WO2013154140A1 - Method and device for manufacturing glass plate - Google Patents

Method and device for manufacturing glass plate Download PDF

Info

Publication number
WO2013154140A1
WO2013154140A1 PCT/JP2013/060864 JP2013060864W WO2013154140A1 WO 2013154140 A1 WO2013154140 A1 WO 2013154140A1 JP 2013060864 W JP2013060864 W JP 2013060864W WO 2013154140 A1 WO2013154140 A1 WO 2013154140A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
barrel head
glass ribbon
barrel
outer peripheral
Prior art date
Application number
PCT/JP2013/060864
Other languages
French (fr)
Japanese (ja)
Inventor
白石 喜裕
真毅 後藤
元気 小林
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201380019454.7A priority Critical patent/CN104220387B/en
Priority to KR1020147028520A priority patent/KR102045834B1/en
Publication of WO2013154140A1 publication Critical patent/WO2013154140A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/04Changing or regulating the dimensions of the molten glass ribbon
    • C03B18/06Changing or regulating the dimensions of the molten glass ribbon using mechanical means, e.g. restrictor bars, edge rollers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a thin glass plate according to the float bath method.
  • glass substrates for flat panel displays such as liquid crystal displays and plasma displays have been increased in size and thickness.
  • a float method is known in which a float bath in which a molten metal such as metallic tin is stored is used and a molten glass is thinly stretched in the horizontal direction on the molten metal.
  • a molten glass is floated on the molten metal of the float bath to ensure a necessary thickness according to the purpose, and a strip-shaped glass ribbon can be formed by drawing the molten glass in the horizontal direction.
  • a glass substrate having a desired size can be obtained by cutting the glass ribbon into a required size.
  • a top roll (T / T) that pulls both ends in the width direction of the glass ribbon outward on the molten metal of the float bath.
  • a forming apparatus called R is provided, and a method is adopted in which the glass ribbon is stretched to both ends in the width direction to reduce the thickness.
  • a thin glass ribbon is slowly cooled and then cut into a required size, followed by polishing and washing, whereby a target glass substrate can be obtained.
  • large and thin glass substrates are produced in large quantities, and large glass substrates having a thickness of about 0.7 mm and a length and width of several meters are produced as glass substrates.
  • a large amount of portable information terminal devices have been manufactured.
  • a liquid crystal panel applied to the portable information terminal device a liquid crystal panel using a glass substrate having a thickness of about 0.7 mm is used.
  • FIG. 11 shows an example of a float bath used in the float process.
  • the float bath 100 includes a bottom bath 102 having a molten metal 101 such as molten tin inside, and a molten bath is formed on the inlet side of the bottom bath 102.
  • Molten glass 103 flows in from the furnace hearth.
  • the molten glass 103 is stretched to a target width on the molten metal 101 by a plurality of top rolls 105 and gradually cooled to form a glass ribbon 106 having a required width and thickness.
  • a top roll 105 applied to this type of float bath 100, a barrel head 105A formed in a disk shape as shown in FIG.
  • the barrel head 105A shown in FIG. 12 adjusts the width of the molten glass 103 by applying an outward tensile force to the edge portion 103a while the outer peripheral blades 105a and 105a are biting into the edge portion 103a of the molten glass 103.
  • the width and thickness of the ribbon 106 can be adjusted.
  • glass substrates tend to be made thinner and the use of a glass substrate having a thickness of about 0.3 mm as a glass substrate for a panel of a portable information terminal device has been studied from the beginning. Yes. Further, there is a demand for further thinning of glass substrates for flat panel displays.
  • the molten glass 103 immediately after being poured into the float bath 100 and being expanded cannot be easily pulled because it is liquid at high temperature, but the molten glass 103 moves from the upstream region to the downstream region of the float bath 100. As it is gradually cooled and the viscosity gradually increases, the molten glass 103 having increased viscosity can be pulled and expanded by the barrel head 105A.
  • FIG. 13 is a diagram for explaining a state in which the barrel head 105A is pressed from above with a strong force against the edge portion 103a of the molten glass 103.
  • FIG. 13 When the barrel head 105A is strongly pressed against the edge portion 103a of the molten glass 103 shown in FIG. 13A as shown in FIG. 13B, the edge portion 103a sinks deeply in proportion to the pressing force of the barrel head 105A. It is transformed into a U-shaped bag shape. If the deformed glass is solidified in this bag state, there is a problem that a locally deformed portion 110 called a straw having a T-shaped cross section is generated as shown in FIG.
  • the cross section may be deformed into an S shape as shown in FIG.
  • a locally deformed portion 111 called a straw is generated that is deformed so that the deformed portion overlaps the upper bag portion 111a and the lower bag portion 111b.
  • molten metal may be caught inside the glass as indicated by arrows a and b in FIG.
  • the generation of the locally deformed portions 110 and 111 is conspicuous in a thin glass plate, particularly when a glass plate having a thickness of 1 mm or less is manufactured by the float method like the glass substrate for a display device described above. There is a problem to do.
  • the present inventor has made various studies on a technique for producing a thin glass ribbon of 1 mm or less by forming molten glass by a float process.
  • the inventors When forming a ribbon, the inventors have found that the occurrence of a locally deformed portion called a straw can be suppressed by devising the position of applying a tension and the barrel head of the top roll used therefor, and have reached the present invention. It is an object of the present invention to provide a manufacturing method and a manufacturing apparatus that can manufacture a glass ribbon without causing local deformation when forming a thin glass ribbon by a float process, and contribute to stable production of a glass plate. To do.
  • the present invention relates to a method of manufacturing a glass plate in which a glass ribbon is manufactured by moving a molten glass along a moving path of a molten glass provided on the molten metal, from an upstream area to a downstream area of the moving path.
  • the top roll When producing a glass ribbon having a thickness of 1 mm or less by applying an outward tensile force to both ends of the glass ribbon by a plurality of pairs of top rolls disposed at both ends in the width direction of the movement path, the top roll, Using a top roll with a barrel head that pulls the widthwise end of the glass ribbon conveyed from the upstream area to the downstream area along the movement path, Out of the barrel heads that are provided in the upstream, middle and downstream areas of the moving path and apply an outward tensile force to the widthwise ends of the glass ribbon, three or more outer circumferences as barrel heads provided in the middle stream
  • the present invention relates to a glass plate manufacturing method using a multistage barrel head provided with blades and using a reference barrel head provided with one or two rows of outer peripheral blades as barrel heads provided in an upstream region and a downstream region.
  • the present invention relates to a method for producing a glass plate in which the multistage barrel head is installed with the logarithm of the viscosity of the glass ribbon as a midstream region in the range of 5.29 to 6.37 dPa ⁇ s.
  • the present invention provides a plurality of upstream reference barrel heads, intermediate flow multistage barrel heads and downstream reference barrel heads for each region, and is formed along the circumferential direction of the outer peripheral surface of each barrel head.
  • the direction of the surface formed by the outer peripheral blades of each row is substantially perpendicular to the glass ribbon and parallel or inclined to the glass ribbon transport direction.
  • the present invention relates to a method of manufacturing a glass plate in which each barrel head is arranged so that the inclination angle gradually decreases from a multistage barrel head in the middle basin to a reference barrel head in the downstream area so that the inclination angle gradually increases toward the multistage barrel head in the basin.
  • the present invention provides a barrel head provided with an outer peripheral blade in a row in which an outer diameter of one side end portion of the barrel head provided with a row of outer peripheral blades close to the edge in the width direction of the moving path is close to the center in the width direction of the moving path. It is related with the manufacturing method of the glass plate using the multistage barrel head made smaller than the outer diameter of the other side edge part.
  • This invention relates to the manufacturing method of the glass plate which uses the alkali free glass which has the following compositions in the mass percentage display of an oxide basis as said molten glass.
  • SiO 2 50 to 73%
  • Al 2 O 3 10.5 to 24%
  • B 2 O 3 0 to 12%
  • SrO: 0 to 24% BaO: 0 to 13.5%
  • ZrO 2 0 to 5%.
  • This invention relates to the manufacturing method of the glass plate which uses the alkali free glass which has the following compositions in the mass percentage display of an oxide basis as said molten glass.
  • This invention relates to the manufacturing method of the glass plate which uses the alkali free glass which has the following compositions in the mass percentage display of an oxide basis as said molten glass.
  • SiO 2 54 to 73% Al 2 O 3 : 10.5 to 22.5%
  • B 2 O 3 0 to 5.5%
  • the present invention includes a float bath for storing molten metal, forming a glass ribbon by moving a molten glass from an upstream area to a downstream area of the molten path, wherein a molten glass moving path is formed on the molten metal.
  • a plurality of pairs of top rolls disposed on both sides in the width direction of the movement path from the upstream area to the downstream area of the movement path in the float bath, the top rolls on both sides in the width direction of the movement path of the molten glass.
  • Rotating shafts that extend individually in the horizontal direction, and outer peripheral blades that are attached to the tip end side of the rotating shaft and pressed against the widthwise end of the glass ribbon that is transported from the upstream region to the downstream region along the movement path
  • a multistage barrel head that has three or more rows of outer peripheral blades and pulls the end of the glass ribbon in the width direction is provided in the middle flow area of the movement path.
  • the basin and downstream region of, has an outer peripheral edge of one or two rows, apparatus for producing a glass plate reference barrel head is provided to pull the end portion in the width direction of the glass ribbon on the outside.
  • the glass plate manufacturing apparatus of the present invention a configuration in which the multistage barrel head is disposed in a region where the logarithmic value of the viscosity of the glass ribbon is 5.29 to 6.37 dPa ⁇ s can be employed.
  • the glass plate manufacturing apparatus of the present invention can be applied when the thickness of the glass ribbon formed by the float bath is 1 mm or less.
  • the glass plate manufacturing apparatus of the present invention includes a plurality of upstream reference barrel heads, a middle multi-stage barrel head, and a downstream reference barrel head for each region, and a peripheral surface of each barrel head.
  • the direction of the surface formed by the outer peripheral blades of each row formed along the direction is arranged substantially perpendicular to the glass ribbon and parallel to or inclined with respect to the conveying direction of the glass ribbon.
  • Each barrel head is arranged so that the inclination angle gradually increases from the reference barrel head of the middle basin to the multi-stage barrel head in the middle basin, and gradually decreases from the multi-stage barrel head in the middle basin to the reference barrel head in the downstream area. Configuration can be adopted.
  • the outer diameter of one side end of the barrel head provided with the outer peripheral edge of the row close to the width direction edge of the moving path is in the row close to the width direction center of the moving path.
  • the structure made smaller than the outer diameter of the other side edge part of the barrel head which provided the outer periphery blade is employable.
  • This invention relates to the manufacturing apparatus of the glass plate to which the alkali free glass which has the following compositions is applied as said molten glass in the mass percentage display of an oxide basis.
  • SiO 2 50 to 73%
  • Al 2 O 3 10.5 to 24%
  • B 2 O 3 0 to 12%
  • SrO: 0 to 24% BaO: 0 to 13.5%
  • ZrO 2 0 to 5%.
  • This invention relates to the manufacturing apparatus of the glass plate to which the alkali free glass which has the following compositions is applied as said molten glass in the mass percentage display of an oxide basis.
  • This invention relates to the manufacturing apparatus of the glass plate to which the alkali free glass which has the following compositions is applied as said molten glass in the mass percentage display of an oxide basis.
  • SiO 2 54 to 73% Al 2 O 3 : 10.5 to 22.5%
  • B 2 O 3 0 to 5.5%
  • a glass ribbon is formed by applying an outward tensile force to the end of the molten glass while pressing the end of the molten glass in the width direction of the moving path of the float bath by the multistage barrel head.
  • the multi-stage barrel head presses against the end of the glass ribbon and applies a strong tensile force
  • the amount of deformation in the thickness direction on the end side of the glass ribbon is higher than that of the conventional barrel head.
  • the holding cost by the barrel head can be reduced.
  • a thin glass ribbon can be obtained without causing a local deformation portion called a straw in the glass ribbon in the midstream region.
  • the glass ribbon in the midstream area of the float bath tends to cause a local deformation part called a straw, but by using a multistage barrel head on the molten glass in the midstream area and applying a tensile force, The amount of deformation in the thickness direction can be reduced on the end side, and a thin glass ribbon with no locally deformed portion can be obtained.
  • This glass ribbon there are no desired dimensions such as cracking or chipping.
  • a thin glass plate of 1 mm or less can be obtained.
  • FIG. 1 is a schematic diagram showing the overall configuration of the glass plate manufacturing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a configuration diagram illustrating an example of an arrangement state of top rolls provided in the manufacturing apparatus.
  • 3 shows a barrel head applied to a top roll provided in the manufacturing apparatus,
  • FIG. 3 (a) is a front view of the multi-stage barrel head,
  • FIG. 3 (b) is a cross-sectional view of the multi-stage barrel head,
  • FIG. 3C is a cross-sectional view of the reference barrel head.
  • FIG. 4 is a perspective view of a multistage barrel head provided in the manufacturing apparatus.
  • FIG. 5 is a side view which shows the state which is making the pushing force and the tensile force act on the edge part of a molten glass using the other example of the multistage barrel head provided in the manufacturing apparatus.
  • FIG. 6 is a plan view showing a state in which a tensile force is applied to the end portion of the molten glass using another example of the multistage barrel head provided in the manufacturing apparatus.
  • FIG. 7 is a graph showing the state of viscosity at each temperature for an example of molten glass supplied to the production apparatus.
  • FIG. 8 is a graph showing an example of a state of occurrence of a glass ribbon straw in a conventional float bath.
  • FIG. 9 is a graph showing the results obtained by comparing the width of the glass ribbon when the multi-stage barrel head is provided in the float bath and when the conventional barrel head is provided.
  • FIG. 10 is a graph showing an example of compressive stress distribution at the end of a glass ribbon supplied to a conventional float bath.
  • FIG. 11 is a schematic plan view showing an example of a float bath provided with a conventional top roll.
  • FIG. 12 is a cross-sectional view showing an example of a state in which a barrel head provided on a conventional top roll is pushed into an end portion of a glass ribbon.
  • FIG. 13 shows the relationship between the end of the molten glass and the conventional barrel head.
  • FIG. 13 (a) is a sectional view showing the end of the glass ribbon, and FIG.
  • FIG. 13 (b) is the barrel at the end of the glass ribbon.
  • FIG. 13C is a cross-sectional view showing an example of an S-shaped local deformation portion (straw) formed on the end side of the glass ribbon.
  • FIG. 14 is a cross-sectional view showing an example of a T-shaped local deformation portion formed on the end side of the glass ribbon.
  • FIG. 15 is a cross-sectional view showing an example of a locally deformed portion having an S-shaped cross section formed on the end side of the glass ribbon.
  • FIG. 1 shows a schematic configuration of a glass plate manufacturing apparatus according to a first embodiment of the present invention.
  • a glass plate manufacturing apparatus (float bath) 1 according to the present embodiment is a refractory furnace having a substantially rectangular shape in plan view.
  • the bathtub 2 is composed of a refractory bottom structure, side walls, and an upper structure. In FIG. 1, only the bottom structure is illustrated in a plan view.
  • the upper structure side of the bathtub 2 is provided with accessory equipment such as a gas supply pipe such as a non-oxidizing gas and a temperature controller, and the atmosphere of the bathtub 2 can be controlled to a non-oxidizing gas atmosphere.
  • accessory equipment such as a gas supply pipe such as a non-oxidizing gas and a temperature controller, and the atmosphere of the bathtub 2 can be controlled to a non-oxidizing gas atmosphere.
  • the temperature of the space portion can be controlled to a target temperature.
  • an inlet portion 5 for supplying the molten glass G onto the molten metal 3 from the forehearth of the glass melting furnace provided in the previous step is provided on the left end side of the bathtub 2.
  • An outlet 6 is formed at the end of the bathtub 2 opposite to the side where the inlet 5 is provided, and a plurality of transport rolls 7 are arranged outside the outlet 6 to form a slow cooling line 7A.
  • a moving path 8 having a rectangular shape in plan view for forming the molten glass G is defined on the molten metal 3 from the inlet portion 5 to the outlet portion 6.
  • the molten glass G flows from the inlet portion 5 onto the molten metal 3 along the movement path 8, the molten glass G is expanded to the required thickness and width to form a molten glass ribbon 9. It is gradually cooled and moved to the outlet portion 6 side to form a glass ribbon 10 as a band-like final form having a uniform width, and this glass ribbon 10 is discharged from the outlet portion 6 to the slow cooling line 7A side. .
  • the planar shape of the bathtub 2 is formed in a rectangular shape
  • the movement path 8 partitioned on the molten metal 3 in the bathtub 2 is also rectangular, but the plane of the movement path 8 is The shape is not limited to a rectangular shape, and any shape that matches the planar shape of the bathtub 2 is possible.
  • the molten glass G supplied from the inlet portion 5 is stretched in the width direction by the above-described plurality of top rolls 11 to form the above-described molten glass ribbon 9 in the downstream region (the outlet portion 6).
  • the belt-shaped glass ribbon 10 having a predetermined width is finally obtained.
  • 16 top rolls 11 are arranged at predetermined intervals from positions for starting to expand the width of the molten glass G on both ends in the width direction of the movement path 8. It is arranged with a gap.
  • These 16 top rolls 11 will be distinguished by attaching symbols A 0 to A 15 for the sake of convenience, and individual arrangements will be described.
  • the first-stage top roll 11A 0 and the first top roll 11A 1 to the fourth top roll 11A 4 are the top rolls provided with a reference barrel head 18 to be described later.
  • the tenth top roll 11A 5 to the tenth top roll 11A 10 are top rolls equipped with a multistage barrel head 14 to be described later, and the eleventh top roll 11A 11 to the fifteenth top roll 11A 15 are The top roll is provided with a reference barrel head 18 to be described later.
  • the fifth top roll 11A 5 to the tenth top roll 11A 10 include a rotary shaft 13 and a multi-stage barrel head 14 integrated at the tip of the rotary shaft 13.
  • the mechanism for rotationally driving the rotating shaft 13 and the mechanism for moving the rotating shaft 13 are omitted in FIGS. 1 and 2, but the rotating shaft 13 penetrates the side wall of the bathtub 2 to the outside of the bathtub 2.
  • a rotary drive device and a moving device are provided outside the bathtub 2.
  • a moving device provided with a rotary driving device such as a motor is applied to a movable carriage that is movably provided along a rail member laid outside the position where the bathtub 2 is installed.
  • rotational driving devices and moving devices are the same as top roll driving devices and moving devices provided in a general float bath, and the rotary shaft 13 is driven to rotate at, for example, both ends in the width direction of the moving path 8. It is arranged to be movable in the width direction of the movement path 8 on the side.
  • these rotary drive devices and moving devices are omitted, and only the tip end side of the rotary shaft 13 and the multistage barrel head 14 attached thereto are shown.
  • the multistage barrel head 14 is provided with six stages (six rows) of outer peripheral blades 15 on the outer peripheral wall 16a of the rotary drum 16 as shown in FIGS.
  • Both the rotary shaft 13 and the multistage barrel head 14 have a hollow structure, and a hollow portion 13a formed inside the rotary shaft 13 and a hollow portion 16b formed inside the rotary drum 16 are communicated with each other. ing.
  • a cooling water supply pipe 13 b is provided inside the rotary shaft 13, and a cooling water return flow path 13 c is formed in a gap between the supply pipe 13 b and the inner peripheral wall of the rotary shaft 13.
  • the cooling water is supplied from the supply pipe 13b to the hollow portion 16b of the rotating drum 16, and the cooling water is recovered through the return flow path 13c, whereby the rotating shaft 13 and the rotating drum 16 are connected from the inside thereof. It is configured to be cooled.
  • the outer peripheral blade 15 of the multi-stage barrel head 14 has a plurality of quadrangular pyramid-shaped cutting edges having six stages (see FIGS. 3A, 3B, and 4) along the outer peripheral wall 16a of the cylindrical rotary drum 16. (6 rows). Since these outer peripheral blades 15 are formed in the circumferential direction of the rotating drum 16 with the same pitch with each blade edge having the same shape, six rows of outer peripheral blades 15 that make one row around the rotating drum 16 are formed in total. It is structured.
  • the end face wall 16c on the side connected and integrated to the rotary shaft 13 side and the end face wall 16d located on the front end side of the multistage barrel head 14 are both formed in a flat plate shape.
  • the outer peripheral blade 15 formed in the multistage barrel head 14 is not limited to a six-stage structure, and may have any number of stages of three stages, four stages, five stages, or seven stages or more. However, if the number of stages is increased more than necessary, the glass ribbon 9 is unnecessarily cooled. Therefore, it is desirable that the number of stages is such that the glass ribbon 9 is not overcooled, and the number of stages is 3 or more, for example, about 4 to 8. *
  • the first top roll 11A 0 to the fourth top roll 11A 4 (that is, the top roll 11A 4 is the fifth when counted from the first top roll 11Ao), and the eleventh top roll 11A 11 to the fifteenth
  • the top roll 11A 15 is composed of a rotating shaft 17 and a reference barrel head 18 integrated at the tip thereof.
  • the rotation drive device and the movement device of the rotation shaft 17 are provided with devices similar to the rotation drive device and the movement mechanism connected to the rotation shaft 13 of the previous top rolls 11A 5 to 11A 10. Is configured to be movable in the width direction of the movement path 8 while being driven to rotate, but is omitted in FIGS. 1 and 2.
  • the reference barrel head 18 includes a two-stage outer peripheral blade 19 on the outer peripheral wall 20 a of the rotary drum 20.
  • Both the rotary shaft 17 and the rotary drum 20 have a hollow structure, and a hollow portion 17a formed inside the rotary shaft 17 and a hollow portion 20b formed inside the rotary drum 20 are communicated with each other. Yes.
  • the rotating shaft 17 and the rotating drum 20 can be cooled from the inside by flowing a coolant such as cooling water through the hollow portion 17a and the hollow portion 20b.
  • a cooling water supply pipe 17 b is provided inside the rotary shaft 17, and a cooling water return flow path 17 c is formed in a gap between the supply pipe 17 b and the inner peripheral wall of the rotary shaft 17.
  • the cooling water is supplied from the supply pipe 17b to the hollow portion 20b of the rotary drum 20, and the cooling water is recovered through the return flow path 17c, whereby the rotary shaft 17 and the rotary drum 20 are connected from the inside thereof. It is configured to be cooled.
  • the outer peripheral blade 19 of the reference barrel head 18 has a number of quadrangular pyramid-shaped cutting edges in two stages (two rows) along the outer peripheral wall 20a of the thin cylindrical rotating drum 20 as shown in FIG. Is formed continuously. Since these outer peripheral blades 19 are formed in the circumferential direction of the rotary drum 20 with the same pitch with each blade edge having the same shape, a two-stage in which one row of outer peripheral blades 19 that make a round of the rotary drum 20 is formed as a whole. It is structured.
  • the end face wall 20c on the side connected and integrated with the rotary shaft 17 side and the end face wall 20d located on the front end side of the reference barrel head 18 are both formed in a flat plate shape. .
  • the end wall 20c may be inclined obliquely outward from the center of the barrel head.
  • the fourth top roll 11A 4 gradually cools the molten glass G flowing from the inlet portion 5 into the moving path 8 on the molten metal 3 and the viscosity starts to rise and is in a molten state.
  • the glass ribbon 9 is installed in the upstream area.
  • the tenth top roll 11A 10 is installed in the middle region of the moving path 8, that is, the region where the glass ribbon 9 has a higher viscosity than the upstream region. ing.
  • From the eleventh top roll 11A 11 of the structure to the fifteenth top roll 11A 15 are installed in the downstream area of the moving path 8, that is, in the area where the viscosity of the glass ribbon 9 is higher than the middle flow area. ing.
  • FIG. 7 shows a state in which, in a general alkali-free glass production process, the molten glass becomes hard due to a change in viscosity as the temperature decreases. Indicates. This is the result of computer simulation analyzed with our own solver. In the state showing the change in viscosity shown in FIG.
  • the region where the common logarithm of the viscosity ( ⁇ ) of the glass ribbon 9 is less than 5.29 dPa ⁇ s is the upstream region of the movement path 8, and the common logarithm of the viscosity of the glass ribbon 9 is 5
  • the region of .29 to 6.37 dPa ⁇ s can be defined as the midstream region of the moving path 8 and the region where the common logarithm of the viscosity of the glass ribbon 9 exceeds 6.37 dPa ⁇ s can be defined as the downstream region of the moving path 8.
  • the region where the logarithm of the viscosity of the glass ribbon 9 is 5.29 to 6.37 dPa ⁇ s corresponds to the region where the viscosity ( ⁇ ) of the glass ribbon 9 is 10 5.29 to 10 6.37 dPa ⁇ s. ing.
  • the top rolls 11A 0 to 11A 15 are not directed parallel to the width direction of the glass ribbon 9, but are inclined with a slight angle.
  • the moving direction of the glass ribbon 9 in the moving path 8 (the direction parallel to the side wall of the bathtub 2 from the inlet portion 5 toward the outlet portion 6) is the Y-axis direction
  • the moving path 8 Assuming an XY coordinate system in which the width direction is defined as the X-axis direction, a plane including the outer peripheral edge 19 of each row of the reference barrel head 18 or a plane including the outer peripheral edge 15 of each row of the multistage barrel head 14 is assumed. .
  • the plane 14a including the outer peripheral blades 15 aligned in the circumferential direction of the multistage barrel head 14 shown in FIG. 2 or the plane including the outer peripheral blades 19 aligned in the circumferential direction of the reference barrel head 18 is the Y axis.
  • it is inclined in plan view so as to have an inclination angle ( ⁇ ) of about 0 to 16 °.
  • the outer peripheral blade 15 of the multistage barrel head 14 or the outer peripheral blade 19 of the reference barrel head 18 is pressed almost vertically against the glass ribbon 9 from above.
  • the rotary shafts 13 and 17 of the barrel heads 14 and 18 are movable so that the barrel heads 14 and 18 can be pressed against the end of the glass ribbon 9 by moving up and down while being arranged almost horizontally. Is provided.
  • the inclination angle is gradually increased from the first top roll 11A 1 to each gradually increasing angle.
  • the barrel head is arranged, the inclination angle is increased to the maximum inclination angle in the middle basin, and the inclination angle is gradually decreased in the reference barrel head 18 of the top roll in the downstream area.
  • the tilt angle is set to 0 °.
  • the inclined arrangement state of each barrel head is not limited to the example described here, and any inclined arrangement having the maximum inclination angle may be employed in the multistage barrel head 14 provided in the midstream region.
  • the molten glass G is supplied from the inlet portion 5 to the moving path 8 on the molten metal 3 to be spread and provided in plural.
  • the barrel heads 14 and 18 are used to apply a tensile force to both ends in the width direction of the molten glass ribbon 9 to adjust the width and thickness of the glass ribbon 9, and finally the glass ribbon having the target width. 10 can be obtained.
  • a glass plate can be obtained by cutting this glass ribbon 10 to a target size in a subsequent cutting step of the slow cooling line 7A.
  • the top roll 11A 0 to top roll 11A 4 and the top roll 11A 11 to top roll 11A 15 are provided with the reference barrel head 18, so that the outer peripheral blade 19 having a two-stage structure is made of glass. While pressing against the end of the ribbon 9 in the width direction, the reference barrel head 18 of each of the top rolls applies a necessary tensile force to the both ends in the width direction of the glass ribbon 9 in the upstream region and the downstream region. be able to.
  • the fifth top roll 11A 5 from the 10 th top roll 11A 10 it is provided with a wide multi-stage barrel head 14 width of 6-stage structure, to the glass ribbon 9 medium basin, multistage with a strong force Even when the barrel head 14 is pressed and a strong tensile force is applied, the press margin of the glass ribbon 9 (the amount by which the molten glass G is deformed in the thickness direction) is used when the reference barrel head 18 having a two-stage structure is used. Can be shallower.
  • the multi-stage barrel head 14 has the width direction end of the glass ribbon 9.
  • the amount of deformation in the thickness direction (pressing margin) is reduced. Therefore, compared with the conventional apparatus in which a strong tensile force is applied to the glass ribbon 9 with a two-stage outer peripheral blade in the middle stream region, the molten glass G
  • the local deformation part called a straw does not arise in the width direction edge part side of this.
  • the glass ribbon 9 in the upstream region has a low viscosity and it is difficult to apply a strong tensile force from the beginning, so the reference barrel head 18 may be used.
  • the glass ribbon 9 in the downstream region has a high viscosity and is almost in a hard state. Even if it is pressed, the amount of deformation in the thickness direction is small. In view of this point, since the glass ribbon 9 is stretched by applying a strong tensile force to the glass ribbon 9 in the midstream region, it is desirable to provide the multistage barrel head 14 in the midstream region.
  • the number of the multistage barrel heads 14 provided in the middle stream is not particularly defined in the present embodiment, and a necessary number of the glass ribbons 10 having a final thickness can be provided.
  • What is necessary is just to install a required number so that the local deformation part called a straw may not be produced in order to shape
  • the total number of barrel heads 14 and 18 provided in the entire region from the upstream region to the downstream region is not limited by the example of the present embodiment, and the number necessary for forming the glass ribbon 10 having a desired thickness. Should be installed.
  • the molten glass G thinly stretched using the top rolls 11A 1 to 11A 15 is gradually cooled as it moves from the upstream area to the downstream area of the movement path 8 to increase its hardness. It becomes the glass ribbon 10 of a fixed width and thickness, reaches the outlet 6 and is conveyed to the slow cooling line 7A side in the subsequent process.
  • a local deformation portion is not generated in the glass ribbon 10 that has been conventionally transported to the slow cooling line 7A while a local deformation portion called a straw is formed. Therefore, there is no possibility that the glass ribbon 10 breaks in the slow cooling line 7A.
  • a cutting line (not shown) is installed in the subsequent process of the slow cooling line 7A, a glass plate having a desired size is obtained by cutting and folding the glass ribbon 10 after the slow cooling to a required size. be able to. Since the local deformation
  • any of non-alkali glass, soda lime glass, mixed alkali glass, borosilicate glass, or other glass may be used.
  • the use of the manufactured glass product is not limited to flat panel display use, architectural use, and vehicle use, and includes various other uses. In particular, alkali-free glass for flat panel displays that requires high quality is preferred.
  • an alkali-free glass having the following composition in the oxide-based mass percentage display can be used.
  • SiO 2 50 to 73%, preferably 50 to 66%
  • Al 2 O 3 10.5 to 24%
  • B 2 O 3 0 to 12%
  • SrO: 0 to 24% BaO: 0 to 13.5%
  • ZrO 2 0 to 5%.
  • an alkali-free glass having the following composition can be used in the oxide-based mass percentage display.
  • SiO 2 58 to 66%
  • Al 2 O 3 15 to 22%
  • B 2 O 3 5 to 12%
  • CaO 0 to 9%
  • SrO 3 to 12.5%
  • BaO 0 to 2%
  • MgO + CaO + SrO + BaO 9 to 18%
  • ZrO 2 0 to 5%.
  • an alkali-free glass having the following composition can be used in the oxide-based mass percentage display.
  • SiO 2 54-73% Al 2 O 3 : 10.5 to 22.5%
  • B 2 O 3 0 to 5.5%
  • CaO 0-9%
  • SrO 0 to 16%
  • BaO 0 to 2.5%
  • FIG. 5 shows a second example of the multi-stage barrel head applied to the glass plate manufacturing apparatus according to the present invention, and the multi-stage barrel head 30 of this second example was provided in the previous embodiment.
  • the multi-stage barrel head 30 of this example is integrally attached to the tip of the rotating shaft 13.
  • the multi-stage barrel head 30 of this example has six stages of serrated outer peripheral blades, but from the side close to the rotary shaft 13, the first outer peripheral blade 30a 1 , the second outer peripheral blade 30a 2 , and the third stage.
  • the outer diameters are sequentially increased in the order of the outer peripheral blade 30a 3 , the fourth outer peripheral blade 30a 4 , the fifth outer peripheral blade 30a 5 , and the sixth outer peripheral blade 30a 6 .
  • the rotary drum 31 provided with the outer peripheral blades 30a 1 to 30a 6 has a small outer diameter on the rotating shaft 13 side and a large outer diameter on the opposite side.
  • the outer diameter of one end of the rotating drum 31 near the width direction end 9 a of the glass ribbon 9 is smaller than the outer diameter of the other end of the rotating drum 31 near the center of the glass ribbon 9 in the width direction. Is formed.
  • the outer peripheral blades 30a 1 to 30a 6 are formed larger in this order.
  • the multistage barrel head 30 having the configuration shown in FIG. 5 is configured so that the rotary shaft 13 is inclined so as to be substantially horizontal when viewed from the side and as shown in the plan view of FIG.
  • the outer peripheral blades 30a 1 to 30a 6 are used by pressing from the top near the end portion 9a in the width direction of the glass ribbon 9. With this arrangement, the circumferential lengths of the outer peripheral blades 30a 1 to 30a 6 are different from each other, so that the outer peripheral blade 30a 6 bites into the glass ribbon 9 deeper than the outer peripheral blade 30a 1 as shown in FIG.
  • a peripheral speed difference is generated between the outer peripheral blade 30a 6 and the outer peripheral blade 30a 1 , and a tensile force is applied to the width direction end portion 9a of the glass ribbon 9 toward the outer side.
  • Can act When the outer peripheral edge 30a 1 as shown in FIG. 5 is the position e and the outer peripheral edge 30a 6 in contact with the molten glass G contrasting position f in contact with the molten glass G, slower peripheral speed of the peripheral cutting edge 30a 1, the outer peripheral edge 30a 6 Since the peripheral speed of the glass ribbon 9 is increased, a target tensile force can be applied to the width direction end portion 9a of the glass ribbon 9 in the outward direction.
  • the multi-stage barrel head 30 of this example a tensile force can be applied in a direction that naturally expands the width of the molten glass G by pressing the outer peripheral blades 30a 1 to 30a 6 having different diameters against the ends of the glass ribbon 9. Therefore, it is advantageous when the glass ribbon 9 is formed thin, and the thin glass ribbon 10 can be manufactured. Further, the multi-stage barrel head 30 has a structure having six stages (six rows) of outer peripheral blades 30a 1 to 30a 6 and can effectively generate a force for pulling the glass ribbon 9 to the outside, so that a large tensile force acts. However, compared to a conventional barrel head having a two-stage outer peripheral blade, the glass ribbon 9 is less likely to be greatly deformed in its thickness direction. Does not occur.
  • FIG. 7 is a graph showing the relationship between the temperature and viscosity of a general alkali-free glass.
  • a glass ribbon When a glass ribbon is formed, a molten glass of about 1110 ° C. to 1120 ° C. is formed and the temperature is gradually lowered. The relationship of the viscosity at each temperature is shown.
  • the region in front of the region where the common logarithm of the viscosity ( ⁇ ) of the glass ribbon 9 is 5.29 dPa ⁇ s is the upstream region, and the common logarithm of the viscosity of the glass ribbon 9 is 5.29 to 6.37 dPa.
  • the region of s can be divided into the middle flow region, and the region where the common logarithm of the viscosity of the glass ribbon 9 exceeds 6.37 dPa ⁇ s can be distinguished from the downstream region, the upstream region and the downstream region as described in the above embodiment It is possible to provide the reference barrel head 18 and the multistage barrel head 14 in the middle stream area.
  • the molten glass having the viscosity characteristics shown in FIG. 7 is applied to a molding apparatus provided with 16 barrel heads shown in FIGS. 1 and 2, and has a width of about 80 inches (about 2.03 m) to a width of about 110 inches (about 2. 79 m), a glass ribbon having a thickness of 0.3 mm was produced.
  • the following pressing depths were set for the twelfth top roll from the first top roll.
  • the pressing depth of the first to fifth top rolls was set to 25 mm.
  • the pressing depth of the sixth top roll was set to 20 mm, the pressing depth of the seventh to tenth top rolls was set to 10 to 15 mm, and the pressing depth of the eleventh to thirteenth top rolls was set to 5 to 10 mm.
  • the barrel head speed is 2 to 30% of the transport speed in the upstream area, 30 to 60% of the transport speed in the middle stream area, and 69 to 90% of the transport speed in the downstream area.
  • the top roll L-0 is the first stage, the first top roll L-1 to the fifteenth top roll L-15.
  • the barrel heads of the top rolls of L-0 to L-3 are inclined stepwise from 0 ° to 15 °, and the top rolls of L-4 to L-8 are inclined.
  • An inclination angle condition of 12 to 15 ° is given to the barrel head, and the inclination of the top roll barrel heads up to L9-L-13 is gradually reduced to 0 ° for the top rolls after L-11. did.
  • a test for producing glass ribbons using a two-stage reference barrel head for all of the first to fifteenth top rolls was also conducted. The result of this comparative test is shown in FIG.
  • FIG. 8 shows the test results when all the top rolls L-0 to L-15 in the first stage are used as reference barrel heads.
  • FIG. 8 shows the results of the position where the locally deformed portion called the straw was generated. This is the result of computer simulation analyzed with our own solver. From the test results shown in FIG. 8, it was found that the local rolls called straws are most likely to occur in the middle roll top roll from L-5 to L-10.
  • FIGS. 3 and 4 a six-stage multi-stage barrel head shown in FIGS. 3 and 4 was provided on six top rolls L-5 to L-10, and a molding test was performed under the same conditions.
  • FIG. Fig. 9 shows a case where a standard barrel head is provided for all top rolls and a multi-stage barrel head is provided for six top rolls L-5 to L-10 in order to produce a glass ribbon having a thickness of 0.3 mm. The other top rolls all show the results when the reference top rolls are used.
  • This is the result of computer simulation analyzed with our own solver.
  • a region indicated by a white arrow indicates a middle flow region, and a multistage barrel head is provided in the middle flow region.
  • FIG. 9 indicates the position of the edge of the glass ribbon on the left side in the traveling direction of the moving path, and the position in the width direction of the lower graph in FIG. Indicates the position of the edge portion.
  • the distance between the edge portions on both sides of the upper and lower glass ribbons in FIG. 9 (that is, the distance between the edge portion of the glass ribbon in the upper graph of FIG. 9 and the edge portion of the glass ribbon in the lower graph of FIG. 9) Corresponds to the width of the glass ribbon.
  • the vertical width between the ⁇ mark and the glass ribbon in the plan view of the glass ribbon corresponds to the glass ribbon width of the first test, and the reference barrel 2L (where the reference barrel head is provided over the entire area)
  • the vertical width between the ⁇ mark in the upper graph of FIG. 9 and the reference barrel 2R (the ⁇ mark in the lower graph of FIG. 9) corresponds to the glass ribbon width of the second test.
  • the glass ribbon width of the first test corresponds to the glass ribbon width of the first test, and a reference barrel 2L (a cross mark in the upper graph in FIG. 9) provided with a reference barrel head over the entire area.
  • the vertical width between the reference barrels 2R corresponds to the glass ribbon width of the second test.
  • the glass ribbon width is wider when the vertical width between the plot positions of the marks in the upper graph of FIG. 9 and the plot positions of the marks in the lower graph of FIG. 9 is larger.
  • the wide width of the glass ribbon means that an outward tensile force can be favorably applied to the end of the glass ribbon.
  • a local deformation portion called a straw does not occur on the glass ribbon.
  • FIG. 10 shows the stress distribution simulation obtained by stress analysis simulation at the pressing position of each barrel head at the end of the glass ribbon when the glass ribbon is formed by providing the reference barrel head on all the top rolls shown above. It is a figure which shows the result. From the results shown in FIG. 10, the inventors analyzed the state of the stress distribution acting on the glass ribbon at each position for each of the top rolls No. 4 (L-4) to No. 11 (L-11). Conspicuous stress at the positions of No. 5 (L-5) to No. 10 (L-10) with respect to the boundary value R indicated by the chain line where the assumed local deformation portion called a straw is expected to occur. From this simulation result, it can be seen that it is effective to apply the barrel head to the middle roll top roll.
  • the technology of the present invention can be widely applied to apparatuses and methods for producing glass plates used in display glass, optical glass, medical glass, architectural glass, vehicle glass, and other general glass products.
  • G ... Molten glass, 1 ... Manufacturing apparatus (float bath), 2 ... Bath, 3 ... Molten metal, 5 ... Inlet part, 6 ... Outlet part, 7 ... Conveyance roll, 7A ... Slow cooling line, 8 ... Movement path, 9 Glass ribbon, 10 ... Glass ribbon, 11 ... Top roll, 11A 0 to 11A 15 ... Top roll, 13 ... Rotating shaft, 14 ... Multi-stage barrel head, 16 ... Rotating drum, 17 ... Rotating shaft, 18 ... Reference barrel head, 20 ... Rotating drum, 30 ... Multistage barrel head,

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

The purpose of the present invention is to provide a technique that enables a glass ribbon to be manufactured by a float method without generating localized deformations known as straw marks. The present invention comprises applying an outward tensile force to both end parts of a glass ribbon using a plurality of pairs of top rollers provided to both widthwise edge sides of the travel pathway from the upstream region to the downstream region of the travel pathway, and manufacturing a glass ribbon having a thickness equal to or less than 1 mm. The process uses top rollers provided with barrel heads for outwardly pulling the widthwise edges of the glass ribbon transported from the upstream region to the downstream region along the travel pathway. Among the barrel heads provided to the upstream, midstream, and downstream regions of the travel pathway and caused apply an outward tensile force to the widthwise edges of the glass ribbon, a multistage barrel head provided with three or more rows of outer peripheral blades is used as the barrel head provided to the midstream region, and standard barrel heads provided with one or two rows of outer peripheral blades are used as the barrel heads provided to the upstream and downstream regions.

Description

ガラス板の製造方法および製造装置Glass plate manufacturing method and manufacturing apparatus
 本発明は、フロートバス法に従い薄型のガラス板を製造する方法と装置に関する。 The present invention relates to a method and an apparatus for manufacturing a thin glass plate according to the float bath method.
 液晶ディスプレイ、プラズマディスプレイなどのフラットパネルディスプレイ用ガラス基板は、近年において大型化および薄型化が進められている。
 この種のガラス基板の製造方法の一例として、金属スズなどの溶融金属を貯留したフロートバスを用い、溶融金属の上に水平方向に溶融ガラスを薄く引き延ばして成形するフロート法が知られている。このフロート法によれば、溶融ガラスをフロートバスの溶融金属上に浮かせることで目的に応じた必要な厚みを確保し、この溶融ガラスを水平方向に引き出すことで帯状のガラスリボンを成形できる。このガラスリボンを必要な大きさに切断することで目的の大きさのガラス基板を得ることができる。
 このフロート法に従い、上述のように大型化と薄型化が進められているガラス基板を製造するには、フロートバスの溶融金属上にガラスリボンの幅方向両端部を外側に引っ張るトップロール(T/R)と称される成形装置を設け、ガラスリボンをその幅方向両端側に引き延ばして薄型化する方法が採用されている。薄く引き延ばしたガラスリボンを徐冷後に必要な大きさに切断し、研磨および洗浄を行うことで目的のガラス基板を得ることができる。このフロート法に従い、大型かつ薄型のガラス基板が大量に生産されており、ガラス基板として厚さ0.7mm程度、長さと幅が数mに達する大型のガラス基板が生産されている。
In recent years, glass substrates for flat panel displays such as liquid crystal displays and plasma displays have been increased in size and thickness.
As an example of a method for manufacturing this type of glass substrate, a float method is known in which a float bath in which a molten metal such as metallic tin is stored is used and a molten glass is thinly stretched in the horizontal direction on the molten metal. According to this float method, a molten glass is floated on the molten metal of the float bath to ensure a necessary thickness according to the purpose, and a strip-shaped glass ribbon can be formed by drawing the molten glass in the horizontal direction. A glass substrate having a desired size can be obtained by cutting the glass ribbon into a required size.
According to this float method, in order to manufacture a glass substrate that has been increased in size and thickness as described above, a top roll (T / T) that pulls both ends in the width direction of the glass ribbon outward on the molten metal of the float bath. A forming apparatus called R) is provided, and a method is adopted in which the glass ribbon is stretched to both ends in the width direction to reduce the thickness. A thin glass ribbon is slowly cooled and then cut into a required size, followed by polishing and washing, whereby a target glass substrate can be obtained. In accordance with this float method, large and thin glass substrates are produced in large quantities, and large glass substrates having a thickness of about 0.7 mm and a length and width of several meters are produced as glass substrates.
 また、最近に至り、携帯型情報端末機器が大量に製造されており、この携帯型情報端末機器に適用される液晶パネルの一例として、厚さ0.7mm程度のガラス基板を用いて液晶パネルを製造した後、ガラス基板の一面をウエットエッチングなどの手法により削り取って厚さ0.3mm程度に薄型化したガラス基板を備えた液晶パネルが提供されている。 In recent years, a large amount of portable information terminal devices have been manufactured. As an example of a liquid crystal panel applied to the portable information terminal device, a liquid crystal panel using a glass substrate having a thickness of about 0.7 mm is used. There has been provided a liquid crystal panel including a glass substrate that has been thinned to a thickness of about 0.3 mm by scraping one surface of the glass substrate by a technique such as wet etching after manufacturing.
 図11は、フロート法に用いられるフロートバスの一例を示し、このフロートバス100は、内部に溶融スズなどの溶融金属101を備えた底部バス102が備えられ、この底部バス102の入口側に溶融炉のフォアハースから溶融ガラス103が流入される。溶融ガラス103は溶融金属101の上で複数のトップロール105によって目的の幅に引き延ばされ、徐々に冷却されて必要な幅と厚さのガラスリボン106が形成される。
 この種のフロートバス100に適用されているトップロール105の一例として、図12に示すように円盤状に形成され、その外周に鋸刃状の外周刃105aを2段に備えたバレルヘッド105Aを備えたトップロールが知られている。(特許文献1参照)
 図12に示すバレルヘッド105Aは、外周刃105a、105aを溶融ガラス103のエッジ部103aに食い込ませつつエッジ部103aに外向きの引張力を作用させ、溶融ガラス103の幅を調整することによりガラスリボン106の幅と厚さを調整することができる。
FIG. 11 shows an example of a float bath used in the float process. The float bath 100 includes a bottom bath 102 having a molten metal 101 such as molten tin inside, and a molten bath is formed on the inlet side of the bottom bath 102. Molten glass 103 flows in from the furnace hearth. The molten glass 103 is stretched to a target width on the molten metal 101 by a plurality of top rolls 105 and gradually cooled to form a glass ribbon 106 having a required width and thickness.
As an example of a top roll 105 applied to this type of float bath 100, a barrel head 105A formed in a disk shape as shown in FIG. 12 and provided with two stages of saw blade-shaped outer peripheral blades 105a on the outer periphery thereof is provided. The provided top roll is known. (See Patent Document 1)
The barrel head 105A shown in FIG. 12 adjusts the width of the molten glass 103 by applying an outward tensile force to the edge portion 103a while the outer peripheral blades 105a and 105a are biting into the edge portion 103a of the molten glass 103. The width and thickness of the ribbon 106 can be adjusted.
日本国特開平11-236231号公報Japanese Unexamined Patent Publication No. 11-236231
 以上のような背景から、ガラス基板は益々薄型化される傾向にあり、最初から0.3mm程度の厚さのガラス基板を携帯型情報端末機器のパネル用ガラス基板として使用することも検討されている。また、フラットパネルディスプレイ用ガラス基板においても、更なる薄型化が要望されている。
 従来、フロートバス100に流し込まれて拡げられた直後の溶融ガラス103は、高温で液状であるために、簡単に引っ張ることはできないが、溶融ガラス103はフロートバス100の上流域から下流域に移動するにつれて徐冷され、徐々に粘性が高くなるので、粘性が高くなった溶融ガラス103をバレルヘッド105Aにより引っ張り、拡げることができる。
 しかし、引張力が作用された溶融ガラス103には縮まろうとする性質があるため、溶融ガラス103を薄くしようとすればするほど、より強い力でガラスを押さえ付け、強い引張力を作用させる必要がある。
From the background as described above, glass substrates tend to be made thinner and the use of a glass substrate having a thickness of about 0.3 mm as a glass substrate for a panel of a portable information terminal device has been studied from the beginning. Yes. Further, there is a demand for further thinning of glass substrates for flat panel displays.
Conventionally, the molten glass 103 immediately after being poured into the float bath 100 and being expanded cannot be easily pulled because it is liquid at high temperature, but the molten glass 103 moves from the upstream region to the downstream region of the float bath 100. As it is gradually cooled and the viscosity gradually increases, the molten glass 103 having increased viscosity can be pulled and expanded by the barrel head 105A.
However, since the molten glass 103 to which the tensile force is applied has the property of being shrunk, the thinner the molten glass 103 is, the more strongly the glass needs to be pressed down to exert a strong tensile force. is there.
 その結果、バレルヘッド105Aのエッジ部分が溶融ガラス103のエッジ部103aに図12に示す状態よりも更に深く突き刺さることとなり、溶融ガラス103をそのエッジ部近傍で大きく変形させてしまう問題がある。
 図13は、溶融ガラス103のエッジ部103aに対し強い力で上からバレルヘッド105Aを押し付けた状態を説明するための図である。
 図13(a)に示す溶融ガラス103のエッジ部103aに対し図13(b)に示すようにバレルヘッド105Aを強く押し付けると、エッジ部103aがバレルヘッド105Aの押しつけ力に比例して深く沈み込むようにU字形の袋状に変形する。仮に、この袋状態のまま変形したガラスが固まると、図14に示すように断面T字形のストローと称される局所変形部110が生成する問題がある。
As a result, the edge portion of the barrel head 105A is pierced deeper than the state shown in FIG. 12 into the edge portion 103a of the molten glass 103, and there is a problem that the molten glass 103 is greatly deformed in the vicinity of the edge portion.
FIG. 13 is a diagram for explaining a state in which the barrel head 105A is pressed from above with a strong force against the edge portion 103a of the molten glass 103. FIG.
When the barrel head 105A is strongly pressed against the edge portion 103a of the molten glass 103 shown in FIG. 13A as shown in FIG. 13B, the edge portion 103a sinks deeply in proportion to the pressing force of the barrel head 105A. It is transformed into a U-shaped bag shape. If the deformed glass is solidified in this bag state, there is a problem that a locally deformed portion 110 called a straw having a T-shaped cross section is generated as shown in FIG.
 また、溶融ガラス103のエッジ部103aに対し図13(b)に示すようにバレルヘッド105Aを強く押し付けた場合、図13(c)に示すように断面がS字状に変形することがあり、この状態のままガラスが固まると、図15に示すように変形部分が上方向の袋部分111aと下方向の袋部分111bとに重なるように変形したストローと称される局所変形部111が生成される問題がある。このS字状の局所変形部111が生成された場合、図13(c)の矢印a、矢印bに示すように溶融金属がガラスの内部側に巻き込まれることがあり、その結果、後の徐冷工程においてガラスが割れる原因となる問題がある。例えば、金属スズとガラス板は熱膨張係数が異なるので、徐冷時の熱収縮に従い、金属スズを巻き込んだ部分のガラス板に応力が作用し、割れを引き起こすおそれがある。
 前記局所変形部110、111を有したままガラスリボンを切断工程において切断すると、目的の大きさのガラス板に切り折りする場合において、目的の切断位置や方向と異なる位置や方向に割れを誘発するので、ガラス板の安定生産を阻害するおそれがある。前記局所変形部110、111が生成されるのは、薄いガラス板において顕著であり、特に上述の表示装置用ガラス基板のように厚さ1mm以下のガラス板をフロート法により製造する場合に顕在化する問題がある。
Further, when the barrel head 105A is strongly pressed against the edge 103a of the molten glass 103 as shown in FIG. 13B, the cross section may be deformed into an S shape as shown in FIG. When the glass is solidified in this state, as shown in FIG. 15, a locally deformed portion 111 called a straw is generated that is deformed so that the deformed portion overlaps the upper bag portion 111a and the lower bag portion 111b. There is a problem. When this S-shaped local deformation part 111 is generated, molten metal may be caught inside the glass as indicated by arrows a and b in FIG. There is a problem that causes the glass to break in the cooling process. For example, since metallic tin and a glass plate have different thermal expansion coefficients, there is a possibility that stress acts on the glass plate in the portion where the metallic tin is entrained and causes cracking in accordance with thermal contraction during slow cooling.
When the glass ribbon is cut in the cutting process while having the local deformation portions 110 and 111, when the glass ribbon is cut and folded into a glass plate of a target size, a crack is induced at a position or direction different from the target cutting position or direction. Therefore, there is a risk of inhibiting the stable production of the glass plate. The generation of the locally deformed portions 110 and 111 is conspicuous in a thin glass plate, particularly when a glass plate having a thickness of 1 mm or less is manufactured by the float method like the glass substrate for a display device described above. There is a problem to do.
 これらの背景に基づき、本発明者は、フロート法により溶融ガラスを成形して1mm以下の薄いガラスリボンを製造する技術について種々研究したところ、溶融ガラスの端縁部に張力を付加して薄いガラスリボンを成形する場合、張力を与える位置とそのために用いるトップロールのバレルヘッドについて、工夫することにより、ストローと称される局所変形部の発生を抑制できることを見出し、本願発明に到達した。
 本発明は、フロート法により薄いガラスリボンを成形する場合、局所変形部を生じさせることなくガラスリボンを製造することができ、ガラス板の安定生産に寄与する製造方法と製造装置の提供を目的とする。
Based on these backgrounds, the present inventor has made various studies on a technique for producing a thin glass ribbon of 1 mm or less by forming molten glass by a float process. When forming a ribbon, the inventors have found that the occurrence of a locally deformed portion called a straw can be suppressed by devising the position of applying a tension and the barrel head of the top roll used therefor, and have reached the present invention.
It is an object of the present invention to provide a manufacturing method and a manufacturing apparatus that can manufacture a glass ribbon without causing local deformation when forming a thin glass ribbon by a float process, and contribute to stable production of a glass plate. To do.
 本発明は、溶融金属の上に設けた溶融ガラスの移動経路に沿って溶融ガラスを移動させつつ成形してガラスリボンを製造するガラス板の製造方法において、前記移動経路の上流域から下流域にかけて移動経路の幅方向両端側に配設した複数対のトップロールによりガラスリボンの両端部に外向きの引張力を作用させて厚さ1mm以下のガラスリボンを製造する際、前記トップロールとして、前記移動経路に沿って上流域から下流域に搬送されるガラスリボンの幅方向端部を外側に引っ張るバレルヘッドを備えたトップロールを用い、
 前記移動経路の上流域と中流域と下流域に設けられてガラスリボンの幅方向端部に外向きの引張力を作用させるバレルヘッドのうち、中流域に設けられるバレルヘッドとして3列以上の外周刃を備えた多段バレルヘッドを用い、上流域と下流域に設けられるバレルヘッドとして1列または2列の外周刃を備えた基準バレルヘッドを用いるガラス板の製造方法に関する。
The present invention relates to a method of manufacturing a glass plate in which a glass ribbon is manufactured by moving a molten glass along a moving path of a molten glass provided on the molten metal, from an upstream area to a downstream area of the moving path. When producing a glass ribbon having a thickness of 1 mm or less by applying an outward tensile force to both ends of the glass ribbon by a plurality of pairs of top rolls disposed at both ends in the width direction of the movement path, the top roll, Using a top roll with a barrel head that pulls the widthwise end of the glass ribbon conveyed from the upstream area to the downstream area along the movement path,
Out of the barrel heads that are provided in the upstream, middle and downstream areas of the moving path and apply an outward tensile force to the widthwise ends of the glass ribbon, three or more outer circumferences as barrel heads provided in the middle stream The present invention relates to a glass plate manufacturing method using a multistage barrel head provided with blades and using a reference barrel head provided with one or two rows of outer peripheral blades as barrel heads provided in an upstream region and a downstream region.
 本発明は、前記ガラスリボンの粘度の対数が5.29~6.37dPa・sの領域を中流域として前記多段バレルヘッドを設置するガラス板の製造方法に関する。
 本発明は、前記上流域の基準バレルヘッドと中流域の多段バレルヘッドと下流域の基準バレルヘッドをいずれも各領域に対し複数設け、各バレルヘッドの外周面の周方向に沿って形成されている各列の外周刃が形成する面の方向を前記ガラスリボンに対しほぼ垂直、かつ、ガラスリボンの搬送方向に対し平行に配置するか傾斜させて配置する際、上流域の基準バレルヘッドから中流域の多段バレルヘッドにかけて順次傾斜角度が大きくなるように、中流域の多段バレルヘッドから下流域の基準バレルヘッドにかけて順次傾斜角度が小さくなるように各バレルヘッドを配置したガラス板の製造方法に関する。
 本発明は、前記移動経路の幅方向端縁に近い列の外周刃を設けたバレルヘッドの一側端部の外径が前記移動経路の幅方向中央に近い列の外周刃を設けたバレルヘッドの他側端部の外径よりも小さくされた多段バレルヘッドを用いるガラス板の製造方法に関する。
The present invention relates to a method for producing a glass plate in which the multistage barrel head is installed with the logarithm of the viscosity of the glass ribbon as a midstream region in the range of 5.29 to 6.37 dPa · s.
The present invention provides a plurality of upstream reference barrel heads, intermediate flow multistage barrel heads and downstream reference barrel heads for each region, and is formed along the circumferential direction of the outer peripheral surface of each barrel head. The direction of the surface formed by the outer peripheral blades of each row is substantially perpendicular to the glass ribbon and parallel or inclined to the glass ribbon transport direction. The present invention relates to a method of manufacturing a glass plate in which each barrel head is arranged so that the inclination angle gradually decreases from a multistage barrel head in the middle basin to a reference barrel head in the downstream area so that the inclination angle gradually increases toward the multistage barrel head in the basin.
The present invention provides a barrel head provided with an outer peripheral blade in a row in which an outer diameter of one side end portion of the barrel head provided with a row of outer peripheral blades close to the edge in the width direction of the moving path is close to the center in the width direction of the moving path. It is related with the manufacturing method of the glass plate using the multistage barrel head made smaller than the outer diameter of the other side edge part.
 本発明は、前記溶融ガラスとして、酸化物基準の質量百分率表示において、以下の組成を有する無アルカリガラスを用いるガラス板の製造方法に関する。
 SiO:50~73%、Al:10.5~24%、B:0~12%、MgO:0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、MgO+CaO+SrO+BaO:9~29.5%、ZrO:0~5%。
 本発明は、前記溶融ガラスとして、酸化物基準の質量百分率表示において、以下の組成を有する無アルカリガラスを用いるガラス板の製造方法に関する。
 SiO:58~66%、Al:15~22%、B:5~12%、MgO:0~8%、CaO:0~9%、SrO:3~12.5%、BaO:0~2%、MgO+CaO+SrO+BaO:9~18%、ZrO:0~5%。
 本発明は、前記溶融ガラスとして、酸化物基準の質量百分率表示において、以下の組成を有する無アルカリガラスを用いるガラス板の製造方法に関する。
 SiO:54~73%
 Al:10.5~22.5%
 B:0~5.5%
 MgO:0~8%
 CaO:0~9%
 SrO:0~16%
 BaO:0~2.5%
 MgO+CaO+SrO+BaO:8~26%
This invention relates to the manufacturing method of the glass plate which uses the alkali free glass which has the following compositions in the mass percentage display of an oxide basis as said molten glass.
SiO 2 : 50 to 73%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 8%, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, MgO + CaO + SrO + BaO: 9 to 29.5%, ZrO 2 : 0 to 5%.
This invention relates to the manufacturing method of the glass plate which uses the alkali free glass which has the following compositions in the mass percentage display of an oxide basis as said molten glass.
SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 3 to 12.5% BaO: 0 to 2%, MgO + CaO + SrO + BaO: 9 to 18%, ZrO 2 : 0 to 5%.
This invention relates to the manufacturing method of the glass plate which uses the alkali free glass which has the following compositions in the mass percentage display of an oxide basis as said molten glass.
SiO 2 : 54 to 73%
Al 2 O 3 : 10.5 to 22.5%
B 2 O 3 : 0 to 5.5%
MgO: 0-8%
CaO: 0-9%
SrO: 0 to 16%
BaO: 0 to 2.5%
MgO + CaO + SrO + BaO: 8-26%
 本発明は、溶融金属が蓄えられ、該溶融金属上に溶融ガラスの移動経路が形成され、該移動経路の上流域から下流域にかけて溶融ガラスを移動させてガラスリボンを成形するためのフロートバスと、このフロートバス内の移動経路の上流域から下流域にかけて移動経路の幅方向両側に配設された複数対のトップロールとを備え、前記トップロールが、溶融ガラスの移動経路の幅方向両側に個々に水平方向に延在された回転軸と、該回転軸の先端側に取り付けられ、前記移動経路に沿って上流域から下流域に搬送されるガラスリボンの幅方向端部に押し付けられる外周刃を有するバレルヘッドを備え、前記移動経路の中流域に、3列以上の外周刃を有し、ガラスリボンの幅方向端部を外側に引っ張る多段バレルヘッドが設けられ、前記移動経路の上流域と下流域に、1列または2列の外周刃を有し、ガラスリボンの幅方向端部を外側に引っ張る基準バレルヘッドが設けられたガラス板の製造装置に関する。 The present invention includes a float bath for storing molten metal, forming a glass ribbon by moving a molten glass from an upstream area to a downstream area of the molten path, wherein a molten glass moving path is formed on the molten metal. A plurality of pairs of top rolls disposed on both sides in the width direction of the movement path from the upstream area to the downstream area of the movement path in the float bath, the top rolls on both sides in the width direction of the movement path of the molten glass. Rotating shafts that extend individually in the horizontal direction, and outer peripheral blades that are attached to the tip end side of the rotating shaft and pressed against the widthwise end of the glass ribbon that is transported from the upstream region to the downstream region along the movement path A multistage barrel head that has three or more rows of outer peripheral blades and pulls the end of the glass ribbon in the width direction is provided in the middle flow area of the movement path. The basin and downstream region of, has an outer peripheral edge of one or two rows, apparatus for producing a glass plate reference barrel head is provided to pull the end portion in the width direction of the glass ribbon on the outside.
 本発明のガラス板の製造装置において、前記ガラスリボンの粘度の対数値が5.29~6.37dPa・sの領域に前記多段バレルヘッドが配置された構成を採用できる。
 本発明のガラス板の製造装置において、前記フロートバスにより成形されるガラスリボンの厚さが1mm以下の場合に適用できる。
In the glass plate manufacturing apparatus of the present invention, a configuration in which the multistage barrel head is disposed in a region where the logarithmic value of the viscosity of the glass ribbon is 5.29 to 6.37 dPa · s can be employed.
The glass plate manufacturing apparatus of the present invention can be applied when the thickness of the glass ribbon formed by the float bath is 1 mm or less.
 本発明のガラス板の製造装置は、前記上流域の基準バレルヘッドと中流域の多段バレルヘッドと下流域の基準バレルヘッドがいずれも各領域に対し複数設けられ、各バレルヘッドの外周面の周方向に沿って形成されている各列の外周刃が形成する面の方向を前記ガラスリボンに対しほぼ垂直、かつ、ガラスリボンの搬送方向に対し平行に配置するか傾斜させて配置され、上流域の基準バレルヘッドから中流域の多段バレルヘッドにかけて順次傾斜角度が大きくなるように、中流域の多段バレルヘッドから下流域の基準バレルヘッドにかけて順次傾斜角度が小さくなるように各バレルヘッドが配置された構成を採用できる。
 本発明のガラス板の製造装置は、前記移動経路の幅方向端縁に近い列の外周刃を設けたバレルヘッドの一側端部の外径が、前記移動経路の幅方向中央に近い列の外周刃を設けたバレルヘッドの他側端部の外径よりも小さくされた構成を採用できる。
The glass plate manufacturing apparatus of the present invention includes a plurality of upstream reference barrel heads, a middle multi-stage barrel head, and a downstream reference barrel head for each region, and a peripheral surface of each barrel head. The direction of the surface formed by the outer peripheral blades of each row formed along the direction is arranged substantially perpendicular to the glass ribbon and parallel to or inclined with respect to the conveying direction of the glass ribbon. Each barrel head is arranged so that the inclination angle gradually increases from the reference barrel head of the middle basin to the multi-stage barrel head in the middle basin, and gradually decreases from the multi-stage barrel head in the middle basin to the reference barrel head in the downstream area. Configuration can be adopted.
In the glass plate manufacturing apparatus of the present invention, the outer diameter of one side end of the barrel head provided with the outer peripheral edge of the row close to the width direction edge of the moving path is in the row close to the width direction center of the moving path. The structure made smaller than the outer diameter of the other side edge part of the barrel head which provided the outer periphery blade is employable.
 本発明は、前記溶融ガラスとして、酸化物基準の質量百分率表示において、以下の組成を有する無アルカリガラスが適用されるガラス板の製造装置に関する。
 SiO:50~73%、Al:10.5~24%、B:0~12%、MgO:0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、MgO+CaO+SrO+BaO:9~29.5%、ZrO:0~5%。
 本発明は、前記溶融ガラスとして、酸化物基準の質量百分率表示において、以下の組成を有する無アルカリガラスが適用されるガラス板の製造装置に関する。
 SiO:58~66%、Al:15~22%、B:5~12%、MgO:0~8%、CaO:0~9%、SrO:3~12.5%、BaO:0~2%、MgO+CaO+SrO+BaO:9~18%、ZrO:0~5%。
 本発明は、前記溶融ガラスとして、酸化物基準の質量百分率表示において、以下の組成を有する無アルカリガラスが適用されるガラス板の製造装置に関する。
 SiO:54~73%
 Al:10.5~22.5%
 B:0~5.5%
 MgO:0~8%
 CaO:0~9%
 SrO:0~16%
 BaO:0~2.5%
 MgO+CaO+SrO+BaO:8~26%
This invention relates to the manufacturing apparatus of the glass plate to which the alkali free glass which has the following compositions is applied as said molten glass in the mass percentage display of an oxide basis.
SiO 2 : 50 to 73%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 8%, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, MgO + CaO + SrO + BaO: 9 to 29.5%, ZrO 2 : 0 to 5%.
This invention relates to the manufacturing apparatus of the glass plate to which the alkali free glass which has the following compositions is applied as said molten glass in the mass percentage display of an oxide basis.
SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 3 to 12.5% BaO: 0 to 2%, MgO + CaO + SrO + BaO: 9 to 18%, ZrO 2 : 0 to 5%.
This invention relates to the manufacturing apparatus of the glass plate to which the alkali free glass which has the following compositions is applied as said molten glass in the mass percentage display of an oxide basis.
SiO 2 : 54 to 73%
Al 2 O 3 : 10.5 to 22.5%
B 2 O 3 : 0 to 5.5%
MgO: 0-8%
CaO: 0-9%
SrO: 0 to 16%
BaO: 0 to 2.5%
MgO + CaO + SrO + BaO: 8-26%
 本発明の製造方法と製造装置によれば、フロートバスの移動経路の中流域において多段バレルヘッドにより溶融ガラスの幅方向端部を押し付けつつ該端部に外向きの引張力を作用させてガラスリボンを引き延ばしつつ成形できるので、多段バレルヘッドがガラスリボンの端部を押し付けて強い引張力を作用させる場合であっても、従来のバレルヘッドよりもガラスリボンの端部側の厚さ方向の変形量、換言するとバレルヘッドによる押さえ代を少なくできる。
 この結果、中流域のガラスリボンにおいてストローと称される局所変形部を生じさせることなく薄いガラスリボンを得ることができる。そして、局所変形部を生じていないガラスリボンを後工程において切断してガラス板とするので、割れや欠けなどを生じることなく、目的の寸法のガラス板を得ることができる。
 表示装置用ガラス基板などのように1mmよりも薄い、好ましくは0.7mm以下、より好ましくは0.5mm以下、さらに好ましくは0.3mm以下、特に好ましくは0.1mm以下のガラス板を製造する場合、フロートバスの中流域のガラスリボンは特にストローと称される局所変形部を生じ易いが、この中流域の溶融ガラスに対し多段バレルヘッドを用い、引張力を作用させることで、ガラスリボンの端部側において厚さ方向への変形量を少なくでき、局所変形部を生じていない薄いガラスリボンを得ることができ、このガラスリボンを切断することにより、割れや欠けなどの無い、目的の寸法の1mm以下の薄いガラス板を得ることができる。
According to the manufacturing method and the manufacturing apparatus of the present invention, a glass ribbon is formed by applying an outward tensile force to the end of the molten glass while pressing the end of the molten glass in the width direction of the moving path of the float bath by the multistage barrel head. As the multi-stage barrel head presses against the end of the glass ribbon and applies a strong tensile force, the amount of deformation in the thickness direction on the end side of the glass ribbon is higher than that of the conventional barrel head. In other words, the holding cost by the barrel head can be reduced.
As a result, a thin glass ribbon can be obtained without causing a local deformation portion called a straw in the glass ribbon in the midstream region. And since the glass ribbon which has not produced the local deformation | transformation part is cut | disconnected in a post process and it is set as a glass plate, the glass plate of the target dimension can be obtained, without producing a crack, a chip | tip, etc.
A glass plate having a thickness of less than 1 mm, preferably 0.7 mm or less, more preferably 0.5 mm or less, still more preferably 0.3 mm or less, particularly preferably 0.1 mm or less, such as a glass substrate for a display device. In this case, the glass ribbon in the midstream area of the float bath tends to cause a local deformation part called a straw, but by using a multistage barrel head on the molten glass in the midstream area and applying a tensile force, The amount of deformation in the thickness direction can be reduced on the end side, and a thin glass ribbon with no locally deformed portion can be obtained. By cutting this glass ribbon, there are no desired dimensions such as cracking or chipping. A thin glass plate of 1 mm or less can be obtained.
図1は、本発明に係る第一実施形態のガラス板の製造装置の全体構成を示す概略図である。FIG. 1 is a schematic diagram showing the overall configuration of the glass plate manufacturing apparatus according to the first embodiment of the present invention. 図2は、同製造装置に設けられているトップロールの配置状態の一例を示す構成図である。FIG. 2 is a configuration diagram illustrating an example of an arrangement state of top rolls provided in the manufacturing apparatus. 図3は、同製造装置に設けられたトップロールに適用されるバレルヘッドを示すもので、図3(a)は多段バレルヘッドの正面図、図3(b)は多段バレルヘッドの断面図、図3(c)は基準バレルヘッドの断面図である。3 shows a barrel head applied to a top roll provided in the manufacturing apparatus, FIG. 3 (a) is a front view of the multi-stage barrel head, FIG. 3 (b) is a cross-sectional view of the multi-stage barrel head, FIG. 3C is a cross-sectional view of the reference barrel head. 図4は、同製造装置に設けられる多段バレルヘッドの斜視図である。FIG. 4 is a perspective view of a multistage barrel head provided in the manufacturing apparatus. 図5は、同製造装置に設けられる多段バレルヘッドの他の例を用いて溶融ガラスの端部に押し込み力と引張力を作用させている状態を示す側面図である。FIG. 5: is a side view which shows the state which is making the pushing force and the tensile force act on the edge part of a molten glass using the other example of the multistage barrel head provided in the manufacturing apparatus. 図6は、同製造装置に設けられる多段バレルヘッドの他の例を用いて溶融ガラスの端部に引張力を作用させる状態を示す平面図である。FIG. 6 is a plan view showing a state in which a tensile force is applied to the end portion of the molten glass using another example of the multistage barrel head provided in the manufacturing apparatus. 図7は、同製造装置に供給される溶融ガラスの一例について温度毎の粘度の状態を示すグラフである。FIG. 7 is a graph showing the state of viscosity at each temperature for an example of molten glass supplied to the production apparatus. 図8は、従来のフロートバスにおけるガラスリボンのストロー発生状況の一例を示すグラフである。FIG. 8 is a graph showing an example of a state of occurrence of a glass ribbon straw in a conventional float bath. 図9は、フロートバスにおいて多段バレルヘッドを備えた場合と従来のバレルヘッドを備えた場合にガラスリボンの幅を対比して求めた結果を示すグラフである。FIG. 9 is a graph showing the results obtained by comparing the width of the glass ribbon when the multi-stage barrel head is provided in the float bath and when the conventional barrel head is provided. 図10は、従来のフロートバスに供給されるガラスリボンの端部における圧縮応力分布の一例を示すグラフである。FIG. 10 is a graph showing an example of compressive stress distribution at the end of a glass ribbon supplied to a conventional float bath. 図11は、従来のトップロールを供えたフロートバスの一例を示す平面略図である。FIG. 11 is a schematic plan view showing an example of a float bath provided with a conventional top roll. 図12は、従来のトップロールに設けられているバレルヘッドをガラスリボンの端部に押し込んだ状態の一例を示す断面図である。FIG. 12 is a cross-sectional view showing an example of a state in which a barrel head provided on a conventional top roll is pushed into an end portion of a glass ribbon. 図13は、溶融ガラスの端部と従来のバレルヘッドの関係を示すもので、図13(a)はガラスリボンの端部を示す断面図、図13(b)はガラスリボンの端部にバレルヘッドを押し込んだ状態の一例を示す断面図、図13(c)はガラスリボンの端部側に形成された断面S型の局所変形部(ストロー)の一例を示す断面図である。FIG. 13 shows the relationship between the end of the molten glass and the conventional barrel head. FIG. 13 (a) is a sectional view showing the end of the glass ribbon, and FIG. 13 (b) is the barrel at the end of the glass ribbon. FIG. 13C is a cross-sectional view showing an example of an S-shaped local deformation portion (straw) formed on the end side of the glass ribbon. 図14は、ガラスリボンの端部側に形成された断面T型の局所変形部の一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of a T-shaped local deformation portion formed on the end side of the glass ribbon. 図15は、ガラスリボンの端部側に形成された断面S型の局所変形部の一例を示す断面図である。FIG. 15 is a cross-sectional view showing an example of a locally deformed portion having an S-shaped cross section formed on the end side of the glass ribbon.
 「第一実施形態」
 以下、添付図面を参照して本発明に係るガラス板の製造装置の第一実施形態について説明するが、本発明は以下に説明する実施形態に制限されるものではない。
 図1は本発明に係るガラス板の製造装置の第一実施形態の概略構成を示すもので、本実施形態のガラス板の製造装置(フロートバス)1は、平面視略長方形状の耐火物炉からなる浴槽2と、この浴槽2の内部に収容されている金属スズなどの溶融金属3と、浴槽2の内部に複数配置されているトップロール11を備えている。
 浴槽2は、耐火物製の底部構造と側壁と上部構造からなるが、図1では底部構造のみを平面視した状態で描いている。浴槽2の上部構造側には、非酸化性ガスなどのガス供給管や温度調節器などの付属設備が設けられ、浴槽2の雰囲気を非酸化性ガス雰囲気に制御でき、溶融金属3の上の空間部分の温度を目的の温度に制御できるようになっている。
"First embodiment"
Hereinafter, a glass plate manufacturing apparatus according to a first embodiment of the present invention will be described with reference to the accompanying drawings, but the present invention is not limited to the embodiment described below.
FIG. 1 shows a schematic configuration of a glass plate manufacturing apparatus according to a first embodiment of the present invention. A glass plate manufacturing apparatus (float bath) 1 according to the present embodiment is a refractory furnace having a substantially rectangular shape in plan view. A bathtub 2, a molten metal 3 such as metal tin accommodated in the bathtub 2, and a plurality of top rolls 11 disposed in the bathtub 2.
The bathtub 2 is composed of a refractory bottom structure, side walls, and an upper structure. In FIG. 1, only the bottom structure is illustrated in a plan view. The upper structure side of the bathtub 2 is provided with accessory equipment such as a gas supply pipe such as a non-oxidizing gas and a temperature controller, and the atmosphere of the bathtub 2 can be controlled to a non-oxidizing gas atmosphere. The temperature of the space portion can be controlled to a target temperature.
 図1において浴槽2の左端部側には、前工程に設けられているガラス溶融炉のフォアハースから溶融金属3の上に溶融ガラスGを供給するための入口部5が設けられている。浴槽2において入口部5を設けた側と反対側の端部には、出口部6が形成され、この出口部6の外側には搬送ロール7が複数配列され、徐冷ライン7Aが形成されている。
 浴槽2において入口部5から出口部6にかけて溶融金属3の上には、溶融ガラスGを成形するための平面視長方形状の移動経路8が区画されている。
 この移動経路8に沿って溶融金属3の上に入口部5から溶融ガラスGが流入されると、溶融ガラスGが必要な厚さと幅に拡げられて溶融状態のガラスリボン9とされた状態で徐々に冷却されて出口部6側に移動され、幅が均一化された帯状の最終形態としてのガラスリボン10が形成され、このガラスリボン10が出口部6から徐冷ライン7A側に排出される。本実施形態において、浴槽2の平面形状が長方形状に形成されているので、浴槽2の内部において溶融金属3上に区画される移動経路8も長方形状にされているが、移動経路8の平面形状は長方形状に限らず、浴槽2の平面形状に合わせた任意の形状が可能である。
In FIG. 1, on the left end side of the bathtub 2, an inlet portion 5 for supplying the molten glass G onto the molten metal 3 from the forehearth of the glass melting furnace provided in the previous step is provided. An outlet 6 is formed at the end of the bathtub 2 opposite to the side where the inlet 5 is provided, and a plurality of transport rolls 7 are arranged outside the outlet 6 to form a slow cooling line 7A. Yes.
In the bathtub 2, a moving path 8 having a rectangular shape in plan view for forming the molten glass G is defined on the molten metal 3 from the inlet portion 5 to the outlet portion 6.
When the molten glass G flows from the inlet portion 5 onto the molten metal 3 along the movement path 8, the molten glass G is expanded to the required thickness and width to form a molten glass ribbon 9. It is gradually cooled and moved to the outlet portion 6 side to form a glass ribbon 10 as a band-like final form having a uniform width, and this glass ribbon 10 is discharged from the outlet portion 6 to the slow cooling line 7A side. . In this embodiment, since the planar shape of the bathtub 2 is formed in a rectangular shape, the movement path 8 partitioned on the molten metal 3 in the bathtub 2 is also rectangular, but the plane of the movement path 8 is The shape is not limited to a rectangular shape, and any shape that matches the planar shape of the bathtub 2 is possible.
 本実施形態の浴槽2において、入口部5と出口部6の間に移動経路8の幅方向両端側に沿って上流域から下流域に向けて所定の間隔で配列された複数のトップロール11が配置されている。本実施形態において、入口部5から供給された溶融ガラスGは上述の複数のトップロール11により幅方向に引き延ばされて上述の溶融状態のガラスリボン9とされながら下流域に(出口部6側に)搬送され、所定幅の帯状のガラスリボン10が最終的に得られる。 In the bathtub 2 of the present embodiment, a plurality of top rolls 11 arranged between the inlet portion 5 and the outlet portion 6 along the width direction both ends of the moving path 8 from the upstream area toward the downstream area at predetermined intervals. Has been placed. In the present embodiment, the molten glass G supplied from the inlet portion 5 is stretched in the width direction by the above-described plurality of top rolls 11 to form the above-described molten glass ribbon 9 in the downstream region (the outlet portion 6). The belt-shaped glass ribbon 10 having a predetermined width is finally obtained.
 図2に示すように、本実施形態の浴槽2において、移動経路8の幅方向両端側に各々、溶融ガラスGの幅を拡張し始めるための位置から、16基のトップロール11が所定の間隔をあけて配列されている。これら16基のトップロール11には以下に便宜的にA~A15の符号を付して区別し、個々の配置について説明する。
 これらトップロール11のうち、初段のトップロール11Aと第1番目のトップロール11A~第4番目のトップロール11Aが、後に説明する基準バレルヘッド18を備えたトップロールとされ、第5番目のトップロール11A~第10番目のトップロール11A10が、後に説明する多段バレルヘッド14を備えたトップロールとされ、第11番目のトップロール11A11~第15番目のトップロール11A15が、後に説明する基準バレルヘッド18を備えたトップロールとされている。
As shown in FIG. 2, in the bathtub 2 of the present embodiment, 16 top rolls 11 are arranged at predetermined intervals from positions for starting to expand the width of the molten glass G on both ends in the width direction of the movement path 8. It is arranged with a gap. These 16 top rolls 11 will be distinguished by attaching symbols A 0 to A 15 for the sake of convenience, and individual arrangements will be described.
Among these top rolls 11, the first-stage top roll 11A 0 and the first top roll 11A 1 to the fourth top roll 11A 4 are the top rolls provided with a reference barrel head 18 to be described later. The tenth top roll 11A 5 to the tenth top roll 11A 10 are top rolls equipped with a multistage barrel head 14 to be described later, and the eleventh top roll 11A 11 to the fifteenth top roll 11A 15 are The top roll is provided with a reference barrel head 18 to be described later.
 第5番目のトップロール11A~第10番目のトップロール11A10は、図3(b)に示すように回転軸13と、該回転軸13の先端部に一体化された多段バレルヘッド14を備えている。
 前記回転軸13を回転駆動する機構と回転軸13を移動させる機構については、図1と図2において略されているが、回転軸13は浴槽2の側壁を貫通して浴槽2の外側にまで略水平に延出され、浴槽2の外側に回転駆動装置と移動装置が設けられている。回転軸13の移動装置については、一例として浴槽2を設置した位置の外側に敷設したレール部材に沿って移動自在に設けられた移動台車にモーターなどの回転駆動装置が設けられた移動装置を適用できる。これらの回転駆動装置や移動装置は一般的なフロートバスに設けられているトップロールの駆動装置や移動装置と同等であり、回転軸13は例えば回転駆動された状態で移動経路8の幅方向両端側において移動経路8の幅方向に移動自在に配置されている。図1と図2においてはこれらの回転駆動装置や移動装置は略し、回転軸13の先端側とそこに取り付けられている多段バレルヘッド14のみを示している。
As shown in FIG. 3B, the fifth top roll 11A 5 to the tenth top roll 11A 10 include a rotary shaft 13 and a multi-stage barrel head 14 integrated at the tip of the rotary shaft 13. I have.
The mechanism for rotationally driving the rotating shaft 13 and the mechanism for moving the rotating shaft 13 are omitted in FIGS. 1 and 2, but the rotating shaft 13 penetrates the side wall of the bathtub 2 to the outside of the bathtub 2. Extending substantially horizontally, a rotary drive device and a moving device are provided outside the bathtub 2. As an example of the moving device for the rotary shaft 13, a moving device provided with a rotary driving device such as a motor is applied to a movable carriage that is movably provided along a rail member laid outside the position where the bathtub 2 is installed. it can. These rotational driving devices and moving devices are the same as top roll driving devices and moving devices provided in a general float bath, and the rotary shaft 13 is driven to rotate at, for example, both ends in the width direction of the moving path 8. It is arranged to be movable in the width direction of the movement path 8 on the side. In FIG. 1 and FIG. 2, these rotary drive devices and moving devices are omitted, and only the tip end side of the rotary shaft 13 and the multistage barrel head 14 attached thereto are shown.
 多段バレルヘッド14は、図3(a)、(b)、図4に示すように6段(6列)の外周刃15を回転ドラム16の外周壁16aに備えている。回転軸13と多段バレルヘッド14はいずれも内部が中空構造とされ、回転軸13の内部に形成されている中空部13aと回転ドラム16の内部に形成されている中空部16bが相互に連通されている。回転軸13の内部に冷却水の供給管13bが設けられ、供給管13bと回転軸13の内周壁との間の間隙に冷却水の戻り流路13cが形成されている。これらの構成により、供給管13bから回転ドラム16の中空部16bに冷却水を供給し、戻り流路13cを介して冷却水を回収することにより回転軸13と回転ドラム16をそれらの内部側から冷却できるように構成されている。 The multistage barrel head 14 is provided with six stages (six rows) of outer peripheral blades 15 on the outer peripheral wall 16a of the rotary drum 16 as shown in FIGS. Both the rotary shaft 13 and the multistage barrel head 14 have a hollow structure, and a hollow portion 13a formed inside the rotary shaft 13 and a hollow portion 16b formed inside the rotary drum 16 are communicated with each other. ing. A cooling water supply pipe 13 b is provided inside the rotary shaft 13, and a cooling water return flow path 13 c is formed in a gap between the supply pipe 13 b and the inner peripheral wall of the rotary shaft 13. With these configurations, the cooling water is supplied from the supply pipe 13b to the hollow portion 16b of the rotating drum 16, and the cooling water is recovered through the return flow path 13c, whereby the rotating shaft 13 and the rotating drum 16 are connected from the inside thereof. It is configured to be cooled.
 多段バレルヘッド14の外周刃15は、円筒状の回転ドラム16の外周壁16aに沿って図3(a)、(b)、図4に示すように4角錐型の多数の刃先が6段(6列)になるように連続形成されている。これらの外周刃15は各刃先を同一形状として同一のピッチで回転ドラム16の周方向に形成されているので、回転ドラム16を一周する一列の外周刃15が全体で6列形成された6段構造とされている。本実施形態の回転ドラム16において回転軸13側に接続一体化されている側の端面壁16cと多段バレルヘッド14の先端側に位置する端面壁16dはいずれも平板状に形成されている。なお、多段バレルヘッド14に形成される外周刃15は、6段構造に限らず、3段、4段、5段あるいは7段以上のいずれの段数であっても良い。ただし、段数を必要以上に多くするとガラスリボン9を必要以上に冷却してしまうので、ガラスリボン9を冷却し過ぎない程度の段数で3段以上の段数、例えば4段~8段程度が望ましい。  The outer peripheral blade 15 of the multi-stage barrel head 14 has a plurality of quadrangular pyramid-shaped cutting edges having six stages (see FIGS. 3A, 3B, and 4) along the outer peripheral wall 16a of the cylindrical rotary drum 16. (6 rows). Since these outer peripheral blades 15 are formed in the circumferential direction of the rotating drum 16 with the same pitch with each blade edge having the same shape, six rows of outer peripheral blades 15 that make one row around the rotating drum 16 are formed in total. It is structured. In the rotary drum 16 of this embodiment, the end face wall 16c on the side connected and integrated to the rotary shaft 13 side and the end face wall 16d located on the front end side of the multistage barrel head 14 are both formed in a flat plate shape. In addition, the outer peripheral blade 15 formed in the multistage barrel head 14 is not limited to a six-stage structure, and may have any number of stages of three stages, four stages, five stages, or seven stages or more. However, if the number of stages is increased more than necessary, the glass ribbon 9 is unnecessarily cooled. Therefore, it is desirable that the number of stages is such that the glass ribbon 9 is not overcooled, and the number of stages is 3 or more, for example, about 4 to 8. *
 前記初段のトップロール11A~第4番目のトップロール11A(即ちトップロール11Aは初段のトップロール11Aoから数えると5番目)と、前記第11番目のトップロール11A11~第15番目のトップロール11A15は、回転軸17と、その先端部に一体化された基準バレルヘッド18とから構成されている。回転軸17の回転駆動装置と移動装置については、先のトップロール11A~11A10の回転軸13に接続されていた回転駆動装置および移動機構と同様の装置が設けられていて、回転軸17が回転駆動された状態で移動経路8の幅方向に移動できるように構成されているが、図1、図2では略されている。 The first top roll 11A 0 to the fourth top roll 11A 4 (that is, the top roll 11A 4 is the fifth when counted from the first top roll 11Ao), and the eleventh top roll 11A 11 to the fifteenth The top roll 11A 15 is composed of a rotating shaft 17 and a reference barrel head 18 integrated at the tip thereof. The rotation drive device and the movement device of the rotation shaft 17 are provided with devices similar to the rotation drive device and the movement mechanism connected to the rotation shaft 13 of the previous top rolls 11A 5 to 11A 10. Is configured to be movable in the width direction of the movement path 8 while being driven to rotate, but is omitted in FIGS. 1 and 2.
 前記基準バレルヘッド18は、図3(c)に示すように2段構造の外周刃19を回転ドラム20の外周壁20aに備えている。回転軸17と回転ドラム20はいずれも内部が中空構造とされ、回転軸17の内部に形成されている中空部17aと回転ドラム20の内部に形成されている中空部20bが相互に連通されている。これら中空部17aと中空部20bを介し冷却水などの冷媒を流すことにより回転軸17と回転ドラム20をそれらの内部側から冷却できるように構成されている。
 回転軸17の内部に冷却水の供給管17bが設けられ、供給管17bと回転軸17の内周壁との間の間隙に冷却水の戻り流路17cが形成されている。これらの構成により、供給管17bから回転ドラム20の中空部20bに冷却水を供給し、戻り流路17cを介して冷却水を回収することにより回転軸17と回転ドラム20をそれらの内部側から冷却できるように構成されている。なお、中空部20bの断面形状は、水流が効率よく循環するように適宜変更してもよい。
As shown in FIG. 3C, the reference barrel head 18 includes a two-stage outer peripheral blade 19 on the outer peripheral wall 20 a of the rotary drum 20. Both the rotary shaft 17 and the rotary drum 20 have a hollow structure, and a hollow portion 17a formed inside the rotary shaft 17 and a hollow portion 20b formed inside the rotary drum 20 are communicated with each other. Yes. The rotating shaft 17 and the rotating drum 20 can be cooled from the inside by flowing a coolant such as cooling water through the hollow portion 17a and the hollow portion 20b.
A cooling water supply pipe 17 b is provided inside the rotary shaft 17, and a cooling water return flow path 17 c is formed in a gap between the supply pipe 17 b and the inner peripheral wall of the rotary shaft 17. With these configurations, the cooling water is supplied from the supply pipe 17b to the hollow portion 20b of the rotary drum 20, and the cooling water is recovered through the return flow path 17c, whereby the rotary shaft 17 and the rotary drum 20 are connected from the inside thereof. It is configured to be cooled. In addition, you may change suitably the cross-sectional shape of the hollow part 20b so that a water flow may circulate efficiently.
 基準バレルヘッド18の外周刃19は、薄型円筒状の回転ドラム20の外周壁20aに沿って図3(c)に示すように4角錐型の多数の刃先が2段(2列)になるように連続形成されている。これらの外周刃19は各刃先を同一形状として同一のピッチで回転ドラム20の周方向に形成されているので、回転ドラム20を一周する一列の外周刃19が全体で2列形成された2段構造とされている。本実施形態の回転ドラム20において回転軸17側に接続一体化されている側の端面壁20cと基準バレルヘッド18の先端側に位置されている端面壁20dはいずれも平板状に形成されている。端面壁20cは、バレルヘッドの中心から外側に向かって斜めに傾斜するようにしてもよい。 The outer peripheral blade 19 of the reference barrel head 18 has a number of quadrangular pyramid-shaped cutting edges in two stages (two rows) along the outer peripheral wall 20a of the thin cylindrical rotating drum 20 as shown in FIG. Is formed continuously. Since these outer peripheral blades 19 are formed in the circumferential direction of the rotary drum 20 with the same pitch with each blade edge having the same shape, a two-stage in which one row of outer peripheral blades 19 that make a round of the rotary drum 20 is formed as a whole. It is structured. In the rotary drum 20 of the present embodiment, the end face wall 20c on the side connected and integrated with the rotary shaft 17 side and the end face wall 20d located on the front end side of the reference barrel head 18 are both formed in a flat plate shape. . The end wall 20c may be inclined obliquely outward from the center of the barrel head.
 前記初段のトップロール11Aから、第4番目のトップロール11Aは、溶融金属3の上の移動経路8に入口部5から流入された溶融ガラスGを徐冷して粘度が上がり始め溶融状態のガラスリボン9とされる上流域に対し設置されている。
 前記構造の第5番目のトップロール11Aから、第10番目のトップロール11A10は、前記移動経路8の中流域、即ち、ガラスリボン9が上流域よりも粘度が高くなる領域に対し設置されている。
 前記構造の第11番目のトップロール11A11から、第15番目のトップロール11A15は、前記移動経路8の下流域、即ち、ガラスリボン9の粘度が中流域より更に高くなる領域に対し設置されている。
From the first-stage top roll 11A 0 , the fourth top roll 11A 4 gradually cools the molten glass G flowing from the inlet portion 5 into the moving path 8 on the molten metal 3 and the viscosity starts to rise and is in a molten state. The glass ribbon 9 is installed in the upstream area.
From the fifth top roll 11A 5 having the above structure, the tenth top roll 11A 10 is installed in the middle region of the moving path 8, that is, the region where the glass ribbon 9 has a higher viscosity than the upstream region. ing.
From the eleventh top roll 11A 11 of the structure to the fifteenth top roll 11A 15 are installed in the downstream area of the moving path 8, that is, in the area where the viscosity of the glass ribbon 9 is higher than the middle flow area. ing.
 前記溶融状態のガラスリボン9の粘度について、一例として、図7に、一般的な無アルカリガラスの生産工程において溶融ガラスが温度の低下とともに粘度が変化して硬くなり、ガラスリボンとなるまでの状態を示す。これは、独自のソルバーで解析した、コンピュータシミュレーションの結果である。
 図7に示す粘度の変化を示す状態において、ガラスリボン9の粘度(η)の常用対数が5.29dPa・s未満の領域を移動経路8の上流域、ガラスリボン9の粘度の常用対数が5.29~6.37dPa・sの領域を移動経路8の中流域、ガラスリボン9の粘度の常用対数が6.37dPa・sを超える領域を移動経路8の下流域と定義できる。なお、ガラスリボン9の粘度の対数が5.29~6.37dPa・sの領域とは、ガラスリボン9の粘度(η)が105.29~106.37dPa・sの領域に対応している。
Regarding the viscosity of the glass ribbon 9 in the molten state, as an example, FIG. 7 shows a state in which, in a general alkali-free glass production process, the molten glass becomes hard due to a change in viscosity as the temperature decreases. Indicates. This is the result of computer simulation analyzed with our own solver.
In the state showing the change in viscosity shown in FIG. 7, the region where the common logarithm of the viscosity (η) of the glass ribbon 9 is less than 5.29 dPa · s is the upstream region of the movement path 8, and the common logarithm of the viscosity of the glass ribbon 9 is 5 The region of .29 to 6.37 dPa · s can be defined as the midstream region of the moving path 8 and the region where the common logarithm of the viscosity of the glass ribbon 9 exceeds 6.37 dPa · s can be defined as the downstream region of the moving path 8. The region where the logarithm of the viscosity of the glass ribbon 9 is 5.29 to 6.37 dPa · s corresponds to the region where the viscosity (η) of the glass ribbon 9 is 10 5.29 to 10 6.37 dPa · s. ing.
 前記トップロール11A~11A15は、それぞれがガラスリボン9の幅方向に平行に向けられている訳ではなく、若干の角度を有して傾斜配置されている。例えば、移動経路8を平面視した場合、移動経路8におけるガラスリボン9の移動方向(入口部5から出口部6に向かって浴槽2の側壁と平行な方向)をY軸方向、移動経路8の幅方向をX軸方向と規定するXY座標系を想定し、基準バレルヘッド18の各列の外周刃19を含む平面、あるいは、多段バレルヘッド14の各列の外周刃15を含む平面を想定する。
 この場合、図2に示す多段バレルヘッド14の周方向に一列に並ぶ外周刃15を含む平面14a、あるいは、基準バレルヘッド18の周方向に一列に並ぶ外周刃19を含む平面が、Y軸に対し0~16゜程度の傾斜角度(θ)を有するように平面視傾斜配置されている。また、多段バレルヘッド14の外周刃15あるいは基準バレルヘッド18の外周刃19はいずれもガラスリボン9に対しほぼ垂直に上から押し付けられる。換言すると、バレルヘッド14、18の各回転軸13、17は、それぞれほぼ水平に配置されたまま上下移動してバレルヘッド14、18をガラスリボン9の端部に押し付けることができるように移動自在に設けられている。
The top rolls 11A 0 to 11A 15 are not directed parallel to the width direction of the glass ribbon 9, but are inclined with a slight angle. For example, when the moving path 8 is viewed in plan, the moving direction of the glass ribbon 9 in the moving path 8 (the direction parallel to the side wall of the bathtub 2 from the inlet portion 5 toward the outlet portion 6) is the Y-axis direction, and the moving path 8 Assuming an XY coordinate system in which the width direction is defined as the X-axis direction, a plane including the outer peripheral edge 19 of each row of the reference barrel head 18 or a plane including the outer peripheral edge 15 of each row of the multistage barrel head 14 is assumed. .
In this case, the plane 14a including the outer peripheral blades 15 aligned in the circumferential direction of the multistage barrel head 14 shown in FIG. 2 or the plane including the outer peripheral blades 19 aligned in the circumferential direction of the reference barrel head 18 is the Y axis. On the other hand, it is inclined in plan view so as to have an inclination angle (θ) of about 0 to 16 °. Further, the outer peripheral blade 15 of the multistage barrel head 14 or the outer peripheral blade 19 of the reference barrel head 18 is pressed almost vertically against the glass ribbon 9 from above. In other words, the rotary shafts 13 and 17 of the barrel heads 14 and 18 are movable so that the barrel heads 14 and 18 can be pressed against the end of the glass ribbon 9 by moving up and down while being arranged almost horizontally. Is provided.
 傾斜配置の一例として、例えば、図2に示す第1番目のトップロール11A~第15番目のトップロール11A15において、第1番目のトップロール11Aから順次傾斜角度を徐々に大きい角度として各バレルヘッドを配置し、中流域の最大傾斜角度まで傾斜角度を増加し、下流域のトップロールの基準バレルヘッド18においては徐々に傾斜角度を少なくして最終段のトップロールの基準バレルヘッド18においては傾斜角度を0゜になるように配置する例を挙げることができる。各バレルヘッドの傾斜配置状態についてはここで説明した一例に限らず、中流域に設ける多段バレルヘッド14において最大の傾斜角度を有するいずれの傾斜配置として差し支えない。 As an example of the inclined arrangement, for example, in the first top roll 11A 1 to the fifteenth top roll 11A 15 shown in FIG. 2, the inclination angle is gradually increased from the first top roll 11A 1 to each gradually increasing angle. The barrel head is arranged, the inclination angle is increased to the maximum inclination angle in the middle basin, and the inclination angle is gradually decreased in the reference barrel head 18 of the top roll in the downstream area. Is an example in which the tilt angle is set to 0 °. The inclined arrangement state of each barrel head is not limited to the example described here, and any inclined arrangement having the maximum inclination angle may be employed in the multistage barrel head 14 provided in the midstream region.
 本実施形態のガラス製造装置(フロートバス)1を用いてガラスリボン10を製造するためには、溶融金属3の上の移動経路8に入口部5から溶融ガラスGを供給して広げ、複数設けたバレルヘッド14、18を用いて溶融状態のガラスリボン9の幅方向両端部に対し外側に引張力を作用させ、ガラスリボン9の幅と厚さを調整して最終的に目的幅のガラスリボン10を得ることができる。また、このガラスリボン10を徐冷ライン7Aの後工程の切断工程において目的の大きさに切断することによりガラス板を得ることができる。 In order to manufacture the glass ribbon 10 using the glass manufacturing apparatus (float bath) 1 of the present embodiment, the molten glass G is supplied from the inlet portion 5 to the moving path 8 on the molten metal 3 to be spread and provided in plural. The barrel heads 14 and 18 are used to apply a tensile force to both ends in the width direction of the molten glass ribbon 9 to adjust the width and thickness of the glass ribbon 9, and finally the glass ribbon having the target width. 10 can be obtained. Moreover, a glass plate can be obtained by cutting this glass ribbon 10 to a target size in a subsequent cutting step of the slow cooling line 7A.
 本実施形態の製造装置1において、トップロール11A~トップロール11Aと、トップロール11A11~トップロール11A15が、基準バレルヘッド18を備えているので、2段構造の外周刃19をガラスリボン9の幅方向端部側に押し付けつつ、これら各トップロールの基準バレルヘッド18により、上流域と下流域のガラスリボン9の幅方向両端部に対しそれぞれ外側向きに必要な引張力を作用させることができる。
 また、第5番目のトップロール11Aから第10番目のトップロール11A10が6段構造の幅の広い多段バレルヘッド14を備えているので、中流域のガラスリボン9に対し、強い力で多段バレルヘッド14を押し付けて強い引張力を作用させたとしても、ガラスリボン9の押さえ代(溶融ガラスGをその厚さ方向に変形させる量)について、2段構造の基準バレルヘッド18を用いた場合よりも浅くできる。
In the manufacturing apparatus 1 of the present embodiment, the top roll 11A 0 to top roll 11A 4 and the top roll 11A 11 to top roll 11A 15 are provided with the reference barrel head 18, so that the outer peripheral blade 19 having a two-stage structure is made of glass. While pressing against the end of the ribbon 9 in the width direction, the reference barrel head 18 of each of the top rolls applies a necessary tensile force to the both ends in the width direction of the glass ribbon 9 in the upstream region and the downstream region. be able to.
Further, since the fifth top roll 11A 5 from the 10 th top roll 11A 10 it is provided with a wide multi-stage barrel head 14 width of 6-stage structure, to the glass ribbon 9 medium basin, multistage with a strong force Even when the barrel head 14 is pressed and a strong tensile force is applied, the press margin of the glass ribbon 9 (the amount by which the molten glass G is deformed in the thickness direction) is used when the reference barrel head 18 having a two-stage structure is used. Can be shallower.
 このため、多段バレルヘッド14を用いて強い引張力でガラスリボン9の幅方向端部に対し外側向きに強い引張力を作用させたとしても、多段バレルヘッド14がガラスリボン9の幅方向端部をその厚さ方向に変形させる量(押さえ代)が少なくなる。このため、中流域において、ガラスリボン9に対し2段構造の外周刃でもって強い引張力を作用させていた従来装置に比べ、薄いガラスリボン9を製造しようとした場合であっても溶融ガラスGの幅方向端部側にストローと称される局所変形部を生じない。
 なお、上流域のガラスリボン9は粘度が低く、元々強い引張力を加えることは難しいので基準バレルヘッド18でよく、下流域のガラスリボン9は粘度が高く、硬い状態に近いので基準バレルヘッド18で押し付けたとしても、その厚さ方向の変形量は少ない。この点に鑑み、中流域においてガラスリボン9に強い引張力を作用させてガラスリボン9を引き延ばすので、中流域において多段バレルヘッド14を設けることが望ましい。
For this reason, even if a strong tensile force is applied to the end of the glass ribbon 9 in the width direction with a strong tensile force using the multi-stage barrel head 14, the multi-stage barrel head 14 has the width direction end of the glass ribbon 9. The amount of deformation in the thickness direction (pressing margin) is reduced. Therefore, compared with the conventional apparatus in which a strong tensile force is applied to the glass ribbon 9 with a two-stage outer peripheral blade in the middle stream region, the molten glass G The local deformation part called a straw does not arise in the width direction edge part side of this.
The glass ribbon 9 in the upstream region has a low viscosity and it is difficult to apply a strong tensile force from the beginning, so the reference barrel head 18 may be used. The glass ribbon 9 in the downstream region has a high viscosity and is almost in a hard state. Even if it is pressed, the amount of deformation in the thickness direction is small. In view of this point, since the glass ribbon 9 is stretched by applying a strong tensile force to the glass ribbon 9 in the midstream region, it is desirable to provide the multistage barrel head 14 in the midstream region.
 なお、中流域において多段バレルヘッド14を設ける個数について、本実施形態において特に規定する訳ではなく、目的とする最終厚さのガラスリボン10に対し必要な個数を設けることができる。例えば、中流域の全数のバレルヘッドを多段バレルヘッド14とする必要はなく、一部のバレルヘッドを多段バレルヘッド14とし、残りのバレルヘッドを基準バレルヘッド18としても良い。目的の厚さのガラスリボン10を成形するためにストローと称される局所変形部を生じないように必要な数を設置すればよい。
 また、上流域~下流域の全域に設けるバレルヘッド14、18の全個数についても本実施形態の例に規制される訳ではなく、目的の厚さのガラスリボン10を成形するために必要な数を設置すればよい。
Note that the number of the multistage barrel heads 14 provided in the middle stream is not particularly defined in the present embodiment, and a necessary number of the glass ribbons 10 having a final thickness can be provided. For example, it is not necessary to use all the barrel heads in the middle basin as the multistage barrel heads 14, and some barrel heads may be the multistage barrel heads 14, and the remaining barrel heads may be the reference barrel heads 18. What is necessary is just to install a required number so that the local deformation part called a straw may not be produced in order to shape | mold the glass ribbon 10 of the target thickness.
Further, the total number of barrel heads 14 and 18 provided in the entire region from the upstream region to the downstream region is not limited by the example of the present embodiment, and the number necessary for forming the glass ribbon 10 having a desired thickness. Should be installed.
 トップロール11A~トップロール11A15を用いて薄く引き延ばした溶融ガラスGは移動経路8の上流域から下流域に移動するにつれて徐々に冷却されて硬さが上昇し、移動経路8の下流域では一定の幅と厚さのガラスリボン10となって、出口部6に至り、後工程の徐冷ライン7A側に搬送される。本実施形態のガラス板の製造装置1によれば、従来、ストローと称される局所変形部が形成されたまま徐冷ライン7Aに搬送されていたガラスリボン10に局所変形部を生成していないので、徐冷ライン7Aにおいてガラスリボン10が割れるおそれがない。
 また、徐冷ライン7Aの後工程には図示略の切断ラインが設置されているので、徐冷後のガラスリボン10を必要な大きさに切り折りすることによって目的の大きさのガラス板を得ることができる。この切断ラインに送るガラスリボン10に局所変形部を生成していないので、切り折りする切断の際に切断不良箇所を生じるおそれが無く、生産性の向上に寄与する。
The molten glass G thinly stretched using the top rolls 11A 1 to 11A 15 is gradually cooled as it moves from the upstream area to the downstream area of the movement path 8 to increase its hardness. It becomes the glass ribbon 10 of a fixed width and thickness, reaches the outlet 6 and is conveyed to the slow cooling line 7A side in the subsequent process. According to the glass plate manufacturing apparatus 1 of the present embodiment, a local deformation portion is not generated in the glass ribbon 10 that has been conventionally transported to the slow cooling line 7A while a local deformation portion called a straw is formed. Therefore, there is no possibility that the glass ribbon 10 breaks in the slow cooling line 7A.
In addition, since a cutting line (not shown) is installed in the subsequent process of the slow cooling line 7A, a glass plate having a desired size is obtained by cutting and folding the glass ribbon 10 after the slow cooling to a required size. be able to. Since the local deformation | transformation part is not produced | generated in the glass ribbon 10 sent to this cutting line, there is no possibility of producing a cutting | disconnection defect location in the case of cutting cut and fold, and it contributes to improvement in productivity.
 本実施形態のガラス製造装置1において製造しようとする溶融ガラスGの組成は特に制約がない。
 従って、無アルカリガラス、ソーダライムガラス、混合アルカリ系ガラス、またはホウケイ酸ガラス、あるいは、その他のガラスのいずれであってもよい。また、製造されるガラス製品の用途は、フラットパネルディスプレイ用、建築用や車両用に限定されず、その他の各種用途が挙げられる。特に高品質が求められるフラットパネルディスプレイ用の無アルカリガラスが好ましい。
There is no restriction | limiting in particular in the composition of the molten glass G which it is going to manufacture in the glass manufacturing apparatus 1 of this embodiment.
Therefore, any of non-alkali glass, soda lime glass, mixed alkali glass, borosilicate glass, or other glass may be used. Moreover, the use of the manufactured glass product is not limited to flat panel display use, architectural use, and vehicle use, and includes various other uses. In particular, alkali-free glass for flat panel displays that requires high quality is preferred.
 なお、溶融ガラスGに好適なガラスとして、酸化物基準の質量百分率表示において、以下の組成を有する無アルカリガラスを用いることができる。
 SiO:50~73%好ましくは50~66%、Al:10.5~24%、B:0~12%、MgO:0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、MgO+CaO+SrO+BaO:9~29.5%、ZrO:0~5%。
 前記溶融ガラスGに好適なガラスとして、歪点が高く溶解性を考慮する場合は、酸化物基準の質量百分率表示において、以下の組成を有する無アルカリガラスを用いることができる。
 SiO:58~66%、Al:15~22%、B:5~12%、MgO:0~8%、CaO:0~9%、SrO:3~12.5%、BaO:0~2%、MgO+CaO+SrO+BaO:9~18%、ZrO:0~5%。
 前記溶融ガラスGに好適なガラスとして、特に高歪点を考慮する場合は、酸化物基準の質量百分率表示において、以下の組成を有する無アルカリガラスを用いることができる。
 SiO:54~73%、
 Al:10.5~22.5%、
 B:0~5.5%、
 MgO:0~8%、
 CaO:0~9%、
 SrO:0~16%、
 BaO:0~2.5%、
 MgO+CaO+SrO+BaO:8~26%。
In addition, as a glass suitable for the molten glass G, an alkali-free glass having the following composition in the oxide-based mass percentage display can be used.
SiO 2 : 50 to 73%, preferably 50 to 66%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 8%, CaO: 0 to 14.5 %, SrO: 0 to 24%, BaO: 0 to 13.5%, MgO + CaO + SrO + BaO: 9 to 29.5%, ZrO 2 : 0 to 5%.
As a glass suitable for the molten glass G, when the strain point is high and solubility is considered, an alkali-free glass having the following composition can be used in the oxide-based mass percentage display.
SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 3 to 12.5% BaO: 0 to 2%, MgO + CaO + SrO + BaO: 9 to 18%, ZrO 2 : 0 to 5%.
As a glass suitable for the molten glass G, when considering a high strain point in particular, an alkali-free glass having the following composition can be used in the oxide-based mass percentage display.
SiO 2 : 54-73%
Al 2 O 3 : 10.5 to 22.5%,
B 2 O 3 : 0 to 5.5%,
MgO: 0-8%,
CaO: 0-9%,
SrO: 0 to 16%,
BaO: 0 to 2.5%,
MgO + CaO + SrO + BaO: 8-26%.
 図5は本発明に係るガラス板の製造装置に適用される多段バレルヘッドの第2の例を示すもので、この第2の例の多段バレルヘッド30は、先の実施形態に設けられていた回転軸13の先端部に多段バレルヘッド14に代わり一体的に取り付けられている。
 この例の多段バレルヘッド30は、鋸歯状の外周刃を6段有するが、回転軸13に近い側から第1段目の外周刃30a、第2段目の外周刃30a、第3段目の外周刃30a、第4段目の外周刃30a、第5段目の外周刃30a、第6段目の外周刃30aの順に順次外径が大きくされている。
 即ち、外周刃30a~30aを備えた回転ドラム31が回転軸13側において外径が小さく、その反対側において外径が大きく形成されている。換言すると、ガラスリボン9の幅方向端部9aに近い回転ドラム31の一側端部の外径が、ガラスリボン9の幅方向中央に近い回転ドラム31の他側端部の外径よりも小さく形成されている。また、本実施形態において外周刃30a~30aはこの順に順次大きく形成されている。
FIG. 5 shows a second example of the multi-stage barrel head applied to the glass plate manufacturing apparatus according to the present invention, and the multi-stage barrel head 30 of this second example was provided in the previous embodiment. Instead of the multistage barrel head 14, it is integrally attached to the tip of the rotating shaft 13.
The multi-stage barrel head 30 of this example has six stages of serrated outer peripheral blades, but from the side close to the rotary shaft 13, the first outer peripheral blade 30a 1 , the second outer peripheral blade 30a 2 , and the third stage. The outer diameters are sequentially increased in the order of the outer peripheral blade 30a 3 , the fourth outer peripheral blade 30a 4 , the fifth outer peripheral blade 30a 5 , and the sixth outer peripheral blade 30a 6 .
That is, the rotary drum 31 provided with the outer peripheral blades 30a 1 to 30a 6 has a small outer diameter on the rotating shaft 13 side and a large outer diameter on the opposite side. In other words, the outer diameter of one end of the rotating drum 31 near the width direction end 9 a of the glass ribbon 9 is smaller than the outer diameter of the other end of the rotating drum 31 near the center of the glass ribbon 9 in the width direction. Is formed. In the present embodiment, the outer peripheral blades 30a 1 to 30a 6 are formed larger in this order.
 図5に示す構成の多段バレルヘッド30は、回転軸13を側面視ほぼ水平、かつ、平面視図6に示すようにY軸方向と傾斜角度θを示すように傾斜させつつ多段バレルヘッド30の外周刃30a~30aをガラスリボン9の幅方向端部9a近くに上から押し付けて使用する。
 この配置により、外周刃30a~30aの円周長がそれぞれ異なるので、図5に示すように外周刃30aが外周刃30aよりもガラスリボン9に対しより深く食い込むとともに、図6に示す矢印c、dの大きさで示すように外周刃30aと外周刃30aの間に周速差を生じさせてガラスリボン9の幅方向端部9aに対しその外側に向けて引張力を作用させることができる。図5に示すように外周刃30aが溶融ガラスGに接する位置eと外周刃30aが溶融ガラスGに接する位置fを対比すると、外周刃30aの周速が遅くなり、外周刃30aの周速が速くなるので、ガラスリボン9の幅方向端部9aに対しその外側向きに目的の引張力を作用できる。
The multistage barrel head 30 having the configuration shown in FIG. 5 is configured so that the rotary shaft 13 is inclined so as to be substantially horizontal when viewed from the side and as shown in the plan view of FIG. The outer peripheral blades 30a 1 to 30a 6 are used by pressing from the top near the end portion 9a in the width direction of the glass ribbon 9.
With this arrangement, the circumferential lengths of the outer peripheral blades 30a 1 to 30a 6 are different from each other, so that the outer peripheral blade 30a 6 bites into the glass ribbon 9 deeper than the outer peripheral blade 30a 1 as shown in FIG. As shown by the size of the arrows c and d shown, a peripheral speed difference is generated between the outer peripheral blade 30a 6 and the outer peripheral blade 30a 1 , and a tensile force is applied to the width direction end portion 9a of the glass ribbon 9 toward the outer side. Can act. When the outer peripheral edge 30a 1 as shown in FIG. 5 is the position e and the outer peripheral edge 30a 6 in contact with the molten glass G contrasting position f in contact with the molten glass G, slower peripheral speed of the peripheral cutting edge 30a 1, the outer peripheral edge 30a 6 Since the peripheral speed of the glass ribbon 9 is increased, a target tensile force can be applied to the width direction end portion 9a of the glass ribbon 9 in the outward direction.
 この例の多段バレルヘッド30によれば、径の異なる外周刃30a~30aをガラスリボン9の端部に押し付ける操作により自然に溶融ガラスGの幅を外側に拡げる方向に引張力を作用できるので、ガラスリボン9を薄く成形する場合に有利であり、薄いガラスリボン10を製造できる。
 また、多段バレルヘッド30は、6段(6列)の外周刃30a~30aを有する構造であり、ガラスリボン9をその外側に引っ張る力を効果的に発生できるため、大きな引張力を作用させても、2段構造の外周刃を有していた従来のバレルヘッドに比べ、ガラスリボン9をその厚さ方向に大きく変形させるおそれは少ないので、ガラスリボン10にストローなどの局所変形部を生じない。
According to the multi-stage barrel head 30 of this example, a tensile force can be applied in a direction that naturally expands the width of the molten glass G by pressing the outer peripheral blades 30a 1 to 30a 6 having different diameters against the ends of the glass ribbon 9. Therefore, it is advantageous when the glass ribbon 9 is formed thin, and the thin glass ribbon 10 can be manufactured.
Further, the multi-stage barrel head 30 has a structure having six stages (six rows) of outer peripheral blades 30a 1 to 30a 6 and can effectively generate a force for pulling the glass ribbon 9 to the outside, so that a large tensile force acts. However, compared to a conventional barrel head having a two-stage outer peripheral blade, the glass ribbon 9 is less likely to be greatly deformed in its thickness direction. Does not occur.
 図7は、一般的な無アルカリガラスの温度と粘度の関連を示すグラフであり、ガラスリボンを成形する場合、1110℃~1120℃程度の溶融ガラスを成形し、徐々に温度を下げた場合の各温度における粘度の関係を示す。
 図7に示すようにガラスリボン9の粘度(η)の常用対数が5.29dPa・sとなる領域の手前の領域を上流域、ガラスリボン9の粘度の常用対数が5.29~6.37dPa・sの領域を中流域、ガラスリボン9の粘度の常用対数が6.37dPa・sを超える領域を下流域と区分けすることができるので、上述した実施形態で説明したように上流域と下流域に基準バレルヘッド18を設け、中流域に多段バレルヘッド14を設けることができる。
FIG. 7 is a graph showing the relationship between the temperature and viscosity of a general alkali-free glass. When a glass ribbon is formed, a molten glass of about 1110 ° C. to 1120 ° C. is formed and the temperature is gradually lowered. The relationship of the viscosity at each temperature is shown.
As shown in FIG. 7, the region in front of the region where the common logarithm of the viscosity (η) of the glass ribbon 9 is 5.29 dPa · s is the upstream region, and the common logarithm of the viscosity of the glass ribbon 9 is 5.29 to 6.37 dPa. Since the region of s can be divided into the middle flow region, and the region where the common logarithm of the viscosity of the glass ribbon 9 exceeds 6.37 dPa · s can be distinguished from the downstream region, the upstream region and the downstream region as described in the above embodiment It is possible to provide the reference barrel head 18 and the multistage barrel head 14 in the middle stream area.
 図7に示す粘度特性の溶融ガラスを図1、図2に示す16基のバレルヘッドを設けた成形装置に適用し、幅約80インチ(約2.03m)~幅約110インチ(約2.79m)、厚さ0.3mmのガラスリボンを製造した。
 初段のトップロールから第12番目のトップロールについて以下の押さえ深さに設定した。初段~第5番目のトップロールの押さえ深さ25mmに設定した。第6番目のトップロールの押さえ深さ20mm、第7番目~第10番目のトップロールの押さえ深さ10~15mm、第11番目~第13番目のトップロールの押さえ深さ5~10mmに設定した。バレルヘッドの速度は、上流域において搬送速度の2~30%、中流域において搬送速度の30~60%、下流域において搬送速度の69~90%程度となる。
The molten glass having the viscosity characteristics shown in FIG. 7 is applied to a molding apparatus provided with 16 barrel heads shown in FIGS. 1 and 2, and has a width of about 80 inches (about 2.03 m) to a width of about 110 inches (about 2. 79 m), a glass ribbon having a thickness of 0.3 mm was produced.
The following pressing depths were set for the twelfth top roll from the first top roll. The pressing depth of the first to fifth top rolls was set to 25 mm. The pressing depth of the sixth top roll was set to 20 mm, the pressing depth of the seventh to tenth top rolls was set to 10 to 15 mm, and the pressing depth of the eleventh to thirteenth top rolls was set to 5 to 10 mm. . The barrel head speed is 2 to 30% of the transport speed in the upstream area, 30 to 60% of the transport speed in the middle stream area, and 69 to 90% of the transport speed in the downstream area.
 初段のトップロールL-0、第1番目のトップロールL-1~第15番目のトップロールL-15とする。
 各トップロールの傾斜角度θについては、L-0~L-3のトップロールのバレルヘッドについて0゜~15゜まで段階的に傾斜を付与し、L-4~L-8までのトップロールのバレルヘッドについて12~15゜の傾斜を付与し、L9-L-13までのトップロールのバレルヘッドについて段階的に傾斜を少なくしてL-11以降のトップロールについて0゜とする傾斜角度条件とした。
 比較のために、初段~第15番目のトップロールについて全て2段の基準バレルヘッドを用いてガラスリボンを生成する試験も行った。この比較試験の結果を図8に示す。
The top roll L-0 is the first stage, the first top roll L-1 to the fifteenth top roll L-15.
With respect to the inclination angle θ of each top roll, the barrel heads of the top rolls of L-0 to L-3 are inclined stepwise from 0 ° to 15 °, and the top rolls of L-4 to L-8 are inclined. An inclination angle condition of 12 to 15 ° is given to the barrel head, and the inclination of the top roll barrel heads up to L9-L-13 is gradually reduced to 0 ° for the top rolls after L-11. did.
For comparison, a test for producing glass ribbons using a two-stage reference barrel head for all of the first to fifteenth top rolls was also conducted. The result of this comparative test is shown in FIG.
 図8は、初段のトップロールL-0~L-15について、全て基準バレルヘッドとした場合の試験結果を示す。図8にはどの位置でストローと称される局所変形部が生じたのか、結果を記載した。これは、独自のソルバーで解析した、コンピュータシミュレーションの結果である。
 図8に示す試験結果から、ストローと称される局所変形部が最も生じ易いのは、L-5~L-10までの中流域のトップロールであることが判明した。
FIG. 8 shows the test results when all the top rolls L-0 to L-15 in the first stage are used as reference barrel heads. FIG. 8 shows the results of the position where the locally deformed portion called the straw was generated. This is the result of computer simulation analyzed with our own solver.
From the test results shown in FIG. 8, it was found that the local rolls called straws are most likely to occur in the middle roll top roll from L-5 to L-10.
 このため、L-5~L-10までの6基のトップロールに図3、図4に示す6段の多段バレルヘッドを設け、同等の条件にて成形試験を行った。それらの結果を纏めて図9に示す。
 図9は厚さ0.3mmのガラスリボンを製造するために、全てのトップロールについて基準バレルヘッドを設けた場合とL-5~L-10までの6基のトップロールに多段バレルヘッドを設け、他のトップロールは全て基準トップロールとした場合の結果を示す。これは、独自のソルバーで解析した、コンピュータシミュレーションの結果である。図9において、白抜きの矢印で示す領域が中流域を示し、この中流領域に多段バレルヘッドを設けた。
 図9の上側のグラフの幅方向位置が移動経路の進行方向左側のガラスリボンのエッジ部の位置を示し、図9の下側のグラフの幅方向位置が移動経路の進行方向右側のガラスリボンのエッジ部の位置を示す。
 図9の上下のガラスリボンの幅方向両側のエッジ部間の距離(即ち、図9上側グラフのガラスリボンのエッジ部の位置と図9下側グラフのガラスリボンのエッジ部の位置との距離)がガラスリボンの幅に対応する。
Therefore, a six-stage multi-stage barrel head shown in FIGS. 3 and 4 was provided on six top rolls L-5 to L-10, and a molding test was performed under the same conditions. The results are summarized in FIG.
Fig. 9 shows a case where a standard barrel head is provided for all top rolls and a multi-stage barrel head is provided for six top rolls L-5 to L-10 in order to produce a glass ribbon having a thickness of 0.3 mm. The other top rolls all show the results when the reference top rolls are used. This is the result of computer simulation analyzed with our own solver. In FIG. 9, a region indicated by a white arrow indicates a middle flow region, and a multistage barrel head is provided in the middle flow region.
The position in the width direction of the upper graph in FIG. 9 indicates the position of the edge of the glass ribbon on the left side in the traveling direction of the moving path, and the position in the width direction of the lower graph in FIG. Indicates the position of the edge portion.
The distance between the edge portions on both sides of the upper and lower glass ribbons in FIG. 9 (that is, the distance between the edge portion of the glass ribbon in the upper graph of FIG. 9 and the edge portion of the glass ribbon in the lower graph of FIG. 9) Corresponds to the width of the glass ribbon.
 同じ溶融ガラスに対し、各バレルヘッドを同じ角度に傾斜配置してガラスリボンの端部に外向きの引張力を付加し、同じ厚さのガラスリボンを製造しようとしているが、多段バレルヘッドを設けた場合の試験結果の方が、明らかにガラスリボン幅が広くなっていることが分かる。
 即ち、基準バレルヘッドを全域に設けた基準バレル1L(図9の上側グラフの◇印、ガラスリボンを平面視した場合に左側の基準バレルを示す。)と基準バレル1R(図9の下側グラフの□印、ガラスリボンを平面視した場合に右側の基準バレルを示す。)の間の上下幅が1回目の試験のガラスリボン幅に相当し、基準バレルヘッドを全域に設けた基準バレル2L(図9の上側グラフの□印)と基準バレル2R(図9の下側グラフの◇印)の間の上下幅が2回目の試験のガラスリボン幅に相当する。
 これらに対し、図9において、中流域に多段バレルヘッドを設けた場合の多段バレル1L(図9の上側グラフの△印)と、中流域に多段バレルヘッドを設けた場合の多段バレル1R(図9の下側のグラフの△印)の間の上下幅が1回目の試験のガラスリボン幅に相当し、基準バレルヘッドを全域に設けた基準バレル2L(図9の上側グラフの×印)と基準バレル2R(図9の下側グラフの×印)の間の上下幅が2回目の試験のガラスリボン幅に相当する。
 図9の上のグラフの各印のプロット位置と図9の下のグラフの各印のプロット位置との間の上下幅が大きい方がガラスリボン幅が広くなっている。ガラスリボンの幅が広くなっていることは、ガラスリボンの端部に外向きの引張力を良好に付加できていることを意味する。
 しかも、多段バレルヘッドを設けて成形した場合にガラスリボンにストローと称される局所変形部は発生しなかった。
We are trying to manufacture glass ribbons of the same thickness by tilting the barrel heads at the same angle and applying an outward tensile force to the end of the glass ribbon for the same molten glass. It can be seen that the glass ribbon width is clearly wider in the case of the test results.
That is, a reference barrel 1L provided with a reference barrel head over the entire area (indicated by a ◇ in the upper graph of FIG. 9, the left reference barrel when the glass ribbon is viewed in plan) and a reference barrel 1R (lower graph of FIG. 9). The vertical width between the □ mark and the glass ribbon in the plan view of the glass ribbon corresponds to the glass ribbon width of the first test, and the reference barrel 2L (where the reference barrel head is provided over the entire area) The vertical width between the □ mark in the upper graph of FIG. 9 and the reference barrel 2R (the ◯ mark in the lower graph of FIG. 9) corresponds to the glass ribbon width of the second test.
On the other hand, in FIG. 9, the multistage barrel 1L when the multistage barrel head is provided in the middle stream area (Δ mark in the upper graph of FIG. 9) and the multistage barrel 1R when the multistage barrel head is provided in the middle stream area (see FIG. 9). 9 in the lower graph of FIG. 9 corresponds to the glass ribbon width of the first test, and a reference barrel 2L (a cross mark in the upper graph in FIG. 9) provided with a reference barrel head over the entire area. The vertical width between the reference barrels 2R (the crosses in the lower graph of FIG. 9) corresponds to the glass ribbon width of the second test.
The glass ribbon width is wider when the vertical width between the plot positions of the marks in the upper graph of FIG. 9 and the plot positions of the marks in the lower graph of FIG. 9 is larger. The wide width of the glass ribbon means that an outward tensile force can be favorably applied to the end of the glass ribbon.
In addition, when the multistage barrel head is provided and molded, a local deformation portion called a straw does not occur on the glass ribbon.
 なお、図9から明らかなように、ガラスリボンは左側及び右側の何れも約10%板幅が広くなっていることがわかる。
 図10は、先に示した全てのトップロールに基準バレルヘッドを設けてガラスリボンを成形した場合、ガラスリボンの端部における各バレルヘッドの押圧位置において、応力分布状態を応力解析シュミュレーションにより求めた結果を示す図である。
 図10に示す結果から、No.4(L-4)~No.11(L-11)の各トップロールについて各位置のガラスリボンに作用する応力分布の状態を解析した結果、本発明者が想定しているストローと称される局所変形部が発生すると予想される鎖線で示す境界値Rに対し、No.5(L-5)~No.10(L-10)の位置において顕著な応力分布となるので、このシュミュレーション結果から見ても、中流域のトップロールについてバレルヘッドを適用することが有効であることが分かる。
As can be seen from FIG. 9, the glass ribbon is about 10% wider on both the left and right sides.
FIG. 10 shows the stress distribution simulation obtained by stress analysis simulation at the pressing position of each barrel head at the end of the glass ribbon when the glass ribbon is formed by providing the reference barrel head on all the top rolls shown above. It is a figure which shows the result.
From the results shown in FIG. 10, the inventors analyzed the state of the stress distribution acting on the glass ribbon at each position for each of the top rolls No. 4 (L-4) to No. 11 (L-11). Conspicuous stress at the positions of No. 5 (L-5) to No. 10 (L-10) with respect to the boundary value R indicated by the chain line where the assumed local deformation portion called a straw is expected to occur. From this simulation result, it can be seen that it is effective to apply the barrel head to the middle roll top roll.
本出願は、2012年4月12日出願の日本特許出願2012-091094に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2012-091094 filed on April 12, 2012, the contents of which are incorporated herein by reference.
 本発明の技術は、表示装置用ガラス、光学用ガラス、医療用ガラス、建築用ガラス、車両用ガラス、その他一般のガラス製品に用いられるガラス板を製造する装置と方法に広く適用できる。 The technology of the present invention can be widely applied to apparatuses and methods for producing glass plates used in display glass, optical glass, medical glass, architectural glass, vehicle glass, and other general glass products.
 G…溶融ガラス、1…製造装置(フロートバス)、2…浴槽、3…溶融金属、5…入口部、6…出口部、7…搬送ロール、7A…徐冷ライン、8…移動経路、9…ガラスリボン、10…ガラスリボン、11…トップロール、11A~11A15…トップロール、13…回転軸、14…多段バレルヘッド、16…回転ドラム、17…回転軸、18…基準バレルヘッド、20…回転ドラム、30…多段バレルヘッド、 G ... Molten glass, 1 ... Manufacturing apparatus (float bath), 2 ... Bath, 3 ... Molten metal, 5 ... Inlet part, 6 ... Outlet part, 7 ... Conveyance roll, 7A ... Slow cooling line, 8 ... Movement path, 9 Glass ribbon, 10 ... Glass ribbon, 11 ... Top roll, 11A 0 to 11A 15 ... Top roll, 13 ... Rotating shaft, 14 ... Multi-stage barrel head, 16 ... Rotating drum, 17 ... Rotating shaft, 18 ... Reference barrel head, 20 ... Rotating drum, 30 ... Multistage barrel head,

Claims (15)

  1.  溶融金属の上に設けた溶融ガラスの移動経路に沿って溶融ガラスを移動させつつ成形してガラスリボンを製造するガラス板の製造方法において、
     前記移動経路の上流域から下流域にかけて移動経路の幅方向両端側に配設した複数対のトップロールによりガラスリボンの両端部に外向きの引張力を作用させて厚さ1mm以下のガラスリボンを製造する際、
     前記トップロールとして、前記移動経路に沿って上流域から下流域に搬送されるガラスリボンの幅方向端部を外側に引っ張るバレルヘッドを備えたトップロールを用い、
     前記移動経路の上流域と中流域と下流域に設けられてガラスリボンの幅方向端部に外向きの引張力を作用させるバレルヘッドのうち、中流域に設けられるバレルヘッドとして3列以上の外周刃を備えた多段バレルヘッドを用い、上流域と下流域に設けられるバレルヘッドとして1列または2列の外周刃を備えた基準バレルヘッドを用いるガラス板の製造方法。
    In the method of manufacturing a glass plate, which is formed while moving the molten glass along the moving path of the molten glass provided on the molten metal, and manufacturing a glass ribbon,
    A glass ribbon having a thickness of 1 mm or less is formed by applying an outward tensile force to both ends of the glass ribbon by a plurality of pairs of top rolls disposed on both ends in the width direction of the movement path from the upstream area to the downstream area of the movement path. When manufacturing
    As the top roll, using a top roll provided with a barrel head that pulls outward in the width direction end of the glass ribbon conveyed from the upstream area to the downstream area along the movement path,
    Out of the barrel heads that are provided in the upstream, middle and downstream areas of the moving path and apply an outward tensile force to the widthwise ends of the glass ribbon, three or more outer circumferences as barrel heads provided in the middle stream A method for producing a glass plate, which uses a multistage barrel head provided with blades and uses a reference barrel head provided with one or two rows of outer peripheral blades as barrel heads provided in an upstream region and a downstream region.
  2.  前記ガラスリボンの粘度の対数が5.29~6.37dPa・sの領域を中流域として前記多段バレルヘッドを設置する請求項1に記載のガラス板の製造方法。 2. The method for producing a glass plate according to claim 1, wherein the multi-stage barrel head is installed with an area where the logarithm of the viscosity of the glass ribbon is 5.29 to 6.37 dPa · s as a middle flow area.
  3.  前記上流域の基準バレルヘッドと中流域の多段バレルヘッドと下流域の基準バレルヘッドをいずれも各領域に対し複数設け、各バレルヘッドの外周面の周方向に沿って形成されている各列の外周刃が形成する面の方向を前記ガラスリボンに対しほぼ垂直、かつ、ガラスリボンの搬送方向に対し平行に配置するか傾斜させて配置する際、上流域の基準バレルヘッドから中流域の多段バレルヘッドにかけて順次傾斜角度が大きくなるように、中流域の多段バレルヘッドから下流域の基準バレルヘッドにかけて順次傾斜角度が小さくなるように各バレルヘッドを配置した請求項1または2に記載のガラス板の製造方法。 A plurality of the upstream reference barrel head, the middle-stream multistage barrel head, and the downstream reference barrel head are provided for each region, and each row formed along the circumferential direction of the outer peripheral surface of each barrel head. When arranging the direction of the surface formed by the outer peripheral blade substantially perpendicular to the glass ribbon and parallel or inclined with respect to the conveying direction of the glass ribbon, the multistage barrel in the middle stream area from the reference barrel head in the upstream area 3. The glass plate according to claim 1, wherein the barrel heads are arranged so that the inclination angle gradually decreases from the multistage barrel head in the middle stream region to the reference barrel head in the downstream region so that the inclination angle gradually increases toward the head. Production method.
  4.  前記移動経路の幅方向端縁に近い列の外周刃を設けたバレルヘッドの一側端部の外径が、前記移動経路の幅方向中央に近い列の外周刃を設けたバレルヘッドの他側端部の外径よりも小さくされた多段バレルヘッドを用いる請求項1~3のいずれか一項に記載のガラス板の製造方法。 The other side of the barrel head provided with the outer peripheral blade of the row close to the center in the width direction of the moving path, the outer diameter of one end of the barrel head provided with the outer peripheral blade of the row close to the width direction edge of the moving path The method for producing a glass plate according to any one of claims 1 to 3, wherein a multistage barrel head having a smaller outer diameter than the end portion is used.
  5.  前記溶融ガラスとして、酸化物基準の質量百分率表示において、以下の組成を有する無アルカリガラスを用いる請求項1~4のいずれか一項に記載のガラス板の製造方法:
     SiO:50~73%、
     Al:10.5~24%、
     B:0~12%、
     MgO:0~8%、
     CaO:0~14.5%、
     SrO:0~24%、
     BaO:0~13.5%、
     MgO+CaO+SrO+BaO:9~29.5%、及び
     ZrO:0~5%。
    The method for producing a glass plate according to any one of claims 1 to 4, wherein the molten glass is an alkali-free glass having the following composition in terms of oxide-based mass percentage:
    SiO 2 : 50 to 73%,
    Al 2 O 3 : 10.5-24%,
    B 2 O 3 : 0 to 12%,
    MgO: 0-8%,
    CaO: 0 to 14.5%,
    SrO: 0 to 24%,
    BaO: 0 to 13.5%,
    MgO + CaO + SrO + BaO: 9 to 29.5%, and ZrO 2 : 0 to 5%.
  6.  前記溶融ガラスとして、酸化物基準の質量百分率表示において、以下の組成を有する無アルカリガラスを用いる請求項1~4のいずれか一項に記載のガラス板の製造方法:
     SiO:58~66%、
     Al:15~22%、
     B:5~12%、
     MgO:0~8%、
     CaO:0~9%、
     SrO:3~12.5%、
     BaO:0~2%、
     MgO+CaO+SrO+BaO:9~18%、及び
     ZrO:0~5%。
    The method for producing a glass plate according to any one of claims 1 to 4, wherein the molten glass is an alkali-free glass having the following composition in terms of oxide-based mass percentage:
    SiO 2 : 58 to 66%,
    Al 2 O 3 : 15-22%,
    B 2 O 3 : 5 to 12%,
    MgO: 0-8%,
    CaO: 0-9%,
    SrO: 3 to 12.5%,
    BaO: 0-2%,
    MgO + CaO + SrO + BaO: 9 to 18% and ZrO 2 : 0 to 5%.
  7.  前記溶融ガラスとして、酸化物基準の質量百分率表示において、以下の組成を有する無アルカリガラスを用いる請求項1~4のいずれか一項に記載のガラス板の製造方法:
     SiO:54~73%、
     Al:10.5~22.5%、
     B:0~5.5%、
     MgO:0~8%、
     CaO:0~9%、
     SrO:0~16%、
     BaO:0~2.5%、及び
     MgO+CaO+SrO+BaO:8~26%。
    The method for producing a glass plate according to any one of claims 1 to 4, wherein the molten glass is an alkali-free glass having the following composition in terms of oxide-based mass percentage:
    SiO 2 : 54-73%
    Al 2 O 3 : 10.5 to 22.5%,
    B 2 O 3 : 0 to 5.5%,
    MgO: 0-8%,
    CaO: 0-9%,
    SrO: 0 to 16%,
    BaO: 0 to 2.5%, and MgO + CaO + SrO + BaO: 8 to 26%.
  8.  溶融金属が蓄えられ、該溶融金属上に溶融ガラスの移動経路が形成され、該移動経路の上流域から下流域にかけて溶融ガラスを移動させてガラスリボンを成形するためのフロートバスと、このフロートバス内の移動経路の上流域から下流域にかけて移動経路の幅方向両側に配設された複数対のトップロールとを備え、
     前記トップロールが、溶融ガラスの移動経路の幅方向両側に個々に水平方向に延在された回転軸と、該回転軸の先端側に取り付けられ、前記移動経路に沿って上流域から下流域に搬送されるガラスリボンの幅方向端部に押し付けられる外周刃を有するバレルヘッドとを備え、
     前記移動経路の中流域に、3列以上の外周刃を有し、ガラスリボンの幅方向端部を外側に引っ張る多段バレルヘッドが設けられ、前記移動経路の上流域と下流域に、1列または2列の外周刃を有し、ガラスリボンの幅方向端部を外側に引っ張る基準バレルヘッドが設けられたガラス板の製造装置。
    A float bath for storing molten metal, a molten glass moving path formed on the molten metal, and moving the molten glass from an upstream area to a downstream area of the moving path to form a glass ribbon, and the float bath A plurality of top rolls disposed on both sides in the width direction of the movement path from the upstream area to the downstream area of the movement path within,
    The top roll is attached to a rotating shaft individually extending horizontally on both sides in the width direction of the moving path of the molten glass, and attached to the front end side of the rotating shaft, from the upstream area to the downstream area along the moving path. A barrel head having an outer peripheral blade pressed against the widthwise end of the glass ribbon being conveyed,
    A multistage barrel head that has three or more rows of outer peripheral blades and pulls the end in the width direction of the glass ribbon outward is provided in the middle flow area of the movement path, and one line or An apparatus for producing a glass plate, which has two rows of outer peripheral blades and is provided with a reference barrel head that pulls the end in the width direction of the glass ribbon outward.
  9.  前記ガラスリボンの粘度の対数値が5.29~6.37dPa・sの領域に前記多段バレルヘッドが配置された請求項8に記載のガラス板の製造装置。 The apparatus for producing a glass plate according to claim 8, wherein the multistage barrel head is disposed in a region where the logarithmic value of the viscosity of the glass ribbon is 5.29 to 6.37 dPa · s.
  10.  前記フロートバスにより成形されるガラスリボンの厚さが1mm以下である請求項8または9に記載のガラス板の製造装置。 The apparatus for producing a glass plate according to claim 8 or 9, wherein the glass ribbon formed by the float bath has a thickness of 1 mm or less.
  11.  前記上流域の基準バレルヘッドと中流域の多段バレルヘッドと下流域の基準バレルヘッドがいずれも各領域に対し複数設けられ、各バレルヘッドの外周面の周方向に沿って形成されている各列の外周刃が形成する面の方向を前記ガラスリボンに対しほぼ垂直、かつ、ガラスリボンの搬送方向に対し平行に配置するか傾斜させて配置され、上流域の基準バレルヘッドから中流域の多段バレルヘッドにかけて順次傾斜角度が大きくなるように、中流域の多段バレルヘッドから下流域の基準バレルヘッドにかけて順次傾斜角度が小さくなるように各バレルヘッドが配置された請求項8~10のいずれか一項に記載のガラス板の製造装置。 The upstream reference barrel head, the middle-stream multistage barrel head, and the downstream reference barrel head are all provided for each region, and each row is formed along the circumferential direction of the outer peripheral surface of each barrel head. The direction of the surface formed by the outer peripheral blade of the multi-stage barrel is arranged from the upstream reference barrel head to the middle-stream barrel by being arranged so as to be substantially perpendicular to the glass ribbon and parallel or inclined with respect to the glass ribbon transport direction. 11. The barrel heads according to claim 8, wherein the barrel heads are arranged such that the inclination angle gradually decreases from the multistage barrel head in the middle stream area to the reference barrel head in the downstream area so that the inclination angle gradually increases toward the head. The manufacturing apparatus of the glass plate of description.
  12.  前記移動経路の幅方向端縁に近い列の外周刃を設けたバレルヘッドの一側端部の外径が、前記移動経路の幅方向中央に近い列の外周刃を設けたバレルヘッドの他側端部の外径よりも小さくされた請求項8~11のいずれか一項に記載のガラス板の製造装置。 The other side of the barrel head provided with the outer peripheral blade of the row close to the center in the width direction of the moving path, the outer diameter of one end of the barrel head provided with the outer peripheral blade of the row close to the width direction edge of the moving path The apparatus for producing a glass plate according to any one of claims 8 to 11, wherein the apparatus is made smaller than the outer diameter of the end portion.
  13.  前記溶融ガラスとして、酸化物基準の質量百分率表示において、以下の組成を有する無アルカリガラスが適用される請求項8~12のいずれか一項に記載のガラス板の製造装置:
     SiO:50~73%、
     Al:10.5~24%、
     B:0~12%、
     MgO:0~8%、
     CaO:0~14.5%、
     SrO:0~24%、
     BaO:0~13.5%、
     MgO+CaO+SrO+BaO:9~29.5%、及び
     ZrO:0~5%。
    The glass plate manufacturing apparatus according to any one of claims 8 to 12, wherein an alkali-free glass having the following composition in terms of oxide-based mass percentage is applied as the molten glass:
    SiO 2 : 50 to 73%,
    Al 2 O 3 : 10.5-24%,
    B 2 O 3 : 0 to 12%,
    MgO: 0-8%,
    CaO: 0 to 14.5%,
    SrO: 0 to 24%,
    BaO: 0 to 13.5%,
    MgO + CaO + SrO + BaO: 9 to 29.5%, and ZrO 2 : 0 to 5%.
  14.  前記溶融ガラスとして、酸化物基準の質量百分率表示において、以下の組成を有する無アルカリガラスが適用される請求項8~12のいずれか一項に記載のガラス板の製造装置:
     SiO:58~66%、
     Al:15~22%、
     B:5~12%、
     MgO:0~8%、
     CaO:0~9%、
     SrO:3~12.5%、
     BaO:0~2%、
     MgO+CaO+SrO+BaO:9~18%、及び
     ZrO:0~5%。
    The glass plate manufacturing apparatus according to any one of claims 8 to 12, wherein an alkali-free glass having the following composition in terms of oxide-based mass percentage is applied as the molten glass:
    SiO 2 : 58 to 66%,
    Al 2 O 3 : 15-22%,
    B 2 O 3 : 5 to 12%,
    MgO: 0-8%,
    CaO: 0-9%,
    SrO: 3 to 12.5%,
    BaO: 0-2%,
    MgO + CaO + SrO + BaO: 9 to 18% and ZrO 2 : 0 to 5%.
  15.  前記溶融ガラスとして、酸化物基準の質量百分率表示において、以下の組成を有する無アルカリガラスが適用される請求項8~12のいずれか一項に記載のガラス板の製造装置:
     SiO:54~73%、
     Al:10.5~22.5%、
     B:0~5.5%、
     MgO:0~8%、
     CaO:0~9%、
     SrO:0~16%、
     BaO:0~2.5%、及び
     MgO+CaO+SrO+BaO:8~26%。
    The glass plate manufacturing apparatus according to any one of claims 8 to 12, wherein an alkali-free glass having the following composition in terms of oxide-based mass percentage is applied as the molten glass:
    SiO 2 : 54-73%
    Al 2 O 3 : 10.5 to 22.5%,
    B 2 O 3 : 0 to 5.5%,
    MgO: 0-8%,
    CaO: 0-9%,
    SrO: 0 to 16%,
    BaO: 0 to 2.5%, and MgO + CaO + SrO + BaO: 8 to 26%.
PCT/JP2013/060864 2012-04-12 2013-04-10 Method and device for manufacturing glass plate WO2013154140A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380019454.7A CN104220387B (en) 2012-04-12 2013-04-10 The manufacture method of sheet glass and manufacturing installation
KR1020147028520A KR102045834B1 (en) 2012-04-12 2013-04-10 Method and device for manufacturing glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-091094 2012-04-12
JP2012091094 2012-04-12

Publications (1)

Publication Number Publication Date
WO2013154140A1 true WO2013154140A1 (en) 2013-10-17

Family

ID=49327698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060864 WO2013154140A1 (en) 2012-04-12 2013-04-10 Method and device for manufacturing glass plate

Country Status (5)

Country Link
JP (1) JPWO2013154140A1 (en)
KR (1) KR102045834B1 (en)
CN (1) CN104220387B (en)
TW (1) TW201345850A (en)
WO (1) WO2013154140A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6651127B2 (en) * 2015-09-11 2020-02-19 日本電気硝子株式会社 Method for manufacturing glass plate and apparatus for manufacturing the same
KR102434659B1 (en) 2015-12-30 2022-08-19 대우조선해양 주식회사 Cargo hold demonstrations using container inspection equipment
JP2020066548A (en) * 2018-10-24 2020-04-30 Agc株式会社 Analysis device, manufacturing apparatus of float glass, analysis method, and manufacturing method of float glass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988326A (en) * 1982-11-10 1984-05-22 Nippon Sheet Glass Co Ltd Top roll for manufacturing plate glass by floating
JPH08277131A (en) * 1995-04-05 1996-10-22 Asahi Glass Co Ltd Edge roll apparatus for producing float glass

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL136460C (en) 1965-03-11
JP3572631B2 (en) * 1993-06-25 2004-10-06 旭硝子株式会社 Manufacturing method of float plate glass
JPH11236231A (en) 1998-02-20 1999-08-31 Asahi Glass Co Ltd Edge roll device for producing float glass
JP4520192B2 (en) * 2004-03-22 2010-08-04 セントラル硝子株式会社 Method for producing float glass sheet
JP5056035B2 (en) * 2007-02-05 2012-10-24 旭硝子株式会社 Manufacturing method of plate glass by float method
JP2008239370A (en) * 2007-03-26 2008-10-09 Asahi Glass Co Ltd Method for producing plate glass by floating process
JP2009107913A (en) * 2007-11-01 2009-05-21 Central Glass Co Ltd Method for manufacturing float plate glass
JPWO2010147189A1 (en) * 2009-06-19 2012-12-06 旭硝子株式会社 Top roll, float glass manufacturing apparatus, and float glass manufacturing method
JP5565062B2 (en) * 2010-04-15 2014-08-06 旭硝子株式会社 Float glass manufacturing apparatus and float glass manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988326A (en) * 1982-11-10 1984-05-22 Nippon Sheet Glass Co Ltd Top roll for manufacturing plate glass by floating
JPH08277131A (en) * 1995-04-05 1996-10-22 Asahi Glass Co Ltd Edge roll apparatus for producing float glass

Also Published As

Publication number Publication date
TW201345850A (en) 2013-11-16
KR20150002660A (en) 2015-01-07
KR102045834B1 (en) 2019-11-18
CN104220387A (en) 2014-12-17
CN104220387B (en) 2016-03-23
JPWO2013154140A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
JP5428288B2 (en) Glass plate manufacturing method and manufacturing equipment
KR101497251B1 (en) Method and apparatus for making glass sheet
JP5428287B2 (en) Glass plate manufacturing method and manufacturing equipment
TWI490174B (en) Manufacturing method of ribbon glass film and manufacturing device of ribbon glass film
JP5717053B2 (en) Glass film manufacturing method and manufacturing apparatus thereof
JP2007119322A (en) Glass roll and manufacturing method of glass substrate with functional film using the same
JP2015500786A (en) Temperature control of glass ribbon during formation
WO2013154140A1 (en) Method and device for manufacturing glass plate
WO2009081740A1 (en) Process and apparatus for producing glass plate
WO2013157477A1 (en) Glass plate manufacturing device and manufacturing method
WO2013157478A1 (en) Device and method for producing glass sheet and edge-rolling device for producing float glass
KR20190062198A (en) Float glass manufacturing method, and float glass
WO2009081741A1 (en) Process and apparatus for producing glass plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380019454.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014510189

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147028520

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775361

Country of ref document: EP

Kind code of ref document: A1