WO2013155698A1 - 一种直下式背光模组以及液晶显示装置 - Google Patents

一种直下式背光模组以及液晶显示装置 Download PDF

Info

Publication number
WO2013155698A1
WO2013155698A1 PCT/CN2012/074421 CN2012074421W WO2013155698A1 WO 2013155698 A1 WO2013155698 A1 WO 2013155698A1 CN 2012074421 W CN2012074421 W CN 2012074421W WO 2013155698 A1 WO2013155698 A1 WO 2013155698A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
backlight module
support column
transmissive material
Prior art date
Application number
PCT/CN2012/074421
Other languages
English (en)
French (fr)
Inventor
张光耀
刘红叶
符攀攀
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/518,872 priority Critical patent/US8908123B2/en
Publication of WO2013155698A1 publication Critical patent/WO2013155698A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular, to a direct type backlight module and a liquid crystal display device.
  • LED Light Emitting Diode
  • CCFL Cold Cathode Fluorescent Lamp
  • FIG. 1 is a schematic diagram of the refraction of light emitted by an LED light source in a secondary lens in a direct type backlight module.
  • the light source 101 is an LED light source and is disposed under the secondary lens 102.
  • the center of the secondary lens 102 is concave, and the light of the positive viewing angle emitted from the LED light source 101 is deflected into a large angle of light.
  • FIG. 2 is a graph showing the relationship between the brightness and the viewing angle of the Lambertian scattering light type formed by the illumination of the LED light source without the secondary lens, wherein the abscissa is the viewing angle and the ordinate.
  • Fig. 3 is a graph showing the relationship between the relative brightness and the viewing angle of the large viewing angle light type shown in Fig. 1, wherein the abscissa is the relative brightness of the light and the ordinate is the viewing angle. Therefore, the large viewing angle light type realized by the secondary lens can reduce the number of LEDs and achieve cost saving.
  • FIG. 4 is a view showing the positional relationship between the light source and the support column in the direct type backlight module of the prior art.
  • the light emitted by the LED light source 401 is irradiated onto the support column 402, due to the support column.
  • the shading effect of 402 forms a bright area 403 at the upper end of the support post 402, while supporting The column 402 is shaded against the side of the light.
  • FIG. 5 is a schematic diagram of the support column shadow generated by the support column blocking light in FIG. 4. As shown in FIG. 5, the area 403' is a shadow formed by the light emitted by the light source 401 being blocked by the upper end of the support column 402. . Therefore, the light-emitting effect of the direct-lit backlight module is affected.
  • the technical problem to be solved by the present invention is to provide a direct-lit backlight module and a liquid crystal display device, which can prevent the phenomenon of supporting column shadows and improve the backlight effect and display effect at a low cost.
  • a technical solution adopted by the present invention is: Providing a liquid crystal display device comprising: a bottom frame; a light source disposed on the bottom frame; a diffusion plate disposed above the light source; a column, disposed on the bottom frame, and supporting the diffusion plate, the at least one support column is made of the first light transmissive material, or the support column is composed of a second light transmissive material and a light shielding material connected up and down; wherein, the second The length of the light transmissive material is:
  • Z is the length of the second light transmissive material, is the length of at least one support post, and S is the distance between the light source closest to the at least one support post and the at least one support post, and the predetermined light emitted by the light source is incident to The incident angle of at least one support column, the intensity of the predetermined light is one tenth of the strongest light intensity emitted by the light source;
  • the light source is a bat scattering light type LED.
  • the first light transmissive material or the second light transmissive material has a total light transmittance of more than 5% when the diameter is equal to 1 mm.
  • at least one other support post is made of a light-shielding material, and a corresponding tatiS, wherein the length of at least one other support post is the distance between the light source closest to the at least one other support post and at least one other support post,
  • the predetermined angle of light emitted by the light source is incident on at least one other of the support columns, and the intensity of the predetermined light is one tenth of the strongest light intensity emitted by the light source.
  • the liquid crystal display device further comprises a reflective sheet and an optical film, wherein the reflective sheet is disposed between the light source and the bottom frame, and the optical film is disposed above the diffusing plate.
  • a direct type backlight module wherein the direct type backlight module comprises: a bottom frame; a light source disposed on the bottom frame; and a diffusion plate disposed on the light source a plurality of support columns disposed on the bottom frame and supporting the diffusion plate, the at least one support column being made of the first light transmissive material, or the support column being composed of a second light transmissive material and a light shielding material connected up and down .
  • the length of the second light transmissive material is:
  • Z is the length of the second light transmissive material, is the length of at least one support post, and S is the distance between the light source closest to the at least one support post and the at least one support post, and the predetermined light emitted by the light source is incident to The incident angle of at least one of the support columns, the intensity of the predetermined light being one tenth of the strongest light intensity emitted by the light source.
  • the light source is a bat scattering light type LED.
  • the larger the diameter of the at least one support column the greater the transmittance of the first light transmissive material or the second light transmissive material.
  • the first light transmissive material or the second light transmissive material has a total light transmittance of more than 5% when the diameter is equal to 1 mm.
  • At least one other support post is made of a light-shielding material, and corresponding tatiS, wherein h is the length of at least one other support post, and S is between the light source closest to at least one other support post and at least one other support post
  • the distance at which the predetermined light emitted by the light source is incident on at least one other support column, and the intensity of the predetermined light is one tenth of the strongest light intensity emitted by the light source.
  • the direct type backlight module further includes a reflective sheet and an optical film, wherein the reflective sheet is disposed between the light source and the bottom frame, and the optical film is disposed above the diffusing plate.
  • a direct type backlight module wherein the direct type backlight module comprises: a bottom frame; a light source disposed on the bottom frame; and a diffusion plate disposed on the light source Above; a plurality of support columns are disposed on the bottom frame and support the diffusion plate, and the distance S between the support column and the light source closest to the light source satisfies the following formula:
  • the length of the support column closest to the light source is the incident angle of the predetermined light emitted by the light source to the support column, and the intensity of the predetermined light is one tenth of the strongest light intensity emitted by the light source.
  • the light source is a bat scattering light type LED.
  • the support column is made of a light transmissive material.
  • the support column is made of a light shielding material.
  • part of the support column is made of a light-shielding material, and another part of the support column is made of a light-transmitting material.
  • the direct type backlight module further includes a reflective sheet and an optical film, wherein the reflective sheet is disposed between the light source and the bottom frame, and the optical film is disposed above the diffusion plate.
  • the at least one support post of the present invention is provided by a first light transmissive material or a combination of a second light transmissive material and a light shielding material connected up and down, such that When the light emitted by the light source is irradiated onto the support column, it can be transmitted from the first light transmissive material or the second light transmissive material; or the distance S between the support column and the light source closest to the light source is greater than a predetermined distance to avoid the support column
  • the shadow phenomenon therefore, can prevent the support column shadow phenomenon, improve the backlight effect and display effect.
  • FIG. 1 is a schematic diagram of the refraction of light emitted by an LED light source in a secondary lens in a direct type backlight module of the prior art
  • Figure 2 is the brightness and viewing angle of the Lambertian scattering light pattern formed by the illumination of the LED light source without a secondary lens. a coordinate map of the relationship;
  • FIG. 3 is a graph showing the relationship between the relative brightness and the viewing angle of the large viewing angle light type shown in FIG. 1;
  • FIG. 4 is a view showing a positional relationship between a light source and a support column in a direct type backlight module according to the prior art
  • FIG. 5 is a schematic view showing a shadow of a support column generated by the support column blocking light in FIG. 4;
  • FIG. 6 is a schematic perspective structural view of an embodiment of a direct type backlight module of the present invention.
  • Fig. 7 is an experimental principle diagram of the incident angle of the light emitted from the light source of Fig. 6 incident on the support column;
  • Fig. 8 is a graph of theoretical data and experimental data obtained according to the schematic diagram of Fig. 7.
  • FIG. 6 is a schematic perspective structural view of an embodiment of a direct type backlight module of the present invention.
  • the direct type backlight module of the present invention comprises: a bottom frame 801, a light source 802, a support column 803, and a diffusion plate 804, wherein a plurality of support columns 803 (only one is shown).
  • the light source 802 is disposed on the bottom frame 801.
  • the diffusion plate 804 is disposed above the light source 802 for uniformly diffusing the light emitted by the light source 802.
  • the support column 803 is disposed on the bottom frame 801 and supports the diffusion plate 804.
  • FIG. 7 is an experimental principle diagram of the incident angle of the light emitted by the light source 802 in FIG. 6 incident on the support column 803.
  • the incident angle of the light emitted by the light source 802 is incident on the support column 803 as follows: one is the angle ⁇ ' when the intensity of the light is the strongest light intensity, and the other is the tenth of the strongest light intensity.
  • the experiment was performed at the above two incident angles.
  • the distance between the light source 802 and the support column 803 is S
  • the length of the support column 803 is h
  • the length of the partial support column 807 that is not illuminated by the above two intensity lights is .
  • Fig. 8 is a graph showing the theoretical data and experimental data obtained based on the schematic diagram of Fig. 7.
  • the ordinate is the length of the bright area 808 generated by the light source 802 on the support column 803, that is, the value of (h-h'), and the abscissa is the distance S between the support column 803 and the light source 802.
  • the incident angle corresponds to one-tenth of the intensity of the light emitted by the light source 802
  • the calculated theoretical data representing the relationship between the length (hh') of the bright region 808 and the distance S is reflected in The A line segment in Fig.
  • the present invention will be bounded by the fact that the intensity of the light emitted by the light source 802 is one tenth of the strongest light intensity, and for light rays incident on the support column 803 greater than or equal to this intensity, it is defined that the support column shadow is caused. Other rays are defined as not causing support column shadows.
  • the support column 803 itself is designed, or the distance between the support column 803 and the light source 802 is designed to reduce or avoid the generation of support column shadows.
  • the support column 803 that receives the light emitted by the light source 802 having the intensity of one tenth of the strongest light intensity, if the calculation result is hh' > 0, the support column 803 is designed to be transparent.
  • the light material is composed of or combined with a light-transmitting material and a light-shielding material; if the calculation result is h-h' ⁇ 0, the design support column 803 is composed of a light-shielding material, and may of course also be composed of a light-transmitting material.
  • at least two embodiments can be derived as follows:
  • the at least one support post 803 is made of a first light transmissive material or a combination of a second light transmissive material and a light shielding material connected up and down. According to the calculation result, if the calculation result is hh'> 0, the corresponding support column 803 is made of the first light transmissive material or a combination of the second light transmissive material and the light shielding material connected up and down. The number of corresponding support columns 803 is at least one. If at least one support post 803 is formed by a combination of a second light transmissive material and a light shielding material connected up and down,
  • the length of the second light transmissive material is: tat ⁇ , where Z) is the length of the second light transmissive material, h is the length of at least one support post 803, and S is the light source 802 closest to the at least one support post 803 and at least The distance between a support column 803 is an incident angle at which a predetermined light emitted by the light source 802 is incident on the at least one support post 803, wherein the intensity of the predetermined light is one tenth of the strongest light intensity emitted by the light source 802. .
  • the first light transmissive material or the second light transmissive material is any light transmissive material, wherein the larger the diameter of the at least one support post 803, the greater the transmittance of the first light transmissive material or the second light transmissive material.
  • the diameter of the first light-transmitting material or the second light-transmitting material is equal to 1 mm, the total light transmittance is more than 5%. Therefore, when the light emitted from the light source 802 is irradiated onto the at least one support post 803, it can be transmitted from the first light transmissive material or the second light transmissive material to prevent the support column from being shadowed.
  • the support post 803 which does not cause the shadow of the support post that is, the support post satisfying h-h' ⁇ 0 or 5 / ⁇ ! ⁇ 803, can be made entirely of light-shielding materials, of course, can also be made of light-transmitting materials. That is, in this embodiment, all of the support columns 803 may be made of a light-transmitting material, or some of the support columns 803 may be made of a light-transmitting material, and the other part of the support pillars 803 may be made of a light-shielding material.
  • all the support columns 803 are made of a light-shielding material, but all the support columns 803 closest to the light source 802 are required to satisfy S ⁇ / ⁇ t an e , that is, the support column 803 is not disposed within a certain range around the set light source 802. Designing that all of the distance S between the support post 803 closest to the light source 802 and the light source 802 is greater than
  • the material of the support column 803 can be designed at will, for example, at least another support column 803 ⁇ ⁇ k
  • the length of 803, S is the distance between the light source 802 closest to at least one other support post 803 and at least one other support post 803, the incident angle of the predetermined light emitted by the light source 802 to at least one other support post 803, wherein
  • the intensity of the predetermined light is one tenth of the intensity of the strongest light emitted by the light source 802.
  • the embodiment of the direct type backlight module further includes a reflective sheet 805 and an optical film 806.
  • the reflective sheet 805 is disposed between the light source 802 and the bottom frame 801 for lowering the light source 802.
  • the emitted light is reflected on the diffuser plate 804 to improve the utilization of light.
  • the optical film 806 is disposed above the diffuser plate 804 for uniformizing the light emitted from the diffuser plate 804 and correcting the light direction to improve the light. Brightness.
  • the light source in this embodiment is a bat scattering light type light source, preferably a bat scattering light type LED.
  • the present invention also provides a liquid crystal display device comprising any of the above embodiments of the direct type backlight module.
  • At least one of the support columns of the direct type backlight module of the present invention is formed of a first light transmissive material or a combination of a second light transmissive material and a light shielding material connected up and down, such that the light source emits When the light is irradiated onto the support column, it can be transmitted from the first light transmissive material or the second light transmissive material; or the distance S between the support column and the light source closest to the light source is greater than a predetermined distance to avoid the shadow of the support column. Therefore, the support column shadow phenomenon is prevented, and the backlight effect and display effect are improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种直下式背光模组以及液晶显示装置,该直下式背光模组包括底框(801)、光源(802)、扩散板(804)以及多个支撑柱(803);光源(802)设置于底框(801)上;扩散板(804)设置于光源(802)的上方;支撑柱(803)设置于底框(801)上,并支撑扩散板(804),至少一个支撑柱(803)由第一透光材料制成,或者支撑柱(803)由上下连接的第二透光材料和遮光材料组合而成。通过上述方式,当光源(802)发出的光照射到该支撑柱(803)时,能够透过支撑柱(803),防止出现支撑柱(803)阴影的现象,提高背光效果和显示效果。

Description

一种直下式背光模组以及液晶显示装置
【技术领域】
本发明涉及液晶显示技术领域, 特别是涉及一种直下式背光模组以及液晶 显示装置。
【背景技术】
随着液晶显示技术的快速发展, 作为液晶显示器背光源之一的 LED ( Light Emitting Diode, 发光二极管) 因为其薄型化、 节能以及无汞的优点, 市占率持 续攀高, 逐渐取代大多数的 CCFL ( Cold Cathode Fluorescent Lamp, 冷阴极荧 光灯管) 背光, 并且也逐渐应用于直下式背光模组中。
目前成本较低的直下式背光模组技术, 是采用表面黏贴 LED技术并搭配二 次透镜使用, 将原来 LED发光的朗伯散射光型, 变成最大光强度发生在大视角 的光型。 如图 1所示, 图 1为现有技术一种直下式背光模组中 LED光源发出的 光在二次透镜中的折射原理图, 光源 101为 LED光源, 设置在二次透镜 102的 下方。 二次透镜 102的中心内凹, 可将从 LED光源 101发出的正视角的光偏折 为大角度的光出射, 因此, 形成的光型由朗伯散射光型转成大视角散射光型。 如图 2和图 3所示, 图 2所示的是未加二次透镜时 LED光源发光所形成的朗伯 散射光型的亮度与视角关系的坐标图, 其中, 横坐标为视角, 纵坐标为光的亮 度。 图 3是图 1所示的大视角光型的相对亮度与视角关系的坐标图, 其中, 横 坐标为光的相对亮度, 纵坐标为视角。 因此, 搭配二次透镜而实现的大视角光 型, 可以减少 LED颗数, 达到节省成本的目的。
然而在直下式背光模组中, 实现大视角光型时会遇到一个较为严重的技术 问题。 即当光线沿着大视角射出时, 通常照射到用来支撑扩散板的支撑柱上, 导致产生阴影。请参阅图 4, 图 4是现有技术一种直下式背光模组中光源与支撑 柱的位置关系图,如图 4所示, LED光源 401发出的光线照射到支撑柱 402上, 由于支撑柱 402的遮光效应, 在支撑柱 402的上端部位形成亮区 403 , 而在支撑 柱 402 背对光线的一侧形成阴影。 即, 在直下式背光模组的出光面上, 会在支 撑柱 402的背对光源 401的一面产生一条阴影, 称作"支撑柱阴影( support pin shadow mura)"。请参阅图 5 , 图 5是图 4中支撑柱遮挡光线而产生的支撑柱阴影 的示意图, 如图 5所示, 区域 403' 即是光源 401发出的光线被支撑柱 402上端 遮挡后形成的阴影。 因此, 影响了直下式背光模组的出光效果。
因此, 需要提供一种直下式背光模组以解决现有技术中出现支撑柱阴影的 问题。
【发明内容】
本发明主要解决的技术问题是提供一种直下式背光模组以及液晶显示装置, 能够在低成本的情况下, 防止出现支撑柱阴影的现象, 提高背光效果及显示效 果。
为解决上述技术问题, 本发明采用的一个技术方案是: 提供一种液晶显示 装置, 液晶显示装置包括: 底框; 光源, 设置于底框上; 扩散板, 设置于光源 的上方; 多个支撑柱, 设置于底框上, 并支撑扩散板, 至少一个支撑柱由第一 透光材料制成, 或者该支撑柱由上下连接的第二透光材料和遮光材料组合而成; 其中, 第二透光材料的长度为:
D≥h _ ~―
ta O,
其中, Z)为第二透光材料的长度, 为至少一个支撑柱的长度, S为最邻近 至少一个支撑柱的光源与至少一个支撑柱之间的距离, 为光源所发出的预定光 线入射至至少一个支撑柱的入射角度, 预定光线的强度为光源所发出最强光强 的十分之一;
至少一个支撑柱的直径越大, 第一透光材料或第二透光材料的透光率越大。 其中, 光源为蝙蝠散射光型 LED。
其中, 第一透光材料或第二透光材料的直径等于 1 毫米时其全光透过率大 于 5%。 其中, 至少另一个支撑柱由遮光材料制成, 并且相应的 tatiS , 其中, 为至少另一个支撑柱的长度, 为最邻近至少另一个支撑柱的光源 与至少另一个支撑柱之间的距离, 为光源所发出的预定光线入射至至少另一个 支撑柱的入射角度, 预定光线的强度为光源所发出最强光强的十分之一。
其中, 液晶显示装置进一步包括反射片以及光学膜片, 其中, 反射片设置 于光源和所述底框之间, 光学膜片设置于扩散板的上方。
为解决上述技术问题, 本发明采用的另一个技术方案是: 提供一种直下式 背光模组, 直下式背光模组包括: 底框; 光源, 设置于底框上; 扩散板, 设置 于光源的上方; 多个支撑柱, 设置于底框上, 并支撑扩散板, 至少一个支撑柱 由第一透光材料制成, 或者该支撑柱由上下连接的第二透光材料和遮光材料组 合而成。
其中, 第二透光材料的长度为:
D≥h _~―
tan< ,
其中, Z)为第二透光材料的长度, 为至少一个支撑柱的长度, S为最邻近 至少一个支撑柱的光源与至少一个支撑柱之间的距离, 为光源所发出的预定光 线入射至至少一个支撑柱的入射角度, 预定光线的强度为光源所发出最强光强 的十分之一。
其中, 光源为蝙蝠散射光型 LED。
其中, 至少一个支撑柱的直径越大, 第一透光材料或第二透光材料的透光 率越大。
其中, 第一透光材料或第二透光材料的直径等于 1 毫米时其全光透过率大 于 5%。
丄 >—h
其中, 至少另一个支撑柱由遮光材料制成, 并且相应的 tatiS , 其中, h为 至少另一个支撑柱的长度, S为最邻近至少另一个支撑柱的光源与至少另一个支 撑柱之间的距离, 为光源所发出的预定光线入射至至少另一个支撑柱的入射角 度, 预定光线的强度为光源所发出最强光强的十分之一。 其中, 直下式背光模组进一步包括反射片以及光学膜片, 其中, 反射片设 置于光源和底框之间, 光学膜片设置于扩散板的上方。
为解决上述技术问题, 本发明采用的另一个技术方案是: 提供一种直下式 背光模组, 直下式背光模组包括: 底框; 光源, 设置于底框上; 扩散板, 设置 于光源的上方; 多个支撑柱, 设置于底框上, 并支撑扩散板, 离光源最近的支 撑柱与光源之间的距离 S满足下面公式:
5 > /z * tan > ,
其中, 为离光源最近的支撑柱的长度, 为光源所发出的预定光线入射 至支撑柱的入射角度, 预定光线的强度为光源所发出最强光强的十分之一。
其中, 光源为蝙蝠散射光型 LED。
其中, 支撑柱由透光材料制成。
其中, 支撑柱由遮光材料制成。
其中, 部分支撑柱由遮光材料制成, 另一部分支撑柱由透光材料制成。
其中, 直下式背光模组进一步包括反射片以及光学膜片, 其中, 所述反射 片设置于所述光源和所述底框之间, 所述光学膜片设置于所述扩散板的上方。
本发明的有益效果是: 区别于现有技术的情况, 设置本发明的至少一个支 撑柱由第一透光材料制成或者由上下连接的第二透光材料和遮光材料组合而成 , 使得由光源发出的光照射到支撑柱上时, 能够从第一透光材料或第二透光材料 透过; 或者设计离光源最近的支撑柱与光源之间的距离 S 大于预定距离以避免 出现支撑柱阴影现象, 因此, 能够防止支撑柱阴影现象, 提高背光效果和显示 效果。
【附图说明】
图 1是现有技术一种直下式背光模组中 LED 光源发出的光在二次透镜中的 折射原理图;
图 2是未加二次透镜时 LED 光源发光所形成的朗伯散射光型的亮度与视角 关系的坐标图;
图 3是图 1所示的大视角光型的相对亮度与视角关系的坐标图;
图 4是现有技术一种直下式背光模组中光源与支撑柱的位置关系图; 图 5是图 4中支撑柱遮挡光线而产生的支撑柱阴影的示意图;
图 6是本发明直下式背光模组实施例的立体结构示意图;
图 7是图 6中光源发出的光线入射到支撑柱的入射角度的实验原理图; 图 8是根据图 7的原理图所得到的理论数据与实验数据的坐标图。
【具体实施方式】
请参阅图 6, 图 6是本发明直下式背光模组实施例的立体结构示意图。 如图 6所示, 本发明的直下式背光模组包括: 底框 801、 光源 802、 支撑柱 803以及 扩散板 804, 其中, 支撑柱 803为多个(图中只画出一个)。
光源 802设置在底框 801上, 扩散板 804设置在光源 802上方, 用于对光 源 802发出的光进行均匀扩散, 支撑柱 803设置于底框 801上, 并支撑扩散板 804。
下面, 本发明实施例对支撑柱 803 本身与支撑柱阴影之间的关系、 以及支 撑柱 803和光源 802之间的距离与支撑柱阴影的关系进行分析, 以方便理解后 文所举的 M和 N两个本发明实施例:
请参考图 7,图 7是图 6中光源 802发出的光线入射到支撑柱 803的入射角 度的实验原理图。 定义光源 802发出的光线入射到支撑柱 803的入射角度为以 下两种: 一种是光线的强度为最强光强时的角度 θ' , 另一种是光线的强度为最 强光强的十分之一时的角度 Θ, 分别以上述两种入射角度进行实验。 其中, 光源 802与支撑柱 803之间的距离为 S, 支撑柱 803的长度为 h, 没有被上述两种强 度光线照到的部分支撑柱 807的长度为 。
实验证明, 当上述两种强度光线没有入射到支撑柱 803 时, 不会在支撑柱 803上产生亮区 808, 即不会产生支撑柱阴影; 当 h- h' > 0时, 会在支撑柱 803 上产生亮区 808。 如图 7, 亮区 808的长度为 (h- h' ), 因此, 在背光模组的出光 面上会产生支撑柱阴影, 该支撑柱阴影可以参阅前面所述的图 5。
如图 8所示, 图 8是根据图 7的原理图所得到的理论数据与实验数据的坐 标图。 图 8中, 纵坐标为光源 802所发出的光线在支撑柱 803上产生的亮区 808 的长度, 即(h-h' )的值,横坐标为支撑柱 803与光源 802之间的距离 S。其中, 当入射角度对应于光源 802所发出光线其强度为最强光强的十分之一时, 计算 所得的体现亮区 808长度(h-h' ) 与距离 S之间关系的理论数据, 体现在图 8 中的 A线段; 当入射角度对应于光源 802所发出光线其强度为最强光强时, 计 算所得的体现亮区 808长度(h-h' )与距离 S之间关系的理论数据, 体现在图 8 中的 B线段。 另外实验测量得到的体现亮区 808长度(h-h' )与距离 S之间关 系的实测数据由图 8中的 C数据点表示。 由图 8可知, A线段和 C数据点比较 吻合,即入射角度对应于光源 802所发出光线其强度为最强光强的十分之一时, 计算得到的体现亮区长度 808 ( h-h' )与距离 S之间关系的理论数据与实验得到 的实测数据较为吻合。
因此, 本发明将以光源 802发出的光线其强度为最强光强的十分之一时为 界, 对于大于或等于此强度的入射至支撑柱 803 的光线, 定义其会导致支撑柱 阴影, 其他的光线则定义为不会导致支撑柱阴影。 以此为标准, 对支撑柱 803 本身进行设计, 或对支撑柱 803与光源 802的距离进行设计, 以减少或避免支 撑柱阴影的产生。
根据上述分析, 对于会接收到强度为最强光强的十分之一的光源 802所发 出光线的支撑柱 803而言, 如果计算结果为 h-h' > 0时, 则设计该支撑柱 803 由透光材料组成或由透光材料和遮光材料组合而成; 如果计算结果是 h- h' <0 时, 则设计支撑柱 803 由遮光材料组成, 当然也可以由透光材料组成。 根据本 发明精神, 至少可以得出如下两者实施例:
M、至少一个支撑柱 803由第一透光材料制成,或者由上下连接的第二透光 材料和遮光材料组合而成。 根据计算结果, 如果计算结果是 h-h' > 0, 则对应的支撑柱 803 由第一透 光材料制成, 或者由上下连接的第二透光材料和遮光材料组合而成。 此对应的 支撑柱 803数量为至少一个。 如果至少一个支撑柱 803由上下连接的第二透光材料和遮光材料组合而成,
D≥h _~―
则第二透光材料的长度为: tat^ , 其中, Z)为第二透光材料的长度, h为 至少一个支撑柱 803的长度, S为最邻近至少一个支撑柱 803的光源 802与至少 一个支撑柱 803之间的距离, 为光源 802所发出的预定光线入射至至少一个支 撑柱 803的入射角度, 其中, 预定光线的强度为光源 802所发出最强光强的十 分之一光强。
第一透光材料或第二透光材料为任意的透光材料, 其中, 至少一个支撑柱 803的直径越大, 第一透光材料或第二透光材料的透光率越大。 比如, 第一透光 材料或第二透光材料的直径等于 1毫米时其全光透过率大于 5%。 因此, 由光源 802发出的光照射到至少一个支撑柱 803上时,能够从第一透光材料或者第二透 光材料透过, 防止支撑柱阴影现象。
本实施例中, 除根据上述设计变为透光的支撑柱 803 外, 对于不会导致支 撑柱阴影的其他支撑柱 803 , 即满足 h- h' <0或5 /^^!^的支撑柱 803 , 可以 全部采用遮光材料制成, 当然也可以采用透光材料制成。 即本实施例中可以是 全部的支撑柱 803均采用透光材料制成, 也可以是部分支撑柱 803采用透光材 料制成, 另一部分支撑柱 803采用遮光材料制成。
N、 全部支撑柱 803均采用遮光材料制成, 但要求所有离光源 802最近的支 撑柱 803均满足 S≥/^ tan e ,即设定光源 802周边一定范围内不设置支撑柱 803。 设计所有离光源 802最近的支撑柱 803与光源 802之间的距离 S都大于
/z * tan ^ 此时支撑柱 803的材料可以随意设计, 比如设置至少另一个支撑柱 803 丄 ≥ k
由遮光材料制成。 并且相应的 ta n ^ 成立, 其中, 为至少另一个支撑柱 803的长度, S为最邻近至少另一个支撑柱 803的光源 802与至少另一个支撑柱 803之间的距离, 为光源 802所发出的预定光线入射至至少另一个支撑柱 803 的入射角度, 其中, 预定光线的强度为光源 802 所发出最强光强的十分之一光 强。
此外,再参阅图 6 , 本发明直下式背光模组实施例进一步包括反射片 805以 及光学膜片 806, 其中, 反射片 805设置在光源 802和底框 801之间, 用以对光 源 802向下发射的光反射到扩散板 804上, 提高光的利用率, 光学膜片 806设 置于扩散板 804的上方, 用以对从扩散板 804射出的光进行匀光及光方向的修 正, 以提高光的亮度。
本实施例中的光源为蝙蝠散射光型的光源, 优选为蝙蝠散射光型 LED。 本发明还提供了一种液晶显示装置, 该液晶显示装置包括以上直下式背光 模组任一实施例。
综上所述, 设置本发明的直下式背光模组中的至少一个支撑柱由第一透光 材料制成或者由上下连接的第二透光材料和遮光材料组合而成, 使得由光源发 出的光照射到支撑柱上时, 能够从第一透光材料或第二透光材料透过; 或者设 置离光源最近的支撑柱与光源之间的距离 S 大于预定距离以避免出现支撑柱阴 影现象, 因此, 防止支撑柱阴影现象, 提高背光效果和显示效果。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利 用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运 用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求
1. 一种液晶显示装置, 其中, 所述液晶显示装置包括:
底框;
光源, 设置于所述底框上;
扩散板, 设置于所述光源的上方;
多个支撑柱, 设置于所述底框上, 并支撑所述扩散板, 至少一个所述支撑 柱由第一透光材料制成, 或者所述支撑柱由上下连接的第二透光材料和遮光材 料组合而成;
其中, 所述第二透光材料的长度为:
D≥h _ ~―
tan < ,
其中, O为所述第二透光材料的长度, 为所述至少一个支撑柱的长度, S为 最邻近所述至少一个支撑柱的光源与所述至少一个支撑柱之间的距离, 为所述 光源所发出的预定光线入射至所述至少一个支撑柱的入射角度, 所述预定光线 的强度为所述光源所发出最强光强的十分之一;
至少一个支撑柱的直径越大, 所述第一透光材料或所述第二透光材料的透 光率越大。
2. 根据权利要求 1所述的液晶显示装置, 其中, 所述光源为蝙蝠散射光型 LED。
3. 根据权利要求 1所述的液晶显示装置, 其中, 所述第一透光材料或所述 第二透光材料的直径等于 1毫米时其全光透过率大于 5%。
4. 根据权利要求 1所述的液晶显示装置, 其中, 至少另一个所述支撑柱由 丄 >—h
遮光材料制成, 并且相应的 tan , 其中, 为所述至少另一个支撑柱的长度, 为最邻近所述至少另一个支撑 柱的光源与所述至少另一个支撑柱之间的距离, 为所述光源所发出的预定光线 入射至所述至少另一个支撑柱的入射角度, 所述预定光线的强度为所述光源所 发出最强光强的十分之一。
5. 根据权利要求 1所述的液晶显示装置, 其中, 所述液晶显示装置进一步 包括反射片以及光学膜片,其中,所述反射片设置于所述光源和所述底框之间, 所述光学膜片设置于所述扩散板的上方。
6. 一种直下式背光模组, 其中, 所述直下式背光模组包括:
底框;
光源, 设置于所述底框上;
扩散板, 设置于所述光源的上方;
多个支撑柱, 设置于所述底框上, 并支撑所述扩散板, 至少一个所述支撑 柱由第一透光材料制成, 或者所述支撑柱由上下连接的第二透光材料和遮光材 料组合而成。
7. 根据权利要求 6所述的直下式背光模组, 其中, 所述第二透光材料的长 度为:
D≥h _ ~―
ίΆ θ,
其中, O为所述第二透光材料的长度, 为所述至少一个支撑柱的长度, S为 最邻近所述至少一个支撑柱的光源与所述至少一个支撑柱之间的距离, 为所述 光源所发出的预定光线入射至所述至少一个支撑柱的入射角度, 所述预定光线 的强度为所述光源所发出最强光强的十分之一。
8. 根据权利要求 7所述的直下式背光模组, 其中, 所述光源为蝙蝠散射光 型 LED。
9.根据权利要求 6所述的直下式背光模组, 其中, 所述至少一个支撑柱的 直径越大, 所述第一透光材料或所述第二透光材料的透光率越大。
10. 根据权利要求 9所述的直下式背光模组,其中,所述第一透光材料或所 述第二透光材料的直径等于 1毫米时其全光透过率大于 5%。
11. 根据权利要求 6所述的直下式背光模组,其中, 至少另一个所述支撑柱 丄 >—h
由遮光材料制成, 并且相应的 tan , 其中, 为所述至少另一个支撑柱的长度, 为最邻近所述至少另一个支撑 柱的光源与所述至少另一个支撑柱之间的距离, 为所述光源所发出的预定光线 入射至所述至少另一个支撑柱的入射角度, 所述预定光线的强度为所述光源所 发出最强光强的十分之一。
12. 根据权利要求 6所述的直下式背光模组,其中,所述直下式背光模组进 一步包括反射片以及光学膜片, 其中, 所述反射片设置于所述光源和所述底框 之间, 所述光学膜片设置于所述扩散板的上方。
13. 一种直下式背光模组, 其中, 所述直下式背光模组包括:
底框;
光源, 设置于所述底框上;
扩散板, 设置于所述光源的上方;
多个支撑柱, 设置于所述底框上, 并支撑所述扩散板, 离所述光源最近的 支撑柱与所述光源之间的距离 S满足下面公式:
5 > /z * tan > ,
其中, 为离所述光源最近的所述支撑柱的长度, 为所述光源所发出的 预定光线入射至所述支撑柱的入射角度, 所述预定光线的强度为所述光源所发 出最强光强的十分之一。
14. 根据权利要求 13所述的直下式背光模组, 其中, 所述光源为蝙蝠散射 光型 LED。
15. 根据权利要求 13所述的直下式背光模组, 其中, 所述支撑柱由透光材 料制成。
16. 根据权利要求 13所述的直下式背光模组, 其中, 所述支撑柱由遮光材 料制成。
17. 根据权利要求 13所述的直下式背光模组, 其中, 部分所述支撑柱由遮 光材料制成, 另一部分所述支撑柱由透光材料制成。
18.根据权利要求 13所述的直下式背光模组, 其中, 所述直下式背光模组 进一步包括反射片以及光学膜片, 其中, 所述反射片设置于所述光源和所述底 框之间, 所述光学膜片设置于所述扩散板的上方。
PCT/CN2012/074421 2012-04-16 2012-04-20 一种直下式背光模组以及液晶显示装置 WO2013155698A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/518,872 US8908123B2 (en) 2012-04-16 2012-04-20 Direct-light type backlight module and liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210111007.1 2012-04-16
CN201210111007.1A CN102661538B (zh) 2012-04-16 2012-04-16 一种直下式背光模组以及液晶显示装置

Publications (1)

Publication Number Publication Date
WO2013155698A1 true WO2013155698A1 (zh) 2013-10-24

Family

ID=46771079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074421 WO2013155698A1 (zh) 2012-04-16 2012-04-20 一种直下式背光模组以及液晶显示装置

Country Status (2)

Country Link
CN (1) CN102661538B (zh)
WO (1) WO2013155698A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105156941A (zh) * 2015-07-06 2015-12-16 高创(苏州)电子有限公司 背光模组和显示装置
CN105301839A (zh) * 2015-11-12 2016-02-03 南京熊猫电子股份有限公司 一种改善dled背光液晶电视灯条间暗带阴影现象的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764084A (ja) * 1993-08-31 1995-03-10 Toshiba Lighting & Technol Corp 照明装置,液晶表示装置,バックライトおよび表示装置
JPH10326517A (ja) * 1997-05-23 1998-12-08 Tama Electric Co Ltd 背面照光装置
JP2007157451A (ja) * 2005-12-02 2007-06-21 Sharp Corp 拡散板支持部材、バックライト装置、及び表示装置
CN101071229A (zh) * 2006-05-11 2007-11-14 中华映管股份有限公司 直下式背光模块以及液晶显示装置
US20080030648A1 (en) * 2006-06-02 2008-02-07 Sony Corporation Planar light-source apparatus
CN102159883A (zh) * 2008-11-05 2011-08-17 夏普株式会社 支承单元、照明装置和显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100385299C (zh) * 2006-06-09 2008-04-30 友达光电股份有限公司 消除发光二极管背光模块支撑柱周围阴影的方法
CN201004138Y (zh) * 2006-08-02 2008-01-09 中强光电股份有限公司 背光模组与其支撑件
US20100208161A1 (en) * 2009-02-19 2010-08-19 Victor Company Of Japan, Limited Backlight device and liquid crystal display
US20110317095A1 (en) * 2009-03-04 2011-12-29 Sharp Kabushiki Kaisha Supporting unit, sheet set, illuminating device, and display device
JP5228108B2 (ja) * 2009-07-21 2013-07-03 シャープ株式会社 支持ピン、照明装置、表示装置、およびテレビ受像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764084A (ja) * 1993-08-31 1995-03-10 Toshiba Lighting & Technol Corp 照明装置,液晶表示装置,バックライトおよび表示装置
JPH10326517A (ja) * 1997-05-23 1998-12-08 Tama Electric Co Ltd 背面照光装置
JP2007157451A (ja) * 2005-12-02 2007-06-21 Sharp Corp 拡散板支持部材、バックライト装置、及び表示装置
CN101071229A (zh) * 2006-05-11 2007-11-14 中华映管股份有限公司 直下式背光模块以及液晶显示装置
US20080030648A1 (en) * 2006-06-02 2008-02-07 Sony Corporation Planar light-source apparatus
CN102159883A (zh) * 2008-11-05 2011-08-17 夏普株式会社 支承单元、照明装置和显示装置

Also Published As

Publication number Publication date
CN102661538B (zh) 2014-10-01
CN102661538A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
TWI684048B (zh) 直視型顯示裝置及用於直視型顯示裝置的發光單元
KR102068511B1 (ko) 퀀텀 닷 백라이트 모듈 및 디스플레이 장치
US8284346B2 (en) Backlight unit and liquid crystal display device including the same
US9465156B2 (en) Backlight module and display device
US20170227817A1 (en) Backlight unit, backlight module, backlight module and display device
TWI494660B (zh) Side light type backlight module
KR102266737B1 (ko) 렌즈, 렌즈를 포함하는 발광 장치, 및 발광 장치를 포함하는 백 라이트 유닛
US10914982B2 (en) Backlight module and display device
Lin et al. Optical film with microstructures array for slim-type backlight applications
TW201413349A (zh) 液晶顯示裝置及其直下式背光模組
US8908123B2 (en) Direct-light type backlight module and liquid crystal display
JP2009176512A (ja) 面光源装置及び画像表示装置
WO2016183909A1 (zh) 背光模组及液晶显示装置
JP2010108601A (ja) 面状光源及び液晶表示装置
KR100838332B1 (ko) 평판 디스플레이용 백라이트 구조
WO2013155698A1 (zh) 一种直下式背光模组以及液晶显示装置
WO2020015263A1 (zh) 直下式背光模组、液晶显示屏及终端设备
KR20130020473A (ko) 빛샘이 방지된 액정표시소자
TWI407201B (zh) 顯示器之背光模組
CN104898197A (zh) 一种导光板及其制备方法、背光模组和显示装置
CN103472624B (zh) 一种直下式背光模组以及液晶显示装置
US9400348B2 (en) Display backlight unit having reflecting structure for reducing hotspots
TWI468798B (zh) 背光模組、液晶顯示裝置以及導光板的網點設計方法
JP2011227252A (ja) 液晶表示装置
TWI418897B (zh) 背光模組及使用該背光模組之顯示裝置及電子裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13518872

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874573

Country of ref document: EP

Kind code of ref document: A1