与重量,影响便携性的同时也大大增加了成本。
在将锂电电源应用到庭院割草机上时,同样碰到了上述问题。消费者选择家用庭院割草机时,除了考虑机器的价格、品质,实用性与易用性也是必须考虑的。目前,国外锂电割草机普遍使用36V,2.6Ah的锂电电池作为电源,满充后一次大约可持续割草坪约 200m2,虽能满足大部分家庭使用,但还有部分家庭需要割更大面积的草坪,在电量消耗完毕后,只有中途停止,重新将电充满才能再次使用,直接影响了消费者的使用感受。要解决这个问题,只有两个方案,一、降低电池能耗,提高电池使用效率,从而提高一次充电后的使用时间;二、增加电池容量以延长电池使用时间,但这个方案如开头所说,势必增加机器的体积与重量,影响易用性,同时也大大增加了成本,注定是没有市场的。
因此,如何在现有的电池容量条件下减少无效能耗,提高割草机的单次使用时间(割草面积),成了必须解决的技术问题。另外,由于园林工具的使用季节性较强,整个冬季都处于搁置状态,而锂电池的特性,在静置状态下同样会产生功耗,导致锂电池电压慢慢降低,直至欠压。长期欠压必然会影响锂电池寿命,甚至导致失效。因此,设法降低锂电池静态功耗,延长锂电池使用寿命也是当务之急。
技术问题
发明目的:本发明的目的在于克服现有技术的不足,提供一种使用锂电池供电的锂电割草机。
技术解决方案
一种锂电割草机,它包括驱动切割刀片的电机,电机与控制系统相连,控制系统与电源相连;:所述的电机为直流电机,所述的电源为锂电池组,直流电机通过控制系统与锂电池组相连;所述的控制系统包括:主控制芯片:用于接收处理各种数据,并将信息发送给相关电路;单节电池电压测量电路:用于测量锂电池组中的单节电池电压,并将各单节电池电压值不断传送给主控制芯片,主控制芯片判断各单节电池电压是否出现过充、过放或单节电池之间压差过大的现象;充电均衡电路:用于调整锂电池组中各单节电池电压平衡,在充电过程中,如果主控制芯片检测到锂电池组中单节电池的电压出现大于等于50mV的压差时,充电均衡电路可以根据主控制芯片反馈的结果,对电压最高的单节电池进行放电,直到电压最高的单节电池与电压最低的单节电池之间的压差小于50mV为止,使锂电池组每个电池的电压达到平衡;线性降压电路:稳定整个电路的电压;电源供应自锁存电路:用于控制线性降压电路,进而控制整个控制系统供电电源,电源供应自锁存电路在主控制芯片不工作时,电源供应自锁存电路关闭,进而切断为主控制芯片供电;当主控制芯片工作时,打开电源自锁存电路,为整个控系统电路供电;温度测量电路:用于测量锂电池组的温度,并将温度信息不断反馈给主控制芯片,主控制芯片判断锂电池组是否在正常工作温度范围内;LED容量显示电路:用于显示当前锂电池组剩余容量;PWM调整电路:用于控制一号放电开关管Q1与二号放电开关管Q2,并且控制刹车开关管Q3;放电电流检测电路:用于测量锂电池组的放电电流,并将该电流值输出给主控制芯片;充电控制开关:用于控制充电回路的打开与关断;放电触发开关:用于检测是否需要打开一号放电开关管Q1与二号放电开关管Q2;单节电池电压测量电路的输入端分别连接在锂电池组各电池的正负极,单节电池电压测量电路的输出端与主控制芯片的输入端相连;充电均衡电路的输入端分别连接在锂电池组各单节电池的正负极之间;电源供应自锁存电路的输入端与主控制芯片相连,电源供应自锁存电路的输出端与线性降压电路的输入端相连,线性降压电路的输出端分别与锂电池组正极、主控制芯片相连;温度测量电路的输入端与锂电池组的正负极相连,温度测量电路的输出端与主控制芯片的输入端相连;主控制芯片还分别与LED容量显示电路、PWM调整电路、放电电流检测电路、放电触发开关相连,PWM调整电路的输出端并联连接有一号放电开关管Q1、二号放电开关管Q2和刹车开关管Q3,一号放电开关管Q1、二号放电开关管Q2和刹车开关管Q3的另一端接放电负极;放电电流检测电路的输入端并联连接在电阻R1、电阻R2的两端,并分别作为电流取样的正负极;放电触发开关另一端接起动开关;主控制芯片、锂电池组正极均与充电控制开关相连;充电正极、放电负极分别与充电器电路相连。
其中,所述的单节电池电压测量电路包括起电子开关作用的场效应管Q4,进行电压调整、差分放大的运算放大电器U1A;电阻R3的一端与单节电池的正极相连,另一端与场效应管Q4的6脚相连;场效应管Q4的3脚与电阻R4相连,电阻R4的另一端连接到单节电池的负极;场效应管Q4的1脚与电阻R5、运算放大电器U1A的3脚相连,电阻R5的另一端连接到电源负极;场效应管Q4的4脚与电阻R6、运算放大电器U1A的2脚相连,电阻R6的另一端连接到运算放大电器U1A的1脚;运算放大电器U1A的1脚又与电阻R7、 电阻R8相连,电阻R7的另一端与电容C1相连,电容C1的另一端与电阻R8的另一端相连并且连接到电源的负极,AN1端输出单节电池的电压。
其中,所述的PWM调整电路包括调整芯片U7,调整芯片U7的2脚、3脚通过电阻R14与主控制芯片的输出端相连, 调整芯片U7的1脚分别接二极管D5的正极、电容C3,电容C3的另一端接地,二极管D5的负极接调整芯片U7的第8脚和电容C4,电容C4的另一端连接到电阻R15与输出端子Moto-,电阻R15另一端接调整芯片U7的6脚,调整芯片U7的7脚连接二极管D6的正极与晶体管Q6的基极,二极管D6的负极分别与晶体管Q6的发射极、电阻R16、刹车开关管Q3的G极相连,晶体管Q6的集电极分别与电阻R16、刹车开关管Q3的S极、输出端子Moto-相连,用于控制电机急停进行刹车;调整芯片U7的5脚连接到二极管D7的正极与晶体管Q5的基极,二极管D7的负极分别与晶体管Q5的发射极、电阻R17、一号放电开关管Q1的G极、二号放电开关管Q2的G极连接,晶体管Q5的集电极、电阻R17的另一端、一号放电开关管Q1的S极、二号放电开关管Q2的S极接电源负极,用于控制一号放电开关管Q1与二号放电开关管Q2的PWM调整功能;一号放电开关管Q1的D极、二号放电开关管Q2的D极与输出端子Moto-相连,刹车开关管Q3的D极接输出端子Moto+;输出端子Moto+、Moto-分别连接到马达的正负极,实现PWM调整电路的功能。
其中,它还包括充电温度探头,所述的充电温度探头一端与主控制芯片相连,另一端与充电器电路相连。
其中,所述的锂电池组充电时的正常工作范围是0~45℃;放电时的正常工作范围是-10~65℃。
有益效果
(1)本发明将锂电池和直流电机应用在割草机上,使锂电池能够适应割草机的特殊情况,即间隔性使用的特殊情况,符合当今市场节能环保的要求。
(2)本发明采用软启动电路,在电动机刚启动时,使电流由小到大,逐步增大,避免对电机和控制板造成伤害,延长了使用寿命;在负载情况下,电流增大到最大,既满足使用要求,又节能,同时大大降低了噪音。
(3)本发明采用电源自锁存电路,在主控制芯片不工作时,切断对控制板供电,使控制板能耗极低,非工作状态的电流只有2uA。
(4)本发明的放电触发开关先发一个触发信号给主控制芯片,由主控制芯片控制PWM调整电路启动电机,只需小电流即可触发主控制芯片,进而触发割草机工作,避免大电流走线通过较长的走线,并且对启动开关的选择带来方便。
附图说明
图1为本发明的控制系统的电路原理框图
图2为本发明的单节电池电压测量电路图
图3为本发明的PWM调整电路
图4为本发明的放电电流检测电路
图5为本发明的充电器电路原理图
本发明的实施方式
下面结合附图对本发明做更进一步的解释。
本发明的锂电割草机包括驱动切割刀片的直流电机,直流电机与控制系统相连,控制系统与电源相连;所述的电源为锂电池组,直流电机通过控制系统与锂电池组相连。锂电池组电源通过控制系统驱动直流电机,进而带动切割刀片割草。锂电池组是由锂电池串并联而成。
所述的控制系统包括接收处理各种数据的主控制芯片5,(例如可用PIC16F887芯片,美国microchip公司生产)本发明的控制系统还包括:单节电池电压测量电路1、充电均衡电路2、线性降压电路3、电源供应自锁存电路4、温度测量电路6、LED容量显示电路7、PWM调整电路8、放电电流检测电路9、充电控制开关10、放电触发开关11和充电温度探头12。
如图1所示,单节电池电压测量电路1的输入端分别连接在锂电池组每一节电池的正负极,单节电池电压测量电路1的输出端与主控制芯片5的输入端相连;充电均衡电路2连接在锂电池组单节电池的正负极之间;主控制芯片5与电源供应自锁存电路4的输入端相连,电源供应自锁存电路4的输出端与线性降压电路3的输入端相连,线性降压电路3的输出端分别与锂电池组正极、主控制芯片5相连。温度测量电路6的输入端与锂电池组的正负极相连,温度测量电路6的输出端与主控制芯片5的输入端相连;主控制芯片5的输出端还连接有LED容量显示电路7;主控制芯片5还分别与PWM调整电路8、放电电流检测电路9、放电触发开关11相连,PWM调整电路8的输出端并联连接有一号放电开关管Q1、二号放电开关管Q2和刹车开关管Q3,一号放电开关管Q1、二号放电开关管Q2和刹车开关管Q3的另一端接放电负极;放电电流检测电路9的输入端分别并联连接电阻R1、电阻R2的两端,并分别作为取样电流的正负极;放电触发开关11另一端接起动开关;主控制芯片5、锂电池组正极均与充电控制开关10相连;所述的充电温度探头12一端与主控制芯片5相连,另一端与充电器电路相连;充电正极、放电负极分别与充电器电路相连。
单节电池电压测量电路1的输入端分别连接在锂电池组中每一节电池的正负极,单节电池电压测量电路1的输出端与主控制芯片5的输入端相连。如图2所示,所述的单节电池电压测量电路1包括起电子开关作用的场效应管Q4,以及电压调整、差分放大的运算放大电器U1A;电阻R3的一端与单节电池的正极相连,另一端与场效应管Q4的6脚相连。场效应管Q4的2脚与5脚相连,场效应管Q4的3脚与电阻R4相连,电阻R4的另一端连接到单节电池的负极。场效应管Q4的1脚与电阻R5和运算放大电器U1A的3脚相连,电阻R5的另一端连接到电源负极。场效应管Q4的4脚与电阻R6、运算放大电器U1A的2脚相连,电阻R6的另一端连接到运算放大电器U1A的1脚。运算放大电器U1A的1脚又与电阻R7、电阻R8相连,电阻R7的另一端与电容C1相连,电容C1的另一端与电阻R8的另一端相连并且连接到电源的负极,AN1端输出电压单节电池的电压。
本发明的单节电池电压测量电路1采用差分放大电路,大大提高了测量精度。现有的单节电池电压测量电路的测量精度一般为正负50毫伏,而本发明的测量精度为正负25毫伏。并且本发明的单节电池电压测量电路2在不测量时,可以断开场效应管Q4,降低测量功耗。
在充电与放电过程中,单节电池电压测量电路1将检测到的单节电池的电压信息发给主控制芯片5,主控制芯片5根据测得的电压值,判断是否有过度充电或过度放电的现象:当单节电池充电电压超过4.2V时即为过度充电,当单节电池放电电压低于2.7V时即为过度放电。如果电压值显示有过度充电现象,则主控制芯片5驱动充电控制开关10断开,从而断开充电,使充电回路为零,达到过充电保护目的。如果出现过度放电现象,则主控制芯片5通知PWM调整电路8关掉电机,停止放电。
本发明的控制系统还包括用于调整锂电池组各单节电池电压平衡的充电均衡电路2,在充电过程中,主控制芯片5根据单节电池电压测量电路1测得的各单节电池的电压,判断各单节电池之间的电压差大于等于50mV时,需要进行放电;充电均衡电路2根据主控制芯片5反馈的结果,对电压最高的电池放电,直到电压最高的单节电池与电压最低的单节电池之间的压差小于50mV,使电池组每个电池的电压达到平衡。
锂电池组在使用过程中,因为环境因素及电池组的一致性,而导至电池电压(容量)不均衡,进而导致整组电池容量下降,通过单节电池电压测量电路1检测到电池组中单节电池电压不均衡时,通过充电均衡电路2对电压最高的电池进行电阻式放电,放电到额定均衡电压时,停止放电,进而使电池组中每节电池达到平衡。
控制系统中的线性降压电路3用来稳压,电源供应自锁存电路4用于控制线性降压电路3的供电开关,以便控制整个控制回路的供电电源。电源供应自锁存电路4的输入端与主控制芯片5相连,源供应自锁存电路4的输出端与线性降压电路3的输入端相连,线性降压电路3的输出端分别与锂电池组正极、主控制芯片5相连。
所述的电源供应自锁存电路4在主控制芯片5不工作时,将电源供应自锁存电路4关闭,将电源开关电路关闭,进而切断整个控制系统的供电;当主控制芯片5工作时,打开电源自锁存电路4,为整个电路供电。
整个电路的工作电源由电源供应自锁存电路4、线性降压电路3提供,当主控制芯片5需要工作时,电源供应自锁存电路4输出控制线性降压电路3,使电路得电工作,电路开始正常工作,进行充/放电保护及其它保护;当一段时间内,通过放电电流测量电路9及充电温度探头12,未检测到充电或者放电,主控制芯片5输出连接在主控制芯片5后面的电源供应自锁存电路4,使得线性降压电路3不得电,电路关闭,使得整个电路工作电压关闭,进入极低功耗待机模式,电流只有2uA。
温度测量电路6用于测量锂电池组温度是否在正常工作范围内,并将该新信息反馈给主控制芯片5。主控制芯片5通过电池温度检测电路6对电池组温度进行测量,测量锂电池组的温度是否在正常工作范围,锂电池组充电时的正常工作范围是0~45℃;放电时的正常工作范围是-10~65℃。一般实际操作中再上下另外放开5℃。例如:充电时,如果锂电池组温度大于50℃或小于-5℃,那么关断充电控制开关10,不再进行充电;放电时,如果锂电池组温度大于70℃或小于-20℃,那么主控制芯片5通过驱动PWM调整电路8,关断放电回路,不再进行放电。
本发明还设置了一个充电温度探头12,充电温度探头12用于在充电器充电时检测锂电池组温度,充电器检测此传感器的输出信号,计算电池组的温度。所述的充电温度探头12一端与主控制芯片5相连,另一端与充电器电路的充电器芯片17相连。
LED容量显示电路7用于显示当前电池组剩余容量,即电池组当前剩余电压。LED容量显示电路7会显示电池组中容量最低的单节电池容量。每个锂电池组是由多个单节电池串联而成,LED容量显示电路7是按照串联电池组中电压最低的单节电池的电压进行显示。LED容量显示电路7有四个显示灯,一次按键S1按下后,三颗绿色灯D1、D2、 D3显示当前电池组剩余容量,并保持常亮5S左右;同时可根据绿灯亮的个数判断电压最低的单节电池的电容量,例如三颗绿灯全亮表示电压最低的单节电池剩余电量为80%以上,两颗绿灯亮表示电压最低的单节电池剩余电量为60%,一颗绿灯亮表示电压最低的单节电池剩余电量为30%;当电池组电压过低或出现故障时,按键一次显示红色D4灯亮。
控制系统还包括用于控制充电回路的打开与关断的充电控制开关10;以及用于检测是否需要打开一号放电开关管Q1与二号放电开关管Q2的放电触发开关11。
本发明的控制系统还包括用于控制一号放电开关管Q1与二号放电开关管Q2,并且控制刹车开关管Q3的PWM调整电路8,即软启动电路,当放电结束或因放电过流保护、放电过温保护、或短路保护时,PWM调整电路8关断一号放电开关管Q1与二号放电开关管Q2,同时驱动刹车开关管Q3,将马达制动急停。
由于马达负载为电感性负载,传统的启动方式为直接给马达两端加入电压,马达立即以最大功率启动,此时启动电流将是马达额定电流的3倍以上或者更高;由于是全功率启动,在起动时,机器会剧烈的振动一下,可能产生危险。因此全功率启动对于锂电组池供电系统而言,过大的启动电流会对锂电池的寿命及安全性有极大的影响。本发明的软启动电路,即PWM调整电路8可以解决以上问题。当主控制芯片5接收到启动信号时,会先以小功率输出驱动一号放电开关管Q1与二号放电开关管Q2,此时马达以较低速低功率先运行,同时PWM宽度不间断无级调整,使得马达转速不断上升直到最大值,缓慢的启动马达时,机器不会有剧烈的振动,并且起动电流很小,有效的保护了锂电池的安全及寿命。
当放电触发开关11发出启动信号给主控制芯片5时,电路认为机器要正常起动,为了免因电机启动时对锂电池组的大电流冲击及设备突然跳动,采用了软起动电路。所述软启动电路采用PWM(脉冲宽度调制)的方式,在启动的初始,主控制芯片5以最小占空比1%输出,1%占空比传输到PWM调整电路8对驱动信号进行放大及处理,再输出驱动一号放电开关管Q1与二号放电开关管Q2以1%占空比导通,在启动同时,主控制芯片5输出的PWM占空比逐渐增加宽度,使马达速度逐渐提升,直至提升至85%占空比时,停止PWM占空比调整,启动完成;轻负载时,以85%占空比稳定输出。
启动完成后,放电电流检测电路9检测当前放电电流值,以不同电流大小对应不同PWM占空比,当机器工作电流小时,占空比以85%输出,马达转速降低,节能同时又降低了噪音;当机器工作电流变动时,PWM占空比随之调整,电流最大时占空比为100%,此时马达转速达到最大。
如图3所示,PWM调整电路8包括用于进行信号放大的调整芯片U7, 例如调整芯片U7可选用IR2103型芯片,所述的PWM调整电路8包括调整芯片U7,调整芯片U7的2脚、3脚通过电阻R14与主控制芯片5的输出端相连, PWM调整电路8的功能主要由调整芯片U7完成。调整芯片U7的1脚接电容C3、二极管D5正极,电容C3的另一端接地,二极管D5的负极接调整芯片U7的8脚和电容C4,电容C4的另一端连接到电阻R15与输出端子Moto-,电阻R15另一端接U7的6脚;调整芯片U7的7脚连接二极管D6的正极、晶体管Q6的基极,二极管D6的负极分别与晶体管Q6的发射极、电阻R16、刹车开关管Q3的G极相连,晶体管Q6的集电极与电阻R16、刹车开关管Q3的S极、输出端子Moto-相连,用于控制电机急停进行刹车;调整芯片U7的5脚连接到二极管D7的正极、晶体管Q5的基极,二极管D7的负极分别与晶体管Q5的发射极、电阻R17、一号放电开关管Q1的G极、二号放电开关管Q2的G极连接,晶体管Q5的集电极、电阻R17的另一端、一号放电开关管Q1的S极、二号放电开关管Q2的S极接电源负极,用于控制一号放电开关管Q1、二号放电开关管Q2的PWM调整功能;一号放电开关管Q1的D极、二号放电开关管Q2的D极接输出端子Moto- , 刹车开关管Q3的D极接输出端子Moto+;输出端子Moto+、Moto-分别连接到马达的正负极,实现PWM调整电路的功能。
PWM调整电路8充分发挥了调整芯片U7的驱动功能,通过晶体管电路提升刹车开关管Q3与一号放电开关管Q1、二号放电开关管Q2的关断时间为1微秒,增强调整芯片U7的死区驱动速度,使刹车开关管Q3与一号放电开关管Q1、二号放电开关管Q2不会产生同时导通的现像。
本发明还包括用于测量锂电池组的放电电流的放电电流检测电路9,主控制芯片5的输入端与放电电流检测电路9的输出端相连,放电电流检测电路9测量当前电锂池组的放电电流输出给主控制芯片5,主控制芯片5判断电流达到放电过流保护值,并且时间达到保护时间,主控制芯片5输出信号给PWM调整电路8,关断一号放电开关管Q1与二号放电开关管Q2,同时PWM调整电路8输出信号控制刹车开关管Q3,进行马达刹车控制,达到放电过流保护。
如图4所示,放电电流检测电路9包括检测电路主控芯片U2B,检测电路主控芯片U2B为运算放大器,检测电路主控芯片U2B的第7输出端通过电阻R9连接到主控制芯片5的I-in输入端,用于主控制芯片5对放电电流的输入。主控制芯片5与电阻R9之间连接有电容C2,电容C2的另一端接地。检测电路主控芯片U5B的第5输入端连接到电阻R11,电阻R11再连接到电阻R1、电阻R2的正极作为电流取样的正极;电阻R12的一端连接到检测电路主控芯片U5B的第5脚,电阻R13的一端连接检测电路主控芯片U5B的第6脚,电阻R12、电阻R13的另一端与电阻R1、电阻R2连接,并作为电流取样的负极。电阻R10一端连接到检测电路主控芯片U5B的6脚,另一端连接到检测电路主控芯片U5B的7脚,进行放电电流检测。
本发明还包括为锂电池组充电的充电器电路。所述的充电器电路采用开关电源电路和充电器芯片17两部分组成。开关电源是把输入的交流电转成直流电输出,进而对锂电池组进行充电;采用PWM控制,具有体积小,效率高的优点
充电器电路包括:
电磁抗干扰电路13:用以抑制本身电路产生的电磁干扰,并抑制外来的电磁干扰信号;
逆变变压器14:把输入的高压变成设定的充电电压,也就是把输入220V AC电压变成输出42VAC电压,电气绝缘隔离;
整流滤波电路15:把逆变变压器14输出的交变的电压变成充电器的直流充电电压;
控制开关16:用继电器做充电控制开关,充电完成时,关断充电器和电池回路,保护电池;在充电器故障或者电池故障时,关断充电器和电池回路,保护电池;
充电器芯片17:检测充电过程中充电的电压、电池的温度、充电的电流等参数;控制控制开关16;对电池充电的状态指示;充电时间控制。
状态显示电路18:指示充电电池的状态,充电电池的四种状态:未接电池、电池充电完成、电池温度状态、电池故障状态;
反馈电路19:检测整流滤波电路15的电压、电流信号,并把检测到的信号反馈给PWM控制电路20,把整流滤波电路15的电压、电流控制在规格的范围;
PWM控制电路20:控制场效应晶体管21的脉冲宽度;
场效应晶体管21:控制逆变变压器的开通和关断。
如图5所示,充电器电路包括与交流电相连的输入端口M1,输入端口M1依次连接电磁抗干扰电路13、逆变变压器14、控制开关16和输出端子M2;所述的控制开关16与充电器芯片17相连,充电器芯片17分别与状态显示电路18、反馈电路19相连,反馈电路19通过PWM控制电路20与场效应晶体管21相连,逆变变压器14也与场效应晶体管21相连;整流滤波电路也与反馈电路19相连。
本发明的充电器电路在任何一单节电池的电压低于2.5V时,会对该节电池进行预充电,即小电流充电,这样可以防止锂电池组受损,延长锂电池组的使用寿命。预充电时的充电电流为200mA,预充电时间为30分钟,30分钟后,主控制芯片5检测所有单节电池的电压是否恢复正常,即恢复到2.5V以上,当所有单节电池的电压都高于2.5V时,再对锂电池组进行正常充电,正常充电的充电电流为4A;如果30分钟后,还有单节电池的电压低于2.5V,充电器应停止充电,并指示电池损坏。
充电器采用最先进的PWM控制芯片和充电器芯片,实现把交流电压转换成电池充电的直流电压,并且通过反馈电路19,控制电池充电的电压,电流。再采用可编写程序的充电器芯片和创新的充电器芯片和电池管理芯片的通信,实现充电过程的智能控制。
充电器芯片和电池管理芯片的通信的优点:延长充电电池的使用寿命;充电器芯片和电池管理芯片通信,提高充电的安全性;能在1小时内快速完成充电。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

  1. 一种锂电割草机,它包括驱动切割刀片的电机,电机与控制系统相连,控制系统与电源相连;其特征在于:所述的电机为直流电机,所述的电源为锂电池组,直流电机通过控制系统与锂电池组相连;所述的控制系统包括:
    主控制芯片(5):用于接收处理各种数据,并将信息发送给相关电路;
    单节电池电压测量电路(1):用于测量锂电池组中的单节电池电压,并将各单节电池电压值不断传送给主控制芯片(5),主控制芯片(5)判断各单节电池电压是否出现过充、过放或单节电池之间压差过大的现象;
    充电均衡电路(2):用于调整锂电池组中各单节电池电压平衡;在充电过程中,如果主控制芯片(5)检测到锂电池组中单节电池的电压出现大于等于50mV的压差时,充电均衡电路(2)可以根据主控制芯片(5)反馈的结果,对电压最高的单节电池进行放电,直到电压最高的单节电池与电压最低的单节电池之间的压差小于50mV为止,使锂电池组每个电池的电压达到平衡;
    线性降压电路(3):稳定整个电路的电压;
    电源供应自锁存电路(4):用于控制线性降压电路(3),进而控制整个控制系统供电电源;电源供应自锁存电路(4)在主控制芯片(5)不工作时,电源供应自锁存电路(4)关闭,进而切断为主控制芯片(5)供电;当主控制芯片(5)工作时,打开电源自锁存电路(4),为整个控系统电路供电;
    温度测量电路(6):用于测量锂电池组的温度,并将温度信息不断反馈给主控制芯片(5),主控制芯片(5)判断锂电池组是否在正常工作温度范围内;
    LED容量显示电路(7):用于显示当前锂电池组剩余容量;
    PWM调整电路(8):用于控制一号放电开关管Q1与二号放电开关管Q2,并且控制刹车开关管Q3;
    放电电流检测电路(9):用于测量锂电池组的放电电流,并将该电流值输出给主控制芯片(5);
    充电控制开关(10):用于控制充电回路的打开与关断;
    放电触发开关(11):用于检测是否需要打开一号放电开关管Q1与二号放电开关管Q2;
    单节电池电压测量电路(1)的输入端分别连接在锂电池组各电池的正负极,单节电池电压测量电路(1)的输出端与主控制芯片(5)的输入端相连;充电均衡电路(2)的输入端分别连接在锂电池组各单节电池的正负极之间;电源供应自锁存电路(4)的输入端与主控制芯片(5)相连,电源供应自锁存电路(4)的输出端与线性降压电路(3)的输入端相连,线性降压电路(3)的输出端分别与锂电池组正极、主控制芯片(5)相连;温度测量电路(6)的输入端与锂电池组的正负极相连,温度测量电路(6)的输出端与主控制芯片(5)的输入端相连;主控制芯片(5)还分别与LED容量显示电路(7)、PWM调整电路(8)、放电电流检测电路(9)、放电触发开关(11)相连,PWM调整电路(8)的输出端并联连接有一号放电开关管Q1、二号放电开关管Q2和刹车开关管Q3,一号放电开关管Q1、二号放电开关管Q2和刹车开关管Q3的另一端接放电负极;放电电流检测电路(9)的输入端并联连接在电阻R1、电阻R2的两端,并分别作为电流取样的正负极;放电触发开关(11)另一端接起动开关;主控制芯片(5)、锂电池组正极均与充电控制开关(10)相连;充电正极、放电负极分别与充电器电路相连。
  2. 根据权利要求1所述的一种锂电割草机,其特征在于:所述的单节电池电压测量电路(1)包括起电子开关作用的场效应管Q4,进行电压调整、差分放大的运算放大电器U1A;电阻R3的一端与单节电池的正极相连,另一端与场效应管Q4的6脚相连;场效应管Q4的3脚与电阻R4相连,电阻R4的另一端连接到单节电池的负极;场效应管Q4的1脚与电阻R5、运算放大电器U1A的3脚相连,电阻R5的另一端连接到电源负极;场效应管Q4的4脚与电阻R6、运算放大电器U1A的2脚相连,电阻R6的另一端连接到运算放大电器U1A的1脚;运算放大电器U1A的1脚又与电阻R7、 电阻R8相连,电阻R7的另一端与电容C1相连,电容C1的另一端与电阻R8的另一端相连并且连接到电源的负极,AN1端输出单节电池的电压。
  3. 根据权利要求1所述的一种锂电割草机,其特征在于:所述的PWM调整电路(8)包括调整芯片U7,调整芯片U7的2脚、3脚通过电阻R14与主控制芯片5的输出端相连, 调整芯片U7的1脚分别接二极管D5的正极、电容C3,电容C3的另一端接地,二极管D5的负极接调整芯片U7的第8脚和电容C4,电容C4的另一端连接到电阻R15与输出端子Moto-,电阻R15另一端接调整芯片U7的6脚,调整芯片U7的7脚连接二极管D6的正极与晶体管Q6的基极,二极管D6的负极分别与晶体管Q6的发射极、电阻R16、刹车开关管Q3的G极相连,晶体管Q6的集电极分别与电阻R16、刹车开关管Q3的S极、输出端子Moto-相连,用于控制电机急停进行刹车;调整芯片U7的5脚连接到二极管D7的正极与晶体管Q5的基极,二极管D7的负极分别与晶体管Q5的发射极、电阻R17、一号放电开关管Q1的G极、二号放电开关管Q2的G极连接,晶体管Q5的集电极、电阻R17的另一端、一号放电开关管Q1的S极、二号放电开关管Q2的S极接电源负极,用于控制一号放电开关管Q1与二号放电开关管Q2的PWM调整功能;一号放电开关管Q1的D极、二号放电开关管Q2的D极与输出端子Moto-相连,刹车开关管Q3的D极接输出端子Moto+;输出端子Moto+、Moto-分别连接到马达的正负极,实现PWM调整电路的功能。
  4. 根据权利要求1所述的一种锂电割草机,其特征在于:它还包括充电温度探头(12),所述的充电温度探头(12)一端与主控制芯片(5)相连,另一端与充电器电路相连。
  5. 根据权利要求1所述的一种锂电割草机,其特征在于:所述的锂电池组充电时的正常工作范围是0~45℃;放电时的正常工作范围是-10~65℃。
PCT/CN2012/074565 2012-04-18 2012-04-24 一种锂电割草机 WO2013155725A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112012001559.2T DE112012001559T5 (de) 2012-04-18 2012-04-24 Lithiumbatterie-betriebener Mäher

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210114987.0 2012-04-18
CN201210114987.0A CN102630433B (zh) 2012-04-18 2012-04-18 一种锂电割草机

Publications (1)

Publication Number Publication Date
WO2013155725A1 true WO2013155725A1 (zh) 2013-10-24

Family

ID=46615151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074565 WO2013155725A1 (zh) 2012-04-18 2012-04-24 一种锂电割草机

Country Status (3)

Country Link
CN (1) CN102630433B (zh)
DE (1) DE112012001559T5 (zh)
WO (1) WO2013155725A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337399A (zh) * 2015-11-09 2016-02-17 东莞市绿能宝汽车配件科技有限公司 一种氢氧机的供电电源转(切)换系统
CN108183538A (zh) * 2018-01-29 2018-06-19 新日(无锡)发展有限公司 一种锂电池快速充电系统
CN108254695A (zh) * 2017-12-28 2018-07-06 上海捷新动力电池系统有限公司 一种磷酸铁锂电池模组中电芯单体容量一致性检测方法
CN109673240A (zh) * 2019-01-30 2019-04-26 宁波大叶园林设备股份有限公司 一种智能割草机
CN109687554A (zh) * 2019-01-21 2019-04-26 蓝海智能科技有限公司 一种便携式智能电池包的充电保护系统及方法
CN109713750A (zh) * 2018-12-30 2019-05-03 深圳飞安瑞科技股份有限公司 一种温度可调的充放电电池保护电路
CN110190655A (zh) * 2019-06-28 2019-08-30 斯泰宝机电科技(昆山)有限公司 一种电动工具控制装置、电动工具及控制方法
CN111555397A (zh) * 2020-05-21 2020-08-18 广东博力威科技股份有限公司 锂电池充电时关断放电输出的控制电路
CN113985771A (zh) * 2021-10-25 2022-01-28 华能澜沧江水电股份有限公司 一种全站仪观测站的卷帘门控制系统
US20220185317A1 (en) * 2019-04-17 2022-06-16 The Toro Company Autonomous machine navigation and charging
CN115549243A (zh) * 2022-09-23 2022-12-30 无锡俐莱科技有限公司 一种吸痰器及其控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103053265B (zh) * 2013-02-06 2014-10-22 常州合力电器有限公司 一种双包锂电割草机
CN107027431A (zh) * 2017-05-02 2017-08-11 宁波动电器有限公司 一种骑式割草机
CN110301054A (zh) * 2017-08-25 2019-10-01 苏州宝时得电动工具有限公司 电动工具及电动工具供电方法
CN109050327B (zh) * 2018-09-07 2023-05-02 安徽合力股份有限公司 一种大吨位电动叉车充电控制系统以及控制方法
CN109213168A (zh) * 2018-09-19 2019-01-15 甘肃农业大学 一种收获机上的智能安全控制系统
CN111224437A (zh) * 2018-11-24 2020-06-02 深圳市三奇科技有限公司 电池控制板工作方法、电池控制板及无人机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201238069Y (zh) * 2008-05-13 2009-05-13 西安烽力新电源有限公司 低温聚合物锂蓄电池组
CN101882689A (zh) * 2010-06-11 2010-11-10 李小平 稳压混合电池组及其充电管理系统
CN102239767A (zh) * 2010-05-14 2011-11-16 上海孚脉电动技术有限公司 一种双刀双出割草机
JP2012005353A (ja) * 2010-06-22 2012-01-12 Ryobi Ltd 刈込機
JP2012030323A (ja) * 2010-07-30 2012-02-16 Hitachi Koki Co Ltd 電動工具

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606851A (en) * 1993-09-22 1997-03-04 Briggs & Stratton Corporation Battery-powered lawn cutting system
US5937622A (en) * 1995-07-26 1999-08-17 Black & Decker Inc. Cordless electric lawn mower having energy management control system
US7541781B2 (en) * 2005-01-17 2009-06-02 Cobasys, Llc Method and apparatus for charging and discharging a rechargeable battery
CN201821681U (zh) * 2010-10-01 2011-05-11 无锡同春新能源科技有限公司 锂离子电池新能源应用在园艺割草机上的动力装置
CN202565762U (zh) * 2012-04-18 2012-12-05 常州合力电器有限公司 一种锂电割草机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201238069Y (zh) * 2008-05-13 2009-05-13 西安烽力新电源有限公司 低温聚合物锂蓄电池组
CN102239767A (zh) * 2010-05-14 2011-11-16 上海孚脉电动技术有限公司 一种双刀双出割草机
CN101882689A (zh) * 2010-06-11 2010-11-10 李小平 稳压混合电池组及其充电管理系统
JP2012005353A (ja) * 2010-06-22 2012-01-12 Ryobi Ltd 刈込機
JP2012030323A (ja) * 2010-07-30 2012-02-16 Hitachi Koki Co Ltd 電動工具

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337399A (zh) * 2015-11-09 2016-02-17 东莞市绿能宝汽车配件科技有限公司 一种氢氧机的供电电源转(切)换系统
CN108254695A (zh) * 2017-12-28 2018-07-06 上海捷新动力电池系统有限公司 一种磷酸铁锂电池模组中电芯单体容量一致性检测方法
CN108183538A (zh) * 2018-01-29 2018-06-19 新日(无锡)发展有限公司 一种锂电池快速充电系统
CN109713750A (zh) * 2018-12-30 2019-05-03 深圳飞安瑞科技股份有限公司 一种温度可调的充放电电池保护电路
CN109687554A (zh) * 2019-01-21 2019-04-26 蓝海智能科技有限公司 一种便携式智能电池包的充电保护系统及方法
CN109673240A (zh) * 2019-01-30 2019-04-26 宁波大叶园林设备股份有限公司 一种智能割草机
CN109673240B (zh) * 2019-01-30 2024-05-24 宁波大叶园林设备股份有限公司 一种智能割草机
US20220185317A1 (en) * 2019-04-17 2022-06-16 The Toro Company Autonomous machine navigation and charging
CN110190655B (zh) * 2019-06-28 2024-05-10 斯泰宝机电科技(昆山)有限公司 一种电动工具控制装置、电动工具及控制方法
CN110190655A (zh) * 2019-06-28 2019-08-30 斯泰宝机电科技(昆山)有限公司 一种电动工具控制装置、电动工具及控制方法
CN111555397A (zh) * 2020-05-21 2020-08-18 广东博力威科技股份有限公司 锂电池充电时关断放电输出的控制电路
CN111555397B (zh) * 2020-05-21 2024-06-04 广东博力威科技股份有限公司 锂电池充电时关断放电输出的控制电路
CN113985771A (zh) * 2021-10-25 2022-01-28 华能澜沧江水电股份有限公司 一种全站仪观测站的卷帘门控制系统
CN115549243A (zh) * 2022-09-23 2022-12-30 无锡俐莱科技有限公司 一种吸痰器及其控制方法
CN115549243B (zh) * 2022-09-23 2023-10-20 无锡俐莱科技有限公司 一种吸痰器及其控制方法

Also Published As

Publication number Publication date
CN102630433B (zh) 2014-07-02
CN102630433A (zh) 2012-08-15
DE112012001559T5 (de) 2014-01-16

Similar Documents

Publication Publication Date Title
WO2013155725A1 (zh) 一种锂电割草机
EP2942852B1 (en) Emergency power source
CN201360156Y (zh) 一种提高串联电池组安全性和寿命的充放电管理装置
WO2011144007A1 (zh) 锂离子动力电池无损充电机
CN102969777A (zh) 电动汽车蓄电池智能充电桩
CN104300606A (zh) 一种多串电池保护系统
CN101741121B (zh) 一种加在锂电池组保护板上的电子开关
CN102148526B (zh) 充电器
CN201717656U (zh) 智能电池包
CN104882936B (zh) 一种通信储能电源系统
CN202076812U (zh) 串放并充的二次动力电池组
CN210517868U (zh) 储能电源
CN202586463U (zh) 镍镉充电器控制电路
CN201766397U (zh) 一种动力型多串锂电池控制系统
CN204144993U (zh) 一种电动汽车锂电池充电均衡控制电路
CN203339768U (zh) 光伏市电互补输入后备式储能电源
CN214958867U (zh) 一种无间断可在线投切的锂电池储能系统
CN213817309U (zh) 一种串联电池组在线监测及均压装置
CN201616699U (zh) 充电器
CN204761067U (zh) 一种通信储能电源系统
CN202565762U (zh) 一种锂电割草机
CN113659673A (zh) 一种基于储能电源的快速充电和并网连接装置及其工作方法
CN203398833U (zh) 一种不间断电源的电池充放电电路
CN113036902A (zh) 一种无间断可在线投切的锂电池储能系统
CN201781295U (zh) 智能充电机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112012001559

Country of ref document: DE

Ref document number: 1120120015592

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874702

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12874702

Country of ref document: EP

Kind code of ref document: A1