JP6562223B2 - Heating method and heating equipment for continuous casting slab - Google Patents

Heating method and heating equipment for continuous casting slab Download PDF

Info

Publication number
JP6562223B2
JP6562223B2 JP2017006732A JP2017006732A JP6562223B2 JP 6562223 B2 JP6562223 B2 JP 6562223B2 JP 2017006732 A JP2017006732 A JP 2017006732A JP 2017006732 A JP2017006732 A JP 2017006732A JP 6562223 B2 JP6562223 B2 JP 6562223B2
Authority
JP
Japan
Prior art keywords
slab
heating
continuous casting
induction heating
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017006732A
Other languages
Japanese (ja)
Other versions
JP2018114531A (en
Inventor
日野 善道
善道 日野
三宅 勝
勝 三宅
拓郎 矢▲崎▼
拓郎 矢▲崎▼
慎也 山口
慎也 山口
洸介 日向
洸介 日向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017006732A priority Critical patent/JP6562223B2/en
Publication of JP2018114531A publication Critical patent/JP2018114531A/en
Application granted granted Critical
Publication of JP6562223B2 publication Critical patent/JP6562223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、連続鋳造設備で鋳造された連続鋳造スラブ(熱片)の幅方向エッジ部の加熱方法および加熱設備に関し、特には、連続鋳造設備で鋳造された連続鋳造スラブを加熱炉で再加熱せず直接圧延する直送圧延(HDR:Hot direct rolling)に適した連続鋳造スラブの加熱方法および加熱設備に関する。   The present invention relates to a heating method and a heating equipment for a widthwise edge portion of a continuous casting slab (hot piece) cast by a continuous casting equipment, and in particular, reheating the continuous casting slab cast by the continuous casting equipment in a heating furnace. The present invention relates to a heating method and heating equipment for a continuous cast slab suitable for direct feed rolling (HDR).

直送圧延は、連続鋳造設備と熱間圧延設備とを直結し、連続鋳造設備で鋳造された連続鋳造スラブ(以下、単に「スラブ」ともいう。)の顕熱を利用して省エネルギーを図るとともに大幅な工程短縮を可能とする技術である。   Direct feed rolling is a direct connection between continuous casting equipment and hot rolling equipment, and uses the sensible heat of continuous cast slabs (hereinafter also simply referred to as “slabs”) cast by continuous casting equipment to save energy and greatly It is a technology that enables shortening of the process.

連続鋳造の速度は毎分数メートルであってスラブ一枚が鋳造を終えるには数分を要するため、この間にスラブの幅方向エッジ部(以下、単に「エッジ部」ともいう。)の温度が低下し、加熱炉を経由しない直送圧延では何らかの温度補償が必要となる場合がある。   Since the speed of continuous casting is several meters per minute and it takes several minutes for one slab to finish casting, the temperature of the edge portion in the width direction of the slab (hereinafter also simply referred to as “edge portion”) decreases during this time. In some cases, direct temperature rolling without passing through a heating furnace may require some temperature compensation.

これに関して特許文献1では、連続鋳造機のカッタに近接してその前後にスラブ端面を加熱する加熱装置をそれぞれ設けることが提案されている。   In this regard, Patent Document 1 proposes providing a heating device that heats the end surface of the slab in the vicinity of the cutter of the continuous casting machine.

また、特許文献2には、スラブの幅方向エッジ部をバーナで加熱する装置を熱間圧延用のスラブ加熱炉近傍に設置することが提案されている。   Patent Document 2 proposes that an apparatus for heating the edge portion in the width direction of the slab with a burner is installed in the vicinity of the slab heating furnace for hot rolling.

非特許文献1には、スラブの幅方向エッジ部を誘導加熱する方法が開示されている。   Non-Patent Document 1 discloses a method of induction heating a width direction edge portion of a slab.

非特許文献2には、スラブよりも小型のビレットを加熱するため誘導加熱コイル内にビレットを収容した状態で加熱を行う方法が開示されている。   Non-Patent Document 2 discloses a method of heating a billet that is smaller than a slab while the billet is housed in an induction heating coil.

特開昭60−18201号公報Japanese Patent Laid-Open No. 60-18201 特開昭55−41902号公報JP-A-55-41902

製鉄研究第313号(1984年) P.6 新日本製鐵株式会社Steelmaking Research No. 313 (1984) 6 Nippon Steel Corporation 日立評論1967年6月号 P.17Hitachi review June 1967 issue 17

しかしながら、特許文献1の加熱装置では、加熱中のスラブの搬送方向が一方向であり、先に加熱を終えたスラブの先端側のエッジ部は放熱が始まり、尾端部の加熱が終わる頃には先端側のエッジ部の温度は大幅に低下する。特許文献1の第3図に示される、連続鋳造機のカッタ近辺に加熱装置を設置した実施例では、スラブを粗圧延機まで運搬する間に、一旦Al-N再固溶温度を超えたスラブのエッジ部の温度は再び1000℃程度まで降下しており(同文献第2図参照)、その状態で圧延を行うと、近年の厳しい品質管理の視点では1200℃程度で圧延される幅方向中央部と比較してエッジ部の品質への影響が懸念される。   However, in the heating apparatus of Patent Document 1, the conveying direction of the slab being heated is one direction, and the edge portion on the tip side of the slab that has been heated first starts to dissipate and the heating of the tail end ends. The temperature at the edge part on the tip side is greatly reduced. In the embodiment shown in FIG. 3 of Patent Document 1 where a heating device is installed in the vicinity of the cutter of the continuous casting machine, the slab once exceeds the Al-N resolution temperature while the slab is transported to the roughing mill. The temperature of the edge portion of the steel sheet has fallen again to about 1000 ° C. (see FIG. 2 of the same document). When rolling in that state, the center in the width direction is rolled at about 1200 ° C. from the viewpoint of strict quality control in recent years. There is a concern about the influence on the quality of the edge portion as compared with the portion.

また、特許文献1の加熱装置では、加熱時のスラブの搬送速度が連続鋳造機による連続鋳造の速度に依存することから、鋳造速度から独立した速度での加熱を行うことはできない。そのため、加熱時間が10分程度と長くなり(同文献第2図参照)、エッジ部を加熱する10分程度の間、スラブの幅方向中心部の温度は低下し続けている。温度降下が大きくなるとAl-N固溶温度や粗圧延に必要な温度を下回るという問題があり、温度降下を考慮した大きな入熱を行うと省エネルギーの観点で問題がある。   Moreover, in the heating apparatus of patent document 1, since the conveyance speed of the slab at the time of a heating is dependent on the speed of the continuous casting by a continuous casting machine, it cannot heat at the speed independent of the casting speed. Therefore, the heating time becomes as long as about 10 minutes (see FIG. 2 of the same document), and the temperature at the center portion in the width direction of the slab continues to decrease during about 10 minutes for heating the edge portion. When the temperature drop becomes large, there is a problem that the temperature is lower than the Al-N solid solution temperature or the temperature required for rough rolling, and there is a problem in terms of energy saving if large heat input is performed considering the temperature drop.

特許文献2では、スラブを粗圧延機に送る搬送テーブル上にエッジ部加熱装置を配置して圧延直前にスラブの幅方向エッジ部の温度補償を行っているが、加熱はバーナによって行われており、スラブのように熱容量の大きなものを加熱するには10分程度の時間を要していまい、エッジ部を加熱している間に幅方向中央部の温度が低下するという同様の問題を抱えている。   In Patent Document 2, the edge portion heating device is arranged on the conveyance table for sending the slab to the roughing mill and the temperature compensation of the edge portion in the width direction of the slab is performed immediately before rolling, but the heating is performed by the burner. It takes about 10 minutes to heat a large heat capacity such as a slab, and it has the same problem that the temperature in the center in the width direction decreases while the edge is heated. Yes.

このようにバーナによる加熱では長時間を要するのに対し、非特許文献1に記載されるような誘導加熱による方法では、搬送速度4m/min程度での加熱が可能であり、例えば10mの長さを持つスラブであれば2.5分程度で加熱が完了し、放熱損失を著しく小さくできるとともに、当該加熱工程が製造の律速段階となることを避けることができる。   In this way, the heating by the burner takes a long time, but the method by induction heating as described in Non-Patent Document 1 can heat at a conveyance speed of about 4 m / min, for example, a length of 10 m. If the slab has, the heating is completed in about 2.5 minutes, the heat dissipation loss can be remarkably reduced, and the heating process can be prevented from becoming the rate-limiting step of production.

ところで、スラブを保持、移送するためには多数の保持・搬送用ローラを設置し、その間にスラブの幅方向エッジ部を加熱する誘導加熱コイルを設置せざるを得ず、誘導加熱コイルは間隔を空けて配置される。スラブ加熱の場合は、保持・搬送用ローラは高剛性であり耐熱機能を付与するために、スラブの搬送方向に沿った誘導加熱コイル間の間隔は、コイルの加熱長と同程度か、より長くなる。このため、スラブを停止させて加熱すると、加熱される部分と加熱されない部分が生じ全長に不均一な加熱となるので、スラブを移動させながら加熱する必要がある。また、スラブの移動距離と比べて誘導加熱コイルの加熱長が短いので、十分に熱を与えるためには、スラブを低速で移動しなければならない。   By the way, in order to hold and transfer the slab, a large number of holding and conveying rollers are installed, and an induction heating coil for heating the edge in the width direction of the slab must be installed between them. Arranged to be empty. In the case of slab heating, the holding / conveying roller is highly rigid and has a heat resistance function, so that the interval between the induction heating coils along the slab conveying direction is equal to or longer than the heating length of the coil. Become. For this reason, when the slab is stopped and heated, a heated portion and a non-heated portion are generated, resulting in uneven heating over the entire length. Therefore, it is necessary to heat the slab while moving it. Further, since the heating length of the induction heating coil is shorter than the moving distance of the slab, the slab must be moved at a low speed in order to give sufficient heat.

しかしながら、誘導加熱装置を用いスラブを移動させながら加熱する場合、誘導加熱装置の配設区間をスラブの長さと同程度としただけでは、誘導加熱装置を通過し加熱の終わったスラブの先端側のエッジ部は尾端側が加熱を終えるまで長時間放熱され、その影響で均一な加熱ができなくなる。すなわち、スラブを全長に亘って加熱する間に先に加熱を終えた先端側のエッジ部の温度が低下するという点で、特許文献1と同じ問題を抱えている。一方、スラブの先端側の放熱を考慮した温度補償を実施しようとすると、必要以上に高温に加熱される部分を生じ、不経済であるばかりでなく、圧延時の温度も不均一となり、変形抵抗も不均一となって板厚精度に悪影響を及ぼす。   However, when heating while moving the slab using an induction heating device, the induction section of the slab that has passed through the induction heating device and has been heated only by setting the section of the induction heating device to be approximately the same as the length of the slab. The edge portion is dissipated for a long time until the tail end side finishes heating, and uniform heating is not possible under the influence. That is, it has the same problem as Patent Document 1 in that the temperature of the edge portion on the front end side that has been heated first decreases while the slab is heated over its entire length. On the other hand, if temperature compensation is performed in consideration of heat dissipation on the tip side of the slab, a part that is heated to a higher temperature than necessary is generated, which is not economical, and the temperature at the time of rolling becomes uneven, and deformation resistance Becomes uneven and adversely affects the thickness accuracy.

このため、均一な加熱を行うためには、誘導加熱装置をスラブの長さ以上の範囲に配置する必要があり、全長に亘って一様に熱を与えるためには通常、スラブの2倍の長さに相当する範囲に多数の誘導加熱装置を配置しなければならず、不経済である。   For this reason, in order to perform uniform heating, it is necessary to arrange the induction heating device in a range equal to or longer than the length of the slab, and in order to apply heat uniformly over the entire length, it is usually twice that of the slab. A large number of induction heating devices must be arranged in a range corresponding to the length, which is uneconomical.

これに対して、ビレットのような比較的短い被加熱材を加熱する場合には、非特許文献2に記載されるように、誘導加熱装置のコイル内に被加熱材を収めてその全体を一斉に加熱することは可能である。しかしながら、スラブのように長いものの全長を同時に誘導加熱することは実用的ではない。また、場合によっては30トンにもなるスラブを保持し、スラブを移動する機構をコイル内部に収めることもできないという問題がある。   On the other hand, when heating a relatively short material to be heated such as a billet, as described in Non-Patent Document 2, the material to be heated is housed in a coil of an induction heating device, and the whole is all at once. It is possible to heat to However, it is not practical to simultaneously induction heat the entire length of a long slab. Further, there is a problem that a mechanism for holding the slab of 30 tons and moving the slab in some cases cannot be accommodated inside the coil.

この発明は、上記従来技術の問題を解消し、連続鋳造スラブの全長に亘ってその幅方向エッジ部を均一に加熱することができかつ経済的である連続鋳造スラブの加熱方法および加熱設備を提供することを目的とする。   The present invention provides a heating method and heating equipment for a continuous casting slab that solves the above-described problems of the prior art, can uniformly heat the edge in the width direction over the entire length of the continuous casting slab, and is economical. The purpose is to do.

この発明は、連続鋳造設備で鋳造された連続鋳造スラブを熱間圧延設備で直送圧延する際、その連続鋳造スラブを熱間圧延する前に該連続鋳造スラブの幅方向エッジ部を加熱する連続鋳造スラブの加熱方法であって、連続鋳造設備の出側から熱間圧延設備の入側までの連続鋳造スラブの搬送経路内に、複数の誘導加熱装置が搬送方向に間隔を空けて配置された加熱設備を設け、加熱設備において連続鋳造スラブを往復移動させながら複数の誘導加熱装置により該連続鋳造スラブの幅方向エッジ部を加熱するものである。   In the present invention, when a continuous cast slab cast by a continuous casting facility is directly rolled by a hot rolling facility, the continuous casting slab is heated continuously at the edge in the width direction before hot rolling the continuous cast slab. A heating method for a slab, in which a plurality of induction heating devices are arranged in the conveying direction at intervals in the conveying path of the continuous casting slab from the exit side of the continuous casting facility to the entry side of the hot rolling facility. Equipment is provided, and the widthwise edge portion of the continuous casting slab is heated by a plurality of induction heating devices while reciprocating the continuous casting slab in the heating equipment.

なお、この発明の連続鋳造スラブの加熱方法にあっては、複数の誘導加熱装置間に配置された正逆回転可能な搬送ローラにより連続鋳造スラブの往復移動を行うことが好ましい。   In the method for heating a continuous cast slab according to the present invention, it is preferable that the continuous cast slab is reciprocated by a transport roller capable of forward and reverse rotation disposed between a plurality of induction heating devices.

また、この発明の連続鋳造スラブの加熱方法にあっては、複数の誘導加熱装置を所定のピッチで配置し、各往復移動において連続鋳造スラブをピッチの自然数倍に相当する距離を移動させながら幅方向エッジ部を加熱することが好ましい。   Further, in the heating method of the continuous casting slab of the present invention, a plurality of induction heating devices are arranged at a predetermined pitch, and the continuous casting slab is moved by a distance corresponding to a natural number multiple of the pitch in each reciprocation. It is preferable to heat the edge portion in the width direction.

さらに、この発明の連続鋳造スラブの加熱方法にあっては、誘導加熱装置のピッチをLdとし、連続鋳造スラブの長さをLsとし、各誘導加熱装置の加熱長をLcとし、誘導加熱装置の設置台数をNとしたときに、Ld×(N−1)−Lc<Ls≦Ld×N−Lc の関係が成り立つように、誘導加熱装置の設置台数Nを決定することが好ましい。   Furthermore, in the heating method of the continuous casting slab of the present invention, the pitch of the induction heating device is Ld, the length of the continuous casting slab is Ls, the heating length of each induction heating device is Lc, When the installation number is N, it is preferable to determine the installation number N of induction heating devices so that the relationship Ld × (N−1) −Lc <Ls ≦ Ld × N−Lc is satisfied.

さらに、この発明の連続鋳造スラブの加熱方法にあっては、連続鋳造スラブの移動方向反転時に誘導加熱装置の出力を下げ、あるいは停止することが好ましい。   Furthermore, in the method for heating a continuous cast slab according to the present invention, it is preferable to reduce or stop the output of the induction heating device when the moving direction of the continuous cast slab is reversed.

さらに、この発明の連続鋳造スラブの加熱方法にあっては、連続鋳造設備から加熱設備までのスラブの搬送速度および加熱設備から熱間圧延設備までのスラブの搬送速度は、加熱設備によるスラブの加熱中の往復移動速度よりも大きくすることが好ましい。   Furthermore, in the method for heating a continuous cast slab according to the present invention, the slab transport speed from the continuous casting equipment to the heating equipment and the slab transport speed from the heating equipment to the hot rolling equipment are determined by the heating equipment. It is preferable to make it larger than the reciprocating speed inside.

また、この発明は、連続鋳造設備で鋳造された連続鋳造スラブを熱間圧延設備で直送圧延する際、その連続鋳造スラブを圧延する前に該連続鋳造スラブの幅方向エッジ部を加熱する連続鋳造スラブの加熱設備であって、連続鋳造設備の出側から熱間圧延設備の入側までの連続鋳造スラブの搬送経路内に配置され、搬送方向に互いに間隔を空けて位置する複数の誘導加熱装置と、複数の誘導加熱装置によって加熱される連続鋳造スラブを往復移動させる移動手段と、を備えるものである。   Further, the present invention provides a continuous casting for heating a widthwise edge portion of the continuous casting slab before rolling the continuous casting slab when the continuous casting slab cast by the continuous casting equipment is directly rolled by the hot rolling equipment. A plurality of induction heating devices which are heating equipment for a slab and are arranged in a conveying path of a continuous casting slab from the exit side of the continuous casting facility to the entry side of the hot rolling facility, and are spaced apart from each other in the conveying direction. And a moving means for reciprocating the continuously cast slab heated by the plurality of induction heating devices.

なお、この発明の連続鋳造スラブの加熱設備にあっては、移動手段は、複数の誘導加熱装置間に配置された正逆回転可能な搬送ローラを有することが好ましい。   In the heating apparatus for continuous cast slabs according to the present invention, it is preferable that the moving means has a transport roller that can be rotated in forward and reverse directions and disposed between a plurality of induction heating devices.

また、この発明の連続鋳造スラブの加熱設備にあっては、搬送方向で最上流に位置する誘導加熱装置から最下流に位置する誘導加熱装置までの加熱区間長は、連続鋳造スラブの長さ以上でその長さの1.5倍以下であることが好ましい。   Further, in the heating equipment for the continuous casting slab of the present invention, the heating section length from the induction heating device located at the uppermost stream in the conveying direction to the induction heating device located at the most downstream is equal to or longer than the length of the continuous casting slab. The length is preferably 1.5 times or less.

さらに、この発明の連続鋳造スラブの加熱設備にあっては、連続鋳造スラブの移動方向反転時に誘導加熱装置の出力を下げ、あるいは停止する出力調整手段を備えることが好ましい。   Further, the continuous casting slab heating facility of the present invention preferably includes output adjusting means for reducing or stopping the output of the induction heating device when the moving direction of the continuous casting slab is reversed.

さらに、この発明の連続鋳造スラブの加熱設備にあっては、複数の連続加熱装置は等間隔に配置されていることが好ましい。   Furthermore, in the continuous casting slab heating facility of the present invention, it is preferable that the plurality of continuous heating devices are arranged at equal intervals.

さらに、この発明の連続鋳造スラブの加熱設備にあっては、移動手段は、連続鋳造スラブの先端および尾端を直接押圧して往復移動させるプッシャーを有することが好ましい。   Furthermore, in the heating apparatus for continuous cast slabs according to the present invention, it is preferable that the moving means has a pusher that reciprocates by directly pressing the tip and tail ends of the continuous cast slab.

この発明によれば、複数の誘導加熱装置を搬送方向に間隔を空けて配置した加熱設備においてスラブを往復移動させながらエッジ部の加熱を行う構成としたので、スラブの尾端部の加熱が終わるまでの間に先端部が放冷されるのを防止することができるとともに、必要な誘導加熱装置の設置台数を大幅に削減することができる。また、バーナで加熱する場合と比べて短時間で加熱することが可能であるので、エッジ部を加熱している間のスラブの幅方向中央部の温度降下を抑制することができる。   According to the present invention, since the edge portion is heated while reciprocating the slab in the heating facility in which the plurality of induction heating devices are arranged at intervals in the transport direction, the heating of the tail end portion of the slab is finished. It is possible to prevent the tip portion from being allowed to cool in the meantime, and to significantly reduce the number of necessary induction heating devices. Moreover, since it can heat in a short time compared with the case where it heats with a burner, the temperature fall of the width direction center part of the slab during heating an edge part can be suppressed.

図1は、この発明の一実施形態の連続鋳造スラブの加熱設備を備えた熱延鋼板の製造設備を概略して示し、(a)は側面図であり、(b)は平面図である。FIG. 1 schematically shows a hot-rolled steel sheet manufacturing facility equipped with a continuous casting slab heating facility according to an embodiment of the present invention, wherein (a) is a side view and (b) is a plan view. 図2は、この実施形態の連続鋳造スラブの加熱設備を示し、(a)は側面図であり、(b)は正面図である。FIG. 2 shows the heating equipment for the continuous cast slab of this embodiment, where (a) is a side view and (b) is a front view. 図3(a)〜(e)は、各加熱段階において、スラブを搬送しながらエッジ部を加熱する際のスラブのエッジ部への蓄積熱量の長手方向の分布を誘導加熱装置とともに示した説明図である。FIGS. 3A to 3E are explanatory views showing the distribution in the longitudinal direction of the accumulated heat amount to the edge portion of the slab when the edge portion is heated while conveying the slab in each heating stage together with the induction heating device. It is. 図4は、この発明の他の実施形態の連続鋳造スラブの加熱設備を示す側面図である。FIG. 4 is a side view showing a continuous casting slab heating facility according to another embodiment of the present invention. 図5は、この発明のさらに他の実施形態の連続鋳造スラブの加熱設備を示す側面図である。FIG. 5 is a side view showing a continuous casting slab heating facility according to still another embodiment of the present invention. 従来技術の連続鋳造スラブの加熱設備を、スラブのエッジ部の蓄積熱量の長手方向の分布とともに示した説明図である。It is explanatory drawing which showed the heating equipment of the continuous casting slab of a prior art with distribution of the accumulated heat amount of the edge part of a slab in the longitudinal direction. 他の従来技術の連続鋳造スラブの加熱設備を、スラブのエッジ部の蓄積熱量の長手方向の分布とともに示した説明図である。It is explanatory drawing which showed the heating equipment of the continuous casting slab of another prior art with distribution of the accumulated heat amount of the edge part of a slab with the longitudinal direction.

以下、この発明の実施の形態を図面に基づき詳細に説明する。図1は、この発明の一実施形態の連続鋳造スラブの加熱設備を備えた熱延鋼板の製造設備を概略的に示し、(a)は側面図であり、(b)は平面図であり、図2は、この実施形態の連続鋳造スラブの加熱設備を示し、(a)は側面図であり、(b)は正面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 schematically shows a hot-rolled steel sheet manufacturing facility equipped with a continuous casting slab heating facility according to an embodiment of the present invention, (a) is a side view, (b) is a plan view, FIG. 2 shows the heating equipment for the continuous cast slab of this embodiment, where (a) is a side view and (b) is a front view.

図1に示す例の熱延鋼板の製造設備10は、連続鋳造設備12で鋳造された連続鋳造スラブ(以下、単に「スラブ」ともいう。)Sを、加熱炉内で加熱することなく熱間圧延設備14に直送し、所定の厚みまで減厚してコイル状に巻き取る直送圧延(HDR)設備である。   The hot-rolled steel sheet manufacturing facility 10 shown in FIG. 1 is hot without heating a continuous cast slab (hereinafter also simply referred to as “slab”) S cast in a continuous casting facility 12 in a heating furnace. This is a direct feed rolling (HDR) equipment that is directly sent to the rolling equipment 14, reduced in thickness to a predetermined thickness and wound in a coil shape.

連続鋳造設備12では、タンディッシュ12aから鋳型12bに注入された溶鋼は、鋳型12bで冷却されて鋳片となり、鋳型12bの下方に設けた図示しない複数のロールに沿って鋳型12bの下方から連続的に引抜かれる。鋳片は、ロールを通過する間冷却水で冷却され、やがて内部までの凝固を完了する。凝固完了した鋳片は、ガス切断機等のカッタ12cによって所定の長さに切断されてスラブSとなる。   In the continuous casting facility 12, the molten steel poured into the mold 12b from the tundish 12a is cooled by the mold 12b to become a slab, and continuously from below the mold 12b along a plurality of rolls (not shown) provided below the mold 12b. Pulled out. The slab is cooled with cooling water while passing through the roll, and eventually solidification to the inside is completed. The slab that has been solidified is cut into a predetermined length by a cutter 12c such as a gas cutter to form a slab S.

連続鋳造設備12で製造されたスラブSは搬送ローラ16によって熱間圧延設備14へ搬送される。熱間圧延設備14へ送られたスラブは、粗圧延機14aおよび仕上圧延機14bによって所定の厚みまで圧延され、圧延された鋼板は水冷設備18によって所定の材質とされた後、コイル状に巻き取られて熱間圧延コイル製品となる。   The slab S manufactured by the continuous casting facility 12 is transported to the hot rolling facility 14 by the transport roller 16. The slab sent to the hot rolling facility 14 is rolled to a predetermined thickness by the roughing mill 14a and the finishing mill 14b, and the rolled steel sheet is made into a predetermined material by the water cooling facility 18 and then wound in a coil shape. Taken into a hot rolled coil product.

連続鋳造設備12で製造されたスラブSは、熱間圧延設備14へ搬送されるまでの間にその幅方向エッジ部(以下、単に「エッジ部」といもいう。)の温度が降下すると品質への影響が懸念される。そこで、この熱延鋼板の製造設備10ではカッタ12cの出側から熱間圧延設備14の入側までのスラブSの搬送経路内に加熱設備20を設けてスラブSのエッジ部の温度補償を実施する構成としている。   The quality of the slab S manufactured by the continuous casting facility 12 is improved when the temperature of the edge portion in the width direction (hereinafter also simply referred to as an “edge portion”) is lowered until the slab S is conveyed to the hot rolling facility 14. Is concerned about the impact of Therefore, in this hot-rolled steel sheet manufacturing facility 10, a heating facility 20 is provided in the transport path of the slab S from the exit side of the cutter 12c to the entrance side of the hot rolling facility 14 to compensate the temperature of the edge portion of the slab S. It is configured to do.

具体的には、この実施形態の加熱設備20はスラブSの左右両エッジ部を加熱するものであり、図2(a)に示すように搬送方向に間隔を空けて、好ましくは等ピッチで配置された複数の誘導加熱装置22を備えている。各誘導加熱装置22は図2(b)に示すように搬送方向に沿って見て略C字状をなす、鉄やフェライト等からなる左右一対のコア材24a,24bと、該コア材24a,24bの外周に巻装されたコイル導体26とを有するものであり、その開口部内にスラブSのエッジ部が位置するようにコア材24a,24bを対向配置し、該コイル導体26に高周波電流を通電してコア材24a,24bの内部に高周波磁束を発生させ、該磁束により発生する渦電流によりスラブSのエッジ部を加熱するものである。また、加熱設備20は移動手段としての搬送ローラ16の回転制御と連動してコイル導体26に流れる電流量を調整する出力調整手段28を備えており、具体的に出力調整手段28は、スラブSの方向転換に際しての搬送ローラ16の回転停止または減速をトリガーとしてスラブSが逆走し始めるまでの、実測等によりあらかじめ求めたスラブSの実質的な停止期間中、コイル導体26に流れる電流量を低下させもしくは電流供給を停止するよう構成されている。この実施形態ではプロセスコンピュータがこれを実行する。出力調整手段28は、スラブSの方向転換に際しての搬送ローラ16の減速と連動して誘導加熱装置22の出力を徐々に低下させ、かつ搬送ローラ16の反転後の増速と連動して誘導加熱装置22の出力を元の値に徐々に戻すよう構成してもよい。   Specifically, the heating equipment 20 of this embodiment heats both the left and right edge portions of the slab S, and is arranged at an equal pitch with an interval in the transport direction as shown in FIG. 2 (a). A plurality of induction heating devices 22 are provided. Each induction heating device 22 includes a pair of left and right core members 24a and 24b made of iron, ferrite, or the like, which are substantially C-shaped when viewed in the conveying direction, as shown in FIG. 24b and a coil conductor 26 wound around the outer periphery of the core 24b. The core members 24a and 24b are arranged opposite to each other so that the edge portion of the slab S is located in the opening, and a high-frequency current is applied to the coil conductor 26. A high frequency magnetic flux is generated inside the core members 24a and 24b by energization, and the edge portion of the slab S is heated by an eddy current generated by the magnetic flux. Further, the heating equipment 20 includes an output adjusting means 28 that adjusts the amount of current flowing through the coil conductor 26 in conjunction with the rotation control of the conveying roller 16 as a moving means. Specifically, the output adjusting means 28 includes the slab S. The amount of current flowing through the coil conductor 26 during the substantial stop period of the slab S obtained in advance by actual measurement or the like until the slab S starts to reversely run with the rotation stop or deceleration of the transport roller 16 as a trigger when the direction is changed. It is configured to reduce or stop the current supply. In this embodiment, the process computer performs this. The output adjusting means 28 gradually decreases the output of the induction heating device 22 in conjunction with the deceleration of the conveying roller 16 when the slab S changes its direction, and induction heating in conjunction with the increased speed after the conveying roller 16 is reversed. You may comprise so that the output of the apparatus 22 may be gradually returned to the original value.

誘導加熱装置22は、隣接する搬送ローラ16の間に配置されており、誘導加熱装置22のピッチLdは搬送ローラ16のピッチと同じとするのが好ましい。また、誘導加熱装置22の加熱長Lcに対して誘導加熱装置22のピッチLdをLd≧2×Lcを満たすようにすることで、スラブSを支持する搬送ローラ16を誘導加熱装置22から十分に離間させて熱影響から保護することができる。   The induction heating device 22 is disposed between the adjacent conveyance rollers 16, and the pitch Ld of the induction heating device 22 is preferably the same as the pitch of the conveyance rollers 16. In addition, by making the pitch Ld of the induction heating device 22 satisfy Ld ≧ 2 × Lc with respect to the heating length Lc of the induction heating device 22, the conveyance roller 16 that supports the slab S can be sufficiently removed from the induction heating device 22. It can be separated and protected from thermal effects.

搬送ローラ16は自由継手30を介して駆動モータ32に接続され正逆回転可能に構成されている。これにより、複数の誘導加熱装置22が配置された区間において、スラブSを連続鋳造設備12から熱間圧延設備14に向かう順方向およびその逆方向へ往復移動させながら、複数の誘導加熱装置22によってスラブSのエッジ部を加熱することができる。このように、搬送ローラ16は誘導加熱装置22による加熱中、スラブSを往復移動させる移動手段を構成するものである。   The transport roller 16 is connected to a drive motor 32 via a free joint 30 and is configured to be able to rotate forward and reverse. Thereby, in the section where the plurality of induction heating devices 22 are arranged, the slab S is reciprocated in the forward direction from the continuous casting facility 12 toward the hot rolling facility 14 and in the reverse direction by the plurality of induction heating devices 22. The edge part of the slab S can be heated. Thus, the conveyance roller 16 constitutes a moving means for reciprocating the slab S during heating by the induction heating device 22.

また、この実施形態の加熱設備20では、誘導加熱装置22のピッチをLdとし、スラブSの長さをLsとし、各誘導加熱装置22の加熱長をLcとしたときに、Ld×(N−1)−Lc<Ls≦Ld×N−Lc の関係が成り立つように、誘導加熱装置22の設置台数Nを決定している。ここで、スラブSの長さLsとは、当該熱延鋼板の製造設備10で扱うことができる最大スラブの長さを意味する。例えば、スラブSの長さLsが8000mm、誘導加熱装置22のピッチLdが1500mm、誘導加熱装置22の加熱長Lcが500mmの場合は、上記関係から5.66≦N<6.66となるため、誘導加熱装置22は6台設ければよいことになる。   In the heating facility 20 of this embodiment, when the pitch of the induction heating device 22 is Ld, the length of the slab S is Ls, and the heating length of each induction heating device 22 is Lc, Ld × (N− 1) The installed number N of induction heating devices 22 is determined so that the relationship of −Lc <Ls ≦ Ld × N−Lc is established. Here, the length Ls of the slab S means the length of the maximum slab that can be handled by the hot-rolled steel sheet manufacturing facility 10. For example, when the length Ls of the slab S is 8000 mm, the pitch Ld of the induction heating device 22 is 1500 mm, and the heating length Lc of the induction heating device 22 is 500 mm, 5.66 ≦ N <6.66 from the above relationship. It is sufficient to provide six induction heating devices 22.

さらに、この実施形態の加熱設備20では、搬送方向で最上流に位置する誘導加熱装置22から最下流に位置する誘導加熱装置22までの加熱区間長はスラブSの長さLs以上でその長さの1.5倍以下とすることが好ましい。   Furthermore, in the heating equipment 20 of this embodiment, the length of the heating section from the induction heating device 22 located on the most upstream side in the conveying direction to the induction heating device 22 located on the most downstream side is equal to or longer than the length Ls of the slab S. Is preferably 1.5 times or less.

図3を参照し、この実施形態の加熱設備20を用いた、この発明に従う一実施形態の連続鋳造スラブの加熱方法について説明する。図3(a)〜(e)は、各加熱段階において、スラブを搬送しながらエッジ部を加熱する際のスラブのエッジ部の蓄積熱量の長手方向の分布を加熱設備20とともに示した説明図である。   With reference to FIG. 3, the heating method of the continuous casting slab of one Embodiment according to this invention using the heating equipment 20 of this embodiment is demonstrated. FIGS. 3A to 3E are explanatory views showing the distribution in the longitudinal direction of the accumulated heat amount of the edge portion of the slab when heating the edge portion while conveying the slab in each heating stage, together with the heating equipment 20. is there.

この実施形態のスラブの加熱方法は、連続鋳造設備12と熱間圧延設備14との間に複数の誘導加熱装置22を搬送方向に間隔を空けて配置し、複数の誘導加熱装置22が配置された加熱設備20の区間においてスラブSを往復移動させながら複数の誘導加熱装置22により該スラブSのエッジ部を加熱するものであり、スラブSの往復移動は、複数の誘導加熱装置22間に配置された正逆回転駆動可能な搬送ローラ16により行う。   In the heating method of the slab of this embodiment, a plurality of induction heating devices 22 are arranged at intervals in the conveying direction between the continuous casting equipment 12 and the hot rolling equipment 14, and the plurality of induction heating devices 22 are arranged. The edge portion of the slab S is heated by the plurality of induction heating devices 22 while reciprocating the slab S in the section of the heating equipment 20, and the reciprocation of the slab S is arranged between the plurality of induction heating devices 22. This is performed by the transport roller 16 that can be driven forward and reverse.

連続鋳造設備12から加熱設備20までのスラブSの搬送および加熱設備20から熱間圧延設備14までのスラブの搬送は、加熱設備20による加熱中のスラブSの往復移動よりも速い速度で行うのが好ましく、これによれば連続鋳造設備12から加熱設備20までおよび加熱設備20から熱間圧延設備14までの搬送中のスラブの温度降下を抑制することができる。   The conveyance of the slab S from the continuous casting facility 12 to the heating facility 20 and the conveyance of the slab from the heating facility 20 to the hot rolling facility 14 are performed at a speed faster than the reciprocating movement of the slab S during heating by the heating facility 20. Preferably, according to this, the temperature drop of the slab during conveyance from the continuous casting equipment 12 to the heating equipment 20 and from the heating equipment 20 to the hot rolling equipment 14 can be suppressed.

加熱設備20による加熱中のスラブSの往復移動速度(低速搬送速度)Vと往復回数mは、実測等によりあらかじめ求めた、スラブSのエッジ部を所定の温度まで加熱するのに必要な加熱時間tとの関係で、m×2×Lc÷V=tを満たすように決定することができる。   The reciprocating speed (low speed conveyance speed) V and the number of reciprocations m of the slab S during heating by the heating equipment 20 are the heating time required to heat the edge portion of the slab S to a predetermined temperature, which is obtained in advance by actual measurement or the like. It can be determined so as to satisfy m × 2 × Lc ÷ V = t in relation to t.

まず図3(a)は連続鋳造設備12を出たスラブSを加熱設備20へ進入させた状態を示し、この状態ではスラブSは未だ加熱されていないため、スラブSの長手方向の蓄積熱量はゼロである。なお、連続鋳造設備12から加熱設備20までのスラブSの搬送は比較的高速(例えば120mpm)行い、スラブSが加熱設備20へ進入し所定の加熱開始位置に到達するまでに所定の速度(例えば5mpm)まで減速することが好ましく、このようにすれば、搬送中の温度降下を抑制することができるとともに、加熱設備20内ではスラブSを所定の加熱開始位置に正確に配置して、以降の加熱工程において加熱むらが発生するのを防止することができる。また、誘導加熱装置22による加熱中のスラブSの往復移動は低速(例えば5mpm)で行うことが好ましく、これによれば誘導加熱によるスラブSへの入熱を確実に行うことができる。   First, FIG. 3A shows a state in which the slab S exiting the continuous casting facility 12 has entered the heating facility 20. In this state, since the slab S is not yet heated, the accumulated heat amount in the longitudinal direction of the slab S is Zero. The slab S is transported from the continuous casting facility 12 to the heating facility 20 at a relatively high speed (for example, 120 mpm), and a predetermined speed (for example, until the slab S enters the heating facility 20 and reaches a predetermined heating start position). It is preferable to decelerate to 5 mpm), and in this way, the temperature drop during the conveyance can be suppressed, and the slab S is accurately arranged at a predetermined heating start position in the heating equipment 20, and the subsequent steps It is possible to prevent uneven heating from occurring in the heating step. The reciprocating movement of the slab S during heating by the induction heating device 22 is preferably performed at a low speed (for example, 5 mpm), and according to this, heat input to the slab S by induction heating can be reliably performed.

図3(b)は、スラブSを順方向(下流側)へ誘導加熱装置22のピッチLdの1/3程度進ませた状態を示し、誘導加熱装置22によって加熱された部分と未だ加熱されていない部分が存在する。   FIG. 3B shows a state in which the slab S is advanced in the forward direction (downstream) by about 1/3 of the pitch Ld of the induction heating device 22, and the portion heated by the induction heating device 22 is still heated. There is no part.

各往復移動においてスラブSは誘導加熱装置22のピッチLdの自然数倍に相当する距離移動させながら全ての誘導加熱装置22で同時にエッジ部を加熱するようにし、図3(c)は、スラブSを順方向に1ピッチ(Ld×1)だけ前進させ、1回目の順送加熱が完了した時点での蓄積熱量を示しており、全長に亘って蓄積熱量はほぼ等しくなる。   In each reciprocating movement, the slab S is moved by a distance corresponding to a natural number multiple of the pitch Ld of the induction heating device 22 while simultaneously heating the edge portion by all the induction heating devices 22, and FIG. Is stored in the forward direction by one pitch (Ld × 1), and the accumulated heat amount at the time when the first progressive heating is completed is shown. The accumulated heat amount is almost equal over the entire length.

次いで、スラブSの順送から逆送への切替えにあたっては、搬送ローラ16を減速停止し、逆転加速(例えば−60mpmの周速)をかけるが、その間スラブSは慣性により実質的に停止した状態となる。このとき、誘導加熱装置22を作動し続けるとスラブSの、誘導加熱装置22と対峙する部分だけに熱が与えられ、図中点線で示すように蓄積熱量が局所的に増大する。エッジ部の温度補償を行うという観点では問題ないが、蓄積熱量を一定として均一な加熱を行うため、この実施形態では、スラブSが方向転換に伴う実質的な停止状態にあるときには出力調整手段28により誘導加熱装置22の出力を下げ、あるいは停止するようにしている。   Next, when switching the slab S from the forward feed to the reverse feed, the conveying roller 16 is decelerated and stopped, and reverse acceleration (for example, a peripheral speed of −60 mpm) is applied, while the slab S is substantially stopped due to inertia. It becomes. At this time, if the induction heating device 22 continues to operate, heat is applied only to the portion of the slab S that faces the induction heating device 22, and the amount of accumulated heat locally increases as shown by the dotted line in the figure. Although there is no problem from the viewpoint of temperature compensation at the edge portion, in order to perform uniform heating with a constant amount of accumulated heat, in this embodiment, the output adjusting means 28 when the slab S is in a substantially stopped state accompanying the change of direction. Thus, the output of the induction heating device 22 is lowered or stopped.

図3(d)は、スラブSを1ピッチ(Ld×1)分だけ逆方向に搬送しながら誘導加熱装置22により加熱を行い逆送加熱が完了した状態を示している。その後、スラブSの搬送方向を順方向へ切り替えるが、この場合もスラブSが方向転換に伴う実質的な停止状態にあるときには出力調整手段28により誘導加熱装置22の出力を下げ、あるいは停止することで、一様な蓄積熱量(加熱量)を得ることができる。   FIG. 3D shows a state in which the reverse heating is completed by heating by the induction heating device 22 while conveying the slab S in the reverse direction by one pitch (Ld × 1). Thereafter, the transport direction of the slab S is switched to the forward direction. In this case as well, when the slab S is in a substantially stopped state accompanying the change of direction, the output of the induction heating device 22 is lowered or stopped by the output adjusting means 28. Thus, a uniform accumulated heat amount (heating amount) can be obtained.

図3(e)は、加熱設備20において、順送、逆送および順送の順で行ったエッジ部の誘導加熱が完了した状態を示している。この時点で、スラブSの全長に亘ってほぼ同時に加熱が完了するので誘導加熱装置22の出力はゼロにし、スラブSを加熱設備20から退出させ次工程の熱間圧延設備14に搬送する。この際、熱間圧延整備14へ向けたスラブ2の搬送速度は加熱中のスラブSの往復移動速度よりも大きくすることが好ましく、例えば120mpmとすることができる。   FIG. 3E shows a state in which the induction heating of the edge portion performed in the order of the forward feed, the reverse feed, and the forward feed is completed in the heating facility 20. At this time, since heating is completed almost simultaneously over the entire length of the slab S, the output of the induction heating device 22 is set to zero, and the slab S is withdrawn from the heating equipment 20 and conveyed to the hot rolling equipment 14 in the next step. At this time, the conveying speed of the slab 2 toward the hot rolling maintenance 14 is preferably larger than the reciprocating speed of the slab S being heated, and can be set to 120 mpm, for example.

この実施形態のスラブの加熱設備20および加熱方法によれば、複数の誘導加熱装置22を搬送方向に間隔を空けて配置し、誘導加熱装置22が配置された加熱設備20の区間においてスラブSを往復移動させながらエッジ部の加熱を行う構成としたので、スラブSの尾端部の加熱が終わるまでの間に先端部が放冷されるのを防止することができるとともに、必要な誘導加熱装置22の設置台数を少なくすることができ、経済的である。また、誘導加熱装置22を用いることで、バーナで加熱する場合と比べて短時間での加熱が可能であり、エッジ部を加熱している間にスラブSの幅方向中央部の温度が降下するのを抑制することができる。   According to the slab heating facility 20 and the heating method of this embodiment, a plurality of induction heating devices 22 are arranged at intervals in the transport direction, and the slab S is disposed in the section of the heating facility 20 where the induction heating devices 22 are disposed. Since the edge portion is heated while reciprocating, the tip portion can be prevented from being cooled before the tail end portion of the slab S is heated, and a necessary induction heating device can be used. The number of installed 22 can be reduced, which is economical. In addition, by using the induction heating device 22, heating in a shorter time is possible as compared with the case of heating with a burner, and the temperature of the center portion in the width direction of the slab S decreases while the edge portion is heated. Can be suppressed.

また、この実施形態のスラブの加熱設備20および加熱方法によれば、複数の誘導加熱装置22を所定のピッチLdで配置し、各往復移動においてスラブSをピッチLdの自然数倍に相当する距離移動させながらエッジ部を加熱する構成としたから、スラブSのエッジ部の長さ方向の全ての箇所を確実に加熱することができる。   According to the slab heating equipment 20 and heating method of this embodiment, a plurality of induction heating devices 22 are arranged at a predetermined pitch Ld, and the slab S is a distance corresponding to a natural number multiple of the pitch Ld in each reciprocating movement. Since the edge portion is heated while being moved, all portions in the length direction of the edge portion of the slab S can be reliably heated.

さらに、この実施形態のスラブの加熱設備20および加熱方法によれば、誘導加熱装置22のピッチをLdとし、スラブSの長さをLsとし、各誘導加熱装置22の加熱長をLcとしたときに、Ld×(N−1)−Lc<Ls≦Ld×N−Lc の関係が成り立つように、誘導加熱装置22の設置台数Nを決定する構成としたことから、スラブSのエッジ部の確実な加熱を実現しつつ、誘導加熱装置22の設置台数を最小限とすることができる。   Furthermore, according to the slab heating equipment 20 and the heating method of this embodiment, when the pitch of the induction heating device 22 is Ld, the length of the slab S is Ls, and the heating length of each induction heating device 22 is Lc In addition, since the number N of installed induction heating devices 22 is determined so that the relationship of Ld × (N−1) −Lc <Ls ≦ Ld × N−Lc is established, the edge portion of the slab S can be reliably The number of installed induction heating devices 22 can be minimized while realizing proper heating.

さらに、この実施形態のスラブの加熱設備20および加熱方法によれば、スラブSの移動方向反転時に誘導加熱装置22の出力を下げ、あるいは停止する構成としたことから、スラブSの方向転換に伴いスラブSが実質的に停止している間にスラブSが加熱されるのを防止して、スラブSのエッジ部を長さ方向で均一に加熱することができる。   Furthermore, according to the slab heating equipment 20 and the heating method of this embodiment, the output of the induction heating device 22 is reduced or stopped when the moving direction of the slab S is reversed. The slab S can be prevented from being heated while the slab S is substantially stopped, and the edge portion of the slab S can be heated uniformly in the length direction.

さらに、この実施形態のスラブの加熱設備20および加熱方法によれば、連続鋳造設備12から加熱設備20までのスラブSの搬送速度および加熱設備から熱間圧延設備14までのスラブの搬送速度を、加熱設備20によるスラブSの加熱中の往復移動速度よりも大きくする構成としたことから、スラブSの加熱時以外の搬送中のスラブSの温度降下を抑制しスラブSを高温のまま熱間圧延設備14で圧延することができるようになり、高品質の鋼板を製造することができる。   Furthermore, according to the heating equipment 20 and heating method of the slab of this embodiment, the transportation speed of the slab S from the continuous casting equipment 12 to the heating equipment 20 and the transportation speed of the slab from the heating equipment to the hot rolling equipment 14 are: Since it is configured to be larger than the reciprocating speed during heating of the slab S by the heating equipment 20, the temperature drop of the slab S during conveyance other than during the heating of the slab S is suppressed, and the slab S is hot-rolled while maintaining a high temperature. It becomes possible to roll with the equipment 14, and a high-quality steel plate can be manufactured.

さらに、この実施形態のスラブの加熱設備20および加熱方法によれば、搬送方向で最上流に位置する誘導加熱装置22から最下流に位置する誘導加熱装置22までの加熱区間長を、スラブSの長さLs以上かつその長さLsの1.5倍以下とすることで、スラブSを全長にわたって加熱するに際して加熱中のスラブSの往復移動量を小さくしてより短時間での加熱が可能になる。なお、加熱区間長がスラブSの長さLsの1.5倍を超えると必要以上の誘導加熱設備22を設置することになり、非経済的である。   Furthermore, according to the heating equipment 20 and heating method of the slab of this embodiment, the heating section length from the induction heating device 22 located at the most upstream position to the induction heating device 22 located at the most downstream position in the conveying direction is set to the slab S. When the length is not less than Ls and not more than 1.5 times the length Ls, when the slab S is heated over its entire length, the amount of reciprocation of the slab S during heating can be reduced and heating can be performed in a shorter time. Become. In addition, when the heating section length exceeds 1.5 times the length Ls of the slab S, the induction heating equipment 22 more than necessary is installed, which is uneconomical.

図4は、この発明に従う他の実施形態のスラブの加熱設備20および加熱方法を示すものであり、この実施形態は、先の実施形態でスラブSの長さLs、誘導加熱装置22のピッチLdおよび加熱長Lcから算出した誘導加熱装置22の台数Nに対してn台分の誘導加熱装置22を追加することにより、所定の加熱量を得つつ加熱中のスラブSの往復移送速度の増大を可能とする構成であり、具体的には、スラブSの長さLsに対して、Ld×(N−1+n)−Lc<1.5×Ls≦Ld×(N+n)−Lcとなるようなnを選び、誘導加熱装置22を搬送方向に全部でN+n台配置して、スラブSの加熱開始位置を最下流の誘導加熱装置22からn台手前とし、スラブSを往復させる距離をn×Ldとするものであり、これによれば誘導加熱装置22をN台設置する場合と比べて、加熱中のスラブSの往復移動速度を増大させることができるとともに、速度切替の停止回数を少なくすることができる。   FIG. 4 shows a slab heating equipment 20 and a heating method of another embodiment according to the present invention. This embodiment is the length Ls of the slab S and the pitch Ld of the induction heating device 22 in the previous embodiment. In addition, by adding n induction heating devices 22 to the number N of induction heating devices 22 calculated from the heating length Lc, the reciprocating transfer speed of the slab S being heated can be increased while obtaining a predetermined heating amount. Specifically, n is such that Ld × (N−1 + n) −Lc <1.5 × Ls ≦ Ld × (N + n) −Lc with respect to the length Ls of the slab S. And N + n induction heating devices 22 are arranged in the conveying direction in total, the heating start position of the slab S is set to n before the most downstream induction heating device 22, and the distance to reciprocate the slab S is n × Ld According to this, induction heating equipment 22 as compared with the case of installing N units, it is possible to increase the reciprocating speed of the slab S during heating, it is possible to reduce the number of stop speed switching.

図5は、この発明に従うさらに他の実施形態のスラブの加熱設備20および加熱方法を示すものであり、この実施形態のスラブの加熱設備20は移動手段が加熱設備20においてスラブSを往復移動させるプッシャー34を有するものである。プッシャー34は、加熱設備20を前後に挟み込むように一対配置されるとともに昇降機構を介して昇降可能に構成され、加熱設備20にスラブSが進入する際には上方へ退避し、その後に降下してスラブSの先端部および尾端部をそれぞれ直接押圧してスラブSを前後に反復移動させ、加熱終了後には上方へ退避してスラブSの搬出を可能とするものである。プッシャー34は例えば油圧シリンダにより駆動することができるが、駆動形式はこれに限定されない。また、プッシャー34の稼働中、駆動モータ32に接続された正逆回転可能な搬送ローラ16を併用しスラブSを往復移動させるようにしてもよい。この場合、プッシャー34と正逆回転可能な搬送ローラ16は協働してこの発明の移動手段を構成する。このようなプッシャー34を用いることにより、移動方向切替えに際してのスラブSの停止時間を短くすることができ、加熱開始から終了までに必要な時間を短くすることができる。また、出力調整手段28を用いる場合には、誘導加熱装置22の出力を低下させあるいは停止させる時間を短くすることができる。   FIG. 5 shows a slab heating facility 20 and a heating method according to still another embodiment of the present invention. The slab heating facility 20 according to this embodiment has a moving means for reciprocating the slab S in the heating facility 20. A pusher 34 is provided. A pair of pushers 34 are arranged so as to sandwich the heating equipment 20 back and forth, and are configured to be lifted and lowered via a lifting mechanism. When the slab S enters the heating equipment 20, the pushers 34 are retracted upward and then lowered. The slab S is directly pressed against the tip and tail ends of the slab S so that the slab S is repeatedly moved back and forth. After the heating is finished, the slab S is retracted upward to allow the slab S to be carried out. The pusher 34 can be driven by, for example, a hydraulic cylinder, but the drive type is not limited to this. Further, during the operation of the pusher 34, the slab S may be reciprocated by using the conveyance roller 16 connected to the drive motor 32 and capable of rotating in the forward and reverse directions. In this case, the pusher 34 and the transport roller 16 capable of rotating in the forward and reverse directions constitute a moving means of the present invention. By using such a pusher 34, the stop time of the slab S when switching the moving direction can be shortened, and the time required from the start to the end of heating can be shortened. Further, when the output adjusting means 28 is used, the time for reducing or stopping the output of the induction heating device 22 can be shortened.

次に、この発明の実施例について説明する。   Next, examples of the present invention will be described.

実施例1は、図2に示した加熱設備20を用いスラブSを往復移動させながら複数の誘導加熱装置22によりスラブSの幅方向エッジ部の加熱を行ったものである。   In the first embodiment, the edge portion in the width direction of the slab S is heated by the plurality of induction heating devices 22 while reciprocating the slab S using the heating equipment 20 shown in FIG.

実施例1ではスラブSは厚さ250mm、幅1500mm、長さ8000mmであり、加熱設備20に進入する直前では、スラブSの幅方向中央部の表面温度は1100℃であり、幅方向エッジ部の表面温度は900℃であった。表面温度の測定はいずれも放射温度計により行った。   In Example 1, the slab S has a thickness of 250 mm, a width of 1500 mm, and a length of 8000 mm. Immediately before entering the heating facility 20, the surface temperature of the center portion in the width direction of the slab S is 1100 ° C. The surface temperature was 900 ° C. The surface temperature was measured with a radiation thermometer.

加熱設備20は、6台の誘導加熱装置22を搬送方向に等間隔に並べたもので構成した。誘導加熱装置22のピッチLdは、搬送ローラ16のピッチと同じであり1500mmとした。誘導加熱装置22は、搬送方向に長さLcの有効加熱長を持っており、この実施例では500mmであった。この実施例の誘導加熱装置22は、C型鉄心24a,24bにコイル導体26を巻回したものであり、駆動周波数は300Hz、スラブSの幅方向エッジ部を加熱する2つのコイル導体26のペアを1台として、各々の出力は1MW、ペア合計で2MWであった。   The heating equipment 20 was composed of six induction heating devices 22 arranged at equal intervals in the transport direction. The pitch Ld of the induction heating device 22 is the same as the pitch of the transport roller 16 and is 1500 mm. The induction heating device 22 has an effective heating length of a length Lc in the transport direction, and is 500 mm in this embodiment. The induction heating device 22 of this embodiment is obtained by winding a coil conductor 26 around C-type iron cores 24a and 24b, a drive frequency is 300 Hz, and a pair of two coil conductors 26 that heats the edge in the width direction of the slab S. The output was 1 MW, and the total of the pair was 2 MW.

誘導加熱装置22の設置台数であるNは6であり、Ld×(N−1)−Lc=7000mmとなりスラブ長さLs(8000mm)よりも小さく、かつLd×N−Lc=8500mとなりスラブ長さLs以上となっている。   N, which is the number of induction heating devices 22 installed, is 6, Ld × (N−1) −Lc = 7000 mm, which is smaller than the slab length Ls (8000 mm), and Ld × N−Lc = 8500 m, which is the slab length. Ls or more.

実施例1では、スラブSは、連続鋳造設備12から加熱設備20に向けて120mpmで高速搬送し、加熱設備20内ではスラブSの先端が所定の加熱開始位置に至るまでに5mpmまで減速し、加熱開始位置は、最下流の誘導加熱装置22の手前500mm(ピッチLd×1/3)の位置とした。   In Example 1, the slab S is conveyed at a high speed of 120 mpm from the continuous casting facility 12 to the heating facility 20, and is decelerated to 5 mpm before the tip of the slab S reaches a predetermined heating start position in the heating facility 20, The heating start position was a position 500 mm (pitch Ld × 1/3) before the most downstream induction heating device 22.

スラブSが加熱開始位置に到達した時点で各誘導加熱装置22の各コイル導体26に通電し(最大出力1MW)、スラブSを誘導加熱装置22の1ピッチLd分だけ低速で往復させながらスラブSの幅方向エッジ部を加熱した。この実施例では順方向への送り(順送)2回および逆方向への送り(逆送)1回からなる1.5往復で加熱完了とした。加熱中の搬送速度V(最大値)は5mpmとした。これにより、m×2×Lc÷V=tにおいて、Lc=500mm、m=1.5となり、スラブSの長手方向位置の任意の位置で、幅方向エッジ部は500mm×3回÷5mpm=18秒の時間加熱とした。   When the slab S reaches the heating start position, each coil conductor 26 of each induction heating device 22 is energized (maximum output 1 MW), and the slab S is reciprocated at a low speed by 1 pitch Ld of the induction heating device 22. The edge in the width direction was heated. In this example, heating was completed in 1.5 reciprocations consisting of 2 forward feeds (forward feed) and 1 reverse feed (reverse feed). The conveyance speed V (maximum value) during heating was 5 mpm. As a result, when m × 2 × Lc ÷ V = t, Lc = 500 mm and m = 1.5, and at an arbitrary position in the longitudinal direction of the slab S, the width direction edge portion is 500 mm × 3 times ÷ 5 mpm = 18 The heating time was seconds.

実施例1では、スラブSの移動方向反転時も誘導加熱装置22の出力の低下または停止を行わず、常に一定の出力でスラブSの幅方向エッジ部の加熱を行った。   In Example 1, the output of the induction heating device 22 was not reduced or stopped even when the moving direction of the slab S was reversed, and the edge of the slab S in the width direction was always heated with a constant output.

順送、逆送および順送によるスラブSのエッジ部の加熱が完了した後、誘導加熱装置22を停止し、速度を120mpmに増大してスラブSを次工程の熱間圧延設備14に送った。加熱完了時のスラブSの幅方向エッジ部の表面温度は1100℃であり、幅方向中央部の表面温度と同じ温度以上まで加熱して温度補償することができた。   After the heating of the edge portion of the slab S by the forward feed, the reverse feed and the forward feed is completed, the induction heating device 22 is stopped, the speed is increased to 120 mpm, and the slab S is sent to the hot rolling facility 14 in the next process. . The surface temperature of the edge portion in the width direction of the slab S upon completion of heating was 1100 ° C., and the temperature could be compensated by heating to the same temperature or higher as the surface temperature of the center portion in the width direction.

そして、スラブSに対しその後の熱間圧延設備14で板厚3mmまで熱間圧延を実施し、熱間圧延コイルを製造したところ、スラブSの幅方向エッジ部の温度を高く保てたため熱間圧延コイルのエッジ部に材質異常は全く発生しなかった。また、実施例1の加熱設備20および加熱方法で製造した熱間圧延コイルは板厚の変動範囲が51μmであり、通常の熱間圧延の平均的な変動範囲50μmと同等であった。   And when it hot-rolled to plate | board thickness 3mm with subsequent hot rolling equipment 14 with respect to the slab S, and manufactured the hot rolling coil, since the temperature of the width direction edge part of the slab S was kept high, it was hot. No material abnormality occurred at the edge of the rolled coil. Further, the hot rolling coil manufactured by the heating equipment 20 and the heating method of Example 1 had a fluctuation range of the plate thickness of 51 μm, which was equivalent to an average fluctuation range of 50 μm in normal hot rolling.

実施例2は、出力調整手段28により加熱設備20内での移動方向反転時に誘導加熱装置22の出力をゼロとした点のみ実施例1とは異なるものであり、実施例2の加熱設備20および加熱方法で製造した熱間圧延コイルは板厚の上下変動範囲が30μm以下であり、通常の圧延よりも優れた寸法制度が得られた。   The second embodiment is different from the first embodiment only in that the output adjusting means 28 sets the output of the induction heating device 22 to zero when the moving direction in the heating equipment 20 is reversed, and the heating equipment 20 of the second embodiment and The hot rolled coil produced by the heating method had a thickness variation range of 30 μm or less, and a dimensional system superior to that of normal rolling was obtained.

実施例3は、実施例1の加熱設備20に対して誘導加熱装置22を1台追加し、加熱設備20内での加熱中のスラブSの移動速度を10mpmとし、順送、逆送および順送における各移動距離を1000mm(Ldの2倍)とした。実施例3の加熱設備20および加熱方法で加熱されたスラブSをその後の熱間圧延設備14で板厚3mmまで熱間圧延を実施し、熱間圧延コイルを製造したところ、スラブSのエッジ部の温度を高く保てたため熱間圧延コイルのエッジ部に材質異常は全く発生しなかった。また、実施例3の加熱設備20および加熱方法で加熱したスラブSから製造した熱間圧延コイルでは、板厚の変動範囲が48μmであり、通常の熱間圧延の平均的な変動範囲50μmと同等であった。   In the third embodiment, one induction heating device 22 is added to the heating facility 20 of the first embodiment, and the moving speed of the slab S during heating in the heating facility 20 is set to 10 mpm. Each moving distance in feeding was set to 1000 mm (twice Ld). When the slab S heated by the heating equipment 20 and the heating method of Example 3 was hot-rolled to a plate thickness of 3 mm by the subsequent hot-rolling equipment 14 to produce a hot-rolled coil, an edge portion of the slab S was obtained. Therefore, no material abnormality occurred at the edge of the hot rolled coil. Moreover, in the hot rolling coil manufactured from the slab S heated by the heating equipment 20 and the heating method of Example 3, the fluctuation range of the plate thickness is 48 μm, which is equivalent to the average fluctuation range of 50 μm in normal hot rolling. Met.

図6に示した従来例1のスラブの加熱方法は、実施例1と同様に6台の誘導加熱装置22を用いてスラブSを移動させながら加熱を行うが、スラブSの移動方向を反転させず一定速度10mpmでの1回の順送中に加熱を行ったものである。そして誘導加熱装置22による加熱の完了後のスラブSに対し熱間圧延設備14で板厚3mmまで熱間圧延を実施し、熱間圧延コイルを製造したところ、熱間圧延設備14に送る前にスラブの先端側の幅方向エッジ部の表面温度が低下しており熱間圧延コイルの幅方向エッジ部に材質異常が発生した。   The slab heating method of the prior art example 1 shown in FIG. 6 performs heating while moving the slab S using the six induction heating devices 22 as in the first embodiment, but the moving direction of the slab S is reversed. In this case, heating was performed during a single forward feed at a constant speed of 10 mpm. The slab S after the heating by the induction heating device 22 is hot-rolled to a plate thickness of 3 mm with the hot rolling equipment 14 to produce a hot-rolled coil, and before being sent to the hot rolling equipment 14. The surface temperature of the edge in the width direction on the tip side of the slab was lowered, and a material abnormality occurred in the edge in the width direction of the hot rolled coil.

図7に示した従来例2のスラブの加熱方法は、スラブSの長さの2倍程度の範囲に11台の誘導加熱装置22を1500mmピッチで配置し、速度60mpmで順方向に送り、スラブの先端がA点に到達したときにスラブを10mpmで順方向に移動させながら誘導加熱装置22に通電して加熱を開始し、次いで、スラブSの尾端がB点に到達した時点で誘導加熱を停止した。これにより、スラブSの全長のすべての箇所が6台の誘導加熱装置22により18秒間加熱され、加熱が同時に終了するので、従来例1のようなスラブSの先端側のエッジ部の温度低下の問題は生じなかったが、多数の誘導加熱装置22が必要となりコスト高となった。   The slab heating method of Conventional Example 2 shown in FIG. 7 includes 11 induction heating devices 22 arranged at a pitch of 1500 mm in a range of about twice the length of the slab S, and sent in a forward direction at a speed of 60 mpm. When the tip of the slab reaches the point A, the induction slab 22 is energized to start heating while moving the slab in the forward direction at 10 mpm, and then the induction heating is performed when the tail end of the slab S reaches the point B. Stopped. As a result, all the portions of the entire length of the slab S are heated by the six induction heating devices 22 for 18 seconds, and the heating ends simultaneously. Therefore, the temperature drop of the edge portion on the tip side of the slab S as in the conventional example 1 is reduced. Although no problem occurred, a large number of induction heating devices 22 were required, resulting in high costs.

この発明により、連続鋳造スラブの全長に亘ってその幅方向エッジ部を均一に加熱することができかつ経済的である連続鋳造スラブの加熱方法および加熱設備を提供することが可能となった。   By this invention, it became possible to provide the heating method and heating equipment of the continuous casting slab which can heat the edge part of the width direction uniformly over the full length of the continuous casting slab, and is economical.

10 熱延鋼板の製造設備
12 連続鋳造設備
14 熱間圧延設備
16 搬送ローラ
18 水冷設備
20 加熱設備
22 誘導加熱装置
24a,24b コア材
26 コイル導体
28 出力調整手段
30 自由継手
32 駆動モータ
34 プッシャー
DESCRIPTION OF SYMBOLS 10 Manufacturing equipment of hot-rolled steel sheet 12 Continuous casting equipment 14 Hot rolling equipment 16 Conveying roller 18 Water cooling equipment 20 Heating equipment 22 Induction heating device 24a, 24b Core material 26 Coil conductor 28 Output adjustment means 30 Free joint 32 Drive motor 34 Pusher

Claims (12)

連続鋳造設備で鋳造された連続鋳造スラブを熱間圧延設備で直送圧延する際、その連続鋳造スラブを熱間圧延する前に該連続鋳造スラブの幅方向エッジ部を加熱する連続鋳造スラブの加熱方法であって、
連続鋳造設備の出側から熱間圧延設備の入側までの連続鋳造スラブの搬送経路内に、複数の誘導加熱装置が搬送方向に間隔を空けて配置された加熱設備を設け、
前記加熱設備において連続鋳造スラブを往復移動させながら前記複数の誘導加熱装置により該連続鋳造スラブの幅方向エッジ部を加熱することを特徴とする連続鋳造スラブの加熱方法。
A method for heating a continuous cast slab in which when a continuous cast slab cast by a continuous casting facility is directly fed and rolled by a hot rolling facility, the edge in the width direction of the continuous cast slab is heated before hot rolling the continuous cast slab Because
In the conveyance path of the continuous casting slab from the exit side of the continuous casting facility to the entry side of the hot rolling facility, a heating facility in which a plurality of induction heating devices are arranged at intervals in the conveyance direction is provided.
A method for heating a continuous cast slab, wherein the continuous casting slab is heated by reciprocating the continuous cast slab in the heating equipment, and the plurality of induction heating devices heat the widthwise edge of the continuous cast slab.
前記複数の誘導加熱装置間に配置された正逆回転可能な搬送ローラにより連続鋳造スラブの往復移動を行うことを特徴とする請求項1に記載の連続鋳造スラブの加熱方法。   The continuous casting slab heating method according to claim 1, wherein the continuous casting slab is reciprocated by a transport roller that is capable of rotating forward and backward between the plurality of induction heating devices. 前記複数の誘導加熱装置を所定のピッチで配置し、
各往復移動において連続鋳造スラブを前記ピッチの自然数倍に相当する距離を移動させながら前記幅方向エッジ部を加熱することを特徴とする請求項1または2に記載の連続鋳造スラブの加熱方法。
The plurality of induction heating devices are arranged at a predetermined pitch,
The heating method of the continuous casting slab according to claim 1 or 2, wherein the widthwise edge portion is heated while moving a distance corresponding to a natural number multiple of the pitch in the reciprocating movement.
前記誘導加熱装置のピッチをLdとし、連続鋳造スラブの長さをLsとし、各誘導加熱装置の加熱長をLcとし、誘導加熱装置の設置台数をNとしたときに、
Ld×(N−1)−Lc<Ls≦Ld×N−Lc の関係が成り立つように、誘導加熱装置の設置台数Nを決定することを特徴とする請求項1から3までのいずれか一項に記載の連続鋳造スラブの加熱方法。
When the pitch of the induction heating device is Ld, the length of the continuous casting slab is Ls, the heating length of each induction heating device is Lc, and the number of installed induction heating devices is N,
4. The number N of installed induction heating devices is determined so that the relationship of Ld × (N−1) −Lc <Ls ≦ Ld × N−Lc is satisfied. 5. The heating method of the continuous casting slab described in 1.
連続鋳造スラブの移動方向反転時に前記誘導加熱装置の出力を下げ、あるいは停止することを特徴とする請求項1から4までのいずれか一項に記載の連続鋳造スラブの加熱方法。   The method for heating a continuous cast slab according to any one of claims 1 to 4, wherein the output of the induction heating device is lowered or stopped when the moving direction of the continuous cast slab is reversed. 連続鋳造設備から加熱設備までの連続鋳造スラブの搬送速度および加熱設備から熱間圧延設備までの連続鋳造スラブの搬送速度は、加熱設備による連続鋳造スラブの加熱中の往復移動速度よりも大きくすることを特徴とする請求項1から5までのいずれか一項に記載の連続鋳造スラブの加熱方法。   The continuous casting slab conveyance speed from the continuous casting equipment to the heating equipment and the continuous casting slab conveyance speed from the heating equipment to the hot rolling equipment should be larger than the reciprocating speed during heating of the continuous casting slab by the heating equipment. The heating method of the continuous casting slab as described in any one of Claim 1-5 characterized by these. 連続鋳造設備で鋳造された連続鋳造スラブを熱間圧延設備で直送圧延する際、その連続鋳造スラブを熱間圧延する前に該連続鋳造スラブの幅方向エッジ部を加熱する連続鋳造スラブの加熱設備であって、
連続鋳造設備の出側から熱間圧延設備の入側までの連続鋳造スラブの搬送経路内に配置され、搬送方向に互いに間隔を空けて位置する複数の誘導加熱装置と、
前記複数の誘導加熱装置によって加熱される連続鋳造スラブを往復移動させる移動手段と、を備えることを特徴とする連続鋳造スラブの加熱設備。
When a continuous casting slab cast by a continuous casting facility is directly rolled by a hot rolling facility, the continuous casting slab heating facility heats the edge in the width direction of the continuous casting slab before hot rolling the continuous cast slab. Because
A plurality of induction heating devices arranged in the conveying path of the continuous casting slab from the outlet side of the continuous casting facility to the inlet side of the hot rolling facility, and spaced from each other in the conveying direction;
And a moving means for reciprocating the continuous casting slab heated by the plurality of induction heating devices.
前記移動手段は、前記複数の誘導加熱装置間に配置された正逆回転可能な搬送ローラを有することを特徴とする請求項7に記載の連続鋳造スラブの加熱設備。   8. The continuous casting slab heating facility according to claim 7, wherein the moving means includes a transport roller capable of rotating in the forward and reverse directions between the plurality of induction heating devices. 搬送方向で最上流に位置する誘導加熱装置から最下流に位置する誘導加熱装置までの加熱区間長は、連続鋳造スラブの長さ以上でその長さの1.5倍以下であることを特徴とする請求項7または8に記載の連続鋳造スラブの加熱設備。   The heating section length from the induction heating device located at the most upstream in the conveying direction to the induction heating device located at the most downstream is not less than the length of the continuous casting slab and not more than 1.5 times the length. The continuous casting slab heating equipment according to claim 7 or 8. 連続鋳造スラブの移動方向反転時に前記誘導加熱装置の出力を下げ、あるいは停止する出力調整手段を備えることを特徴とする請求項7から9までのいずれか一項に記載の連続鋳造スラブの加熱設備。   The continuous casting slab heating equipment according to any one of claims 7 to 9, further comprising output adjusting means for lowering or stopping the output of the induction heating device when the moving direction of the continuous casting slab is reversed. . 前記複数の連続加熱装置は等間隔に配置されていることを特徴とする請求項7から10までのいずれか一項に記載の連続鋳造スラブの加熱設備。   The said continuous heating apparatus is arrange | positioned at equal intervals, The heating apparatus of the continuous casting slab as described in any one of Claim 7-10 characterized by the above-mentioned. 前記移動手段は、連続鋳造スラブの先端および尾端を直接押圧して往復移動させるプッシャーを有することを特徴とする請求項7から11までのいずれか一項に記載の連続鋳造スラブの加熱設備。   The heating device for a continuous casting slab according to any one of claims 7 to 11, wherein the moving means includes a pusher that directly presses the tip and tail ends of the continuous casting slab to reciprocate.
JP2017006732A 2017-01-18 2017-01-18 Heating method and heating equipment for continuous casting slab Active JP6562223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017006732A JP6562223B2 (en) 2017-01-18 2017-01-18 Heating method and heating equipment for continuous casting slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017006732A JP6562223B2 (en) 2017-01-18 2017-01-18 Heating method and heating equipment for continuous casting slab

Publications (2)

Publication Number Publication Date
JP2018114531A JP2018114531A (en) 2018-07-26
JP6562223B2 true JP6562223B2 (en) 2019-08-21

Family

ID=62983783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017006732A Active JP6562223B2 (en) 2017-01-18 2017-01-18 Heating method and heating equipment for continuous casting slab

Country Status (1)

Country Link
JP (1) JP6562223B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023052500A1 (en) * 2021-10-01 2023-04-06 Sms Group Gmbh System and method for producing flat rolled products
DE102022208767A1 (en) 2021-10-01 2023-04-06 Sms Group Gmbh Plant and method for manufacturing rolled products

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109848385B (en) * 2019-03-12 2020-08-04 上海大学 Device and method for continuous casting constant-temperature blank ejection based on electromagnetic induction heating
CN115401071B (en) * 2022-09-06 2023-08-11 太原科技大学 Device for rolling metal plate strip by current segmentation auxiliary heating and use method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023052500A1 (en) * 2021-10-01 2023-04-06 Sms Group Gmbh System and method for producing flat rolled products
DE102022208767A1 (en) 2021-10-01 2023-04-06 Sms Group Gmbh Plant and method for manufacturing rolled products

Also Published As

Publication number Publication date
JP2018114531A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6562223B2 (en) Heating method and heating equipment for continuous casting slab
JP5137842B2 (en) Method and hot rolling line for hot rolling of introduced material
KR102018370B1 (en) Process and apparatus for preparing steel stock before hot rolling
JP4001617B2 (en) CSP continuous casting equipment with roller hearth furnace and swivel table
KR101630911B1 (en) continuous casting and rolling method
JP6764523B2 (en) Production equipment that can be operated in continuous operation mode and methods for operating production equipment in the event of a failure
RU2316401C2 (en) Method for semi-endless or endless rolling of cast metal such as continuously cast steel billet optionally subjected to cross cutting after crystallization and casting-rolling aggregate for performing the same
KR101594717B1 (en) Rolling method, continuous casting and rolling method and apparatus
JP6555487B2 (en) Heating method and heating equipment for continuous casting slab
JP3418739B2 (en) Continuous casting hot rolling equipment and continuous casting hot rolling method
EP0904861B1 (en) Method of producing thin hot rolled steel sheet, and apparatus to carry out the method
JP2006021246A (en) Equipment for manufacturing high-strength hot-rolled steel sheet
JP7307339B2 (en) Rolling method for rectangular cross-section billet, continuous casting and rolling equipment, and rolling equipment
JP2017124411A (en) Heating method and heating facility of continuously cast slab after cut
JP4165723B2 (en) Hot rolling method and equipment
JP2001353564A (en) Method for producing steel plate
JPS6254501A (en) Layout of continuous casting line and hot rolling line
US20240009724A1 (en) Process and apparatus for producing metallurgical products, in particular of the merchant type, in particular in an endless mode
CN107921497B (en) Rolling method and apparatus
JP3620464B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP3980740B2 (en) Hot rolling method and equipment
JPS58221602A (en) Rolling device
JP3160518B2 (en) Hot rolling line
JPS58116905A (en) Producing device for steel material by direct rolling
KR20110034356A (en) Roller for hot rolling mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190709

R150 Certificate of patent or registration of utility model

Ref document number: 6562223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250