WO2013154737A1 - Method and device for increasing bone density in the mouth - Google Patents

Method and device for increasing bone density in the mouth Download PDF

Info

Publication number
WO2013154737A1
WO2013154737A1 PCT/US2013/031225 US2013031225W WO2013154737A1 WO 2013154737 A1 WO2013154737 A1 WO 2013154737A1 US 2013031225 W US2013031225 W US 2013031225W WO 2013154737 A1 WO2013154737 A1 WO 2013154737A1
Authority
WO
WIPO (PCT)
Prior art keywords
mouthpiece
dental device
motor
patient
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2013/031225
Other languages
English (en)
French (fr)
Other versions
WO2013154737A8 (en
Inventor
Brice A. WAY
Christopher U. Phan
Dana Leigh Gelman Keiles
Richard Johnson
Phillip ABATELLI
Amin Hadi MIRZAAGHAEIAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALVEOGENESIS LLC
Original Assignee
ALVEOGENESIS LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALVEOGENESIS LLC filed Critical ALVEOGENESIS LLC
Priority to EP13775028.7A priority Critical patent/EP2841006A4/en
Priority to AU2013246421A priority patent/AU2013246421B2/en
Priority to JP2015505734A priority patent/JP6273618B2/ja
Priority to CA2869934A priority patent/CA2869934C/en
Publication of WO2013154737A1 publication Critical patent/WO2013154737A1/en
Publication of WO2013154737A8 publication Critical patent/WO2013154737A8/en
Anticipated expiration legal-status Critical
Priority to AU2017279666A priority patent/AU2017279666A1/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/008Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions using vibrating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/08Mouthpiece-type retainers or positioners, e.g. for both the lower and upper arch
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/22Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like
    • A61C17/32Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating
    • A61C17/34Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating driven by electric motor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/286Bone stimulation by mechanical vibrations for enhancing ossification
    • A61F2002/2864Bone stimulation by mechanical vibrations for enhancing ossification by ultrasonic or acoustic vibrations

Definitions

  • the present disclosure relates generally to dental devices. More specifically, the present disclosure relates to dental devices used for increasing bone density in the mouth, such as for orthodontic retention.
  • a dental device in one embodiment, includes a mouthpiece configured to sit against occlusal surfaces of a patient's teeth.
  • the mouthpiece includes a plurality of raised dimples thereon, each raised dimple spaced apart so as to approximately align with the center of some or all of the occlusal surfaces.
  • the dental device further includes a motor connected to the mouthpiece. The motor configured to vibrate the mouthpiece at a frequency between 60 Hz and 130 Hz and an acceleration between 0.035 G and 0.100 G such that the mouthpiece places an axial vibratory force on the occlusal surfaces.
  • Each raised dimple can be sized so as to place pressure on less than 50% of each tooth.
  • the frequency can be between 100 Hz and 120 Hz.
  • the acceleration can be between 0.05 G and 0.06 G.
  • the motor can be configured to oscillate between frequencies and accelerations.
  • the motor can be configured to oscillate between four specific settings. The four specific settings can be 60hz at 0.035G, 60hz at 0.06G, 120hz at 0.035 G, and 120hz at 0.06 G.
  • the mouthpiece can be customized to fit the patient's teeth.
  • the mouthpiece can include a biteplate configured to sit against occlusal surfaces of a patient's teeth and an extension configured to connect to a base.
  • the motor can be a counterweighted motor that is substantially in-line with a longitudinal axis of the extension.
  • the motor can be a pancake motor.
  • the mouthpiece can have a U-shape so as to extend over all of a patient's teeth.
  • the mouthpiece can be configured to extend only over a patient's social six teeth.
  • the mouthpiece can be configured to extend only over a patient's molars.
  • the dental device can further include a sensor configured to detect the vibration proximate to the occlusal surfaces of the patient's teeth.
  • the dental device can further include a controller configured to adjust the motor settings based upon the detected vibration.
  • a method of growing bone includes placing a mouthpiece having a plurality of raised dimples thereon over occlusal surfaces of a patient's teeth such that each of the raised dimples approximately align with the center of an occlusal surface, vibrating the mouthpiece at a frequency between 60 Hz and 130 Hz and an acceleration between 0.035 G and 0.10 G such that the mouthpiece places an axial vibratory force on the occlusal surfaces, and repeating the placing and vibrating steps for less than 5 minutes per day for less than 180 days to achieve periodontal ligament growth around the teeth.
  • the frequency can be between 100 Hz and 120 Hz.
  • the acceleration can be between 0.05 G and 0.06 G.
  • Repeating the placing and vibrating steps for less than 5 minutes per day can include repeating the placing and vibrating steps for less than 2 minutes per day.
  • Repeating the placing and vibrating steps for less than 180 days can include repeating the placing and vibrating steps for less than 120 days.
  • the method can further include placing a retainer over the occlusal surfaces of the teeth between repetitions.
  • a dental device in one embodiment, includes a mouthpiece configured to sit against occlusal surfaces of a patient's teeth and a motor connected to the mouthpiece.
  • the motor is configured to vibrate the mouthpiece at a frequency between 60 Hz and 130 Hz and an acceleration between 0.035 G and 0.100 G such that the mouthpiece places an axial vibratory force on the occlusal surfaces. Further, the dental device weighs less than 50 grams.
  • the motor can requires less than 2 volts to vibrate the mouthpiece.
  • the frequency can be between 100 Hz and 120 Hz.
  • the acceleration can be between 0.05 G and 0.06 G.
  • the motor can be configured to oscillate between frequencies and accelerations.
  • the motor can be configured to oscillate between four specific settings. The four specific settings can be 60hz at 0.035G, 60hz at 0.06G, 120hz at 0.035 G, and 120hz at 0.06 G.
  • the mouthpiece can be customized to fit the patient's teeth.
  • the mouthpiece can include a biteplate configured to sit against occlusal surfaces of a patient's teeth and an extension configured to connect to a base.
  • the motor can be a counterweighted motor that is substantially in-line with a longitudinal axis of the extension.
  • the motor can be a pancake motor.
  • the mouthpiece can have a U-shape so as to extend over all of a patient's teeth.
  • the mouthpiece can be configured to extend only over a patient's social six teeth.
  • the mouthpiece can be configured to extend only over a patient's molars.
  • the dental device can further include a sensor configured to detect the vibration proximate to the occlusal surfaces of the patient's teeth.
  • the dental device can further include a controller configured to adjust the motor settings based upon the detected vibration.
  • a dental device in one embodiment, includes a mouthpiece configured to sit against occlusal surfaces of a patient's teeth.
  • the dental device further includes a motor connected to the mouthpiece.
  • the motor is configured to vibrate the mouthpiece at a frequency between 60 Hz and 130 Hz and an acceleration between 0.035 G and 0.100 G such that the mouthpiece places an axial vibratory force on the occlusal surfaces.
  • the dental device further includes a sensor configured to detect the vibration proximate to the occlusal surfaces of the patient's teeth.
  • the dental device can further include a controller configured to adjust the motor settings based upon the detected vibration.
  • the sensor can be a piezoelectric sensor.
  • the frequency can be between 100 Hz and 120 Hz.
  • the acceleration can be between 0.05 G and 0.06 G.
  • the motor can be configured to oscillate between frequencies and accelerations.
  • the motor can be configured to oscillate between four specific settings. The four specific settings can be 60hz at 0.035G, 60hz at 0.06G, 120hz at 0.035 G, and 120hz at 0.06 G.
  • the mouthpiece can be customized to fit the patient's teeth.
  • the mouthpiece can include a biteplate configured to sit against occlusal surfaces of a patient's teeth and an extension configured to connect to a base.
  • the motor can be a counterweighted motor that is substantially in-line with a longitudinal axis of the extension.
  • the motor can be a pancake motor.
  • the mouthpiece can have a U-shape so as to extend over all of a patient's teeth.
  • the mouthpiece can be configured to extend only over a patient's social six teeth.
  • the mouthpiece can be configured to extend only over a patient's molars.
  • the dental device can further include a sensor configured to detect the vibration proximate to the occlusal surfaces of the patient's teeth.
  • the dental device can further include a controller configured to adjust the motor settings based upon the detected vibration.
  • FIG. 1A shows an exemplary dental device having a mouthpiece and base as described herein.
  • FIG. IB shows the mouthpiece of FIG. 1 A disconnected from the base.
  • FIG. 1 C shows an exploded view of the mouthpiece and base of FIG. 1A.
  • FIG. 2 shows vibration of the dental device of FIG. 1.
  • FIG. 3A shows an exemplary mouthpiece of a dental device having a motor in the mouthpiece positioned inline with the mouthpiece extension.
  • FIG. 3B is an exploded view of the mouthpiece of FIG. 3 A.
  • FIG. 3C shows placement of the mouthpiece of FIG. 3 A in a patient's mouth.
  • FIG. 3D is a flowchart for a feedback loop used to adjust the frequency or acceleration of vibration of a dental device as described herein.
  • FIG. 4A shows an alternative exemplary mouthpiece of a dental device having a motor in the mouthpiece positioned horizontal to the mouthpiece extension and inside the biteplate of the mouthpiece.
  • FIG. 4B is an exploded view of the mouthpiece of FIG. 4A.
  • FIG. 4C shows placement of the mouthpiece of FIG. 4A in a patient's mouth.
  • FIG. 5A shows an alternative exemplary mouthpiece portion of a dental device having a motor in the mouthpiece positioned horizontal to the mouthpiece extension and outside the biteplate of the mouthpiece.
  • FIG. 5B is an exploded view of the mouthpiece of FIG. 5 A.
  • FIG. 5C shows placement of the mouthpiece of FIG. 5 A in a patient's mouth.
  • FIG. 6 is an exploded view of an exemplary base of a dental device described herein.
  • FIG. 7A shows an exemplary biteplate having raised dimples.
  • FIG. 7B is a cross- section of the biteplate of FIG. 7A.
  • FIG. 8 shows a biteplate and separable mouthguard of an exemplary mouthpiece as described herein.
  • FIG. 9 shows an exemplary oven for forming a mouthguard as described herein.
  • FIG. 10 shows an alternative exemplary oven for forming a mouthguard as described herein.
  • FIG. 1 1 shows an exemplary mouthguard having vacuum tubes for forming the mouthguard to a patient's teeth.
  • FIG. 12A shows an alternative embodiment of a dental device as described herein.
  • FIG. 12B is another view of the mouthpiece of FIG. 12A.
  • FIGS. 12C and 12D show the motor placement in the dental device of FIG. 12 A.
  • FIGS. 13A-F show an alternative embodiment of a mouthpiece as described herein.
  • FIG. 14A-14D show an alternative embodiment of a dental device as described herein.
  • FIG. 15A-15B show an exemplary charging station for a dental device as described herein.
  • FIGS. 16A-16D show an alternative exemplary charging station for a dental device as described herein.
  • FIGS. 17A-17D show an alternative exemplary charging station for a dental device as described herein.
  • FIG. 18 shows an exemplary connection system between a mouthpiece and a base for a dental device as described herein.
  • FIG. 19 shows an alternative exemplary connection system between a mouthpiece and a base for a dental device as described herein.
  • FIG. 20 shows an alternative exemplary connection system between a mouthpiece and a base for a dental device as described herein.
  • FIG. 21 A shows an exploded view of an exemplary vibrating dental device as described herein.
  • FIG. 21B is another view of the device of FIG. 21 B.
  • FIGS. 21C-21D show use of the dental device of FIG. 21 A.
  • FIG. 22 shows an exploded view of an alternative exemplary vibrating dental device as described herein.
  • FIGS. 23A shows a base extension having a pancake motor therein.
  • FIG. 23B shows an exemplary pancake motor.
  • FIG. 24A shows a side-view of a crescent-shaped biteplate for a dental device as described herein.
  • FIG. 24B shows a front view of the crescent-shaped biteplate of FIG. 24A.
  • FIG. 24C shows exemplary use a device having the crescent-shaped biteplate of FIG. 24A.
  • FIG. 25A shows a side-view double-hammer-shaped biteplate for a dental device as described herein.
  • FIG. 25B shows a front view of the double-hammer-shaped biteplate of FIG. 25A.
  • FIG. 25C shows exemplary use of a device having the double-hammer-shaped biteplate of FIG. 25A.
  • FIG. 26A shows a side view of an elongated biteplate for a dental device as described herein.
  • FIG. 26B shows a front view of the elongated biteplate of FIG. 26A.
  • FIG. 26C shows exemplary use of a device having the elongated biteplate of FIG. 26A.
  • FIGS. 27A-C show front, side, and back views, respectively, of an exemplary base for a dental device as described herein.
  • FIG. 28 shows exemplary use of a device having the base of FIGS. 27A-C. DETAILED DESCRIPTION
  • the dental devices have or include a mouthpiece with a biteplate configured to sit over all or a portion of the occlusal surfaces of a patient's teeth.
  • the dental devices can be configured to vibrate at a frequency between 60 and 120 HZ and an acceleration between 0.03G and 0.06G such that the mouthpieces places an axial vibratory force on the occlusal surfaces of the patient's teeth, thereby enhancing tooth growth.
  • a dental device 100 includes a mouthpiece 102 having an attached base 104.
  • the mouthpiece 102 can be separable from the base 104.
  • the mouthpiece 102 can include a biteplate 1 14 (with or without a separate mouthguard thereover, as described further below) and a mouthpiece extension 1 10 configured to connect with the base 104.
  • the biteplate 1 14 can be approximately U-shaped so as to cover the occlusal surfaces of all or nearly all of the patient's teeth.
  • a motor 106 can be located in the mouthpiece 102 and configured to vibrate the mouthpiece 102.
  • the base 104 can include the electronics necessary to run the motor 106.
  • Contacts 108 can electrically connect the base 104 with the mouthpiece 106.
  • the motor 106 can be a counter-weighted motor extending in-line with the extension 1 10 (i.e. lay horizontal with its longitudinal axis parallel to the longitudinal axis of the extension 1 10).
  • the motor 106 can include a counterweight 212 that is off-axis from the longitudinal axis of the motor 106.
  • the counterweight 212 moves up and down, causing the mouthpiece 102 to vibrate up and down, as shown by the arrows 1 13a-d in FIG. 2. Accordingly, referring to FIG.
  • the motor 106 can be replaced with a pancake motor 2306 that includes a drum 2307 that moves up and down (shown by the arrows 2313a,b in FIG. 23B).
  • the drum 2307 can be attached to two leads 2309a,b that can connect the drum 2307 with a power source 231 1.
  • the pancake motor 2306 can be placed in an extension 2320 on the base 2304, as shown in FIG. 23A (the motor 2306 in an extension of the base is also shown in FIGS. 27A-C) or can be located with an extension on the mouthpiece.
  • the pancake motor 2306 can be placed such that the motor extends just inside the teeth, as shown in FIG. 28. Similar to the motor 106, the motor 2306 can place axial vibratory force on the occlusal surface of the teeth, i.e., the mouthpiece can move axially away from the occlusal surface and then back onto the occlusal surface repetitively in a "smacking" motion.
  • motors 106 or motor 2306 can be used in place of motor 106 or motor 2306 to similarly cause the biteplate 1 14 to smack the teeth.
  • the motor could be a piezoelectric motor, a linear motor, or an electromagnetic motor.
  • the motors 106 and 2306 can be interchanged for any of the embodiments described herein.
  • the motors used for the devices described herein can advantageously be small and lightweight.
  • the motor can be less than 2 grams, such as less than 1.5 grams, such as less than or equal to 1.2 grams.
  • the motor can be configured to require low current such that the power requirements are low.
  • the voltage required for the motor to run can be less than 5 volts, such as less than 4 volts, less than 3 volts, or less than 2 volts.
  • the motor requires between 0.5 and 4 volts, such as approximately 1.5 volts.
  • the motor can advantageously consume less than 250mW of power, such as less than 200m W of power and/or can have an operating current of less than 100mA, such as less than 75mA, such as less than 65mA.
  • the overall device can advantageously be less than 100 grams, such as less than 75 grams, less than 50 grams, less than 40 grams, or less than 35 grams.
  • the motor 106 and/or motor 2306 can be configured to vibrate the mouthpiece 102 at frequencies between 60 HZ and 130 HZ, such as between 100 HZ and 120 HZ and at accelerations of 0.035 G to 0.100 G, such as 0.050 G to 0.060 G. These frequencies and accelerations can advantageously increase bone growth in the mouth.
  • the motors 106, 2306 can further be configured to oscillate between various vibration settings. For example, the motor 106 can oscillate between four predetermined frequencies. In one embodiment, the motor 106 oscillates between 60hz at 0.035G, 60hz at 0.060G, 120hz at 0.035G, and 120hz at 0.060G.
  • a patient's teeth will be less likely to adapt to a particular vibration setting and will continue to strengthen and grow over time.
  • the device 100 can include sensors 1 18, such as piezoelectric sensors, configured to detect the acceleration or frequency of the vibration just proximate to the occlusal surfaces of the teeth.
  • the sensors 1 18 can be placed, for example, on the outside or the inside of the biteplate.
  • the sensors 108 can be connected to circuitry that includes a feedback loop for running the motor 106. That is, when the mouthpiece
  • the surface contact and/or force between the mouthpiece 102 and the teeth can dampen the vibrations and/or slow the motor down.
  • the feedback loop can therefore be used to compensate for the slowed motor.
  • a feedback loop can thus include applying vibration to the teeth with a dental device (such as device 100 or any device described herein) at step 371.
  • the acceleration or frequency of the vibration can be sensed or measured at step 373 at or near the teeth, such as with the sensors 1 18.
  • the sensed acceleration or frequency can be compared to the desired acceleration or frequency at step 375.
  • the feedback loop can then repeat.
  • the acceleration or frequency of the vibration at the motor can be adjusted to obtain the desired acceleration or frequencies at the mouthpiece 102 regardless of the dampening effect caused by interaction with the teeth.
  • the motor 106 can be located within the extension 1 10 of the mouthpiece 102.
  • the extension 1 10 can have a pocket 1 16 to house the motor 106.
  • the motor 106 can be placed close to the biteplate 1 14, such as within 1 mm of the biteplate 1 14, so that the motor 106 is located at least partially within the patient's mouth, i.e., is located intraorally (see FIG. 3C).
  • the counterweight 212 causing the vibration can be positioned so as to be located within the patient's mouth when the dental device 100 is in use.
  • a dental device 400 can have a motor 406 that is located inside of the biteplate 414. Further, the motor 406 can lay horizontal within the extension 410, but be placed such that its longitudinal axis extends perpendicular to the long-axis of the extension 410. The horizontal configuration of the motor still allows the counterweight 212 to provide a smacking motion while the perpendicular configuration allows the motor 406 to be located inside the teeth of a patient's mouth, for example sitting up against the roof of the mouth.
  • the dental device 500 can have a motor 506 that is located inside of the extension and that lays horizontal and perpendicular to extension 510. As described above, the horizontal configuration of the motor allows the counterweight 212 to provide a smacking motion, thereby enhancing tooth growth.
  • the motors described herein can include an insulator theraround, such as a ceramic sleeve.
  • the devices described herein need not include a mouthpiece configured to cover all of the teeth. Rather, mouthpieces specifically targeting particular teeth can be used. It is to be understood that the mouthpieces shown and described with respect to FIGS. 21 A-2 I D and 24A-26C can be used with any of the motors, bases, and guards described herein.
  • a mouthpiece 2402 can have a crescent shape biteplate 2414 configured to cover the social six teeth.
  • Such a design can be advantageous, for example, for treating crowding in the social six teeth.
  • a mouthpiece 2502 can have a double-hammer-shaped biteplate 2514 configured to cover only the molars.
  • the biteplate 2514 can thus include a narrow central portion 2482 configured to rest on the tongue and two elongated edge portions 2484a,b configured to rest on the occlusal surfaces of the molars.
  • central portion 2482 can include a convex section 2499 configured to sit over the lounge for comfort and ease of use.
  • a mouthpiece 2602 can have an elongate biteplate 2614.
  • the elongate biteplate 2614 can be configured to be placed on one side of the mouth and/or one quadrant of the teeth.
  • the device 21 1 can include a rounded end or nub 213.
  • the nub 213 can include the motor 215 therein, which can be configured similarly to the motors described above.
  • FIG. 21C-21 D by having only a nub 213 rather than a full mouthpiece, specific individual teeth in need of treatment can be targeted. Variations on the nub are possible.
  • the nub 2213 on device 221 1 can include a brush 2207 on the end configured to provide a more gentle vibratory force on the teeth.
  • the biteplate 714 for any of the mouthpieces described herein can include raised dimples 732, or outward extensions. There can be approximately one dimple 732 for each tooth intended to be treated. Further, the dimples 732 can be spaced apart in such a manner as to approximately align with the center of some or all of the occlusal surfaces of a patient's teeth when the mouthpiece is in use. The dimples 732 can advantageously help the mouthpiece effectively smack the teeth by providing an extended point of contact to ensure that contact is made with each tooth. In some embodiments, the dimples 732 can be customized to a patient's tooth alignment. Each dimple 732 can have a peak that has a surface area of less than 70%, such as less than 50%, of the surface area of the corresponding tooth so as to place pressure on less than 75% or less than 50% of each tooth.
  • the mouthpiece 802 (which can correspond to any mouthpiece described herein) can include two separable parts, the biteplate 814 and a mouthguard 834.
  • the biteplate 814 can be made of a hard material, such as metal.
  • the mouthguard can be made of a softer material such as a polymer.
  • the mouthguard 834 can be custom fit to the patient's mouth. By having a custom fit mouthguard 834, the mouthpiece 802 can be more efficient and effective in applying the vibratory smacking force on a patient's teeth. As shown in FIG. 8, the mouthguard 834 can include a hole 836 which can be used to place the mouthguard 834 over the biteplate 814 after formation.
  • the mouthguard 834 can be produced quickly and easily on-site, e.g., at a dentist's office, within minutes by using an oven 940.
  • the mouthguard 834 can be made of a material such as silicone or an ethylene vinyl acetate copolymer, e.g., Elvax®, that is easily formable once warm.
  • the oven 940 can include a heat source 941 , such as infrared bulbs, a heat lamp, or heating coils, configured to heat up the mouthguard 814.
  • a mouthguard preform 933 i.e.
  • one not yet formed to the teeth can be placed around a biteplate (which can be any of the biteplates described herein) and in the oven 940.
  • the mouthguard preform 933 and biteplate can be exposed to the heat source 941 for between 1 and 10 minutes at temperatures of between 120° and 200° F, less than 200°, or less than 175°.
  • the mouthguard preform 933 warms, it can become slightly softer, thereby conforming to the shape of any dimples in the biteplate without losing its overall shape.
  • the user can take the mouthguard preform 933 out of the oven 940 and have the patient bite down, leaving an impression of the teeth in the mouthguard preform 933.
  • the mouthguard preform 933 will be cool enough upon entering a patient's mouth to not burn the patient (in contrast to temperatures, for example, of over 212°). After the patient has bit down, and as the mouthguard preform 833 cools, it will retain its shape, thereby forming the final mouthguard 834.
  • the oven 940 can have a variety of configurations.
  • the oven 940 is relatively small such that it can easily sit on a counter or table at the office.
  • the oven 940 can include a drawer 932 with a handle, and the drawer 932 can be configured to hold the mouthguard preform 933.
  • the oven 940 can include a shelf 992 and a hinged door 994.
  • the oven 940 can further include a power switch, an indicator light, a timer, and/or a display to enhance ease of use.
  • the mouthguard 1 134 can have vacuum ports 1 144 to provide suction to exactly fit the mouthguard 1 134 to all of the surfaces of the teeth before the mouthpiece 1 134 cools completely.
  • the vacuum ports 1 144 can be removed after the mouthguard 1 134 is fully formed.
  • a mouthpiece 1302 of the dental devices described herein need not be formed to a patient's mouth, but can have a set shape. Further, as shown in Figures 13A-13F, the mouthpiece need not include a separate biteplate and mouthguard. Rather, the mouthpiece can be formed of a single piece.
  • any of the mouthpieces described herein can be connected to a base, such as base 104 or an alternative base.
  • a base 604 can be connected to any of the mouthpieces described herein.
  • the base 604 can include a housing 622, an on-off switch 624 to control the vibration, electrical contacts 630 to electrically connect the base 604 with a mouthpiece, a battery 626 to power the motor, and a circuit board 628 to control the motor.
  • the base 604 can be shaped such that it is easily held by a patient's hand. In one embodiment, the base 604 is small and light enough that it does not need to be gripped by the patient during use of the device.
  • a base 2804 can be connected to any of the mouthpieces described herein.
  • the base 2804 can include a handle 2881 configured to be easily held by a single hand and a mouthpiece connector 2887.
  • the handle 2881 can include a grip portion 2885 that can include indents 2883, such as four indents, configured to provide comfortable resting spot for a person's fingers when gripping the handle 2881.
  • the handle 2881 can be curved such that the grip portion 2885 can be gripped with a hand without having to tilt the device forward or up.
  • the angle between the grip portion 2885 and the mouthpiece connector 2887 can be between 30 and 60 degrees, such as approximately 45 degrees.
  • the base 2804 can house the power source, such as a battery, for the motor therein.
  • the base 2804 can include an on-off switch 2824 to control the vibration.
  • the base 2804 can include a battery indicator light 2893 thereon to indicate the amount of battery left.
  • the base 2804 can also include contacts 2891 thereon to interact with a charging station, as described below.
  • another exemplary base 1204 can be used with any of the mouthpieces described herein.
  • the base 1204 can include a motor 1206 therein (in place of or in addition to the motor in the mouthpiece).
  • the motor 1206 By including the motor in the base, there is advantageously more room for the connection to the battery while allowing the mouthpiece to be as slim as possible.
  • the mouthpiece 1202 can be free of a motor.
  • the mouthpieces can be configured to connect to the base in a variety of ways.
  • the base 1204 can include an extension 1220 to house the motor 1206, while the extension 1210 of the mouthpiece 1202 can include a hole 1221 therein to fit over or house the extension 1220 of the base 1204.
  • the base 1204 can include an extension 1220 having a hole 1222 therein that both holds the motor 1206 and engages with our houses the extension 1210 of the mouthpiece 1202.
  • the extension 1210 of the mouthpiece 1202 can include a corresponding cut-out 1232 to fit over the motor 1206 when it is snapped into the base 1204.
  • the base 1804 and the mouthpiece 1802 can be attached together with a mechanical connector 1844 that can set the orientation of connection and that can be released through a release button 1846.
  • the base 1904 and the mouthpiece 1902 can be attached together through a fork-type mechanical connection 1948; squeezing the fork portions together can lock or unlock the connection 1948.
  • a tightening collar 2050 can be used to connect a base 2004 and mouthpiece 2002.
  • the dental devices described herein can include a flexible portion 1444 between the mouthpiece 1402 and the base 1404.
  • the flexible portion 1444 can include a series of cut-outs that allow the portion 1444 to easily bend.
  • the flexible portion 1444 to provide enhanced comfort to the patient, for example, by limiting the amount of vibration that occurs outside of the mouth and by reducing the amount of torque that occurs on the mouth through the bite plate if the base is torqued suddenly.
  • the flexible portion can have an oval-like cross-section that easily conforms to the patient's mouth, thereby enhancing the comfort of the patient.
  • the devices described herein can be configured to be charged in a charging station, for example using a standard mini usb connection.
  • the charging station can include a protective covering 1502 configured to protect the device while not in use.
  • the protective covering 1502 can then be placed in a charging base (not shown in FIGS. 15A-15B).
  • the charging station 1600 can include a protective covering 1602 and a charging base 1604.
  • a connector slot 1606 can be used to sit the case 1602 in the charging base 1604.
  • charging pins 1608 can connect from the charging base 1604 through the protecting covering 1602 and into the device 1610 to charge the device.
  • An indicator light 1612 can indicate whether the charging station 1600 is charging.
  • a similar station 1700 is shown in FIGS. 17A-17D. It is to be understood that other sizes, shapes, and types of charging stations could be used.
  • the dental devices described herein can be used to strengthen the bone around teeth and tighten the ligaments around teeth such as for retention, e.g. orthodontic retention after braces are removed.
  • the device can be placed in the mouth for less than 10 minutes per day, such as less than 6 minutes, such as approximately 5 minutes, less than 5 minutes, or less than 1 minute per day for less than or equal to 180 days, less than or equal to 120 days, or less than or equal to 90 days to tighten the periodontal ligament after orthodontics.
  • Such use can be in addition to or in place of traditional retainers.
  • Use of the device can advantageously significantly decrease the time required for tightening of the periodontal ligament (from the average of six months to a year).
  • the dental device can also be used for less than 2 minutes per day, such as less than 1 minute per day, on a continuing basis to provide general tooth strengthening. Further, the dental devices described herein can also be used for strengthening bone during dental implant procedures, tightening ligaments, strengthening bone after periodontics cleaning and procedures, such as after bone grafting.
  • the devices described herein can have a microchip or Bluetooth connected thereto to record when and how long the device was used for.
  • the various elements of the mouthpieces and bases described herein with reference to specific embodiments could be substitute and/or combined with other embodiments described herein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Rehabilitation Tools (AREA)
PCT/US2013/031225 2012-04-13 2013-03-14 Method and device for increasing bone density in the mouth Ceased WO2013154737A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13775028.7A EP2841006A4 (en) 2012-04-13 2013-03-14 METHOD AND DEVICE FOR INCREASING THE BONE DENSITY IN THE MOUTH
AU2013246421A AU2013246421B2 (en) 2012-04-13 2013-03-14 Method and device for increasing bone density in the mouth
JP2015505734A JP6273618B2 (ja) 2012-04-13 2013-03-14 口内の骨密度を増加させる方法及び装置
CA2869934A CA2869934C (en) 2012-04-13 2013-03-14 Method and device for increasing bone density in the mouth
AU2017279666A AU2017279666A1 (en) 2012-04-13 2017-12-20 Method and device for increasing bone density in the mouth

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261624100P 2012-04-13 2012-04-13
US61/624,100 2012-04-13

Publications (2)

Publication Number Publication Date
WO2013154737A1 true WO2013154737A1 (en) 2013-10-17
WO2013154737A8 WO2013154737A8 (en) 2013-12-19

Family

ID=49325411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/031225 Ceased WO2013154737A1 (en) 2012-04-13 2013-03-14 Method and device for increasing bone density in the mouth

Country Status (6)

Country Link
US (4) US10085822B2 (enExample)
EP (1) EP2841006A4 (enExample)
JP (2) JP6273618B2 (enExample)
AU (2) AU2013246421B2 (enExample)
CA (1) CA2869934C (enExample)
WO (1) WO2013154737A1 (enExample)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108472106A (zh) * 2015-11-15 2018-08-31 微笑实验室公司 牙科用微振动装置
CN110786949A (zh) * 2019-11-19 2020-02-14 威海易一医疗器械有限公司 一种家用的个人护理牙结石去除装置
WO2023141009A1 (en) * 2022-01-18 2023-07-27 PerioTech, LLC Devices and methods of treating oral tissues
WO2023240197A3 (en) * 2022-06-09 2024-01-18 PerioTech, LLC Method for vibration enhanced alveolar augmentation

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150079533A1 (en) * 2007-07-05 2015-03-19 Orthoaccel Technologies Inc. Software to control vibration
US20150173856A1 (en) * 2007-03-14 2015-06-25 Orthoaccel Technologies Inc. Intra-oral vibrating othodontic devices
US9943380B2 (en) * 2007-03-14 2018-04-17 Orthoaccel Technologies, Inc. Vibrating orthodontic remodelling device
EP2814416B1 (en) * 2012-02-15 2018-07-11 Ortho Future Technologies (Pty) Ltd Orthodontic apparatus
US20200093575A1 (en) * 2018-09-26 2020-03-26 Advanced Orthodontics And Education Association, Llc Mouthpiece for application of vibration to dentition
AU2013246421B2 (en) * 2012-04-13 2017-09-28 Advanced Orthodontics And Education Association, Llc Method and device for increasing bone density in the mouth
USD713531S1 (en) * 2013-05-03 2014-09-16 Alveogenesis, Llc Dental device for bone remodeling
USD713532S1 (en) * 2013-05-03 2014-09-16 Alveogenesis, Llc Dental device for bone remodeling
USD716952S1 (en) * 2013-05-03 2014-11-04 Alveogenesis, Llc Dental device for bone remodeling
US20150125801A1 (en) * 2013-11-07 2015-05-07 Orthoaccel Technologies Inc. Dual head connector
USD719266S1 (en) * 2014-04-03 2014-12-09 Joseph Goldstein Dental appliance
USD746990S1 (en) * 2014-12-01 2016-01-05 Joseph Goldstein Dental appliance
USD750265S1 (en) 2014-12-03 2016-02-23 Neurohabilitation Corporation Non-invasive neurostimulation device
USD750266S1 (en) 2014-12-03 2016-02-23 Neurohabilitation Corporation Non-invasive neurostimulation device
USD751214S1 (en) 2014-12-03 2016-03-08 Neurohabilitation Corporation Non-invasive neurostimulation device
USD750794S1 (en) 2014-12-03 2016-03-01 Neurohabilitation Corporation Non-invasive neurostimulation device
USD752236S1 (en) * 2014-12-03 2016-03-22 Neurohabilitation Corporation Non-invasive neurostimulation device
US9415209B2 (en) 2014-12-03 2016-08-16 Neurohabilitation Corporation Methods of manufacturing devices for the neurorehabilitation of a patient
US9789306B2 (en) 2014-12-03 2017-10-17 Neurohabilitation Corporation Systems and methods for providing non-invasive neurorehabilitation of a patient
USD749746S1 (en) 2014-12-03 2016-02-16 Neurohabilitation Corporation Non-invasive neurostimulation device
USD752766S1 (en) 2014-12-03 2016-03-29 Neurohabilitation Corporation Non-invasive neurostimulation device
USD750264S1 (en) 2014-12-03 2016-02-23 Neurohabilitation Corporation Non-invasive neurostimulation device
USD759830S1 (en) * 2014-12-03 2016-06-21 Neurohabilitation Corporation Non-invasive neurostimulation device
USD751722S1 (en) 2014-12-03 2016-03-15 Neurohabilitation Corporation Non-invasive neurostimulation device
USD750267S1 (en) 2014-12-03 2016-02-23 Neurohabilitation Corporation Non-invasive neurostimulation device
US9283377B1 (en) 2014-12-03 2016-03-15 Neurohabilitation Corporation Devices for delivering non-invasive neuromodulation to a patient
US9656060B2 (en) 2014-12-03 2017-05-23 Neurohabilitation Corporation Methods of manufacturing devices for the neurorehabilitation of a patient
USD753315S1 (en) 2014-12-03 2016-04-05 Neurohabilitation Corporation Non-invasive neurostimulation device
USD750268S1 (en) 2014-12-03 2016-02-23 Neurohabilitation Corporation Non-invasive neurostimulation device
US9616222B2 (en) 2014-12-03 2017-04-11 Neurohabilitation Corporation Systems for providing non-invasive neurorehabilitation of a patient
USD751213S1 (en) 2014-12-03 2016-03-08 Neurohabilitation Corporation Non-invasive neurostimulation device
US9272133B1 (en) 2014-12-03 2016-03-01 Neurohabilitation Corporation Methods of manufacturing devices for the neurorehabilitation of a patient
USD753316S1 (en) 2014-12-03 2016-04-05 Neurohabilitation Corporation Non-invasive neurostimulation device
US9981127B2 (en) 2014-12-03 2018-05-29 Neurohabilitation Corporation Systems and methods for providing non-invasive neurorehabilitation of a patient
US9993640B2 (en) 2014-12-03 2018-06-12 Neurohabilitation Corporation Devices for delivering non-invasive neuromodulation to a patient
USD760397S1 (en) * 2014-12-03 2016-06-28 Neurohabilitation Corporation Non-invasive neurostimulation device
AU2016240406B2 (en) * 2015-03-31 2020-11-19 Kiel Corporation Pty Ltd An orthodontic device
CN104799963A (zh) * 2015-04-23 2015-07-29 黄斌 一种口腔扩撑器
WO2016199925A1 (ja) * 2015-06-10 2016-12-15 秀俊 西尾 口腔内振動付与装置
CA3016536A1 (en) * 2016-02-26 2017-08-31 Advanced Orthodontics And Education Association, Llc Method and device for dental vibration
EP3429536A4 (en) * 2016-04-07 2019-11-06 Theranova, LLC TREATMENT OF OSTEOPENIA AND OSTEOPOROSIS AND STIMULATING BONE GROWTH
USD797941S1 (en) 2016-06-01 2017-09-19 Advanced Orthodontics And Education Association, Llc Dental vibration device
USD820458S1 (en) 2017-02-27 2018-06-12 Advanced Orthodontics And Education Association, Llc Dental vibration device
USD795431S1 (en) * 2017-04-21 2017-08-22 Advanced Orthodontics And Education Association, Llc Dental vibration device
USD874006S1 (en) * 2017-06-15 2020-01-28 Aerofit.Dk Aps Respiratory exercise device
USD839435S1 (en) * 2017-10-05 2019-01-29 Advanced Orthodontics And Education Association, Llc Mouthpiece
USD885768S1 (en) * 2018-03-15 2020-06-02 Chunfang Li Toothbrush head
US11141254B2 (en) 2018-08-10 2021-10-12 Sdc U.S. Smilepay Spv Mouthpiece for teeth whitening
US11311351B2 (en) 2018-09-04 2022-04-26 Creative Esp Incorporated Patient-specific tray for orthodontic vibrational force management
US20200093572A1 (en) * 2018-09-24 2020-03-26 Advanced Orthodontics And Education Association, Llc Systems and methods for reducing root resorption in orthodontic treatment
US20200093573A1 (en) * 2018-09-24 2020-03-26 Advanced Orthodontics And Education Association, Llc Apparatuses and methods for preservation of loose dentition
USD879301S1 (en) 2018-10-16 2020-03-24 Michael Brady Morehead Orthodontic alignment device
US11771527B2 (en) 2019-02-20 2023-10-03 Sdc U.S. Smilepay Spv Limited wear aligner and treatment methods
CA3081601C (en) * 2019-05-28 2022-07-12 Cheng-Hsiang Hung Vibration device for dental use and orthodontic correction method
WO2021016650A1 (en) * 2019-07-29 2021-02-04 David Penn Consulting Pty. Ltd. An orthodontic appliance including vibration source.
USD932023S1 (en) * 2019-09-20 2021-09-28 PhotoDynamic Inc. Oral hygiene device
USD937770S1 (en) 2019-11-25 2021-12-07 Amazon Technologies, Inc. Charging clip
USD890350S1 (en) 2020-01-07 2020-07-14 ZeroBrush, Inc. Teeth cleaning system
USD961105S1 (en) * 2020-07-03 2022-08-16 Guangdong Roman Technology Co., Ltd. Vibrating dental device
CN112637422B (zh) * 2020-12-31 2022-02-22 Oppo广东移动通信有限公司 振动调节方法、装置、存储介质以及电子设备
US11229504B1 (en) * 2021-01-07 2022-01-25 Ortho Future Technologies (Pty) Ltd System and method for determining a target orthodontic force
US11278376B1 (en) 2021-01-07 2022-03-22 Ortho Future Technologies (Pty) Ltd Orthodontic treatment staging
US11291524B1 (en) 2021-01-07 2022-04-05 Ortho Future Technologies (Pty) Ltd Orthodontic appliance configuration
US11241301B1 (en) 2021-01-07 2022-02-08 Ortho Future Technologies (Pty) Ltd Measurement device
USD999382S1 (en) * 2021-11-10 2023-09-19 PerioTech, LLC Molar mouthpiece
USD999383S1 (en) * 2021-11-10 2023-09-19 PerioTech, LLC Cuspid mouthpiece
USD1040352S1 (en) * 2021-11-10 2024-08-27 PerioTech, LLC Incisor mouthpiece
US20230240802A1 (en) * 2022-01-28 2023-08-03 PerioTech, LLC Devices and methods of treating sleep and awake bruxism

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030098A (en) * 1989-08-29 1991-07-09 Branford William G Vibratory dental mouthpiece
JP2005319254A (ja) * 2004-05-08 2005-11-17 Junichiro Marutani 口腔清掃用マウスピース上下に同時に効果的な振動を与える装置
US20100036286A1 (en) * 2007-02-28 2010-02-11 Alexander Scholz Device for indirectly measuring occlusal forces
US20100055634A1 (en) 2007-03-14 2010-03-04 Orthoaccel Technologies, Inc. Vibrating dental devices
US20100092916A1 (en) * 2008-09-09 2010-04-15 New York University Method and devices to increase craniofacial bone density
US20110136070A1 (en) * 2008-03-31 2011-06-09 Orthoaccel Technologies,Inc. Vibrating compressible dental plate for correcting malocclusion

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1826434A (en) * 1927-04-05 1931-10-06 Walter A Reiss Vibrating device
US2152391A (en) * 1937-01-21 1939-03-28 Orthodontists Supply Co Inc Dental appliance
AT336174B (de) 1971-04-06 1977-04-25 Kraus Werner Spule bzw. spulengruppe zur behandlung eines korperteiles mittels eines niederfrequenten magnetischen wechselfeldes
US4011616A (en) * 1975-05-14 1977-03-15 Kennedy Carroll W Teeth cleaning device
US4315503A (en) 1976-11-17 1982-02-16 Electro-Biology, Inc. Modification of the growth, repair and maintenance behavior of living tissues and cells by a specific and selective change in electrical environment
US4266532A (en) 1976-11-17 1981-05-12 Electro-Biology, Inc. Modification of the growth, repair and maintenance behavior of living tissues and cells by a specific and selective change in electrical environment
US4123844A (en) 1976-12-20 1978-11-07 Kurz Craven H Vibrational mouth pad orthodontic appliance
US4348178A (en) * 1977-01-03 1982-09-07 Kurz Craven H Vibrational orthodontic appliance
US4219619A (en) * 1978-09-08 1980-08-26 Zarow Merle C Vibrating dental instrument for setting crowns
BR8107560A (pt) 1981-11-19 1983-07-05 Luiz Romariz Duarte Estimulacao ultra-sonica da consolidacao de fraturas osseas
US4505672A (en) * 1983-11-14 1985-03-19 Kurz Craven H Two-piece gnathologic orthodontic positioner
US5188531A (en) 1986-09-12 1993-02-23 Lloyd Von Sutfin Method and equipment for treatment of periodontal disease
US4883046A (en) 1988-04-12 1989-11-28 Vitek, Inc. Involuntary oscillator system for the mandible
US5083552A (en) * 1990-06-05 1992-01-28 Harvey Lipowitz Computer controlled massage device
AU642266B2 (en) * 1990-06-25 1993-10-14 Kevin John Bourke Method and apparatus for dental treatment
US5191880A (en) 1990-07-31 1993-03-09 Mcleod Kenneth J Method for the promotion of growth, ingrowth and healing of bone tissue and the prevention of osteopenia by mechanical loading of the bone tissue
US5273028A (en) 1990-07-31 1993-12-28 Mcleod Kenneth J Non-invasive means for in-vivo bone-growth stimulation
US5374237A (en) 1990-12-17 1994-12-20 Mccarty, Jr.; William L. Therapeutic method and apparatus for effecting translatory continuous passive motion of the temporomandibular joint
US5184718A (en) * 1991-10-21 1993-02-09 Harvey Albert Disposable denture container
NO180145C (no) 1993-09-10 1997-02-26 Harald Berge Tannbörste og tildannelse av samme
US5496256A (en) 1994-06-09 1996-03-05 Sonex International Corporation Ultrasonic bone healing device for dental application
US5639238A (en) 1994-09-13 1997-06-17 Fishburne, Jr.; Cotesworth P. Methods for the vibrational treatment of oral tissue and dental materials
USD374932S (en) 1995-01-20 1996-10-22 Engelman Joseph A Cleft palate impression tray
US5692523A (en) 1996-10-15 1997-12-02 Theodore P. Croll Two-piece mouthguard
WO1998034666A1 (fr) * 1997-02-06 1998-08-13 Thinky Corp. Dispositif anti-assoupissement et procede associe
US5997490A (en) 1997-02-12 1999-12-07 Exogen, Inc. Method and system for therapeutically treating bone fractures and osteoporosis
EP1001703A1 (en) 1997-08-05 2000-05-24 The Research Foundation of State University of New York Non-invasive method of physiologic vibration quantification
US5967784A (en) * 1998-01-13 1999-10-19 Powers; Michael J. Hand held device for reducing the discomfort associated with the adjusting of orthodontic appliances
US6032677A (en) 1998-07-17 2000-03-07 Blechman; Abraham M. Method and apparatus for stimulating the healing of medical implants
US6231528B1 (en) 1999-01-15 2001-05-15 Jonathan J. Kaufman Ultrasonic and growth factor bone-therapy: apparatus and method
US6468294B2 (en) * 1999-02-22 2002-10-22 Jonathan D. Griffith Vibrating pacifier
USD443981S1 (en) * 1999-11-08 2001-06-26 Divincenzo Martha Denture holder
AU2001292872A1 (en) 2000-09-22 2002-04-02 The Board Of Trustee Of The University Of Illinois Use of cyclic forces to expedite remodeling of craniofacial bones
GB2371217B (en) 2001-01-08 2004-04-28 Mcdougall Gregory J Toothbrush
ITTO20011135A1 (it) 2001-12-05 2003-06-05 Igea Srl Sistema elettronico per la valutazione densitometrica-strutturale deltessuto osseo e per la stimolazione dell'osteogenesi in campo odontoia
US20030196283A1 (en) 2002-04-23 2003-10-23 Eyal Eliav Powered toothbrush
US20110308024A1 (en) * 2002-06-03 2011-12-22 Hegemann Kenneth J Oral Brushing Devices and/or Methods
US7166067B2 (en) 2002-10-07 2007-01-23 Juvent, Inc. Exercise equipment utilizing mechanical vibrational apparatus
US6884227B2 (en) 2002-11-08 2005-04-26 Juvent, Inc. Apparatuses and methods for therapeutically treating damaged tissues, bone fractures, osteopenia, or osteoporosis
US6820623B2 (en) * 2002-11-14 2004-11-23 Bite Tech, Inc. Polyethylene dental appliance and mouthguard with tactifier resin
EP1435757A1 (en) 2002-12-30 2004-07-07 Andrzej Zarowski Device implantable in a bony wall of the inner ear
US20050119699A1 (en) * 2003-11-28 2005-06-02 Sari Fesal K. Vibrating pacifier
US7044737B2 (en) * 2004-03-05 2006-05-16 Liang Fu Ultrasound oral hygiene and therapeutic device
US7462158B2 (en) 2004-05-07 2008-12-09 Amit Mor Bone-growth stimulator
WO2005107636A1 (en) 2004-05-11 2005-11-17 Remedent Nv Method and device for enhancing the treatment of teeth and gum
AU2005239796A1 (en) 2004-05-11 2005-11-17 Remedent Nv Method and device for enhancing the treatment of teeth and gums
US7201271B1 (en) * 2004-10-15 2007-04-10 Saad Jody L Oral care device portable apparatus with sanitizing towelettes
CN101027030A (zh) 2004-12-22 2007-08-29 松下电工株式会社 牙龈按摩器
US20070248930A1 (en) 2005-02-17 2007-10-25 Biolux Research Ltd. Light therapy apparatus and methods
AU2006242073B2 (en) * 2005-05-03 2011-01-20 Ultreo, Llc Oral hygiene devices employing an acoustic waveguide
WO2006128021A2 (en) * 2005-05-25 2006-11-30 Biolase Technology, Inc. Device having activated textured surfaces for treating oral tissue
US20060281040A1 (en) 2005-06-10 2006-12-14 Kelling Albert L Method for use in orthodontics for treating patients with malocclusion
EP1993467A4 (en) 2006-02-03 2009-04-15 Reika Ortho Technologies Inc ORTHODONTIC SYSTEM WITH MECHANICALLY TRANSDUCTIVE CYCLIC FORCE
US8672128B2 (en) * 2006-02-09 2014-03-18 Dr. Tung's Products Container for sanitizing an article
WO2007116655A1 (ja) 2006-03-28 2007-10-18 Matsushita Electric Works, Ltd. 歯列矯正装置
CA2685142C (en) 2006-03-28 2012-01-24 Panasonic Electric Works Co., Ltd. Orthodontic appliance
CN101404952B (zh) 2006-03-28 2013-01-23 松下电器产业株式会社 齿列矫正装置
US7732952B1 (en) * 2006-07-14 2010-06-08 Ultreo, Inc. Oscillatory motors and devices incorporating them
JP4333730B2 (ja) 2006-11-27 2009-09-16 パナソニック電工株式会社 歯列矯正装置
US20150173856A1 (en) 2007-03-14 2015-06-25 Orthoaccel Technologies Inc. Intra-oral vibrating othodontic devices
US20080227047A1 (en) * 2007-03-14 2008-09-18 Michael Kenneth Lowe Systems and methods for correcting malocclusion
US8500446B2 (en) 2007-03-14 2013-08-06 Orthoaccel Technologies Inc. Vibrating orthodontic remodelling device
US9943380B2 (en) 2007-03-14 2018-04-17 Orthoaccel Technologies, Inc. Vibrating orthodontic remodelling device
US9700384B2 (en) 2007-03-14 2017-07-11 Orthoaccel Technologies, Inc. Pulsatile orthodontic device and methods
US20150079533A1 (en) 2007-07-05 2015-03-19 Orthoaccel Technologies Inc. Software to control vibration
US20160184054A1 (en) 2007-07-05 2016-06-30 Orthoaccel Technologies, Inc. Pulsatile orthodontic device and methods
US9848959B2 (en) 2007-07-05 2017-12-26 Orthoaccel Technologies, Inc. Massaging or brushing bite plates
TW200934446A (en) * 2007-10-22 2009-08-16 Colgate Palmolive Co Oral care implement with air flossing system
US20160001095A9 (en) * 2008-02-26 2016-01-07 Susan J. Lee Method and apparatus for preventing localized stasis of cerebrospinal fluid
US20090276972A1 (en) * 2008-05-08 2009-11-12 Dugan David M Tooth brushing system
WO2009158297A1 (en) 2008-06-23 2009-12-30 Orthoaccel Technologies, Inc. Differential vibration of dental plate
US20090326602A1 (en) 2008-06-27 2009-12-31 Arkady Glukhovsky Treatment of indications using electrical stimulation
US8708701B2 (en) * 2009-02-10 2014-04-29 Orthoaccel Technologies, Inc. Vibrating dental plate and accessories
WO2010147972A1 (en) 2009-06-16 2010-12-23 Regents Of The University Of Minnesota Spinal probe with tactile force feedback and pedicle breach prediction
US20110007920A1 (en) * 2009-07-13 2011-01-13 Sonitus Medical, Inc. Intra-oral brackets for transmitting vibrations
CA2770642C (en) 2009-08-11 2019-04-02 New York University Orthodontic methods and devices
US20120157895A1 (en) * 2009-08-26 2012-06-21 The University Of Kansas Device, system, and method for mechanosensory nerve ending stimulation
US20110136071A1 (en) 2009-10-09 2011-06-09 Orthoaccel Technologies, Inc. Brace cap
US20110155146A1 (en) * 2009-12-31 2011-06-30 Marsh David C Mouthpiece and related systems and methods
JP5431985B2 (ja) * 2010-01-25 2014-03-05 パナソニック株式会社 歯科治療用マウスピース成形基材およびその予備成形方法
US9968421B2 (en) 2012-03-26 2018-05-15 Orthoaccel Technologies, Inc. Tooth positioner and vibrator combination
WO2013155366A1 (en) 2012-04-13 2013-10-17 Orthoaccel Technologies, Inc. Laser orthodontic devices
AU2013246421B2 (en) * 2012-04-13 2017-09-28 Advanced Orthodontics And Education Association, Llc Method and device for increasing bone density in the mouth
US9662183B2 (en) 2012-07-18 2017-05-30 Orthoaccel Technologies, Inc. Electro-orthodontic device
US8986003B2 (en) 2012-09-13 2015-03-24 Orthoaccel Technologies, Inc. Pearlescent white aligners
US20140080082A1 (en) 2012-09-14 2014-03-20 Orthoaccel Technologies Inc. Light cure bite plate for orthodontic remodeling devices
US10039617B2 (en) 2012-09-24 2018-08-07 Orthoaccel Technologies, Inc. Vibrating orthodontic strip
US9968422B2 (en) 2012-12-27 2018-05-15 Orthoaccel Technologies, Inc. Shapeable bite plates
US9827082B2 (en) 2013-02-26 2017-11-28 Orthoaccel Technologies, Inc. Fluoride releasing bite plate
US9949671B2 (en) 2013-03-13 2018-04-24 Orthoaccel Technologies, Inc. Diagnostic mouthpieces
USD765255S1 (en) * 2014-05-29 2016-08-30 Jbl Radical Innovations, Llc Mouthpiece
US20160100924A1 (en) * 2014-10-14 2016-04-14 Wesley Wilson Dental appliance case
USD797941S1 (en) * 2016-06-01 2017-09-19 Advanced Orthodontics And Education Association, Llc Dental vibration device
USD820458S1 (en) * 2017-02-27 2018-06-12 Advanced Orthodontics And Education Association, Llc Dental vibration device
USD795431S1 (en) * 2017-04-21 2017-08-22 Advanced Orthodontics And Education Association, Llc Dental vibration device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030098A (en) * 1989-08-29 1991-07-09 Branford William G Vibratory dental mouthpiece
JP2005319254A (ja) * 2004-05-08 2005-11-17 Junichiro Marutani 口腔清掃用マウスピース上下に同時に効果的な振動を与える装置
US20100036286A1 (en) * 2007-02-28 2010-02-11 Alexander Scholz Device for indirectly measuring occlusal forces
US20100055634A1 (en) 2007-03-14 2010-03-04 Orthoaccel Technologies, Inc. Vibrating dental devices
US20110136070A1 (en) * 2008-03-31 2011-06-09 Orthoaccel Technologies,Inc. Vibrating compressible dental plate for correcting malocclusion
US20100092916A1 (en) * 2008-09-09 2010-04-15 New York University Method and devices to increase craniofacial bone density

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2841006A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108472106A (zh) * 2015-11-15 2018-08-31 微笑实验室公司 牙科用微振动装置
CN110786949A (zh) * 2019-11-19 2020-02-14 威海易一医疗器械有限公司 一种家用的个人护理牙结石去除装置
WO2023141009A1 (en) * 2022-01-18 2023-07-27 PerioTech, LLC Devices and methods of treating oral tissues
US20230263607A1 (en) * 2022-01-18 2023-08-24 PerioTech, LLC Devices and methods of treating oral tissues
GB2629315A (en) * 2022-01-18 2024-10-23 Perioteech Llc Devices and methods of treating oral tissues
WO2023240197A3 (en) * 2022-06-09 2024-01-18 PerioTech, LLC Method for vibration enhanced alveolar augmentation

Also Published As

Publication number Publication date
US20180360565A1 (en) 2018-12-20
USD876629S1 (en) 2020-02-25
WO2013154737A8 (en) 2013-12-19
JP2015518397A (ja) 2015-07-02
JP2018064976A (ja) 2018-04-26
US20130273490A1 (en) 2013-10-17
AU2013246421A1 (en) 2014-10-30
CA2869934C (en) 2018-10-30
CA2869934A1 (en) 2013-10-17
US10085822B2 (en) 2018-10-02
AU2013246421B2 (en) 2017-09-28
EP2841006A1 (en) 2015-03-04
AU2017279666A1 (en) 2018-01-25
US20180185119A1 (en) 2018-07-05
JP6273618B2 (ja) 2018-02-07
EP2841006A4 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
AU2013246421B2 (en) Method and device for increasing bone density in the mouth
AU2017224236B2 (en) Method and device for dental vibration
US20200315745A1 (en) Variable-frequency oral vibration systems and methods
KR101688545B1 (ko) 개선된 진동 치과 장치들
US9968421B2 (en) Tooth positioner and vibrator combination
US20150173856A1 (en) Intra-oral vibrating othodontic devices
EP3148488B1 (en) Oral appliance for treating sleep apnea
WO2008061328A3 (en) Parafunctional conditioning occlusal mouth guard
WO2011053533A1 (en) Dental appliance and methods of using the same
US20200360226A1 (en) Vibration device with intraoral and extraoral attachments
US20140275759A1 (en) Oral sex stimulator
US20240423829A1 (en) Oral appliance for treating sleep apnea
HK40033653B (zh) 牙科用振动装置及牙齿矫正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2869934

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015505734

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013246421

Country of ref document: AU

Date of ref document: 20130314

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013775028

Country of ref document: EP