WO2013151248A1 - Silicone polymer asymmetric composite membrane and production method therefor - Google Patents

Silicone polymer asymmetric composite membrane and production method therefor Download PDF

Info

Publication number
WO2013151248A1
WO2013151248A1 PCT/KR2013/002111 KR2013002111W WO2013151248A1 WO 2013151248 A1 WO2013151248 A1 WO 2013151248A1 KR 2013002111 W KR2013002111 W KR 2013002111W WO 2013151248 A1 WO2013151248 A1 WO 2013151248A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composite membrane
silicone polymer
asymmetric composite
ladder
Prior art date
Application number
PCT/KR2013/002111
Other languages
French (fr)
Korean (ko)
Inventor
백경열
황승상
홍순만
이상협
박상희
박희경
김성혜
조영훈
정지영
박호범
구종민
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Publication of WO2013151248A1 publication Critical patent/WO2013151248A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/702Polysilsesquioxanes or combination of silica with bridging organosilane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/18Pore-control agents or pore formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • B01D2323/22Specific non-solvents or non-solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/025Finger pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/026Sponge structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength

Definitions

  • the present invention relates to a silicone polymer asymmetric composite membrane and a method for manufacturing the same, more specifically, a silicone polymer asymmetric composite membrane including a silicone polymer, particularly a ladder-type polysilsesquioxane, and prepared by using a phase transfer method and a method of manufacturing the same. It is about.
  • the properties required for the membrane used in the water treatment process include high water permeation characteristics, high rejection characteristics for specific materials, mechanical strength and chemical resistance.
  • the inorganic separators are excellent in terms of mechanical strength and chemical resistance, but the most widely used ones are polysulfone-based, cellulose-based, polyamide-based, and fluorinated polyaliphatic-based polymer membranes. .
  • the inorganic membrane is used as a support having a microfiltration pores by sintering of the alumina powder, and is prepared by a method of reducing pores by applying a solol coating on the support.
  • the separator thus prepared may be usefully used under conditions of silver or organic solvents that cannot be treated with a general polymer separator.
  • the inorganic membrane is characterized by high manufacturing cost, slow production speed, and very thick inorganic membrane support. The thickness of the inorganic membrane is a decisive factor in determining the separator properties.
  • the inorganic membrane support has been prepared by the extruder method using a water-soluble polymer, but the inorganic membrane prepared by the extruder method using the water-soluble polymer. Full of support Difficult to reduce the cross-sectional area is accompanied by a lot of difficulties in improving the performance of the support.
  • a phase-inversion method may be used.
  • the membrane is manufactured using this method, it is possible to realize a desired pore size and to easily control the length and size of the pores. In addition to excellent independence, it is possible to manufacture the membrane simply and inexpensively.
  • no inorganic film manufactured by the phase change method has been reported.
  • the present invention provides a method for producing an asymmetric silicone polymer composite membrane formed by a phase-transfer method using a silicone polymer, and has an inorganic membrane characteristic, which has excellent heat resistance and strength, and has excellent water permeability. It is an object of the present invention to provide an asymmetric silicone polymer composite membrane which is excellent and can be used for water treatment.
  • the present invention comprises the steps of applying a polymer solution containing a silicone polymer and a pore-forming agent on a support;
  • It provides a method for producing a silicone polymer asymmetric composite membrane comprising a; forming asymmetric composite membrane by the phase transition by impregnating the support with a non-solvent.
  • the manufacturing method may further include removing the pore-forming agent from the asymmetric composite membrane.
  • the silicon polymer may be a ladder-type polysilsesquioxane.
  • the ladder-type polysilsesquioxane may be represented by the following formula (1). [Formula 1]
  • R 2 is independently an aryl group, alkyl group, allyl group, vinyl group, epoxy group, amine group, halogen, alkylhalogen, methacryl group, azide group, sulfone group, silone group and acryl group
  • the ladder-type polysilsesquioxane may have a molecular weight of 10000 to 800,000.
  • the ladder-type polysilsesquioxane is an aryl group, alkyl group, allyl group, vinyl group, epoxy group amine group, halogen, alkylhalogen, methacryl group, azide group, sulfone group, between It may have one or more terminal groups selected from the group consisting of oligo groups and acrylic groups.
  • the ladder-type polysilsesquioxane may have one or more terminal groups of a phenyl group and a methyl methacryl group.
  • the molar ratio of each functional group may be 6: 4 to 4: 6.
  • the solvent of the polymer solution containing the silicone polymer and the pore-forming agent ⁇ ⁇ dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pi
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • N-methyl-2-pi At least one selected from the group consisting of lidone (NMP) and dimethyl sulfoxide (DMSO).
  • the pore-forming agent is polyvinylpyridone (PVP), polyethylene glycol (PEG), polyethylene glycol (PEO), polyvinyl alcohol (PVA), lithium chloride ( LiCl), sodium chloride (NaCl) ⁇ magnesium chloride (MgCl 2 ), potassium chloride (KC1) ⁇ calcium chloride
  • PVP polyvinylpyridone
  • PEG polyethylene glycol
  • PEO polyethylene glycol
  • PVA polyvinyl alcohol
  • LiCl lithium chloride
  • NaCl sodium chloride
  • MgCl 2 magnesium chloride
  • KC1 potassium chloride
  • the silicone polymer is from 1 to 1 with respect to the solvent It may be contained in the polymer solution in an amount of 45 weight 3 ⁇ 4.
  • the pore-forming agent may be 1 to 30% by weight of the silicone polymer.
  • the support may be at least one selected from the group consisting of plastic, glass and polymer support.
  • the non-solvent may be one or more selected from the group consisting of water alone, alcohol alone, an aqueous alcohol solution and an aqueous solution containing an organic solvent.
  • the non-solvent may have a temperature of 20 to 80 ° C.
  • the asymmetric composite membrane may have one surface in which a sponge or a finger shape is uniformly formed.
  • the present invention also provides a silicone polymer asymmetric composite membrane in which a uniform sponge or finger shape is formed by a phase transition between a polymer solution containing a silicon polymer and a pore-forming agent and a non-solvent.
  • the method of manufacturing the silicon polymer asymmetric composite membrane of the present invention is excellent in manufacturing efficiency because it proceeds with a simple phase transition method, and has the characteristics of the inorganic membrane using the silicone polymer, which has excellent heat resistance and strength, and excellent water permeability. It can be applied to various fields.
  • FIG. 1 is a cross-sectional SEM photograph of a silicon polymer asymmetric composite membrane according to a silicon polymer content according to a comparative example of the present invention.
  • FIGS. 2 and 3 are cross-sectional SEM photographs of the silicon high molecular asymmetric composite membrane according to the pore-forming agent content according to an embodiment of the present invention.
  • FIG. 4 is an SEM image of a silicon polymer asymmetric composite membrane coated on a PET support according to an embodiment of the present invention.
  • FIG. 7 and 8 illustrate the number of silicon polymer asymmetric composite films according to an embodiment of the present invention. It is a graph showing permeability.
  • the present invention comprises the steps of applying a polymer solution containing a silicone polymer and a pore-forming agent on a support; And impregnating the support with a non-solvent to form asymmetric composite membrane by phase transfer.
  • the method may further include removing a pore-forming agent from the asymmetric composite membrane.
  • a polymer solution containing a silicone polymer and a pore-forming agent is subjected to a step of applying it on a support.
  • the silicone polymer is not particularly limited as long as it is a polymer containing silicon, and may preferably be a ladder-type polysilsesquioxane.
  • Ladder-type polysilsesquioxane has a lower content of -0H than conventional polysilsesquioxane and condensation does not occur, so not only the dimensional stability by heat is high, but also the thermal stability is very high.
  • the solubility in organic solvents is also very high, there is an advantage that can be produced a free-standing film using a variety of solvents.
  • the ladder-type polysilsesquioxane has a molecular weight of 10,000 to 10,000
  • the film may be 800, 000. Preferably 100,000 to 40,000. If the molecular weight is less than 10,000, it is difficult to form uniform pores, and if it is more than 800,000, the viscosity of the solution is excessively high, which makes it difficult to cast the film.
  • the ladder polysilsesquioxane is an aryl group, an alkyl group, an allyl group, a vinyl group, an epoxy group, an amine group, a halogen, an alkylhalogen, a methacryl group, an azide group, a sulfone group, a siol group, and an acryl group. It may have one or more end groups selected from the group consisting of. That is, the end groups may be the same as or different from each other.
  • the ladder-type polysilsesquioxane may have one or more terminal groups of a phenyl group and a methylmethacryl group.
  • the 'aryl group' is represented by -Ar as a hydrogen atom in the vacation hydrocarbon, and includes a phenyl group, anthryl group, and phenanthryl group.
  • the 'alkyl group' is a cycloalkyl or branched alkyl group having 1 to 30 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, and cyclo And a cycloalkyl group having 3 to 10 carbon atoms such as a propyl group, a cyclopentyl group, and a cyclonuxyl group.
  • the molar ratio of each functional group may be 6: 4 to 4: 6.
  • one type of functional group is included in more than the above range, in particular, when the phenyl group is large, the film is brittle, and when the methyl methacryl group is high, the polymer may be in the liquid phase, which makes it difficult to prepare an asymmetric composite membrane. .
  • the ladder-type polysilsesquioxane may be represented by the following Chemical Formula 1. [Formula 1]
  • R 2 are each independently an aryl group, alkyl group, allyl group, non group, epoxy group, amine group, halogen, alkylhalogen, methacryl group, azide group, sulfone group, diol group and acryl group)
  • n and n are each independently an integer selected from 1 to 40,000.
  • Rj and R 2 may be the same as or different from each other.
  • the ratio of tn and may be 10: 0 to 0:10, but preferably 6: 4 to 4: 6.
  • Method for producing a ladder-type polysilsesquioxane represented by the formula (1) is not particularly limited, the synthesis presented in the paper "Polymer Chemistry, Synthesis and Characterization of UV-Curable Ladder-Like Polysi Isesquioxane, Seung-Sock Choi" It may be prepared by the method.
  • ladder-type polysilsesquioxane may be represented by the following formula (2).
  • ⁇ in the above formula is an integer selected from 1 to 10,000
  • the solvent used in the polymer solution is not limited to any solvent in which the silicone polymer is dissolved.
  • the solvent is used as "dimethylformamide (DMF), dimethylacetamide (DMAc), or N-methyl. May be one or more selected from the group consisting of 2-pyridone (NMP) and dimethylsulfoxide (DMS0), more preferably dimethylacetamide (DMAc). Dimethylacetamide ⁇ MAc) Has the characteristic of improving the phase transition rate.
  • the polymer solution is based on a solvent.
  • silicone polymer it is preferable to contain 1 to 50% by weight of the silicone polymer, more preferably 30 to 50% by weight. If the silicone polymer is less than 1% by weight, the viscosity is too low, making the membrane difficult to manufacture, and if it exceeds 50% by weight, the content of solids is too high to prepare the membrane. And difficult to form uniform pores when an asymmetric film is formed.
  • the pore-forming agent is not limited to any one as long as it is well soluble in the above-described solvent, that is, the solvent dissolving the silicone polymer, but should not be compatible with the silicone polymer.
  • Polymers comprising polyvinylpyridone (PVP), polyethylene glycol (PEG), polyethylene glycol (PE0), polyvinyl alcohol (PVA) ol, lithium chloride (LiCl), sodium chloride (NaCl), chloride
  • the pore-forming agent plays a role of reducing the solids content and increasing the viscosity of the silicone polymer solution in addition to forming pores.
  • the pore-forming agent is preferably a large molecular weight.
  • the polyvinylpyridone (PVP) preferably has a molecular weight of 300 or more, more preferably 360 or more.
  • the content of the pore-forming agent may vary depending on the molecular weight of the pore-forming agent, but it is preferable that it is 1 to 30 increase of 3 ⁇ 4 with respect to the silicone polymer, and more preferably 5 to 20% by weight. If the pore-forming agent is less than 1 weight 3 ⁇ 4, the pores cannot be formed. If the pore-forming agent is more than 30% by weight, the pore-forming agent is too large to form very large pores.
  • the content of the solvent used in the polymer solution is preferably 50 to 70% by weight, more preferably 50 to 60% by weight based on the total solution.
  • the support is not limited to any of the commercial support, but may be one or more selected from the group consisting of plastic, glass and polymer support. More preferably, it may be a PET support, and the PET support has a property of analyzing separator properties immediately after manufacture.
  • the application method is generally used Is not particularly limited.
  • the non-solvent is impregnated with the support on which the polymer solution is applied to phase change to form an asymmetric composite membrane.
  • the non-solvent may be any solvent in which the silicone polymer is not dissolved, but at least one selected from the group consisting of water alone, alcohol alone, an aqueous solution of alcohol and an organic solvent is preferable.
  • water Preferably water.
  • the organic solvent in the aqueous solution containing the organic solvent is not particularly limited as an organic solvent generally used.
  • the temperature of the non-solvent is preferably 20 to 80 ° C, more preferably 20 to 40 ° C. If the temperature of the non-solvent is less than 2C C, the silver content is low, so that the phase transition between the solvent and the non-solvent is not easy.
  • the non-solvent is impregnated with the support on which the polymer solution is applied, a phase-inversion phenomenon occurs. Specifically, as the phase transition between the solvent and the non-solvent occurs, the solvent and the pore-forming agent rapidly transfer together with the non-solvent. At this time, uniform pores are formed. In addition, one surface of which a sponge or finger shape is uniformly formed by the pore forming agent is manufactured.
  • removing the pore-forming agent from the asymmetric composite membrane may be further roughened.
  • the pore-forming agent may be removed by sufficiently impregnating the prepared asymmetric composite membrane in distilled water. And the moisture is dried at room temperature and completely dried in a vacuum oven of about 50 ° C can be used as a separator. Through this process, the asymmetric composite membrane is solidified.
  • the asymmetric composite membrane produced by the preparation method according to the present invention exhibits a weight loss of less than 2% at 400 ° C or less. This can be confirmed in Test Example 2 to be described later. Specifically, the weight loss rate is less than 2%, that is, 0.001 to 1.99%.
  • the asymmetric composite film prepared by the manufacturing method according to the present invention has a tensile strength of 7
  • the tensile strength may be 7 to lOMPa
  • the tensile strain may be 30 to 50%.
  • the present invention also provides a silicone polymer asymmetric composite membrane in which a uniform sponge or finger shape is formed by a phase transition between a polymer solution and a non-solvent containing a silicon polymer and a pore-forming agent.
  • Silicone polymer asymmetric composite membrane according to the manufacturing method of the present invention is excellent in manufacturing efficiency because it proceeds with a simple phase transition method, and has excellent properties of inorganic membrane using the silicone polymer, excellent heat resistance and strength, and excellent water permeability. It can be applied to various fields.
  • each prepared polymer solution was poured onto the glass plate. After the polymer solution was cast on a glass plate using a duct knife of 200 pm thickness, a separator was prepared by impregnating the glass plate with water at 25 ° C. After 30 minutes, the glass plate was separated, immersed in clean distilled water, solidified, and dried at room temperature to prepare a ladder-type polysilsesquioxane asymmetric composite membrane. ⁇ 112>
  • a ladder-type polysilsesquioxane asymmetric composite membrane was prepared in the same manner as shown in Comparative Example 1 except that 10 g and 12 g of ladder polysilsesquioxane were dissolved. Each was prepared with 50 wt 3 ⁇ 4 and 60 wt% polymer solutions and compared Example 2 and 3 were set.
  • the prepared polymer solution was poured onto the glass plate.
  • the separator was prepared by impregnating the glass plate with water at 25 ° C. After 30 minutes, the glass plate was separated, immersed in clean distilled water, solidified, and dried at room temperature to prepare a ladder-type polysilsesquioxane asymmetric composite membrane.
  • a ladder-type polysilsesquioxane asymmetric composite membrane was prepared in the same manner as in Example 1 except that the polyvinylpyridone used as the ⁇ i2i> pore-forming agent was 40 kDa and 10 kDa. 40 kDa and 10 kDa were set as Comparative Examples 2 and 3, respectively.
  • a ladder-type polysilsesquioxane asymmetric composite membrane was prepared in the same manner as in Example 1, except that the content of polyvinylpyridone (PVP, 360 kDa) used as the pore-forming agent was 0.8 g. Prepared.
  • PVP polyvinylpyridone
  • a ladder-type polysilsesquioxane asymmetric composite membrane was prepared in the same manner as shown in Example 1 except that a PET support was used instead of a glass plate as a support. .
  • FIG. 1 ((a) Comparative Example 1, (b) Comparative Example 2, (c) Comparative Example 3) FIG. 2 (Comparative Example 3), FIG. 3 ((a) Comparative Example 2, (b). Example 1) and FIG. 4, respectively.
  • phase transition phenomenon 40, 50, and 60 wt 3 ⁇ 4 to observe the phase transition phenomenon according to the concentration.
  • Figure 1 although the phase transition phenomenon, it can be seen that it has a non-uniform pore size and structure as a whole.
  • FIG. 2 is a cross-sectional photograph of a polyvinylpyridone (PVP, 10 kDa), which is a pore forming agent, mixed at 20 weight 3 ⁇ 4> to prepare an asymmetric separator.
  • PVP polyvinylpyridone
  • FIG. 2 was a cross-sectional photograph of a polyvinylpyridone (PVP, 10 kDa), which is a pore forming agent, mixed at 20 weight 3 ⁇ 4> to prepare an asymmetric separator.
  • PVP polyvinylpyridone
  • 10 kDa a pore forming agent
  • FIG. 3 is a cross-sectional photograph of an asymmetric separator using polyvinyl pyrrolidone having a higher molecular weight of 40 kDa (Comparative Example 2) and 360 kDa (Example 1).
  • the upper (surface) is a dense selective layer and the lower layer is a porous support, showing a normal phase transition phenomenon. .
  • FIG. 4 is a cross-sectional photograph of an asymmetric separator including 10 weight 3 ⁇ 4 and 20 weight 3 ⁇ 4 using polyvinylpyridone having a molecular weight of 360 kDa.
  • a finger-shaped structure is shown, and when the weight is 20% by weight, each shows a sponge-like structure. This different structure is considered to be affected by the content of polyvinylpyridone.
  • Example 1 In order to determine the heat resistance of Example 1, a weight change was measured according to temperature using a thermogravimetric analyzer, and the results are shown in FIG. 5. As can be seen in Figure 5, the asymmetric composite membrane was found to be very stable, showing a weight reduction of less than 2% to 400 ° C.
  • the asymmetric composite membrane has a tensile strength of 7 MPa or more and a tensile strain of 30% or more, it can be seen that also excellent in mechanical strength.
  • Test Example 4 Water Permeability Measurement
  • LMH L / i / h
  • Figure 8 shows the results of measuring the water permeability by preparing an asymmetric membrane on the PET support according to Example 2 above. As can be seen in Figure 8, as the content of polyvinylpyrrolidone increases the water permeability also increases, which can be seen that the water-permeable properties of the sponge structure than the finger-like structure is better. Asymmetric membranes having the properties of ultrafiltration membranes having a total water permeability of 400 to 700 LMH / bar were prepared.

Abstract

The present invention provides a production method for a silicone polymer asymmetric composite membrane comprising the steps of: coating a polymer solution, which comprises a silicone polymer and a pore-forming agent, onto a support; and forming an asymmetric composite membrane by subjecting the support to phase transition by immersing same in a non solvent, and the invention also provides the silicone polymer asymmetric composite membrane. The production method for a silicone polymer asymmetric composite membrane of the present invention takes place using just a straightforward phase transition method, and thus can be used in various fields of water treatment, as the production efficiency is outstanding, and the use of the silicone polymer brings about the characteristics of an inorganic membrane and the heat resistance and strength are superior, while nevertheless the water permeability characteristics are outstanding.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
실리콘 고분자 비대칭 복합막 및 이의 제조방법  Silicone Polymer Asymmetric Composite Membrane and Manufacturing Method Thereof
【기술분야】  Technical Field
본 발명은 실리콘 고분자 비대칭 복합막 및 이의 제조방법에 관한 것으로, 보다 구체적으로 실리콘 고분자, 특히 사다리형 폴리실세스퀴옥산을 포함하고 상전 이 방법을 이용하여 제조되는 실리콘 고분자 비대칭 복합막 및 이의 제조방법에 관 한 것이다.  The present invention relates to a silicone polymer asymmetric composite membrane and a method for manufacturing the same, more specifically, a silicone polymer asymmetric composite membrane including a silicone polymer, particularly a ladder-type polysilsesquioxane, and prepared by using a phase transfer method and a method of manufacturing the same. It is about.
【배경기술】  Background Art
폭발적인 인구 증가와 급속한 산업화에 따른 환경 오염이 심각해져 물의 중 요성에 대한 인식이 부각되면서 물 산업이 새로운 성장 동력으로 발전해가고 있다. 이와 같은 시장 동향이 양질의 용수 공급, 산업폐수의 효율적인 처리 및 해수의 담 수화 공정을 요구하고 있고 그 중에서도 에너지 절감에 가장 효율적인 분리막을 이 용하여 수처리 공정을 개선하려는 연구가 활발하게 진행되고 있다.  The water industry is developing as a new growth engine as the environmental pollution caused by the explosive population growth and rapid industrialization is serious and the awareness of the importance of water is highlighted. Such market trends demand high quality water supply, efficient treatment of industrial wastewater, and desalination of seawater. Among them, research is being actively conducted to improve the water treatment process using the most efficient membrane for energy saving.
수처리 공정에 사용되는 분리막에 요구되는 특성으로는 높은 수투과 특성과 동시에 특정 물질에 대한 높은 배제 특성, 기계적인 강도 및 내화학적 특성 등이 있다. 특히, 기계적인 강도 및 내화학적인 특성면에서 무기계 분리막이 우수하지만 현재 가장 많이 사용되는 있는 것은 가격이 저렴한 폴리설폰계, 셀를로오스계, 폴 리아마이드계 및 불소화폴리지방족계 고분자 분리막이 대부분이다.  The properties required for the membrane used in the water treatment process include high water permeation characteristics, high rejection characteristics for specific materials, mechanical strength and chemical resistance. Particularly, the inorganic separators are excellent in terms of mechanical strength and chemical resistance, but the most widely used ones are polysulfone-based, cellulose-based, polyamide-based, and fluorinated polyaliphatic-based polymer membranes. .
이와 같은 고분자 분리막은 내약품성, 내열성 및 내오염성 등의 물성과 미 생물 둥에 취약하고 무엇보다도 분리막올 재생하기 위해서 사용하는 염기성 화학 약품에 의해서 가수분해가 빠르게 진행되기 때문에 수명에 대한 문제점이 있다. 따 라서 상기와 같은 문제점을 해결하기 위해서는 무기막과 같이 보다 우수한 분리막 소재의 개발이 요구되고 있다.  Such polymer membranes are vulnerable to physical properties such as chemical resistance, heat resistance, and fouling resistance, and above all, there is a problem in life because hydrolysis proceeds rapidly by basic chemicals used to regenerate the membrane. Therefore, in order to solve the above problems, development of a better separator material such as an inorganic membrane is required.
일반적으로 무기막은 알루미나 파우더의 소결에 의해서 정밀여과 수준의 기 공을 갖는 지지체로 사용되고 지지체 위에 졸올 코팅함으로써 기공을 줄여나가는 방법으로 제조된다. 이와 같이 제조된 분리막은 일반 고분자 분리막으로 처리할 수 없는 고은 또는 유기 용매의 조건에서 유용하게 사용할 수 있다. 이러한 무기막은 제조 단가가 높고 생산 속도가 느리며, 무기막 지지체가 매우 두꺼운 것이 특징이 다. 무기막의 두께는 분리막 특성을 좌우하는 결정적인 요소로서 , 수용성 고분자를 이용해서 익스트루더 (extruder)법에 의해서 무기막 지지체가 제조되어 오고 있으나 상기 수용성 고분자를 이용해서 익스트루더법에 의해 제조된 무기막 지지체의 전체 단면적을 줄이기가 어려워 지지체의 성능을 높이는데 많은 어려움이 따른다. In general, the inorganic membrane is used as a support having a microfiltration pores by sintering of the alumina powder, and is prepared by a method of reducing pores by applying a solol coating on the support. The separator thus prepared may be usefully used under conditions of silver or organic solvents that cannot be treated with a general polymer separator. The inorganic membrane is characterized by high manufacturing cost, slow production speed, and very thick inorganic membrane support. The thickness of the inorganic membrane is a decisive factor in determining the separator properties. The inorganic membrane support has been prepared by the extruder method using a water-soluble polymer, but the inorganic membrane prepared by the extruder method using the water-soluble polymer. Full of support Difficult to reduce the cross-sectional area is accompanied by a lot of difficulties in improving the performance of the support.
<6> 분리막의 단면적을 줄이기 위해서는 상전이 (phase-inversion) 방법이 사용될 수 있는데 이 방법을 이용해서 분리막을 제조하면 원하는 형태의 기공을 구현할 수 있고 기공의 길이 및 크기의 조절이 용이하며, 기공의 독립성이 우수할 뿐 아니라 간단하고 저렴하게 분리막 제조가 가능하다. .하지만 현재까지 상전이 방법에 의해 서 제조된 무기막은 보고된 적이 없다.  <6> To reduce the cross-sectional area of the membrane, a phase-inversion method may be used. When the membrane is manufactured using this method, it is possible to realize a desired pore size and to easily control the length and size of the pores. In addition to excellent independence, it is possible to manufacture the membrane simply and inexpensively. However, up to now, no inorganic film manufactured by the phase change method has been reported.
<7> 종래 상전이 방법을 이용해서 다공성 세라믹 중공사 무기막 지지체를 제조하 는 방법이 있었다. 구체적으로, 알루미늄 분말과 폴리설폰 (PSf)을 이용하여 600°C 에서 고분자를 탄화시키고 1300°C에서 소결시켜 강도를 유지하도록 하는 다공성 중 공사 무기막 지지체를 제조하는 방법이다. 그러나 이 종래 기술은 무기막을 이용하 여 지지체를 제조하는 방법을 개시한 것일 뿐, 무기막 자체가 뛰어난 수투과 특성 을 가지는 분리막은 지금껏 연구된 바가 없었다. There was a method of preparing a porous ceramic hollow fiber inorganic membrane support using a conventional phase transition method. Specifically, a method for producing a porous hollow fiber inorganic membrane support to carbonize the polymer at 600 ° C and sintered at 1300 ° C to maintain strength using aluminum powder and polysulfone (PSf). However, this prior art only discloses a method for preparing a support using an inorganic membrane, and a separator having excellent water permeability as the inorganic membrane itself has not been studied until now.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
<8> 상기와 같은 문제점을 해결하기 위하여 본 발명은 실리콘 고분자를 이용하여 상전이 방법으로 형성되는 비대칭 실리콘 고분자 복합막의 제조방법을 제공하고, 무기막 특성을 가져 내열성 및 강도가 뛰어나면서 수투과 특성이 우수하여 수처리 용으로 사용 가능한 비대칭 실리콘 고분자 복합막을 제공하는 것을 그 목적으로 한 다.  In order to solve the above problems, the present invention provides a method for producing an asymmetric silicone polymer composite membrane formed by a phase-transfer method using a silicone polymer, and has an inorganic membrane characteristic, which has excellent heat resistance and strength, and has excellent water permeability. It is an object of the present invention to provide an asymmetric silicone polymer composite membrane which is excellent and can be used for water treatment.
【기술적 해결방법】  Technical Solution
<9> 상기와 같은 목적을 해결하기 위하여 본 발명은 실리콘 고분자 및 기공형성 제를 포함하는 고분자 용액을 지지체 상 도포하는 단계; 및  In order to solve the above object, the present invention comprises the steps of applying a polymer solution containing a silicone polymer and a pore-forming agent on a support; And
<10> 상기 지지체를 비용매에 함침하여 상전이시킴으로써 비대칭 복합막을 형성하 는 단계;를 포함하는 실리콘 고분자 비대칭 복합막의 제조방법을 제공한다. It provides a method for producing a silicone polymer asymmetric composite membrane comprising a; forming asymmetric composite membrane by the phase transition by impregnating the support with a non-solvent.
<11> 본 발명의 일실시예에 있어서, 상기 제조방법은 상기 비대칭 복합막에서 기 공형성제를 제거하는 단계;를 더 포함하는 것일 수 있다. In one embodiment of the present invention, the manufacturing method may further include removing the pore-forming agent from the asymmetric composite membrane.
<12> 본 발명의 일실시예에 있어서, 상기 실리콘 고분자는 사다리형 폴리실세스퀴 옥산일 수 있다.  In one embodiment of the present invention, the silicon polymer may be a ladder-type polysilsesquioxane.
<13> 본 발명의 일실시예에 있어서, 상기 사다리형 폴리실세스퀴옥산은 하기 화학 식 1로 표시되는 것일 수 있다. [화학식 1] In one embodiment of the present invention, the ladder-type polysilsesquioxane may be represented by the following formula (1). [Formula 1]
Figure imgf000005_0001
Figure imgf000005_0001
(상기 식에서, 및 R2는 각각 독립적으로 아릴기, 알킬기, 알릴기, 비닐 기, 에폭시기, 아민기, 할로겐, 알킬할로겐, 메타크릴기, 아자이드기, 설폰기, 사 이을기 및 아크릴기로 구성된 군에서 선택되는 하나의 관능기이고, Wherein R 2 is independently an aryl group, alkyl group, allyl group, vinyl group, epoxy group, amine group, halogen, alkylhalogen, methacryl group, azide group, sulfone group, silone group and acryl group One functional group selected from the group,
m 및 n은 각각 독립적으로 1 내지 40,000중 선택되는 하나의 정수임) 본 발명의 일실시예에 있어서, 상기 사다리형 폴리실세스퀴옥산은 분자량이 10000 내지 800 ,000일 수 있다.  m and n are each independently an integer selected from 1 to 40,000. In one embodiment of the present invention, the ladder-type polysilsesquioxane may have a molecular weight of 10000 to 800,000.
본 발명의 일실시예에 있어서, 상기 사다리형 폴리실세스퀴옥산은 아릴기, 알킬기, 알릴기, 비닐기, 에폭시기 아민기, 할로겐, 알킬할로겐, 메타크릴기, 아 자이드기, 설폰기, 사이올기 및 아크릴기로 구성된 군으로부터 선택되는 하나 이상 의 말단기를 가지는 것일 수 있다.  In one embodiment of the present invention, the ladder-type polysilsesquioxane is an aryl group, alkyl group, allyl group, vinyl group, epoxy group amine group, halogen, alkylhalogen, methacryl group, azide group, sulfone group, between It may have one or more terminal groups selected from the group consisting of oligo groups and acrylic groups.
본 발명의 일실시예에 있어서, 상기 사다리형 폴리실세스퀴옥산은 페닐기 및 메틸메타크릴기 중 하나 이상의 말단기를 가지는 것일 수 있다.  In one embodiment of the present invention, the ladder-type polysilsesquioxane may have one or more terminal groups of a phenyl group and a methyl methacryl group.
본 발명의 일실시예에 있어서, 상기 사다리형 폴리실세스퀴옥산의 말단기가 서로 다른 것인 경우, 각 관능기의 몰비가 6:4내지 4:6일 수 있다.  In one embodiment of the present invention, when the end groups of the ladder-type polysilsesquioxane is different from each other, the molar ratio of each functional group may be 6: 4 to 4: 6.
본 발명의 일실시예에 있어서, 상기 실리콘 고분자 및 기공형성제를 포함하 는 고분자 용액의 용매는 ,Λ^디메틸포름아마이드 (DMF), 디메틸아세트아마이드 (DMAc), N-메틸 -2-피를리돈 (NMP) 및 디메틸술폭사이드 (DMSO)로 구성된 군으로부 터 선택되는 하나 이상일 수 있다.  In one embodiment of the present invention, the solvent of the polymer solution containing the silicone polymer and the pore-forming agent, Λ ^ dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pi At least one selected from the group consisting of lidone (NMP) and dimethyl sulfoxide (DMSO).
본 발명의 일실시예에 있어서, 상기 기공형성제는 폴리비닐피를리돈 (PVP), 폴리에틸렌글라이콜 (PEG), 폴리에틸렌글라이콜 (PEO), 폴리비닐알콜 (PVA), 염화리 튬 (LiCl), 염화나트륨 (NaCl)ᅳ 염화마그네슘 (MgCl2), 염화칼륨 (KC1)ᅳ 염화칼슘In one embodiment of the present invention, the pore-forming agent is polyvinylpyridone (PVP), polyethylene glycol (PEG), polyethylene glycol (PEO), polyvinyl alcohol (PVA), lithium chloride ( LiCl), sodium chloride (NaCl) ᅳ magnesium chloride (MgCl 2 ), potassium chloride (KC1) ᅳ calcium chloride
(CaCl2) 및 염화아연 (ZnCl2)로 구성된 군으로부터 선택되는 하나 이상일 수 있다. 본 발명의 일실시예에 있어서, 상기 실리콘 고분자는 용매에 대하여 1 내지 45중량 ¾의 함량으로 고분자 용액에 함유되는 것일 수 있다. At least one selected from the group consisting of (CaCl 2 ) and zinc chloride (ZnCl 2 ). In one embodiment of the present invention, the silicone polymer is from 1 to 1 with respect to the solvent It may be contained in the polymer solution in an amount of 45 weight ¾.
<25> 본 발명의 일실시예에 있어서, 상기 기공형성제는 실리콘 고분자에 대하여 1 내지 30중량 %의 함량인 것일 수 있다.  In one embodiment of the present invention, the pore-forming agent may be 1 to 30% by weight of the silicone polymer.
<26> 본 발명의 일실시예에 있어서, 상기 지지체는 플라스틱, 유리 및 고분자 지 지체로 구성된 군으로부터 선택되는 하나 이상일 수 있다.  In one embodiment of the present invention, the support may be at least one selected from the group consisting of plastic, glass and polymer support.
<27> 본 발명의 일실시예에 있어서, 상기 비용매는 물 단독 , 알코올 단독 , 알코올 수용액 및 유기용매를 포함하는 수용액으로 구성된 군에서 선택되는 하나 이상일 수 있다. In one embodiment of the present invention, the non-solvent may be one or more selected from the group consisting of water alone, alcohol alone, an aqueous alcohol solution and an aqueous solution containing an organic solvent.
<28> 본 발명의 일실시예에 있어서, 상기 비용매는 온도가 20 내지 80°C일 수 있 다. In one embodiment of the present invention, the non-solvent may have a temperature of 20 to 80 ° C.
<29> 본 발명의 일실시예에 있어서, 상기 비대칭 복합막은 스폰지 또는 손가락 모 양이 균일하게 형성된 일면을 가지는 것일 수 있다.  In one embodiment of the present invention, the asymmetric composite membrane may have one surface in which a sponge or a finger shape is uniformly formed.
<30> 또한, 본 발명은 실리콘 고분자 및 기공형성제를 포함하는 고분자 용액과 비 용매의 상전이에 의하여 균일한 스폰지 또는 손가락 모양이 형성된 실리콘 고분자 비대칭 복합막을 제공한다. The present invention also provides a silicone polymer asymmetric composite membrane in which a uniform sponge or finger shape is formed by a phase transition between a polymer solution containing a silicon polymer and a pore-forming agent and a non-solvent.
【유리한 효과】  Advantageous Effects
<31> . 본 발명의 실리콘 고분자 비대칭 복합막의 제조방법은 간단한 상전이 방법만 으로 진행되므로 제조효율이 우수하고, 실리콘 고분자를 이용하여 무기막의 특성을 가져 내열성 및 강도가 뛰어나면서도, 수투과 특성이 우수하여 수처리 용도의 다양 한 분야에 적용될 수 있다.  <31>. The method of manufacturing the silicon polymer asymmetric composite membrane of the present invention is excellent in manufacturing efficiency because it proceeds with a simple phase transition method, and has the characteristics of the inorganic membrane using the silicone polymer, which has excellent heat resistance and strength, and excellent water permeability. It can be applied to various fields.
【도면의 간단한 설명】  [Brief Description of Drawings]
<32> 도 1은 본 발명의 일 비교예에 따른 실리콘 고분자 함량에 따른 실리콘 고분 자 비대칭 복합막의 단면 SEM사진이다.  1 is a cross-sectional SEM photograph of a silicon polymer asymmetric composite membrane according to a silicon polymer content according to a comparative example of the present invention.
<33> 도 2 및 3은 본 발명의 일 실시예에 따른 기공형성제 함량에 따른 실리콘 고 분자 비대칭 복합막의 단면 SEM사진이다. 2 and 3 are cross-sectional SEM photographs of the silicon high molecular asymmetric composite membrane according to the pore-forming agent content according to an embodiment of the present invention.
<34> 도 4는 본 발명의 일 실시예에 따른 PET 지지체 상 도포된 실리콘 고분자 비 대칭 복합막의 SEM사진이다. 4 is an SEM image of a silicon polymer asymmetric composite membrane coated on a PET support according to an embodiment of the present invention.
<35> 도 5는 본 발명의 일 실시예에 따른 실리콘 고분자 비대칭 복합막에 사용되 는 사다리형 플리실세스퀴옥산의 열중량분석 결과이다. 5 is a thermogravimetric analysis result of the ladder-type polysilsesquioxane used in the silicon polymer asymmetric composite membrane according to the embodiment of the present invention.
<36> 도 6은 본 발명의 일 실시예에 따른 실리콘 고분자 비대칭 복합막의 인장강 도 및 인장변형율 결과이다.  6 is a result of tensile strength and tensile strain of the silicon polymer asymmetric composite film according to an embodiment of the present invention.
<37> 도 7 및 8은 본 발명의 일 실시예에 따른 실리콘 고분자 비대칭 복합막의 수 투과성을 나타내는 그래프이다. 7 and 8 illustrate the number of silicon polymer asymmetric composite films according to an embodiment of the present invention. It is a graph showing permeability.
【발명의 실시를 위한 최선의 형태】  [Best form for implementation of the invention]
<38> 이하에서는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발 명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관 하여 상세히 설명하기로 한다 .  Hereinafter, preferred embodiments of the present invention will be described in detail in order to enable those skilled in the art to easily carry out the present invention.
<39>  <39>
<40> 본 발명은 실리콘 고분자 및 기공형성제를 포함하는 고분자 용액을 지지체 상 도포하는 단계; 및 상기 지지체를 비용매에 함침하여 상전이시킴으로써 비대칭 복합막을 형성하는 단계;를 포함하는 실리콘 고분자 비대칭 복합막의 제초방법을 제공한다.  The present invention comprises the steps of applying a polymer solution containing a silicone polymer and a pore-forming agent on a support; And impregnating the support with a non-solvent to form asymmetric composite membrane by phase transfer.
<41>  <41>
<42> 상기 제조방법은 상기 비대칭 복합막에서 기공형성제를 제거하는 단계;를 더 포함하는 것일 수 있다.  The method may further include removing a pore-forming agent from the asymmetric composite membrane.
<43>  <43>
<44> 이하, 본 발명의 실리콘 고분자 비대칭 복합막의 제조방법을 보다 구체적으 로 살펴보도록 한다 .  Hereinafter, a method of manufacturing the silicon polymer asymmetric composite membrane of the present invention will be described in more detail.
<45>  <45>
<46> 먼저, 실리콘 고분자 및 기공형성제를 포함하는 고분자 용액을 지지체 상 도 포하는 단계를 거친다.  First, a polymer solution containing a silicone polymer and a pore-forming agent is subjected to a step of applying it on a support.
<47>  <47>
<48> 본 발명에서 상기 실리콘 고분자는 실리콘을 포함하는 고분자이면 특별히 한 정되는 것은 아니나, 바람직하게 사다리형 폴리실세스퀴옥산일 수 있다. 사다리형 폴리실세스퀴옥산은 종래의 폴리실세스퀴옥산에 비해 -0H의 함량이 적어 축합이 일 어나지 않기 때문에 열에 의한 치수 안정성이 높을 뿐 아니라, 열적 안정성이 매우 높다. 또한, 유기 용매에 대한 용해도도 매우 높아 다양한 용매를 사용하여 프리스 탠딩 (free-standing) 필름을 제조할 수 있는 장점이 있다.  In the present invention, the silicone polymer is not particularly limited as long as it is a polymer containing silicon, and may preferably be a ladder-type polysilsesquioxane. Ladder-type polysilsesquioxane has a lower content of -0H than conventional polysilsesquioxane and condensation does not occur, so not only the dimensional stability by heat is high, but also the thermal stability is very high. In addition, the solubility in organic solvents is also very high, there is an advantage that can be produced a free-standing film using a variety of solvents.
<49>  <49>
<50> 본 발명에서 상기 사다리형 폴리실세스퀴옥산은 분자량이 10,000 내지  In the present invention, the ladder-type polysilsesquioxane has a molecular weight of 10,000 to 10,000
800, 000일 수 있다. 바람직하게는 100,000 내지 400, 000일 수 있다. 분자량이 10,000 미만이면 균일한 기공을 형성시키지 못하고, 800,000 초과이면 용액의 점도 가지나치게 높아 필름을 캐스팅하는 데에 어려움이 있다.  It may be 800, 000. Preferably 100,000 to 40,000. If the molecular weight is less than 10,000, it is difficult to form uniform pores, and if it is more than 800,000, the viscosity of the solution is excessively high, which makes it difficult to cast the film.
<51> <52> 상기 사다리형 폴리실세스퀴옥산은 아릴기, 알킬기, 알릴기, 비닐기, 에폭시 기, 아민기, 할로겐, 알킬할로겐, 메타크릴기, 아자이드기, 설폰기, 사이올기 및 아크릴기로 구성된 군으로부터 선택되는 하나 이상의 말단기를 가질 수 있다. 즉, 말단기는 서로 동일할 수도 있고, 상이할 수도 있다. <51> The ladder polysilsesquioxane is an aryl group, an alkyl group, an allyl group, a vinyl group, an epoxy group, an amine group, a halogen, an alkylhalogen, a methacryl group, an azide group, a sulfone group, a siol group, and an acryl group. It may have one or more end groups selected from the group consisting of. That is, the end groups may be the same as or different from each other.
<53> 바람직하게는 상기 사다리형 폴리실세스퀴옥산은 페닐기 및 메틸메타크릴기 중 하나 이상의 말단기를 가질 수 있다.  Preferably, the ladder-type polysilsesquioxane may have one or more terminal groups of a phenyl group and a methylmethacryl group.
<54>  <54>
<55> 본 발명에 있어서, '아릴기'는 방학족 탄화수소에서 수소원자 하나를 뻔 것 으로 -Ar로도 표시하며 , 페닐기, 안트릴기, 페난트릴기 등을 포함한다.  In the present invention, the 'aryl group' is represented by -Ar as a hydrogen atom in the vacation hydrocarbon, and includes a phenyl group, anthryl group, and phenanthryl group.
<56> 본 발명에 있어서, '알킬기'는 메틸기, 에틸기, 프로필기, 이소프로필기, 부 틸기, 이소부틸기, t-부틸기 등의 탄소수 1 내지 30의 측쇄 또는 분쇄형 알킬기로 서, 시클로프로필기, 시클로펜틸기, 시클로핵실기 등의 탄소수 3 내지 10의 시클로 알킬기를 포함한다. In the present invention, the 'alkyl group' is a cycloalkyl or branched alkyl group having 1 to 30 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, and cyclo And a cycloalkyl group having 3 to 10 carbon atoms such as a propyl group, a cyclopentyl group, and a cyclonuxyl group.
<57> 본 발명에 있어서, '알릴기 (ally 1 group)'는 ¾C=CH-C¾-로 표시되는 작용기 로, 알릴알콜, 알릴에테르 등을 포함한다.  In the present invention, the 'ally 1 group' is a functional group represented by ¾C = CH-C¾- and includes allyl alcohol, allyl ether, and the like.
<58> 본 발명에 있어서, '비닐기 (vinyl group)'는 CH2=CH-로 표시되는 작용기로, 염화비닐, 아세트산비닐, 아크릴산, 스타이렌 둥을 포함한다. In the present invention, the 'vinyl group' is a functional group represented by CH 2 = CH- and includes vinyl chloride, vinyl acetate, acrylic acid, and styrene.
<59> 본 발명에 있어서, '아크릴기'는 비닐기를 함유하는 에스테르, 즉 두 개의 탄소가 이중결합으로 되어 있고, 이 탄소중의 하나 (알파 탄소)에 카르보닐기가 직 접 결합된 작용기로, -CH=C(-C00R)-로 표시될 수 있다.  In the present invention, the 'acryl group' is an ester containing a vinyl group, that is, a functional group in which two carbons are double bonds, and a carbonyl group is directly bonded to one of these carbons (alpha carbon); CH = C (-C00R)-.
<60>  <60>
<61> 상기 사다리형 폴리실세스퀴옥산의 말단기가 서로 다른 것인 경우, 각 관능 기의 몰비가 6:4 내지 4:6일 수 있다. 한 종류의 관능기가 상기 범위보다 많이 포 함되는 경우, 구체적으로 페닐기가 많으면 필름이 브리를 (brittle)하고 메틸메타크 릴기가 많으면 고분자가 액상이 될 수 있기 때문에 비대칭 복합막을 제조하는데 어 려움이 있다.  When the end groups of the ladder polysilsesquioxane are different from each other, the molar ratio of each functional group may be 6: 4 to 4: 6. When one type of functional group is included in more than the above range, in particular, when the phenyl group is large, the film is brittle, and when the methyl methacryl group is high, the polymer may be in the liquid phase, which makes it difficult to prepare an asymmetric composite membrane. .
<62>  <62>
<63> 본 발명에서 상기 사다리형 폴리실세스퀴옥산은 하기 화학식 1로 표시되는 것일 수 있다. [화학식 1] In the present invention, the ladder-type polysilsesquioxane may be represented by the following Chemical Formula 1. [Formula 1]
Figure imgf000009_0001
Figure imgf000009_0001
(상기 식에서, 및 R2는 각각 독립적으로 아릴기, 알킬기, 알릴기, 비 기, 에폭시기, 아민기, 할로겐, 알킬할로겐, 메타크릴기, 아자이드기, 설폰기, 이올기 및 아크릴기로 구성된 군에서 선택되는 하나의 관능기이고, (Wherein, and R 2 are each independently an aryl group, alkyl group, allyl group, non group, epoxy group, amine group, halogen, alkylhalogen, methacryl group, azide group, sulfone group, diol group and acryl group) One functional group selected from
m 및 n은 각각 독립적으로 1 내지 40,000중 선택되는 하나의 정수임) 상기 식에서, Rj 및 R2는 서로 동일할 수도 있고, 상아할 수도 있다. tn 및 의 비는 10:0내지 0:10일 수 있으나, 바람직하게는 6:4내지 4:6일 수 있다. 상기 화학식 1로 표시되는 사다리형 폴리실세스퀴옥산의 제조방법은 특별히 한정되는 것은 아니나, "Polymer Chemistry, Synthesis and Characterization of UV-Curable Ladder-Like Polysi Isesquioxane, Seung-Sock Choi " 논문에 제시된 합 성방법으로 제조된 것일 수 있다. m and n are each independently an integer selected from 1 to 40,000. In the above formula, Rj and R 2 may be the same as or different from each other. The ratio of tn and may be 10: 0 to 0:10, but preferably 6: 4 to 4: 6. Method for producing a ladder-type polysilsesquioxane represented by the formula (1) is not particularly limited, the synthesis presented in the paper "Polymer Chemistry, Synthesis and Characterization of UV-Curable Ladder-Like Polysi Isesquioxane, Seung-Sock Choi" It may be prepared by the method.
구체적으로 예를 들면, ¾ 및 R2가 각각 페닐기 및 메틸메타크릴기인 사다리 형 폴리실세스퀴옥산은 하기 화학식 2로 표시되는 것일 수 있다. Specifically, for example, ¾ and R 2 is a phenyl group and a methyl methacryl group, ladder-type polysilsesquioxane may be represented by the following formula (2).
<73> [화학식 2] <73> [Formula 2]
Figure imgf000010_0001
Figure imgf000010_0001
<75> (상기 식에세 χ는 1 내지 10 ,000 중 선택되는 하나의 정수임 ) (Wherein χ in the above formula is an integer selected from 1 to 10,000)
<76>  <76>
<77> 본 발명에서 상기 고분자 용액에 사용되는 용매는 실리콘 고분자가 용해되는 용매이면 어느 것 이라도 제한되는 것은 아니나, 바람직하게 "디메틸포름아마이 드 (DMF) , 디메틸아세트아마이드 (DMAc) , N—메틸 -2-피를리돈 (NMP) 및 디 메틸술폭 사이드 (DMS0)로 구성된 군으로부터 선택되는 하나 이상일 수 있고 , 더욱 바람직하 게는 디메틸아세트아마이드 (DMAc)일 수 있다. 디 메틸아세트아마이드 ^MAc)는 상 전이 속도를 향상시키는 특성을 갖는다 .  In the present invention, the solvent used in the polymer solution is not limited to any solvent in which the silicone polymer is dissolved. Preferably, the solvent is used as "dimethylformamide (DMF), dimethylacetamide (DMAc), or N-methyl. May be one or more selected from the group consisting of 2-pyridone (NMP) and dimethylsulfoxide (DMS0), more preferably dimethylacetamide (DMAc). Dimethylacetamide ^ MAc) Has the characteristic of improving the phase transition rate.
<78>  <78>
<79> 상기 고분자 용액을 제조하는 데 있어서, 상기 고분자 용액은 용매에 대하여 In preparing the polymer solution, the polymer solution is based on a solvent.
1 내지 50중량 %의 실리콘 고분자를 함유하는 것 이 바람직하고 , 더욱 바람직하게는 30 내지 50중량 %일 수 있다. 실리콘 고분자가 1중량 % 미 만이면 점도가 너무 낮아 분리 막 제조가 어 렵고, 50중량 % 초과이면 고형분의 함량이 너무 많아 분리막 제조 가 어렵고 비대칭 막을 형성하였을 때 균일한 기공을 형성시키기 어렵다. It is preferable to contain 1 to 50% by weight of the silicone polymer, more preferably 30 to 50% by weight. If the silicone polymer is less than 1% by weight, the viscosity is too low, making the membrane difficult to manufacture, and if it exceeds 50% by weight, the content of solids is too high to prepare the membrane. And difficult to form uniform pores when an asymmetric film is formed.
<80>  <80>
<81> 본 발명에서 상기 기공형성제는 상술한 용매, 즉 실리콘 고분자를 용해시키 는 용매에 잘 녹는 것이면 어느 것이라도 제한되는 것은 아니나, 실리콘 고분자와 흔합되지 않는 것이어야 한다. 바람직하게 폴리비닐피를리돈 (PVP), 폴리에틸렌글라 이콜 (PEG), 폴리에틸렌글라이콜 (PE0), 폴리비닐알콜 (PVA)올 포함하는 고분자, 염 화리튬 (LiCl), 염화나트륨 (NaCl), 염화마그네슴 (MgCl2), 염화칼륨 (KC1), 염화칼 슘 (CaCl2) 및 염화아연 (ZnCl2)을 포함하는 무기염으로 구성된 군으로부터 선택되 는 하나 이상일 수 있고, 더욱 바람직하게는 폴리비닐피를리돈 (PVP)일 수 있다. 본 발명에서 기공형성제는 기공을 형성시키는 역할 외에도 실리콘 고분자 용액의 고체 함량을 줄이고 점도를 높이는 역할도 동시에 수행한다. In the present invention, the pore-forming agent is not limited to any one as long as it is well soluble in the above-described solvent, that is, the solvent dissolving the silicone polymer, but should not be compatible with the silicone polymer. Polymers comprising polyvinylpyridone (PVP), polyethylene glycol (PEG), polyethylene glycol (PE0), polyvinyl alcohol (PVA) ol, lithium chloride (LiCl), sodium chloride (NaCl), chloride At least one selected from the group consisting of inorganic salts including magnesium (MgCl 2 ), potassium chloride (KC 1), calcium chloride (CaCl 2 ) and zinc chloride (ZnCl 2 ), and more preferably polyvinylpi It may be relidone (PVP). In the present invention, the pore-forming agent plays a role of reducing the solids content and increasing the viscosity of the silicone polymer solution in addition to forming pores.
<82> 또한, 상기 기공형성제는 분자량이 큰 것이 바람직하다. 구체적으로, 폴리비 닐피를리돈 (PVP)은 분자량이 300 이상이 바람직하고, 더욱 바람직하게는 360 이상 일 수 있다.  In addition, the pore-forming agent is preferably a large molecular weight. Specifically, the polyvinylpyridone (PVP) preferably has a molecular weight of 300 or more, more preferably 360 or more.
<83> 기공형성제를 사용하지 않고는 스폰지 구조 또는 손가락 모양의 균일한 기공 을 가지는 비대칭 분리막을 얻을 수 없다. 또한, 균일한 기공은 분리막에 웅용시 우수한수투과도 및 배제 특성을 가능하게 한다. '  Without the use of a pore-forming agent, it is not possible to obtain asymmetric separators with sponge-like or finger-like uniform pores. In addition, the uniform pores allow for excellent water permeability and rejection characteristics in the separation membrane. '
<84>  <84>
<85> 상기 고분자 용액을 제조하는 데 있어서, 상기 기공형성제의 함량은 기공형 성제의 분자량에 따라 달라질 수 있으나, 실리콘 고분자에 대하여 1 내지 30증량 ¾ 인 것이 바람직하고, 더욱 바람직하게는 5 내지 20중량 %일 수 있다. 기공형성제가 1중량 ¾ 미만이면 기공을 형성시키지 못하고, 30중량 % 초과이면 기공형성제의 함량 이 너무 많아 매우 큰 기공을 형성한다.  In the preparation of the polymer solution, the content of the pore-forming agent may vary depending on the molecular weight of the pore-forming agent, but it is preferable that it is 1 to 30 increase of ¾ with respect to the silicone polymer, and more preferably 5 to 20% by weight. If the pore-forming agent is less than 1 weight ¾, the pores cannot be formed. If the pore-forming agent is more than 30% by weight, the pore-forming agent is too large to form very large pores.
<86>  <86>
<87> 또한, 상기 고분자 용액에 사용되는 용매의 함량은 전체 용액에 대하여 50 내지 70중량 %가 바람직하고, 보다 바람직하게는 50 내지 60중량 %일 수 있다. In addition, the content of the solvent used in the polymer solution is preferably 50 to 70% by weight, more preferably 50 to 60% by weight based on the total solution.
<88> <88>
<89> 상기와 같이 제조된 고분자 용액을 다양한 지지체 상에 도포하여 캐스팅한 다. 본 발명에서 지지체는 상용 지ᅳ지체이면 어느 것이든 제한되는 것은 아니나, 구 체적으로 플라스틱, 유리 및 고분자 지지체로 구성된 군으로부터 선택되는 하나 이 상일 수 있다. 보다 바람직하게는 PET지지체일 수 있고, PET지지체는 제조 후 바 로 분리막 특성을 분석할 수 있다는 특성을 가진다. 도포방법은 일반적으로 사용되 는 것이면 특별히 제한되는 것은 아니다. The polymer solution prepared as described above is cast on various supports. In the present invention, the support is not limited to any of the commercial support, but may be one or more selected from the group consisting of plastic, glass and polymer support. More preferably, it may be a PET support, and the PET support has a property of analyzing separator properties immediately after manufacture. The application method is generally used Is not particularly limited.
<90>  <90>
<91> 그 다음으로, 상기 고분자 용액이 도포된 지지체를 비용매에 함침하여 상전 이시킴으로써 비대칭 복합막을 형성하는 단계를 거친다.  Next, the non-solvent is impregnated with the support on which the polymer solution is applied to phase change to form an asymmetric composite membrane.
<92>  <92>
<93> 본 발명에서 상기 비용매는 실리콘 고분자가 용해되지 않는 모든 용매가 가 능하나, 물 단독, 알코을 단독, 알코을 수용액 및 유기용매를 포함하는 수용액으로 구성된 군에서 선택되는 하나 이상이 바람직하고, 더욱 바람직하게는 물일 수 있 다. 유기용매를 포함하는 수용액에서의 유기용매는 일반적으로 사용되는 유기용매 로서 특별히 한정되는 것은 아니다.  In the present invention, the non-solvent may be any solvent in which the silicone polymer is not dissolved, but at least one selected from the group consisting of water alone, alcohol alone, an aqueous solution of alcohol and an organic solvent is preferable. Preferably water. The organic solvent in the aqueous solution containing the organic solvent is not particularly limited as an organic solvent generally used.
<94>  <94>
<95> 이 때, 상기 비용매의 온도는 20 내지 80°C가 바람직하고, 더욱 바람직하게 는 20 내지 40°C일 수 있다. 비용매의 온도가 2C C 미만이면 은도가 낮아 용매와 비용매의 상전이가 용이하지 못하고, 80°C 초과이면 상전이 현상이 너무 빨라서 분 리막을 제대로 형성하지 못한다. At this time, the temperature of the non-solvent is preferably 20 to 80 ° C, more preferably 20 to 40 ° C. If the temperature of the non-solvent is less than 2C C, the silver content is low, so that the phase transition between the solvent and the non-solvent is not easy.
<96>  <96>
<97> 상기 고분자 용액이 도포된 지지체를 비용매에 함침시키면 상전이 (phase- inversion) 현상이 발생한다. 구체적으로, 용매 및 비용매 간 상전이 현상이 일어 나면서 용매와 기공형성제가 함께 빠르게 비용매와 전이된다. 이 때 균일한 기공이 형성되게 된다. 또한, 기공형성제에 의하여 스폰지 또는 손가락 모양이 균일하게 형성된 일면이 제조된다.  If the non-solvent is impregnated with the support on which the polymer solution is applied, a phase-inversion phenomenon occurs. Specifically, as the phase transition between the solvent and the non-solvent occurs, the solvent and the pore-forming agent rapidly transfer together with the non-solvent. At this time, uniform pores are formed. In addition, one surface of which a sponge or finger shape is uniformly formed by the pore forming agent is manufactured.
<98>  <98>
<99> 마지막으로, 상기 비대칭 복합막에서 기공형성제를 제거하는 단계를 더 거칠 수 있다.  Finally, removing the pore-forming agent from the asymmetric composite membrane may be further roughened.
<100> 예를 들어, 상기 제조된 비대칭 복합막을 증류수에 충분히 함침시킴으로써 기공형성제를 제거할 수 있다. 그리고 상온에서 수분을 건조시키고 약 50°C의 진공 오븐에서 완전히 건조하여 분리막으로 사용할 수 있다. 이러한 과정을 거치면서 비 대칭 복합막이 고형화된다. For example, the pore-forming agent may be removed by sufficiently impregnating the prepared asymmetric composite membrane in distilled water. And the moisture is dried at room temperature and completely dried in a vacuum oven of about 50 ° C can be used as a separator. Through this process, the asymmetric composite membrane is solidified.
<101>  <101>
<102> 본 발명에 따른 제조방법으로 제조된 비대칭 복합막은 400°C 이하에서 2% 미 만의 무게 감소를 나타낸다. 이는 후술할 시험예 2에서 확인할 수 있다. 구체적으 로, 2% 미만, 즉, 0.001 내지 1.99%의 무게 감소율올 나타낸다. <103> 또한, 본 발명에 따른 제조방법으로 제조된 비대칭 복합막은 인장강도가 7The asymmetric composite membrane produced by the preparation method according to the present invention exhibits a weight loss of less than 2% at 400 ° C or less. This can be confirmed in Test Example 2 to be described later. Specifically, the weight loss rate is less than 2%, that is, 0.001 to 1.99%. In addition, the asymmetric composite film prepared by the manufacturing method according to the present invention has a tensile strength of 7
MPa 이상이고 인장변형율이 30¾ 이상일 수 있다. 이는 후술할 시험예 3에서 확인할 수 있다. 구체적으로, 인장강도는 7 내지 lOMPa일 수 있고, 인장변형율은 30 내지 50%일 수 있다. It may be at least MPa and a tensile strain of at least 30¾. This can be confirmed in Test Example 3 to be described later. Specifically, the tensile strength may be 7 to lOMPa, the tensile strain may be 30 to 50%.
<104>  <104>
<105> 또한, 본 발명은 실리콘 고분자 및 기공형성제를 포함하는 고분자 용액과 비 용매의 상전이에 의하여 균일한 스폰지 또는 손가락 모양이 형성된 실리콘 고분자 비대칭 복합막을 제공한다. 본 발명의 제조방법에 따른 실리콘 고분자 비대칭 복 합막은 간단한 상전이 방법만으로 진행되므로 제조효율이 우수하고, 실리콘 고분자 를 이용하여 무기막의 특성을 가져 내열성 및 강도가 뛰어나면서도, 수투과 특성이 우수하여 수처리 용도의 다양한 분야에 적용될 수 있다 .  The present invention also provides a silicone polymer asymmetric composite membrane in which a uniform sponge or finger shape is formed by a phase transition between a polymer solution and a non-solvent containing a silicon polymer and a pore-forming agent. Silicone polymer asymmetric composite membrane according to the manufacturing method of the present invention is excellent in manufacturing efficiency because it proceeds with a simple phase transition method, and has excellent properties of inorganic membrane using the silicone polymer, excellent heat resistance and strength, and excellent water permeability. It can be applied to various fields.
<106>  <106>
<107> 이하의 실시를 통하여 본 발명이 더욱 상세하게 설명된다. 단, 실시예는 본 발명을 예시하기 위한 것으로서 이들만으로 본 발명의 범위가 한정되는 것은 아니 다.  The present invention is explained in more detail through the following implementation. However, the examples are provided to illustrate the present invention and the scope of the present invention is not limited only to these examples.
<108>  <108>
<109> [비교예 1] 사다리형 폴리실세스퀴옥산을 이용한 비대칭 복합막 제조  Comparative Example 1 Preparation of Asymmetric Composite Membrane Using Ladder Type Polysilsesquioxane
<ιιο> 사다리형 폴리실세스퀴옥산 8g을 디메틸아세트아마이드 (DMAc) 12 g에 용해 시켜 40 중량 %의 고분자 용액을 제조하였다. 그리고 비대칭 분리막을 제조하기 전 에 고분자 용액의 공기 방을을 제거하기 위하여 초음파 처리를 하여 기포를 제거하 는 전처리를 하였다.  8 g of ladder-shaped polysilsesquioxane was dissolved in 12 g of dimethylacetamide (DMAc) to prepare a 40% by weight polymer solution. And before manufacturing the asymmetric membrane was subjected to pre-treatment to remove air bubbles by ultrasonic treatment to remove the air chamber of the polymer solution.
<iu> UV0 처리를 통해서 유리판을 친수화 시킨 후 준비된 각각의 고분자 용액을 유리판 위에 부었다. 200 pm 두께의 닥트나이프를 이용하여 고분자 용액을 유리판 에 캐스팅한 후, 25°C의 물에 상기 유리판을 함침하여 상전이된 분리막을 제조하였 다. 30분 후 유리판으로부터 분리하고 깨끗한 증류수에 담그어 고형화시킨 후, 상 온에서 건조하여 사다리형 폴리실세스퀴옥산 비대칭 복합막을 제조하였다. <112> <iu> After hydrophilizing the glass plate through UV0 treatment, each prepared polymer solution was poured onto the glass plate. After the polymer solution was cast on a glass plate using a duct knife of 200 pm thickness, a separator was prepared by impregnating the glass plate with water at 25 ° C. After 30 minutes, the glass plate was separated, immersed in clean distilled water, solidified, and dried at room temperature to prepare a ladder-type polysilsesquioxane asymmetric composite membrane. <112>
<Π3> [비교예 2 및 3] 사다리형 폴리실세스퀴옥산의 함량에 따른 비대칭 복합막 제조  <Π3> [Comparative Examples 2 and 3] Asymmetric Composite Membrane Preparation According to Ladder Type Polysilsesquioxane Content
<114> 사다리형 폴리실세스퀴옥산을 10 g 및 12 g 용해시킨 것을 제외하고는 비교 예 1에 나타낸 것과 동일한 방법으로 사다리형 폴리실세스퀴옥산 비대칭 복합막을 제조하였다. 각각은 50중량 ¾ 및 60중량 %의 고분자 용액으로 제조되었고 이를 비교 예 2 및 3로 하였다. A ladder-type polysilsesquioxane asymmetric composite membrane was prepared in the same manner as shown in Comparative Example 1 except that 10 g and 12 g of ladder polysilsesquioxane were dissolved. Each was prepared with 50 wt ¾ and 60 wt% polymer solutions and compared Example 2 and 3 were set.
<115>  <115>
<116> [실시예 1] 사다리형 폴리실세스퀴옥산 및 기공형성제를 이용한 비대칭 복 합막 제조  Example 1 Preparation of Asymmetric Composite Membrane Using Ladder Type Polysilsesquioxane and Pore Forming Agent
<U7> 사다리형 폴리실세스퀴옥산 6.4 g과 기공형성제인 폴리비닐피롤리돈 (PVP,  <U7> 6.4 g of ladder-type polysilsesquioxane and polyvinylpyrrolidone as a pore-forming agent (PVP,
360 kDa) 1.6 g을 디메틸아세트아마이드 (DMAc) 12 g에 용해시켜 40 중량 %의 고분 자 용액을 준비하였다.  360 kDa) 1.6 g was dissolved in 12 g of dimethylacetamide (DMAc) to prepare a 40% by weight polymer solution.
<Π8> UV0 처리를 통해서 유리판을 친수화 시킨 후 준비된 고분자 용액을 유리판 위에 부었다. 200 urn두께의 닥트나이프를 이용하여 고분자 용액을 유리판에 캐스 팅한 후, 25°C의 물에 상기 유리판을 함침하여 상전이된 분리막을 제조하였다. 30 분 후 유리판으로부터 분리하고 깨끗한 증류수에 담그어 고형화시킨 후, 상온에서 건조하여 사다리형 폴리실세스퀴옥산 비대칭 복합막을 제조하였다. <8> After hydrophilizing the glass plate through UV0 treatment, the prepared polymer solution was poured onto the glass plate. After the polymer solution was cast on a glass plate using a duct knife having a thickness of 200 urn, the separator was prepared by impregnating the glass plate with water at 25 ° C. After 30 minutes, the glass plate was separated, immersed in clean distilled water, solidified, and dried at room temperature to prepare a ladder-type polysilsesquioxane asymmetric composite membrane.
<119>  <119>
<120> [비교예 4및 5] 폴리비닐피롤리돈의 분자량에 따른 비대칭 복합막 제조 Comparative Examples 4 and 5 Preparation of Asymmetric Composite Membranes According to Molecular Weight of Polyvinylpyrrolidone
<i2i> 기공형성제로 사용된 폴리비닐피를리돈의 종류가 40kDa 및 lOkDa인 것을 제 외하고는 실시예 1에 나타낸 것과 동일한 방법으로 사다리형 폴리실세스퀴옥산 비 대칭 복합막을 제조하였다. 40 kDa및 lOkDa각각을 비교예 2 및 3로 하였다. A ladder-type polysilsesquioxane asymmetric composite membrane was prepared in the same manner as in Example 1 except that the polyvinylpyridone used as the <i2i> pore-forming agent was 40 kDa and 10 kDa. 40 kDa and 10 kDa were set as Comparative Examples 2 and 3, respectively.
<122>  <122>
<123> [비교예 6]  <123> [Comparative Example 6]
<124> 기공형성제로 사용된 폴리비닐피를리돈 (PVP, 360 kDa)의 함량을 0.8 g으로 달리한 것을 제외하고는 실시예 1에 나타낸 것과 동일한 방법으로 사다리형 폴리실 세스퀴옥산 비대칭 복합막을 제조하였다.  A ladder-type polysilsesquioxane asymmetric composite membrane was prepared in the same manner as in Example 1, except that the content of polyvinylpyridone (PVP, 360 kDa) used as the pore-forming agent was 0.8 g. Prepared.
<125>  <125>
<126> [실시예 2]  [Example 2]
<127> 사다리형 폴리실세스퀴옥산 비대칭 복합막을 제조하는데 있어서, 지지체로 유리판 대신 PET 지지체를 사용한 것을 제외하고는 실시예 1에 나타낸 것과 동일한 방법으로 사다리형 폴리실세스퀴옥산 비대칭 복합막을 제조하였다.  In preparing a ladder-type polysilsesquioxane asymmetric composite membrane, a ladder-type polysilsesquioxane asymmetric composite membrane was prepared in the same manner as shown in Example 1 except that a PET support was used instead of a glass plate as a support. .
<128>  <128>
<129> [시험예 1] 주사전자현미경 (SEM, Scanning electron microscopy) 측정 [Test Example 1] Scanning electron microscopy (SEM) measurement
<130> 상기 실시예 1 및 비교예 1 내지 4에 따른 비대칭 복합막의 단면 사진을 측 정하기 위해서 주사전자현미경 분석 장비를 사용하였다. 그 결과를 도 1 ((a) 비교 예 1, (b) 비교예 2, (c) 비교예 3) 도 2(비교예 3), 도 3((a) 비교예 2, (b) 실시 예 1) 및 도 4에 각각 나타내었다. Scanning electron microscope analysis equipment was used to measure cross-sectional photographs of the asymmetric composite membranes according to Example 1 and Comparative Examples 1 to 4. The results are shown in FIG. 1 ((a) Comparative Example 1, (b) Comparative Example 2, (c) Comparative Example 3) FIG. 2 (Comparative Example 3), FIG. 3 ((a) Comparative Example 2, (b). Example 1) and FIG. 4, respectively.
<i3i> 도 1에 나타낸 SEM 단면 사진은 사다리형 폴리실세스퀴옥산의 함량을 각각  <i3i> SEM cross-sectional photograph shown in Figure 1 shows the content of the ladder-type polysilsesquioxane, respectively
40, 50, 및 60중량 ¾로 하여 농도에 따른 상전이 현상을 관찰한 것이다. 도 1에서 알 수 있듯이, 상전이 현상이 일어나기는 하나 전체적으로 불균일한 기공 사이즈와 구조를 가진다는 것을 알 수 있었다.  40, 50, and 60 wt ¾ to observe the phase transition phenomenon according to the concentration. As can be seen in Figure 1, although the phase transition phenomenon, it can be seen that it has a non-uniform pore size and structure as a whole.
<132> 도 2는 기공형성제인 폴리비닐피를리돈 (PVP, 10 kDa)을 20 중량 ¾>로 흔합하여 비대칭 분리막을 제조한 후의 단면 사진이다. 폴리비닐피를리돈의 분자량이 낮아서 정상적인 상전이 현상을 보이지는 못하지만 상기 도 1과 비교했올 때, 보다 균일한 기공을 형성한다는 것을 알 수 있었다.  FIG. 2 is a cross-sectional photograph of a polyvinylpyridone (PVP, 10 kDa), which is a pore forming agent, mixed at 20 weight ¾> to prepare an asymmetric separator. Although the polyvinylpyridone had a low molecular weight, it did not show a normal phase transition phenomenon, but when compared with FIG. 1, it was found to form more uniform pores.
<133> 도 3은 분자량이 보다 큰 40 kDa (비교예 2)와 360 kDa (실시예 1)의 폴리비닐 피롤리돈을 사용하여 비대칭 분리막을 제조한 단면 사진이다. 도 3에서 알 수 있듯 이, 360 kDa (실시예 1)의 폴리비닐피를리돈을 사용했을 때, 상층 (표면)이 조밀한 선택층이 되고 하층이 다공성 지지체가 되는 정상.적인 상전이 현상을 보였다.  FIG. 3 is a cross-sectional photograph of an asymmetric separator using polyvinyl pyrrolidone having a higher molecular weight of 40 kDa (Comparative Example 2) and 360 kDa (Example 1). As can be seen in Figure 3, when using a polyvinylpyridone of 360 kDa (Example 1), the upper (surface) is a dense selective layer and the lower layer is a porous support, showing a normal phase transition phenomenon. .
<134> 도 4는 분자량이 360 kDa인 폴리비닐피를리돈을 사용하여 10 중량 ¾ 및 20 중 량¾를 포함하는 비대칭 분리막을 제조한 단면 사진이다. 도 4에서 알 수 있듯이 10 중량)일 때, 손가락 모양의 구조를 나타내었고 20 중량 %일 때 , 스폰지 모양의 구조를 각각 나타내었다. 이와 같이 다른 구조를 나타내는 것은 폴리비닐피를리돈 의 함량에 영향을 받은 것으로 판단된다.  4 is a cross-sectional photograph of an asymmetric separator including 10 weight ¾ and 20 weight ¾ using polyvinylpyridone having a molecular weight of 360 kDa. As can be seen in FIG. 4, when the weight is 10), a finger-shaped structure is shown, and when the weight is 20% by weight, each shows a sponge-like structure. This different structure is considered to be affected by the content of polyvinylpyridone.
<135> ·  <135>
<136> [시험예 2] 열중량분석 (TGA, Thermogravimetric analysis) 측정  [Test Example 2] Thermogravimetric analysis (TGA) measurement
<137> 상기 실시예 1의 내열 특성을 알아보기 위해서 열중량분석 장비로 온도에 따 른 무게 변화를 측정하였고, 그 결과를 도 5에 나타내었다. 도 5에 볼 수 있¾ 것 과 같이, 비대칭 복합막은 400°C까지 2% 미만의 무게 감소를 보여 매우 안정함을 알수 있었다. In order to determine the heat resistance of Example 1, a weight change was measured according to temperature using a thermogravimetric analyzer, and the results are shown in FIG. 5. As can be seen in Figure 5, the asymmetric composite membrane was found to be very stable, showing a weight reduction of less than 2% to 400 ° C.
<138>  <138>
<139> [시험예 3] 만능재료시험기 (UTM, Universal testing machine) 측정  [Test Example 3] Universal Testing Machine (UTM) Measurement
<140> 상기 실시예 1에 따른 비대칭 복합막의 기계적 강도를 측정하기 위해서 인장 강도 (stress) 및 인장변형율 (strain)을 측정하였고 그 결과를 도 6에 나타내었다. 도 6에서 알 수 있듯이, 비대칭 복합막은 인장강도가 7 MPa 이상이고 인장변형율이 30% 이상인 것으로 보아 기계적 강도에서도 매우 우수함을 알 수 있었다. In order to measure the mechanical strength of the asymmetric composite membrane according to Example 1, the tensile strength and the strain were measured, and the results are shown in FIG. 6. As can be seen in Figure 6, the asymmetric composite membrane has a tensile strength of 7 MPa or more and a tensile strain of 30% or more, it can be seen that also excellent in mechanical strength.
<141> <141>
<142> [시험예 4] 수 투과도 측정 <143> 상기 실시예 1 및 2에 따른 비대칭 복합막의 수투과도를 측정하기 위해서 수 평으로 압력을 가해서 측정할 수 있는 평막 평가용 셀을 사용하였다. 샘플로 사용 된 복합막의 면적은 18.24 cm2이고 가해진 압력은 1 bar이고 25°C에서 모든 측정이 이루어졌다. 수투과 특성은 일반적으로 단위는 LMH (L/i/h)이고 이는 넓은 면적과 시간당 얻어지는 투수량 (L)을 의미한다. Test Example 4 Water Permeability Measurement In order to measure the water permeability of the asymmetric composite membranes according to Examples 1 and 2, a flat membrane evaluation cell that can be measured by applying pressure in a horizontal direction was used. The area of the composite membrane used as the sample was 18.24 cm 2 , the pressure applied was 1 bar and all measurements were made at 25 ° C. Water permeation characteristics are generally in units of LMH (L / i / h), which means a large area and a permeability (L) obtained per hour.
<144> 측정 결과를 도 7 및 도 8에 각각 나타내었다.  Measurement results are shown in FIGS. 7 and 8, respectively.
<145> 도 7에서 알 수 있듯이, 사다리형 폴리실세스퀴옥산의 함량이 높아질수록 수 투과도가 낮아진다는 것을 알 수 있었고 함량에 상관없이 수투과 압력에 따라 수투 과도가 높아진다는 것을 알 수 있다. 이는 도 1에 나타낸 단면 구조에서 알 수 있 듯이 비대칭 분리막이 형성되지 못했기 때문으로 보이며, 15 LMH/bar 이하의 매우 낮은 수투과 특성을 보였다.  As can be seen in Figure 7, it can be seen that as the content of the ladder-type polysilsesquioxane increases, the water permeability decreases, and the water permeability increases according to the water permeation pressure regardless of the content. This may be due to the fact that the asymmetric membrane was not formed as shown in the cross-sectional structure shown in FIG. 1, and showed very low water permeability of 15 LMH / bar or less.
<146> 도 8은 상기 실시예 2에 따라 PET지지체 위에 비대칭 분리막을 제조하여 수 투과를 측정하고 그 결과를 나타낸 것이다. 도 8에서 알 수 있듯이, 폴리비닐피롤 리돈의 함량이 증가함에 따라서 수투과도도 증가하는 것을 알 수 있고 이는 손가락 모양의 구조보다는 스폰지 구조의 수투과 특성이 더 우수하다는 것을 알 수 있다. 전체적으로 수투과도가 400 내지 700 LMH/bar인 한외여과막의 특성을 갖는 비대칭 분리막을 제조하였다. Figure 8 shows the results of measuring the water permeability by preparing an asymmetric membrane on the PET support according to Example 2 above. As can be seen in Figure 8, as the content of polyvinylpyrrolidone increases the water permeability also increases, which can be seen that the water-permeable properties of the sponge structure than the finger-like structure is better. Asymmetric membranes having the properties of ultrafiltration membranes having a total water permeability of 400 to 700 LMH / bar were prepared.

Claims

【청구의 범위】 [Range of request]
【청구항 1]  [Claim 1]
실리콘 고분자 및 기공형성제를 포함하는 고분자 용액을 지지체 상 도포하는 단계; 및  Applying a polymer solution comprising a silicone polymer and a pore-forming agent on a support; And
상기 지지체를 비용매에 함침하여 상전이시킴으로써 비대칭 복합막을 형성하 는 단계;를 포함하는 실리콘 고분자 비대칭 복합막의 제조방법.  Forming an asymmetric composite membrane by the phase transition by impregnating the support with a non-solvent.
【청구항 2]  [Claim 2]
제 1항에 있어서  The method of claim 1
상기 제조방법은 상기 비대칭 복합막에서 기공형성제를 제거하는 단계;를 더 포함하는 제조방법 .  The manufacturing method further comprises the step of removing the pore-forming agent from the asymmetric composite membrane.
【청구항 3]  [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 실리콘 고분자는사다리형 폴리실세스퀴옥산인 제조방법 .  The silicone polymer is a ladder-type polysilsesquioxane.
【청구항 4】  [Claim 4]
제 3항에 있어서,  The method of claim 3,
상기 사다리형 폴리실세스퀴옥산은 하기 화학식 1로 표시되는 것인 제조방 법.  The ladder-type polysilsesquioxane is a manufacturing method represented by the following formula (1).
[화학식 1]  [Formula 1]
Figure imgf000017_0001
Figure imgf000017_0001
(상기 식에서, Ri 및 ¾는 각각 독립적으로 아릴기, 알킬기, 알릴기, 비닐 기, 에폭시기, 아민기 할로겐, 알킬할로겐, 메타크릴기, 아자이드기, 설폰기, 사 이올기 및 아크릴기로 구성된 군에서 선택되는 하나의 관능기이고,  Wherein Ri and ¾ are each independently an aryl group, alkyl group, allyl group, vinyl group, epoxy group, amine group halogen, alkylhalogen, methacryl group, azide group, sulfone group, thiol group and acryl group One functional group selected from
m 및 n은 각각 독립적으로 1 내지 40,000 중 선택되는 하나의 정수임)  m and n are each independently an integer selected from 1 to 40,000)
【청구항 5】 [Claim 5]
제 3항에 있어서,  The method of claim 3,
상기 사다리형 폴리실세스퀴옥산은 분자량이 10,000 내지 800,000인 제조방 법. The ladder-type polysilsesquioxane has a molecular weight of 10,000 to 800,000 method.
【청구항 6]  [Claim 6]
제 3항에 있어서,  The method of claim 3,
상기 사다리형 폴리실세스퀴옥산은 아릴기, 알킬기, 알릴기, 비닐기, 에폭시 기, 아민기, 할로겐, 알킬할로겐, 메타크릴기, 아자이드기, 설폰기, 사이을기 및 아크릴기로 구성된 군으로부터 선택되는 하나 이상의 말단기를 가지는 것인 제조방  The ladder polysilsesquioxane is selected from the group consisting of an aryl group, an alkyl group, an allyl group, a vinyl group, an epoxy group, an amine group, a halogen, an alkylhalogen, a methacryl group, an azide group, a sulfone group, a silyl group and an acryl group. Manufacturing method having one or more end groups selected
【청구항 7】 [Claim 7]
제 3항에 있어서,  The method of claim 3,
상기 사다리형 폴리실세스퀴옥산은 페닐기 및 메틸메타크릴기 중 하나 이상 의 말단기를 가지는 것인 제조방법 .  The ladder polysilsesquioxane is a manufacturing method having one or more terminal groups of the phenyl group and methyl methacryl group.
【청구항 8】  [Claim 8]
제 6항에 있어서,  The method of claim 6,
상기 사다리형 폴리실세스퀴옥산의 말단기가 서로 다른 것인 경우, 각 관능 기의 몰비가 6:4내지 4:6인 제조방법.  When the end groups of the ladder-type polysilsesquioxane is different from each other, the molar ratio of each functional group is 6: 4 to 4: 6.
【청구항 9】  [Claim 9]
제 1항에 있어세  Tax in Clause 1
상기 실리콘 고분자 및 기공형성제를 포함하는 고분자 용액의 용매는 디 메틸포름아마이드 (DMF), 디메틸아세트아마이드 (DMAc), N-메틸 -2ᅳ피를리돈 (NMP) 및 디메틸술폭사이드 (DMS0)로 구성된 군으로부터 선택되는 하나 이상인 제조방법.  The solvent of the polymer solution containing the silicone polymer and the pore-forming agent is composed of dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2pipyridone (NMP) and dimethylsulfoxide (DMS0). At least one method selected from the group.
【청구항 10】 [Claim 10]
제 1항에 있어서,  The method of claim 1,
상기 기공형성제는 폴리비닐피롤리돈 (PVP), 폴리에틸렌글라이콜 (PEG), 폴리 에틸렌글라이콜 (PE0), 폴리비닐알콜 (PVA), 염화리튬 (LiCl), 염화나트륨 (NaCl), 염화마그네슘 (MgCl2), 염화칼륨 (KC1), 염화칼슘 (CaCl2) 및 염화아연 ' (¾C12)으로 구성된 군으로부터 선택되는 하나 이상인 제조방법. The pore-forming agent is polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), polyethylene glycol (PE0), polyvinyl alcohol (PVA), lithium chloride (LiCl), sodium chloride (NaCl), chloride At least one selected from the group consisting of magnesium (MgCl 2 ), potassium chloride (KC 1 ), calcium chloride (CaCl 2 ) and zinc chloride ' (¾C1 2 ).
【청구항 111  [Claim 111]
제 1항에 있어서,  The method of claim 1,
상기 실리콘 고분자는 용매에 대하여 1 내지 45중량 %의 함량으로 고분자 용 액에 함유되는 것인 제조방법.  Wherein the silicone polymer is contained in the polymer solution in an amount of 1 to 45 wt% based on the solvent.
【청구항 12】  [Claim 12]
제 1항에 있어서, 상기 기공형성제는 실리콘 고분자에 대하여 1 내지 30중량 %의 함량으로 고분 자 용액에 함유되는 것인 제조방법. The method of claim 1, The pore-forming agent is contained in the polymer solution in an amount of 1 to 30% by weight based on the silicone polymer.
【청구항 13】  [Claim 13]
제 1항에 있어서,  The method of claim 1,
상기 지지체는 플라스틱, 유리 및 고분자 지지체로 구성된 군으로부터 선택 되는 하나 이상인 제조방법.  Wherein said support is at least one selected from the group consisting of plastics, glass and polymeric supports.
【청구항 14]  [Claim 14]
제 1항에 있어서,  The method of claim 1,
상기 비용매는 물 단독, 알코을 단 , 알코을 수용액 및 유기용매를 포함하 는 수용액으로 구성된 군에서 선택되는 하나 이상인 제조방법 .  The non-solvent is at least one selected from the group consisting of water alone, an alcohol, an aqueous solution containing an aqueous alcohol solution and an organic solvent.
【청구항 15】  [Claim 15]
제 1항에 있어서,  The method of claim 1,
상기 비용매는 온도가 20내지 80°C인 제조방법 . The non-solvent has a temperature of 20 to 80 ° C.
【청구항 16]  [Claim 16]
제 1항에 있어서,  The method of claim 1,
상기 비대칭 복합막은 스폰지 또는 손가락 모양이 균일하게 형성된 일면을 가지는 것인 제조방법 .  The asymmetric composite film has a sponge or finger shape is uniformly formed having one surface.
【청구항 17】  [Claim 17]
제 16항에 있어서,  The method of claim 16,
상기 비대칭 복합막은 400°C 이하에서 2% 미만의 무게 감소를 가지는 것인 제조방법. The asymmetric composite membrane has a weight loss of less than 2% below 400 ° C.
【청구항 18]  [Claim 18]
제 16항에 있어서,  The method of claim 16,
상기 비대칭 복합막은 인장강도가 7 MPa 이상이고 인장변형율이 30% 이상인 것인 제조방법 .  The asymmetric composite membrane has a tensile strength of 7 MPa or more and a tensile strain of 30% or more.
【청구항 19】  [Claim 19]
제 1항 내지 제 18항 중 어느 한 항에 따른 제조방법으로 제조되는, 실리콘 고분자 및 기공형성제를 포함하는 고분자 용액과 비용매의 상전이에 의하여 균일한 스폰지 또는 손가락 모양이 형성된 실리콘 고분자 비대칭 복합막.  A silicone polymer asymmetric composite membrane having a uniform sponge or finger shape formed by a phase transition between a polymer solution and a non-solvent prepared by a manufacturing method according to any one of claims 1 to 18. .
PCT/KR2013/002111 2012-04-05 2013-03-15 Silicone polymer asymmetric composite membrane and production method therefor WO2013151248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0035564 2012-04-05
KR1020120035564A KR101425373B1 (en) 2012-04-05 2012-04-05 Asymmetric composite membrane of silicone polymer and preparing method of the same

Publications (1)

Publication Number Publication Date
WO2013151248A1 true WO2013151248A1 (en) 2013-10-10

Family

ID=49300698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002111 WO2013151248A1 (en) 2012-04-05 2013-03-15 Silicone polymer asymmetric composite membrane and production method therefor

Country Status (2)

Country Link
KR (1) KR101425373B1 (en)
WO (1) WO2013151248A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101695793B1 (en) * 2014-10-21 2017-01-23 한국과학기술연구원 Gas separation membrane with ladder-like polysilsesquioxane and method for fabricating the same
KR101981042B1 (en) * 2016-02-05 2019-05-23 주식회사 아스트로마 Fluid separating device
KR101981041B1 (en) * 2016-02-05 2019-08-28 주식회사 아스트로마 Fluid separating membrane and fluid separating device including the same
KR101981044B1 (en) * 2016-02-05 2019-05-23 주식회사 아스트로마 Fluid separating film module
KR101981040B1 (en) * 2016-02-05 2019-05-23 주식회사 아스트로마 Fluid separating membrane and method for fabricating the same
KR101981043B1 (en) * 2016-02-05 2019-05-23 주식회사 아스트로마 Fluid separating tube and fluid separating device
RU2708861C2 (en) 2015-03-24 2019-12-11 Арстрома Ко., Лтд. Fluid separation device comprising membrane for separation of fluids, and membrane module for separation of fluids
KR101780012B1 (en) * 2015-09-23 2017-09-19 롯데케미칼 주식회사 Preparation method of polymer filter membrane, and polymer filter membrane
US9901880B2 (en) 2015-10-29 2018-02-27 Korea Institute Of Science And Technology Carbon molecular sieve membranes based on fluorine-containing polymer/polysilsesquioxane blending precursors and method for fabricating the same
KR102086921B1 (en) * 2017-12-12 2020-03-09 서강대학교산학협력단 Hybrid polymeric hollow fiber membrane, carbon molecular sieve hollow fiber membrane, and processes for fabricating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030082814A (en) * 2002-04-18 2003-10-23 (주)아이컴포넌트 The process of gas barrier layer of plastic film for the use of display
KR20050063272A (en) * 2003-12-22 2005-06-28 한국화학연구원 Method for preparation of porous ceramic hollow fiber membranes
KR20100129290A (en) * 2008-03-11 2010-12-08 도레이 카부시키가이샤 Composite separation membrane
KR20110079140A (en) * 2009-12-31 2011-07-07 웅진케미칼 주식회사 Method for manufacturing porous membrane and asymmetric porous membrane thereby

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030082814A (en) * 2002-04-18 2003-10-23 (주)아이컴포넌트 The process of gas barrier layer of plastic film for the use of display
KR20050063272A (en) * 2003-12-22 2005-06-28 한국화학연구원 Method for preparation of porous ceramic hollow fiber membranes
KR20100129290A (en) * 2008-03-11 2010-12-08 도레이 카부시키가이샤 Composite separation membrane
KR20110079140A (en) * 2009-12-31 2011-07-07 웅진케미칼 주식회사 Method for manufacturing porous membrane and asymmetric porous membrane thereby

Also Published As

Publication number Publication date
KR101425373B1 (en) 2014-08-04
KR20130113184A (en) 2013-10-15

Similar Documents

Publication Publication Date Title
KR101425373B1 (en) Asymmetric composite membrane of silicone polymer and preparing method of the same
US8629193B2 (en) Method for producing porous silicon molded bodies
KR101132731B1 (en) Acetylated methyl cellulose, Membrane for water treatment using that and Preparing method thereof
CN107570020B (en) Polyarylene sulfide sulfone composite separation membrane and preparation method thereof
US20150298069A1 (en) Polymer resin composition for preparing of microfilter membrane or ultrafilter membrane, preparation method of polymer filter membrane, and polymer filter membrane
KR20160144505A (en) Asymmetric poly(phenylene ether) co-polymer membrane, separation module thereof and methods of making
CN104607063B (en) PVDF permanently hydrophilic ultrafiltration membrane and modification method thereof
JP6256705B2 (en) Composite separation membrane
JP5578300B1 (en) Composite separation membrane
KR20160026070A (en) Manufacturing method of gas separator membrane
CN105817146B (en) A kind of CNT is modified the preparation method of NF membrane
CN103143273B (en) Preparation method of aromatic polymer porous membrane
KR101035717B1 (en) A preparation of asymmetric porous PEBA membrane for composite membrane
KR101716007B1 (en) Polyamide watertreatment membranes of drying type having properies of high performance and manufacturing method thereof
EP2548631A1 (en) Cellulose-ether-ester support for forward osmosis membrane
KR20120094362A (en) Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method thereof
KR101733848B1 (en) Manufactured method of polymer resin composition having increasing hydrophilicity and mechanical strength for preparing of filter membrane
KR102309927B1 (en) Hollow fiber type Forward Osmosis filtration membrane and the manufacturing method thereby
KR101230842B1 (en) Manufacturing method of porous asymmetric membrane with various pore size and its product manufactured thereby
KR102302236B1 (en) Hollow fiber type Forward Osmosis filtration membrane and the manufacturing method thereby
KR101434184B1 (en) Forward osmosis membrane and manufacturing method thereof
KR20150033424A (en) Method for preparation of polyketone flat sheet type membrane and a polyketone flat sheet type membrane by the same
CN111686595A (en) Method for preparing high-performance hydrophilic modified polyacrylonitrile membrane by combining in-situ modification with phase separation technology
WO2015003880A1 (en) Asymmetrically porous membranes made of aldehyde-crosslinked thermoplastic silicone elastomer
Zheng et al. Fabrication of a novel cyanoethyl cellulose substrate for thin-film composite forward osmosis membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772801

Country of ref document: EP

Kind code of ref document: A1