WO2013152673A1 - Applicateur d'échantillon pour puce biologique basé sur le positionnement d'une vision machine et procédé de positionnement associé - Google Patents

Applicateur d'échantillon pour puce biologique basé sur le positionnement d'une vision machine et procédé de positionnement associé Download PDF

Info

Publication number
WO2013152673A1
WO2013152673A1 PCT/CN2013/073403 CN2013073403W WO2013152673A1 WO 2013152673 A1 WO2013152673 A1 WO 2013152673A1 CN 2013073403 W CN2013073403 W CN 2013073403W WO 2013152673 A1 WO2013152673 A1 WO 2013152673A1
Authority
WO
WIPO (PCT)
Prior art keywords
spotting
control system
moving mechanism
industrial camera
direction moving
Prior art date
Application number
PCT/CN2013/073403
Other languages
English (en)
Chinese (zh)
Inventor
王振宇
魏显东
田小慧
戴良
Original Assignee
无锡国盛精密模具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡国盛精密模具有限公司 filed Critical 无锡国盛精密模具有限公司
Publication of WO2013152673A1 publication Critical patent/WO2013152673A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1011Control of the position or alignment of the transfer device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37097Marker on workpiece to detect reference position

Definitions

  • Biochip spotting instrument based on machine vision positioning and its positioning method
  • the invention relates to a biochip spotting instrument, in particular to a biochip spotting instrument based on machine vision positioning and a positioning method thereof.
  • biochip spotting instruments are widely used in the preparation of biochips.
  • many manufacturers are fully automated biochip spotting instruments produced by their respective manufacturers.
  • the process real-time detection system provides an automatic detection of biochip spotting by using machine vision, which solves the manual operation of the quality inspection of the biochip, and is prone to human fatigue, and the quality inspection personnel work hard. Problem, but the current technology still has the following problems:
  • the calibration of the coordinates of the starting position of the spotting depends on the visual recognition of the operator. It needs to be calibrated by repeated manual adjustments. The accuracy of the spotting is difficult to guarantee, and the degree of intelligence and automation are low.
  • the consistency of the biochip is poor, because the spotted slide, the microplate or other characteristic orifice plate has the problem of poor repeatability when placed in the artificial clamping, different spotting plates, different operators Different operating procedures may result in completely different placement effects, so that the same spotting effect of the same spotted carrier cannot be achieved.
  • the applicant has carried out research and improvement on the above problems, and provided a biochip spotting instrument based on machine vision positioning and its positioning method, which automatically completes the calibration of the coordinates of the starting position of the spotting, improves the precision of the spotting, and ensures the biochip.
  • a biochip spotting instrument based on machine vision positioning comprising a control system and an XY-direction moving mechanism, and a Z-direction moving mechanism for mounting a spotting head is connected with an XY-direction moving mechanism, and a spotting needle is arranged on the spotting head,
  • the spotting needle moves synchronously with the XY-direction moving mechanism and the z-direction moving mechanism under the control of the control system
  • the industrial camera is mounted on the XY-direction moving mechanism beside the spotting head through the camera adjusting table, and the industrial camera is connected through the image capturing card.
  • the control system, the industrial camera and the spotting needle synchronize the XY movement.
  • An illumination source is provided below the industrial camera.
  • the camera adjustment table includes a gantry connected to the XY-direction moving mechanism, the gantry is provided with a linear guide rail, the sliding plate of the industrial camera is mounted to connect the linear guide rail, the fine-tuning micrometer is disposed on the sliding plate, and one side of the linear guide rail is disposed Lock the screw.
  • a positioning method of a biochip spotting instrument based on machine vision positioning The industrial camera and the spotting needle move synchronously with the XY moving mechanism under the control of the control system, and run a set distance from the moving origin to the spotted carrier. Position, for coarse positioning; industrial camera captures images within the field of view, the captured image is sent to the control system via the image acquisition card, and the control system analyzes and calculates the coordinates of the feature points of the sampled carrier, and according to The relative coordinates of the sample points and the feature points are required, and the coordinates of the sample points are determined by the control system; the control system controls the XY motion mechanism and the z-direction motion mechanism to cause the sample needle to run to the spot position to start the sample operation.
  • the spotted carrier is a slide, and the feature points are the corners of the slide.
  • the spotted carrier is an ELISA plate, and the feature point is the center of the first corner hole on the ELISA plate.
  • the technical effects of the present invention are:
  • DRAWINGS Figure 1 is a schematic view of the structure of the present invention.
  • Figure 2 is an enlarged view of A of Figure 1.
  • Figure 3 is a schematic diagram showing the relationship between the lengths of the object images of the industrial camera imaging system.
  • Figure 4 is a schematic diagram of image pixels and pixel coordinates.
  • Figure 5 is a schematic diagram of the calculation of the coordinates of the corners of the slide.
  • Figure 6 is a schematic view of the corners of the slide and the first spot.
  • the machine vision positioning-based biochip spotting device of the present invention comprises a control system and an XY-direction moving mechanism 1, and the Z-direction moving mechanism 7 of the mounting spot 2 is connected to the XY-direction moving mechanism 1, and the point is
  • the sample needle 5 is disposed on the spotting head 2, and the sampling needle 5 is synchronously moved with the XY to the moving mechanism 1 and the Z to the moving mechanism 7 under the control of the control system, and the industrial camera 3 is mounted on the spotting head 2 through the camera adjusting table 4.
  • an illumination source 6 is provided below the industrial camera 3, and the illumination source 6 provides illumination for the image captured by the industrial camera 3.
  • the camera adjustment table 4 includes a gantry 401 connected to the XY-direction moving mechanism 1, a linear guide 402 is disposed on the gantry 401, a sliding plate 403 for mounting the industrial camera 3 is connected to the linear guide 402, and a fine-tuning micrometer 404 is disposed on the sliding plate 403.
  • One side of the guide rail 402 is provided with a locking screw 405, and the fine-tuning micrometer 404 is adjusted to be fine-adjusted to ensure the sharpness of the image captured by the industrial camera 3. After adjustment, the locking screw 405 is used for locking.
  • the industrial camera 3 is connected to the control system through the image acquisition card, and the image captured by the industrial camera 3 is processed by the control system.
  • the industrial camera 3, the illumination source 6 and the spotting needle 5 are synchronously moved in the XY direction, and the control system controls the upper and lower sides of the Z-direction moving mechanism 7. The movement completes the spotting operation of the sample needle 5.
  • the industrial camera 3 and the spotting needle 5 are synchronized with the XY to the moving mechanism 1 under the control of the control system, from the origin of the motion (ie, the initial position of the needle 5)
  • the spotted carrier may be a slide, a microplate or a spotted carrier of other characteristic shapes
  • Image the captured image is sent to the control system through the image acquisition card, and the image is analyzed and calculated by the control system and the coordinates of the feature points of the sampled carrier are calibrated; when the spotted carrier is a slide, the feature point is The edge of the slide, the image taken by the industrial camera 3 is sent to the control system via the image acquisition card, and the acquired image is processed by the control system.
  • the image is first binarized and then separately from the XY two axes of the image.
  • Direction using the straight line fitting method to find the corners of the slide in the image The pixel coordinate position on the top.
  • the spotted carrier is the ELISA plate
  • the feature point is the center of the first corner hole on the ELISA plate
  • the image taken by the industrial camera 3 is sent to the control system through the image acquisition card, and the acquired image is performed by the control system.
  • Processing using radius constraints, gray constraints, algebraic distance constraints, geometric distance constraints, binarization, circle fitting, center center solving, circle sorting, etc., to find the center of the first corner hole in the microplate on the image
  • the pixel coordinate position is used to find the center of the first corner hole in the microplate on the image.
  • the control system can reconvert the calculated feature point pixel coordinate position into the slide corner or the center of the first corner hole on the microplate according to the relative distance of the current position of the XY to the motion origin relative to the motion origin.
  • the coordinates of the origin of the motion according to the relative coordinates of the center point of the needle 5 and the lens of the industrial camera 3, the position of the slide or the coordinate position of the center of the first corner of the index plate can be converted into the needle 5
  • the control system In the control system, the user needs to set the first point in the array to be spotted relative to the edge of the slide or the coordinate difference (relative coordinate) between the hole and the hole on the microplate.
  • the control system of the sampler can accurately calculate the coordinate position of the spot array relative to the motion origin, and the accuracy of the spot array relative to the position of the corner of the biochip or the position coordinate relative to the center of the hole can be obtained. This ensures that the problem of poor spot consistency due to poor repeatability of the biochip placement is avoided.
  • the control system controls the XY to the motion mechanism 1 and the Z-direction motion mechanism 7 to cause the sample needle 5 to run to the spotting position to start spotting. operation.
  • Figure 3 is a schematic diagram showing the relationship between the length ratios of the object images of the industrial camera imaging system.
  • A' B ' v/u*AB ( 2 )
  • a ' B ' is the image size and AB is the object size; as shown in Figure 4 is the image pixel and pixel coordinates, with 2 million pixels as an example, the resolution is 1600 *1200, the upper left corner is the origin (0, 0) position of the image pixel coordinates, and the lower right corner is the (1600, 1200) position of the image coordinates, and the value represents only the pixel, and the pixel coordinates (x, y) can be converted to The actual coordinates (X, Y) of the center of the industrial camera lens,
  • M is the magnification of the industrial camera lens.
  • n (y- 800/2) /M+B.
  • the coordinate displacement of the needle 5 relative to the center of the industrial camera lens is (g, k), when the needle is driven from the origin of motion to the coordinates of the corner of the slide. (c,d) can be reached,
  • the user needs to set a relative coordinate ( ⁇ , ⁇ ) of the first point in the upper left corner of the array to be relative to the biochip feature point, so that the spotter can accurately calculate the required point.

Abstract

Cette invention concerne un applicateur d'échantillon pour puce biologique basé sur le positionnement d'une vision machine et un procédé de positionnement associé. Une caméra industrielle (3) est montée sur un mécanisme (1) se déplaçant dans les sens XY à côté d'une tête (2) d'application d'échantillon par l'intermédiaire d'une plateforme (4) d'ajustement de caméra. La caméra industrielle (3) est reliée à un système de commande par l'intermédiaire d'une carte de collecte d'image, et exécute un déplacement synchrone dans le sens XY avec l'aiguille (5) d'application d'échantillon. La caméra industrielle (3) et l'aiguille (5) d'application d'échantillon se déplacent de manière synchrone avec le mécanisme (1) se déplaçant dans le sens XY sous le contrôle du système de commande. Pour une prise d'image par la caméra industrielle (3), le système de commande analyse et calcule l'image et étalonne les coordonnées d'un point de caractéristique d'un support sur lequel l'application d'échantillon est effectuée, et le système de commande détermine, en fonction des coordonnées relatives entre un point sur lequel l'application d'échantillon doit être effectuée et le point de caractéristique, les coordonnées du point sur lequel l'application d'échantillon est effectuée, de façon à démarrer ladite opération d'application d'échantillon. Cette invention utilise la vision machine pour remplacer l'œil nu d'une personne pour étalonner les coordonnées d'une position initiale d'application d'échantillon, garantit la précision d'application d'échantillon, et réduit le temps d'application d'échantillon.
PCT/CN2013/073403 2012-04-10 2013-03-29 Applicateur d'échantillon pour puce biologique basé sur le positionnement d'une vision machine et procédé de positionnement associé WO2013152673A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012101046658A CN102636378A (zh) 2012-04-10 2012-04-10 基于机器视觉定位的生物芯片点样仪及其定位方法
CN201210104665.8 2012-04-10

Publications (1)

Publication Number Publication Date
WO2013152673A1 true WO2013152673A1 (fr) 2013-10-17

Family

ID=46620857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073403 WO2013152673A1 (fr) 2012-04-10 2013-03-29 Applicateur d'échantillon pour puce biologique basé sur le positionnement d'une vision machine et procédé de positionnement associé

Country Status (2)

Country Link
CN (1) CN102636378A (fr)
WO (1) WO2013152673A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636378A (zh) * 2012-04-10 2012-08-15 无锡国盛精密模具有限公司 基于机器视觉定位的生物芯片点样仪及其定位方法
CN104965097B (zh) * 2015-05-22 2017-11-07 天津智通机器人有限公司 自动化点样仪
CN110047107B (zh) * 2018-01-13 2021-04-13 深圳华大智造科技股份有限公司 相机标定方法及图像配准方法、基因测序仪及系统
CN108921890B (zh) * 2018-06-15 2021-01-01 广东拓斯达科技股份有限公司 螺丝锁付方法、装置及计算机可读存储介质
CN109087356A (zh) * 2018-06-29 2018-12-25 齐鲁工业大学 基于机器视觉的医学载玻片的识别定位方法、系统及装置
CN110605547A (zh) * 2019-08-19 2019-12-24 深圳市美思美科智能科技股份有限公司 一种视觉定位手机中框弹片装配系统
CN110456095A (zh) * 2019-08-22 2019-11-15 成都凡迪医学检验所有限公司 微流体点样装置
CN111665111A (zh) * 2020-07-03 2020-09-15 上海百傲科技股份有限公司 点样仪
CN113125188A (zh) * 2021-04-20 2021-07-16 深圳零一生命科技有限责任公司 一种粪便样本全自动核酸提取仪器
CN112991742B (zh) * 2021-04-21 2021-08-20 四川见山科技有限责任公司 一种实时交通数据的可视化仿真方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003021A1 (fr) * 2001-06-29 2003-01-09 Biomachines, Inc. Methode et appareil permettant d'acceder a un site situe sur un substrat biologique
US20040240718A1 (en) * 2003-06-02 2004-12-02 Hitachi Software Engineering Co. Ltd. DNA microarray image analysis system
CN101839688A (zh) * 2009-08-21 2010-09-22 上海铭源数康生物芯片有限公司 基于机器视觉的生物芯片点样过程实时检测系统及分析方法
CN102369553A (zh) * 2009-01-07 2012-03-07 通用电气医疗集团英国有限公司 显微术
CN102636378A (zh) * 2012-04-10 2012-08-15 无锡国盛精密模具有限公司 基于机器视觉定位的生物芯片点样仪及其定位方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100394183C (zh) * 2004-11-29 2008-06-11 开物科技股份有限公司 一种生物芯片的定位装置及其定位方法
CN101334405A (zh) * 2007-06-26 2008-12-31 上海裕隆生物科技有限公司 一种生物芯片点样平台
CN202512009U (zh) * 2012-04-10 2012-10-31 无锡国盛精密模具有限公司 基于机器视觉定位的生物芯片点样仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003021A1 (fr) * 2001-06-29 2003-01-09 Biomachines, Inc. Methode et appareil permettant d'acceder a un site situe sur un substrat biologique
US20040240718A1 (en) * 2003-06-02 2004-12-02 Hitachi Software Engineering Co. Ltd. DNA microarray image analysis system
CN102369553A (zh) * 2009-01-07 2012-03-07 通用电气医疗集团英国有限公司 显微术
CN101839688A (zh) * 2009-08-21 2010-09-22 上海铭源数康生物芯片有限公司 基于机器视觉的生物芯片点样过程实时检测系统及分析方法
CN102636378A (zh) * 2012-04-10 2012-08-15 无锡国盛精密模具有限公司 基于机器视觉定位的生物芯片点样仪及其定位方法

Also Published As

Publication number Publication date
CN102636378A (zh) 2012-08-15

Similar Documents

Publication Publication Date Title
WO2013152673A1 (fr) Applicateur d'échantillon pour puce biologique basé sur le positionnement d'une vision machine et procédé de positionnement associé
EP2801816B1 (fr) Procédé et dispositif d'analyse optique d'un PCB
CN110006905A (zh) 一种线面阵相机结合的大口径超净光滑表面缺陷检测装置
CN200955949Y (zh) 瓷砖尺寸及形状在线视觉测量系统
CN201534392U (zh) 药片冲压设备高精度检测系统
CN101050949A (zh) 大视场物体微观表面三维形貌的测量系统及其测量方法
US20080118159A1 (en) Gauge to measure distortion in glass sheet
CN104677912B (zh) 产品外观检测系统及检测方法
CN204154284U (zh) 一种高精度多自由度视觉平台
CN105666246B (zh) 基于ccd的刀具参数测量装置及其测量方法
CN111855578B (zh) 一种病理切片扫描仪
CN105445643A (zh) 一种全自动探针台图像定位系统
CN101839691B (zh) 一种影像式试验筛自动校准仪
CN110836641A (zh) 一种零件异形表面微结构三维尺寸的检测方法及检测设备
CN109916914A (zh) 一种产品缺陷检测方法及装置
CN202512009U (zh) 基于机器视觉定位的生物芯片点样仪
TWI593503B (zh) Tool image measurement methods
CN106000903B (zh) 一种用于检测织布机布铗刀口缝隙的非接触式检测系统及方法
CN108759676A (zh) 基于棋盘格的传动箱端面大尺寸形位公差检测装置与方法
CN208671913U (zh) 一种基于棋盘格的传动箱端面大尺寸形位公差检测装置
DE102004058655B4 (de) Verfahren und Anordnung zum Messen von Geometrien eines Objektes mittels eines Koordinatenmessgerätes
CN109631763A (zh) 不规则零件检测定位方法
CN209887295U (zh) 一种陶瓷天线和介质滤波器调频机
CN205246712U (zh) 全自动探针台图像定位装置
KR101186420B1 (ko) 측정장치의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775160

Country of ref document: EP

Kind code of ref document: A1