WO2013153879A1 - Hot-rolling-sequence determination system, and hot-rolling-sequence determination method - Google Patents

Hot-rolling-sequence determination system, and hot-rolling-sequence determination method Download PDF

Info

Publication number
WO2013153879A1
WO2013153879A1 PCT/JP2013/056180 JP2013056180W WO2013153879A1 WO 2013153879 A1 WO2013153879 A1 WO 2013153879A1 JP 2013056180 W JP2013056180 W JP 2013056180W WO 2013153879 A1 WO2013153879 A1 WO 2013153879A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
dhcr
heating furnace
slab
hot
Prior art date
Application number
PCT/JP2013/056180
Other languages
French (fr)
Japanese (ja)
Inventor
山口 収
圭佑 木村
陣内 達也
秀喜 脇安
健太郎 岡崎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2013535613A priority Critical patent/JP5403196B1/en
Publication of WO2013153879A1 publication Critical patent/WO2013153879A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention is a rolling order determination system that changes the operation schedule of a rolling process (Hot rolling process) in response to fluctuations in the steel making process during the synchronized operation of the steel making process and the rolling process ( rolling sequencing system) and rolling order determination method.
  • Patent Documents 1 to 3 describe an operation method (hereinafter referred to as “mixed-rolling”) in which the material is extracted from the mixture and fed to the rolling mill while being mixed.
  • Patent Document 4 describes a technique for predicting future physical distribution based on an operation schedule of a steelmaking process and performing lot organization of the rolling process.
  • the present invention has been made in view of the above problems, and in the synchronous operation of the steelmaking process and the rolling process, the rolling efficiency is not lowered while satisfying the constraints of the rolling process in response to fluctuations in the steelmaking process. It aims at providing the rolling order determination system and rolling order determination method which change the operation schedule of a rolling process in this way.
  • a rolling order determination system includes a steel making process using a continuous casting machine and a hot rolling mill having a plurality of heating furnaces (Hot rolling mill). ) During the synchronous operation with the rolling process, and extracted from the continuous casting machine and directly inserted into a high temperature charging furnace, and extracted from the continuous casting machine and placed in the storage site A rolling order determination system for determining an operation schedule of a rolling process during a mating operation in which rolling is performed by the hot rolling mill while mating with a normal temperature charging slab to be charged into a heating furnace for normal temperature charging later The rolling order is changed when the extraction time of the high temperature charging slab from the heating furnace or the number of arrivals at the heating furnace is different from the operation schedule of the steel making process during the mating operation.
  • Rolling order changing means for determining a rolling process operation schedule based on the changed rolling order, and rolling for determining whether the rolling process operation schedule after the rolling order change satisfies the constraints of the rolling process Constraint determining means and rolling control means for controlling the rolling process based on an operation schedule that satisfies the constraint conditions.
  • the rolling order determination method according to the present invention is extracted from the continuous casting machine and used for high-temperature charging in the synchronous operation of the steel making process by the continuous casting machine and the rolling process by the hot rolling mill having a plurality of heating furnaces.
  • a high-temperature charging slab directly charged in the heating furnace, and a normal-temperature charging slab extracted from the continuous casting machine and placed in a heating furnace for normal temperature charging A rolling order determination method for determining an operation schedule of a rolling process at the time of a mating operation of rolling with the hot rolling mill while mating, and during the mating operation, from the heating furnace of the high temperature charged cast slab Rolling order in which the rolling order is changed when the extraction time or the number of arrivals at the heating furnace is different from the operating schedule of the steelmaking process, and the operating schedule of the rolling process is determined based on the changed rolling order
  • a rolling constraint determination step for determining whether or not the operation schedule of the rolling process after the rolling order change satisfies a constraint condition of the rolling process, and a rolling process
  • the rolling process operation schedule in the synchronous operation of the steelmaking process and the rolling process, can be flexibly adapted to meet the fluctuations in the steelmaking process so that the rolling efficiency is not lowered while satisfying the rolling process constraint conditions. Can be changed.
  • FIG. 1 is a schematic diagram showing a production line for synchronous operation of a steel making process and a rolling process, which are targets of a rolling order determination system according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the configuration of the heating furnace of FIG.
  • FIG. 3 is a block diagram showing a configuration of a rolling order determination system according to an embodiment of the present invention.
  • FIG. 4 is a flowchart showing a processing procedure of the rolling order determination processing of the present embodiment.
  • FIG. 5 is an explanatory diagram for explaining the combination of the HCR / CCR materials.
  • FIG. 6 is an explanatory diagram for explaining the combination of the HCR / CCR materials.
  • FIG. 5 is an explanatory diagram for explaining the combination of the HCR / CCR materials.
  • FIG. 7 is an explanatory diagram for explaining an installation interval of the DHCR materials moving back and forth in the heating furnace.
  • FIG. 8 is a diagram showing a passing image of the material to be rolled at each position in the finish rolling mill.
  • FIG. 9 is a diagram showing a model of the speed pattern of the material to be rolled in the finish rolling mill.
  • FIG. 10 is an explanatory diagram for explaining the arrival interval of the DHCR material before the heating furnace.
  • FIG. 11 is a diagram illustrating an example of a syntax tree.
  • FIG. 12 is an explanatory diagram for explaining a procedure for changing the rolling order.
  • FIG. 13 is an explanatory diagram for explaining a procedure for changing the rolling order.
  • FIG. 1 is a diagram showing an outline of a production line for synchronous operation of a steelmaking process and a rolling process.
  • FIG. 2 is a diagram for explaining in detail the portion of the heating furnace in the production line of FIG.
  • a production line that is a target of a rolling order determination system is roughly divided into a steelmaking process 1 and a rolling process 2.
  • the steel making process 1 is mainly composed of a continuous casting machine 3, and a molten steel 4 is continuously gradually cooled by a mold 31 of the continuous casting machine 3 to produce a semi-finished product called a slab (semi- processed (goods).
  • the slab is heated by a reheating furnace 5, and a thickness of several millimeters is obtained by a hot rolling mill 6 including a roughing-down mill 61 (roughing-down mill) and a finishing mill 62. This is a rolling process.
  • the finish rolling mill 62 includes seven rolling rolls (F1 to F7) arranged in series.
  • a crop shear (CS) for cutting the top crop of the slab is installed in the front stage of the finish rolling mill 62.
  • the typical rolling process 2 further includes a cooler 7 and a winder 8. The cooler 7 cools the rolled steel sheet, and the winder 8 winds the steel sheet into a coil shape. Further, a slab yard 9 for temporarily retracting the slab is provided between the steel making process 1 and the rolling process 2.
  • FIG. 1 although the manufacturing line which comprised the continuous casting machine 3 and the heating furnace 5 in series was illustrated, the typical manufacturing line has many structures provided with two or more continuous casting machines 3.
  • FIG. 2 a plurality of heating furnaces 5 are also provided in parallel, and the optimum heating furnace 5 can be charged depending on the product conditions. That is, the slab yard 9 interposed between the plurality of continuous casting machines 3 and the heating furnace 5 adjusts the charging sequence for processing various slabs on the same production line, not only for the purpose of temporarily retracting the slabs. Take a role.
  • the production line illustrated in FIG. 2 includes three heating furnaces 5.
  • One of them is a heating furnace 51 for high-temperature charging that receives a DHCR (Direct Hot Charged Rolling) material that is directly charged from the continuous casting machine 3 without being evacuated to the slab yard 9.
  • the other two are HCR (Hot Charged Rolling) material charged as a hot piece from the slab yard 9, or CCR (Cold Charged Rolling) material charged after cooling in the slab yard 9 and after maintenance.
  • the heating furnace 52 is a normal temperature charging furnace to be received.
  • the total number of heating furnaces 5 is not limited to three, and there may be a plurality of heating furnaces 51 for high-temperature charging.
  • the DHCR material is a high-temperature charging slab charged into the heating furnace 51 at a high temperature of 800 ° C. or more, and since the difference from the rolling temperature is small, the heating (material furnace) time is as short as about 1 hour. It ’s enough.
  • the HCR / CCR material ordinary temperature charging slab
  • the heating material supply capacity of the heating furnace 51 for high temperature charging is 1, the heating material supply capacity of the heating furnace 52 for normal temperature charging is 0.33 to 0.5, and the heating material for high temperature charging is The rolling material supply capacity of the furnace 51 becomes smaller.
  • the supply of the DHCR material from the heating furnace 51 for high temperature charging and the supply of the HCR / CCR material from the heating furnace 52 for normal temperature charging to the rolling process 2 are performed.
  • the rolling efficiency as a whole is increased by the mating operation that alternately and.
  • the ratio between the supply amount of the DHCR material and the supply amount of the HCR / CCR material is the width of the slab supplied by each heating furnace 5, the rolling target thickness, the rolling target width, and the rolling constraint in addition to the above-mentioned in-furnace time. It is calculated considering the above.
  • FIG. 3 is a block diagram showing a configuration of a rolling order determination system according to an embodiment of the present invention.
  • a rolling order determination system 10 according to an embodiment of the present invention is realized by using a general-purpose computer such as a workstation or a personal computer, and includes an input unit 11, an output unit 12, and an interface unit 13. And a storage unit 14 and a control unit 15 that controls each component unit.
  • the input unit 11 is realized by using an input device such as a power switch and an input key, and inputs various instruction information such as a rolling order determination instruction to the control unit 15 in response to an input operation by the operator.
  • the output unit 12 is realized by a display device such as a liquid crystal display, a printing device such as a printer, an information communication device, and the like, and outputs the rolling order determined by the rolling order determination system 10.
  • the interface unit 13 performs data communication with an external computer such as a process computer that controls the operation of the continuous casting machine 3.
  • the storage unit 14 is realized by various IC memories such as ROM and RAM such as flash memory that can be updated and stored, a hard disk connected with a built-in or data communication terminal, an information storage medium such as a CD-ROM, and a reading device thereof.
  • ROM and RAM such as flash memory that can be updated and stored
  • a hard disk connected with a built-in or data communication terminal
  • an information storage medium such as a CD-ROM
  • a reading device thereof a program for operating the rolling order determination system 10
  • data used during execution of the program, and the like are stored in advance, or temporarily stored every time processing is performed.
  • the storage unit 14 stores master data such as the rolling constraint master 141 and the efficiency calculation master 142. Further, the storage unit 14 stores casting schedule data, rolling schedule data, maintenance schedule data, yard present status data, and the like.
  • the storage unit 14 may be configured to communicate with the control unit 15 via an electric communication line such as a LAN or the Internet.
  • the rolling constraint master 141 is data that stores constraint conditions related to the processing of the rolled material in the rolling process. For example, since the surface state of the rolling roll gradually deteriorates, the required high quality needs to be processed while the rolling roll is new. Further, the rolling roll is worn in steps depending on the width of the processed rolled material (hot coil width). In order to prevent the deformation of the rolling roll from affecting the quality, it is necessary to process a rolled material having a narrow finish width after a rolled material having a wide finish width.
  • the rolling constraint master 141 is master data that stores these constraint conditions.
  • the rolling constraint master 141 preferably has a data structure of a syntax tree as will be described in detail later, and the control unit 15 performs a syntax analysis of the rolling constraint master 141 as a so-called parser. (parsing) is preferably performed.
  • the efficiency calculation master 142 is data for storing processing capacities of the continuous casting machine 3, the heating furnace 5, the rough rolling mill 61, the finish rolling mill 62, and the like. For example, in the case of a mating operation in which another steel material is mated to the DHCR material that is the primary rolling target slab, if the amount of mating is too large for the parent material, it will hinder receipt of the DHCR material in the heating furnace 51. And cause a decrease in the merit of high temperature charging. In addition, since the subsequent slab cannot pass the previous slab inside the heating furnace 5, the order of charging the heating furnace 5 is restricted according to the time required for heating, and the charging to the heating furnace 5 is performed.
  • the efficiency calculation master 142 also preferably has a data structure of a syntax tree.
  • the slab conveyance efficiency of the heating furnace 5 can be set for each slab width.
  • Casting schedule data includes, for example, converter processing unit ID, steel type, slab ID, slab thickness, slab width, slab length, weight, hot-cold piece classification (classification of DHCR material / HCR material / CCR material, etc.), end of casting Consists of time and so on.
  • the rolling schedule data includes, for example, a slab ID, a steel type, a finishing thickness, a finishing width, a tensile strength, a lead time, a rolling end time, and the like.
  • the maintenance schedule data includes, for example, a steel type, a slab ID, a slab thickness, a slab width, a slab length, a weight, a hot and cold piece classification, a maintenance work end time, and the like.
  • the yard present status data includes, for example, a steel type, a slab ID, a slab thickness, a slab width, a slab length, a weight, and a hot and cold piece classification.
  • the control unit 15 is realized using a memory that stores a processing program and the like and a CPU that executes the processing program, and controls each component of the rolling order determination system 10 described above to execute a rolling order determination process that will be described later. To do.
  • step S1 the control unit 15 acquires the actual value of the steelmaking process from the process computer of the continuous casting machine 3 via the interface unit 13, and the casting schedule data, rolling schedule data, maintenance schedule data, and yard status data. It is determined whether or not there is a change from the operation schedule of the steelmaking process planned in advance based on the above. As a result of the determination, if the steelmaking process has changed, the control unit 15 advances the rolling order determination process to the process of step S2.
  • the control unit 15 refers to the efficiency calculation master 142, and performs the HCR / CCR material combination in the idle time of the supply of the DHCR material to the hot rolling mill 6 caused by the schedule change of the DHCR material. To determine whether the rolling order can be changed. When the rolling order can be changed, the control unit 15 further refers to the rolling constraint master 141 and determines whether or not the operation schedule of the rolling process after the change satisfies the constraint conditions. The details of the search for changing the rolling order and the determination of satisfaction of constraint conditions will be described later. When the operation schedule after the change satisfies the constraint conditions, the control unit 15 advances the rolling order determination process to the process of step S3. On the other hand, when the operation schedule of the rolling process after the change does not satisfy the constraint condition, the control unit 15 advances the rolling order determination process to the process of step S4.
  • step S3 the control unit 15 performs control to supply the slab to the hot rolling mill 6 based on the changed operation schedule. Thereby, the process of step S3 is completed and a series of rolling order determination processes are complete
  • step S4 the control unit 15 outputs an appropriate alarm to the output unit 12. For example, in addition to the error message, the control unit 15 outputs a message warning the operator to change the size of the rolled material, or searches for and outputs a rolled material having a suitable size from the rolling schedule data. Thereby, the process of step S4 is completed and a series of rolling order determination processes are complete
  • the DHCR material may be changed to an HCR / CCR material due to a change in the level of the molten metal in the mold 31 in the continuous casting machine 3 or an abnormality in the width / length of the slab. In that case, the production plan of the DHCR material is lost from the initial operation schedule, and the schedule change of the DHCR material occurs.
  • the HCR / CCR material is inserted from the heating furnace 52 for the normal temperature slab into the operation schedule of the rolling process in which a margin is generated due to the schedule change of the DHCR material. Prevent efficiency loss.
  • a description will be given based on an example in which a change occurs in the operation schedule of a steelmaking process in accordance with a change in casting schedule data due to a change in schedule of a DHCR material.
  • step S2 the HCR / CCR material is generated in the idle time of the supply of the DHCR material to the hot rolling mill 6 (extraction of the DHCR material from the heating furnace 51 for high-temperature charging) caused by the schedule change of the DHCR material
  • the restriction on the rolling order is necessary.
  • FIG. 5 and FIG. 6 are Gantt charts for the DHCR material from the steel making process to the charging to the heating furnace 51 and the supply to the hot rolling mill 6.
  • FIG. 5 illustrates a case where there is a margin in the supply interval of the DHCR material to the hot rolling mill 6 and the HCR / CCR material can be mated.
  • the DHCR material 102 and the DHCR material 104 are shifted rearward to shift the DHCR material DHCR.
  • the HCR / CCR material 201 can be mated between the material 101 and the DHCR material 102
  • the HCR / CCR material 202 can be mated between the DHCR material 103 and the DHCR material 104.
  • FIG. 6 exemplifies a case where there is no margin in the supply interval of the DHCR material to the hot rolling mill 6 and the HCR / CCR material cannot be mated.
  • the supply of the DHCR material 102 and the DHCR material 104 cannot be shifted backward, The HCR / CCR material cannot be mated.
  • Whether or not the HCR / CCR material can be combined is determined with reference to the efficiency calculation master 142 on the basis of the following determination criteria.
  • a predetermined number of DHCR material heating furnaces obtained based on the actual values from the process computer of the continuous casting machine 3 as the first mating availability determination condition
  • the sum of the charging interval (casting interval) to 51 exceeds the HCR / CCR material supply interval (mating material furnace extraction pitch) from the heating furnace 52 for normal temperature charging, and the supply of HCR / CCR material Must be possible.
  • the sum of the predetermined number of casting intervals is to cope with the case where a single HCR / CCR material can be mated by accumulating the casting intervals of a plurality of DHCR materials.
  • the accumulated predetermined number is stored in advance in the efficiency calculation master 142.
  • the casting interval of the DHCR material As the second condition for determining whether or not to fit, the casting interval of the DHCR material, the time required for conveying the DHCR material in the heating furnace 51 (DHCR material conveying time), or the time required for rolling the DHCR material in the hot rolling mill 6 ( The difference between the larger DHCR material rolling time) and the larger one for the same number of DHCR materials as described above is the rolling time in the hot rolling mill 6 for the HCR / CCR material (mating material rolling time) It is necessary that the hot rolling mill 6 has a margin.
  • the casting interval of the DHCR material is less than the conveyance time (DHCR material conveyance time). This is because if the casting interval of the DHCR material exceeds the DHCR material conveyance time, it must be retracted to the slab yard 9 and becomes an HCR material.
  • the conveyance interval of the DHCR material in the heating furnace 51 for high-temperature charging and the supply interval of the DHCR material to the hot rolling mill 6 are matched with the rolling interval in the hot rolling mill 6.
  • the DHCR material is supplied to the hot rolling mill 6 in an energy efficient manner in the shortest time to prevent a reduction in rolling efficiency. Therefore, the interval of conveyance (installation) of the DHCR material in the heating furnace 51 is set as follows. As shown in FIG. 7, the slab is charged into the heating furnace 5 with the length c direction perpendicular to the transport direction. In the heating furnace 51, the transport mechanism lifts the slabs at a constant cycle and moves them forward. This transport mechanism is called a walking beam (WB), the above cycle (the time taken for the transport mechanism to rise, move, descend, and return) is called a WB cycle, and the amount of slab movement in this WB cycle is called a WB stroke.
  • WB walking beam
  • the transport time between slabs (the time from the extraction of the preceding DHCR material 101 from the heating furnace 51 to the extraction of the subsequent DHCR material 102, in seconds) is the same as the rolling time of the preceding DHCR material 101. If there is the mating material 201, it will be the time obtained by subtracting the extraction time of the subsequent DHCR material 102 (the time required from the extraction from the heating furnace 51 to the supply to the hot rolling mill 6) from the sum of the rolling time. Set to. At this time, the distance a between the tip widths of the DHCR materials 101 and 102 moving back and forth in the heating furnace 51 is obtained by multiplying the integer part of the value obtained by dividing the inter-slab transport time by the WB cycle by the WB stroke. Accordingly, a value obtained by subtracting the width d of the preceding DHCR material 101 from the distance a between the leading ends is set as the interval b (the interval between the DHCR materials 101 and 102 placed before and after).
  • FIG. 8 is a diagram showing a passing image of the material to be rolled at each position in the finish rolling mill 62.
  • FIG. 9 is a diagram showing a model of the speed pattern of the material to be rolled in the finish rolling mill 62.
  • the rolling roll F1 the material to be rolled that has passed through CS is bitten after the predetermined rolling interval (Bar to Bar) described above, and thereafter, before the other rolls (F2 to F7). The material to be rolled comes out.
  • the material to be rolled is bitten after the sheet passing time has elapsed after the material to be rolled is bitten by the rolling roll F1, and after the material to be rolled is pulled out by the rolling roll F1, after a predetermined pulling time.
  • the material to be rolled comes out with the rolling roll F7.
  • the rolling interval is the time from when the preceding material to be rolled passes through the rolling roll F7 to when the subsequent material to be rolled passes through CS.
  • the speed of the material to be rolled is a constant sheet passing speed from when the material to be rolled is bitten by the rolling roll F1 until it is bitten by the rolling roll F7.
  • the material is accelerated at a predetermined acceleration (acceleration 1) until it is bitten by the subsequent coiler, further accelerated to the highest speed at acceleration 2, and then decelerated to the removal speed.
  • the plate passing speed, acceleration 1, acceleration 2, maximum speed, and withdrawal speed are input in advance with reference to past data and the like.
  • the originally scheduled DHCR material is not extracted from the heating furnace 51.
  • the remaining capacity of the hot rolling mill 6 can be filled by supplying it early as an HCR / CCR material.
  • the continuous casting machine 3 manufactures a slab as continuous casting of about 10 charges while continuously connecting charges of approximately 300 tons. At that time, since the casting speed is reduced at the joint of charges, the supply speed of the slab is reduced. Also, the slab supply interval varies depending on the length of the slab.
  • the arrival interval of the DHCR material to the heating furnace 51 varies. Therefore, regarding the DHCR material in the range shown in the region A of FIG. 10, the arrival interval to the position a before the heating furnace 51 is predicted in consideration of the casting speed, the speed of the transfer table that transfers the slab to the front of the heating furnace 5, and the like. .
  • the time when the DHCR material in the continuous casting machine 3 and each DHCR material on the transfer table arrive at the position a before the heating furnace 51 is calculated from the current value of the casting speed and the operation time of the transfer table. Whether or not the DHCR material can be inserted on the DHCR material extraction side is determined based on whether or not the arrival interval of the DHCR material at the position a before the heating furnace 51 exceeds a predetermined threshold value. That is, when the arrival interval of the DHCR material to the heating furnace 51 front position a is equal to or less than a predetermined threshold value, it is assumed that the DHCR material is congested on the transfer table due to the high casting speed or the short slab length. .
  • the extraction operation of the DHCR material from the heating furnace 51 is prioritized without performing the mating operation, and the charging position of the DHCR material into the hot rolling mill 6 is secured.
  • the charging interval of the DHCR material into the heating furnace 51 is set to a minimum value (10 cm in this embodiment).
  • the arrival interval of the DHCR material to the position a in front of the heating furnace 51 is equal to or greater than a predetermined threshold value, one HCR / CCR material is mated.
  • the arrival interval of the DHCR material to the heating furnace 51 front position a becomes small, and the next mating material Affects the mating position. Accordingly, the charging interval of the DHCR material into the heating furnace 51 is set to a value equal to or larger than the minimum value so as to satisfy the above-described mating availability determination condition.
  • the margin time of the arrival interval of the DHCR material to the position a before the heating furnace 51 (the difference from the arrival interval corresponding to the minimum value of the charging interval) is accumulated, In preparation for the case where the HCR / CCR material can be mated, the accumulated margin time is cleared when the mating is performed.
  • the steelmaking process is performed more finely than when focusing on the extraction interval of the DHCR material from the heating furnace 51 as in the first embodiment. It is possible to change the rolling order by detecting the fluctuation and determining whether or not the mating is possible.
  • the constraint condition regarding the rolling process is a constraint condition regarding the relationship between the finished thicknesses of two continuous rolled materials.
  • an allowable range is set for this constraint condition with respect to the finish thickness of the subsequent rolled material, depending on the finish thickness of the preceding rolled material. If it does so, if rolling order is changed, such as a rolling material before and after the production plan of DHCR material which will be lost by schedule change of DHCR material, restrictions may not be satisfied.
  • the constraint conditions related to the rolling process include a constraint condition related to the rolling length, a constraint condition related to the same width rolled length, and a constraint condition related to width reversal.
  • a configuration using syntax analysis is adopted for the rolling constraint master 141.
  • the constraint condition can be set flexibly, and the constraint condition can be easily changed and maintained.
  • the relational operator constituting the unit operation expression is a parent node
  • the constraint condition item whose relationship is indicated by the relational operator having this parent node And a value thereof as child nodes, and each child node is connected to a parent node to create a structure tree representing a unit arithmetic expression.
  • the constraint condition includes a logical operator and consists of multiple unit arithmetic expressions
  • FIG. 11 is a diagram showing a syntax tree T2 of ““ finish thickness ” ⁇ 2.0 mm AND“ width killing amount (slab thickness ⁇ finish thickness) ” ⁇ 50 mm.
  • the procedure for creating the syntax tree T2 will be briefly described. First, the restriction contents are decomposed before and after the logical operator “AND”. Then, based on the front unit formula “finishing thickness” ⁇ 2.0 mm, an inequality sign “ ⁇ ” with an equal sign is set as the parent node N22, and the “finishing thickness” which is a regulation content item and its value “2”. .0 mm "as child nodes N211, N212, a subtree T21 is created.
  • control unit 15 determines whether or not there is a margin in the scheduled supply interval of the DHCR material to the hot rolling mill 6 or the arrival interval to the position a before the heating furnace 51. And whether or not the constraints of the rolling process are satisfied, and whether or not the operation schedule of the rolling process can be changed is searched.
  • the rolling order is changed by inserting the HCR / CCR material in the idle time of the supply of the DHCR material to the hot rolling mill 6 by changing the schedule of the DHCR material.
  • FIG. 12 illustrates a case where the rolling order can be changed because the constraint condition is loose in addition to the allowance for the rolling interval.
  • the DHCR material 104 and the DHCR material 106 are scheduled to be changed and the scheduled rolling order is vacant, so that the rolling order of the HCR / CCR material 203 can be changed to be advanced before the DHCR material 105.
  • the initial schedule of the rolling order is DHCR material 101, DHCR material 102, HCR / CCR material 201, DHCR material 103, DHCR material 104, HCR / CCR material 202, DHCR material 105, DHCR material 106, HCR / CCR material.
  • 203 in the order of the HCR / CCR material 204, along with the schedule change between the DHCR material 104 and the DHCR material 106, the DHCR material 101, the DHCR material 102, the HCR / CCR material 201, the DHCR material 103, the HCR / CCR.
  • the material 202, the HCR / CCR material 203, the DHCR material 105, and the HCR / CCR material 204 can be changed in this order.
  • FIG. 13 exemplifies a case where there is no allowance for the rolling interval and the constraint conditions are strict, and the HCR / CCR material cannot be mated in the free time due to the schedule change of the DHCR material.
  • the HCR / CCR material 201 and the HCR / CCR material 202 must be shifted backward from the original schedule.
  • the initial schedule of the rolling order is DHCR material 101, DHCR material 102, HCR / CCR material 201, DHCR material 103, DHCR material 104, HCR / CCR material 202, DHCR material 105, DHCR material 106, HCR / CCR material.
  • the DHCR material 101, the DHCR material 104, the DHCR material 105, the DHCR material 106, the HCR / CCR material 201, and the HCR / CCR material 202 were changed.
  • the HCR / CCR material 203 is changed in this order.
  • the rolling order determination system 10 of the present embodiment in the synchronous operation of the steel making process and the rolling process, rolling is performed while satisfying the constraints of the rolling process in response to fluctuations in the steel making process.
  • the operation schedule of the rolling process can be changed flexibly so as not to reduce the efficiency.
  • step S3 you may display the operation schedule of the rolling process after a change on the output part 12.
  • FIG. At that time, the DHCR material and the HCR / CCR material may be displayed in different colors.
  • the present invention can be applied to a process of changing an operation schedule of a rolling process in response to a change in the steel making process during synchronous operation of the steel making process and the rolling process.

Abstract

In this hot-rolling-sequence determination system and hot-rolling-sequence determination method, during mixed-rolling operation, if the extraction time of hot charged slabs from a reheating furnace (51) or the number of hot charged slabs entering the reheating furnace (51) differs from a steelmaking-process operation schedule, a controller (15) amends a hot-rolling sequence, determines a hot-rolling-process operation schedule on the basis of the amended hot-rolling sequence, determines whether the hot-rolling-process operation schedule after the hot-rolling sequence has been amended satisfies constraint conditions, and controls the hot-rolling process on the basis of an operation schedule which satisfies the constraint conditions.

Description

圧延順序決定システムおよび圧延順序決定方法Rolling order determination system and rolling order determination method
 本発明は、製鋼プロセスと圧延プロセスとの同期操業(synchronized operation)に際し、製鋼プロセス(Steel making process)の変動に対応して圧延プロセス(Hot rolling process)の操業スケジュールを変更する圧延順序決定システム(rolling sequencing system)および圧延順序決定方法に関するものである。 The present invention is a rolling order determination system that changes the operation schedule of a rolling process (Hot rolling process) in response to fluctuations in the steel making process during the synchronized operation of the steel making process and the rolling process ( rolling sequencing system) and rolling order determination method.
 製鋼プロセスで鋳造されたスラブを圧延プロセスへ装入する順序および時間を決定するためには、スラブの鋼種(steel type)、幅、厚み、および温度等の多くの属性についての制約条件を充足する操業スケジュールを立案する必要がある。一方、制約条件を充足しながらも、製鋼プロセスおよび圧延プロセスの製造能率を向上させることが要求される。例えば、製鋼プロセスで鋳造されたスラブがスラブヤードで待機する時間が増加すると、そのスラブを加熱炉で再加熱するためのエネルギーが余計に必要になる。すなわち、製造能率を向上させることは、製造能力の向上という観点だけではなく、省エネルギーという観点からも重要である。 In order to determine the order and time to load the slab cast in the steelmaking process into the rolling process, constraints on many attributes such as steel type, width, thickness, and temperature of the slab are satisfied. It is necessary to make an operation schedule. On the other hand, it is required to improve the manufacturing efficiency of the steel making process and the rolling process while satisfying the constraint conditions. For example, when the time that a slab cast in the steelmaking process waits in a slab yard increases, more energy is required to reheat the slab in a heating furnace. That is, improving the manufacturing efficiency is important not only from the viewpoint of improving the manufacturing capacity but also from the viewpoint of energy saving.
 そのような観点から、圧延に先立ってスラブを加熱炉に装入する際に、装入温度別に複数の加熱炉を使い分け、装入温度の違うスラブ群を適切な比率で加熱炉(reheating furnace)から抽出し取り混ぜながら圧延機に送り込む操業方法(以下、差し合い操業(Mixed-rolling))が特許文献1~3に記載されている。また、特許文献4には、製鋼プロセスの操業スケジュールに基づいて将来の物流を予測して圧延プロセスのロット編成を行なう技術が記載されている。 From such a viewpoint, when charging the slab into the heating furnace prior to rolling, a plurality of heating furnaces are used depending on the charging temperature, and slab groups having different charging temperatures are heated at an appropriate ratio (reheating furnace). Patent Documents 1 to 3 describe an operation method (hereinafter referred to as “mixed-rolling”) in which the material is extracted from the mixture and fed to the rolling mill while being mixed. Patent Document 4 describes a technique for predicting future physical distribution based on an operation schedule of a steelmaking process and performing lot organization of the rolling process.
特開平11-012656号公報JP-A-11-012656 特開平11-264026号公報JP-A-11-264026 特開平11-179502号公報Japanese Patent Laid-Open No. 11-179502 特開2009-262209号公報JP 2009-262209 A
 実操業時に製鋼プロセスで当初の予定から変動が生じる場合がある。例えば、複数の加熱炉を使い分け、各加熱炉からのスラブ(鋳片)を圧延プロセスに差し合いながら圧延する差し合い操業において、いずれかの加熱炉へ装入される鋳片が当初の予定通りに生産されず、ルート変更となり圧延の操業スケジュールから抜ける場合がある。製鋼プロセスにこのような変動が生じると、圧延プロセスの制約条件を充足しつつ圧延能率を低下させないよう、圧延プロセスの操業スケジュール(圧延順序および供給時間)を変更する必要が生じる場合がある。しかしながら、上記特許文献のいずれにも、製鋼プロセスの変動に対応して圧延プロセスの操業スケジュールを変更する技術は記載されていない。 変 動 There may be fluctuations from the initial schedule in the steelmaking process during actual operation. For example, in a mating operation in which a plurality of heating furnaces are properly used and slabs (slabs) from each heating furnace are rolled while being combined with the rolling process, the slabs charged into one of the heating furnaces are as originally planned. In some cases, the route is changed and the rolling operation schedule is lost. When such fluctuations occur in the steelmaking process, it may be necessary to change the operation schedule (rolling sequence and supply time) of the rolling process so that the rolling efficiency is not lowered while satisfying the constraints of the rolling process. However, none of the above-mentioned patent documents describes a technique for changing the operation schedule of the rolling process in response to fluctuations in the steelmaking process.
 本発明は、上記課題に鑑みてなされたものであって、製鋼プロセスと圧延プロセスとの同期操業において、製鋼プロセスの変動に対応して、圧延プロセスの制約条件を充足しつつ圧延能率を低下させないように圧延プロセスの操業スケジュールを変更する圧延順序決定システムおよび圧延順序決定方法を提供することを目的とする。 The present invention has been made in view of the above problems, and in the synchronous operation of the steelmaking process and the rolling process, the rolling efficiency is not lowered while satisfying the constraints of the rolling process in response to fluctuations in the steelmaking process. It aims at providing the rolling order determination system and rolling order determination method which change the operation schedule of a rolling process in this way.
 上記課題を解決し、目的を達成するために、本発明にかかる圧延順序決定システムは、連続鋳造機(continuous casting machine)による製鋼プロセスと、複数の加熱炉を有する熱間圧延機(Hot rolling mill)による圧延プロセスとの同期操業に際し、前記連続鋳造機から抽出され高温装入用の加熱炉に直接装入される高温装入鋳片と、前記連続鋳造機から抽出され置場に載置された後に通常温度装入用の加熱炉に装入される通常温度装入鋳片とを差し合いながら前記熱間圧延機で圧延する差し合い操業時の圧延プロセスの操業スケジュールを決定する圧延順序決定システムであって、前記差し合い操業中に、前記高温装入鋳片の加熱炉からの抽出時刻または加熱炉への到着枚数が製鋼プロセスの操業スケジュールと異なった場合に、圧延順序を変更し、変更された該圧延順序に基づいて圧延プロセスの操業スケジュールを決定する圧延順序変更手段と、圧延順序変更後の前記圧延プロセスの操業スケジュールが圧延プロセスの制約条件を充足するか否かを判定する圧延制約判定手段と、前記制約条件を充足する操業スケジュールに基づいて圧延プロセスを制御する圧延制御手段と、を備える。 In order to solve the above-mentioned problems and achieve the object, a rolling order determination system according to the present invention includes a steel making process using a continuous casting machine and a hot rolling mill having a plurality of heating furnaces (Hot rolling mill). ) During the synchronous operation with the rolling process, and extracted from the continuous casting machine and directly inserted into a high temperature charging furnace, and extracted from the continuous casting machine and placed in the storage site A rolling order determination system for determining an operation schedule of a rolling process during a mating operation in which rolling is performed by the hot rolling mill while mating with a normal temperature charging slab to be charged into a heating furnace for normal temperature charging later The rolling order is changed when the extraction time of the high temperature charging slab from the heating furnace or the number of arrivals at the heating furnace is different from the operation schedule of the steel making process during the mating operation. Rolling order changing means for determining a rolling process operation schedule based on the changed rolling order, and rolling for determining whether the rolling process operation schedule after the rolling order change satisfies the constraints of the rolling process Constraint determining means and rolling control means for controlling the rolling process based on an operation schedule that satisfies the constraint conditions.
 また、本発明にかかる圧延順序決定方法は、連続鋳造機による製鋼プロセスと、複数の加熱炉を有する熱間圧延機による圧延プロセスとの同期操業に際し、前記連続鋳造機から抽出され高温装入用の加熱炉に直接装入される高温装入鋳片と、前記連続鋳造機から抽出され置場に載置された後に通常温度装入用の加熱炉に装入される通常温度装入鋳片とを差し合いながら前記熱間圧延機で圧延する差し合い操業時の圧延プロセスの操業スケジュールを決定する圧延順序決定方法あって、前記差し合い操業中に、前記高温装入鋳片の加熱炉からの抽出時刻または加熱炉への到着枚数が製鋼プロセスの操業スケジュールと異なった場合に、圧延順序を変更し、変更された該圧延順序に基づいて圧延プロセスの操業スケジュールを決定する圧延順序変更ステップと、圧延順序変更後の前記圧延プロセスの操業スケジュールが圧延プロセスの制約条件を充足するか否かを判定する圧延制約判定ステップと、前記制約条件を充足する操業スケジュールに基づいて圧延プロセスを制御する圧延制御ステップと、を有する。 Further, the rolling order determination method according to the present invention is extracted from the continuous casting machine and used for high-temperature charging in the synchronous operation of the steel making process by the continuous casting machine and the rolling process by the hot rolling mill having a plurality of heating furnaces. A high-temperature charging slab directly charged in the heating furnace, and a normal-temperature charging slab extracted from the continuous casting machine and placed in a heating furnace for normal temperature charging A rolling order determination method for determining an operation schedule of a rolling process at the time of a mating operation of rolling with the hot rolling mill while mating, and during the mating operation, from the heating furnace of the high temperature charged cast slab Rolling order in which the rolling order is changed when the extraction time or the number of arrivals at the heating furnace is different from the operating schedule of the steelmaking process, and the operating schedule of the rolling process is determined based on the changed rolling order A rolling constraint determination step for determining whether or not the operation schedule of the rolling process after the rolling order change satisfies a constraint condition of the rolling process, and a rolling process based on the operation schedule that satisfies the constraint condition. Controlling the rolling control step.
 本発明によれば、製鋼プロセスと圧延プロセスとの同期操業において、製鋼プロセスの変動に対応して、圧延プロセスの制約条件を充足しつつ圧延能率を低下させないように圧延プロセスの操業スケジュールを柔軟に変更することができる。 According to the present invention, in the synchronous operation of the steelmaking process and the rolling process, the rolling process operation schedule can be flexibly adapted to meet the fluctuations in the steelmaking process so that the rolling efficiency is not lowered while satisfying the rolling process constraint conditions. Can be changed.
図1は、本発明の一実施形態である圧延順序決定システムの対象となる製鋼プロセスと圧延プロセスとの同期操業の製造ラインを示す概略図である。FIG. 1 is a schematic diagram showing a production line for synchronous operation of a steel making process and a rolling process, which are targets of a rolling order determination system according to an embodiment of the present invention. 図2は、図1の加熱炉の構成を示す概略図である。FIG. 2 is a schematic view showing the configuration of the heating furnace of FIG. 図3は、本発明の一実施形態である圧延順序決定システムの構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration of a rolling order determination system according to an embodiment of the present invention. 図4は、本実施の形態の圧延順序決定処理の処理手順を示すフローチャートである。FIG. 4 is a flowchart showing a processing procedure of the rolling order determination processing of the present embodiment. 図5は、HCR/CCR材の差し合いについて説明するための説明図である。FIG. 5 is an explanatory diagram for explaining the combination of the HCR / CCR materials. 図6は、HCR/CCR材の差し合いについて説明するための説明図である。FIG. 6 is an explanatory diagram for explaining the combination of the HCR / CCR materials. 図7は、加熱炉内で前後するDHCR材の設置の間隔を説明するための説明図である。FIG. 7 is an explanatory diagram for explaining an installation interval of the DHCR materials moving back and forth in the heating furnace. 図8は、仕上げ圧延機内の各位置における被圧延材の通過イメージを示す図である。FIG. 8 is a diagram showing a passing image of the material to be rolled at each position in the finish rolling mill. 図9は、仕上げ圧延機内での被圧延材の速度パターンのモデルを示す図である。FIG. 9 is a diagram showing a model of the speed pattern of the material to be rolled in the finish rolling mill. 図10は、DHCR材の加熱炉前への到着間隔を説明するための説明図である。FIG. 10 is an explanatory diagram for explaining the arrival interval of the DHCR material before the heating furnace. 図11は、構文木(syntax tree)の例を示す図である。FIG. 11 is a diagram illustrating an example of a syntax tree. 図12は、圧延順序を変更する手順を説明するための説明図である。FIG. 12 is an explanatory diagram for explaining a procedure for changing the rolling order. 図13は、圧延順序を変更する手順を説明するための説明図である。FIG. 13 is an explanatory diagram for explaining a procedure for changing the rolling order.
 以下、図面を参照して、本発明の一実施形態を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. Moreover, in description of drawing, the same code | symbol is attached | subjected and shown to the same part.
[鉄鋼製品の製造ライン]
 まず、図1および図2を参照して、本発明の一実施形態に係る圧延順序決定システムの対象となる製鋼プロセスと圧延プロセスとの同期操業の製造ラインについて説明する。図1は、製鋼プロセスと圧延プロセスとの同期操業の製造ラインの概略を示す図である。図2は、図1の製造ラインのうちの加熱炉の部分を詳細に説明する図である。
[Steel product production line]
First, with reference to FIG. 1 and FIG. 2, the manufacturing line of the synchronous operation of the steel making process and rolling process used as the object of the rolling order determination system which concerns on one Embodiment of this invention is demonstrated. FIG. 1 is a diagram showing an outline of a production line for synchronous operation of a steelmaking process and a rolling process. FIG. 2 is a diagram for explaining in detail the portion of the heating furnace in the production line of FIG.
 図1に示すように、本発明の一実施形態に係る圧延順序決定システムの対象となる製造ラインは、大きく分けて製鋼プロセス1と圧延プロセス2とを備えている。製鋼プロセス1は、連続鋳造機3を中心にして構成され、溶鋼(molten steel)4を連続鋳造機3の鋳型(mold)31により連続的に徐冷して、スラブと呼ばれる半製品(semi-processed goods)を製造するプロセスである。圧延プロセス2は、このスラブを加熱炉(reheating furnace)5により加熱し、粗圧延機61(roughing-down mill)および仕上げ圧延機(finishing mill)62からなる熱間圧延機6により数ミリの厚さまで圧延するプロセスである。仕上げ圧延機62は、直列に配列された7つの圧延ロール(F1~F7)により構成されている。また、仕上げ圧延機62の前段には、スラブのトップクロップを切断するクロップシャー(CS)が設置されている。なお、典型的な圧延プロセス2は、さらに冷却機(cooler)7および巻取り機(coiler)8を備える。冷却機7は圧延された鋼板を冷却し、巻取り機8は鋼鈑をコイル状に巻き取る。さらに、製鋼プロセス1と圧延プロセス2との間には、スラブを一時退避させておくスラブヤード9が設けられている。 As shown in FIG. 1, a production line that is a target of a rolling order determination system according to an embodiment of the present invention is roughly divided into a steelmaking process 1 and a rolling process 2. The steel making process 1 is mainly composed of a continuous casting machine 3, and a molten steel 4 is continuously gradually cooled by a mold 31 of the continuous casting machine 3 to produce a semi-finished product called a slab (semi- processed (goods). In the rolling process 2, the slab is heated by a reheating furnace 5, and a thickness of several millimeters is obtained by a hot rolling mill 6 including a roughing-down mill 61 (roughing-down mill) and a finishing mill 62. This is a rolling process. The finish rolling mill 62 includes seven rolling rolls (F1 to F7) arranged in series. In addition, a crop shear (CS) for cutting the top crop of the slab is installed in the front stage of the finish rolling mill 62. The typical rolling process 2 further includes a cooler 7 and a winder 8. The cooler 7 cools the rolled steel sheet, and the winder 8 winds the steel sheet into a coil shape. Further, a slab yard 9 for temporarily retracting the slab is provided between the steel making process 1 and the rolling process 2.
 なお、図1では、連続鋳造機3および加熱炉5を直列に構成した製造ラインを図示したが、典型的な製造ラインは連続鋳造機3を複数台備える構成が多い。また、本実施形態においては図2に示すように、加熱炉5も並列的に複数台備えられ、製品の条件によって最適な加熱炉5に装入することができる構成を取る。すなわち、複数の連続鋳造機3および加熱炉5の間を介するスラブヤード9は、単にスラブを一時退避させる目的だけではなく、多種のスラブを同一製造ラインで処理するための装入順序を調整する役割を担う。 In addition, in FIG. 1, although the manufacturing line which comprised the continuous casting machine 3 and the heating furnace 5 in series was illustrated, the typical manufacturing line has many structures provided with two or more continuous casting machines 3. FIG. Further, in the present embodiment, as shown in FIG. 2, a plurality of heating furnaces 5 are also provided in parallel, and the optimum heating furnace 5 can be charged depending on the product conditions. That is, the slab yard 9 interposed between the plurality of continuous casting machines 3 and the heating furnace 5 adjusts the charging sequence for processing various slabs on the same production line, not only for the purpose of temporarily retracting the slabs. Take a role.
 図2に例示する製造ラインは3つの加熱炉5を備える。そのうちの1つは、スラブヤード9に退避させることなく連続鋳造機3から直接装入されるDHCR(Direct Hot Charged Rolling)材を受け入れる高温装入用の加熱炉51としている。他の2つは、スラブヤード9から熱片のまま装入されるHCR(Hot Charged Rolling)材、または、スラブヤード9でいったん冷ましてから手入れ後に装入されるCCR(Cold Charged Rolling)材を受け入れる通常温度装入用の加熱炉52としている。ただし、加熱炉5の総数は3つに限定されず、また高温装入用の加熱炉51は複数でもよい。 The production line illustrated in FIG. 2 includes three heating furnaces 5. One of them is a heating furnace 51 for high-temperature charging that receives a DHCR (Direct Hot Charged Rolling) material that is directly charged from the continuous casting machine 3 without being evacuated to the slab yard 9. The other two are HCR (Hot Charged Rolling) material charged as a hot piece from the slab yard 9, or CCR (Cold Charged Rolling) material charged after cooling in the slab yard 9 and after maintenance. The heating furnace 52 is a normal temperature charging furnace to be received. However, the total number of heating furnaces 5 is not limited to three, and there may be a plurality of heating furnaces 51 for high-temperature charging.
 通常、DHCR材は800度以上の高温で加熱炉51に装入される高温装入鋳片であり、圧延温度との差が小さいため、加熱(材炉)時間が1時間程度と短時間で足りる。一方、HCR/CCR材(通常温度装入鋳片)は、加熱炉52での在炉時間が2~3時間と、DHCR材と比較して長時間の加熱が必要である。すなわち、高温装入用の加熱炉51の圧延材供給能力を1とすると、通常温度装入用の加熱炉52の圧延材供給能力は0.33~0.5となり、高温装入用の加熱炉51の圧延材供給能力より小さくなる。そこで、製鋼プロセスと圧延プロセスとの同期操業においては、圧延プロセス2に対する高温装入用の加熱炉51からのDHCR材の供給と通常温度装入用の加熱炉52からのHCR/CCR材の供給とを交互に行なう差し合い操業により、全体としての圧延効率を上げている。その際に、DHCR材の供給量とHCR/CCR材の供給量との比率は、上記在炉時間の他、各加熱炉5が供給するスラブの幅、圧延目標厚や圧延目標幅、圧延制約などを考慮して算出される。 Usually, the DHCR material is a high-temperature charging slab charged into the heating furnace 51 at a high temperature of 800 ° C. or more, and since the difference from the rolling temperature is small, the heating (material furnace) time is as short as about 1 hour. It ’s enough. On the other hand, the HCR / CCR material (ordinary temperature charging slab) requires a longer heating time in the heating furnace 52 for 2 to 3 hours compared to the DHCR material. That is, assuming that the heating material supply capacity of the heating furnace 51 for high temperature charging is 1, the heating material supply capacity of the heating furnace 52 for normal temperature charging is 0.33 to 0.5, and the heating material for high temperature charging is The rolling material supply capacity of the furnace 51 becomes smaller. Therefore, in the synchronous operation of the steelmaking process and the rolling process, the supply of the DHCR material from the heating furnace 51 for high temperature charging and the supply of the HCR / CCR material from the heating furnace 52 for normal temperature charging to the rolling process 2 are performed. The rolling efficiency as a whole is increased by the mating operation that alternately and. At that time, the ratio between the supply amount of the DHCR material and the supply amount of the HCR / CCR material is the width of the slab supplied by each heating furnace 5, the rolling target thickness, the rolling target width, and the rolling constraint in addition to the above-mentioned in-furnace time. It is calculated considering the above.
[圧延順序決定システム]
 次に、上記製造ラインの例に基づいて、本発明の一実施形態に係る圧延順序決定システムについて説明する。図3は、本発明の一実施形態である圧延順序決定システムの構成を示すブロック図である。図3に示すように、本発明の一実施形態である圧延順序決定システム10は、例えばワークステーションやパソコン等の汎用コンピュータを用いて実現され、入力部11と、出力部12と、インタフェース部13と、記憶部14と、各構成部を制御する制御部15とを備える。
[Rolling order determination system]
Next, a rolling order determination system according to an embodiment of the present invention will be described based on the example of the production line. FIG. 3 is a block diagram showing a configuration of a rolling order determination system according to an embodiment of the present invention. As shown in FIG. 3, a rolling order determination system 10 according to an embodiment of the present invention is realized by using a general-purpose computer such as a workstation or a personal computer, and includes an input unit 11, an output unit 12, and an interface unit 13. And a storage unit 14 and a control unit 15 that controls each component unit.
 入力部11は、電源スイッチおよび入力キーなどの入力デバイスを用いて実現され、操作者による入力操作に対応して、制御部15に対して圧延順序決定指示などの各種指示情報を入力する。出力部12は、液晶ディスプレイなどの表示装置、プリンターなどの印刷装置、情報通信装置などによって実現され、圧延順序決定システム10によって決定された圧延順序を出力する。インタフェース部13は、連続鋳造機3の動作を制御するプロセスコンピュータなどの外部コンピュータとデータ通信する。 The input unit 11 is realized by using an input device such as a power switch and an input key, and inputs various instruction information such as a rolling order determination instruction to the control unit 15 in response to an input operation by the operator. The output unit 12 is realized by a display device such as a liquid crystal display, a printing device such as a printer, an information communication device, and the like, and outputs the rolling order determined by the rolling order determination system 10. The interface unit 13 performs data communication with an external computer such as a process computer that controls the operation of the continuous casting machine 3.
 記憶部14は、更新記憶可能なフラッシュメモリ等のROMやRAMといった各種ICメモリ、内蔵あるいはデータ通信端子で接続されたハードディスク、CD-ROM等の情報記憶媒体およびその読取装置等によって実現される。この記憶部14には、圧延順序決定システム10を動作させるためのプログラムや、このプログラムの実行中に使用されるデータ等が予め保存され、あるいは処理の都度一時的に保存される。記憶部14には、圧延制約マスタ141および能率計算マスタ142などのマスタデータが格納される。また、記憶部14には、鋳造予定データ、圧延予定データ、手入れ予定データ、およびヤード現況データなどが格納される。なお、記憶部14は、LANやインターネットなどの電気通信回線を介して制御部15と通信する構成としてもよい。 The storage unit 14 is realized by various IC memories such as ROM and RAM such as flash memory that can be updated and stored, a hard disk connected with a built-in or data communication terminal, an information storage medium such as a CD-ROM, and a reading device thereof. In the storage unit 14, a program for operating the rolling order determination system 10, data used during execution of the program, and the like are stored in advance, or temporarily stored every time processing is performed. The storage unit 14 stores master data such as the rolling constraint master 141 and the efficiency calculation master 142. Further, the storage unit 14 stores casting schedule data, rolling schedule data, maintenance schedule data, yard present status data, and the like. Note that the storage unit 14 may be configured to communicate with the control unit 15 via an electric communication line such as a LAN or the Internet.
 圧延制約マスタ141は、圧延プロセスにおける圧延材の処理に関する制約条件を記憶するデータである。例えば、圧延ロールの表面状態は漸次劣化するため、要求される品質が高いものは圧延ロールが新しいうちに処理する必要がある。また、圧延ロールは、処理した圧延材の幅(仕上げ幅(hot coil width))に応じて段差状に磨耗する。この圧延ロールの変形が品質に影響しないようにするため、仕上げ幅の広い圧延材の後に仕上げ幅の狭い圧延材を処理する必要がある。その他にも、連続した処理を許容する圧延材の種類(材種)、厚さ、幅(スラブ幅)、仕上げ幅、および、仕上げ厚(hot coil thickness)、あるいは連続した処理を許容しない圧延材の種類(材種)、厚さ、幅(スラブ幅)、仕上げ幅、および、仕上げ厚が規定されている。さらに、連続した処理を許容する(又は許容しない)特殊作業の種類といった圧延材の属性等の様々な制約条件が存在する。圧延制約マスタ141は、これらの制約条件を記憶するマスタデータである。なお、圧延制約マスタ141は、後に詳述するように構文木(syntax tree)のデータ構造を有することが好ましく、制御部15は、いわゆる構文解析器(parser)として、圧延制約マスタ141の構文解析(parsing)を行うよう構成することが好ましい。 The rolling constraint master 141 is data that stores constraint conditions related to the processing of the rolled material in the rolling process. For example, since the surface state of the rolling roll gradually deteriorates, the required high quality needs to be processed while the rolling roll is new. Further, the rolling roll is worn in steps depending on the width of the processed rolled material (hot coil width). In order to prevent the deformation of the rolling roll from affecting the quality, it is necessary to process a rolled material having a narrow finish width after a rolled material having a wide finish width. Other types of rolled material that allow continuous treatment (type), thickness, width (slab width), finished width, and finished thickness (hot coil thickness), or rolled material that does not allow continuous treatment Type (material type), thickness, width (slab width), finishing width, and finishing thickness are defined. In addition, there are various constraints such as the attributes of the rolled material such as the type of special work that allows (or does not allow) continuous processing. The rolling constraint master 141 is master data that stores these constraint conditions. The rolling constraint master 141 preferably has a data structure of a syntax tree as will be described in detail later, and the control unit 15 performs a syntax analysis of the rolling constraint master 141 as a so-called parser. (parsing) is preferably performed.
 能率計算マスタ142は、連続鋳造機3、加熱炉5、粗圧延機61、および、仕上げ圧延機62等の処理能力を記憶するデータである。例えば、母体(primary rolling target slab)となるDHCR材に他の鋼材を差し合わせる差し合い操業の場合、母体に対して差し合い量が多すぎると、DHCR材の加熱炉51での受け取りに支障を来たし、高温装入のメリットの低下を引き起こす。また、加熱炉5の内部で後のスラブが先のスラブを追い越すことはできないので、加熱に要する時間に応じて加熱炉5に装入する順序に制約が課せられ、加熱炉5への装入順序を守るためにスラブがスラブヤード9に待機する時間が増加すると、さらに加熱時間が増加して能率が低下する。なお、能率計算マスタ142も、構文木のデータ構造を有することが好ましい。例えば、加熱炉5のスラブ搬送能率をスラブ幅ごとに設定できる。 The efficiency calculation master 142 is data for storing processing capacities of the continuous casting machine 3, the heating furnace 5, the rough rolling mill 61, the finish rolling mill 62, and the like. For example, in the case of a mating operation in which another steel material is mated to the DHCR material that is the primary rolling target slab, if the amount of mating is too large for the parent material, it will hinder receipt of the DHCR material in the heating furnace 51. And cause a decrease in the merit of high temperature charging. In addition, since the subsequent slab cannot pass the previous slab inside the heating furnace 5, the order of charging the heating furnace 5 is restricted according to the time required for heating, and the charging to the heating furnace 5 is performed. If the time for which the slab waits in the slab yard 9 to keep the order increases, the heating time further increases and the efficiency decreases. Note that the efficiency calculation master 142 also preferably has a data structure of a syntax tree. For example, the slab conveyance efficiency of the heating furnace 5 can be set for each slab width.
 鋳造予定データは、例えば、転炉の処理単位ID、鋼種、スラブID、スラブ厚、スラブ幅、スラブ長、重量、熱冷片区分(DHCR材/HCR材/CCR材などの区分)、鋳造終了時刻などを含んで構成される。圧延予定データは、例えば、スラブID、鋼種、仕上げ厚、仕上げ幅、引っ張り強度、リードタイム、圧延終了時刻などを含んで構成される。手入れ予定データは、例えば、鋼種、スラブID、スラブ厚、スラブ幅、スラブ長、重量、熱冷片区分、手入れ作業終了時刻などを含んで構成される。ヤード現況データは、例えば、鋼種、スラブID、スラブ厚、スラブ幅、スラブ長、重量、熱冷片区分などを含んで構成される。 Casting schedule data includes, for example, converter processing unit ID, steel type, slab ID, slab thickness, slab width, slab length, weight, hot-cold piece classification (classification of DHCR material / HCR material / CCR material, etc.), end of casting Consists of time and so on. The rolling schedule data includes, for example, a slab ID, a steel type, a finishing thickness, a finishing width, a tensile strength, a lead time, a rolling end time, and the like. The maintenance schedule data includes, for example, a steel type, a slab ID, a slab thickness, a slab width, a slab length, a weight, a hot and cold piece classification, a maintenance work end time, and the like. The yard present status data includes, for example, a steel type, a slab ID, a slab thickness, a slab width, a slab length, a weight, and a hot and cold piece classification.
 制御部15は、処理プログラム等を記憶したメモリおよび処理プログラムを実行するCPU等を用いて実現され、前述した圧延順序決定システム10の各構成部を制御して、後述する圧延順序決定処理を実行する。 The control unit 15 is realized using a memory that stores a processing program and the like and a CPU that executes the processing program, and controls each component of the rolling order determination system 10 described above to execute a rolling order determination process that will be described later. To do.
[圧延順序決定処理]
 次に、図4のフローチャートを参照して、圧延順序決定システム10による圧延順序決定処理手順について説明する。図4のフローチャートは、例えば、操作者により入力部11を介して圧延順序決定(変更)の指示入力があったタイミングで開始となり、圧延順序決定処理はステップS1の処理に進む。
[Rolling order determination process]
Next, with reference to the flowchart of FIG. 4, the rolling order determination processing procedure by the rolling order determination system 10 will be described. The flowchart in FIG. 4 starts, for example, at a timing when an operator inputs an instruction to determine (change) the rolling order via the input unit 11, and the rolling order determination process proceeds to step S1.
 ステップS1の処理では、制御部15が、インタフェース部13を介して連続鋳造機3のプロセスコンピュータから製鋼プロセスの実績値を取得して、鋳造予定データ、圧延予定データ、手入れ予定データ、ヤード現況データなどに基づいて事前に立案された製鋼プロセスの操業スケジュールからの変動が生じているか否かを判別する。判別の結果、製鋼プロセスに変動が生じている場合、制御部15は、圧延順序決定処理をステップS2の処理に進める。 In the process of step S1, the control unit 15 acquires the actual value of the steelmaking process from the process computer of the continuous casting machine 3 via the interface unit 13, and the casting schedule data, rolling schedule data, maintenance schedule data, and yard status data. It is determined whether or not there is a change from the operation schedule of the steelmaking process planned in advance based on the above. As a result of the determination, if the steelmaking process has changed, the control unit 15 advances the rolling order determination process to the process of step S2.
 ステップS2の処理では、制御部15は、能率計算マスタ142を参照し、DHCR材の予定変更により生じる熱間圧延機6へのDHCR材の供給の空き時間にHCR/CCR材の差し合いを行なって圧延順序を変更できるか否かを探索する。圧延順序を変更できる場合、さらに制御部15は、圧延制約マスタ141を参照し、変更後の圧延プロセスの操業スケジュールが制約条件を充足するか否かを判定する。上記の圧延順序変更の探索および制約条件充足の判定の詳細については後述する。変更後の操業スケジュールが制約条件を充足する場合には、制御部15は、圧延順序決定処理をステップS3の処理に進める。一方、変更後の圧延プロセスの操業スケジュールが制約条件を充足しない場合は、制御部15は、圧延順序決定処理をステップS4の処理に進める。 In the process of step S2, the control unit 15 refers to the efficiency calculation master 142, and performs the HCR / CCR material combination in the idle time of the supply of the DHCR material to the hot rolling mill 6 caused by the schedule change of the DHCR material. To determine whether the rolling order can be changed. When the rolling order can be changed, the control unit 15 further refers to the rolling constraint master 141 and determines whether or not the operation schedule of the rolling process after the change satisfies the constraint conditions. The details of the search for changing the rolling order and the determination of satisfaction of constraint conditions will be described later. When the operation schedule after the change satisfies the constraint conditions, the control unit 15 advances the rolling order determination process to the process of step S3. On the other hand, when the operation schedule of the rolling process after the change does not satisfy the constraint condition, the control unit 15 advances the rolling order determination process to the process of step S4.
 ステップS3の処理では、制御部15は、変更後の操業スケジュールに基づいて、熱間圧延機6にスラブを供給する制御を行なう。これにより、ステップS3の処理は完了し、一連の圧延順序決定処理は終了する。 In the process of step S3, the control unit 15 performs control to supply the slab to the hot rolling mill 6 based on the changed operation schedule. Thereby, the process of step S3 is completed and a series of rolling order determination processes are complete | finished.
 ステップS4の処理では、制御部15は、出力部12に適宜なアラームを出力する。例えば、制御部15は、エラーメッセージの他、オペレータに圧延材のサイズを変更するよう警告するメッセージを出力したり、圧延予定データなどから適したサイズの圧延材を探索して出力したりする。これにより、ステップS4の処理は完了し、一連の圧延順序決定処理は終了する。 In the process of step S4, the control unit 15 outputs an appropriate alarm to the output unit 12. For example, in addition to the error message, the control unit 15 outputs a message warning the operator to change the size of the rolled material, or searches for and outputs a rolled material having a suitable size from the rolling schedule data. Thereby, the process of step S4 is completed and a series of rolling order determination processes are complete | finished.
[圧延順序変更の探索]
(実施の形態1)
 上記ステップS1の処理における製鋼プロセスの実績値の変動として、高温装入鋳片の抽出時刻に変更があった場合について説明する。例えば、連続鋳造機3における鋳型31内の湯面レベル変動やスラブの幅・長さの異常などにより、DHCR材がHCR/CCR材に変更される場合がある。その場合には、当初の操業スケジュールから当該DHCR材の生産計画が抜け、DHCR材の予定変更が発生する。
[Search for rolling order change]
(Embodiment 1)
A case where the extraction time of the high-temperature charged slab is changed as a change in the actual value of the steelmaking process in the process of step S1 will be described. For example, the DHCR material may be changed to an HCR / CCR material due to a change in the level of the molten metal in the mold 31 in the continuous casting machine 3 or an abnormality in the width / length of the slab. In that case, the production plan of the DHCR material is lost from the initial operation schedule, and the schedule change of the DHCR material occurs.
 DHCR材の予定変更が発生すると、高温装入用の加熱炉51から熱間圧延機6へのDHCR材の供給に空き時間が生じ、そのままでは全体として圧延効率が低下する。そこで、本実施の形態では、DHCR材の予定変更により余裕が生じた圧延プロセスの操業スケジュールに、可能ならば通常温度鋳片用の加熱炉52からHCR/CCR材の差し合いを行なって、圧延効率の低下を防止する。まず、本実施の形態においては、DHCR材の予定変更による鋳造予定データの変動に伴い、製鋼プロセスの操業スケジュールに変動が生じた事例に基づいて説明する。 When a schedule change of the DHCR material occurs, a free time is generated in the supply of the DHCR material from the heating furnace 51 for high temperature charging to the hot rolling mill 6, and the rolling efficiency as a whole decreases. Therefore, in the present embodiment, if possible, the HCR / CCR material is inserted from the heating furnace 52 for the normal temperature slab into the operation schedule of the rolling process in which a margin is generated due to the schedule change of the DHCR material. Prevent efficiency loss. First, in the present embodiment, a description will be given based on an example in which a change occurs in the operation schedule of a steelmaking process in accordance with a change in casting schedule data due to a change in schedule of a DHCR material.
 上記ステップS2の処理において、DHCR材の予定変更により生じる(高温装入用の加熱炉51からのDHCR材の抽出および)熱間圧延機6へのDHCR材の供給の空き時間にHCR/CCR材の差し合いを行なって圧延順序を変更するためには、予定されている熱間圧延機6へのDHCR材の供給の間隔に余裕があることに加え、圧延順序についての制約条件を満たすことが必要である。まず、図5および図6を参照して、熱間圧延機6へのDHCR材の供給の間隔に余裕がある際にHCR/CCR材の差し合いを行なって圧延能率を向上させる方法について説明する。 In the process of step S2, the HCR / CCR material is generated in the idle time of the supply of the DHCR material to the hot rolling mill 6 (extraction of the DHCR material from the heating furnace 51 for high-temperature charging) caused by the schedule change of the DHCR material In order to change the rolling order by performing the above matching, in addition to having a sufficient interval in the supply of the DHCR material to the hot rolling mill 6, the restriction on the rolling order must be satisfied is necessary. First, with reference to FIG. 5 and FIG. 6, a method for improving rolling efficiency by performing HCR / CCR material mating when there is a margin in the supply interval of the DHCR material to the hot rolling mill 6 will be described. .
 図5および図6は、DHCR材についての、製鋼プロセスから、加熱炉51への装入と、熱間圧延機6への供給に至るガントチャートである。図5には、熱間圧延機6へのDHCR材の供給の間隔に余裕があり、HCR/CCR材の差し合いを行える場合を例示する。図5の例では、熱間圧延機6に供給されるDHCR材101~106の予定の供給の間隔に余裕があるため、DHCR材102とDHCR材104との供給を後方にずらすことにより、DHCR材101とDHCR材102との間にHCR/CCR材201の差し合いを行なえ、DHCR材103とDHCR材104との間にHCR/CCR材202の差し合いを行なえる。 FIG. 5 and FIG. 6 are Gantt charts for the DHCR material from the steel making process to the charging to the heating furnace 51 and the supply to the hot rolling mill 6. FIG. 5 illustrates a case where there is a margin in the supply interval of the DHCR material to the hot rolling mill 6 and the HCR / CCR material can be mated. In the example of FIG. 5, since there is a margin in the planned supply interval of the DHCR materials 101 to 106 supplied to the hot rolling mill 6, the DHCR material 102 and the DHCR material 104 are shifted rearward to shift the DHCR material DHCR. The HCR / CCR material 201 can be mated between the material 101 and the DHCR material 102, and the HCR / CCR material 202 can be mated between the DHCR material 103 and the DHCR material 104.
 一方、図6には、熱間圧延機6へのDHCR材の供給の間隔に余裕がなく、HCR/CCR材の差し合いを行えない場合を例示する。図6の例では、熱間圧延機6に供給されるDHCR材101~106の予定の供給の間隔に余裕がないため、DHCR材102やDHCR材104の供給を後方にずらすことはできず、HCR/CCR材の差し合いを行なうことができない。 On the other hand, FIG. 6 exemplifies a case where there is no margin in the supply interval of the DHCR material to the hot rolling mill 6 and the HCR / CCR material cannot be mated. In the example of FIG. 6, since there is no allowance for the scheduled supply interval of the DHCR materials 101 to 106 supplied to the hot rolling mill 6, the supply of the DHCR material 102 and the DHCR material 104 cannot be shifted backward, The HCR / CCR material cannot be mated.
 HCR/CCR材の差し合いの可否は、能率計算マスタ142を参照して以下の差し合い可否判定条件に基づいて判定される。HCR/CCR材の差し合いが可能と判定するためには、第1の差し合い可否判定条件として、連続鋳造機3のプロセスコンピュータからの実績値に基づいて得られる所定数のDHCR材の加熱炉51への装入間隔(鋳造間隔)の和が、通常温度装入用の加熱炉52のからのHCR/CCR材の供給間隔(差し合い材炉抽出ピッチ)を上回り、HCR/CCR材の供給が可能であることが必要である。なお、所定数の鋳造間隔の和としているのは、複数のDHCR材の鋳造間隔を累積することで1本のHCR/CCR材の差し合いが可能となる場合に対応するためである。累積する所定数については、予め能率計算マスタ142に記憶させる。 Whether or not the HCR / CCR material can be combined is determined with reference to the efficiency calculation master 142 on the basis of the following determination criteria. In order to determine that the HCR / CCR material can be mated, a predetermined number of DHCR material heating furnaces obtained based on the actual values from the process computer of the continuous casting machine 3 as the first mating availability determination condition The sum of the charging interval (casting interval) to 51 exceeds the HCR / CCR material supply interval (mating material furnace extraction pitch) from the heating furnace 52 for normal temperature charging, and the supply of HCR / CCR material Must be possible. Note that the sum of the predetermined number of casting intervals is to cope with the case where a single HCR / CCR material can be mated by accumulating the casting intervals of a plurality of DHCR materials. The accumulated predetermined number is stored in advance in the efficiency calculation master 142.
 第2の差し合い可否判定条件として、DHCR材の鋳造間隔と、加熱炉51内でDHCR材の搬送にかかる時間(DHCR材搬送時間)または熱間圧延機6でDHCR材の圧延に要する時間(DHCR材圧延時間)のいずれか大きい方との差を、上記と同様の所定数のDHCR材について合計した値が、HCR/CCR材の熱間圧延機6での圧延時間(差し合い材圧延時間)より大きく、熱間圧延機6に余裕があることが必要である。 As the second condition for determining whether or not to fit, the casting interval of the DHCR material, the time required for conveying the DHCR material in the heating furnace 51 (DHCR material conveying time), or the time required for rolling the DHCR material in the hot rolling mill 6 ( The difference between the larger DHCR material rolling time) and the larger one for the same number of DHCR materials as described above is the rolling time in the hot rolling mill 6 for the HCR / CCR material (mating material rolling time) It is necessary that the hot rolling mill 6 has a margin.
 第3の差し合い可否判定条件として、DHCR材の鋳造間隔が搬送時間(DHCR材搬送時間)を下回ることが必要である。これは、DHCR材の鋳造間隔がDHCR材搬送時間を上回ると、スラブヤード9に退避させざるを得ず、HCR材となるからである。 As the third condition for determining whether or not to match, it is necessary that the casting interval of the DHCR material is less than the conveyance time (DHCR material conveyance time). This is because if the casting interval of the DHCR material exceeds the DHCR material conveyance time, it must be retracted to the slab yard 9 and becomes an HCR material.
 本実施形態では、高温装入用の加熱炉51内でのDHCR材の搬送の間隔および熱間圧延機6へのDHCR材の供給の間隔は、熱間圧延機6での圧延の間隔に合わせて行なうことで、DHCR材を最短時間でエネルギー効率よく熱間圧延機6に供給して圧延能率の低下を防止する。そこで、加熱炉51内でのDHCR材の搬送(設置)の間隔は、以下のようにして設定する。図7に示すように、加熱炉5には、スラブは長さc方向を搬送方向に対して垂直にして装入される。加熱炉51内では、搬送機構が一定のサイクルでスラブを一斉に持ち上げて前方に移動させる。この搬送機構をウォーキングビーム(WB)、上記サイクル(搬送機構の上昇、移動、下降、戻りにかかる時間)をWBサイクル、このWBサイクルでのスラブの移動量をWBストロークと呼ぶ。 In the present embodiment, the conveyance interval of the DHCR material in the heating furnace 51 for high-temperature charging and the supply interval of the DHCR material to the hot rolling mill 6 are matched with the rolling interval in the hot rolling mill 6. As a result, the DHCR material is supplied to the hot rolling mill 6 in an energy efficient manner in the shortest time to prevent a reduction in rolling efficiency. Therefore, the interval of conveyance (installation) of the DHCR material in the heating furnace 51 is set as follows. As shown in FIG. 7, the slab is charged into the heating furnace 5 with the length c direction perpendicular to the transport direction. In the heating furnace 51, the transport mechanism lifts the slabs at a constant cycle and moves them forward. This transport mechanism is called a walking beam (WB), the above cycle (the time taken for the transport mechanism to rise, move, descend, and return) is called a WB cycle, and the amount of slab movement in this WB cycle is called a WB stroke.
 このとき、スラブ間搬送時間(加熱炉51から先行するDHCR材101が抽出されてから後続するDHCR材102が抽出されるまでの時間、秒)は、先行するDHCR材101の圧延時間と、差し合い材201があればその圧延時間との和から、後続のDHCR材102の抽出時間(加熱炉51からの抽出から熱間圧延機6への供給までに要する時間)を差し引いた時間になるように設定する。このとき、加熱炉51内で前後するDHCR材101,102の先端幅間距離aは、スラブ間搬送時間をWBサイクルで除した値の整数部分にWBストロークを乗じることで求められる。したがって、インターバルb(前後するDHCR材101,102の載置の間隔)には、先端幅間距離aから先行するDHCR材101の幅dを差し引いた値を設定する。 At this time, the transport time between slabs (the time from the extraction of the preceding DHCR material 101 from the heating furnace 51 to the extraction of the subsequent DHCR material 102, in seconds) is the same as the rolling time of the preceding DHCR material 101. If there is the mating material 201, it will be the time obtained by subtracting the extraction time of the subsequent DHCR material 102 (the time required from the extraction from the heating furnace 51 to the supply to the hot rolling mill 6) from the sum of the rolling time. Set to. At this time, the distance a between the tip widths of the DHCR materials 101 and 102 moving back and forth in the heating furnace 51 is obtained by multiplying the integer part of the value obtained by dividing the inter-slab transport time by the WB cycle by the WB stroke. Accordingly, a value obtained by subtracting the width d of the preceding DHCR material 101 from the distance a between the leading ends is set as the interval b (the interval between the DHCR materials 101 and 102 placed before and after).
 ここで、圧延時間は、仕上げ圧延機62における圧延時間を適用することとし、所定のモデルに従って算出される。これにより、速度パターンを算出しやすく、圧延間隔を高精度に求めることができる。図8は、仕上げ圧延機62内の各位置における被圧延材の通過イメージを示す図である。また図9は、仕上げ圧延機62内での被圧延材の速度パターンのモデルを示す図である。図8に示すように、圧延ロールF1では、CSを通過した被圧延材が上記した所定の圧延間隔(Bar to Bar)の後に咬み込まれ、その後、他のロール(F2~F7)に先がけて被圧延材が抜ける。圧延ロールF7では、圧延ロールF1で被圧延材が咬み込まれてから通板時間が経過した後に被圧延材が咬み込まれ、圧延ロールF1で被圧延材が抜けてから所定の抜け時間の後に圧延ロールF7で被圧延材が抜ける。 Here, the rolling time is calculated according to a predetermined model by applying the rolling time in the finish rolling mill 62. Thereby, it is easy to calculate the speed pattern, and the rolling interval can be obtained with high accuracy. FIG. 8 is a diagram showing a passing image of the material to be rolled at each position in the finish rolling mill 62. FIG. 9 is a diagram showing a model of the speed pattern of the material to be rolled in the finish rolling mill 62. As shown in FIG. 8, in the rolling roll F1, the material to be rolled that has passed through CS is bitten after the predetermined rolling interval (Bar to Bar) described above, and thereafter, before the other rolls (F2 to F7). The material to be rolled comes out. In the rolling roll F7, the material to be rolled is bitten after the sheet passing time has elapsed after the material to be rolled is bitten by the rolling roll F1, and after the material to be rolled is pulled out by the rolling roll F1, after a predetermined pulling time. The material to be rolled comes out with the rolling roll F7.
 このように、圧延時間としては、被圧延材が圧延ロールF1で咬み込まれてから圧延ロールF7で抜けるまでの時間を算出する。圧延間隔は、先行する被圧延材が圧延ロールF7を通過してから後続する被圧延材がCSを通過するまでの時間である。このとき、被圧延材の速度は、図9に示すように、被圧延材が圧延ロールF1に咬み込まれてから圧延ロールF7に咬み込まれるまでは一定の通板速度であり、その後被圧延材が後段のコイラに咬み込まれるまで所定の加速度(加速度1)で加速し、さらに加速度2で最高速まで加速し、その後抜け速度まで減速する。上記の通板速度、加速度1、加速度2、最高速度、抜け速度については、過去のデータなどを参照して予め入力される。 Thus, as the rolling time, the time from when the material to be rolled is bitten by the rolling roll F1 until it is pulled out by the rolling roll F7 is calculated. The rolling interval is the time from when the preceding material to be rolled passes through the rolling roll F7 to when the subsequent material to be rolled passes through CS. At this time, as shown in FIG. 9, the speed of the material to be rolled is a constant sheet passing speed from when the material to be rolled is bitten by the rolling roll F1 until it is bitten by the rolling roll F7. The material is accelerated at a predetermined acceleration (acceleration 1) until it is bitten by the subsequent coiler, further accelerated to the highest speed at acceleration 2, and then decelerated to the removal speed. The plate passing speed, acceleration 1, acceleration 2, maximum speed, and withdrawal speed are input in advance with reference to past data and the like.
 以上のようにDHCR材の加熱炉51からの抽出間隔に着目し、差し合い可否判定条件を満たすように圧延順序を変更することにより、当初予定されていたDHCR材が加熱炉51から抽出されない場合にも、HCR/CCR材の差し合い材として早めに供給して、熱間圧延機6の余力を穴埋めすることができる。 When focusing on the extraction interval of the DHCR material from the heating furnace 51 as described above and changing the rolling order so as to satisfy the matchability determination condition, the originally scheduled DHCR material is not extracted from the heating furnace 51. In addition, the remaining capacity of the hot rolling mill 6 can be filled by supplying it early as an HCR / CCR material.
(実施の形態2)
 次に、DHCR材の加熱炉51への装入間隔に着目し、ステップS1の製鋼プロセスの実績値の変動として、DHCR材の加熱炉51への到着枚数(到着間隔)が変更された場合のHCR/CCR材の差し合い操業について説明する。連続鋳造機3は、概略300トンのチャージを連続してつなぎながら10チャージ程度の連々鋳としてスラブを製造する。その際、チャージのつなぎ目などでは鋳造速度が低下するため、スラブの供給速度が低下する。また、スラブの長さの長短によってもスラブの供給間隔は異なる。
(Embodiment 2)
Next, paying attention to the charging interval of the DHCR material into the heating furnace 51, the number of arrivals (arrival interval) of the DHCR material to the heating furnace 51 is changed as a change in the actual value of the steelmaking process in step S1. The operation of HCR / CCR materials will be described. The continuous casting machine 3 manufactures a slab as continuous casting of about 10 charges while continuously connecting charges of approximately 300 tons. At that time, since the casting speed is reduced at the joint of charges, the supply speed of the slab is reduced. Also, the slab supply interval varies depending on the length of the slab.
 そのような鋳造速度の変化やスラブ長によって生じるDHCR材の供給間隔の変化があった場合には、DHCR材の加熱炉51への到着間隔が変動する。そこで、図10の領域Aに示す範囲のDHCR材に関して、鋳造速度、スラブを加熱炉5前へ搬送する搬送テーブルの速度などを考慮して、加熱炉51前位置aへの到着間隔を予測する。 When there is a change in the DHCR material supply interval caused by such a change in casting speed or slab length, the arrival interval of the DHCR material to the heating furnace 51 varies. Therefore, regarding the DHCR material in the range shown in the region A of FIG. 10, the arrival interval to the position a before the heating furnace 51 is predicted in consideration of the casting speed, the speed of the transfer table that transfers the slab to the front of the heating furnace 5, and the like. .
 まず、鋳造速度の現在値と搬送テーブルの動作時間とから、連続鋳造機3内のDHCR材および、搬送テーブル上の各DHCR材が加熱炉51前位置aに到着する時刻を計算する。DHCR材の加熱炉51前位置aへの到着間隔が所定の閾値を越えるか否かにより、加熱炉51のDHCR材の抽出側での差しあいの可否を判定する。すなわち、DHCR材の加熱炉51前位置aへの到着間隔が所定の閾値以下の場合、鋳造速度が早いか、あるいはスラブ長が短いことによりDHCR材が搬送テーブル上に渋滞することが想定される。その場合には、差し合い操業は行わずにDHCR材の加熱炉51からの抽出を優先し、熱間圧延機6へのDHCR材の装入位置を確保する。なお、この場合には加熱炉51の装入側でDHCR材の間隔が小さいため、DHCR材の加熱炉51への装入間隔を最小値(本実施形態では10cm)に設定する。 First, the time when the DHCR material in the continuous casting machine 3 and each DHCR material on the transfer table arrive at the position a before the heating furnace 51 is calculated from the current value of the casting speed and the operation time of the transfer table. Whether or not the DHCR material can be inserted on the DHCR material extraction side is determined based on whether or not the arrival interval of the DHCR material at the position a before the heating furnace 51 exceeds a predetermined threshold value. That is, when the arrival interval of the DHCR material to the heating furnace 51 front position a is equal to or less than a predetermined threshold value, it is assumed that the DHCR material is congested on the transfer table due to the high casting speed or the short slab length. . In that case, the extraction operation of the DHCR material from the heating furnace 51 is prioritized without performing the mating operation, and the charging position of the DHCR material into the hot rolling mill 6 is secured. In this case, since the interval of the DHCR material is small on the charging side of the heating furnace 51, the charging interval of the DHCR material into the heating furnace 51 is set to a minimum value (10 cm in this embodiment).
 一方、DHCR材の加熱炉51前位置aへの到着間隔が所定の閾値以上である場合には、1本のHCR/CCR材の差し合いを行うことにする。なお、HCR/CCR材を差しあうことにより、加熱炉51の装入側にDHCR材が渋滞した場合、DHCR材の加熱炉51前位置aへの到着間隔が小さくなり、次の差し合い材の差し合い位置に影響を与える。したがって、DHCR材の加熱炉51への装入間隔は、前述の差し合い可否判定条件を充足するように、最小値以上の値を設定する。 On the other hand, when the arrival interval of the DHCR material to the position a in front of the heating furnace 51 is equal to or greater than a predetermined threshold value, one HCR / CCR material is mated. In addition, when the DHCR material is congested on the charging side of the heating furnace 51 by inserting the HCR / CCR material, the arrival interval of the DHCR material to the heating furnace 51 front position a becomes small, and the next mating material Affects the mating position. Accordingly, the charging interval of the DHCR material into the heating furnace 51 is set to a value equal to or larger than the minimum value so as to satisfy the above-described mating availability determination condition.
 なお、差し合いを行わない場合には、DHCR材の加熱炉51前位置aへの到着間隔の余裕時間(装入間隔の最小値に対応する到着間隔との差)を累積し、1本のHCR/CCR材の差し合いが可能となる場合に備え、差し合いを行う場合に、累積した余裕時間をクリアする。 In the case where no matching is performed, the margin time of the arrival interval of the DHCR material to the position a before the heating furnace 51 (the difference from the arrival interval corresponding to the minimum value of the charging interval) is accumulated, In preparation for the case where the HCR / CCR material can be mated, the accumulated margin time is cleared when the mating is performed.
 以上のように、DHCR材の加熱炉51への装入間隔に着目することにより、上記実施の形態1のようにDHCR材の加熱炉51からの抽出間隔に着目する場合より細やかに製鋼プロセスの変動を感知し、それに対応して差し合い可否を判定して圧延順序を変更することができる。 As described above, by paying attention to the charging interval of the DHCR material into the heating furnace 51, the steelmaking process is performed more finely than when focusing on the extraction interval of the DHCR material from the heating furnace 51 as in the first embodiment. It is possible to change the rolling order by detecting the fluctuation and determining whether or not the mating is possible.
[制約条件充足の判定]
 次に、圧延プロセスの制約条件について説明する。圧延プロセスに関する制約条件には、例えば、連続する2つの圧延材の仕上げ厚の関係に関する制約条件がある。この制約条件には、圧延機の消耗を抑止するため、先行する圧延材の仕上げ厚により、後続する圧延材の仕上げ厚に対して許容範囲が設定される。そうすると、DHCR材の予定変更により抜けるDHCR材の生産計画の前後の圧延材など、圧延順序を変更すると制約条件を充足しなくなる場合がある。その他、圧延プロセスに関する制約条件には、圧延長に関する制約条件や、同一幅圧延長に関する制約条件、幅逆転に関する制約条件などがある。
[Judgment of satisfaction of constraints]
Next, the restriction conditions of the rolling process will be described. For example, the constraint condition regarding the rolling process is a constraint condition regarding the relationship between the finished thicknesses of two continuous rolled materials. In order to suppress the consumption of the rolling mill, an allowable range is set for this constraint condition with respect to the finish thickness of the subsequent rolled material, depending on the finish thickness of the preceding rolled material. If it does so, if rolling order is changed, such as a rolling material before and after the production plan of DHCR material which will be lost by schedule change of DHCR material, restrictions may not be satisfied. In addition, the constraint conditions related to the rolling process include a constraint condition related to the rolling length, a constraint condition related to the same width rolled length, and a constraint condition related to width reversal.
 上記実施の形態1、2では、圧延制約マスタ141に構文解析を使用した構成を採用する。これにより、制約条件を柔軟に設定でき、制約条件の変更やメンテナンスが容易である。構文解析では、例えば制約条件が1つの単位演算式で構成されている場合、単位演算式を構成する関係演算子を親ノードとし、この親ノードとした関係演算子によって関係が示される制約条件項目とその値とをそれぞれ子ノードとして、子ノードのそれぞれを親ノードと連結することで単位演算式を表す構造木を作成する。制約条件が論理演算子を含み、複数の単位演算式で構成されている場合には、先ず、論理演算子の前後で規制内容を分解することで単位演算式を抽出し、抽出した単位演算式を表す部分木をそれぞれ作成する。その後、作成した各部分木の上層に論理演算子のノードをさらに追加し、構文木を作成する。 In the first and second embodiments, a configuration using syntax analysis is adopted for the rolling constraint master 141. Thereby, the constraint condition can be set flexibly, and the constraint condition can be easily changed and maintained. In parsing, for example, when the constraint condition is composed of one unit operation expression, the relational operator constituting the unit operation expression is a parent node, and the constraint condition item whose relationship is indicated by the relational operator having this parent node And a value thereof as child nodes, and each child node is connected to a parent node to create a structure tree representing a unit arithmetic expression. If the constraint condition includes a logical operator and consists of multiple unit arithmetic expressions, first, extract the unit arithmetic expression by decomposing the restriction contents before and after the logical operator, and then extract the unit arithmetic expression Create subtrees that represent. After that, a logical operator node is further added to the upper layer of each created partial tree to create a syntax tree.
 図11は、「“仕上げ厚”≧2.0mm AND “幅殺し量(スラブ厚-仕上げ厚)”≦50mm」の構文木T2を示す図である。この構文木T2の作成手順を簡単に説明すると、先ず、論理演算子「AND」の前後で規制内容を分解する。次いで、前方の単位式「“仕上げ厚”≧2.0mm」をもとに、等号付き不等号「≧」を親ノードN22とし、規制内容項目である「仕上げ厚」とその値である「2.0mm」とを子ノードN211,N212として部分木T21を作成する。同様に、「AND」の後方の単位式「“幅殺し量”≦50mm」をもとに、等号付き不等号「≦」を親ノードN24とし、規制内容項目である「幅殺し量」とその値である「50mm」とを子ノードN231,N232として部分木T22を作成する。そして、論理演算子「AND」のノードN25を部分木T21,T22の上層に追加し、各部分木T21,T22の親ノードN22,N24との間をそれぞれ連結して構文木T2を得る。本実施の形態では、この構文木T2を用いてチェック対象が制約条件を充足するか否かの判定結果R2が出力される。 FIG. 11 is a diagram showing a syntax tree T2 of ““ finish thickness ”≧ 2.0 mm AND“ width killing amount (slab thickness−finish thickness) ”≦ 50 mm. The procedure for creating the syntax tree T2 will be briefly described. First, the restriction contents are decomposed before and after the logical operator “AND”. Then, based on the front unit formula “finishing thickness” ≧ 2.0 mm, an inequality sign “≧” with an equal sign is set as the parent node N22, and the “finishing thickness” which is a regulation content item and its value “2”. .0 mm "as child nodes N211, N212, a subtree T21 is created. Similarly, based on the unit expression ““ width killing amount ”≦ 50 mm” behind “AND”, an inequality sign with an equal sign “≦” is set as the parent node N24, and the “content killing amount” that is a regulation content item and its A subtree T22 is created with the value “50 mm” as child nodes N231 and N232. Then, the node N25 of the logical operator “AND” is added to the upper layer of the subtrees T21 and T22, and the parent nodes N22 and N24 of the subtrees T21 and T22 are respectively connected to obtain the syntax tree T2. In the present embodiment, a determination result R2 as to whether or not the check target satisfies the constraint condition is output using this syntax tree T2.
 上記実施の形態1および2のように、制御部15は、予定されているDHCR材の熱間圧延機6への供給の間隔または加熱炉51前位置aへの到着間隔に余裕があるか否か、および、圧延プロセスの制約条件を充足するか否かを判定し、圧延プロセスの操業スケジュールの変更の可否を探索する。 As in the first and second embodiments, the control unit 15 determines whether or not there is a margin in the scheduled supply interval of the DHCR material to the hot rolling mill 6 or the arrival interval to the position a before the heating furnace 51. And whether or not the constraints of the rolling process are satisfied, and whether or not the operation schedule of the rolling process can be changed is searched.
 図12および図13は、上記実施の形態1について、DHCR材の予定変更により熱間圧延機6へのDHCR材の供給の空き時間にHCR/CCR材の差し合いを行なって圧延順序を変更する探索を説明するための図である。図12には、圧延間隔に余裕があることに加え制約条件が緩いため、圧延順序を変更可能な場合を例示する。図12の例では、DHCR材104とDHCR材106が予定変更となり予定の圧延順序が空いたため、HCR/CCR材203の圧延順序をDHCR材105の前に繰り上げるよう変更できる。すなわち、圧延順序の当初の予定は、DHCR材101、DHCR材102、HCR/CCR材201、DHCR材103、DHCR材104、HCR/CCR材202、DHCR材105、DHCR材106、HCR/CCR材203、HCR/CCR材204の順であったところ、DHCR材104とDHCR材106との予定変更に伴って、DHCR材101、DHCR材102、HCR/CCR材201、DHCR材103、HCR/CCR材202、HCR/CCR材203、DHCR材105、HCR/CCR材204の順に変更できる。 12 and FIG. 13, in the first embodiment, the rolling order is changed by inserting the HCR / CCR material in the idle time of the supply of the DHCR material to the hot rolling mill 6 by changing the schedule of the DHCR material. It is a figure for demonstrating a search. FIG. 12 illustrates a case where the rolling order can be changed because the constraint condition is loose in addition to the allowance for the rolling interval. In the example of FIG. 12, the DHCR material 104 and the DHCR material 106 are scheduled to be changed and the scheduled rolling order is vacant, so that the rolling order of the HCR / CCR material 203 can be changed to be advanced before the DHCR material 105. That is, the initial schedule of the rolling order is DHCR material 101, DHCR material 102, HCR / CCR material 201, DHCR material 103, DHCR material 104, HCR / CCR material 202, DHCR material 105, DHCR material 106, HCR / CCR material. 203, in the order of the HCR / CCR material 204, along with the schedule change between the DHCR material 104 and the DHCR material 106, the DHCR material 101, the DHCR material 102, the HCR / CCR material 201, the DHCR material 103, the HCR / CCR. The material 202, the HCR / CCR material 203, the DHCR material 105, and the HCR / CCR material 204 can be changed in this order.
 一方、図13には、圧延間隔に余裕がなく制約条件も厳しく、DHCR材の予定変更により空いた時間にHCR/CCR材の差し合いを行なえない場合を例示する。図13の例では、DHCR材102とDHCR材103が予定変更となり予定の圧延順序が空いても、HCR/CCR材201、HCR/CCR材202を当初の予定より後方にずらさざるを得ない。すなわち、圧延順序の当初の予定は、DHCR材101、DHCR材102、HCR/CCR材201、DHCR材103、DHCR材104、HCR/CCR材202、DHCR材105、DHCR材106、HCR/CCR材203の順であったところ、DHCR材102とDHCR材103との予定変更に伴って、DHCR材101、DHCR材104、DHCR材105、DHCR材106、HCR/CCR材201、HCR/CCR材202、HCR/CCR材203の順に変更される。 On the other hand, FIG. 13 exemplifies a case where there is no allowance for the rolling interval and the constraint conditions are strict, and the HCR / CCR material cannot be mated in the free time due to the schedule change of the DHCR material. In the example of FIG. 13, even if the DHCR material 102 and the DHCR material 103 are changed in schedule and the scheduled rolling order is vacant, the HCR / CCR material 201 and the HCR / CCR material 202 must be shifted backward from the original schedule. That is, the initial schedule of the rolling order is DHCR material 101, DHCR material 102, HCR / CCR material 201, DHCR material 103, DHCR material 104, HCR / CCR material 202, DHCR material 105, DHCR material 106, HCR / CCR material. When the order of the DHCR material 102 and the DHCR material 103 was changed, the DHCR material 101, the DHCR material 104, the DHCR material 105, the DHCR material 106, the HCR / CCR material 201, and the HCR / CCR material 202 were changed. The HCR / CCR material 203 is changed in this order.
 以上、説明したように、本実施形態の圧延順序決定システム10によれば、製鋼プロセスと圧延プロセスとの同期操業において、製鋼プロセスの変動に対応して、圧延プロセスの制約条件を充足しつつ圧延能率を低下させないように柔軟に圧延プロセスの操業スケジュールを変更することができる。 As described above, according to the rolling order determination system 10 of the present embodiment, in the synchronous operation of the steel making process and the rolling process, rolling is performed while satisfying the constraints of the rolling process in response to fluctuations in the steel making process. The operation schedule of the rolling process can be changed flexibly so as not to reduce the efficiency.
 なお、ステップS3の処理において、出力部12に変更後の圧延プロセスの操業スケジュールを表示してもよい。その際に、DHCR材とHCR/CCR材とを色分けして表示するとよい。 In addition, in the process of step S3, you may display the operation schedule of the rolling process after a change on the output part 12. FIG. At that time, the DHCR material and the HCR / CCR material may be displayed in different colors.
 以上、本発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明の範疇に含まれる。 As mentioned above, although the embodiment to which the present invention is applied has been described, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.
 本発明は、製鋼プロセスと圧延プロセスとの同期操業に際し、製鋼プロセスの変動に対応して圧延プロセスの操業スケジュールを変更する処理に適用することができる。 The present invention can be applied to a process of changing an operation schedule of a rolling process in response to a change in the steel making process during synchronous operation of the steel making process and the rolling process.
 1 製鋼プロセス
 2 圧延プロセス
 3 連続鋳造機
 31 鋳型
 4 溶鋼
 5 加熱炉
 51 高温装入用の加熱炉
 52 通常温度装入用の加熱炉
 6 熱間圧延機
 61 粗圧延機
 62 仕上げ圧延機
 7 冷却機
 8 巻取り機
 9 スラブヤード
 10 圧延順序決定システム
 11 入力部
 12 出力部
 13 インタフェース部
 14 記憶部
 15 制御部
DESCRIPTION OF SYMBOLS 1 Steelmaking process 2 Rolling process 3 Continuous casting machine 31 Mold 4 Molten steel 5 Heating furnace 51 Heating furnace for high temperature charging 52 Heating furnace for normal temperature charging 6 Hot rolling mill 61 Rough rolling mill 62 Finishing rolling mill 7 Cooling machine 8 Winding Machine 9 Slab Yard 10 Rolling Order Determination System 11 Input Unit 12 Output Unit 13 Interface Unit 14 Storage Unit 15 Control Unit

Claims (5)

  1.  連続鋳造機による製鋼プロセスと、複数の加熱炉を有する熱間圧延機による圧延プロセスとの同期操業に際し、前記連続鋳造機から抽出され高温装入用の加熱炉に直接装入される高温装入鋳片と、前記連続鋳造機から抽出され置場に載置された後に通常温度装入用の加熱炉に装入される通常温度装入鋳片とを差し合いながら前記熱間圧延機で圧延する差し合い操業時の圧延プロセスの操業スケジュールを決定する圧延順序決定システムであって、
     前記差し合い操業中に、前記高温装入鋳片の加熱炉からの抽出時刻または加熱炉への到着枚数が製鋼プロセスの操業スケジュールと異なった場合に、圧延順序を変更し、変更された該圧延順序に基づいて圧延プロセスの操業スケジュールを決定する圧延順序変更手段と、
     圧延順序変更後の前記圧延プロセスの操業スケジュールが制約条件を充足するか否かを判定する圧延制約判定手段と、
     前記制約条件を充足する操業スケジュールに基づいて圧延プロセスを制御する圧延制御手段と、
     を備える圧延順序決定システム。
    High-temperature charging extracted from the continuous casting machine and charged directly into the heating furnace for high-temperature charging during the synchronous operation of the steelmaking process with a continuous casting machine and the rolling process with a hot rolling mill having a plurality of heating furnaces Rolling with the hot rolling mill while inserting the slab and the normal temperature charged cast slab extracted from the continuous casting machine and placed in the yard after being placed in the heating furnace for normal temperature charging A rolling order determination system for determining an operation schedule of a rolling process at the time of a mating operation,
    During the mating operation, when the extraction time of the high temperature charging slab from the heating furnace or the number of arrivals in the heating furnace is different from the operation schedule of the steelmaking process, the rolling order is changed, and the changed rolling Rolling order changing means for determining an operation schedule of the rolling process based on the order;
    Rolling constraint determination means for determining whether or not the operation schedule of the rolling process after the rolling order change satisfies the constraint condition;
    Rolling control means for controlling the rolling process based on an operation schedule that satisfies the constraints;
    A rolling order determination system comprising:
  2.  前記圧延順序変更手段は、所定枚数分の前記高温装入鋳片に対する圧延プロセスの操業スケジュールの余裕時間に、前記通常温度装入鋳片の圧延計画を組み込むように圧延プロセスの操業スケジュールを決定する請求項1に記載の圧延順序決定システム。 The rolling order changing means determines an operation schedule of the rolling process so as to incorporate the rolling plan of the normal temperature charged cast slab into a margin time of the rolling process operational schedule for the predetermined number of high temperature charged cast slabs. The rolling order determination system according to claim 1.
  3.  前記制約条件は、構文木のデータ構成を有し、
     前記圧延制約判定手段は、前記制約条件を構文解析手法で解釈する請求項1または2に記載の圧延順序決定システム。
    The constraint has a data structure of a syntax tree;
    The rolling order determination system according to claim 1, wherein the rolling constraint determination unit interprets the constraint conditions by a syntax analysis method.
  4.  前記圧延順序変更手段は、前記高温装入用の加熱炉内への高温装入用鋳片の装入間隔を前記熱間圧延機での圧延間隔に基づいて算出し、算出された該装入間隔に基づいて圧延プロセスの操業スケジュールを決定する請求項1~3のいずれか1項に記載の圧延順序決定システム。 The rolling order changing means calculates the charging interval of the high-temperature charging slab into the high-temperature charging heating furnace based on the rolling interval in the hot rolling mill, and the calculated charging The rolling order determination system according to any one of claims 1 to 3, wherein an operation schedule of the rolling process is determined based on the interval.
  5.  連続鋳造機による製鋼プロセスと、複数の加熱炉を有する熱間圧延機による圧延プロセスとの同期操業に際し、前記連続鋳造機から抽出され高温装入用の加熱炉に直接装入される高温装入鋳片と、前記連続鋳造機から抽出され置場に載置された後に通常温度装入用の加熱炉に装入される通常温度装入鋳片とを差し合いながら前記熱間圧延機で圧延する差し合い操業時の圧延プロセスの操業スケジュールを決定する圧延順序決定方法あって、
     前記差し合い操業中に、前記高温装入鋳片の加熱炉からの抽出時刻または加熱炉への到着枚数が製鋼プロセスの操業スケジュールと異なった場合に、圧延順序を変更し、変更された該圧延順序に基づいて圧延プロセスの操業スケジュールを決定する圧延順序変更ステップと、
     圧延順序変更後の前記圧延プロセスの操業スケジュールが制約条件を充足するか否かを判定する圧延制約判定ステップと、
     前記制約条件を充足する操業スケジュールに基づいて圧延プロセスを制御する圧延制御ステップと、
     を有する圧延順序決定方法。
    High-temperature charging extracted from the continuous casting machine and charged directly into the heating furnace for high-temperature charging during the synchronous operation of the steelmaking process with a continuous casting machine and the rolling process with a hot rolling mill having a plurality of heating furnaces Rolling with the hot rolling mill while inserting the slab and the normal temperature charged cast slab extracted from the continuous casting machine and placed in the yard after being placed in the heating furnace for normal temperature charging There is a rolling order determination method for determining the operation schedule of the rolling process at the time of the joint operation,
    During the mating operation, when the extraction time of the high temperature charging slab from the heating furnace or the number of arrivals in the heating furnace is different from the operation schedule of the steelmaking process, the rolling order is changed, and the changed rolling A rolling order change step for determining an operation schedule for the rolling process based on the order;
    A rolling constraint determination step for determining whether or not the operation schedule of the rolling process after the rolling order change satisfies the constraint condition;
    A rolling control step for controlling the rolling process based on an operation schedule that satisfies the constraints;
    A rolling order determination method comprising:
PCT/JP2013/056180 2012-04-10 2013-03-06 Hot-rolling-sequence determination system, and hot-rolling-sequence determination method WO2013153879A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013535613A JP5403196B1 (en) 2012-04-10 2013-03-06 Rolling order determination system and rolling order determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-089503 2012-04-10
JP2012089503 2012-04-10

Publications (1)

Publication Number Publication Date
WO2013153879A1 true WO2013153879A1 (en) 2013-10-17

Family

ID=49327457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056180 WO2013153879A1 (en) 2012-04-10 2013-03-06 Hot-rolling-sequence determination system, and hot-rolling-sequence determination method

Country Status (2)

Country Link
JP (1) JP5403196B1 (en)
WO (1) WO2013153879A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110032760A (en) * 2019-03-07 2019-07-19 福建三钢闽光股份有限公司 Optimize medium plate production method for organizing based on rolling line information sharing analysis system
CN113351651A (en) * 2021-05-17 2021-09-07 唐山不锈钢有限责任公司 Hot-rolling line full-automatic heating furnace tapping control method based on big data analysis
CN113664050A (en) * 2021-08-26 2021-11-19 山东钢铁股份有限公司 Steel rolling method and device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6229632B2 (en) * 2014-10-15 2017-11-15 Jfeスチール株式会社 Rolling order determination system and rolling order determination method for hot rolling
CN104881971A (en) * 2015-06-19 2015-09-02 山东钢铁股份有限公司 Control alarm system and control alarm method for steelmaking key technology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272505A (en) * 1997-03-28 1998-10-13 Kobe Steel Ltd Distribution planning device of rolling process
JPH1190515A (en) * 1997-09-18 1999-04-06 Kobe Steel Ltd Method for storing stock slab, method for preparing rolling order of slab and method for heating slab
JP2008254060A (en) * 2007-04-09 2008-10-23 Sumitomo Metal Ind Ltd Method of deciding rolling order in hot rolling and method of manufacturing hot-rolled steel sheet
JP2009274096A (en) * 2008-05-14 2009-11-26 Sumitomo Metal Ind Ltd Method and device for deciding rolling order in hot rolling, and method and apparatus for manufacturing hot-rolled steel plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272505A (en) * 1997-03-28 1998-10-13 Kobe Steel Ltd Distribution planning device of rolling process
JPH1190515A (en) * 1997-09-18 1999-04-06 Kobe Steel Ltd Method for storing stock slab, method for preparing rolling order of slab and method for heating slab
JP2008254060A (en) * 2007-04-09 2008-10-23 Sumitomo Metal Ind Ltd Method of deciding rolling order in hot rolling and method of manufacturing hot-rolled steel sheet
JP2009274096A (en) * 2008-05-14 2009-11-26 Sumitomo Metal Ind Ltd Method and device for deciding rolling order in hot rolling, and method and apparatus for manufacturing hot-rolled steel plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110032760A (en) * 2019-03-07 2019-07-19 福建三钢闽光股份有限公司 Optimize medium plate production method for organizing based on rolling line information sharing analysis system
CN110032760B (en) * 2019-03-07 2022-06-07 福建三钢闽光股份有限公司 Method for optimizing production organization of middle plate based on rolling line information sharing analysis system
CN113351651A (en) * 2021-05-17 2021-09-07 唐山不锈钢有限责任公司 Hot-rolling line full-automatic heating furnace tapping control method based on big data analysis
CN113351651B (en) * 2021-05-17 2022-09-16 唐山不锈钢有限责任公司 Hot-rolling line full-automatic heating furnace tapping control method based on big data analysis
CN113664050A (en) * 2021-08-26 2021-11-19 山东钢铁股份有限公司 Steel rolling method and device
CN113664050B (en) * 2021-08-26 2023-08-22 山东钢铁股份有限公司 Steel rolling method and device

Also Published As

Publication number Publication date
JP5403196B1 (en) 2014-01-29
JPWO2013153879A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
JP5403196B1 (en) Rolling order determination system and rolling order determination method
ITUD20100091A1 (en) PROCEDURE AND PLANT FOR THE PRODUCTION OF FLAT LAMINATED PRODUCTS
RU2531015C2 (en) Method of rolling for manufacture of flat articles and roll train
CN102413955B (en) Method for producing rolled pieces, rolling equipment and open loop and/or closed loop control device
CN102641893A (en) Control device for hot rolling line
KR101133452B1 (en) Method for milling thin and/or thick slabs made of steel materials into hot-rolled strip
JP6562223B2 (en) Heating method and heating equipment for continuous casting slab
JP2007061870A (en) Device and method for preparing rolling schedule, computer program and computer readable storage medium
CN112170500A (en) Hot continuous rolling production control method for constant-gap structure
JP2009262209A (en) System and method for programming manufacturing lot in hot strip mill
JP4289062B2 (en) Control method of material width in hot rolling
US20150352612A1 (en) Energy-saving control device for rolling line
JP6229632B2 (en) Rolling order determination system and rolling order determination method for hot rolling
JP5463743B2 (en) Slab hot rolling schedule determination method and slab hot rolling schedule determination device
JP2021109185A (en) Control method for rolling device, control device for rolling device, and manufacturing method for steel plate
JP4079098B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JPH0934535A (en) Maintenance notification system
JP2002126814A (en) Hot rolling method
JP2006281280A (en) Method for operating slab heating furnace
JP3620464B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP4631105B2 (en) Heating control method for heating furnace
JP5707829B2 (en) Heating furnace charging order and extraction order / rolling order creation method, and heating furnace charging order and extraction order / rolling order creation device
JP7424335B2 (en) Heating control method and device, hot-rolled steel plate manufacturing method, and transportation prediction model generation method
JPH1190515A (en) Method for storing stock slab, method for preparing rolling order of slab and method for heating slab
US20240009724A1 (en) Process and apparatus for producing metallurgical products, in particular of the merchant type, in particular in an endless mode

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013535613

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775143

Country of ref document: EP

Kind code of ref document: A1