WO2013151091A1 - Optical film - Google Patents

Optical film Download PDF

Info

Publication number
WO2013151091A1
WO2013151091A1 PCT/JP2013/060204 JP2013060204W WO2013151091A1 WO 2013151091 A1 WO2013151091 A1 WO 2013151091A1 JP 2013060204 W JP2013060204 W JP 2013060204W WO 2013151091 A1 WO2013151091 A1 WO 2013151091A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
composite oxide
titanium composite
refractive index
optical
Prior art date
Application number
PCT/JP2013/060204
Other languages
French (fr)
Japanese (ja)
Inventor
伊村 正明
金井 敏正
仁 高村
Original Assignee
日本電気硝子株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社, 国立大学法人東北大学 filed Critical 日本電気硝子株式会社
Publication of WO2013151091A1 publication Critical patent/WO2013151091A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate

Definitions

  • the present invention relates to an optical film.
  • Patent Document 1 discloses a high refractive index dielectric film in which another metal oxide is added to titanium oxide.
  • the main object of the present invention is to provide an optical film having a refractive index higher than that of the titanium oxide film.
  • the optical film according to the present invention is made of a titanium composite oxide containing Al or Ga, and includes a crystal having a rutile structure.
  • the optical film according to the first aspect of the present invention is made of an aluminum titanium composite oxide.
  • the ratio of Al to Ti (Al / Ti) is 17/83 or less in terms of atomic ratio.
  • the aluminum titanium composite oxide includes a rutile crystal.
  • the optical film according to the second aspect of the present invention is made of a gallium titanium composite oxide.
  • the ratio of Ga to Ti (Ga / Ti) is 20/80 or less in terms of atomic ratio.
  • the gallium titanium composite oxide includes a crystal having a rutile structure.
  • the refractive index of the optical film at a wavelength of 400 nm is preferably 2.8 or more.
  • the optical film may include an amorphous region.
  • an optical film having a higher refractive index than that of a titanium oxide film can be provided.
  • FIG. 1 is a graph showing the relationship between the atomic ratio of Al and the refractive index in the optical films of Examples 1 and 2 and Reference Examples 1 to 3.
  • FIG. 2 is an electron diffraction pattern of the optical film of Example 1.
  • FIG. 3 is a graph showing the relationship between the atomic ratio of Ga and the refractive index in the optical films of Examples 3 and 4 and Reference Examples 4 and 5.
  • FIG. 4 is an X-ray diffraction pattern of the optical films of Examples 3 and 4 and Reference Examples 4 and 5.
  • the optical film according to this embodiment is made of an aluminum titanium composite oxide.
  • the ratio of Al to Ti (Al / Ti) contained in the aluminum titanium composite oxide is 17/83 or less in terms of atomic ratio.
  • the optical film includes a rutile structure crystal of an aluminum titanium composite oxide. For this reason, the optical film according to the present embodiment has a high refractive index of, for example, 2.8 or more at a wavelength of 400 nm.
  • the ratio of Al to Ti (Al / Ti) contained in the aluminum-titanium composite oxide is preferably about 2/98 to 17/83 in atomic ratio. More preferably, it is about 95 to 12/88.
  • the optical film may be composed only of a rutile structure crystal of an aluminum-titanium composite oxide, but may contain an amorphous region of an aluminum-titanium composite oxide or an anatase structure crystal of an aluminum-titanium composite oxide. Good. However, from the viewpoint of obtaining a higher refractive index, it is preferable that the proportion of crystals of the rutile structure of the aluminum titanium composite oxide in the optical film is higher.
  • the optical film according to this embodiment is made of a gallium titanium composite oxide.
  • the ratio of Ga to Ti (Ga / Ti) contained in the gallium titanium composite oxide is 20/80 or less in terms of atomic ratio.
  • the optical film includes a rutile crystal of gallium titanium composite oxide. For this reason, the optical film according to the present embodiment has a high refractive index of, for example, 2.8 or more at a wavelength of 400 nm.
  • the ratio of Ga to Ti contained in the gallium titanium composite oxide is preferably about 2/98 to 20/80 in atomic ratio. More preferably, it is about 90 to 18/82.
  • the optical film may be composed only of a rutile structure crystal of gallium titanium composite oxide, but may contain an amorphous region of gallium titanium composite oxide or an anatase structure crystal of gallium titanium composite oxide. Good. However, from the viewpoint of obtaining a higher refractive index, it is preferable that the ratio of the crystals of the rutile structure of the gallium titanium composite oxide in the optical film is higher.
  • the thickness of the optical film is not particularly limited, but can be, for example, about 5 nm to 1000 nm.
  • the optical film is preferably formed on a substrate having a temperature of 420 ° C. or higher, and more preferably formed on a substrate having a temperature of 450 ° C. or higher.
  • a higher refractive index can be obtained by increasing the temperature of the substrate when forming the optical film. Although this reason is not certain, it is thought that it is because the ratio of the crystal of the rutile structure of the aluminum titanium composite oxide or the gallium titanium composite oxide in the optical film is increased.
  • the optical film can be formed by, for example, a physical deposition method.
  • a physical deposition method include a pulse laser deposition method, a sputtering method, and an electron beam evaporation method.
  • the substrate is not particularly limited, and examples thereof include glass, plastic, resin, and film.
  • 10 g of oxide powder was obtained.
  • 10 g of the oxide powder and 30 cc of 2-propanol were placed in a partially stabilized zirconia container and mixed for 1 hour with a planetary ball mill apparatus to form a slurry.
  • the slurry was dried, uniaxially pressed at 64 MPa, then isostatically pressed at a pressure of 250 MPa, and fired at 1150 ° C. for 36 hours in the air to obtain a target.
  • Atmosphere Oxygen Atmospheric pressure / 1.5 ⁇ 10 ⁇ 5 Pa or less Distance between target and substrate / 35 mm Temperature of non-alkali glass substrate during film formation / 500 ° C Laser / KrF excimer laser with a wavelength of 248 nm (laser power / 200 mJ / pulse, laser frequency / 5 Hz) Deposition time / 20 minutes
  • the thickness of the obtained optical film was 39 nm.
  • the composition of the optical film and the composition of the target were measured by EDX (energy dispersive X-ray spectroscopy). As a result, it was confirmed that the composition in the optical film and the target composition were almost the same.
  • the refractive index n of the optical film at a wavelength of 400 nm was measured by molecular ellipsometry.
  • the refractive index of the optical film at a wavelength of 400 nm was 2.98 as shown in FIG.
  • Auto SE manufactured by Horiba Jobin Yvon was used for the evaluation by molecular ellipsometry.
  • the electron beam diffraction pattern of the optical film obtained in Example 1 was measured using an atomic resolution analytical electron microscope (JEM-ARM200F manufactured by JEOL Ltd.). The electron diffraction pattern is shown in FIG. As shown in FIG. 2, it was confirmed that the optical film obtained in Example 1 contained rutile type crystals and anatase type crystals. In addition, an amorphous region was also present in the optical film.
  • Reference Example 1 An optical film was formed in the same manner as in Example 1 except that the target was produced without mixing Al 2 O 3 .
  • the thickness of the optical film was 21 nm.
  • the composition of the optical film was measured and the optical characteristics were evaluated.
  • the refractive index of the optical film was 2.81. Although not shown, it was confirmed that the optical film obtained in Reference Example 1 did not contain rutile crystals and contained anatase crystals.
  • Example 3 [Preparation of target]
  • a target was obtained in the same manner as in Example 1.
  • the thickness of the obtained optical film was 131 nm.
  • the composition of the optical film was measured by EDX.
  • the amount of Ga in the optical film was 15.6%. Therefore, Ga / Ti in the optical film was 15.6 / 84.4. Therefore, in the case of the gallium titanium composite oxide, the Ga amount in the ratio of Ga and Ti in the optical film is increased as compared with the target composition.
  • FIG. 3 shows the relationship between the atomic ratio of Ga and the refractive index in the optical films of Examples 3 and 4 and Reference Examples 4 and 5. As shown in FIG. 3, it can be seen that when Ga is contained and the ratio of Ga to Ti (Ga / Ti) is 20/80 or less, the refractive index is higher than that of the titanium oxide of Reference Example 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Provided is an optical film that has a higher refractive index than titanium oxide films. The optical film comprises an aluminum-titanium composite oxide or a gallium-titanium composite oxide. In the aluminum-titanium composite oxide, the ratio of Al to Ti (Al/Ti) is 17/83 or less in atomic ratio. In the gallium-titanium composite oxide, the ratio of Ga to Ti (Ga/Ti) is 20/80 or less in atomic ratio. The aluminum-titanium composite oxide or the gallium-titanium composite oxide comprises crystals of a rutile structure.

Description

光学膜Optical film
 本発明は、光学膜に関する。 The present invention relates to an optical film.
 従来、高い屈折率を有する光学膜としては、酸化チタン膜が用いられている。しかしながら、近年、反射防止膜等の膜数の低減や、高性能化が強く求められるようになってきており、それに伴い、酸化チタンの単体からなる酸化チタン膜(以下、実質的に酸化チタンのみからなる膜を「酸化チタン膜」とする。)よりも高い屈折率を有する光学膜が求められている。例えば、特許文献1には、酸化チタンに他の金属酸化物を添加した高屈折率誘電体膜が開示されている。 Conventionally, a titanium oxide film has been used as an optical film having a high refractive index. However, in recent years, there has been a strong demand for reduction in the number of films such as antireflection films and higher performance, and accordingly, a titanium oxide film made of a single titanium oxide (hereinafter, substantially titanium oxide only). An optical film having a higher refractive index than that of a “titanium oxide film” is demanded. For example, Patent Document 1 discloses a high refractive index dielectric film in which another metal oxide is added to titanium oxide.
特開2002-277630号公報JP 2002-277630 A
 特許文献1に記載された高屈折率誘電体膜では、酸化チタン膜と同等の屈折率が実現されているものの、酸化チタン膜よりも高い屈折率を得ることは困難である。 In the high refractive index dielectric film described in Patent Document 1, a refractive index equivalent to that of the titanium oxide film is realized, but it is difficult to obtain a higher refractive index than that of the titanium oxide film.
 本発明は、酸化チタン膜よりも高い屈折率を有する光学膜を提供することを主な目的とする。 The main object of the present invention is to provide an optical film having a refractive index higher than that of the titanium oxide film.
 本発明に係る光学膜は、AlまたはGaを含有するチタン複合酸化物からなり、ルチル構造の結晶を含む。 The optical film according to the present invention is made of a titanium composite oxide containing Al or Ga, and includes a crystal having a rutile structure.
 本発明の第1の局面に係る光学膜は、アルミニウムチタン複合酸化物からなる。アルミニウムチタン複合酸化物において、AlとTiとの比(Al/Ti)は、原子比で17/83以下である。アルミニウムチタン複合酸化物は、ルチル構造の結晶を含む。 The optical film according to the first aspect of the present invention is made of an aluminum titanium composite oxide. In the aluminum titanium composite oxide, the ratio of Al to Ti (Al / Ti) is 17/83 or less in terms of atomic ratio. The aluminum titanium composite oxide includes a rutile crystal.
 本発明の第2の局面に係る光学膜は、ガリウムチタン複合酸化物からなる。ガリウムチタン複合酸化物において、GaとTiとの比(Ga/Ti)は、原子比で20/80以下である。ガリウムチタン複合酸化物は、ルチル構造の結晶を含む。 The optical film according to the second aspect of the present invention is made of a gallium titanium composite oxide. In the gallium titanium composite oxide, the ratio of Ga to Ti (Ga / Ti) is 20/80 or less in terms of atomic ratio. The gallium titanium composite oxide includes a crystal having a rutile structure.
 波長400nmにおける光学膜の屈折率が2.8以上であることが好ましい。 The refractive index of the optical film at a wavelength of 400 nm is preferably 2.8 or more.
 光学膜は、アモルファス領域を含んでいてもよい。 The optical film may include an amorphous region.
 本発明によれば、酸化チタン膜よりも高い屈折率を有する光学膜を提供することができる。 According to the present invention, an optical film having a higher refractive index than that of a titanium oxide film can be provided.
図1は、実施例1,2及び参考例1~3の光学膜におけるAlの原子比と屈折率との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the atomic ratio of Al and the refractive index in the optical films of Examples 1 and 2 and Reference Examples 1 to 3. 図2は、実施例1の光学膜の電子線回折パターンである。FIG. 2 is an electron diffraction pattern of the optical film of Example 1. 図3は、実施例3,4及び参考例4,5の光学膜におけるGaの原子比と屈折率との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the atomic ratio of Ga and the refractive index in the optical films of Examples 3 and 4 and Reference Examples 4 and 5. 図4は、実施例3,4及び参考例4,5の光学膜のX線回折パターンである。FIG. 4 is an X-ray diffraction pattern of the optical films of Examples 3 and 4 and Reference Examples 4 and 5.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、以下の実施形態は、単なる一例であり、本発明は、以下の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments.
 (第1の局面の実施形態)
 本実施形態に係る光学膜は、アルミニウムチタン複合酸化物からなる。アルミニウムチタン複合酸化物に含まれるAlとTiとの比(Al/Ti)は、原子比で17/83以下である。光学膜は、アルミニウムチタン複合酸化物のルチル構造の結晶を含む。このため、本実施形態に係る光学膜は、例えば波長400nmにおいて2.8以上という高い屈折率を有する。
(Embodiment of the first aspect)
The optical film according to this embodiment is made of an aluminum titanium composite oxide. The ratio of Al to Ti (Al / Ti) contained in the aluminum titanium composite oxide is 17/83 or less in terms of atomic ratio. The optical film includes a rutile structure crystal of an aluminum titanium composite oxide. For this reason, the optical film according to the present embodiment has a high refractive index of, for example, 2.8 or more at a wavelength of 400 nm.
 より高い屈折率を得る観点からは、アルミニウムチタン複合酸化物に含まれるAlとTiとの比(Al/Ti)は、原子比で2/98~17/83程度であることが好ましく、5/95~12/88程度であることがより好ましい。 From the viewpoint of obtaining a higher refractive index, the ratio of Al to Ti (Al / Ti) contained in the aluminum-titanium composite oxide is preferably about 2/98 to 17/83 in atomic ratio. More preferably, it is about 95 to 12/88.
 光学膜は、アルミニウムチタン複合酸化物のルチル構造の結晶のみからなるものであってもよいが、アルミニウムチタン複合酸化物のアモルファス領域や、アルミニウムチタン複合酸化物のアナターゼ構造の結晶を含んでいてもよい。但し、より高い屈折率を得る観点からは、光学膜におけるアルミニウムチタン複合酸化物のルチル構造の結晶の占める割合が高い方が好ましい。 The optical film may be composed only of a rutile structure crystal of an aluminum-titanium composite oxide, but may contain an amorphous region of an aluminum-titanium composite oxide or an anatase structure crystal of an aluminum-titanium composite oxide. Good. However, from the viewpoint of obtaining a higher refractive index, it is preferable that the proportion of crystals of the rutile structure of the aluminum titanium composite oxide in the optical film is higher.
 (第2の局面の実施形態)
 本実施形態に係る光学膜は、ガリウムチタン複合酸化物からなる。ガリウムチタン複合酸化物に含まれるGaとTiとの比(Ga/Ti)は、原子比で20/80以下である。光学膜は、ガリウムチタン複合酸化物のルチル構造の結晶を含む。このため、本実施形態に係る光学膜は、例えば波長400nmにおいて2.8以上という高い屈折率を有する。
(Embodiment of the second aspect)
The optical film according to this embodiment is made of a gallium titanium composite oxide. The ratio of Ga to Ti (Ga / Ti) contained in the gallium titanium composite oxide is 20/80 or less in terms of atomic ratio. The optical film includes a rutile crystal of gallium titanium composite oxide. For this reason, the optical film according to the present embodiment has a high refractive index of, for example, 2.8 or more at a wavelength of 400 nm.
 より高い屈折率を得る観点からは、ガリウムチタン複合酸化物に含まれるGaとTiとの比(Ga/Ti)は、原子比で2/98~20/80程度であることが好ましく、10/90~18/82程度であることがより好ましい。 From the viewpoint of obtaining a higher refractive index, the ratio of Ga to Ti contained in the gallium titanium composite oxide (Ga / Ti) is preferably about 2/98 to 20/80 in atomic ratio. More preferably, it is about 90 to 18/82.
 光学膜は、ガリウムチタン複合酸化物のルチル構造の結晶のみからなるものであってもよいが、ガリウムチタン複合酸化物のアモルファス領域や、ガリウムチタン複合酸化物のアナターゼ構造の結晶を含んでいてもよい。但し、より高い屈折率を得る観点からは、光学膜におけるガリウムチタン複合酸化物のルチル構造の結晶の占める割合が高い方が好ましい。 The optical film may be composed only of a rutile structure crystal of gallium titanium composite oxide, but may contain an amorphous region of gallium titanium composite oxide or an anatase structure crystal of gallium titanium composite oxide. Good. However, from the viewpoint of obtaining a higher refractive index, it is preferable that the ratio of the crystals of the rutile structure of the gallium titanium composite oxide in the optical film is higher.
 (第1の局面及び第2の局面に共通の実施形態)
 光学膜の厚みは、特に限定されないが、例えば、5nm~1000nm程度とすることができる。
(Embodiment common to 1st aspect and 2nd aspect)
The thickness of the optical film is not particularly limited, but can be, for example, about 5 nm to 1000 nm.
 光学膜を、420℃以上の温度の基板上に成膜することが好ましく、450℃以上の温度の基板上に成膜することがより好ましい。光学膜を成膜する際の基板の温度を高めることにより、より高い屈折率を得ることが可能となる。この理由は定かではないが、光学膜に占めるアルミニウムチタン複合酸化物またはガリウムチタン複合酸化物のルチル構造の結晶の割合が高くなるためであると考えられる。 The optical film is preferably formed on a substrate having a temperature of 420 ° C. or higher, and more preferably formed on a substrate having a temperature of 450 ° C. or higher. A higher refractive index can be obtained by increasing the temperature of the substrate when forming the optical film. Although this reason is not certain, it is thought that it is because the ratio of the crystal of the rutile structure of the aluminum titanium composite oxide or the gallium titanium composite oxide in the optical film is increased.
 光学膜は、例えば、物理的堆積法等により成膜することができる。物理的堆積法の具体例としては、パルスレーザー堆積法、スパッタリング法、電子ビーム蒸着法などが挙げられる。 The optical film can be formed by, for example, a physical deposition method. Specific examples of the physical deposition method include a pulse laser deposition method, a sputtering method, and an electron beam evaporation method.
 基板としては、特に限定されず、例えば、ガラス、プラスチック、樹脂、フィルムなどが挙げられる。 The substrate is not particularly limited, and examples thereof include glass, plastic, resin, and film.
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。 Hereinafter, the present invention will be described in more detail based on specific examples. The present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the scope of the invention.
 <第1の局面>
 (実施例1)
 [ターゲットの作製]
 TiO(株式会社高純度化学研究所製、純度99%)とAl(株式会社高純度化学研究所製、純度99%)とを、原子比でAl/Ti=10/90となるように混合して、酸化物粉末10gを得た。酸化物粉末10gと2-プロパノール30ccとを部分安定化ジルコニア製の容器に入れ、遊星型ボールミル装置で1時間混合し、スラリーとした。スラリーを乾燥し、64MPaで一軸プレスした後、250MPaの圧力で静水圧プレスし、1150℃で、36時間、大気中で焼成して、ターゲットを得た。
<First aspect>
Example 1
[Preparation of target]
TiO 2 (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99%) and Al 2 O 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99%) have an atomic ratio of Al / Ti = 10/90. Thus, 10 g of oxide powder was obtained. 10 g of the oxide powder and 30 cc of 2-propanol were placed in a partially stabilized zirconia container and mixed for 1 hour with a planetary ball mill apparatus to form a slurry. The slurry was dried, uniaxially pressed at 64 MPa, then isostatically pressed at a pressure of 250 MPa, and fired at 1150 ° C. for 36 hours in the air to obtain a target.
 [光学膜の成膜]
 次に、上記作製のターゲットを用い、パルスレーザー堆積(PLD)法により、以下の条件で、無アルカリガラス基板(日本電気硝子株式会社製のOA-10G、15mm角、0.7mm厚)の上に光学膜を成膜した。
[Deposition of optical film]
Next, on the non-alkali glass substrate (OA-10G manufactured by Nippon Electric Glass Co., Ltd., 15 mm square, 0.7 mm thickness) by the pulse laser deposition (PLD) method using the above-mentioned target, under the following conditions An optical film was formed.
 雰囲気:酸素
 雰囲気の圧力/1.5×10-5Pa以下
 ターゲットと基板との距離/35mm
 成膜時の無アルカリガラス基板の温度/500℃
 レーザー/波長248nmのKrFエキシマレーザー(レーザーパワー/200mJ/パルス、レーザーの周波数/5Hz)
 成膜時間/20分
Atmosphere: Oxygen Atmospheric pressure / 1.5 × 10 −5 Pa or less Distance between target and substrate / 35 mm
Temperature of non-alkali glass substrate during film formation / 500 ° C
Laser / KrF excimer laser with a wavelength of 248 nm (laser power / 200 mJ / pulse, laser frequency / 5 Hz)
Deposition time / 20 minutes
 得られた光学膜の厚みは、39nmであった。光学膜の組成とターゲットの組成を、EDX(エネルギー分散型X線分光法)により測定した。その結果、光学膜における組成とターゲット組成は、ほぼ同一であることが確認された。 The thickness of the obtained optical film was 39 nm. The composition of the optical film and the composition of the target were measured by EDX (energy dispersive X-ray spectroscopy). As a result, it was confirmed that the composition in the optical film and the target composition were almost the same.
 [光学特性評価]
 分子エリプソメトリーにより、波長400nmにおける光学膜の屈折率nを測定した。波長400nmにおける光学膜の屈折率は、図1に示されるように2.98であった。なお、分子エリプソメトリーによる評価には、Horiba Jobin Yvon製のAuto SEを用いた。
[Optical characteristics evaluation]
The refractive index n of the optical film at a wavelength of 400 nm was measured by molecular ellipsometry. The refractive index of the optical film at a wavelength of 400 nm was 2.98 as shown in FIG. For the evaluation by molecular ellipsometry, Auto SE manufactured by Horiba Jobin Yvon was used.
 [電子線回折パターンの測定]
 原子分解能分析電子顕微鏡(日本電子株式会社製のJEM-ARM200F)を用いて、実施例1で得られた光学膜の電子線回折パターンを測定した。電子線回折パターンを図2に示す。図2に示されるように、実施例1で得られた光学膜には、ルチル型の結晶とアナターゼ型の結晶が含まれていることが確認された。また、光学膜には、アモルファス領域も存在していた。
[Measurement of electron diffraction pattern]
The electron beam diffraction pattern of the optical film obtained in Example 1 was measured using an atomic resolution analytical electron microscope (JEM-ARM200F manufactured by JEOL Ltd.). The electron diffraction pattern is shown in FIG. As shown in FIG. 2, it was confirmed that the optical film obtained in Example 1 contained rutile type crystals and anatase type crystals. In addition, an amorphous region was also present in the optical film.
 (実施例2)
 TiOとAlとを、原子比でAl/Ti=5/95となるように混合してターゲットを作製したこと以外は、実施例1と同様にして光学膜を成膜した。光学膜の厚みは、37nmであった。次に、実施例1と同様にして、光学膜の組成を測定し、光学特性を評価した。光学膜の屈折率は、2.92であった。また、図示していないが、実施例1と同様に、実施例2で得られた光学膜には、ルチル型の結晶とアナターゼ型の結晶が含まれていることが確認された。
(Example 2)
An optical film was formed in the same manner as in Example 1 except that a target was prepared by mixing TiO 2 and Al 2 O 3 so that the atomic ratio was Al / Ti = 5/95. The thickness of the optical film was 37 nm. Next, in the same manner as in Example 1, the composition of the optical film was measured and the optical characteristics were evaluated. The refractive index of the optical film was 2.92. Although not shown, it was confirmed that the optical film obtained in Example 2 contained rutile type crystals and anatase type crystals as in Example 1.
 (参考例1)
 Alを混合せずにターゲットを作製したこと以外は、実施例1と同様にして光学膜を成膜した。光学膜の厚みは、21nmであった。次に、実施例1と同様にして、光学膜の組成を測定し、光学特性を評価した。光学膜の屈折率は、2.81であった。また、図示していないが、参考例1で得られた光学膜には、ルチル型の結晶は含まれておらず、アナターゼ型の結晶が含まれていることが確認された。
(Reference Example 1)
An optical film was formed in the same manner as in Example 1 except that the target was produced without mixing Al 2 O 3 . The thickness of the optical film was 21 nm. Next, in the same manner as in Example 1, the composition of the optical film was measured and the optical characteristics were evaluated. The refractive index of the optical film was 2.81. Although not shown, it was confirmed that the optical film obtained in Reference Example 1 did not contain rutile crystals and contained anatase crystals.
 (参考例2)
 TiOとAlとを、原子比でAl/Ti=20/80となるように混合してターゲットを作製したこと以外は、実施例1と同様にして光学膜を成膜した。光学膜の厚みは、32nmであった。次に、実施例1と同様にして、光学膜の組成を測定し、光学特性を評価した。光学膜の屈折率は、2.69であった。また、図示していないが、参考例2で得られた光学膜には、ルチル型の結晶もアナターゼ型の結晶も含まれていないことが確認された。
(Reference Example 2)
An optical film was formed in the same manner as in Example 1 except that TiO 2 and Al 2 O 3 were mixed so that the atomic ratio was Al / Ti = 20/80 to prepare a target. The thickness of the optical film was 32 nm. Next, in the same manner as in Example 1, the composition of the optical film was measured and the optical characteristics were evaluated. The refractive index of the optical film was 2.69. Although not shown, it was confirmed that the optical film obtained in Reference Example 2 did not contain rutile crystals or anatase crystals.
 (参考例3)
 TiOとAlとを、原子比でAl/Ti=40/60となるように混合してターゲットを作製したこと以外は、実施例1と同様にして光学膜を成膜した。光学膜の厚みは、31nmであった。次に、実施例1と同様にして、光学膜の組成を測定し、光学膜の屈折率は、2.39であった。また、図示していないが、参考例3で得られた光学膜には、ルチル型の結晶もアナターゼ型の結晶も含まれていないことが確認された。
(Reference Example 3)
An optical film was formed in the same manner as in Example 1 except that a target was prepared by mixing TiO 2 and Al 2 O 3 so that the atomic ratio was Al / Ti = 40/60. The thickness of the optical film was 31 nm. Next, the composition of the optical film was measured in the same manner as in Example 1, and the refractive index of the optical film was 2.39. Although not shown, it was confirmed that the optical film obtained in Reference Example 3 contains neither rutile-type crystals nor anatase-type crystals.
 <第2の局面>
 (実施例3)
 [ターゲットの作製]
 実施例1のターゲットの作製において、Alに代えて、Ga(株式会社高純度化学研究所製、純度99%)を用い、TiOとGaとを、原子比でGa/Ti=10/90となるように混合して、酸化物粉末を得た。これを用いて、実施例1と同様にしてターゲットを得た。
<Second aspect>
(Example 3)
[Preparation of target]
In the preparation of the target in Example 1, in place of the Al 2 O 3, Ga 2 O 3 ( produced by Kojundo Chemical Laboratory Co., Ltd., purity 99%) was used, and a TiO 2 and Ga 2 O 3, the atomic ratio Were mixed to obtain Ga / Ti = 10/90 to obtain an oxide powder. Using this, a target was obtained in the same manner as in Example 1.
 [光学膜の成膜]
 次に、上記作製のターゲットを用い、パルスレーザー堆積(PLD)法により、以下の条件で、無アルカリガラス基板(日本電気硝子株式会社製のOA-10G、15mm角、0.7mm厚)の上に光学膜を成膜した。
 雰囲気:酸素
 雰囲気の圧力/1.5×10-5Pa以下
 ターゲットと基板との距離/50mm
 成膜時の無アルカリガラス基板の温度/500℃
 レーザー/波長248nmのKrFエキシマレーザー(レーザーパワー/200mJ/パルス、レーザーの周波数/5Hz)
 成膜時間/20分
[Deposition of optical film]
Next, on the non-alkali glass substrate (OA-10G manufactured by Nippon Electric Glass Co., Ltd., 15 mm square, 0.7 mm thickness) by the pulse laser deposition (PLD) method using the above-described target, under the following conditions: An optical film was formed.
Atmosphere: Oxygen Atmospheric pressure / 1.5 × 10 −5 Pa or less Distance between target and substrate / 50 mm
Temperature of non-alkali glass substrate during film formation / 500 ° C
Laser / KrF excimer laser with a wavelength of 248 nm (laser power / 200 mJ / pulse, laser frequency / 5 Hz)
Deposition time / 20 minutes
 得られた光学膜の厚みは、131nmであった。光学膜の組成を、EDXで測定した。光学膜におけるGa量は、15.6%であった。従って、光学膜におけるGa/Tiは、15.6/84.4であった。従って、ガリウムチタン複合酸化物の場合、光学膜におけるGaとTiの割合は、ターゲット組成に比較してGa量が増加していた。 The thickness of the obtained optical film was 131 nm. The composition of the optical film was measured by EDX. The amount of Ga in the optical film was 15.6%. Therefore, Ga / Ti in the optical film was 15.6 / 84.4. Therefore, in the case of the gallium titanium composite oxide, the Ga amount in the ratio of Ga and Ti in the optical film is increased as compared with the target composition.
 [光学特性の評価]
 実施例1と同様にして、分子エリプソメトリーにより、波長400nmにおける光学膜の屈折率nを測定した。波長400nmにおける光学膜の屈折率は、2.98であった。
[Evaluation of optical properties]
In the same manner as in Example 1, the refractive index n of the optical film at a wavelength of 400 nm was measured by molecular ellipsometry. The refractive index of the optical film at a wavelength of 400 nm was 2.98.
 (実施例4)
 GaとTiOとを、原子比でGa/Ti=5/95となるように混合してターゲットを作製したこと以外は、実施例3と同様にして光学膜を成膜した。光学膜の厚みは157nmであった。次に、実施例3と同様にして、光学膜の組成を測定した。光学膜の組成は、Ga/Tiが7.3/92.7であった。また、実施例3と同様にして、光学特性を評価した。光学膜の屈折率は、2.84であった。
(Example 4)
An optical film was formed in the same manner as in Example 3 except that the target was prepared by mixing Ga 2 O 3 and TiO 2 so that the atomic ratio was Ga / Ti = 5/95. The thickness of the optical film was 157 nm. Next, the composition of the optical film was measured in the same manner as in Example 3. The composition of the optical film was Ga / Ti 7.3 / 92.7. Further, the optical characteristics were evaluated in the same manner as in Example 3. The refractive index of the optical film was 2.84.
 (参考例4)
 Gaを混合せずにターゲットを作製したこと以外は、実施例3と同様にして光学膜を成膜した。光学膜の厚みは、143nmであった。次に、実施例3と同様にして、光学特性を評価した。光学膜の屈折率は、2.81であった。
(Reference Example 4)
An optical film was formed in the same manner as in Example 3 except that the target was produced without mixing Ga 2 O 3 . The thickness of the optical film was 143 nm. Next, the optical characteristics were evaluated in the same manner as in Example 3. The refractive index of the optical film was 2.81.
 (参考例5)
 GaとTiOとを、原子比でGa/Ti=20/80となるように混合してターゲットを作製したこと以外は、実施例3と同様にして光学膜を成膜した。光学膜の厚みは、139nmであった。次に、実施例3と同様にして光学膜の組成を測定し、光学特性を評価した。光学膜の組成は、Ga/Ti=26.3/73.7であった。光学膜の屈折率は、2.63であった。
(Reference Example 5)
An optical film was formed in the same manner as in Example 3, except that Ga 2 O 3 and TiO 2 were mixed so that the atomic ratio was Ga / Ti = 20/80 to prepare a target. The thickness of the optical film was 139 nm. Next, the composition of the optical film was measured in the same manner as in Example 3 to evaluate the optical characteristics. The composition of the optical film was Ga / Ti = 26.3 / 73.7. The refractive index of the optical film was 2.63.
 図3に、実施例3,4及び参考例4,5の光学膜におけるGaの原子比と屈折率との関係を示す。図3に示すように、Gaを含み、かつGaとTiとの比(Ga/Ti)が20/80以下であるときに、参考例4のチタン酸化物より高い屈折率を示すことが分かる。 FIG. 3 shows the relationship between the atomic ratio of Ga and the refractive index in the optical films of Examples 3 and 4 and Reference Examples 4 and 5. As shown in FIG. 3, it can be seen that when Ga is contained and the ratio of Ga to Ti (Ga / Ti) is 20/80 or less, the refractive index is higher than that of the titanium oxide of Reference Example 4.
 [X線回折パターンの測定]
 実施例3,4及び参考例4,5で得られた光学膜について、X線回折パターンを測定した。X線回折パターンを図4に示す。図4に示されるように、実施例3及び4の光学膜は、27.5度にルチル型結晶のピークが、ショルダーとして観察されている。従って、光学膜にはルチル型結晶が含まれていることが分かる。参考例4及び参考例5においては、このルチル型結晶のピークがほとんど認められなくなっている。
[Measurement of X-ray diffraction pattern]
The X-ray diffraction pattern was measured for the optical films obtained in Examples 3 and 4 and Reference Examples 4 and 5. An X-ray diffraction pattern is shown in FIG. As shown in FIG. 4, in the optical films of Examples 3 and 4, a rutile crystal peak is observed as a shoulder at 27.5 degrees. Therefore, it can be seen that the optical film contains a rutile crystal. In Reference Example 4 and Reference Example 5, the rutile crystal peak is hardly observed.

Claims (5)

  1.  AlまたはGaを含有するチタン複合酸化物からなり、ルチル構造の結晶を含む、光学膜。 An optical film made of a titanium composite oxide containing Al or Ga and containing a crystal having a rutile structure.
  2.  原子比でAl/Tiが17/83以下であるアルミニウムチタン複合酸化物からなる、請求項1に記載の光学膜。 The optical film according to claim 1, comprising an aluminum titanium composite oxide having an atomic ratio of Al / Ti of 17/83 or less.
  3.  原子比でGa/Tiが20/80以下であるガリウムチタン複合酸化物からなる、請求項1に記載の光学膜。 The optical film according to claim 1, comprising a gallium titanium composite oxide having an atomic ratio of Ga / Ti of 20/80 or less.
  4.  波長400nmにおける屈折率が2.8以上である、請求項1~3のいずれか1項に記載の光学膜。 The optical film according to any one of claims 1 to 3, wherein the refractive index at a wavelength of 400 nm is 2.8 or more.
  5.  アモルファス領域を含む、請求項1~4のいずれか1項に記載の光学膜。 The optical film according to any one of claims 1 to 4, comprising an amorphous region.
PCT/JP2013/060204 2012-04-06 2013-04-03 Optical film WO2013151091A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012087548 2012-04-06
JP2012-087548 2012-04-06

Publications (1)

Publication Number Publication Date
WO2013151091A1 true WO2013151091A1 (en) 2013-10-10

Family

ID=49300572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060204 WO2013151091A1 (en) 2012-04-06 2013-04-03 Optical film

Country Status (2)

Country Link
JP (1) JPWO2013151091A1 (en)
WO (1) WO2013151091A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044904A (en) * 2015-08-27 2017-03-02 日本電気硝子株式会社 Optical film and manufacturing method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06219786A (en) * 1993-01-22 1994-08-09 Nippon Sheet Glass Co Ltd Tio2 film, its production, heat ray reflecting film and heat ray reflector
JP2964513B2 (en) * 1988-12-27 1999-10-18 東芝ライテック株式会社 High heat resistant high refractive index composite oxide thin film, composition for forming the same, and incandescent lamp
JP2005179129A (en) * 2003-12-19 2005-07-07 Kyocera Corp Conductive titanium oxide sintered compact, sputtering target, translucent member, and image display device
JP2006518809A (en) * 2003-01-28 2006-08-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Titanium oxide transparent film having at least one of aluminum and aluminum oxide and having a rutile structure
JP2008052913A (en) * 2006-08-22 2008-03-06 Sumitomo Chemical Co Ltd Transparent conductive film, and its manufacturing method
JP2008050677A (en) * 2006-08-28 2008-03-06 Kanagawa Acad Of Sci & Technol Metal oxide film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2964513B2 (en) * 1988-12-27 1999-10-18 東芝ライテック株式会社 High heat resistant high refractive index composite oxide thin film, composition for forming the same, and incandescent lamp
JPH06219786A (en) * 1993-01-22 1994-08-09 Nippon Sheet Glass Co Ltd Tio2 film, its production, heat ray reflecting film and heat ray reflector
JP2006518809A (en) * 2003-01-28 2006-08-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Titanium oxide transparent film having at least one of aluminum and aluminum oxide and having a rutile structure
JP2005179129A (en) * 2003-12-19 2005-07-07 Kyocera Corp Conductive titanium oxide sintered compact, sputtering target, translucent member, and image display device
JP2008052913A (en) * 2006-08-22 2008-03-06 Sumitomo Chemical Co Ltd Transparent conductive film, and its manufacturing method
JP2008050677A (en) * 2006-08-28 2008-03-06 Kanagawa Acad Of Sci & Technol Metal oxide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044904A (en) * 2015-08-27 2017-03-02 日本電気硝子株式会社 Optical film and manufacturing method therefor

Also Published As

Publication number Publication date
JPWO2013151091A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
KR101763057B1 (en) Light-absorbing layer and layer system containing the layer, method for producing the layer system and a sputter target suited therefor
CN102959752B (en) The manufacture method of piezoelectric film-type element, piezoelectric film-type element and piezoelectric film-type element parts
JP6681683B2 (en) Optical film and manufacturing method thereof
US9163129B2 (en) Black pigment, and glaze and paint containing same
TW201643478A (en) Near infrared optical interference filters with improved transmission
TW201632920A (en) Near infrared optical interference filters with improved transmission
JP2016504484A (en) Superabsorbent layer system, process for producing this layer system and sputter target suitable for this
DE102012002927A1 (en) An article with reflection-reducing coating and process for its production
US10312428B2 (en) Piezoelectric thin film, piezoelectric thin film device, target, and methods for manufacturing piezoelectric thin film and piezoelectric thin film device
WO2013151091A1 (en) Optical film
WO2011010603A1 (en) TARGET FOR ZnO-BASED TRANSPARENT CONDUCTIVE FILM AND METHOD FOR PRODUCING SAME
JP5084603B2 (en) Polarizer and liquid crystal projector
JP7216471B2 (en) Plastic lens for in-vehicle lens and manufacturing method thereof
TWI564267B (en) Sintered body for forming low refractive index film and method of manufacturing the same
JP2011202268A (en) Vapor deposition material for forming thin film, thin film sheet having the thin film and laminated sheet
Lin Optical properties of HfO2 nanoceramic films as a function of N–Bi co-doping
JP6800446B2 (en) Optical film and its manufacturing method
KR100941877B1 (en) Composition of passivation and sputtering target and passivation membrane and manufacturing method of it
KR101702791B1 (en) Sintered compact and amorphous film
TWI557091B (en) Composite oxide sintered object and oxide transparent conductive film
WO2018216540A1 (en) Lens having hydrophilic anti-reflection film and production method therefor
WO2015182167A1 (en) Oxide sintered body, method for manufacturing same, and oxide film
US7760432B2 (en) Photochromic resistant materials for optical devices in plasma environments
Naik et al. Influence of oxygen partial pressure on the structural, optical and electrical properties of magnetron sputtered Zr 0.7 Nb 0.3 O 2 films
Kintaka et al. Crystal Structures and Optical Properties of Transparent Ceramics Based on LaAlO3–Sr (Al, Ta) O3 Solid Solution

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013515611

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772460

Country of ref document: EP

Kind code of ref document: A1