WO2014125617A1 - Display device and control method for display device - Google Patents
Display device and control method for display device Download PDFInfo
- Publication number
- WO2014125617A1 WO2014125617A1 PCT/JP2013/053705 JP2013053705W WO2014125617A1 WO 2014125617 A1 WO2014125617 A1 WO 2014125617A1 JP 2013053705 W JP2013053705 W JP 2013053705W WO 2014125617 A1 WO2014125617 A1 WO 2014125617A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- chromaticity
- primary color
- color
- display
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/02—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0666—Adjustment of display parameters for control of colour parameters, e.g. colour temperature
Definitions
- the present invention relates to a display device that performs calibration and a control method for the display device.
- a white backlight liquid crystal display device is provided with a color detection unit for three colors of RGB, and chromaticity information output from the color detection unit and a reference value for chromaticity information of each color stored in advance. And a technique for correcting the color conversion table based on the comparison result and generating a video signal to be supplied to the liquid crystal display element using the corrected color conversion table. According to the technology disclosed in Patent Document 1, faithful color reproduction can be achieved in a liquid crystal display device with respect to a change in chromaticity of a white backlight over time.
- the measurement error of the color sensor is generally not negligible, and there is a problem that the white point chromaticity is easily shifted during calibration.
- the chromaticity value of a color sensor is based on the output ratio of multiple sensor sensations with different received colors such as RGB or XYZ, this output ratio is the difference in characteristics (light receiving position, luminance linearity, temperature drift) between sensors (between colors) This is because it fluctuates due to deterioration over time.
- a color filter material used for color separation has a wavelength characteristic that changes with time, and is likely to cause a change in measured chromaticity. Further, the color filter material has a different degree of change over time in the optical characteristics of the color filter material for each color.
- a color sensor measurement result includes a change (error) with time of the color sensor. Then, even if the video signal is corrected based on the measurement result of the color sensor, it can cope with the temporal change of the white backlight, but it can cope with the temporal change of the color detection unit itself. I can't. For this reason, there is a problem in that the chromaticity of white is shifted when the optical characteristics of each color of the color detection unit are individually changed over time. In addition, if the color sensor is provided with measures against changes in optical characteristics over time, there is a problem that the color sensor tends to be expensive and large.
- the problem to be solved is that, when performing calibration, the sensor is affected by the characteristic error between the sensors, and the color sensor is enlarged.
- the present invention includes a reference color generation unit that generates a plurality of primary color signals and sequentially displays them on a display unit, and a monochromatic light detection unit that detects the intensity of image light corresponding to the primary color signals displayed on the display unit, ,
- the storage unit for storing the primary color chromaticity of the display unit and the luminance coefficient for generating the luminance value of the display unit, and the XYZ stimulation value of each primary color from the primary color chromaticity and the detection value of the light detection unit, respectively.
- a control unit that compares the chromaticity of the white point with the primary color chromaticity and controls an illumination unit that illuminates the display unit in accordance with a comparison result;
- the present invention also generates a plurality of primary color signals, sequentially displays them on the display unit, detects the light intensity of the video according to the primary color signals displayed on the display unit by the single color detection unit, and stores it in the storage unit.
- An XYZ stimulus value for each primary color is calculated from the stored primary color chromaticity and the detected detection value, and an XYZ stimulus is obtained from the calculated XYZ stimulus value for each primary color and the luminance coefficient stored in the storage unit.
- a white point chromaticity is calculated from the calculated XYZ stimulus value, the white point chromaticity is compared with the primary color chromaticity, and the display unit is illuminated according to the comparison result.
- the illumination unit is controlled.
- the lighting unit is controlled by obtaining the chromaticity and brightness of the white spot using the measurement result obtained by the single color light detection unit, so that it is not affected by the characteristic error between sensors,
- the illumination unit can be controlled without using a sensor.
- FIG. 1 is a schematic functional block diagram showing the configuration of the display device 1 in the first embodiment.
- the reference color generation unit 101 generates a plurality of primary color signals and sequentially displays them on the display unit 102.
- the light detection unit 103 detects the light intensity of the video according to the primary color signal displayed on the display unit 102.
- the storage unit 104 stores the primary color chromaticity of the display unit 102 and the luminance coefficient for generating the luminance value of the display unit 102.
- the first calculation unit 105 calculates the XYZ stimulus value of each primary color from the primary color chromaticity and the detection value of the light detection unit 103.
- the second calculation unit 106 calculates an XYZ stimulus value obtained from the XYZ stimulus value and the luminance coefficient of each primary color, and obtains the white point chromaticity from the calculated XYZ stimulus value.
- the control unit 107 compares the chromaticity of the white spot with the primary color chromaticity, and controls the illumination unit that illuminates the display unit 102 according to the comparison result.
- FIG. 2 is a schematic functional block diagram showing the configuration of the display device 2 in the second embodiment.
- the video processing unit 201 performs necessary signal processing on a video signal input from an external computer or a video device in accordance with an instruction from the control unit 207, and outputs the processed signal to the display unit 204.
- This necessary signal processing includes scaling processing and gamma correction.
- the video processing unit 201 includes a reference color generation unit 202.
- the reference color generation unit 202 sequentially outputs a reference color to the display unit 204 in accordance with an instruction from the control unit 207.
- a reference color for example, it is a primary color, and three colors of R (red), G (green), and B (blue) can be used.
- the light detection unit 203 detects the intensity of monochromatic light.
- the output from the light detection unit 203 includes information representing physical quantities such as voltage, current, and frequency.
- the light detection unit 203 detects luminance.
- the light detection unit 203 detects the intensity of light having a predetermined wavelength. That is, the intensity of light that has passed through a filter having a predetermined wavelength characteristic is detected.
- the light detection unit 203 is installed on an end or back surface (inner surface side of the display device 2) of the front surface (outer surface side of the display device 2) of the display unit 204.
- the display unit 204 includes a display element such as an LCD, for example, and displays a video based on the video signal input from the video processing unit 201.
- the display unit 204 is provided with a backlight unit 205.
- the backlight unit 205 includes a backlight driving unit and a backlight.
- the backlight drive unit drives the backlight according to an instruction from the control unit 207.
- the backlight has three colors (three primary colors) of R, G, and B, and the chromaticity of the entire backlight can be adjusted by individually driving the backlights of the respective colors.
- the storage unit 206 stores reference color gamut information and a luminance coefficient in addition to a control program necessary for the control unit 207 to perform control, various adjustment values of the display device 2, and the like.
- the control unit 207 controls each unit of the display device 2.
- the control unit 207 calculates a detection value in the color gamut for each of the predetermined colors based on the amount of light for each of the predetermined colors obtained by the light detection unit 203 and the color gamut information.
- the luminance chromaticity of the white point is calculated for each of the predetermined colors on the basis of the detected value and the luminance coefficient in the color gamut.
- the control unit 207 calculates the white point chromaticity from the luminance chromaticity of the white point.
- the control unit 207 controls each unit.
- FIG. 3 is a flowchart for describing processing in which the display device 2 stores the color gamut information and the luminance coefficient in the storage unit 206.
- the reference color generation unit 202 sequentially displays primary colors (R, G, B) on the display unit 204.
- the color (R, G, B) displayed on the display unit 204 is simultaneously measured by the reference color sensor and the light detection unit 203 provided outside the display device 2 (steps S1 to S9).
- the detection values measured by the light detection unit 203 are Vr, Vg, Vb
- the detection values of the reference color sensor are (Xr, Yr, Zr), (Xg, Yg, Zg), (Xb, Yb, Zb).
- the reference color generation unit 202 displays R of the primary colors on the display unit 204 (step S1).
- the light detection unit 203 measures the color (R in this case) displayed on the display unit 204, and obtains a detection value Vr as a measurement result (step S2).
- the reference color sensor measures the color (R in this case) displayed on the display unit 204, and obtains detection values (Xr, Yr, Zr) as measurement results (step S3).
- the reference color generation unit 202 displays G of the primary colors on the display unit 204 (step S4).
- the light detection unit 203 measures the color (G in this case) displayed on the display unit 204, and obtains a detection value Vg as a measurement result (step S5).
- the reference color sensor measures the color (G in this case) displayed on the display unit 204, and obtains detection values (Xg, Yg, Zg) as measurement results (step S6).
- the reference color generation unit 202 displays B of the primary colors on the display unit 204 (step S7).
- the light detection unit 203 measures the color (B here) displayed on the display unit 204, and obtains a detection value Vb as a measurement result (step S8).
- the reference color sensor measures the color (B in this case) displayed on the display unit 204, and obtains detection values (Xb, Yb, Zb) as measurement results (step S9).
- the detection value of the light detection unit 203 is a physical quantity such as voltage and current as described above.
- the intensity of light that has passed through a filter having a predetermined wavelength characteristic is output as a voltage.
- the light detection unit 203 means an output of the G sensor when each of RGB reference colors is displayed.
- the wavelength characteristics are uniform.
- the XYZ stimulation values (calculated values) of the respective primary colors are (X′r, Y′r, Z′r), (X′g, Y′g, Z′g), (X′b, Y′b, Z′b).
- control unit 207 (X′r, Y′r, Z′r), (X′g, Y′g, Z′g), which are the XYZ stimulation values (calculated values) obtained in step S11, (X′b, Y′b, Z′b) and the detected values (Xr, Yr, Zr), (Xg, Yg, Zg), (Xg, Yr, Zr) of the reference color sensor obtained in steps S3, S6, and S9.
- Xb, Yb, Zb) are used to solve the three simultaneous equations to obtain a 3 ⁇ 3 matrix M that converts X′Y′Z ′ to XYZ (Formula 1).
- the control unit 207 detects the XYZ stimulus value (X′Y′Z ′) calculated using the detection value of each primary color detected by the light detection unit 203 and the chromaticity detected by the reference color sensor with the reference color sensor.
- the luminance coefficient M is obtained so as to coincide with the XYZ stimulation value (XYZ) of the primary color.
- M of [XYZ] M ⁇ [X′Y′Z ′] is obtained (S12).
- the 3 ⁇ 3 matrix M in (Equation 1) includes components of M 11 , M 12 , M 13 , M 21 , M 22 , M 23 , M 31 , M 32 , and M 33 .
- control unit 207 stores the 3 ⁇ 3 matrix M as a luminance coefficient in the storage unit 206 and stores the color gamut information (x, y) obtained in step S10. It memorize
- FIG. 4 is a flowchart illustrating an operation in which the display device 2 controls the backlight.
- the control unit 207 causes the reference color generation unit 202 included in the video processing unit 201 to sequentially display primary colors (for example, R, G, and B) on the display unit 204 and measures each display color by the light detection unit 203. .
- the detection values measured by the light detection unit 203 are defined as Vr1, Vg1, and Vb1 (S21 to S26).
- the control unit 207 causes the reference color generation unit 202 to display the primary color (R in this case) on the display unit 204 (step S21).
- the light detection unit 203 measures the display color (R in this case) displayed on the display unit 204 at this time, and obtains a detection value Vr1 as a measurement result (step S22).
- control unit 207 causes the reference color generation unit 202 to display the primary color (G in this case) on the display unit 204 (step S23).
- the light detection unit 203 measures the display color (G in this case) displayed on the display unit 204 at this time, and obtains a detection value Vg1 as a measurement result (step S24).
- the control unit 207 causes the reference color generation unit 202 to display the primary color (here, B) on the display unit 204 (step S25).
- the light detection unit 203 measures the display color (B in this case) displayed on the display unit 204 at this time, and obtains a detection value Vb1 as a measurement result (step S26).
- the control unit 207 reads the luminance coefficient M and the color gamut information (x, y) from the storage unit 206 (S27).
- the calculated XYZ stimulus values of the respective primary colors are (X′ra, Y′ra, Z′ra), (X′ga, Y′ga, Z′ga), (X′ba, Y′ba, Z). 'ba) (S28).
- control unit 207 determines the XYZ stimulation values (X′ra, Y′ra, Z′ra), (X′ga, Y′ga, Z′ga), (X′ba, By multiplying Y′ba, Z′ba) by the luminance coefficient M (Equation 2), XYZ stimulation values (Xra, Yra, Zra), (Xga, Yga, Zga), (Xba, Yba, Zba) are obtained (S29).
- This added XYZ stimulus value (Xwa, Ywa, Zwa) indicates the luminance chromaticity (XYZ stimulus value) of the white point at the time of calibration. That is, in the present embodiment, the luminance chromaticity (XYZ stimulus value) of the white point can be obtained based on the detected values of the three primary colors.
- the control unit 207 compares the chromaticity xy of the white point obtained by calculation with the color gamut information (x, y) stored in the storage unit 206, and the RGB backlight drive amount according to the comparison result.
- the backlight drive amounts of R, G, and B are adjusted so that the comparison results match.
- the RGB backlight drive amount corresponding to the deviation between the calculated white point chromaticity and gamut information is stored in advance in a LUT (lookup table), and the control unit 207 responds to the comparison result.
- the RGB backlight driving amount can be read with reference to the LUT, and the backlight driving unit can drive the backlight in accordance with the RGB backlight driving amount. Or you may repeat the process shown in FIG. 4 until a deviation becomes below a predetermined value.
- the brightness chromaticity of the white point and the chromaticity of the white point at the time of calibration by the monochrome sensor are obtained, and compared with the detection value by the reference color sensor stored at the time of factory production, so that the difference is eliminated, the backlight drive unit
- the light source of the backlight it is possible to obtain an effect that a high-quality color reproducibility can be obtained regardless of a change in the chromaticity of the backlight.
- FIG. 5 is a schematic block diagram showing the function of the display device 2a in the third embodiment.
- the video processing unit 201a includes a reference color generation unit 202 and a color conversion table 202b.
- the color conversion table 202b has data for controlling the chromaticity of the video signal in accordance with the deviation between the color gamut information and the obtained white point chromaticity.
- the control unit 207a performs brightness control of the white backlight.
- the control unit 207a performs backlight luminance control instead of backlight control in consideration of chromaticity as in the second embodiment.
- the video processing unit 201a performs control according to chromaticity.
- the display unit 204 a includes a white backlight unit 205 a instead of the backlight unit 205.
- the white backlight unit includes a backlight that is a white light source and a backlight driving unit that drives the backlight.
- the processing in FIG. 3 and the processing from steps S21 to S31 in FIG. 4 are performed in the same manner, and instead of adjusting the backlight driving amount in step S32, the video processing unit 201a
- the chromaticity of the video signal is adjusted using the color conversion table 202b.
- the chromaticity of the RGB video signal can be adjusted using, for example, a color conversion table (LUT) corresponding to the deviation between the color gamut information and the obtained white point chromaticity.
- the control unit 207 performs brightness control of the white backlight.
- the single color may be any color, and only one of the simple color sensors may be used.
- the detection accuracy can be increased by using only a single color (for example, G) sensor output.
- the conventional display device for example, when only white is used instead of the sequential display of the primary colors as described above, a white color is displayed, and in this state, a color sensor that can measure each color of RGB (an R sensor, G sensor and B sensor) are measured once. In this case, a characteristic difference occurs between a plurality of sensors, and thus measurement errors cannot be ignored.
- the three primary colors are sequentially displayed and each displayed color is measured using only one sensor, so that it is not affected by the characteristic difference between the sensors.
- the light detection unit detects the intensity of monochromatic light using a monochrome sensor, but the light detection unit is not limited to a luminance sensor.
- the light detection unit may be any one sensor (for example, G) among multi-sensors (for example, RGB sensors) or a total output of a plurality of sensors (for example, the sum of R, G, and B).
- one arbitrary sensor can be selected in consideration of aging deterioration for each sensor, color spectrum characteristics (of the sensor and the display), and the like.
- a single monochrome sensor can replace the color sensor having the three-color light detection unit necessary for display calibration and white balance adjustment. Miniaturization can be achieved. Further, according to the first to third embodiments, high chromaticity accuracy can be obtained. This is because measurement is performed sequentially by a single sensor (single monochrome sensor), so there is no need to use an output ratio between a plurality of sensors (between colors), and a characteristic error (space) between a plurality of sensors (between colors). This is because it is not affected by position, luminance linearity, temperature drift, aging deterioration, etc. This is also because the primary color chromaticity of the display device is less changed due to individual differences and aging degradation. For this reason, even if conversion using fixed characteristics (for example, luminance conversion coefficient) is used, highly reliable chromaticity can be maintained for a long period of time.
- fixed characteristics for example, luminance conversion coefficient
- a program for realizing the functions of the display device 1 in FIG. 1, the display device 2 in FIG. 2, or the display device 2a in FIG. 5 is recorded on a computer-readable recording medium, and the program recorded on this recording medium
- the white point chromaticity may be measured by reading the program into a computer system and executing it.
- the “computer system” includes an OS and hardware such as peripheral devices.
- the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
- the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
- the “computer-readable recording medium” includes a medium that holds a program for a certain period of time, such as a volatile memory inside a computer system serving as a server or a client.
- the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
- the program may be stored in a predetermined server, and the program may be distributed (downloaded or the like) via a communication line in response to a request from another device.
- the display device can be used in industries that require numerical management of display color characteristics such as calibration.
- it can be used as a display device for medical use or graphic design.
- it is possible to meet the measurement characteristics that are required for medical use, in which luminance is more important than chromaticity, and the need for downsizing the light detection unit.
- it is possible to reduce the cost of the calibration system and increase the accuracy of low-cost sensors.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
A display device comprises: a reference color generation unit (101) for generating a plurality of primary color signals and sequentially displaying the plurality of primary color signals on a display unit (102); a monochromatic light detection unit (103) for detecting the light intensities of pictures corresponding to the primary color signals displayed on the display unit (102); a storage unit (104) for storing the primary color chromaticities of the display unit (102) and a luminance coefficient for generating the luminance value of the display unit (102); a first calculation unit (105) for calculating, from the primary color chromaticities and the detection values of the light detection unit (103), the XYZ stimulus values of the respective primary colors; a second calculation unit (106) for calculating XYZ stimulus values found from the XYZ stimulus values of the respective primary colors and the luminance coefficient, and finding the chromaticity of a white spot from the calculated XYZ stimulus values; and a control unit (107) for comparing the chromaticity of the white spot and the primary color chromaticities, and controls backlight for illuminating the display unit (102) according to the result of the comparison.
Description
本発明は、キャリブレーションを行う表示装置、その表示装置の制御方法に関する。
The present invention relates to a display device that performs calibration and a control method for the display device.
グラフィックデザイン・医療用途向け表示装置では画面の白点色度を一定値に保つため、カラーセンサによる定期校正(キャリブレーション、CAL)が行われている。
例えば、特許文献1には、白色バックライトの液晶表示装置において、RGB3色の色検出部を備え、当該色検出部の出力する色度情報と予め記憶してある各色の色度情報の基準値とを比較して、その比較結果に基づいて、カラー変換テーブルの補正を行い、この補正されたカラー変換テーブルを用いて液晶表示素子に供給する映像信号を生成する技術が開示されている。この特許文献1の技術によれば、白色バックライトの色度の経時的な変化に対し、液晶表示装置において忠実な色再現が可能になる。 In graphic design / medical display devices, periodic calibration (calibration, CAL) is performed by a color sensor in order to keep the white point chromaticity of the screen at a constant value.
For example, inPatent Document 1, a white backlight liquid crystal display device is provided with a color detection unit for three colors of RGB, and chromaticity information output from the color detection unit and a reference value for chromaticity information of each color stored in advance. And a technique for correcting the color conversion table based on the comparison result and generating a video signal to be supplied to the liquid crystal display element using the corrected color conversion table. According to the technology disclosed in Patent Document 1, faithful color reproduction can be achieved in a liquid crystal display device with respect to a change in chromaticity of a white backlight over time.
例えば、特許文献1には、白色バックライトの液晶表示装置において、RGB3色の色検出部を備え、当該色検出部の出力する色度情報と予め記憶してある各色の色度情報の基準値とを比較して、その比較結果に基づいて、カラー変換テーブルの補正を行い、この補正されたカラー変換テーブルを用いて液晶表示素子に供給する映像信号を生成する技術が開示されている。この特許文献1の技術によれば、白色バックライトの色度の経時的な変化に対し、液晶表示装置において忠実な色再現が可能になる。 In graphic design / medical display devices, periodic calibration (calibration, CAL) is performed by a color sensor in order to keep the white point chromaticity of the screen at a constant value.
For example, in
しかし、特許文献1の技術では、カラーセンサは、一般的に測定誤差が無視できず、校正時に白点色度がずれやすい課題がある。カラーセンサの色度値は、RGBもしくはXYZ等の受光色の異なる複数センサ感の出力比に基づく一方、この出力比は、センサ間(色間)の特性差(受光位置、輝度リニアリティ、温度ドリフト、経年劣化等)により変動するためである。特に、色分離に用いられるカラーフィルタ素材は経時的な変化により波長特性が変化し、測定した色度の変化につながりやすい。
また、カラーフィルタ素材は、カラーフィルタ素材の光学特性の経時的な変化の度合いも色毎に異なる。このため簡易型カラーセンサによる色度の補正では、長期間に渡って良好な補正を行うことが困難である。
特許文献1では、カラーセンサの測定結果にカラーセンサの経時的な変化(誤差)が含まれてしまう。そうすると、このカラーセンサの測定結果に基づいて映像信号を補正したとしても、白色バックライトの経時的な変化には対応することはできるが、色検出部自体の経時的な変化には対応することができない。このため、色検出部の色毎の光学特性に個別に経時的な変化が生じると白の色度がずれるという問題がある。また、カラーセンサにこれら光学特性の経時的な変化に対する対策を施すと、カラーセンサが高価・大型になりやすいという問題もある。 However, in the technique ofPatent Document 1, the measurement error of the color sensor is generally not negligible, and there is a problem that the white point chromaticity is easily shifted during calibration. While the chromaticity value of a color sensor is based on the output ratio of multiple sensor sensations with different received colors such as RGB or XYZ, this output ratio is the difference in characteristics (light receiving position, luminance linearity, temperature drift) between sensors (between colors) This is because it fluctuates due to deterioration over time. In particular, a color filter material used for color separation has a wavelength characteristic that changes with time, and is likely to cause a change in measured chromaticity.
Further, the color filter material has a different degree of change over time in the optical characteristics of the color filter material for each color. For this reason, it is difficult for the simple color sensor to correct the chromaticity for a long period of time.
InPatent Document 1, a color sensor measurement result includes a change (error) with time of the color sensor. Then, even if the video signal is corrected based on the measurement result of the color sensor, it can cope with the temporal change of the white backlight, but it can cope with the temporal change of the color detection unit itself. I can't. For this reason, there is a problem in that the chromaticity of white is shifted when the optical characteristics of each color of the color detection unit are individually changed over time. In addition, if the color sensor is provided with measures against changes in optical characteristics over time, there is a problem that the color sensor tends to be expensive and large.
また、カラーフィルタ素材は、カラーフィルタ素材の光学特性の経時的な変化の度合いも色毎に異なる。このため簡易型カラーセンサによる色度の補正では、長期間に渡って良好な補正を行うことが困難である。
特許文献1では、カラーセンサの測定結果にカラーセンサの経時的な変化(誤差)が含まれてしまう。そうすると、このカラーセンサの測定結果に基づいて映像信号を補正したとしても、白色バックライトの経時的な変化には対応することはできるが、色検出部自体の経時的な変化には対応することができない。このため、色検出部の色毎の光学特性に個別に経時的な変化が生じると白の色度がずれるという問題がある。また、カラーセンサにこれら光学特性の経時的な変化に対する対策を施すと、カラーセンサが高価・大型になりやすいという問題もある。 However, in the technique of
Further, the color filter material has a different degree of change over time in the optical characteristics of the color filter material for each color. For this reason, it is difficult for the simple color sensor to correct the chromaticity for a long period of time.
In
解決しようとする問題点は、校正を行う際に、センサ間の特性誤差の影響を受けてしまうこと、カラーセンサが大型化してしまうことである。
The problem to be solved is that, when performing calibration, the sensor is affected by the characteristic error between the sensors, and the color sensor is enlarged.
本発明は、複数の原色信号を生成し、表示部に逐次表示させる基準色生成部と、前記表示部に表示された原色信号に応じた映像の光の強度を検出する単色の光検出部と、前記表示部の原色色度と前記表示部の輝度値を生成する輝度係数とを記憶する記憶部と、前記原色色度と前記光検出部の検出値とから各原色のXYZ刺激値をそれぞれ算出する第1演算部と、前記各原色のXYZ刺激値と前記輝度係数とから求まるXYZ刺激値を算出し、当該算出されたXYZ刺激値から白点の色度を求める第2演算部と、前記白点の色度と、前記原色色度とを比較し、比較結果に応じて、前記表示部を照明する照明部を制御する制御部と、を有することを特徴とする。
The present invention includes a reference color generation unit that generates a plurality of primary color signals and sequentially displays them on a display unit, and a monochromatic light detection unit that detects the intensity of image light corresponding to the primary color signals displayed on the display unit, , The storage unit for storing the primary color chromaticity of the display unit and the luminance coefficient for generating the luminance value of the display unit, and the XYZ stimulation value of each primary color from the primary color chromaticity and the detection value of the light detection unit, respectively. A first calculation unit to calculate, a second calculation unit to calculate an XYZ stimulation value obtained from the XYZ stimulation value of each primary color and the luminance coefficient, and to determine a chromaticity of a white point from the calculated XYZ stimulation value; A control unit that compares the chromaticity of the white point with the primary color chromaticity and controls an illumination unit that illuminates the display unit in accordance with a comparison result;
また、本発明は、複数の原色信号を生成し、表示部に逐次表示させ、前記表示部に表示された原色信号に応じた映像の光の強度を単色の検出部によって検出し、記憶部に記憶された原色色度と前記検出された検出値とから各原色のXYZ刺激値をそれぞれ算出し、算出された前記各原色のXYZ刺激値と記憶部に記憶された輝度係数とから求まるXYZ刺激値を算出し、当該算出されたXYZ刺激値から白点の色度を求め、前記白点の色度と、前記原色色度とを比較し、比較結果に応じて、前記表示部を照明する照明部を制御することを特徴とする。
The present invention also generates a plurality of primary color signals, sequentially displays them on the display unit, detects the light intensity of the video according to the primary color signals displayed on the display unit by the single color detection unit, and stores it in the storage unit. An XYZ stimulus value for each primary color is calculated from the stored primary color chromaticity and the detected detection value, and an XYZ stimulus is obtained from the calculated XYZ stimulus value for each primary color and the luminance coefficient stored in the storage unit. A white point chromaticity is calculated from the calculated XYZ stimulus value, the white point chromaticity is compared with the primary color chromaticity, and the display unit is illuminated according to the comparison result. The illumination unit is controlled.
単色の光検出部によって得られた測定結果を用いて白点の色度や輝度を求め照明部を制御するようにしたので、センサ間の特性誤差の影響を受けないようにし、また、大型のセンサを用いることなく照明部を制御できる。
The lighting unit is controlled by obtaining the chromaticity and brightness of the white spot using the measurement result obtained by the single color light detection unit, so that it is not affected by the characteristic error between sensors, The illumination unit can be controlled without using a sensor.
以下、本発明にかかる実施様態について説明する。図1は、第1の実施態様における表示装置1の構成を表す概略機能ブロック図である。
表示装置1において、基準色生成部101は、複数の原色信号を生成し、表示部102に逐次表示させる。光検出部103は、表示部102に表示された原色信号に応じた映像の光の強度を検出する。記憶部104は、表示部102の原色色度と表示部102の輝度値を生成する輝度係数とを記憶する。第1演算部105は、原色色度と光検出部103の検出値とから各原色のXYZ刺激値をそれぞれ算出する。第2演算部106は、各原色のXYZ刺激値と輝度係数とから求まるXYZ刺激値を算出し、当該算出されたXYZ刺激値から白点の色度を求める。制御部107は、白点の色度と、原色色度とを比較し、比較結果に応じて、表示部102を照明する照明部を制御する。 Hereinafter, embodiments according to the present invention will be described. FIG. 1 is a schematic functional block diagram showing the configuration of thedisplay device 1 in the first embodiment.
In thedisplay device 1, the reference color generation unit 101 generates a plurality of primary color signals and sequentially displays them on the display unit 102. The light detection unit 103 detects the light intensity of the video according to the primary color signal displayed on the display unit 102. The storage unit 104 stores the primary color chromaticity of the display unit 102 and the luminance coefficient for generating the luminance value of the display unit 102. The first calculation unit 105 calculates the XYZ stimulus value of each primary color from the primary color chromaticity and the detection value of the light detection unit 103. The second calculation unit 106 calculates an XYZ stimulus value obtained from the XYZ stimulus value and the luminance coefficient of each primary color, and obtains the white point chromaticity from the calculated XYZ stimulus value. The control unit 107 compares the chromaticity of the white spot with the primary color chromaticity, and controls the illumination unit that illuminates the display unit 102 according to the comparison result.
表示装置1において、基準色生成部101は、複数の原色信号を生成し、表示部102に逐次表示させる。光検出部103は、表示部102に表示された原色信号に応じた映像の光の強度を検出する。記憶部104は、表示部102の原色色度と表示部102の輝度値を生成する輝度係数とを記憶する。第1演算部105は、原色色度と光検出部103の検出値とから各原色のXYZ刺激値をそれぞれ算出する。第2演算部106は、各原色のXYZ刺激値と輝度係数とから求まるXYZ刺激値を算出し、当該算出されたXYZ刺激値から白点の色度を求める。制御部107は、白点の色度と、原色色度とを比較し、比較結果に応じて、表示部102を照明する照明部を制御する。 Hereinafter, embodiments according to the present invention will be described. FIG. 1 is a schematic functional block diagram showing the configuration of the
In the
次に、第2の実施態様における表示装置2について説明する。図2は、第2の実施態様における表示装置2の構成を表す概略機能ブロック図である。
表示装置2において、映像処理部201は、制御部207からの指示に従い、外部のコンピュータやビデオ装置等から入力される映像信号に対して必要な信号処理を施し、表示部204へ出力する。この必要な信号処理は、スケーリング処理やガンマ補正等を含む。また、映像処理部201は、基準色生成部202を含んで構成される。基準色生成部202は、制御部207からの指示に従い、基準となる色を逐次、表示部204へ出力する。基準となる色としては、例えば、原色であり、R(赤)、G(緑)、B(青)の3色を用いることができる。 Next, thedisplay device 2 in the second embodiment will be described. FIG. 2 is a schematic functional block diagram showing the configuration of the display device 2 in the second embodiment.
In thedisplay device 2, the video processing unit 201 performs necessary signal processing on a video signal input from an external computer or a video device in accordance with an instruction from the control unit 207, and outputs the processed signal to the display unit 204. This necessary signal processing includes scaling processing and gamma correction. The video processing unit 201 includes a reference color generation unit 202. The reference color generation unit 202 sequentially outputs a reference color to the display unit 204 in accordance with an instruction from the control unit 207. As a reference color, for example, it is a primary color, and three colors of R (red), G (green), and B (blue) can be used.
表示装置2において、映像処理部201は、制御部207からの指示に従い、外部のコンピュータやビデオ装置等から入力される映像信号に対して必要な信号処理を施し、表示部204へ出力する。この必要な信号処理は、スケーリング処理やガンマ補正等を含む。また、映像処理部201は、基準色生成部202を含んで構成される。基準色生成部202は、制御部207からの指示に従い、基準となる色を逐次、表示部204へ出力する。基準となる色としては、例えば、原色であり、R(赤)、G(緑)、B(青)の3色を用いることができる。 Next, the
In the
光検出部203は、単色の光の強度を検出する。光検出部203からの出力は、例えば電圧、電流、周波数等の物理量を表す情報が含まれる。光検出部203が白黒の照度センサである場合、光検出部203は輝度を検出する。光検出部203が単色センサの場合、光検出部203は、所定の波長の光の強度を検出する。すなわち、所定の波長特性を有するフィルタを通過した光の強度を検出する。光検出部203は、表示部204の前面(表示装置2の外面側)の端部または背面(表示装置2の内面側)に設置される。
The light detection unit 203 detects the intensity of monochromatic light. The output from the light detection unit 203 includes information representing physical quantities such as voltage, current, and frequency. When the light detection unit 203 is a monochrome illuminance sensor, the light detection unit 203 detects luminance. When the light detection unit 203 is a monochromatic sensor, the light detection unit 203 detects the intensity of light having a predetermined wavelength. That is, the intensity of light that has passed through a filter having a predetermined wavelength characteristic is detected. The light detection unit 203 is installed on an end or back surface (inner surface side of the display device 2) of the front surface (outer surface side of the display device 2) of the display unit 204.
表示部204は、例えばLCD等の表示素子を備え、映像処理部201から入力された映像信号に基づく映像を表示する。表示部204にはバックライト部205が設けられている。バックライト部205は、バックライト駆動部とバックライトとを備える。バックライト駆動部は、制御部207からの指示に従い、バックライトを駆動する。バックライトは、R、G、Bの3色(3原色)であり、それぞれの色のバックライトを個別に駆動することにより、バックライト全体の色度を調整することができる。記憶部206は、制御部207が制御を行う際に必要な制御用プログラム等や表示装置2の各種調整値等の他、基準となる色域情報および輝度係数を記憶する。制御部207は、表示装置2の各部の制御を行う。
The display unit 204 includes a display element such as an LCD, for example, and displays a video based on the video signal input from the video processing unit 201. The display unit 204 is provided with a backlight unit 205. The backlight unit 205 includes a backlight driving unit and a backlight. The backlight drive unit drives the backlight according to an instruction from the control unit 207. The backlight has three colors (three primary colors) of R, G, and B, and the chromaticity of the entire backlight can be adjusted by individually driving the backlights of the respective colors. The storage unit 206 stores reference color gamut information and a luminance coefficient in addition to a control program necessary for the control unit 207 to perform control, various adjustment values of the display device 2, and the like. The control unit 207 controls each unit of the display device 2.
制御部207は、光検出部203によって得られた所定の色のそれぞれに対する光量と、色域情報とに基づいて、所定の色のそれぞれに対する色域における検出値を算出し、所定の色のそれぞれに対する色域における検出値と輝度係数とに基づいて、所定の色のそれぞれについて白点の輝度色度を算出する。制御部207は、白点の輝度色度から白点色度を算出する。また、制御部207は、各部を制御する。
The control unit 207 calculates a detection value in the color gamut for each of the predetermined colors based on the amount of light for each of the predetermined colors obtained by the light detection unit 203 and the color gamut information. The luminance chromaticity of the white point is calculated for each of the predetermined colors on the basis of the detected value and the luminance coefficient in the color gamut. The control unit 207 calculates the white point chromaticity from the luminance chromaticity of the white point. The control unit 207 controls each unit.
次に、上述の実施態様における表示装置2の動作について説明する。まず、表示装置2における表示画面(表示部204)の色度を測定する手順について説明する。ここでは、例えば、工場での生産時などにおいて、次に説明する処理を実行し、色域情報と輝度係数を記憶部206に記憶する。
Next, the operation of the display device 2 in the above embodiment will be described. First, a procedure for measuring the chromaticity of the display screen (display unit 204) in the display device 2 will be described. Here, for example, at the time of production in a factory, the processing described below is executed, and the color gamut information and the luminance coefficient are stored in the storage unit 206.
図3は、表示装置2が色域情報と輝度係数を記憶部206に記憶する処理を説明するフローチャートである。
まず、基準色生成部202は、表示部204に原色(R、G、B)を逐次表示する。このとき、それぞれ表示部204に表示された色(R、G、B)を、表示装置2の外部に設けられた基準カラーセンサ及び光検出部203が、同時に測定する(ステップS1~S9)。このとき、光検出部203で測定された検出値をVr,Vg,Vb,基準カラーセンサの検出値を(Xr,Yr,Zr),(Xg,Yg,Zg),(Xb,Yb,Zb)とする。 FIG. 3 is a flowchart for describing processing in which thedisplay device 2 stores the color gamut information and the luminance coefficient in the storage unit 206.
First, the referencecolor generation unit 202 sequentially displays primary colors (R, G, B) on the display unit 204. At this time, the color (R, G, B) displayed on the display unit 204 is simultaneously measured by the reference color sensor and the light detection unit 203 provided outside the display device 2 (steps S1 to S9). At this time, the detection values measured by the light detection unit 203 are Vr, Vg, Vb, and the detection values of the reference color sensor are (Xr, Yr, Zr), (Xg, Yg, Zg), (Xb, Yb, Zb). And
まず、基準色生成部202は、表示部204に原色(R、G、B)を逐次表示する。このとき、それぞれ表示部204に表示された色(R、G、B)を、表示装置2の外部に設けられた基準カラーセンサ及び光検出部203が、同時に測定する(ステップS1~S9)。このとき、光検出部203で測定された検出値をVr,Vg,Vb,基準カラーセンサの検出値を(Xr,Yr,Zr),(Xg,Yg,Zg),(Xb,Yb,Zb)とする。 FIG. 3 is a flowchart for describing processing in which the
First, the reference
具体的には、基準色生成部202は、表示部204に原色のうちRを表示させる(ステップS1)。このとき、光検出部203は、表示部204に表示された色(ここではR)を測定し、測定結果として検出値Vrを得る(ステップS2)。一方、基準カラーセンサは、表示部204に表示された色(ここではR)を測定し、測定結果として検出値(Xr,Yr,Zr)を得る(ステップS3)。
Specifically, the reference color generation unit 202 displays R of the primary colors on the display unit 204 (step S1). At this time, the light detection unit 203 measures the color (R in this case) displayed on the display unit 204, and obtains a detection value Vr as a measurement result (step S2). On the other hand, the reference color sensor measures the color (R in this case) displayed on the display unit 204, and obtains detection values (Xr, Yr, Zr) as measurement results (step S3).
次に、基準色生成部202は、表示部204に原色のうちGを表示させる(ステップS4)。このとき、光検出部203は、表示部204に表示された色(ここではG)を測定し、測定結果として検出値Vgを得る(ステップS5)。一方、基準カラーセンサは、表示部204に表示された色(ここではG)を測定し、測定結果として検出値(Xg,Yg,Zg)を得る(ステップS6)。
Next, the reference color generation unit 202 displays G of the primary colors on the display unit 204 (step S4). At this time, the light detection unit 203 measures the color (G in this case) displayed on the display unit 204, and obtains a detection value Vg as a measurement result (step S5). On the other hand, the reference color sensor measures the color (G in this case) displayed on the display unit 204, and obtains detection values (Xg, Yg, Zg) as measurement results (step S6).
次に、基準色生成部202は、表示部204に原色のうちBを表示させる(ステップS7)。このとき、光検出部203は、表示部204に表示された色(ここではB)を測定し、測定結果として検出値Vbを得る(ステップS8)。一方、基準カラーセンサは、表示部204に表示された色(ここではB)を測定し、測定結果として検出値(Xb,Yb,Zb)を得る(ステップS9)。
Next, the reference color generation unit 202 displays B of the primary colors on the display unit 204 (step S7). At this time, the light detection unit 203 measures the color (B here) displayed on the display unit 204, and obtains a detection value Vb as a measurement result (step S8). On the other hand, the reference color sensor measures the color (B in this case) displayed on the display unit 204, and obtains detection values (Xb, Yb, Zb) as measurement results (step S9).
各色の測定を終えると、制御部207は、基準カラーセンサの検出値から原色の色域情報(x,y)を求める(S10)。例えば制御部207は、CIE1931の変換式を利用して色度xy,x=X/(X+Y+Z),y=Y/(X+Y+Z)を求める。また制御部207は、基準カラーセンサの検出値から求められた各原色の色度(色域情報)を(xr,yr),(xg,yg),(xb,yb)とする(S10)。
When the measurement of each color is completed, the control unit 207 obtains primary color gamut information (x, y) from the detection value of the reference color sensor (S10). For example, the control unit 207 obtains chromaticity xy, x = X / (X + Y + Z), y = Y / (X + Y + Z) using the conversion formula of CIE1931. Further, the control unit 207 sets the chromaticity (color gamut information) of each primary color obtained from the detection value of the reference color sensor to (xr, yr), (xg, yg), (xb, yb) (S10).
次に制御部207は、光検出部203の検出値と、色度として基準カラーセンサの検出値から求めた原色の色度(色域情報)を利用し,原色のXYZ刺激値を計算する。例えば,制御部207は、計算値X’=V*x/y,Y’=V,Z’=V*(1-x-y)/yとする(S11)。光検出部203の検出値は、上述のように電圧、電流等の物理量である。ここでは、所定の波長特性を有するフィルタを通過した光の強度を電圧で出力するものとする。光検出部203は、モノクロセンサとして例えばGセンサを使用した場合、RGBのそれぞれの基準色を表示したときのGセンサの出力を意味する。光検出部203として照度センサを用いる場合、波長特性は一様である。
このとき各原色のXYZ刺激値(計算値)を(X’r,Y’r,Z’r),(X’g,Y’g,Z’g),(X’b,Y’b,Z’b)とする。 Next, thecontrol unit 207 uses the primary color chromaticity (color gamut information) obtained from the detection value of the light detection unit 203 and the detection value of the reference color sensor as the chromaticity, and calculates the XYZ stimulus value of the primary color. For example, the control unit 207 sets the calculated values X ′ = V * x / y, Y ′ = V, Z ′ = V * (1−xy) / y (S11). The detection value of the light detection unit 203 is a physical quantity such as voltage and current as described above. Here, the intensity of light that has passed through a filter having a predetermined wavelength characteristic is output as a voltage. For example, when a G sensor is used as a monochrome sensor, the light detection unit 203 means an output of the G sensor when each of RGB reference colors is displayed. When an illuminance sensor is used as the light detection unit 203, the wavelength characteristics are uniform.
At this time, the XYZ stimulation values (calculated values) of the respective primary colors are (X′r, Y′r, Z′r), (X′g, Y′g, Z′g), (X′b, Y′b, Z′b).
このとき各原色のXYZ刺激値(計算値)を(X’r,Y’r,Z’r),(X’g,Y’g,Z’g),(X’b,Y’b,Z’b)とする。 Next, the
At this time, the XYZ stimulation values (calculated values) of the respective primary colors are (X′r, Y′r, Z′r), (X′g, Y′g, Z′g), (X′b, Y′b, Z′b).
次に制御部207は、ステップS11において得られたXYZ刺激値(計算値)である(X’r,Y’r,Z’r),(X’g,Y’g,Z’g),(X’b,Y’b,Z’b)と、ステップS3、ステップS6、ステップS9において得られた基準カラーセンサの検出値(Xr,Yr,Zr),(Xg,Yg,Zg),(Xb,Yb,Zb)とを用いて三連立方程式を解き、X’Y’Z’をXYZに変換する3×3行列Mを求める(式1)。すなわち、制御部207は、光検出部203が検出した各原色の検出値と基準カラーセンサで検出した色度を用いて計算したXYZ刺激値(X’Y’Z’)が基準カラーセンサで検出した原色のXYZ刺激値(XYZ)に一致するように輝度係数Mを求める。言い換えると、[XYZ]=M×[X’Y’Z’]のMを求める(S12)。この(式1)における3×3行列Mは、M11、M12、M13、M21、M22、M23、M31、M32、M33の成分からなる。
Next, the control unit 207 (X′r, Y′r, Z′r), (X′g, Y′g, Z′g), which are the XYZ stimulation values (calculated values) obtained in step S11, (X′b, Y′b, Z′b) and the detected values (Xr, Yr, Zr), (Xg, Yg, Zg), (Xg, Yr, Zr) of the reference color sensor obtained in steps S3, S6, and S9. Xb, Yb, Zb) are used to solve the three simultaneous equations to obtain a 3 × 3 matrix M that converts X′Y′Z ′ to XYZ (Formula 1). That is, the control unit 207 detects the XYZ stimulus value (X′Y′Z ′) calculated using the detection value of each primary color detected by the light detection unit 203 and the chromaticity detected by the reference color sensor with the reference color sensor. The luminance coefficient M is obtained so as to coincide with the XYZ stimulation value (XYZ) of the primary color. In other words, M of [XYZ] = M × [X′Y′Z ′] is obtained (S12). The 3 × 3 matrix M in (Equation 1) includes components of M 11 , M 12 , M 13 , M 21 , M 22 , M 23 , M 31 , M 32 , and M 33 .
制御部207は、3×3行列Mが得られると、この3×3行列Mを輝度係数として記憶部206に記憶するとともに、ステップS10において得られた色域情報(x、y)を記憶部206に記憶する(ステップS13)。
When the 3 × 3 matrix M is obtained, the control unit 207 stores the 3 × 3 matrix M as a luminance coefficient in the storage unit 206 and stores the color gamut information (x, y) obtained in step S10. It memorize | stores in 206 (step S13).
次に、表示装置2が工場から出荷された後、ユーザ環境で画面の白点色度を測定する場合における表示装置2の動作について説明する。
図4は、表示装置2がバックライトを制御する動作を説明するフローチャートである。 Next, the operation of thedisplay device 2 when the white point chromaticity of the screen is measured in the user environment after the display device 2 is shipped from the factory will be described.
FIG. 4 is a flowchart illustrating an operation in which thedisplay device 2 controls the backlight.
図4は、表示装置2がバックライトを制御する動作を説明するフローチャートである。 Next, the operation of the
FIG. 4 is a flowchart illustrating an operation in which the
まず、制御部207は、映像処理部201に含まれる基準色生成部202により表示部204に原色(例えばR、G、B)を逐次表示させ、それぞれの表示色を光検出部203によって測定する。このとき光検出部203によって測定された検出値をVr1,Vg1,Vb1とする(S21~S26)。具体的には、制御部207は、基準色生成部202により表示部204に原色(ここではR)を表示させる(ステップS21)。光検出部203は、このとき表示部204に表示された表示色(ここではR)を測定し、測定結果として検出値Vr1を得る(ステップS22)。次に、制御部207は、基準色生成部202により表示部204に原色(ここではG)を表示させる(ステップS23)。光検出部203は、このとき表示部204に表示された表示色(ここではG)を測定し、測定結果として検出値Vg1を得る(ステップS24)。次に、制御部207は、基準色生成部202により表示部204に原色(ここではB)を表示させる(ステップS25)。光検出部203は、このとき表示部204に表示された表示色(ここではB)を測定し、測定結果として検出値Vb1を得る(ステップS26)。次に、制御部207は、記憶部206から輝度係数Mおよび色域情報(x,y)を読み出す(S27)。
First, the control unit 207 causes the reference color generation unit 202 included in the video processing unit 201 to sequentially display primary colors (for example, R, G, and B) on the display unit 204 and measures each display color by the light detection unit 203. . At this time, the detection values measured by the light detection unit 203 are defined as Vr1, Vg1, and Vb1 (S21 to S26). Specifically, the control unit 207 causes the reference color generation unit 202 to display the primary color (R in this case) on the display unit 204 (step S21). The light detection unit 203 measures the display color (R in this case) displayed on the display unit 204 at this time, and obtains a detection value Vr1 as a measurement result (step S22). Next, the control unit 207 causes the reference color generation unit 202 to display the primary color (G in this case) on the display unit 204 (step S23). The light detection unit 203 measures the display color (G in this case) displayed on the display unit 204 at this time, and obtains a detection value Vg1 as a measurement result (step S24). Next, the control unit 207 causes the reference color generation unit 202 to display the primary color (here, B) on the display unit 204 (step S25). The light detection unit 203 measures the display color (B in this case) displayed on the display unit 204 at this time, and obtains a detection value Vb1 as a measurement result (step S26). Next, the control unit 207 reads the luminance coefficient M and the color gamut information (x, y) from the storage unit 206 (S27).
次に、制御部207は、色度としての色域情報と光検出部203の検出値を用いて、校正時点における原色のXYZ刺激値をそれぞれ計算する。例えば、制御部207は、赤色の計算したXYZ刺激値をX’ra=Vr1*xr/yr,Y’r=Vr1,Z’r=Vr1*(1-xr-yr)/yrとして計算する。また、制御部207は、緑色の計算したXYZ刺激値をX’ga=Vg1×xg/yg,Y’g=Vg1,Z’g=Vg1×(1-xg-yg)/ygとして計算し、青色の計算したXYZ刺激値をX’ba=Vb1×xb/yb,Y’b=Vb1,Z’b=Vb1×(1-xb-yb)/ybとして計算する。このように各原色の計算したXYZ刺激値を(X’ra,Y’ra,Z’ra),(X’ga,Y’ga,Z’ga),(X’ba,Y’ba,Z’ba)とする(S28)。
Next, the control unit 207 calculates the XYZ stimulus values of the primary colors at the time of calibration using the color gamut information as chromaticity and the detection value of the light detection unit 203. For example, the control unit 207 calculates the calculated XYZ stimulation value of red as X′ra = Vr1 * xr / yr, Y′r = Vr1, Z′r = Vr1 * (1−xr−yr) / yr. Further, the control unit 207 calculates the calculated XYZ stimulation value of green as X′ga = Vg1 × xg / yg, Y′g = Vg1, Z′g = Vg1 × (1−xg−yg) / yg, The blue calculated XYZ stimulation values are calculated as X′ba = Vb1 × xb / yb, Y′b = Vb1, Z′b = Vb1 × (1−xb−yb) / yb. Thus, the calculated XYZ stimulus values of the respective primary colors are (X′ra, Y′ra, Z′ra), (X′ga, Y′ga, Z′ga), (X′ba, Y′ba, Z). 'ba) (S28).
次に、制御部207は、ステップS28によって得られたXYZ刺激値(X’ra,Y’ra,Z’ra),(X’ga,Y’ga,Z’ga),(X’ba,Y’ba,Z’ba)に輝度係数Mを乗算することによって(式2)、外付けの基準カラーセンサによる検出値に相当するXYZ刺激値(Xra,Yra,Zra),(Xga,Yga,Zga),(Xba,Yba,Zba)を求める(S29)。
Next, the control unit 207 determines the XYZ stimulation values (X′ra, Y′ra, Z′ra), (X′ga, Y′ga, Z′ga), (X′ba, By multiplying Y′ba, Z′ba) by the luminance coefficient M (Equation 2), XYZ stimulation values (Xra, Yra, Zra), (Xga, Yga, Zga), (Xba, Yba, Zba) are obtained (S29).
次に制御部207は、RGBのXYZ刺激値を加算し、加算されたXYZ刺激値(Xwa,Ywa,Zwa)を得る。すなわち制御部207は、加算されたXYZ刺激値を、Xwa=Xra+Xga+Xba,Ywa=Yra+Yga+Yba,Zwa=Zra+Zga+Zbaとして求める(S30)。この加算されたXYZ刺激値(Xwa,Ywa,Zwa)が、校正時における白点の輝度色度(XYZ刺激値)を示す。すなわち、本実施態様においては、3原色の検出値を元に、白点の輝度色度(XYZ刺激値)を求めることができる。
Next, the control unit 207 adds the RGB XYZ stimulus values and obtains the added XYZ stimulus values (Xwa, Ywa, Zwa). That is, the control unit 207 obtains the added XYZ stimulus values as Xwa = Xra + Xga + Xba, Ywa = Yra + Yga + Yba, Zwa = Zra + Zga + Zba (S30). This added XYZ stimulus value (Xwa, Ywa, Zwa) indicates the luminance chromaticity (XYZ stimulus value) of the white point at the time of calibration. That is, in the present embodiment, the luminance chromaticity (XYZ stimulus value) of the white point can be obtained based on the detected values of the three primary colors.
制御部207は、CIE1931の変換式を用いてx=Xwa/(Xwa+Ywa+Zwa),y=Ywa/(Xwa+Ywa+Zwa)を計算し、校正時における白点の色度xyを出力する(S31)。
The control unit 207 calculates x = Xwa / (Xwa + Ywa + Zwa), y = Ywa / (Xwa + Ywa + Zwa) using the conversion formula of CIE1931, and outputs the chromaticity xy of the white point at the time of calibration (S31).
制御部207は、計算して得られた白点の色度xyと、記憶部206に記憶された色域情報(x、y)を比較し、その比較結果に応じてRGBのバックライト駆動量を個別に調整する(S32)。ここでは、例えば、比較結果が一致するようにR、G、Bのそれぞれのバックライト駆動量を調整する。
The control unit 207 compares the chromaticity xy of the white point obtained by calculation with the color gamut information (x, y) stored in the storage unit 206, and the RGB backlight drive amount according to the comparison result. Are individually adjusted (S32). Here, for example, the backlight drive amounts of R, G, and B are adjusted so that the comparison results match.
なお、前述の計算した白点色度と色域情報との偏差に応じたRGBバックライト駆動量を予めLUT(ルックアップテーブル)に記憶しておき、制御部207が、上記の比較結果に応じてLUTを参照してRGBバックライト駆動量を読み出し、バックライト駆動部が、このRGBバックライト駆動量に応じてバックライトを駆動することもできる。または、図4に示す処理を偏差が所定値以下となるまで繰り返してもよい。
Note that the RGB backlight drive amount corresponding to the deviation between the calculated white point chromaticity and gamut information is stored in advance in a LUT (lookup table), and the control unit 207 responds to the comparison result. The RGB backlight driving amount can be read with reference to the LUT, and the backlight driving unit can drive the backlight in accordance with the RGB backlight driving amount. Or you may repeat the process shown in FIG. 4 until a deviation becomes below a predetermined value.
以上の手順によって、モノクロセンサによる校正時点における白点の輝度色度および白点の色度を求め、工場生産時に記憶した基準カラーセンサによる検出値と比較し、差がなくなるようにバックライト駆動部によってバックライトの光源を制御することにより、バックライトの色度の変化によらず高品位な色再現性を得ることができるという効果を得ることができる。
By the above procedure, the brightness chromaticity of the white point and the chromaticity of the white point at the time of calibration by the monochrome sensor are obtained, and compared with the detection value by the reference color sensor stored at the time of factory production, so that the difference is eliminated, the backlight drive unit Thus, by controlling the light source of the backlight, it is possible to obtain an effect that a high-quality color reproducibility can be obtained regardless of a change in the chromaticity of the backlight.
次に、第3の実施態様について説明する。第1の実施態様では、バックライトとしてRGBの3色の光源から構成されるバックライトを備えていたが、この実施態様では、白色のバックライトを備える場合について説明する。
図5は、第3の実施態様における表示装置2aの機能を表す概略ブロック図である。この実施態様においては、第2の実施態様に対応する構成について図2と同じ符号を付し、その説明を省略する。映像処理部201aは、基準色生成部202とカラー変換テーブル202bとを有する。 Next, a third embodiment will be described. In the first embodiment, a backlight composed of RGB three-color light sources is provided as a backlight. In this embodiment, a case where a white backlight is provided will be described.
FIG. 5 is a schematic block diagram showing the function of thedisplay device 2a in the third embodiment. In this embodiment, configurations corresponding to those of the second embodiment are denoted by the same reference numerals as those in FIG. 2, and description thereof is omitted. The video processing unit 201a includes a reference color generation unit 202 and a color conversion table 202b.
図5は、第3の実施態様における表示装置2aの機能を表す概略ブロック図である。この実施態様においては、第2の実施態様に対応する構成について図2と同じ符号を付し、その説明を省略する。映像処理部201aは、基準色生成部202とカラー変換テーブル202bとを有する。 Next, a third embodiment will be described. In the first embodiment, a backlight composed of RGB three-color light sources is provided as a backlight. In this embodiment, a case where a white backlight is provided will be described.
FIG. 5 is a schematic block diagram showing the function of the
カラー変換テーブル202bは、色域情報と求めた白点色度との偏差に応じて映像信号の色度を制御するデータを有する。制御部207aは、白色バックライトの輝度制御を行う。ここでは、制御部207aは、第2実施態様のような色度を考慮したバックライトの制御ではなく、バックライトの輝度制御を行う。色度に応じた制御は、映像処理部201aが行う。
The color conversion table 202b has data for controlling the chromaticity of the video signal in accordance with the deviation between the color gamut information and the obtained white point chromaticity. The control unit 207a performs brightness control of the white backlight. Here, the control unit 207a performs backlight luminance control instead of backlight control in consideration of chromaticity as in the second embodiment. The video processing unit 201a performs control according to chromaticity.
表示部204aは、バックライト部205の代わりに、白色バックライト部205aを有する。この白色バックライト部は、白色の光源であるバックライトと、このバックライトを駆動するバックライト駆動部を有する。
The display unit 204 a includes a white backlight unit 205 a instead of the backlight unit 205. The white backlight unit includes a backlight that is a white light source and a backlight driving unit that drives the backlight.
この第3の実施態様では、校正時において図3の処理と図4ステップS21からS31までの処理を同様に行い、ステップS32におけるバックライト駆動量を調整する代わりに、映像処理部201aが、RGBの映像信号をカラー変換テーブル202bを用いて映像信号の色度を調整する。RGBの映像信号の色度の調整は、たとえば色域情報と求めた白点色度との偏差に応じたカラー変換テーブル(LUT)を用いて行うことができる。この場合、制御部207は、白色バックライトの輝度制御を行う。
In the third embodiment, at the time of calibration, the processing in FIG. 3 and the processing from steps S21 to S31 in FIG. 4 are performed in the same manner, and instead of adjusting the backlight driving amount in step S32, the video processing unit 201a The chromaticity of the video signal is adjusted using the color conversion table 202b. The chromaticity of the RGB video signal can be adjusted using, for example, a color conversion table (LUT) corresponding to the deviation between the color gamut information and the obtained white point chromaticity. In this case, the control unit 207 performs brightness control of the white backlight.
以上説明した第1~第3の実施態様において、単色はいずれの色でもよく、簡易なカラーセンサのうちの1色のみを使用してもよい。例えば、上述のように、簡易なカラーセンサでは、各色のセンサ間の特性差が多く測定結果が変動するという問題がある。そのため、単色(例えばG)のセンサ出力のみを使用することで、検出精度を上げることができる。
In the first to third embodiments described above, the single color may be any color, and only one of the simple color sensors may be used. For example, as described above, with a simple color sensor, there is a problem that there are many characteristic differences between the sensors of each color, and the measurement result varies. Therefore, the detection accuracy can be increased by using only a single color (for example, G) sensor output.
また、以上説明した第1~第3の実施態様において、基準色として原色(R、G、B)を用いる場合について説明したが、原色以外の色を用いることもできる。例えば、色度が既知の色を複数色選べばよい。また、上述の実施態様において、色度はCIE1931xy色度以外を用いることもできる。例えば、CIE1976のu’v’値や、ab値を用いることもできる。また、上述した計算の代替として、非直線補正や計算高速化が容易なテーブル補正(ルックアップテーブル補正)を用いることもできる。
In the first to third embodiments described above, the case where primary colors (R, G, B) are used as reference colors has been described. However, colors other than primary colors may be used. For example, a plurality of colors with known chromaticities may be selected. Moreover, in the above-mentioned embodiment, chromaticity other than CIE1931xy chromaticity can also be used. For example, the CIE1976 u′v ′ value or ab value may be used. As an alternative to the above-described calculation, it is also possible to use non-linear correction and table correction (lookup table correction) that facilitates calculation speedup.
なお、従来の表示装置では、例えば、上述のような原色の逐次表示ではなく、白色のみ用いる場合、白色を表示しておき、この状態においてRGBの各色を測定可能なカラーセンサ(Rのセンサ、Gのセンサ、Bのセンサ)を用いて1回測定する。そうすると、複数センサ間における特性差が生じてしまい、これにより、測定誤差を無視できなくなる。これに対し、上述の実施態様においては、3原色を逐次表示し、表示されたそれぞれの色を1個のセンサのみを用いて測定するため、センサ間の特性差の影響を受けることがなくなる。
In the conventional display device, for example, when only white is used instead of the sequential display of the primary colors as described above, a white color is displayed, and in this state, a color sensor that can measure each color of RGB (an R sensor, G sensor and B sensor) are measured once. In this case, a characteristic difference occurs between a plurality of sensors, and thus measurement errors cannot be ignored. On the other hand, in the above-described embodiment, the three primary colors are sequentially displayed and each displayed color is measured using only one sensor, so that it is not affected by the characteristic difference between the sensors.
以上説明した第1~第3の実施態様において、光検出部としては、モノクロセンサを用いて単色の光の強度を検出するが、光検出部は、輝度センサに限定されるものではない。例えば、光検出部は、マルチセンサ(例えば、RGBセンサ)のうち、任意の1センサ(例えば、G)、もしくは複数センサの合計出力(例えば、RとGとBとの総和)としてもよい。また、任意の1センサとは、センサ毎の経年劣化や(センサとディスプレイの)カラースペクトラム特性などを考慮して選択することができる。
In the first to third embodiments described above, the light detection unit detects the intensity of monochromatic light using a monochrome sensor, but the light detection unit is not limited to a luminance sensor. For example, the light detection unit may be any one sensor (for example, G) among multi-sensors (for example, RGB sensors) or a total output of a plurality of sensors (for example, the sum of R, G, and B). Further, one arbitrary sensor can be selected in consideration of aging deterioration for each sensor, color spectrum characteristics (of the sensor and the display), and the like.
上述した第1~第3の実施態様によれば、ディスプレイのキャリブレーションやホワイトバランス調整時に必要な、三色の光検出部を持つカラーセンサを1つのモノクロセンサで代替できるため、低価格化・小型化を図ることができる。
また、第1~第3の実施態様によれば、高い色度精度が得られる。これは、単一センサ(1つのモノクロセンサ)によって逐次測定を行うようにしたので、複数センサ間(色間)の出力比を用いる必要がなくなり、複数センサ間(色間)の特性誤差(空間位置・輝度リニアリティ・温度ドリフト・経年劣化等)に影響されないためである。また、表示装置の原色色度は個体差・経年劣化による変動が少ないためである。このため、固定特性(例えば輝度変換係数)による変換を用いたとしても、信頼性の高い色度を長期間維持できる。 According to the first to third embodiments described above, a single monochrome sensor can replace the color sensor having the three-color light detection unit necessary for display calibration and white balance adjustment. Miniaturization can be achieved.
Further, according to the first to third embodiments, high chromaticity accuracy can be obtained. This is because measurement is performed sequentially by a single sensor (single monochrome sensor), so there is no need to use an output ratio between a plurality of sensors (between colors), and a characteristic error (space) between a plurality of sensors (between colors). This is because it is not affected by position, luminance linearity, temperature drift, aging deterioration, etc. This is also because the primary color chromaticity of the display device is less changed due to individual differences and aging degradation. For this reason, even if conversion using fixed characteristics (for example, luminance conversion coefficient) is used, highly reliable chromaticity can be maintained for a long period of time.
また、第1~第3の実施態様によれば、高い色度精度が得られる。これは、単一センサ(1つのモノクロセンサ)によって逐次測定を行うようにしたので、複数センサ間(色間)の出力比を用いる必要がなくなり、複数センサ間(色間)の特性誤差(空間位置・輝度リニアリティ・温度ドリフト・経年劣化等)に影響されないためである。また、表示装置の原色色度は個体差・経年劣化による変動が少ないためである。このため、固定特性(例えば輝度変換係数)による変換を用いたとしても、信頼性の高い色度を長期間維持できる。 According to the first to third embodiments described above, a single monochrome sensor can replace the color sensor having the three-color light detection unit necessary for display calibration and white balance adjustment. Miniaturization can be achieved.
Further, according to the first to third embodiments, high chromaticity accuracy can be obtained. This is because measurement is performed sequentially by a single sensor (single monochrome sensor), so there is no need to use an output ratio between a plurality of sensors (between colors), and a characteristic error (space) between a plurality of sensors (between colors). This is because it is not affected by position, luminance linearity, temperature drift, aging deterioration, etc. This is also because the primary color chromaticity of the display device is less changed due to individual differences and aging degradation. For this reason, even if conversion using fixed characteristics (for example, luminance conversion coefficient) is used, highly reliable chromaticity can be maintained for a long period of time.
また、図1における表示装置1、図2の表示装置2または図5の表示装置2aの機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより白点色度の測定を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
Also, a program for realizing the functions of the display device 1 in FIG. 1, the display device 2 in FIG. 2, or the display device 2a in FIG. 5 is recorded on a computer-readable recording medium, and the program recorded on this recording medium The white point chromaticity may be measured by reading the program into a computer system and executing it. Here, the “computer system” includes an OS and hardware such as peripheral devices.
また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、サーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものを含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。また、上記のプログラムを所定のサーバに記憶させておき、他の装置からの要求に応じて、当該プログラムを通信回線を介して配信(ダウンロード等)させるようにしてもよい。 Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. Further, the “computer-readable recording medium” includes a medium that holds a program for a certain period of time, such as a volatile memory inside a computer system serving as a server or a client. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system. Alternatively, the program may be stored in a predetermined server, and the program may be distributed (downloaded or the like) via a communication line in response to a request from another device.
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、サーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものを含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。また、上記のプログラムを所定のサーバに記憶させておき、他の装置からの要求に応じて、当該プログラムを通信回線を介して配信(ダウンロード等)させるようにしてもよい。 Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. Further, the “computer-readable recording medium” includes a medium that holds a program for a certain period of time, such as a volatile memory inside a computer system serving as a server or a client. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system. Alternatively, the program may be stored in a predetermined server, and the program may be distributed (downloaded or the like) via a communication line in response to a request from another device.
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design and the like within the scope not departing from the gist of the present invention.
上述した実施様態における表示装置は、例えば、キャリブレーションなど表示色特性の数値管理が必要な産業で利用することができる。具体例をあげると、医療用途やグラフィックデザイン向けディスプレイ装置として利用することができる。
特に、医療用途で求められる、色度より輝度を重視する測定特性や、光検出部の小型化ニーズに対応することができる。グラフィック用途としては、キャリブレーションシステムのコストダウンや、廉価センサの高精度化を実現することができる。 The display device according to the above-described embodiment can be used in industries that require numerical management of display color characteristics such as calibration. As a specific example, it can be used as a display device for medical use or graphic design.
In particular, it is possible to meet the measurement characteristics that are required for medical use, in which luminance is more important than chromaticity, and the need for downsizing the light detection unit. For graphic applications, it is possible to reduce the cost of the calibration system and increase the accuracy of low-cost sensors.
特に、医療用途で求められる、色度より輝度を重視する測定特性や、光検出部の小型化ニーズに対応することができる。グラフィック用途としては、キャリブレーションシステムのコストダウンや、廉価センサの高精度化を実現することができる。 The display device according to the above-described embodiment can be used in industries that require numerical management of display color characteristics such as calibration. As a specific example, it can be used as a display device for medical use or graphic design.
In particular, it is possible to meet the measurement characteristics that are required for medical use, in which luminance is more important than chromaticity, and the need for downsizing the light detection unit. For graphic applications, it is possible to reduce the cost of the calibration system and increase the accuracy of low-cost sensors.
1、2、2a 表示装置
101、202 基準色生成部
102、204、204a 表示部
103、203 光検出部
104、206 記憶部
105 第1演算部
106 第2演算部
107、207、207a 制御部
108 照明部
205 バックライト部
205a 白色バックライト部 1, 2, 2a Display device 101, 202 Reference color generation unit 102, 204, 204a Display unit 103, 203 Light detection unit 104, 206 Storage unit 105 First calculation unit 106 Second calculation unit 107, 207, 207a Control unit 108 Illumination unit 205 Backlight unit 205a White backlight unit
101、202 基準色生成部
102、204、204a 表示部
103、203 光検出部
104、206 記憶部
105 第1演算部
106 第2演算部
107、207、207a 制御部
108 照明部
205 バックライト部
205a 白色バックライト部 1, 2,
Claims (5)
- 複数の原色信号を生成し、表示部に逐次表示させる基準色生成部と、
前記表示部に表示された原色信号に応じた映像の光の強度を検出する単色の光検出部と、
前記表示部の原色色度と前記表示部の輝度値を生成する輝度係数とを記憶する記憶部と、
前記原色色度と前記光検出部の検出値とから各原色のXYZ刺激値をそれぞれ算出する第1演算部と、
前記各原色のXYZ刺激値と前記輝度係数とから求まるXYZ刺激値を算出し、当該算出されたXYZ刺激値から白点の色度を求める第2演算部と、
前記白点の色度と、前記原色色度とを比較し、比較結果に応じて、前記表示部を照明する照明部を制御する制御部と、
を有することを特徴とする表示装置。 A reference color generation unit that generates a plurality of primary color signals and sequentially displays them on the display unit;
A monochromatic light detection unit for detecting the intensity of light of an image corresponding to the primary color signal displayed on the display unit;
A storage unit for storing primary color chromaticity of the display unit and a luminance coefficient for generating a luminance value of the display unit;
A first calculation unit that calculates an XYZ stimulus value of each primary color from the primary color chromaticity and the detection value of the light detection unit;
A second calculator that calculates an XYZ stimulus value obtained from the XYZ stimulus value of each primary color and the luminance coefficient, and obtains the chromaticity of a white point from the calculated XYZ stimulus value;
A control unit that compares the chromaticity of the white spot with the primary color chromaticity and controls an illumination unit that illuminates the display unit according to a comparison result;
A display device comprising: - 前記表示部に逐次表示された原色をそれぞれ基準カラーセンサによって検出したそれぞれの検出値に基づいて原色色度を算出し、算出された原色色度を前記記憶部に書き込む第1の書き込み部
を有することを特徴とする請求項1記載の表示装置。 A first writing unit that calculates primary color chromaticity based on detection values of primary colors sequentially displayed on the display unit detected by a reference color sensor, and writes the calculated primary color chromaticity to the storage unit; The display device according to claim 1. - 前記原色のそれぞれについて前記光検出部によって検出された検出結果と前記原色色度とから得られる原色のXYZ刺激値と、前記基準カラーセンサによって検出されたXYZ刺激値とに対応する輝度係数を算出し、前記記憶部に書き込む第2の書き込み部
を有することを特徴とする請求項1または請求項2記載の表示装置。 For each of the primary colors, a luminance coefficient corresponding to the XYZ stimulation value of the primary color obtained from the detection result detected by the light detection unit and the primary color chromaticity and the XYZ stimulation value detected by the reference color sensor is calculated. The display device according to claim 1, further comprising: a second writing unit that writes to the storage unit. - 前記表示部を照明する白色照明部と、
前記原色色度と前記白点の色度との偏差に応じた変換カラーテーブルを用いてRGBの映像信号を調整して前記表示部に表示させる映像処理部と、
を有することを特徴とする請求項1から請求項3のうちいずれか1項に記載の表示装置。 A white illumination unit for illuminating the display unit;
A video processing unit that adjusts an RGB video signal using a conversion color table according to a deviation between the primary color chromaticity and the white point chromaticity and displays the RGB video signal on the display unit;
The display device according to claim 1, further comprising: - 複数の原色信号を生成し、表示部に逐次表示させ、
前記表示部に表示された原色信号に応じた映像の光の強度を単色の検出部によって検出し、
記憶部に記憶された原色色度と前記検出された検出値とから各原色のXYZ刺激値をそれぞれ算出し、
算出された前記各原色のXYZ刺激値と記憶部に記憶された輝度係数とから求まるXYZ刺激値を算出し、当該算出されたXYZ刺激値から白点の色度を求め、
前記白点の色度と、前記原色色度とを比較し、比較結果に応じて、前記表示部を照明する照明部を制御する
ことを特徴とする表示装置の制御方法。 Generate multiple primary color signals and display them sequentially on the display,
The light intensity of the image corresponding to the primary color signal displayed on the display unit is detected by a single color detection unit,
XYZ stimulation values for each primary color are calculated from the primary color chromaticity stored in the storage unit and the detected detection value,
An XYZ stimulation value obtained from the calculated XYZ stimulation value of each primary color and the luminance coefficient stored in the storage unit is calculated, and the white point chromaticity is obtained from the calculated XYZ stimulation value,
A control method for a display device, wherein the white point chromaticity is compared with the primary color chromaticity, and an illumination unit that illuminates the display unit is controlled according to a comparison result.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/053705 WO2014125617A1 (en) | 2013-02-15 | 2013-02-15 | Display device and control method for display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/053705 WO2014125617A1 (en) | 2013-02-15 | 2013-02-15 | Display device and control method for display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014125617A1 true WO2014125617A1 (en) | 2014-08-21 |
Family
ID=51353646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/053705 WO2014125617A1 (en) | 2013-02-15 | 2013-02-15 | Display device and control method for display device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014125617A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113168819A (en) * | 2018-12-07 | 2021-07-23 | 夏普Nec显示器解决方案株式会社 | Multi-display system and adjusting method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008079113A (en) * | 2006-09-22 | 2008-04-03 | Seiko Epson Corp | Projector and adjusting method |
JP2010256899A (en) * | 2009-04-21 | 2010-11-11 | Coretronic Display Solution Corp | Calibration system and method for calibrating display |
JP2012037628A (en) * | 2010-08-04 | 2012-02-23 | Sharp Corp | Multi-display system |
-
2013
- 2013-02-15 WO PCT/JP2013/053705 patent/WO2014125617A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008079113A (en) * | 2006-09-22 | 2008-04-03 | Seiko Epson Corp | Projector and adjusting method |
JP2010256899A (en) * | 2009-04-21 | 2010-11-11 | Coretronic Display Solution Corp | Calibration system and method for calibrating display |
JP2012037628A (en) * | 2010-08-04 | 2012-02-23 | Sharp Corp | Multi-display system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113168819A (en) * | 2018-12-07 | 2021-07-23 | 夏普Nec显示器解决方案株式会社 | Multi-display system and adjusting method thereof |
CN113168819B (en) * | 2018-12-07 | 2024-05-28 | 夏普Nec显示器解决方案株式会社 | Multi-display system and adjustment method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9135889B2 (en) | Color correction of electronic displays | |
WO2010146885A1 (en) | Image display apparatus and method for controlling same | |
JP4638384B2 (en) | Flat panel display and image quality control method thereof | |
JP3974630B2 (en) | Brightness adjustment method, liquid crystal display device, and computer program | |
US8872864B2 (en) | Display device, display system, and correction method | |
US20060071940A1 (en) | Correction data setting method and manufacturing method of image display apparatus | |
JP4870533B2 (en) | Gradation correction method for display device, display device, and computer program | |
KR20130096970A (en) | Liquid crystal display and method of driving the same | |
JP5227539B2 (en) | Output value setting method, output value setting device, and display device | |
KR101441383B1 (en) | Liquid crystal display device and method for driving the same | |
KR101341007B1 (en) | Method and apparatus for correcting color of display device | |
JP2005331644A (en) | Image display device and image display method | |
KR101423112B1 (en) | Light generation device, display device having and driving method thereof | |
KR20100072448A (en) | Method of driving a light source, light-source apparatus for performing the method and display apparatus having the light-source appratus | |
WO2014125617A1 (en) | Display device and control method for display device | |
CN113168819B (en) | Multi-display system and adjustment method thereof | |
JP2004070119A (en) | Method and system for inspecting gamma correction characteristic variance of matrix type display device and method and system for adjusting gamma correction characteristic variation | |
JP5076787B2 (en) | Image display device and image display method | |
KR20150057005A (en) | Display device and gamma compensation method thereof | |
US11626057B1 (en) | Real-time color conversion in display panels under thermal shifts | |
JP5791130B2 (en) | Display device and display method | |
KR100684784B1 (en) | FS-LCD and Driving method threrof | |
JP2015203809A (en) | Display device, electronic apparatus, and driving method of display device | |
KR100696684B1 (en) | A liquid crystal display and a driving method thereof | |
KR100785667B1 (en) | Method for adjusting transmittance according to grayscale voltage and gamma voltage generation unit of display device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13875287 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13875287 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |