WO2013153622A1 - Display device and display characteristic correction method - Google Patents

Display device and display characteristic correction method Download PDF

Info

Publication number
WO2013153622A1
WO2013153622A1 PCT/JP2012/059802 JP2012059802W WO2013153622A1 WO 2013153622 A1 WO2013153622 A1 WO 2013153622A1 JP 2012059802 W JP2012059802 W JP 2012059802W WO 2013153622 A1 WO2013153622 A1 WO 2013153622A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement value
optical measurement
value
time
display panel
Prior art date
Application number
PCT/JP2012/059802
Other languages
French (fr)
Japanese (ja)
Inventor
阿部 正敏
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to JP2014509937A priority Critical patent/JP5904614B2/en
Priority to CN201280072228.0A priority patent/CN104205201B/en
Priority to PCT/JP2012/059802 priority patent/WO2013153622A1/en
Priority to US14/390,955 priority patent/US9741294B2/en
Publication of WO2013153622A1 publication Critical patent/WO2013153622A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/18Timing circuits for raster scan displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen

Definitions

  • the present invention relates to a display device (liquid crystal monitor, projector, etc.) and a display characteristic calibration method.
  • liquid crystal display devices that display an image on a display panel using a backlight are widely used in various industrial fields.
  • FPD Full Panel Display
  • a liquid crystal display device light is radiated to a display panel using a liquid crystal element and a display panel such as an ultra-high pressure mercury lamp, a W / RGB LED (Light Emitting Diode), a cold cathode tube (CCFL: Cold Cathode Fluorescent Lamp).
  • CCFL Cold Cathode Fluorescent Lamp
  • an optical member of a backlight light source, BL: Back Light
  • the display device includes, as circuit units, a BL driving unit that controls the luminance of light emitted from the backlight, and a circuit that drives the display panel.
  • the display device described above When the display device described above is used as a display device for graphic design or medical use, the display characteristics (stability of color display) specified in advance are maintained over a long period of time, and the display device can always be used in a stable state. It is required to be quality.
  • an optical sensor such as a brightness sensor or a color sensor is provided on the display surface of the display panel, and the brightness and color are measured.
  • a display device that stabilizes quality (see, for example, Patent Document 1).
  • an optical sensor is provided on the display surface of the display panel, not only the luminance value but also the displayed color and the gamma ( ⁇ ) characteristic of the display panel can be measured in order to maintain display quality.
  • the display device in which an optical sensor or the like is provided not on the display surface of the display panel but on the back surface, and the display quality is stabilized by this measured value.
  • the display device is a liquid crystal display device
  • the display device is a liquid crystal display device
  • the brightness of the light emitted from the backlight to the liquid crystal panel is measured, and the brightness of the emitted light is stabilized.
  • the method of providing the optical sensor on the display surface of the display panel is superior in that the display quality can be stabilized more than the method of providing the optical sensor on the back surface of the display panel.
  • FIG. 6 is a diagram illustrating a configuration example of the liquid crystal display device 200 in the method in which the optical sensor is provided on the back surface of the display panel described above.
  • the optical sensor 205 measures the luminance of the light that the backlight 3 irradiates the back surface of the display panel 2 and outputs the measurement result to the signal processing unit 204 as an optical measurement value.
  • the signal processing unit 204 converts the gradation of the input video signal input from the external device into a post-processing video signal that drives the display element of the display panel 2 based on the optical measurement value supplied from the optical sensor 205, and displays it. Output to panel 2.
  • the signal processing unit 204 sets the luminance value of the light emitted from the backlight 3 to a set luminance value set in the internal storage unit in advance, that is, the luminance value of the irradiated light is constant even when the temperature changes. Is generated, and the backlight 3 is controlled by this drive signal.
  • FIG. 7 is a diagram illustrating a configuration example of the liquid crystal display device 300 in a system in which an optical sensor is provided on the display surface of the display panel described above.
  • the optical sensor 5 is, for example, a luminance sensor
  • the luminance of the light emitted from the measurement area 21 of the display panel 2 and emitted from the backlight 3 to the display panel 2 is measured, and the measurement result is optically measured.
  • the value is output to the signal processing unit 304.
  • the signal processing unit 304 converts the gradation of the input video signal input from the external device into a post-processing video signal that drives the display element of the display panel 2 based on the optical measurement value supplied from the optical sensor 5, and displays it. Output to panel 2.
  • the signal processing unit 304 irradiates even if the luminance value of the light emitted from the backlight 3 that passes through the measurement region 21 becomes a set luminance value preset in the internal storage unit, that is, the temperature changes. A drive signal with a constant light luminance value is generated, and the backlight 3 is controlled by this drive signal.
  • the signal processing unit 304 measures the black luminance and the white luminance, and obtains the drive signal and the processed video signal for the backlight 3 so that the dynamic range becomes a preset numerical value. That is, the aperture of the display element in the measurement region 21 can be controlled, and the luminance value corresponding to the aperture transmitted from the measurement region 21 can be measured. As described above, not only the white luminance but also the black luminance or the gamma characteristic can be measured. It is possible to measure the luminance values of a plurality of halftones (gradation between white luminance and black luminance) to be obtained.
  • the signal processing unit 204 needs to disable the luminance stabilization function.
  • the luminance stabilizing function displays white in the measurement region 21, measures the white luminance, and controls the luminance value of the light emitted from the backlight 3 so that the luminance value becomes constant. That is, the luminance stabilization function controls the drive signal that drives the backlight 3 so that the luminance value of white luminance becomes a preset setting value.
  • the signal processing unit 304 when performing measurements other than white luminance, if the luminance value is not measured in a state where the luminance stabilization function is disabled, for example, when the luminance value of black luminance is measured, the signal processing unit 304 performs this black luminance measurement. Is read as a white luminance value.
  • the signal processing unit 304 controls the backlight 3 and the display panel 2 so as to obtain a preset setting value, that is, the luminance value of white luminance, corresponding to the luminance value of black luminance.
  • the luminance value of the light transmitted from 2 is not correctly controlled. Therefore, when measuring a brightness value other than white brightness, the above-described brightness stabilization function is disabled and the measurement process is performed.
  • the luminance stabilization function when the luminance stabilization function is disabled, the color measurement, the gamma characteristic measurement, the black luminance and the halftone luminance value are measured without controlling the luminance value of the light emitted from the backlight 3. become.
  • the signal processing unit 304 finishes the process for stabilizing the display quality, that is, the signal processing unit 304 performs color measurement, gamma characteristic measurement, black luminance and halftone luminance value measurement.
  • the brightness stabilization function is enabled, and the mode is changed from the measurement mode for performing optical measurement of display quality to the normal mode for performing normal image display.
  • FIG. 8 is a diagram for explaining the luminance value of the light irradiated by the backlight 3.
  • the luminance value L0 measured at time T0 and the luminance value L1 ′ measured at time T1 are as follows. Will be equal.
  • the luminance value L0 measured at time T0 is not equal to the luminance value L1 measured at time T1.
  • the luminance stability function when the luminance stability function is disabled and the luminance values such as the gamma characteristic, the halftone, and the black luminance are measured, the luminance value of the light that the backlight 3 irradiates the display panel 2 changes.
  • the brightness value varies depending on the measurement time. That is, when measuring the optical measurement value for stabilizing the display quality, the video signal having the same gradation is given to the display panel 2 and measured at different times, the control values have the same gradation. However, a luminance value that varies from time to time is measured as an optical measurement value.
  • the optical measurement value measured for use in adjusting the setting value that controls the display quality when the brightness stabilization function is enabled is measured as a value that deviates from the state where the brightness stabilization function is enabled at each time. Will be. This disables the brightness stabilization function, and then uses each of the optical measurement values measured at different times and compares them to make image quality control settings that enable image quality control with the brightness stabilization function enabled. Will be adjusted. Therefore, stabilization processing of display quality when the luminance stabilization function is enabled, which is performed using image quality control setting values adjusted by optical measurement values each having a different shift amount with respect to the state where the luminance stabilization function is enabled Is less accurate. Therefore, in the configuration of the liquid crystal display device 300 in which the optical sensor is provided on the display surface of the display panel, the user who needs the accuracy of the display image quality and the stability of the display quality can only control the low-quality display quality. There will be no.
  • the problem to be solved is that in a liquid crystal display device in which an optical sensor is provided on the display surface of the display panel, the luminance value corresponding to the gradation is measured under various conditions in order to adjust the image quality control setting value. Therefore, when the luminance stability function is disabled and color measurement, gamma characteristic measurement, black luminance or halftone luminance value measurement is performed, the luminance value changes depending on the measurement time, and the luminance stabilization function is activated. The optical measurement value corresponding to the luminance value of the backlight in the state cannot be obtained, and the display quality with high display quality cannot be controlled.
  • the display device of the present invention includes a display panel that displays an image, an optical sensor that is disposed opposite to the display surface of the display panel, and that measures the amount of light emitted from the display panel as an optical measurement value, A corrected optical measurement value, which is an optical measurement value to be corrected, is corrected by a function indicating a change amount of the optical measurement value per unit time, and output as a corrected optical measurement value; and the display panel A control value for controlling the display panel, which stabilizes the display quality of the displayed image, is generated from the corrected optical measurement value, and the image is obtained from the control value and an input video signal supplied from an external device.
  • a signal processing unit that generates a processed video signal to be displayed, and when the function measures the correction target optical measurement value, the signal processing unit makes the irradiation amount of the light source of the front display panel constant. Characterized by exhibiting a change in the irradiation amount in the inactive period has disabled the ability.
  • the measurement value correction unit includes a timer unit for counting time, a plurality of reference optical measurement values measured at different times including a start time at which the invalid period is started, and the reference optical measurement.
  • a coefficient calculation unit that obtains a function indicating the relationship between each value and the time measured by the timer unit; and when the correction optical measurement value is obtained from the correction target optical measurement value, the correction target optical measurement value is calculated from the function.
  • Obtain an estimated reference optical measurement value at the measured time divide the reference optical measurement value at the start time by the estimated reference optical measurement value, use the division result as a change ratio, and multiply the correction target optical measurement value by the change ratio
  • a correction calculation unit that uses the result of multiplication as a corrected optical measurement value.
  • the coefficient calculation unit may include a first reference optical measurement value that is an optical measurement value measured at a first time that is the start time counted by the timer, and the first count that is counted by the timer.
  • An optical measurement value change amount per time is calculated, the optical measurement value change amount is multiplied by a time variable, a linear function is obtained by adding the first reference optical measurement value to the multiplication result, and the linear function Is the function.
  • the coefficient calculation unit obtains a spline curve from a plurality of reference optical measurement values measured at different times including the reference optical measurement value measured at the start time, and the spline curve is It is a function.
  • the display device of the present invention is characterized in that a luminance value measured as the reference optical measurement value is white luminance.
  • the display device of the present invention is characterized in that the optical measurement value to be corrected is a luminance value in each of black luminance, gamma characteristic, and color measurement.
  • the display characteristic calibration method of the present invention includes a process of measuring a luminance value of light emitted from the display panel by an optical sensor as an optical measurement value, which is disposed opposite to a display surface of a display panel of a liquid crystal display device, A measurement value correction process in which a value correction unit corrects an optical measurement value to be corrected, which is an optical measurement value to be corrected, with a function indicating a change amount of the optical measurement value per unit time, and outputs the corrected optical measurement value as a corrected optical measurement value;
  • the signal processing unit generates a control value for controlling the liquid crystal panel, which stabilizes the display quality of the image displayed on the display panel, based on the corrected optical measurement value, and is supplied from the control value and an external device.
  • Characterized in that indicating the change of the luminance value in disabled periods processing section is a luminance value of the light source before the display panel to disable the luminance stability functions constant.
  • the display device of the present invention adjusts an image quality control setting value and measures a luminance value corresponding to a gradation level under various conditions.
  • the brightness stability function is disabled, color measurement, gamma characteristic measurement, black brightness or halftone brightness value measurement is performed, even if the brightness value changes depending on the time of measurement, the brightness stabilization function is activated.
  • an optical measurement value corresponding to the luminance value of the backlight in the present state can be obtained, and display quality can be controlled with high accuracy.
  • the present invention disables the luminance stabilization function when adjusting the image quality control setting value for maintaining the display quality of the display device according to the surrounding environment and the change in the light source of the display device, and optical measurement used for this adjustment.
  • the value is acquired by an optical sensor provided facing the display surface of the display panel.
  • the optical measurement value measured by the optical sensor is corrected by a function obtained from the reference optical measurement value measured at different times, and used as a corrected optical measurement value for adjustment.
  • the present invention invalidates the luminance stabilization function, and therefore, the deviation from the optical measurement value measured when the luminance stability function is valid is caused by the change in the luminance value irradiated by the light source of the display device that changes with time. to correct.
  • the image quality control setting value for maintaining the display quality is, for example, the ratio of each RGB gradation when displaying each color, the correspondence between the maximum RGB gradation and the maximum luminance value, or the gamma characteristic.
  • FIG. 1 is a block diagram showing a configuration example of a display device 100 according to an embodiment of the device of the present invention.
  • a liquid crystal display device having the display panel 2 that is a liquid crystal panel in which a plurality of liquid crystal elements are arranged in a matrix will be described as an example of the display device 100.
  • the luminance stabilization function is disabled, The present invention can be applied to any display device as long as the luminance value irradiated by the light source of the display device changes with the passage of time or the display panel includes a device whose display characteristics change with the passage of time.
  • the display device 100 includes a measurement value correction unit 1, a display panel 2, a backlight 3, a signal processing unit 4, and an optical sensor 5.
  • the signal processing unit 4 performs the same operation as the signal processing unit 304 shown in FIG.
  • the description of the signal processing unit 4 will be made only on parts different from the signal processing unit 304.
  • the backlight 3 is provided to face the back surface of the display panel 2 and irradiates the back surface of the display panel 2 with light.
  • the optical sensor 5 measures the luminance value of the emitted light emitted from the measurement region 21 of the display panel 2 when the light irradiated on the back surface of the display panel 2 is transmitted through the display element of the display panel 2, and the measured luminance value. Is output to the measurement value correction unit 1 as an optical measurement value.
  • the measurement value correction unit 1 When the adjustment start signal (described later) for invalidating the luminance stabilization function is not supplied from the signal processing unit 4, that is, when the luminance stabilization function is valid, the measurement value correction unit 1 outputs the optical measurement value from the optical sensor 5. Output as corrected optical measurement value without correction.
  • the measurement value correcting unit 1 receives a signal indicating that the adjustment processing has ended from the signal processing unit 4. Until supplied, the optical measurement value from the optical sensor 5 is corrected and output as a corrected optical measurement value.
  • the signal processing unit 4 outputs an adjustment start signal to the measurement value correcting unit 1 when adjusting the image quality control setting value set inside. Further, the signal processing unit 4 invalidates its own luminance stabilization function and starts an invalid period of the luminance stabilization function. Thereby, the signal processing unit 4 stops the process of controlling the brightness of the backlight 3 to be constant as a preset brightness value corresponding to the brightness value supplied from the optical sensor 5. For this reason, when the backlight 3 is a CCFL, the luminance value increases with time as shown in FIG.
  • the signal processing unit 4 After invalidating the luminance stabilization function, the signal processing unit 4 outputs a timing signal indicating the timing for acquiring the optical measurement value used for adjusting the image quality control setting value to the measurement value correction unit 1. In addition, the signal processing unit 4 outputs a timing signal for acquiring all optical measurement values necessary for adjusting the image quality control setting value, and then transmits an adjustment end signal to the measurement value correction unit 1 to set the image quality control setting. Requests transmission of corrected optical measurements required for value adjustment. Then, the signal processing unit 4 ends the ineffective period of the luminance stabilization function after the elapse of a predetermined time set in advance, and validates the luminance stabilization function.
  • the signal processing unit 4 when the signal processing unit 4 outputs the adjustment start signal, the adjustment end signal, and the timing signal, the signal processing unit 4 is in a state of a measurement optical value to be measured corresponding to the adjustment start signal, the adjustment end signal, and the timing signal. It controls its own internal circuit.
  • a reference optical measurement value (described later) used in the measurement value correction unit 1 is a luminance value of white luminance
  • the display panel 2 when transmitting an adjustment start signal and an adjustment end signal described later, the display panel 2 has a white luminance value.
  • the liquid crystal element in the measurement region 21 is controlled.
  • the signal processing unit 4 displays a video signal for controlling the liquid crystal element so that the luminance value of the light emitted through the liquid crystal element in the measurement region 21 becomes an aperture value that becomes a luminance value of white luminance.
  • the signal processing unit 4 maximizes all of the RGB gradations and maximizes the aperture of the liquid crystal elements with respect to the liquid crystal elements in the measurement region 21. To do.
  • the signal processing unit 4 when it is desired to use the luminance value at the black luminance as the optical measurement value, when transmitting the timing signal, the signal processing unit 4 has the lowest gradation for all the liquid crystal elements in the measurement region 21 of the display panel 2.
  • a gray scale signal is supplied to minimize the aperture of the liquid crystal element and to achieve black luminance.
  • the optical sensor 5 is a color sensor having three channels of RGB and performs color measurement
  • this gradation degree is used.
  • the control signal of the combination is supplied to the display panel 2.
  • the signal processing unit 4 causes the measurement region 21 of the display panel 2 to display a color based on the combination of gradations on the measurement region 21.
  • the signal processing unit 4 determines whether or not the optical measurement values of the respective RGB channels acquired from the optical sensor 5 correspond to the measurement values set corresponding to the gradation levels of the preset RGB combinations.
  • processing for adjusting the set value of the gradation when expressing the color is performed.
  • the signal processing unit 4 sequentially converts the gradation of the input video signal linearly when converting the input video signal into a processed video signal for controlling the liquid crystal elements of the display panel 2. Every time the timing signal is output to the measurement value correction unit 1, the increased control signal of the liquid crystal element is given to the display panel 2 without being corrected by the internal gamma curve. Thereby, the signal processing unit 4 sequentially changes the luminance value due to the change in the gradation based on the corrected optical measurement signal supplied from the optical sensor 5 via the measurement value correcting unit 1. Gamma characteristics can be extracted.
  • the signal processing unit 4 adjusts a preset gamma curve corresponding to the gamma characteristic of the display panel 2 obtained from the optical measurement value.
  • the above-described gamma curve is used not only for an input video signal supplied from an external device but also for an internal video signal that is a video signal generated and output by the signal processing unit 4.
  • a configuration may be adopted in which the processing given to the display panel 2 is performed without correction, the processing for extracting the gamma characteristic is performed, and the gamma curve is adjusted.
  • the signal processing unit 4 is set to perform measurement of the optical measurement value as data for adjusting the setting value of the image quality control setting value in the order in which the timing signals are output. Therefore, the signal processing unit 4 sequentially supplies the corrected optical measurement values from the measurement value correction unit 1 in this order, and as data for adjusting any control value in the set value group of image quality control set values. Can determine if it is an optical measurement
  • FIG. 2 is a block diagram showing a configuration example of the measured value correction unit 1 in FIG.
  • the measurement value correction unit 1 in this embodiment includes a measurement value acquisition unit 11, a coefficient calculation unit 12, a timer unit 13, a control unit 14, a correction calculation unit 15, a measurement value storage unit 16, and a correction value storage unit 17. .
  • the timer unit 13 When the adjustment start signal is supplied from the signal processing unit 4, the timer unit 13 resets the count value and then starts time counting processing.
  • the measurement value acquisition unit 11 sets the optical measurement value output from the optical sensor 5 as the first reference optical measurement value, and the first reference optical measurement value and the timer
  • the time T0 that is the count value of the unit 13 (for example, the count value of the timer unit 13 is 0) is written as a set (that is, associated) and stored in the reference value storage area in the measurement value storage unit 16.
  • the first reference optical measurement value needs to be an optical measurement value in which the signal processing unit 4 has enabled the luminance stabilization function and is controlled to the set luminance value.
  • the measurement value acquisition part 11 reads the optical measurement value which the optical sensor 5 outputs, whenever the timing signal which acquires an optical measurement value is input. At this time, the measurement value acquisition unit 11 reads the time Tn output from the timer unit 13 when the optical measurement value is read. Then, the measurement value acquisition unit 11 combines identification information (for example, a number) indicating the order in which the timing signals are input, the optical measurement value, and the time Tn output by the timer unit 13 when the optical measurement value is acquired. As described above, the target optical measurement value storage area of the measurement value storage unit 16 is written and stored.
  • the measurement value acquisition unit 11 measures the optical measurement value at the time when the adjustment end signal is supplied, and uses the optical measurement value as the second reference optical measurement. Value. At this time, the measurement value acquisition unit 11 reads the time Ts output from the timer unit 13 at the time when the second reference optical measurement value is acquired. Then, the measurement value acquisition unit 11 writes the second reference optical measurement value and the time Ts as a set to the reference value storage area of the measurement value storage unit 16, and indicates that the acquisition of the optical measurement value is completed. An end signal is output to the coefficient calculation unit 12.
  • the coefficient calculation unit 12 is measured from the reference value storage area of the measurement value storage unit 16 at the first reference optical measurement value L0 measured at the start time of the invalid period at time T0 and at the end time of the invalid period at time T1.
  • the second reference optical measurement value L1 is read out together with the measured times T0 and T1.
  • the coefficient calculator 12 subtracts the first reference optical measurement value L0 from the second reference optical measurement value L1, and the first reference optical measurement value L0 from the time T1 when the second reference optical measurement value L1 is measured.
  • the coefficient ⁇ is calculated by subtracting the measured time T0 from the subtraction result.
  • FIG. 3 is a graph showing a linear function generated by the coefficient calculation unit 12 in the present embodiment.
  • the horizontal axis indicates time
  • the vertical axis indicates the luminance value L.
  • the function (1) is a linear function with the slope of the vertical axis of the luminance field L0 and an inclination of ⁇ .
  • the correction calculation unit 15 sets the correction target optical measurement value stored in the target optical measurement value storage area of the measurement value storage unit 16 at time T0. Data are read and corrected from the nearest time, that is, in ascending order of identification information. At this time, every time the correction target optical measurement value is read, the correction calculation unit 15 substitutes the time Ta at which the correction target optical measurement value is measured into Tn of the equation (1), and as shown in FIG. An estimated reference optical measurement value La at Ta is calculated. Then, the correction calculation unit 15 divides the first reference optical measurement value L0 by the calculated estimated reference optical measurement value La, and sets the division result as a change ratio ⁇ .
  • the correction calculation unit 15 multiplies the calculated change ratio ⁇ by the optical measurement value that is the correction target optical measurement value, and calculates the multiplication result as the corrected optical measurement value of the optical measurement value measured at the time Ta.
  • the optical measurement value at time Tn is optical measurement corresponding to the first reference luminance value L0 at time T0, that is, when the luminance stabilization function is effective. Will be converted to a value.
  • the correction calculation unit 15 sequentially writes the calculated corrected optical measurement values in the correction value storage unit 17 in correspondence with the identification numbers (numbers indicating the order) of the corresponding optical measurement values.
  • FIG. 4 is a graph for explaining processing for sequentially calculating estimated optical measurement values from the linear function generated by the coefficient calculation unit 12 in the present embodiment.
  • the horizontal axis indicates time
  • the vertical axis indicates the luminance value L.
  • the correction calculation unit 15 calculates estimated optical measurement values in the order of the times Ta and Tb using the equation (1), and calculates the change ratios ⁇ a and ⁇ b at the respective times. Then, the correction calculation unit 15 multiplies each of the change ratios ⁇ a and ⁇ b by the optical measurement value measured at the time corresponding to the change ratios ⁇ a and ⁇ b, and corrects the optical measurement value of the optical measurement value at each time. Is calculated.
  • the correction calculation unit 15 calculates the corrected optical measurement values for all the target optical measurement values stored in the target optical measurement value storage area of the measurement value storage unit 16
  • the correction processing of the optical measurement values ends.
  • a processing end signal indicating that the processing has been performed is output to the control unit 14.
  • the control unit 14 ends the correction process of the acquired optical measurement value, and transmits a transmittable signal indicating that the obtained corrected optical measurement value can be transmitted. And transmitted to the signal processing unit 4.
  • the signal processing unit 4 indicates that, when a transmittable signal is supplied from the measurement value correcting unit 1, the mode shifts to a mode in which each image quality control setting value is adjusted, and then requests transmission of the corrected optical measurement value.
  • a transmission request signal is transmitted to the measurement value correction unit 1.
  • the control unit 14 reads out the corrected optical measurement values stored in the correction value storage unit 17 for each identification number, for example, the order of the stored numbers (that is, when measuring)
  • the read correction optical measurement values are sequentially output to the signal processing unit 4 together with the order numbers of the timing signals.
  • the signal processing unit 4 stores a correspondence table that associates the order of the timing signals with the control value identification number indicating which control value in the set value group of the image quality control setting values in the internal storage unit within itself. Has been. Therefore, the signal processing unit 4 writes and stores the corrected optical measurement value supplied from the measurement value correction unit 1 in the correspondence table in correspondence with the order of the timing signals.
  • the signal processing unit 4 reads out the corrected optical setting value corresponding to the identification number of each control value from the correspondence table, and sets the corresponding control value. Perform the adjustment process. For example, when adjusting the gamma curve, the signal processing unit 4 stops the gamma correction function to disable gamma correction, and then linearly adjusts the gradation of halftones every time a timing signal is output. The brightness adjustment signal increased to 1 is output to the display panel 2.
  • the signal processing unit 4 determines which correction optical measurement value is a measurement value for measuring the gamma characteristic according to the order number of the correction optical measurement value supplied from the measurement value correction unit 1 and which gradation. It is determined whether the measured value corresponds to the value, the set gradation value is compared with the luminance value indicated by the corrected optical measured value, and the gamma characteristic of the display panel 2 is obtained.
  • the signal processing unit 4 calculates a gamma curve for correcting the gamma characteristic based on the gamma characteristic obtained from the corrected optical measurement value, and sets it as a control value in the new image quality control setting value. Then, after the gamma curve adjustment process is completed, the signal processing unit 4 validates the gamma correction process.
  • the signal processing unit 4 when adjusting the black luminance, the signal processing unit 4 outputs the gradation to the display panel 2 as the lowest value when outputting the timing signal. Then, the signal processing unit 4 performs correction for adjusting the black luminance from the corrected optical measurement values supplied from the measurement value correction unit 1 based on the order number of the correction optical measurement values supplied from the measurement value correction unit 1. An optical measurement value is determined, and a luminance value indicated by the corrected optical measurement value is compared with a preset luminance value of black luminance to obtain a control value of the liquid crystal element that becomes a preset luminance value.
  • the signal processing unit 4 transmits a timing signal to the measurement value correcting unit 1 to obtain a control value that is a luminance value within a preset range.
  • the brightness value by the adjusted control value is measured, and it is determined whether or not this brightness value is included in the preset brightness value range, and the final control is performed.
  • the signal processing unit 4 may be configured to have an adjustment mode for only this iterative processing.
  • the white luminance is set so as to correspond to the luminance value of the white luminance at the time when the luminance stabilizing function is disabled (that is, when the luminance stabilizing function is enabled), that is, in the luminance stable state.
  • the optical measurement value after a lapse of time can be corrected so as to correspond to the luminance value of
  • the influence of the luminance value emitted from the light source that changes with time is eliminated, and the image quality control setting value in the state where the luminance stabilization function is working Adjustments can be made and display quality can be maintained.
  • FIG. 5 shows a corrected optical measurement value using three reference measurement values: a first reference measurement value (time T0), a second reference measurement value (time T1), and a third reference measurement value (time T2). It is a graph explaining the process which calculates.
  • the process of correcting the optical measurement value to the correction optical value is performed based on the change amount of the luminance value per unit time obtained from the two reference measurement values at time T0 and time T1. Yes.
  • the time during which the luminance value stabilization function is disabled becomes long, in the case of two-point measurement, it is considered that the error of the corrected optical measurement value increases if linear correction between the two points is performed. For this reason, as shown in FIG. 5, according to the time width during which the luminance stabilization function is disabled, the luminance values of white luminance are measured at a plurality of reference measurement values of three or more points, and the plurality of reference measurement values are obtained. It is good also as a structure which performs the used correction
  • the coefficient calculation unit 12 indicates linearity between the first reference measurement value L0 and the third reference measurement value, which is used for correcting the optical measurement value measured between the time T0 and the time T2.
  • L L0 + ⁇ (Tn ⁇ T0) (2)
  • (L2 ⁇ L0) / (T2 ⁇ T0) Tn is the time when the optical measurement value to be corrected is measured.
  • amendment calculating part 15 calculates
  • the coefficient calculation unit 12 indicates linearity between the first reference measurement value L0 and the third reference measurement value used for correcting the optical measurement value measured between the time T2 and the time T1 ( 3) Find the equation.
  • L L2 + ⁇ (Tn ⁇ T2) (3)
  • (L1 ⁇ L2) / (T1 ⁇ T2) Tn is the time when the optical measurement value to be corrected is measured.
  • amendment calculating part 15 calculates
  • the correction calculation unit 15 substitutes the time Tb for the time Tn in the equation (3), and calculates the estimated reference optical measurement value Lb at the time Tb. Then, the correction calculation unit 15 divides the third reference measurement value L2 by the calculated estimated reference optical measurement value Lb, and multiplies the optical measurement value measured at time Tb by the coefficient ⁇ to calculate the correction optical measurement value. To do.
  • a plurality of reference measurement values are measured in a time width in which the luminance stabilization function is disabled, and a linear function is obtained at each time between adjacent reference measurement values.
  • a corrected optical measurement value with higher accuracy can be obtained by correcting the optical measurement value between the respective reference measurement values in correspondence with each of the linear functions.
  • the change in the actual white luminance value is changed from each reference measurement value.
  • a configuration for generating a corresponding spline curve may be adopted. Then, by performing spline correction with the change ratio obtained from the generated spline curve, it is possible to perform correction with the optical measurement value as the corrected optical measurement value with higher accuracy.
  • the signal processing unit 4 may be configured to disable the luminance stabilization function and restart the measurement process of the optical measurement value. This makes it possible to substantially reduce the time width over which the luminance stabilization function is disabled, such as when the amount of measurement of optical measurement values is large and the time width over which the luminance stability function is disabled becomes long. The amount of change can be further reduced, and the error in correcting the optical measurement value to the corrected optical measurement value can be reduced.
  • the reference measurement value used for correction is described as the luminance value of white luminance
  • any luminance value such as the luminance value of any color or the luminance value of black luminance is used instead of the luminance value of white luminance.
  • the liquid crystal display device has been described as an example.
  • the present invention can be applied to any display device as long as the optical measurement value such as a luminance value varies with time.
  • the process of measuring the optical measurement value while disabling the luminance stabilization function is performed by the user inputting a command for adjusting the image quality control setting value to the display device 100 from an input device (not shown). Or a configuration in which the signal processing unit 4 is activated each time a preset time elapses after the display device 100 is turned on, or a configuration including both.
  • a display device for example, a liquid crystal display device
  • industrial fields such as computer graphics and medical applications that are used in applications that require high-precision color reproduction
  • the display image display quality for the user over a long period of time thus, it is possible to maintain stability.

Abstract

The display device is provided with: a display panel (2) that displays an image; an optical sensor (5), which is disposed facing the display surface of the display panel (2) and measures the radiation value of the light emitted by the display panel (2) as a measured optical value; a measured value-revising unit (1), which revises a revision target measured optical value that is a measured optical value to be revised using a function that represents the amount of change in the measured optical value per unit time and outputs same as a revised measured optical value; and a signal processing unit (4), which generates from the revised measured optical value a control value for controlling the display panel (2) to stabilize the display quality of the image displayed on the display panel (2) and generates a post-processing video signal that displays an image from the control value and an input video signal supplied from an external device. The function represents the change in the radiation value, when measuring the revision target measured optical value, during a disabled period in which the signal-processing unit (4) disables the stabilizing function that keeps the radiation value of the light source (3) of the display panel (2) constant.

Description

表示装置および表示特性校正方法Display device and display characteristic calibration method
 本発明は、表示装置(液晶モニタやプロジェクタなど)および表示特性校正方法に関する。 The present invention relates to a display device (liquid crystal monitor, projector, etc.) and a display characteristic calibration method.
 近年、バックライトを用いて表示パネルに画像を表示する液晶表示装置が種々の産業分野において広範囲に用いられている。例えば、液晶表示装置の外部から供給される映像信号を液晶を用いた表示パネルに表示するFPD(Flat Panel Display)が多用されている。このような液晶表示装置では、液晶素子を用いた表示パネルと、超高圧水銀ランプやW/RGB LED(Light Emitting Diode)、冷陰極管(CCFL:Cold Cathode Fluorescent Lamp)などの表示パネルに光を照射するバックライト(光源、BL:Back Light)の光学部材と、を備えている。また、上記表示装置は回路部として、バックライトが照射する光の輝度を制御するBL駆動部と、表示パネルを駆動する回路とを備えている。 In recent years, liquid crystal display devices that display an image on a display panel using a backlight are widely used in various industrial fields. For example, FPD (Flat Panel Display) that displays a video signal supplied from the outside of a liquid crystal display device on a display panel using liquid crystal is widely used. In such a liquid crystal display device, light is radiated to a display panel using a liquid crystal element and a display panel such as an ultra-high pressure mercury lamp, a W / RGB LED (Light Emitting Diode), a cold cathode tube (CCFL: Cold Cathode Fluorescent Lamp). And an optical member of a backlight (light source, BL: Back Light) for irradiation. In addition, the display device includes, as circuit units, a BL driving unit that controls the luminance of light emitted from the backlight, and a circuit that drives the display panel.
 上述した表示装置は、グラフィックデザインや医療用向けの表示装置として用いられた場合、予め指定されている表示特性(色表示の安定性)を長期間にわたって維持し、常に安定した状態で使用できる表示品質であることが求められている。
 この安定した状態を維持する際、表示パネルの表示面に輝度センサやカラーセンサなどの光学センサを設け、輝度や色を測定して、この測定値によって、表示特性に対応した調整を行って表示品質を安定させる表示装置がある(例えば、特許文献1参照)。この表示パネルの表示面に光学センサを設けた場合、表示品質を維持するため、輝度値の測定だけではなく、表示される色及び表示パネルのガンマ(γ)特性の測定も可能となる。
 一方、表示パネルの表示面ではなく背面に光学センサなどを設けて、この測定値により、表示品質を安定させる表示装置もある。例えば、表示装置が液晶表示装置である場合、液晶パネル(表示パネル)の背面に光学センサを設けた場合、バックライトが液晶パネルに照射する光の輝度を測定し、照射する光の輝度を安定化する。
 したがって、表示パネルの表示面に光学センサを設ける方式は、表示パネルの背面に光学センサを設ける方式に比較して、より表示品質の安定化を行うことが出来る点で優れている。
When the display device described above is used as a display device for graphic design or medical use, the display characteristics (stability of color display) specified in advance are maintained over a long period of time, and the display device can always be used in a stable state. It is required to be quality.
When maintaining this stable state, an optical sensor such as a brightness sensor or a color sensor is provided on the display surface of the display panel, and the brightness and color are measured. There is a display device that stabilizes quality (see, for example, Patent Document 1). When an optical sensor is provided on the display surface of the display panel, not only the luminance value but also the displayed color and the gamma (γ) characteristic of the display panel can be measured in order to maintain display quality.
On the other hand, there is a display device in which an optical sensor or the like is provided not on the display surface of the display panel but on the back surface, and the display quality is stabilized by this measured value. For example, when the display device is a liquid crystal display device, if an optical sensor is provided on the back of the liquid crystal panel (display panel), the brightness of the light emitted from the backlight to the liquid crystal panel is measured, and the brightness of the emitted light is stabilized. Turn into.
Therefore, the method of providing the optical sensor on the display surface of the display panel is superior in that the display quality can be stabilized more than the method of providing the optical sensor on the back surface of the display panel.
 次に、図6は、上述した表示パネルの背面に光学センサを設ける方式における液晶表示装置200の構成例を示す図である。
 光学センサ205は、バックライト3が表示パネル2の背面に照射する光の輝度を測定し、測定結果を光学測定値として、信号処理部204へ出力する。
 信号処理部204は、光学センサ205から供給される光学測定値により、外部装置から入力される入力映像信号の階調度を、表示パネル2の表示素子を駆動する処理後映像信号に変換し、表示パネル2に対して出力する。また、信号処理部204は、バックライト3の照射する光の輝度値が 、予め内部記憶部に設定されている設定輝度値となる、すなわち温度が変化しても照射する光の輝度値が一定となる駆動信号を生成し、この駆動信号によりバックライト3の制御を行う。
Next, FIG. 6 is a diagram illustrating a configuration example of the liquid crystal display device 200 in the method in which the optical sensor is provided on the back surface of the display panel described above.
The optical sensor 205 measures the luminance of the light that the backlight 3 irradiates the back surface of the display panel 2 and outputs the measurement result to the signal processing unit 204 as an optical measurement value.
The signal processing unit 204 converts the gradation of the input video signal input from the external device into a post-processing video signal that drives the display element of the display panel 2 based on the optical measurement value supplied from the optical sensor 205, and displays it. Output to panel 2. Further, the signal processing unit 204 sets the luminance value of the light emitted from the backlight 3 to a set luminance value set in the internal storage unit in advance, that is, the luminance value of the irradiated light is constant even when the temperature changes. Is generated, and the backlight 3 is controlled by this drive signal.
 次に、図7は、上述した表示パネルの表示面に光学センサを設ける方式における液晶表示装置300の構成例を示す図である。
 光学センサ5は、例えば輝度センサである場合、表示パネル2の測定領域21から透過して出射される、バックライト3がこの表示パネル2に照射する光の輝度を測定し、測定結果を光学測定値として、信号処理部304へ出力する。
 信号処理部304は、光学センサ5から供給される光学測定値により、外部装置から入力される入力映像信号の階調度を、表示パネル2の表示素子を駆動する処理後映像信号に変換し、表示パネル2に対して出力する。また、信号処理部304は、測定領域21を透過するバックライト3が照射する光の輝度値が 、予め内部記憶部に設定されている設定輝度値となる、すなわち温度が変化しても照射する光の輝度値が一定となる駆動信号を生成し、この駆動信号によりバックライト3の制御を行う。
Next, FIG. 7 is a diagram illustrating a configuration example of the liquid crystal display device 300 in a system in which an optical sensor is provided on the display surface of the display panel described above.
When the optical sensor 5 is, for example, a luminance sensor, the luminance of the light emitted from the measurement area 21 of the display panel 2 and emitted from the backlight 3 to the display panel 2 is measured, and the measurement result is optically measured. The value is output to the signal processing unit 304.
The signal processing unit 304 converts the gradation of the input video signal input from the external device into a post-processing video signal that drives the display element of the display panel 2 based on the optical measurement value supplied from the optical sensor 5, and displays it. Output to panel 2. Further, the signal processing unit 304 irradiates even if the luminance value of the light emitted from the backlight 3 that passes through the measurement region 21 becomes a set luminance value preset in the internal storage unit, that is, the temperature changes. A drive signal with a constant light luminance value is generated, and the backlight 3 is controlled by this drive signal.
 このとき、信号処理部304は、黒輝度及び白輝度を測定し、ダイナミックレンジが予め設定された数値となるように、バックライト3に対する駆動信号と処理後映像信号とを求める。すなわち、測定領域21における表示素子の開口度を制御し、この測定領域21から透過される開口度に対応した輝度値を測定でき、上述したように白輝度のみでなく、黒輝度あるいはガンマ特性を求めるための複数の中間調(白輝度と黒輝度との間の階調度)の輝度値の測定が可能である。 At this time, the signal processing unit 304 measures the black luminance and the white luminance, and obtains the drive signal and the processed video signal for the backlight 3 so that the dynamic range becomes a preset numerical value. That is, the aperture of the display element in the measurement region 21 can be controlled, and the luminance value corresponding to the aperture transmitted from the measurement region 21 can be measured. As described above, not only the white luminance but also the black luminance or the gamma characteristic can be measured. It is possible to measure the luminance values of a plurality of halftones (gradation between white luminance and black luminance) to be obtained.
 上述した図7の液晶表示装置において、表示パネル2から出射される光の輝度値を一定とする表示品質を安定させる測定以外の場合、例えば色の測定、ガンマ特性の測定、黒輝度や中間調の輝度値の測定を行う場合、信号処理部204は輝度安定機能を無効とする必要がある。この輝度安定機能は、一般的に、測定領域21に白を表示させ、白輝度を測定して、この輝度値が一定となるように、バックライト3が出射する光の輝度値を制御する。すなわち、輝度安定機能は、白輝度の輝度値が予め設定された設定値となるように、バックライト3を駆動する駆動信号を制御する。 In the liquid crystal display device of FIG. 7 described above, in cases other than the measurement for stabilizing the display quality in which the luminance value of the light emitted from the display panel 2 is constant, for example, color measurement, gamma characteristic measurement, black luminance and halftone When the luminance value is measured, the signal processing unit 204 needs to disable the luminance stabilization function. In general, the luminance stabilizing function displays white in the measurement region 21, measures the white luminance, and controls the luminance value of the light emitted from the backlight 3 so that the luminance value becomes constant. That is, the luminance stabilization function controls the drive signal that drives the backlight 3 so that the luminance value of white luminance becomes a preset setting value.
 このため、白輝度以外の測定を行う場合、輝度安定機能を無効とした状態で輝度値を測定しないと、例えば、黒輝度の輝度値の測定を行うと、信号処理部304は、この黒輝度の輝度値を白輝度の輝度値として読み込む。そして、信号処理部304は、この黒輝度の輝度値に対応して、予め設定された設定値、すなわち白輝度の輝度値となるようにバックライト3及び表示パネル2を制御するため、表示パネル2から透過される光の輝度値が正しく制御されない。
 したがって、白輝度以外の輝度値の測定を行う場合、上述した輝度安定機能を無効にして測定処理を行う。
For this reason, when performing measurements other than white luminance, if the luminance value is not measured in a state where the luminance stabilization function is disabled, for example, when the luminance value of black luminance is measured, the signal processing unit 304 performs this black luminance measurement. Is read as a white luminance value. The signal processing unit 304 controls the backlight 3 and the display panel 2 so as to obtain a preset setting value, that is, the luminance value of white luminance, corresponding to the luminance value of black luminance. The luminance value of the light transmitted from 2 is not correctly controlled.
Therefore, when measuring a brightness value other than white brightness, the above-described brightness stabilization function is disabled and the measurement process is performed.
 しかしながら、輝度安定機能を無効にした場合、バックライト3の照射する光の輝度値の制御を行わずに、色の測定、ガンマ特性の測定、黒輝度や中間調の輝度値の測定を行うことになる。そして、信号処理部304は、表示品質を安定化するための処理が終了した後、すなわち、信号処理部304は、色の測定、ガンマ特性の測定、黒輝度や中間調の輝度値の測定が終了した後、輝度安定化機能を有効とし、表示品質の光学測定を行うための測定モードから、通常の画像表示を行うための通常モードに変更する。 However, when the luminance stabilization function is disabled, the color measurement, the gamma characteristic measurement, the black luminance and the halftone luminance value are measured without controlling the luminance value of the light emitted from the backlight 3. become. After the signal processing unit 304 finishes the process for stabilizing the display quality, that is, the signal processing unit 304 performs color measurement, gamma characteristic measurement, black luminance and halftone luminance value measurement. After the completion, the brightness stabilization function is enabled, and the mode is changed from the measurement mode for performing optical measurement of display quality to the normal mode for performing normal image display.
 このとき、輝度安定機能が無効の場合、表示パネル2を透過する光の輝度値が変化する虞がある。例えば、バックライト3にCCFLを用いた場合、このCCFLは温度によって発光効率が変化するため、点灯時間が長いと温度が上昇して、表示パネル2に照射する光の輝度値が変化することになる。
 次に、図8は、バックライト3の照射する光の輝度値を説明する図である。図8において、例えば、バックライト3の照射する光の輝度値が時間が経過しても安定している場合、時刻T0に測定した輝度値L0と、時刻T1に測定した輝度値L1’とは等しくなる。しかしながら、バックライト3の照射する光の輝度値が時間が経過するに従い変化する場合、時刻T0に測定した輝度値L0と、時刻T1に測定した輝度値L1とは等しくない。
At this time, if the luminance stabilization function is disabled, the luminance value of the light transmitted through the display panel 2 may change. For example, when the CCFL is used for the backlight 3, the light emission efficiency of the CCFL changes depending on the temperature. Therefore, when the lighting time is long, the temperature rises and the luminance value of the light applied to the display panel 2 changes. Become.
Next, FIG. 8 is a diagram for explaining the luminance value of the light irradiated by the backlight 3. In FIG. 8, for example, when the luminance value of the light emitted from the backlight 3 is stable over time, the luminance value L0 measured at time T0 and the luminance value L1 ′ measured at time T1 are as follows. Will be equal. However, when the luminance value of the light emitted from the backlight 3 changes with time, the luminance value L0 measured at time T0 is not equal to the luminance value L1 measured at time T1.
 したがって、輝度安定機能を無効にして、ガンマ特性、中間調、黒輝度などの輝度値を測定している際に、バックライト3が表示パネル2に照射する光の輝度値が変化することにより、測定する時刻によって輝度値にずれが生じる。すなわち、表示品質の安定化を行うための光学測定値の測定に際し、同一の階調度とする映像信号を表示パネル2に与え、異なった時刻に測定した場合、同一の階調度の制御値であるが、時刻毎に異なる輝度値が光学測定値として測定される。このため、輝度安定機能が有効な状態での表示品質を制御する設定値の調整に用いるために測定した光学測定値が、時刻毎に輝度安定機能が有効な状態に対してずれた値として測定されることになる。これにより、輝度安定機能を無効とした後、異なった時刻に測定した光学測定値の各々を用い、それぞれを比較することで、輝度安定機能を有効にした状態における画質制御を行う画質制御設定値の調整を行うことになる。このため、輝度安定機能を有効にした状態に対してそれぞれが異なったずれ量を有する光学測定値により調整した画質制御設定値を用いて行う、輝度安定機能を有効な場合における表示品質の安定処理の精度は低くなる。
 したがって、表示パネルの表示面に光学センサを設ける方式における液晶表示装置300の構成においては、表示画質の精度及び表示品質の安定性を必要とするユーザには、質の低い表示品質の制御しか行えないことになる。
Therefore, when the luminance stability function is disabled and the luminance values such as the gamma characteristic, the halftone, and the black luminance are measured, the luminance value of the light that the backlight 3 irradiates the display panel 2 changes. The brightness value varies depending on the measurement time. That is, when measuring the optical measurement value for stabilizing the display quality, the video signal having the same gradation is given to the display panel 2 and measured at different times, the control values have the same gradation. However, a luminance value that varies from time to time is measured as an optical measurement value. For this reason, the optical measurement value measured for use in adjusting the setting value that controls the display quality when the brightness stabilization function is enabled is measured as a value that deviates from the state where the brightness stabilization function is enabled at each time. Will be. This disables the brightness stabilization function, and then uses each of the optical measurement values measured at different times and compares them to make image quality control settings that enable image quality control with the brightness stabilization function enabled. Will be adjusted. Therefore, stabilization processing of display quality when the luminance stabilization function is enabled, which is performed using image quality control setting values adjusted by optical measurement values each having a different shift amount with respect to the state where the luminance stabilization function is enabled Is less accurate.
Therefore, in the configuration of the liquid crystal display device 300 in which the optical sensor is provided on the display surface of the display panel, the user who needs the accuracy of the display image quality and the stability of the display quality can only control the low-quality display quality. There will be no.
特開2008-102490号公報JP 2008-102490 A
 解決しようとする問題点は、表示パネルの表示面に光学センサを設ける構成における液晶表示装置において、画質制御設定値の調整を行うため、各種条件下における階調度に対応した輝度値の測定を行うために輝度安定機能を無効にし、色の測定、ガンマ特性の測定、黒輝度や中間調の輝度値の測定を行う際、測定する時刻により輝度値が変化し、輝度安定機能が稼働している状態のバックライトの輝度値に対応した光学測定値が得られず、精度の高い表示画質の表示品質の制御が行えないことである。 The problem to be solved is that in a liquid crystal display device in which an optical sensor is provided on the display surface of the display panel, the luminance value corresponding to the gradation is measured under various conditions in order to adjust the image quality control setting value. Therefore, when the luminance stability function is disabled and color measurement, gamma characteristic measurement, black luminance or halftone luminance value measurement is performed, the luminance value changes depending on the measurement time, and the luminance stabilization function is activated. The optical measurement value corresponding to the luminance value of the backlight in the state cannot be obtained, and the display quality with high display quality cannot be controlled.
 本発明の表示装置は、画像を表示する表示パネルと、前記表示パネルの表示面に対向して配置されて、当該表示パネルの出射する光の照射量を光学測定値として測定する光学センサと、補正対象の光学測定値である補正対象光学測定値を、単位時間当たりの当該光学測定値の変化量を示す関数により補正し、補正光学測定値として出力する測定値補正部と、前記表示パネルに表示される前記画像の表示品質を安定させる、前記表示パネルを制御する制御値を、前記補正光学測定値により生成し、この制御値と外部装置から供給される入力映像信号とから、前記画像を表示させる処理後映像信号を生成する信号処理部とを備え、前記関数が、前記補正対象光学測定値を測定する際に前記信号処理部が前表示パネルの光源の照射量を一定とする機能を無効にしている無効期間における前記照射量の変化を示すことを特徴とする。 The display device of the present invention includes a display panel that displays an image, an optical sensor that is disposed opposite to the display surface of the display panel, and that measures the amount of light emitted from the display panel as an optical measurement value, A corrected optical measurement value, which is an optical measurement value to be corrected, is corrected by a function indicating a change amount of the optical measurement value per unit time, and output as a corrected optical measurement value; and the display panel A control value for controlling the display panel, which stabilizes the display quality of the displayed image, is generated from the corrected optical measurement value, and the image is obtained from the control value and an input video signal supplied from an external device. A signal processing unit that generates a processed video signal to be displayed, and when the function measures the correction target optical measurement value, the signal processing unit makes the irradiation amount of the light source of the front display panel constant. Characterized by exhibiting a change in the irradiation amount in the inactive period has disabled the ability.
 本発明の表示装置は、前記測定値補正部が、時間を計数するタイマー部と、前記無効期間を開始した開始時刻を含む異なる時刻に測定された複数の基準光学測定値と、当該基準光学測定値の各々を前記タイマー部が測定した時間との関係を示す関数を求める係数演算部と、前記補正対象光学測定値から前記補正光学測定値を求める際、前記関数から前記補正対象光学測定値を測定した時刻における推定基準光学測定値を求め、当該推定基準光学測定値により前記開始時刻における基準光学測定値を除算し、除算結果を変化比とし、当該変化比を前記補正対象光学測定値に乗算し、乗算の結果を補正光学測定値とする補正演算部とを備えていることを特徴とする。 In the display device of the present invention, the measurement value correction unit includes a timer unit for counting time, a plurality of reference optical measurement values measured at different times including a start time at which the invalid period is started, and the reference optical measurement. A coefficient calculation unit that obtains a function indicating the relationship between each value and the time measured by the timer unit; and when the correction optical measurement value is obtained from the correction target optical measurement value, the correction target optical measurement value is calculated from the function. Obtain an estimated reference optical measurement value at the measured time, divide the reference optical measurement value at the start time by the estimated reference optical measurement value, use the division result as a change ratio, and multiply the correction target optical measurement value by the change ratio And a correction calculation unit that uses the result of multiplication as a corrected optical measurement value.
 本発明の表示装置は、前記係数演算部が、前記タイマーの計数した前記開始時刻である第1時刻に測定された光学測定値である第1基準光学測定値と、当該タイマーの計数した前記第1時刻より後の第2時刻に測定された光学測定値である第2基準光学測定値との差分を求め、当該差分を第1時刻と第2時刻との差の時間幅で減算し、単位時間当たりの光学測定値変化量を算出し、当該光学測定値変化量を時間の変数に対して乗算し、この乗算結果に前記第1基準光学測定値を加算した線形関数を求め、この線形関数を前記関数とすることを特徴とする。 In the display device according to the aspect of the invention, the coefficient calculation unit may include a first reference optical measurement value that is an optical measurement value measured at a first time that is the start time counted by the timer, and the first count that is counted by the timer. A difference from a second reference optical measurement value, which is an optical measurement value measured at a second time after one time, is obtained, and the difference is subtracted by the time width of the difference between the first time and the second time. An optical measurement value change amount per time is calculated, the optical measurement value change amount is multiplied by a time variable, a linear function is obtained by adding the first reference optical measurement value to the multiplication result, and the linear function Is the function.
 本発明の表示装置は、前記係数演算部が、前記開始時刻に測定された基準光学測定値を含む、異なる時刻に測定された複数の基準光学測定値からスプライン曲線を求め、当該スプライン曲線を前記関数とすることを特徴とする。 In the display device of the present invention, the coefficient calculation unit obtains a spline curve from a plurality of reference optical measurement values measured at different times including the reference optical measurement value measured at the start time, and the spline curve is It is a function.
 本発明の表示装置は、前記基準光学測定値として測定する輝度値が白輝度であることを特徴とする。 The display device of the present invention is characterized in that a luminance value measured as the reference optical measurement value is white luminance.
 本発明の表示装置は、前記補正対象光学測定値は、黒輝度、ガンマ特性及び色の測定の各々における輝度値であることを特徴とする。 The display device of the present invention is characterized in that the optical measurement value to be corrected is a luminance value in each of black luminance, gamma characteristic, and color measurement.
 本発明の表示特性校正方法は、液晶表示装置の表示パネルの表示面に対向して配置されて、当該表示パネルの出射する光の輝度値を光学測定値として光学センサにより測定する過程と、測定値補正部が、補正対象の光学測定値である補正対象光学測定値を、単位時間当たりの当該光学測定値の変化量を示す関数により補正し、補正光学測定値として出力する測定値補正過程と、信号処理部が、前記表示パネルに表示される前記画像の表示品質を安定させる、前記液晶パネルを制御する制御値を、前記補正光学測定値により生成し、この制御値と外部装置から供給される入力映像信号とから、前記表示パネルに画像を表示させる処理後映像信号を生成する信号処理過程とを含み、前記関数が、前記補正対象光学測定値を測定する際に前記信号処理部が前表示パネルの光源の輝度値を一定とする輝度安定機能を無効にしている無効期間における前記輝度値の変化を示すことを特徴とする。 The display characteristic calibration method of the present invention includes a process of measuring a luminance value of light emitted from the display panel by an optical sensor as an optical measurement value, which is disposed opposite to a display surface of a display panel of a liquid crystal display device, A measurement value correction process in which a value correction unit corrects an optical measurement value to be corrected, which is an optical measurement value to be corrected, with a function indicating a change amount of the optical measurement value per unit time, and outputs the corrected optical measurement value as a corrected optical measurement value; The signal processing unit generates a control value for controlling the liquid crystal panel, which stabilizes the display quality of the image displayed on the display panel, based on the corrected optical measurement value, and is supplied from the control value and an external device. And a signal processing step of generating a processed video signal for displaying an image on the display panel from the input video signal, wherein the function measures the signal when the correction target optical measurement value is measured. Characterized in that indicating the change of the luminance value in disabled periods processing section is a luminance value of the light source before the display panel to disable the luminance stability functions constant.
 本発明の表示装置は、表示パネルの表示面に光学センサを設ける構成における液晶表示装置において、画質制御設定値の調整を行うため、各種条件下における階調度に対応した輝度値の測定を行うために輝度安定機能を無効にし、色の測定、ガンマ特性の測定、黒輝度や中間調の輝度値の測定を行う際、測定する時刻により輝度値が変化しても、輝度安定機能が稼働している状態のバックライトの輝度値に対応した光学測定値が得ることができ、精度の高い表示画質の表示品質の制御が行うことができる。 In a liquid crystal display device having a configuration in which an optical sensor is provided on a display surface of a display panel, the display device of the present invention adjusts an image quality control setting value and measures a luminance value corresponding to a gradation level under various conditions. When the brightness stability function is disabled, color measurement, gamma characteristic measurement, black brightness or halftone brightness value measurement is performed, even if the brightness value changes depending on the time of measurement, the brightness stabilization function is activated. Thus, an optical measurement value corresponding to the luminance value of the backlight in the present state can be obtained, and display quality can be controlled with high accuracy.
本発明装置の一実施形態による表示装置100の構成例を示すブロック図である。It is a block diagram which shows the structural example of the display apparatus 100 by one Embodiment of this invention apparatus. 図1における測定値補正部1の構成例を示すブロック図である。It is a block diagram which shows the structural example of the measured value correction | amendment part 1 in FIG. 本実施形態における係数演算部12の生成した線形関数を示すグラフである。It is a graph which shows the linear function which the coefficient calculating part 12 in this embodiment produced | generated. 本実施形態における係数演算部12の生成した線形関数から、順次推定光学測定値を算出する処理を説明するグラフである。It is a graph explaining the process which calculates an estimated optical measurement value sequentially from the linear function which the coefficient calculating part 12 in this embodiment produced | generated. 第1基準測定値、第2基準測定値および、第3基準測定値の3点の基準測定値を用いた補正光学測定値を算出する処理を説明するグラフである。It is a graph explaining the process which calculates the correction | amendment optical measurement value using the 3rd reference | standard measurement value of a 1st reference | standard measurement value, a 2nd reference | standard measurement value, and a 3rd reference | standard measurement value. 表示パネルの背面に光学センサを設ける方式における液晶表示装置の構成例を示す図である。It is a figure which shows the structural example of the liquid crystal display device in the system which provides an optical sensor in the back surface of a display panel. 表示パネルの表示面に光学センサを設ける方式における液晶表示装置の構成例を示す図である。It is a figure which shows the structural example of the liquid crystal display device in the system which provides an optical sensor in the display surface of a display panel. バックライト3の照射する光の輝度値を説明する図である。It is a figure explaining the luminance value of the light which the backlight 3 irradiates.
 本発明は、表示装置の表示品質を維持するための画質制御設定値を、周囲の環境や表示装置の光源の変化に応じて調整する際、輝度安定機能を無効とし、この調整に用いる光学測定値を表示パネルの表示面に対向して設けられた光学センサにより取得する。そして、本発明は、光学センサにより測定された光学測定値を、異なった時刻に測定された基準光学測定値により求めた関数により補正し、補正光学測定値として調整に用いる。 The present invention disables the luminance stabilization function when adjusting the image quality control setting value for maintaining the display quality of the display device according to the surrounding environment and the change in the light source of the display device, and optical measurement used for this adjustment. The value is acquired by an optical sensor provided facing the display surface of the display panel. In the present invention, the optical measurement value measured by the optical sensor is corrected by a function obtained from the reference optical measurement value measured at different times, and used as a corrected optical measurement value for adjustment.
 これにより、本発明は、輝度安定機能を無効としたため、時間経過により変化する表示装置の光源の照射する輝度値の変化により、輝度安定機能が有効な場合に測定される光学測定値に対するずれを補正する。
 ここで、表示品質を維持するための画質制御設定値は、例えば各色を表示する際のRGBの各々の階調度の割合、RGBの最大階調度と最大輝度値との対応関係、あるいはガンマ特性を補正するために用いるガンマ曲線の各々を調整する制御値など含む設定値群である。
As a result, the present invention invalidates the luminance stabilization function, and therefore, the deviation from the optical measurement value measured when the luminance stability function is valid is caused by the change in the luminance value irradiated by the light source of the display device that changes with time. to correct.
Here, the image quality control setting value for maintaining the display quality is, for example, the ratio of each RGB gradation when displaying each color, the correspondence between the maximum RGB gradation and the maximum luminance value, or the gamma characteristic. A set value group including a control value for adjusting each of the gamma curves used for correction.
 以下、本発明の一実施形態による表示装置および表示特性校正方法について図面を参照して説明する。
 図1は、本発明装置の一実施形態による表示装置100の構成例を示すブロック図である。本実施形態においては、表示装置100として、複数の液晶素子がマトリクス状に配置された液晶パネルである表示パネル2を有する液晶表示装置を例として説明するが、輝度安定機能を無効にした場合、時間経過によって表示装置の光源の照射する輝度値が変化する構成、あるいは表示パネルが時間経過により表示特性の変化するデバイスで構成されていれば、いずれの表示装置にも適用することができる。
 この図1において、表示装置100は、測定値補正部1、表示パネル2、バックライト3、信号処理部4及び光学センサ5を備えている。ここで、信号処理部4は、図7に示す信号処理部304と同様の動作を行う。以下、信号処理部4の説明は、信号処理部304と異なる部分のみを説明する。
Hereinafter, a display device and a display characteristic calibration method according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration example of a display device 100 according to an embodiment of the device of the present invention. In the present embodiment, a liquid crystal display device having the display panel 2 that is a liquid crystal panel in which a plurality of liquid crystal elements are arranged in a matrix will be described as an example of the display device 100. However, when the luminance stabilization function is disabled, The present invention can be applied to any display device as long as the luminance value irradiated by the light source of the display device changes with the passage of time or the display panel includes a device whose display characteristics change with the passage of time.
In FIG. 1, the display device 100 includes a measurement value correction unit 1, a display panel 2, a backlight 3, a signal processing unit 4, and an optical sensor 5. Here, the signal processing unit 4 performs the same operation as the signal processing unit 304 shown in FIG. Hereinafter, the description of the signal processing unit 4 will be made only on parts different from the signal processing unit 304.
 バックライト3は、表示パネル2の裏面と対向して設けられ、表示パネル2の裏面に対して光を照射する。
 光学センサ5は、表示パネル2の裏面に照射された光が表示パネル2の表示素子を透過し、表示パネル2の測定領域21から出射される出射光の輝度値を測定し、測定した輝度値を光学測定値として、測定値補正部1へ出力する。
The backlight 3 is provided to face the back surface of the display panel 2 and irradiates the back surface of the display panel 2 with light.
The optical sensor 5 measures the luminance value of the emitted light emitted from the measurement region 21 of the display panel 2 when the light irradiated on the back surface of the display panel 2 is transmitted through the display element of the display panel 2, and the measured luminance value. Is output to the measurement value correction unit 1 as an optical measurement value.
 測定値補正部1は、信号処理部4から輝度安定機能を無効とする調整開始信号(後述)が供給されない場合、すなわち、輝度安定機能が有効である場合、光学センサ5からの光学測定値を補正せずに補正光学測定値として出力する。また、測定値補正部1は、信号処理部4から調整開始信号が供給された場合、すなわち、輝度安定機能が無効である場合、この調整処理が終了したことを示す信号が信号処理部4から供給されるまで、光学センサ5からの光学測定値を補正して補正光学測定値として出力する。 When the adjustment start signal (described later) for invalidating the luminance stabilization function is not supplied from the signal processing unit 4, that is, when the luminance stabilization function is valid, the measurement value correction unit 1 outputs the optical measurement value from the optical sensor 5. Output as corrected optical measurement value without correction. In addition, when the adjustment start signal is supplied from the signal processing unit 4, that is, when the luminance stabilization function is invalid, the measurement value correcting unit 1 receives a signal indicating that the adjustment processing has ended from the signal processing unit 4. Until supplied, the optical measurement value from the optical sensor 5 is corrected and output as a corrected optical measurement value.
 信号処理部4は、内部に設定されている画質制御設定値の調整を行う際、測定値補正部1に対して調整開始信号を出力する。また、信号処理部4は、自身の有する輝度安定機能を無効にし、輝度安定機能の無効期間を開始する。これにより、信号処理部4は、光学センサ5から供給される輝度値に対応して、バックライト3の輝度を予め設定された設定輝度値として一定に制御する処理を停止する。このため、バックライト3がCCFLの場合、図8に示すように輝度値が時間経過とともに増加することになる。 The signal processing unit 4 outputs an adjustment start signal to the measurement value correcting unit 1 when adjusting the image quality control setting value set inside. Further, the signal processing unit 4 invalidates its own luminance stabilization function and starts an invalid period of the luminance stabilization function. Thereby, the signal processing unit 4 stops the process of controlling the brightness of the backlight 3 to be constant as a preset brightness value corresponding to the brightness value supplied from the optical sensor 5. For this reason, when the backlight 3 is a CCFL, the luminance value increases with time as shown in FIG.
 そして、信号処理部4は、輝度安定機能を無効にした後、画質制御設定値の調整に用いる光学測定値を取得するタイミングを示すタイミング信号を測定値補正部1に出力する。また、信号処理部4は、画質制御設定値の調整に必要な全ての光学測定値を取得するタイミング信号を出力した後、測定値補正部1に対して調整終了信号を送信し、画質制御設定値の調整に必要な補正光学測定値の送信を要求する。そして、信号処理部4は、予め内部に設定されている所定の時間経過後に、輝度安定機能の無効期間を終了し、輝度安定機能を有効とする。 Then, after invalidating the luminance stabilization function, the signal processing unit 4 outputs a timing signal indicating the timing for acquiring the optical measurement value used for adjusting the image quality control setting value to the measurement value correction unit 1. In addition, the signal processing unit 4 outputs a timing signal for acquiring all optical measurement values necessary for adjusting the image quality control setting value, and then transmits an adjustment end signal to the measurement value correction unit 1 to set the image quality control setting. Requests transmission of corrected optical measurements required for value adjustment. Then, the signal processing unit 4 ends the ineffective period of the luminance stabilization function after the elapse of a predetermined time set in advance, and validates the luminance stabilization function.
 ここで、信号処理部4は、調整開始信号、調整終了信号及びタイミング信号を出力する際、これら調整開始信号、調整終了信号及びタイミング信号に対応して測定したい測定光学値の状態となるよう、自身の内部回路の制御を行う。例えば、測定値補正部1において用いる基準光学測定値(後述)を白輝度の輝度値とする場合、後述する調整開始信号及び調整終了信号を送信する際、白輝度となるように表示パネル2の測定領域21における液晶素子を制御する。すなわち、信号処理部4は、測定領域21の液晶素子を介して出射される光の輝度値が、白輝度の輝度値となる開口度となるように液晶素子を制御する映像信号を表示パネル2へ供給する。例えば、表示パネル2がカラーの液晶パネルであれば、信号処理部4は、測定領域21における液晶素子に対し、RGBの階調度の全てを最大とし、液晶素子の開口度を最大として白輝度とする。 Here, when the signal processing unit 4 outputs the adjustment start signal, the adjustment end signal, and the timing signal, the signal processing unit 4 is in a state of a measurement optical value to be measured corresponding to the adjustment start signal, the adjustment end signal, and the timing signal. It controls its own internal circuit. For example, when a reference optical measurement value (described later) used in the measurement value correction unit 1 is a luminance value of white luminance, when transmitting an adjustment start signal and an adjustment end signal described later, the display panel 2 has a white luminance value. The liquid crystal element in the measurement region 21 is controlled. That is, the signal processing unit 4 displays a video signal for controlling the liquid crystal element so that the luminance value of the light emitted through the liquid crystal element in the measurement region 21 becomes an aperture value that becomes a luminance value of white luminance. To supply. For example, if the display panel 2 is a color liquid crystal panel, the signal processing unit 4 maximizes all of the RGB gradations and maximizes the aperture of the liquid crystal elements with respect to the liquid crystal elements in the measurement region 21. To do.
 また、例えば、黒輝度における輝度値を光学測定値としたい場合、タイミング信号を送信する際、信号処理部4は、表示パネル2の測定領域21の液晶素子の全てに対し、階調度が最低の階調の信号を供給し、液晶素子の開口度を最小とし黒輝度とする。 Further, for example, when it is desired to use the luminance value at the black luminance as the optical measurement value, when transmitting the timing signal, the signal processing unit 4 has the lowest gradation for all the liquid crystal elements in the measurement region 21 of the display panel 2. A gray scale signal is supplied to minimize the aperture of the liquid crystal element and to achieve black luminance.
 また、例えば、光学センサ5がRGBの3チャンネルを有するカラーセンサとし色の測定を行う場合、ユーザが予め設定したRGBのそれぞれの階調度の組合せを決め、タイミング信号を送信する際、この階調度の組合せの制御信号を表示パネル2に対して供給する。そして、信号処理部4は、表示パネル2の測定領域21に対してこの階調度の組合せによる色を測定領域21に表示させる。ここで、信号処理部4は、光学センサ5から取得したRGBのそれぞれのチャンネルの光学測定値が、予め設定したRGBの組合せの階調度に対応して設定されている測定値に対応するか否かを見て、色を表現する際の階調度の設定値を調整する処理を行うことになる。 Further, for example, when the optical sensor 5 is a color sensor having three channels of RGB and performs color measurement, when the user determines a combination of RGB gradations set in advance by the user and transmits a timing signal, this gradation degree is used. The control signal of the combination is supplied to the display panel 2. Then, the signal processing unit 4 causes the measurement region 21 of the display panel 2 to display a color based on the combination of gradations on the measurement region 21. Here, the signal processing unit 4 determines whether or not the optical measurement values of the respective RGB channels acquired from the optical sensor 5 correspond to the measurement values set corresponding to the gradation levels of the preset RGB combinations. Thus, processing for adjusting the set value of the gradation when expressing the color is performed.
 また、例えば、ガンマ曲線の調整を行う場合、信号処理部4は、入力映像信号を表示パネル2の液晶素子を制御する処理後映像信号に変換する際、入力映像信号の階調度を線形に順次増加させた液晶素子の制御信号を、タイミング信号を測定値補正部1に出力する毎に、内部のガンマ曲線による補正を行わずに表示パネル2に対して与える。これにより、信号処理部4は、この階調度の変化による輝度値の変化を、順次、光学センサ5から測定値補正部1を介して供給される補正光学測定信号に基づいて、表示パネル2のガンマ特性を抽出することができる。このため、信号処理部4は、光学測定値から求めた表示パネル2のガンマ特性に対応し、予め設定されているガンマ曲線の調整を行う。
 また、ガンマ曲線の調整を行う場合、外部装置から供給される入力映像信号ではなく、信号処理部4が生成して出力する映像信号である内部映像信号に対しても、上述したガンマ曲線を用いる補正を行わずに、表示パネル2に対して与える処理を行い、ガンマ特性を抽出する処理を行い、ガンマ曲線の調整を行う構成としても良い。
 上述したように、信号処理部4は、タイミング信号を出力する順番で、画質制御設定値のいずれの設定値を調整するためのデータとしての光学測定値の測定を行うかが設定されている。したがって、信号処理部4は、この順番に、順次、測定値補正部1から補正光学測定値が供給されることにより、画質制御設定値の設定値群におけるいずれの制御値を調整するデータとしての光学測定値であるかの判別を行うことができる
Further, for example, when adjusting the gamma curve, the signal processing unit 4 sequentially converts the gradation of the input video signal linearly when converting the input video signal into a processed video signal for controlling the liquid crystal elements of the display panel 2. Every time the timing signal is output to the measurement value correction unit 1, the increased control signal of the liquid crystal element is given to the display panel 2 without being corrected by the internal gamma curve. Thereby, the signal processing unit 4 sequentially changes the luminance value due to the change in the gradation based on the corrected optical measurement signal supplied from the optical sensor 5 via the measurement value correcting unit 1. Gamma characteristics can be extracted. Therefore, the signal processing unit 4 adjusts a preset gamma curve corresponding to the gamma characteristic of the display panel 2 obtained from the optical measurement value.
When adjusting the gamma curve, the above-described gamma curve is used not only for an input video signal supplied from an external device but also for an internal video signal that is a video signal generated and output by the signal processing unit 4. A configuration may be adopted in which the processing given to the display panel 2 is performed without correction, the processing for extracting the gamma characteristic is performed, and the gamma curve is adjusted.
As described above, the signal processing unit 4 is set to perform measurement of the optical measurement value as data for adjusting the setting value of the image quality control setting value in the order in which the timing signals are output. Therefore, the signal processing unit 4 sequentially supplies the corrected optical measurement values from the measurement value correction unit 1 in this order, and as data for adjusting any control value in the set value group of image quality control set values. Can determine if it is an optical measurement
 次に、図2は、図1における測定値補正部1の構成例を示すブロック図である。本実施形態における測定値補正部1は、測定値取得部11、係数演算部12、タイマー部13、制御部14、補正演算部15、測定値記憶部16、補正値記憶部17を備えている。 Next, FIG. 2 is a block diagram showing a configuration example of the measured value correction unit 1 in FIG. The measurement value correction unit 1 in this embodiment includes a measurement value acquisition unit 11, a coefficient calculation unit 12, a timer unit 13, a control unit 14, a correction calculation unit 15, a measurement value storage unit 16, and a correction value storage unit 17. .
 タイマー部13は、調整開始信号が信号処理部4から供給された時点において、カウント値をリセットした後、時刻の計数処理を開始する。
 測定値取得部11は、調整開始信号が信号処理部4から供給されると、光学センサ5から出力されている光学測定値を第1基準光学測定値とし、この第1基準光学測定値とタイマー部13の計数値である時刻T0(例えば、タイマー部13の計数値が0)とを組として(すなわち、対応付けて)、測定値記憶部16における基準値記憶領域に書き込んで記憶させる。この第1基準光学測定値は、信号処理部4が輝度安定機能を有効としており、設定輝度値に制御されている光学測定値である必要がある。
When the adjustment start signal is supplied from the signal processing unit 4, the timer unit 13 resets the count value and then starts time counting processing.
When the adjustment start signal is supplied from the signal processing unit 4, the measurement value acquisition unit 11 sets the optical measurement value output from the optical sensor 5 as the first reference optical measurement value, and the first reference optical measurement value and the timer The time T0 that is the count value of the unit 13 (for example, the count value of the timer unit 13 is 0) is written as a set (that is, associated) and stored in the reference value storage area in the measurement value storage unit 16. The first reference optical measurement value needs to be an optical measurement value in which the signal processing unit 4 has enabled the luminance stabilization function and is controlled to the set luminance value.
 また、測定値取得部11は、光学測定値を取得するタイミング信号が入力される毎に、光学センサ5が出力する光学測定値を読み取る。
 このとき、測定値取得部11は、光学測定値を読み取った時点で、タイマー部13の出力している時刻Tnを読み取る。
 そして、測定値取得部11は、タイミング信号が入力した順番を示す識別情報(例えば、番号)と光学測定値とともに、この光学測定値を取得した時点のタイマー部13の出力する時刻Tnとを組として、測定値記憶部16の対象光学測定値記憶領域に書き込んで記憶させる。
Moreover, the measurement value acquisition part 11 reads the optical measurement value which the optical sensor 5 outputs, whenever the timing signal which acquires an optical measurement value is input.
At this time, the measurement value acquisition unit 11 reads the time Tn output from the timer unit 13 when the optical measurement value is read.
Then, the measurement value acquisition unit 11 combines identification information (for example, a number) indicating the order in which the timing signals are input, the optical measurement value, and the time Tn output by the timer unit 13 when the optical measurement value is acquired. As described above, the target optical measurement value storage area of the measurement value storage unit 16 is written and stored.
 また、測定値取得部11は、信号処理部4から調整終了信号が供給されると、この調整終了信号の供給された時点の光学測定値を測定し、この光学測定値を第2基準光学測定値とする。このとき、測定値取得部11は、この第2基準光学測定値を取得した時点において、タイマー部13の出力する時刻Tsを読み込む。
 そして、測定値取得部11は、第2基準光学測定値と時刻Tsとを組として、測定値記憶部16の基準値記憶領域に対して書き込み、光学測定値の取得が終了したことを示す取得終了信号を係数演算部12に対して出力する。
In addition, when the adjustment end signal is supplied from the signal processing unit 4, the measurement value acquisition unit 11 measures the optical measurement value at the time when the adjustment end signal is supplied, and uses the optical measurement value as the second reference optical measurement. Value. At this time, the measurement value acquisition unit 11 reads the time Ts output from the timer unit 13 at the time when the second reference optical measurement value is acquired.
Then, the measurement value acquisition unit 11 writes the second reference optical measurement value and the time Ts as a set to the reference value storage area of the measurement value storage unit 16, and indicates that the acquisition of the optical measurement value is completed. An end signal is output to the coefficient calculation unit 12.
 係数演算部12は、測定値記憶部16の基準値記憶領域から、時刻T0の無効期間の開始時刻に測定された第1基準光学測定値L0と、時刻T1の無効期間の終了時刻に測定された第2基準光学測定値L1との各々を、それぞれ測定した時刻T0、T1とともに読み出す。
 そして、係数演算部12は、第2基準光学測定値L1から第1基準光学測定値L0を減算した結果を、第2基準光学測定値L1を測定した時刻T1から第1基準光学測定値L0を測定した時刻T0を減算した結果により減算し、係数αを算出する。
The coefficient calculation unit 12 is measured from the reference value storage area of the measurement value storage unit 16 at the first reference optical measurement value L0 measured at the start time of the invalid period at time T0 and at the end time of the invalid period at time T1. The second reference optical measurement value L1 is read out together with the measured times T0 and T1.
Then, the coefficient calculator 12 subtracts the first reference optical measurement value L0 from the second reference optical measurement value L1, and the first reference optical measurement value L0 from the time T1 when the second reference optical measurement value L1 is measured. The coefficient α is calculated by subtracting the measured time T0 from the subtraction result.
 また、係数演算部12は、輝度安定機能が無効の場合において、輝度安定機能を無効にした時刻から経過した時間幅を変数とした、ある時刻に測定した基準輝度値を示す関数、すなわち以下の(1)式に示す線形関数(一次関数)を求める。すなわち、係数演算部12は、係数α(光学測定値変化量)を時間の変数に対して乗算し、この乗算結果に第1基準光学測定値L0を加算した線形関数として、以下の(1)式を求める。
  L = L0 + α(Tn - T0)    …(1)
  この(1)式において、
  α = (L1 - L0)/(T1 - T0)
 であり、Tnは補正対象の光学測定値を測定した時刻である。
 そして、係数演算部12は、求めた(1)式に示す関数を、補正演算部15に対して出力する。
In addition, when the luminance stability function is invalid, the coefficient calculation unit 12 is a function indicating a reference luminance value measured at a certain time, using the time width that has elapsed since the time when the luminance stability function was invalidated, that is, The linear function (linear function) shown in the equation (1) is obtained. That is, the coefficient calculation unit 12 multiplies the coefficient α (amount of change in optical measurement value) by a time variable, and adds the first reference optical measurement value L0 to the multiplication result as a linear function (1) below. Find the expression.
L = L0 + α (Tn−T0) (1)
In this equation (1),
α = (L1−L0) / (T1−T0)
Tn is the time when the optical measurement value to be corrected is measured.
Then, the coefficient calculation unit 12 outputs the function shown in the obtained equation (1) to the correction calculation unit 15.
 次に、図3は、本実施形態における係数演算部12の生成した線形関数を示すグラフである。この図3において、横軸が時刻を示し、縦軸が輝度値Lを示している。(1)の関数が輝度地L0を縦軸の切片とし、傾きがαの線形関数であることが解る。 Next, FIG. 3 is a graph showing a linear function generated by the coefficient calculation unit 12 in the present embodiment. In FIG. 3, the horizontal axis indicates time, and the vertical axis indicates the luminance value L. It can be seen that the function (1) is a linear function with the slope of the vertical axis of the luminance field L0 and an inclination of α.
 図2に戻り、補正演算部15は、上記関数が係数演算部12から供給されると、測定値記憶部16の対象光学測定値記憶領域に記憶されている補正対象光学測定値を時刻T0に近い時刻から、すなわち識別情報の小さい順番に読み出し、補正を行う。
 このとき、補正演算部15は、補正対象光学測定値を読み出す毎に、この補正対象光学測定値を測定した時刻Taを(1)式のTnに代入し、図3に示すように、この時刻Taにおける推定基準光学測定値Laを算出する。そして、補正演算部15は、第1基準光学測定値L0を、算出した推定基準光学測定値Laにより除算して、この除算結果を変化比率βとする。
Returning to FIG. 2, when the above function is supplied from the coefficient calculation unit 12, the correction calculation unit 15 sets the correction target optical measurement value stored in the target optical measurement value storage area of the measurement value storage unit 16 at time T0. Data are read and corrected from the nearest time, that is, in ascending order of identification information.
At this time, every time the correction target optical measurement value is read, the correction calculation unit 15 substitutes the time Ta at which the correction target optical measurement value is measured into Tn of the equation (1), and as shown in FIG. An estimated reference optical measurement value La at Ta is calculated. Then, the correction calculation unit 15 divides the first reference optical measurement value L0 by the calculated estimated reference optical measurement value La, and sets the division result as a change ratio β.
 そして、補正演算部15は、算出した変化比率βを補正対象光学測定値である光学測定値に対して乗算し、この乗算結果を時刻Taに測定した光学測定値の補正光学測定値として算出する。ここで、この変化比率βを光学測定値に対して乗算することにより、時刻Tnの光学測定値を、時刻T0、すなわち輝度安定機能が有効な時点における第1基準輝度値L0に対応した光学測定値に変換することになる。
 また、補正演算部15は、算出した補正光学測定値を、順次、対応する光学測定値の識別番号(順番を示す番号)に対応して、補正値記憶部17に書き込んで記憶させる。
Then, the correction calculation unit 15 multiplies the calculated change ratio β by the optical measurement value that is the correction target optical measurement value, and calculates the multiplication result as the corrected optical measurement value of the optical measurement value measured at the time Ta. . Here, by multiplying the optical measurement value by the change ratio β, the optical measurement value at time Tn is optical measurement corresponding to the first reference luminance value L0 at time T0, that is, when the luminance stabilization function is effective. Will be converted to a value.
The correction calculation unit 15 sequentially writes the calculated corrected optical measurement values in the correction value storage unit 17 in correspondence with the identification numbers (numbers indicating the order) of the corresponding optical measurement values.
 次に、図4は、本実施形態における係数演算部12の生成した線形関数から、順次推定光学測定値を算出する処理を説明するグラフである。この図4において、横軸が時刻を示し、縦軸が輝度値Lを示している。
 補正演算部15は、図4に示すように、(1)式を用いて、時刻Ta、Tbと順番に、推定光学測定値を算出し、それぞれの時刻における変化比率βa、βbを算出する。そして、補正演算部15は、変化比率βa及びβbの各々を、この変化比率βa、βbに対応する時刻に測定された光学測定値それぞれ乗算し、それぞれの時刻の光学測定値の補正光学測定値を算出する。
Next, FIG. 4 is a graph for explaining processing for sequentially calculating estimated optical measurement values from the linear function generated by the coefficient calculation unit 12 in the present embodiment. In FIG. 4, the horizontal axis indicates time, and the vertical axis indicates the luminance value L.
As shown in FIG. 4, the correction calculation unit 15 calculates estimated optical measurement values in the order of the times Ta and Tb using the equation (1), and calculates the change ratios βa and βb at the respective times. Then, the correction calculation unit 15 multiplies each of the change ratios βa and βb by the optical measurement value measured at the time corresponding to the change ratios βa and βb, and corrects the optical measurement value of the optical measurement value at each time. Is calculated.
 そして、補正演算部15は、測定値記憶部16の対象光学測定値記憶領域に記憶されている全ての対象光学測定値に対し、補正光学測定値を算出すると、光学測定値の補正処理を終了したことを示す処理終了信号を制御部14に対して出力する。
 制御部14は、補正演算部15から処理終了信号が供給された場合、取得した光学測定値の補正処理が終了し、得られた補正光学測定値が送信可能であることを示す送信可能信号を、信号処理部4に対して送信する。
Then, when the correction calculation unit 15 calculates the corrected optical measurement values for all the target optical measurement values stored in the target optical measurement value storage area of the measurement value storage unit 16, the correction processing of the optical measurement values ends. A processing end signal indicating that the processing has been performed is output to the control unit 14.
When the process end signal is supplied from the correction calculation unit 15, the control unit 14 ends the correction process of the acquired optical measurement value, and transmits a transmittable signal indicating that the obtained corrected optical measurement value can be transmitted. And transmitted to the signal processing unit 4.
 信号処理部4は、測定値補正部1から送信可能信号が供給されると、画質制御設定値の各々の画質調整を行うモードに移行した後、補正光学測定値の送信を要求することを示す送信要求信号を、測定値補正部1に対して送信する。
 この送信要求信号が供給されると、制御部14は、補正値記憶部17に記憶されている補正光学測定値を識別番号毎に読み出し、例えば記憶された番号の順番(すなわち、測定する際のタイミング信号の順番に対応する番号順)に読み出し、このタイミング信号の順番の番号とともに、読み出した補正光学測定値を信号処理部4へ順次出力する。
The signal processing unit 4 indicates that, when a transmittable signal is supplied from the measurement value correcting unit 1, the mode shifts to a mode in which each image quality control setting value is adjusted, and then requests transmission of the corrected optical measurement value. A transmission request signal is transmitted to the measurement value correction unit 1.
When this transmission request signal is supplied, the control unit 14 reads out the corrected optical measurement values stored in the correction value storage unit 17 for each identification number, for example, the order of the stored numbers (that is, when measuring) The read correction optical measurement values are sequentially output to the signal processing unit 4 together with the order numbers of the timing signals.
 ここで、信号処理部4は、自身内部の内部記憶部に、タイミング信号の順番と、画質制御設定値の設定値群におけるいずれの制御値かを示す制御値識別番号とを対応付ける対応テーブルが記憶されている。
 このため、信号処理部4は、タイミング信号の順番に対応させて、測定値補正部1から供給される補正光学測定値を、対応テーブルに対して書き込んで記憶させる。
Here, the signal processing unit 4 stores a correspondence table that associates the order of the timing signals with the control value identification number indicating which control value in the set value group of the image quality control setting values in the internal storage unit within itself. Has been.
Therefore, the signal processing unit 4 writes and stores the corrected optical measurement value supplied from the measurement value correction unit 1 in the correspondence table in correspondence with the order of the timing signals.
 そして、信号処理部4は、画質設定値の設定値群における制御値の各々の調整を行う際、各制御値の識別番号に対応する補正光学設定値を対応テーブルから読み出し、対応する制御値の調整処理を行う。
 例えば、ガンマ曲線の調整を行う場合、信号処理部4は、ガンマ補正の機能を停止させてガンマ補正を無効とした後、タイミング信号を出力する毎に、中間調の階調度に対して線形的に増加させた輝度調整の信号を表示パネル2に対して出力する。
Then, when adjusting each of the control values in the set value group of image quality setting values, the signal processing unit 4 reads out the corrected optical setting value corresponding to the identification number of each control value from the correspondence table, and sets the corresponding control value. Perform the adjustment process.
For example, when adjusting the gamma curve, the signal processing unit 4 stops the gamma correction function to disable gamma correction, and then linearly adjusts the gradation of halftones every time a timing signal is output. The brightness adjustment signal increased to 1 is output to the display panel 2.
 そして、信号処理部4は、測定値補正部1から供給される補正光学測定値の順番の番号により、いずれの補正光学測定値がガンマ特性の測定を行う測定値であり、かついずれの階調値に対応した測定値であるかを判定し、設定した階調値と補正光学測定値の示す輝度値とを比較し、表示パネル2のガンマ特性を求める。信号処理部4は、この補正光学測定値より求めたガンマ特性により、このガンマ特性を補正するガンマ曲線を算出し、新たな画質制御設定値における制御値とする。そして、信号処理部4は、ガンマ曲線の調整処理が終了した後、ガンマ補正の処理を有効とする。 Then, the signal processing unit 4 determines which correction optical measurement value is a measurement value for measuring the gamma characteristic according to the order number of the correction optical measurement value supplied from the measurement value correction unit 1 and which gradation. It is determined whether the measured value corresponds to the value, the set gradation value is compared with the luminance value indicated by the corrected optical measured value, and the gamma characteristic of the display panel 2 is obtained. The signal processing unit 4 calculates a gamma curve for correcting the gamma characteristic based on the gamma characteristic obtained from the corrected optical measurement value, and sets it as a control value in the new image quality control setting value. Then, after the gamma curve adjustment process is completed, the signal processing unit 4 validates the gamma correction process.
 また、例えば、黒輝度の調整を行う場合、信号処理部4は、タイミング信号を出力する際に、階調度を最も低い値として表示パネル2へ出力する。
 そして、信号処理部4は、測定値補正部1から供給される補正光学測定値の順番の番号により、測定値補正部1から供給される補正光学測定値の中から、黒輝度を調整する補正光学測定値を判定し、この補正光学測定値の示す輝度値と、予め設定されている黒輝度の輝度値とを比較し、予め設定した輝度値となる液晶素子の制御値を求める。
For example, when adjusting the black luminance, the signal processing unit 4 outputs the gradation to the display panel 2 as the lowest value when outputting the timing signal.
Then, the signal processing unit 4 performs correction for adjusting the black luminance from the corrected optical measurement values supplied from the measurement value correction unit 1 based on the order number of the correction optical measurement values supplied from the measurement value correction unit 1. An optical measurement value is determined, and a luminance value indicated by the corrected optical measurement value is compared with a preset luminance value of black luminance to obtain a control value of the liquid crystal element that becomes a preset luminance value.
 このとき、信号処理部4は、制御値を変更する毎に、タイミング信号を測定値補正部1へ送信し、予め設定された範囲内の輝度値となる制御値を求める。この黒輝度の輝度値の制御値のように、調整した制御値による輝度値を測定し、この輝度値が予め設定した輝度値の範囲に含まれるか否かの判定を行い、最終的な制御値を求める調整を行うような繰り返し処理を場合、この繰り返し処理のみの調整モードを有するように信号処理部4を構成しても良い。 At this time, each time the control value is changed, the signal processing unit 4 transmits a timing signal to the measurement value correcting unit 1 to obtain a control value that is a luminance value within a preset range. Like the control value of the brightness value of the black brightness, the brightness value by the adjusted control value is measured, and it is determined whether or not this brightness value is included in the preset brightness value range, and the final control is performed. In the case of iterative processing in which adjustment for obtaining values is performed, the signal processing unit 4 may be configured to have an adjustment mode for only this iterative processing.
 上述したように、本実施例においては、輝度安定機能を無効にした時点(すなわち輝度安定機能が有効な時点)における白輝度の輝度値に対応させるように、つまり、輝度安定した状態における白輝度の輝度値に対応させるように、時間が経過した後の光学測定値の補正を行うことができる。
 これにより、本実施例によれば、輝度安定機能を無効とした後に、時間経過とともに変化する光源の出射する輝度値の影響を無くし、輝度安定機能が働いている状態での画質制御設定値の調整を行うことができ、表示品質を維持することが可能となる。
As described above, in the present embodiment, the white luminance is set so as to correspond to the luminance value of the white luminance at the time when the luminance stabilizing function is disabled (that is, when the luminance stabilizing function is enabled), that is, in the luminance stable state. The optical measurement value after a lapse of time can be corrected so as to correspond to the luminance value of
Thus, according to the present embodiment, after invalidating the luminance stabilization function, the influence of the luminance value emitted from the light source that changes with time is eliminated, and the image quality control setting value in the state where the luminance stabilization function is working Adjustments can be made and display quality can be maintained.
 また、図5は、第1基準測定値(時刻T0)、第2基準測定値(時刻T1)および、第3基準測定値(時刻T2)の3点の基準測定値を用いた補正光学測定値を算出する処理を説明するグラフである。
 上述した実施例の説明においては、時刻T0と時刻T1との2点の基準測定値から求めた単位時間当たりの輝度値の変化量により、光学測定値を補正光学値に補正する処理を行っている。
FIG. 5 shows a corrected optical measurement value using three reference measurement values: a first reference measurement value (time T0), a second reference measurement value (time T1), and a third reference measurement value (time T2). It is a graph explaining the process which calculates.
In the description of the above-described embodiment, the process of correcting the optical measurement value to the correction optical value is performed based on the change amount of the luminance value per unit time obtained from the two reference measurement values at time T0 and time T1. Yes.
 しかしながら、輝度値安定機能を無効にしている時間が長くなると、2点測定の場合、この2点間における線形的な補正を行うと、補正光学測定値の誤差が大きくなることが考えられる。
 このため、図5に示すように、輝度安定機能を無効としている時間幅に応じて、3点以上の複数の基準測定値において白輝度の輝度値を測定して、この複数の基準測定値を用いた補正を行う構成としても良い。
However, if the time during which the luminance value stabilization function is disabled becomes long, in the case of two-point measurement, it is considered that the error of the corrected optical measurement value increases if linear correction between the two points is performed.
For this reason, as shown in FIG. 5, according to the time width during which the luminance stabilization function is disabled, the luminance values of white luminance are measured at a plurality of reference measurement values of three or more points, and the plurality of reference measurement values are obtained. It is good also as a structure which performs the used correction | amendment.
 例えば、図5に示すように、時刻T0における第1基準測定値L0、時刻T1における第2基準測定値L1、及び時刻T2における第3基準測定値T2を用いる。
 図1に戻り、係数演算部12は、時刻T0と時刻T2との間に測定した光学測定値の補正に用いる、第1基準測定値L0と第3基準測定値との間の線形性を示す以下の(2)式を求める。
 L = L0 + α(Tn - T0)   …(2)
 この(2)式において、
 α = (L2 - L0)/(T2 - T0)
 であり、Tnは補正対象の光学測定値を測定した時刻である。
 そして、補正演算部15は、この(2)式より変化比率βを求めて、時刻T0と時刻T2との間に測定した光学測定値の各々の補正光学測定値を求める。
 すなわち、補正演算部15は、(2)式に対して、時刻Tnに時刻Taを代入し、時刻Taにおける推定基準光学測定値Laを算出する。そして、補正演算部15は、第1基準測定値L0を算出した推定基準光学測定値Laにより除算し、時刻Taで測定した光学測定値に対して係数βを乗算し、補正光学測定値を算出する。
For example, as shown in FIG. 5, the first reference measurement value L0 at time T0, the second reference measurement value L1 at time T1, and the third reference measurement value T2 at time T2 are used.
Returning to FIG. 1, the coefficient calculation unit 12 indicates linearity between the first reference measurement value L0 and the third reference measurement value, which is used for correcting the optical measurement value measured between the time T0 and the time T2. The following equation (2) is obtained.
L = L0 + α (Tn−T0) (2)
In this equation (2),
α = (L2−L0) / (T2−T0)
Tn is the time when the optical measurement value to be corrected is measured.
And the correction | amendment calculating part 15 calculates | requires change ratio (beta) from this (2) Formula, and calculates | requires each correction | amendment optical measurement value of the optical measurement value measured between the time T0 and the time T2.
That is, the correction calculation unit 15 substitutes the time Ta for the time Tn in the equation (2), and calculates the estimated reference optical measurement value La at the time Ta. Then, the correction calculation unit 15 divides the first reference measurement value L0 by the estimated reference optical measurement value La and multiplies the optical measurement value measured at time Ta by the coefficient β to calculate the correction optical measurement value. To do.
 また、係数演算部12は、時刻T2と時刻T1との間に測定した光学測定値の補正に用いる、第1基準測定値L0と第3基準測定値との間の線形性を示す以下の(3)式を求める。
 L = L2 + α(Tn-T2)   …(3)
 この(3)式において、
 α = (L1 - L2)/(T1 - T2)
 であり、Tnは補正対象の光学測定値を測定した時刻である。
 そして、補正演算部15は、この(3)式より変化比率βを求めて、時刻T2と時刻T1との間に測定した光学測定値の各々の補正光学測定値を求める。
 すなわち、補正演算部15は、(3)式に対して、時刻Tnに時刻Tbを代入し、時刻Tbにおける推定基準光学測定値Lbを算出する。そして、補正演算部15は、第3基準測定値L2を算出した推定基準光学測定値Lbにより除算し、時刻Tbで測定した光学測定値に対して係数βを乗算し、補正光学測定値を算出する。
In addition, the coefficient calculation unit 12 indicates linearity between the first reference measurement value L0 and the third reference measurement value used for correcting the optical measurement value measured between the time T2 and the time T1 ( 3) Find the equation.
L = L2 + α (Tn−T2) (3)
In this equation (3),
α = (L1−L2) / (T1−T2)
Tn is the time when the optical measurement value to be corrected is measured.
And the correction | amendment calculating part 15 calculates | requires change ratio (beta) from this (3) Formula, and calculates | requires each correction | amendment optical measurement value of the optical measurement value measured between the time T2 and the time T1.
That is, the correction calculation unit 15 substitutes the time Tb for the time Tn in the equation (3), and calculates the estimated reference optical measurement value Lb at the time Tb. Then, the correction calculation unit 15 divides the third reference measurement value L2 by the calculated estimated reference optical measurement value Lb, and multiplies the optical measurement value measured at time Tb by the coefficient β to calculate the correction optical measurement value. To do.
 上述したように、輝度安定機能を無効にした時間幅において、複数の基準測定値を測定し、隣接する基準測定値を測定した時刻の間の各々で線形関数を求める。そして、線形関数の各々に対応させて、それぞれの基準測定値間における光学測定値の補正を行うことにより、より精度の高い補正光学測定値を得ることができる。 As described above, a plurality of reference measurement values are measured in a time width in which the luminance stabilization function is disabled, and a linear function is obtained at each time between adjacent reference measurement values. A corrected optical measurement value with higher accuracy can be obtained by correcting the optical measurement value between the respective reference measurement values in correspondence with each of the linear functions.
 また、図5のように、3個以上の複数の基準測定値を測定した場合、基準測定値間の線形関数を求めるのではなく、各基準測定値から実際の白輝度の輝度値の変化に対応したスプライン曲線を生成する構成としても良い。そして、この生成したスプライン曲線から求めた変化比率によるスプライン補正を行うことにより、さらに高い精度により、光学測定値を補正光学測定値とする補正を行うことができる。 Also, as shown in FIG. 5, when measuring three or more reference measurement values, instead of obtaining a linear function between the reference measurement values, the change in the actual white luminance value is changed from each reference measurement value. A configuration for generating a corresponding spline curve may be adopted. Then, by performing spline correction with the change ratio obtained from the generated spline curve, it is possible to perform correction with the optical measurement value as the corrected optical measurement value with higher accuracy.
 また、図5における時刻T2において、すなわち光学測定値の測定の間で、一旦、光学測定値の測定処理を中止し、輝度安定機能を有効とし、白輝度の輝度値を安定させた後、再度、輝度安定機能を無効にして、光学測定値の測定処理を再開するように、信号処理部4を構成してもよい。これにより、光学測定値の測定量が多く、輝度安定機能を無効とする時間幅が長くなる場合など、実質的に輝度安定機能を無効とする時間幅を少なくすることができるため、輝度値の変化量をより小さくすることが可能となり、光学測定値を補正光学測定値に補正する際の誤差を小さくすることができる。 Further, at time T2 in FIG. 5, that is, between the measurement of the optical measurement value, the measurement process of the optical measurement value is temporarily stopped, the luminance stabilization function is enabled, the white luminance value is stabilized, and then again. The signal processing unit 4 may be configured to disable the luminance stabilization function and restart the measurement process of the optical measurement value. This makes it possible to substantially reduce the time width over which the luminance stabilization function is disabled, such as when the amount of measurement of optical measurement values is large and the time width over which the luminance stability function is disabled becomes long. The amount of change can be further reduced, and the error in correcting the optical measurement value to the corrected optical measurement value can be reduced.
 また、補正に用いる基準測定値を白輝度の輝度値として説明したが、白輝度の輝度値ではなく、基準となれば何色の輝度値、あるいは黒輝度の輝度値などいずれの輝度値を用いてもよい。
 また、実施例においては、液晶表示装置を例にして説明したが、時間経過により輝度値等光学測定値が変動するデバイスであれば、どのような表示装置にも適用することができる。
 また、画質制御設定値を調整するため、輝度安定機能を無効として光学測定値を測定する処理は、ユーザが表示装置100に対して、画質制御設定値を調整する命令を図示しない入力装置から入力する構成、あるいは表示装置100に電源が投入されてから予め設定された時間が経過する毎に、信号処理部4が起動する構成、または双方を備えた構成のいずれでも良い。
Although the reference measurement value used for correction is described as the luminance value of white luminance, any luminance value such as the luminance value of any color or the luminance value of black luminance is used instead of the luminance value of white luminance. May be.
In the embodiments, the liquid crystal display device has been described as an example. However, the present invention can be applied to any display device as long as the optical measurement value such as a luminance value varies with time.
Further, in order to adjust the image quality control setting value, the process of measuring the optical measurement value while disabling the luminance stabilization function is performed by the user inputting a command for adjusting the image quality control setting value to the display device 100 from an input device (not shown). Or a configuration in which the signal processing unit 4 is activated each time a preset time elapses after the display device 100 is turned on, or a configuration including both.
 高精度な色再現が必要な用途で用いられる産業分野、例えばコンピュータグラフィック、医療用途向けの表示装置(例えば、液晶表示装置)として用いることで、長期間にわたってユーザに対して、表示画像の表示品質において安定性の維持を実現することができる。 When used as a display device (for example, a liquid crystal display device) for industrial fields such as computer graphics and medical applications that are used in applications that require high-precision color reproduction, the display image display quality for the user over a long period of time Thus, it is possible to maintain stability.
 1   測定値補正部
 2   表示パネル
 3   バックライト
 4   信号処理部
 5   光学センサ
 11  測定値取得部
 12  係数演算部
 13  タイマー部
 14  制御部
 15  補正演算部
 16  測定値記憶部
 17  補正値記憶部
 21  測定領域
 100 表示装置
DESCRIPTION OF SYMBOLS 1 Measurement value correction | amendment part 2 Display panel 3 Backlight 4 Signal processing part 5 Optical sensor 11 Measurement value acquisition part 12 Coefficient calculation part 13 Timer part 14 Control part 15 Correction calculation part 16 Measurement value memory | storage part 17 Correction value memory | storage part 21 Measurement area | region 100 Display device

Claims (7)

  1.  画像を表示する表示パネルと、
     前記表示パネルの表示面に対向して配置されて、当該表示パネルの出射する光の照射量を光学測定値として測定する光学センサと、
     補正対象の光学測定値である補正対象光学測定値を、単位時間当たりの当該光学測定値の変化量を示す関数により補正し、補正光学測定値として出力する測定値補正部と、
     前記表示パネルに表示される前記画像の表示品質を安定させる、前記表示パネルを制御する制御値を、前記補正光学測定値により生成し、この制御値と外部装置から供給される入力映像信号とから、前記画像を表示させる処理後映像信号を生成する信号処理部と
     を備え、
     前記関数が、前記補正対象光学測定値を測定する際に前記信号処理部が前表示パネルの光源の照射量を一定とする安定機能を無効にしている無効期間における前記照射量の変化を示すことを特徴とする表示装置。
    A display panel for displaying images,
    An optical sensor that is disposed opposite to the display surface of the display panel and measures the amount of light emitted from the display panel as an optical measurement value;
    A measurement value correction unit that corrects an optical measurement value to be corrected, which is an optical measurement value to be corrected, by a function indicating a change amount of the optical measurement value per unit time, and outputs the corrected optical measurement value;
    A control value for controlling the display panel, which stabilizes the display quality of the image displayed on the display panel, is generated from the corrected optical measurement value, and from this control value and an input video signal supplied from an external device A signal processing unit for generating a processed video signal for displaying the image,
    The function indicates a change in the irradiation amount during an invalid period in which the signal processing unit disables a stable function of making the irradiation amount of the light source of the front display panel constant when measuring the optical measurement value to be corrected. A display device.
  2.  前記測定値補正部が、
     時間を計数するタイマー部と、
     前記無効期間を開始した開始時刻を含む異なる時刻に測定された複数の基準光学測定値と、当該基準光学測定値の各々を前記タイマー部が測定した時間と関係を示す関数を求める係数演算部と、
     前記補正対象光学測定値から前記補正光学測定値を求める際、前記関数から前記補正対象光学測定値を測定した時刻における推定基準光学測定値を求め、当該推定基準光学測定値により前記開始時刻における基準光学測定値を除算し、除算結果を変化比とし、当該変化比を前記補正対象光学測定値に乗算し、乗算の結果を補正光学測定値とする補正演算部と
     を備えていることを特徴とする請求項1に記載の表示装置。
    The measurement value correction unit
    A timer unit for counting time;
    A plurality of reference optical measurement values measured at different times including the start time at which the invalid period is started, and a coefficient calculation unit for obtaining a function indicating a relationship between the time when the timer unit measures each of the reference optical measurement values; ,
    When obtaining the corrected optical measurement value from the correction target optical measurement value, an estimated reference optical measurement value at the time when the correction target optical measurement value is measured is obtained from the function, and the reference at the start time is determined by the estimated reference optical measurement value. A correction operation unit that divides an optical measurement value, sets the division result as a change ratio, multiplies the change ratio by the optical measurement value to be corrected, and sets the result of the multiplication as a correction optical measurement value. The display device according to claim 1.
  3.  前記係数演算部が、
     前記タイマーの計数した前記開始時刻である第1時刻に測定された光学測定値である第1基準光学測定値と、当該タイマーの計数した前記第1時刻より後の第2時刻に測定された光学測定値である第2基準光学測定値との差分を求め、当該差分を第1時刻と第2時刻との差の時間幅で減算し、単位時間当たりの光学測定値変化量を算出し、当該光学測定値変化量を時間の変数に対して乗算し、この乗算結果に前記第1基準光学測定値を加算した線形関数を求め、この線形関数を前記関数とすることを特徴とする請求項2に記載の表示装置。
    The coefficient calculator is
    A first reference optical measurement value that is an optical measurement value measured at a first time that is the start time counted by the timer, and an optical that is measured at a second time after the first time counted by the timer. Find the difference from the second reference optical measurement value that is the measurement value, subtract the difference by the time width of the difference between the first time and the second time, calculate the optical measurement value change amount per unit time, 3. A linear function obtained by multiplying an optical measurement value change amount by a time variable, adding the first reference optical measurement value to the multiplication result, and using the linear function as the function. The display device described in 1.
  4.  前記係数演算部が、
     前記開始時刻に測定された基準光学測定値を含む、異なる時刻に測定された複数の基準光学測定値からスプライン曲線を求め、当該スプライン曲線を前記関数とすることを特徴とする請求項2に記載の表示装置。
    The coefficient calculator is
    The spline curve is obtained from a plurality of reference optical measurement values measured at different times including the reference optical measurement value measured at the start time, and the spline curve is used as the function. Display device.
  5.  前記基準光学測定値として測定する輝度値が白輝度であることを特徴とする請求項1から請求項4のいずれか一項に記載の表示装置。 The display device according to any one of claims 1 to 4, wherein a luminance value measured as the reference optical measurement value is white luminance.
  6.  前記補正対象光学測定値は、黒輝度、ガンマ特性及び色の測定の各々における輝度値であることを特徴とする請求項1から請求項5のいずれか一項に記載の表示装置。 6. The display device according to claim 1, wherein the optical measurement value to be corrected is a luminance value in each of black luminance, gamma characteristic, and color measurement.
  7.  液晶表示装置の表示パネルの表示面に対向して配置されて、当該表示パネルの出射する光の照射量を光学測定値として光学センサにより測定する過程と、
     測定値補正部が、補正対象の光学測定値である補正対象光学測定値を、単位時間当たりの当該光学測定値の変化量を示す関数により補正し、補正光学測定値として出力する測定値補正過程と、
     信号処理部が、前記表示パネルに表示される前記画像の表示品質を安定させる、前記表示パネルを制御する制御値を、前記補正光学測定値により生成し、この制御値と外部装置から供給される入力映像信号とから、前記表示パネルに画像を表示させる処理後映像信号を生成する信号処理過程と
     を含み、
     前記関数が、前記補正対象光学測定値を測定する際に前記信号処理部が前表示パネルの光源の照射量を一定とする安定機能を無効にしている無効期間における前記照射量の変化を示すことを特徴とする表示特性校正方法。
    A process of measuring an irradiation amount of light emitted from the display panel by an optical sensor as an optical measurement value, which is disposed opposite to the display surface of the display panel of the liquid crystal display device,
    A measurement value correction process in which the measurement value correction unit corrects an optical measurement value to be corrected, which is an optical measurement value to be corrected, with a function indicating a change amount of the optical measurement value per unit time, and outputs the corrected optical measurement value. When,
    A signal processing unit generates a control value for controlling the display panel, which stabilizes the display quality of the image displayed on the display panel, based on the corrected optical measurement value, and is supplied from the control value and an external device. A signal processing step of generating a post-processing video signal for displaying an image on the display panel from an input video signal,
    The function indicates a change in the irradiation amount during an invalid period in which the signal processing unit disables a stable function of making the irradiation amount of the light source of the front display panel constant when measuring the optical measurement value to be corrected. Display characteristic calibration method characterized by
PCT/JP2012/059802 2012-04-10 2012-04-10 Display device and display characteristic correction method WO2013153622A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014509937A JP5904614B2 (en) 2012-04-10 2012-04-10 Display device and display characteristic calibration method
CN201280072228.0A CN104205201B (en) 2012-04-10 2012-04-10 Display device and display characteristic correction method
PCT/JP2012/059802 WO2013153622A1 (en) 2012-04-10 2012-04-10 Display device and display characteristic correction method
US14/390,955 US9741294B2 (en) 2012-04-10 2012-04-10 Display device and display characteristic correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/059802 WO2013153622A1 (en) 2012-04-10 2012-04-10 Display device and display characteristic correction method

Publications (1)

Publication Number Publication Date
WO2013153622A1 true WO2013153622A1 (en) 2013-10-17

Family

ID=49327230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059802 WO2013153622A1 (en) 2012-04-10 2012-04-10 Display device and display characteristic correction method

Country Status (4)

Country Link
US (1) US9741294B2 (en)
JP (1) JP5904614B2 (en)
CN (1) CN104205201B (en)
WO (1) WO2013153622A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102556467B1 (en) * 2015-09-10 2023-07-18 삼성디스플레이 주식회사 Organic light emitting display device and method for setting gamma reference voltages thereof
CN107039010B (en) * 2017-05-09 2020-01-31 深圳市华星光电技术有限公司 Automatic gamma curve repairing system and automatic gamma curve repairing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179276A (en) * 1994-12-21 1996-07-12 Sharp Corp Liquid crystal display device
JP2006276725A (en) * 2005-03-30 2006-10-12 Nec Display Solutions Ltd Liquid crystal display device
WO2007023681A1 (en) * 2005-08-25 2007-03-01 Sharp Kabushiki Kaisha Image display device
WO2011121880A1 (en) * 2010-03-30 2011-10-06 株式会社ナナオ Light volume control method for back light, and lcd device using same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774639A (en) * 1995-02-17 1998-06-30 Eastman Kodak Company Printer media including compressed sensitometry curve information
CN100508013C (en) * 2004-10-20 2009-07-01 富士通天株式会社 Display device, image quality adjustment method for display device, image quality adjustment device, and contrast adjustment device
JP2006303016A (en) * 2005-04-18 2006-11-02 Rohm Co Ltd Lighting device and display unit using the same
CN100580758C (en) * 2005-05-26 2010-01-13 恩益禧电子股份有限公司 Display device, controller driver and driving method for display panel
JP4810249B2 (en) * 2006-02-15 2011-11-09 Necディスプレイソリューションズ株式会社 Image display device and luminance range correction method
CN101029985A (en) 2006-03-03 2007-09-05 日本电气株式会社 Light source apparatus, display apparatus, terminal apparatus, and control method thereof
JP2007280556A (en) * 2006-04-11 2007-10-25 Nec Electronics Corp Semiconductor device for photodetection, optical pickup device, and optical disk device
JP2008102490A (en) 2006-09-19 2008-05-01 Funai Electric Co Ltd Liquid crystal display device and liquid crystal television
US8442316B2 (en) * 2007-01-05 2013-05-14 Geo Semiconductor Inc. System and method for improving color and brightness uniformity of backlit LCD displays
US8994757B2 (en) * 2007-03-15 2015-03-31 Scalable Display Technologies, Inc. System and method for providing improved display quality by display adjustment and image processing using optical feedback
US20090033612A1 (en) * 2007-07-31 2009-02-05 Roberts John K Correction of temperature induced color drift in solid state lighting displays
JP5355873B2 (en) 2007-08-24 2013-11-27 株式会社ユニバーサルエンターテインメント Image processing apparatus and system
JP2009058342A (en) * 2007-08-31 2009-03-19 Seiko Epson Corp Sensing circuit, photodetection circuit, electro-optical device and electronic device
KR20090025935A (en) * 2007-09-07 2009-03-11 삼성전자주식회사 Photo sensor circuit, liquid crystal display comprising the same, and operating method of liquid crystal display
WO2010013308A1 (en) * 2008-07-28 2010-02-04 Necディスプレイソリューションズ株式会社 Gray scale display device
US9001194B2 (en) * 2009-05-14 2015-04-07 Eizo Corporation Stereo image display device that is capable of making a stereo image recognized based on a right-eye image and a left-eye image
CA2696778A1 (en) * 2010-03-17 2011-09-17 Ignis Innovation Inc. Lifetime, uniformity, parameter extraction methods
JP5103507B2 (en) * 2010-08-04 2012-12-19 シャープ株式会社 Multi display system
JP5652188B2 (en) * 2010-12-15 2015-01-14 ソニー株式会社 Display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179276A (en) * 1994-12-21 1996-07-12 Sharp Corp Liquid crystal display device
JP2006276725A (en) * 2005-03-30 2006-10-12 Nec Display Solutions Ltd Liquid crystal display device
WO2007023681A1 (en) * 2005-08-25 2007-03-01 Sharp Kabushiki Kaisha Image display device
WO2011121880A1 (en) * 2010-03-30 2011-10-06 株式会社ナナオ Light volume control method for back light, and lcd device using same

Also Published As

Publication number Publication date
JP5904614B2 (en) 2016-04-13
CN104205201A (en) 2014-12-10
JPWO2013153622A1 (en) 2015-12-17
CN104205201B (en) 2017-05-17
US9741294B2 (en) 2017-08-22
US20150054806A1 (en) 2015-02-26

Similar Documents

Publication Publication Date Title
KR100741024B1 (en) Aging compensation method for liquid crystal display device, aging compensation apparatus for liquid crystal display device, recorded medium recording computer program, and liquid crystal display device
WO2019214449A1 (en) Screen brightness control method and device, and terminal device
JP3974630B2 (en) Brightness adjustment method, liquid crystal display device, and computer program
CN107808641B (en) Display device and color correction method
JP2005128254A (en) Display characteristic calibration method, display characteristic calibration system, and computer program
US20080303806A1 (en) Automatic Illuminance Compensation in Displays
JP2010145773A (en) Display device and method of controlling display device
KR100593112B1 (en) Image processing system, projector and image processing method
US20150035870A1 (en) Display apparatus and control method for same
US8850714B2 (en) Chromaticity correction device, chromaticity correction method, and display device
JP5904614B2 (en) Display device and display characteristic calibration method
JP2006330187A (en) Liquid crystal display and method of compensating its luminance unevenness
US20140160175A1 (en) Display apparatus and control method thereof
JP2008102490A (en) Liquid crystal display device and liquid crystal television
TWI653622B (en) Display and color correction method
WO2015173948A1 (en) Image correction device, display device, and image correction method
WO2013038560A1 (en) Display device and method for correcting variations in display device
WO2014132438A1 (en) Optical measurement apparatus, and method for adjusting optical characteristics
JP5911118B2 (en) Display device and display correction method
JP2005049746A (en) Image display device
JP2018056717A (en) Determination device, method for controlling the same, and display device
WO2014125617A1 (en) Display device and control method for display device
JP2019086639A (en) Control device and control method
JP6057537B2 (en) Image display device
JP2014123051A (en) Luminance control method and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873902

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14390955

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014509937

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873902

Country of ref document: EP

Kind code of ref document: A1