WO2013151089A1 - Thermoacoustic pump - Google Patents

Thermoacoustic pump Download PDF

Info

Publication number
WO2013151089A1
WO2013151089A1 PCT/JP2013/060192 JP2013060192W WO2013151089A1 WO 2013151089 A1 WO2013151089 A1 WO 2013151089A1 JP 2013060192 W JP2013060192 W JP 2013060192W WO 2013151089 A1 WO2013151089 A1 WO 2013151089A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoacoustic
resonance
thermoacoustic engine
pipe
stage
Prior art date
Application number
PCT/JP2013/060192
Other languages
French (fr)
Japanese (ja)
Inventor
阿部 誠
山本 康
博文 黒澤
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2013151089A1 publication Critical patent/WO2013151089A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/02Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped using both positively and negatively pressurised fluid medium, e.g. alternating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F7/00Pumps displacing fluids by using inertia thereof, e.g. by generating vibrations therein

Definitions

  • the present invention relates to a thermoacoustic pump that supplies a working fluid using a thermoacoustic engine.
  • an actuator driven by compressed air has been employed in various applications for vehicles such as trucks, and as such an actuator, for example, an auto clutch or the like is known.
  • An air compressor is used to supply compressed air to the auto clutch or the like.
  • a piston pump is used as such an air compressor (see, for example, Patent Document 1).
  • Conventional piston pumps generally have moving parts such as pistons and cylinders.
  • the piston and the cylinder are sealed with a piston seal, but since the seal is a normal contact seal, there is a problem that the durability of the seal is low.
  • thermoacoustic engines having no mechanical moving parts have been actively carried out (see, for example, Japanese Patent Application Laid-Open No. 2011-208911), and pressure fluctuations generated inside the thermoacoustic engine are utilized.
  • a pump having no moving parts such as a piston can be realized.
  • the pressure amplitude that can be generated inside the thermoacoustic engine increases in proportion to the temperature difference between the heating unit and the cooling unit, but when the heat source temperature is low, a large pressure amplitude cannot be obtained, and the necessary air pressure (pressure) ) May not be obtained.
  • an object of the present invention is to provide a pump that has no moving parts such as a piston, has high durability, and can obtain a necessary pressure without increasing the heat source temperature when using a thermoacoustic engine. There is.
  • thermoacoustic pump includes a plurality of thermoacoustic engines in which a heating unit, a stack, and a cooling unit are disposed in a resonance tube filled with a working fluid.
  • connection pipe for connecting the resonance pipes of the thermoacoustic engine in multiple stages, a suction pipe connected to the resonance pipe of the thermoacoustic engine located in the uppermost stage, and attached to the suction pipe and located in the uppermost stage
  • a suction check valve for allowing a flow toward the thermoacoustic engine and blocking a reverse flow
  • a check valve for connection that allows a flow toward the engine side and prevents a flow in the reverse direction
  • a discharge pipe connected to the resonance pipe of the thermoacoustic engine located at the lowest stage, and attached to the discharge pipe
  • the resonance tube has a resonance frequency of sound waves generated in the resonance tube of the thermoacoustic engine located in the lower stage in the upper stage It is set to be lower than the resonance frequency of the sound wave generated in the resonance tube of the thermoacoustic engine.
  • the resonance tube has the resonance frequency of the sound wave generated in the resonance tube of the thermoacoustic engine located in the lower stage on the upper stage. You may set so that it may become lower than the resonant frequency of the sound wave produced in the said resonance tube of a thermoacoustic engine.
  • thermoacoustic pump may further include a tank that is disposed in the discharge pipe downstream of the discharge check valve and stores the working fluid that has passed through the discharge check valve.
  • thermoacoustic pump may further include a surge tank disposed in the connection pipe.
  • a pump that has no moving parts such as a piston, has high durability, and can obtain a necessary pressure without increasing a heat source temperature when using a thermoacoustic engine. There is an excellent effect of being able to.
  • thermoacoustic pump which concerns on one Embodiment of this invention. It is a figure explaining the working principle of the thermoacoustic pump which concerns on one Embodiment of this invention. It is a block diagram of the thermoacoustic pump which concerns on other embodiment of this invention. It is a block diagram of the thermoacoustic pump which concerns on other embodiment of this invention. (A) And (b) is a block diagram of the thermoacoustic pump which concerns on other embodiment of this invention.
  • FIG. 1 shows the structure of a thermoacoustic pump according to an embodiment of the present invention.
  • thermoacoustic pump 10 includes a plurality of (in this embodiment, two) thermoacoustic engines 11, a connection pipe 12, a suction pipe 13, and a first check valve ( An intake check valve 14, a second check valve (connection check valve) 15, a discharge pipe 16, a third check valve (discharge check valve) 17, and a tank (air tank) 18. I have.
  • Each thermoacoustic engine 11 is configured by arranging a heating unit (heater) 21, a stack (regenerator) 22, and a cooling unit (cooler) 23 in a resonance tube 20 filled with a working fluid.
  • a heating unit hereinter
  • a stack hereinter
  • a cooling unit cooling
  • a resonance tube 20 filled with a working fluid.
  • the working fluid in the resonance tube 20 is locally heated in the heating unit 21 and cooled in the cooling unit 23
  • part of the thermal energy is converted into acoustic energy, which is mechanical energy, and the working fluid in the resonance tube 20 is converted.
  • a self-excited vibration is generated, and an acoustic vibration, that is, a sound wave is generated in the resonance tube 20.
  • the resonance tube 20 includes a loop tube portion 24 formed in a loop shape (rectangular loop) and a straight tube portion 25 formed in a straight line shape and connected to the loop tube portion 24.
  • the heating unit 21, the stack 22, and the cooling unit 23 are disposed in the loop pipe unit 24.
  • a gas compressible fluid
  • the resonance tube 20 is provided in the resonance tube 20 of the thermoacoustic engine 11 in which the resonance frequency of sound waves generated in the resonance tube 20 of the thermoacoustic engine 11 located in the lower stage is located in the upper stage. It is set to be lower than the resonance frequency of the generated sound wave.
  • the resonance tube 20 can set the resonance frequency of the sound wave generated in the resonance tube 20 by appropriately changing the tube length of the resonance tube 20 and the tube thickness of the resonance tube 20.
  • the resonance tube 20 resonates sound waves generated in the resonance tube 20 of the thermoacoustic engine 11 located at the lower stage by increasing the length of the straight pipe section 25 as the lower thermoacoustic engine 11. The frequency is set to be lower than the resonance frequency of the sound wave generated in the resonance tube 20 of the thermoacoustic engine 11 located in the upper stage.
  • f is the frequency of the working fluid (resonant frequency of sound waves).
  • r is a flow path diameter (refer to AA cross section in FIG.
  • the resonance frequency is preferably set so that ⁇ in the stack 22 of the thermoacoustic engine 11 located in the upper stage is equal to ⁇ in the stack 22 of the thermoacoustic engine 11 located in the lower stage.
  • the heating unit 21 performs heat exchange with a high-temperature heat source.
  • the heating unit 21 has a plurality of internal fins 26 arranged in the heating unit 21 so as to be parallel to the flow path (longitudinal direction of the loop tube portion 24).
  • waste heat vehicle waste heat, factory waste heat, etc. generated in other systems as the high-temperature heat source.
  • the stack 22 maintains a temperature gradient between the heating unit 21 and the cooling unit 23.
  • the stack 22 includes a metal mesh material (for example, a wire mesh) 27 that is stacked in plural in the stack 22 so as to cross the flow path (longitudinal direction of the loop tube portion 24).
  • the cooling unit 23 performs heat exchange with a low-temperature heat source.
  • the cooling unit 23 has a plurality of internal fins 28 arranged in the cooling unit 23 so as to be parallel to the flow path (longitudinal direction of the loop tube portion 24).
  • the connection tube 12 is for connecting the resonance tubes 20 (in the present embodiment, the straight tube portion 25) of the plurality of thermoacoustic engines 11 in multiple stages.
  • the connecting pipe 12 is a thin pipe having a sufficiently smaller diameter than the loop pipe section 24 and the straight pipe section 25.
  • the connecting pipe 12 is preferably connected to each thermoacoustic engine 11 at a location where the pressure fluctuation in the resonance pipe 20 is greatest. Further, the connecting pipe 12 is preferably connected to each thermoacoustic engine 11 at a location away from the engine portion (the heating unit 21, the stack 22, the cooling unit 23) of the thermoacoustic engine 11.
  • the suction pipe 13 is connected to the resonance pipe 20 (in the present embodiment, the straight pipe section 25) of the thermoacoustic engine 11 located at the uppermost stage, and the working fluid is inside the resonance pipe 20 of the thermoacoustic engine 11 located at the uppermost stage.
  • the suction pipe 13 is composed of a thin pipe having a diameter sufficiently smaller than that of the loop pipe section 24 and the straight pipe section 25.
  • the downstream end of the suction pipe 13 is preferably connected to a location where the pressure fluctuation in the resonance pipe 20 is the largest with respect to the thermoacoustic engine 11 located at the uppermost stage.
  • the downstream end of the suction pipe 13 is connected to a location away from the engine portion (the heating unit 21, the stack 22, the cooling unit 23) of the thermoacoustic engine 11 with respect to the thermoacoustic engine 11 located at the uppermost stage. Is preferred.
  • the upstream end of the suction pipe 13 is open to the atmosphere.
  • the first check valve 14 is attached to the suction pipe 13 so that the working fluid flows toward the resonance pipe 20 of the thermoacoustic engine 11 located at the uppermost stage.
  • the first check valve 14 allows the flow toward the thermoacoustic engine 11 located at the uppermost stage and blocks the flow in the opposite direction.
  • the valve opening pressure (set load) of the first check valve 14 is set so as to open when the upstream pressure of the first check valve 14 becomes larger than the downstream pressure, for example.
  • the second check valve 15 is attached to the connection pipe 12 so that the working fluid flows from the resonance pipe 20 of the thermoacoustic engine 11 located in the upper stage toward the resonance pipe 20 of the thermoacoustic engine 11 located in the lower stage.
  • the second check valve 15 allows a flow from the thermoacoustic engine 11 located in the upper stage toward the thermoacoustic engine 11 located in the lower stage, and blocks the flow in the opposite direction.
  • the valve opening pressure (set load) of the second check valve 15 is set to open when the upstream pressure of the second check valve 15 becomes larger than the downstream pressure.
  • the discharge pipe 16 is connected to the resonance pipe 20 (in this embodiment, the straight pipe section 25) of the thermoacoustic engine 11 located at the lowest stage, and the working fluid is inside the resonance pipe 20 of the thermoacoustic engine 11 located at the lowest stage. It is for discharging from.
  • the discharge pipe 16 is composed of a thin pipe having a diameter sufficiently smaller than that of the loop pipe section 24 and the straight pipe section 25.
  • the upstream end of the discharge pipe 16 is preferably connected to a location where the pressure fluctuation in the resonance pipe 20 is the largest with respect to the thermoacoustic engine 11 located at the lowest stage.
  • the upstream end of the discharge pipe 16 is connected to a location away from the engine portion (heating unit 21, stack 22, cooling unit 23) of the thermoacoustic engine 11 with respect to the thermoacoustic engine 11 located at the lowest stage. Is preferred.
  • the downstream end of the discharge pipe 16 is connected to the tank 18.
  • the third check valve 17 is attached to the discharge pipe 16 so that the working fluid flows from the resonance pipe 20 of the thermoacoustic engine 11 located at the lowermost stage toward the tank 18. That is, the third check valve 17 blocks the flow from the tank 18 side toward the thermoacoustic engine 11 located at the lowest stage and allows the flow in the opposite direction.
  • the valve opening pressure (set load) of the third check valve 17 is set so as to open when the upstream pressure of the third check valve 17 becomes larger than the downstream pressure, for example.
  • the tank 18 is disposed in the discharge pipe 16 downstream of the third check valve 17 and stores the working fluid that has passed through the third check valve 17.
  • the tank 18 is detachably connected to the discharge pipe 16 in order to use the working fluid stored in the tank 18 in another system.
  • the tank 18 is connected to the downstream end of the discharge pipe 16, but the tank 18 is connected to the discharge pipe 16 and a stop valve is provided on the discharge pipe 16 downstream of the tank 18. Also good.
  • thermoacoustic pump 10 The operation principle of the thermoacoustic pump 10 according to the present embodiment will be described with reference to FIG.
  • the pressure in the resonance tube 20 of the first-stage thermoacoustic engine 11 located in the upper stage is indicated by a thin line
  • the pressure in the resonance tube 20 of the second-stage thermoacoustic engine 11 located in the lower stage is indicated by a thick line. Is shown.
  • the working fluid is air.
  • the pressure in the resonance tube 20 of the thermoacoustic engine 11 is atmospheric pressure in the initial state.
  • periodic pressure fluctuations are generated in the resonance tube 20 of the thermoacoustic engine 11.
  • outside air passes from the outside through the suction pipe 13 and the first check valve 14. It flows into the resonance tube 20 of the first stage thermoacoustic engine 11. This is because the upstream pressure (external pressure, that is, atmospheric pressure) of the first check valve 14 becomes higher than the downstream pressure (pressure in the resonance tube 20 of the first stage thermoacoustic engine 11).
  • the pressure in the resonance tube 20 of the thermoacoustic engine 11 increases, the pressure in the resonance tube 20 becomes atmospheric pressure or higher.
  • the pressure in the resonance pipe 20 of the second stage thermoacoustic engine 11 is lower than the pressure in the resonance pipe 20 of the first stage thermoacoustic engine 11, the compressed air is connected to the connection pipe 12 and the second check valve 15. And flows from the resonance tube 20 of the first-stage thermoacoustic engine 11 to the resonance tube 20 of the second-stage thermoacoustic engine 11.
  • the pressure in the tank 18 is the resonance tube of the second stage thermoacoustic engine 11.
  • the compressed air flows from the resonance pipe 20 of the second stage thermoacoustic engine 11 to the tank 18 through the discharge pipe 16 and the third check valve 17.
  • the average pressure in the resonance tube 20 of the thermoacoustic engine 11 gradually increases, and the pressure amplitude in the resonance tube 20 also increases accordingly.
  • the pressure state finally reaches the right end in FIG. 2 the upper limit (maximum generated pressure) of the pressure that can be generated by the thermoacoustic pump 10 according to the present embodiment is reached.
  • the pressure in the resonance tube 20 of the first stage thermoacoustic engine 11 does not become lower than the atmospheric pressure, and the first check valve 14 resonates with the first stage thermoacoustic engine 11. This is because the outside air is not sucked into the tube 20.
  • the heating temperature in the heating unit 21 of the thermoacoustic engine 11 is increased, higher pressure can be generated in the resonance tube 20 and the tank 18 of the thermoacoustic engine 11.
  • thermoacoustic pump 10 uses pressure vibration generated in the resonance tube 20 of the thermoacoustic engine 11, and the outside air when the pressure in the resonance tube 20 of the thermoacoustic engine 11 becomes low. Is sucked into the resonance tube 20 of the thermoacoustic engine 11, and when the pressure in the resonance tube 20 of the thermoacoustic engine 11 becomes high, compressed air is discharged from the resonance tube 20 of the thermoacoustic engine 11 to the tank 18. Functions as a compressor (air compressor) with no moving parts such as pistons.
  • thermoacoustic pump 10 functions as a pump (air pump) having no moving parts such as a piston.
  • the resonance tube 20 of the second-stage thermoacoustic engine 11 uses compressed air in a state where the pressure is increased in the resonance tube 20 of the first-stage thermoacoustic engine 11. Since the suction is performed through the connection pipe 12 and the second check valve 15, the average pressure in the resonance pipe 20 of the second-stage thermoacoustic engine 11 is higher than the average pressure in the resonance pipe 20 of the first-stage thermoacoustic engine 11. High pressure. Therefore, the pressure of the compressed air flowing through the discharge pipe 16 and the third check valve 17 to the tank 18 can also be increased.
  • the average pressure in the resonance tube 20 is higher than that in the first-stage thermoacoustic engine 11, so that the pressure amplitude in the resonance tube 20 is also higher than that in the first-stage thermoacoustic engine 11. And higher pressure can be obtained.
  • thermoacoustic engine 11 when the working fluid filled in the resonance tube 20 is the same, when the pressure in the resonance tube 20 increases, the heat capacity per unit volume of the working fluid increases, and the working fluid is heated and cooled. It will take time. That is, in order to perform efficient pressurization with a configuration in which the thermoacoustic engines 11 are arranged in multiple stages, it is necessary to select the resonance tube 20 that matches the internal pressure of the thermoacoustic engine 11. For this reason, in the present embodiment, as described above, the resonance frequency of the sound wave generated in the resonance tube 20 by increasing the pipe length of the straight tube portion 25 as much as the lower thermoacoustic engine 11 is set to the lower thermoacoustic. The lower the engine 11, the slower the working fluid flow rate is as the lower thermoacoustic engine 11.
  • thermoacoustic pump 10 the plurality of thermoacoustic engines 11 in which the heating unit 21, the stack 22, and the cooling unit 23 are disposed in the resonance tube 20 filled with the working fluid.
  • a connection pipe 12 for connecting the resonance tubes 20 of the plurality of thermoacoustic engines 11 in multiple stages, a suction pipe 13 connected to the resonance pipe 20 of the thermoacoustic engine 11 located at the uppermost stage, and a suction pipe 13.
  • a suction check valve 14 for allowing a flow toward the thermoacoustic engine 11 located at the uppermost stage and blocking a flow in the reverse direction, and attached to the connecting pipe 12 and from the thermoacoustic engine 11 located at the upper stage to the lower stage.
  • connection check valve 15 that allows the flow toward the thermoacoustic engine 11 located at the side and blocks the flow in the reverse direction
  • the discharge pipe 16 connected to the resonance pipe 20 of the thermoacoustic engine 11 located at the lowermost stage.
  • a discharge check valve 17 that prevents the flow toward the thermoacoustic engine 11 located at the lowermost stage and allows the flow in the reverse direction, and the resonance tube 20 resonates with the thermoacoustic engine 11 located at the lower stage. Since the resonance frequency of the sound wave generated in the tube 20 is set to be lower than the resonance frequency of the sound wave generated in the resonance tube 20 of the thermoacoustic engine 11 located in the upper stage, there is no movable part such as a piston, and durability is improved. When using the thermoacoustic engine 11 which is high, it is possible to provide a pump capable of obtaining a necessary pressure without increasing the heat source temperature.
  • thermoacoustic pump 10 does not require oil, and no oil is mixed into the compressed air.
  • thermoacoustic engine 11 heating unit 21 with waste heat (vehicle waste heat, factory waste heat, etc.) generated by another system, a pump that requires almost no maintenance cost is realized.
  • the resonance tube 20 having a resonance frequency corresponding to the operating pressure for each thermoacoustic engine 11, more efficient pressurization and high pressure can be generated.
  • the number of stages of the thermoacoustic engine 11 is two, but naturally the pressure is further increased by increasing the number of stages of the thermoacoustic engine 11 to three stages and four stages. It is possible to continue. That is, the number of stages of the thermoacoustic engine 11 is not limited to two, but may be three or more.
  • the required pressure can be obtained by changing (adding) the number of stages of the thermoacoustic engine 11 without increasing the heat source temperature of the thermoacoustic engine 11.
  • the resonance pipe 20 is positioned at the lower stage by making the pipe length of the loop pipe portion 24 (that is, the pipe length of the resonance pipe 20) longer as the lower thermoacoustic engine 11.
  • the resonance frequency of the sound wave generated in the resonance tube 20 of the thermoacoustic engine 11 may be set to be lower than the resonance frequency of the sound wave generated in the resonance tube 20 of the thermoacoustic engine 11 located in the upper stage.
  • the pipe length in the long side direction of the loop pipe portion 24 having a rectangular loop is increased.
  • the pipe length in the short side direction of the loop pipe portion 24 having a rectangular loop may be increased. good.
  • a surge tank 19 for temporarily storing the working fluid may be provided in the connection pipe 12.
  • the second check valves 15 are arranged in the connection pipes 12 upstream and downstream of the surge tank 19.
  • thermoacoustic engine 11 is not limited to that of the embodiment of FIG.
  • a modification of the thermoacoustic engine 11 is shown in FIG.
  • the resonance tube 31 has a loop tube portion 32 formed in a loop shape, and the heating portion 21, the stack 22, and the cooling portion 23 are arranged in the loop tube portion 32.
  • the connecting pipe 12, the suction pipe 13 and the discharge pipe 16 are connected to the loop pipe portion 32.
  • the resonance tube 33 has a straight tube portion 34 formed in a straight line, and the heating portion 21, the stack 22, and the cooling portion 23 are provided on the straight tube portion 34.
  • the connecting pipe 12, the suction pipe 13, and the discharge pipe 16 are connected to the straight pipe portion 34.
  • the resonance frequency of the sound wave generated in the resonance tube 20 is set to be lower as the lower thermoacoustic engine 11 by appropriately changing the pipe length of the resonance tube 20.
  • This is not limited.
  • the pipe thickness of the resonance tube 20 is appropriately changed (generally, the resonance frequency decreases as the pipe thickness decreases).
  • the resonance can be obtained by appropriately changing the pipe thickness of the resonance pipe 20. It is possible to set the resonance frequency of the sound wave generated in the tube 20 to be lower for the thermoacoustic engine 11 on the lower side.

Abstract

In order to obtain a required pressure without using a movable part such as a piston, and with high durability and without increasing the heat source temperature when a thermoacoustic engine is used, this thermoacoustic pump (10) is equipped with: multiple thermoacoustic engines (11) wherein a heating unit (21), a stack (22) and a cooling unit (23) are provided on a resonance tube (20) filled with an operating fluid; a connecting pipe (12) connecting the resonance tubes (20) of the multiple thermoacoustic engines (11) in multiple stages; a suction pipe (13) connected to the resonance tube (20) of the thermoacoustic engine (11) located at the uppermost stage; a suction-use check valve (14) attached to the suction pipe (13); a connection-use check valve (15) attached to the connecting pipe (12); a discharge pipe (16) connected to the resonance tube (20) of the thermoacoustic engine (11) located at the lowermost stage; and a discharge-use check valve (17) attached to the discharge pipe (16). The resonant frequency of the sound waves generated in the resonance tube (20) of the thermoacoustic engine (11) located at a lower stage is set so as to be lower than the resonant frequency of the sound waves generated in the resonance tube (20) of the thermoacoustic engine (11) located at an upper stage.

Description

熱音響ポンプThermoacoustic pump
 本発明は、熱音響機関を用いて作動流体の供給を行う熱音響ポンプに関する。 The present invention relates to a thermoacoustic pump that supplies a working fluid using a thermoacoustic engine.
 従来、トラック等の車両には圧縮空気により駆動されるアクチュエータが様々な用途で採用されており、そのようなアクチュエータとして、例えば、オートクラッチ等が知られている。また、そのオートクラッチ等に圧縮空気を供給するために、エアーコンプレッサが使用されている。そのようなエアーコンプレッサとして、例えば、ピストンポンプが用いられている(例えば、特許文献1参照)。 Conventionally, an actuator driven by compressed air has been employed in various applications for vehicles such as trucks, and as such an actuator, for example, an auto clutch or the like is known. An air compressor is used to supply compressed air to the auto clutch or the like. For example, a piston pump is used as such an air compressor (see, for example, Patent Document 1).
 従来のピストンポンプは、一般的に、可動部品であるピストン、シリンダ等を有していた。 Conventional piston pumps generally have moving parts such as pistons and cylinders.
特開2005-315212号公報JP 2005-315212 A
 従来のピストンポンプにおいては、ピストンとシリンダとの間はピストンシールによりシールするが、そのシールは通常接触シールであるためシールの耐久性が低いという問題があった。また、シールの耐久性を高めるためにはシール部をオイルで潤滑する必要があるが、オイルの循環や圧縮空気へのオイル混入に注意する必要があり、フィルタやエアードライヤ等によりオイルを取り除く必要があった。 In the conventional piston pump, the piston and the cylinder are sealed with a piston seal, but since the seal is a normal contact seal, there is a problem that the durability of the seal is low. In order to increase the durability of the seal, it is necessary to lubricate the seal with oil. However, it is necessary to pay attention to the circulation of the oil and the mixing of oil into the compressed air, and it is necessary to remove the oil with a filter or air dryer. was there.
 また、近年、機械的な可動部分が無い所謂熱音響機関の開発研究が活発に行われており(例えば、特開2011-208911号公報参照)、熱音響機関内部で発生する圧力変動を利用することでピストン等の可動部品の無いポンプが実現され得る。しかしながら、熱音響機関内部に発生可能な圧力振幅は加熱部と冷却部との温度差に比例して増大するが、熱源温度が低い場合には大きな圧力振幅が得られず、必要な空気圧(圧力)が得られない場合がある。 In recent years, research and development of so-called thermoacoustic engines having no mechanical moving parts has been actively carried out (see, for example, Japanese Patent Application Laid-Open No. 2011-208911), and pressure fluctuations generated inside the thermoacoustic engine are utilized. Thus, a pump having no moving parts such as a piston can be realized. However, the pressure amplitude that can be generated inside the thermoacoustic engine increases in proportion to the temperature difference between the heating unit and the cooling unit, but when the heat source temperature is low, a large pressure amplitude cannot be obtained, and the necessary air pressure (pressure) ) May not be obtained.
 そこで、本発明の目的は、ピストン等の可動部品が無く、耐久性が高く、且つ、熱音響機関を利用する際に、熱源温度を上げることなく必要な圧力を得ることができるポンプを提供することにある。 Accordingly, an object of the present invention is to provide a pump that has no moving parts such as a piston, has high durability, and can obtain a necessary pressure without increasing the heat source temperature when using a thermoacoustic engine. There is.
 上述の目的を達成するために、本発明に係る熱音響ポンプは、作動流体が充填された共鳴管に、加熱部とスタックと冷却部とが配設された複数の熱音響機関と、前記複数の熱音響機関の前記共鳴管を多段に接続する接続管と、最上段に位置する前記熱音響機関の前記共鳴管に接続された吸入管と、前記吸入管に取り付けられ、最上段に位置する前記熱音響機関側に向かう流れを許容し且つ逆方向の流れを阻止する吸入用逆止弁と、前記接続管に取り付けられ、上段に位置する前記熱音響機関側から下段に位置する前記熱音響機関側に向かう流れを許容し且つ逆方向の流れを阻止する接続用逆止弁と、最下段に位置する前記熱音響機関の前記共鳴管に接続された吐出管と、前記吐出管に取り付けられ、最下段に位置する前記熱音響機関側に向かう流れを阻止し且つ逆方向の流れを許容する吐出用逆止弁とを備え、前記共鳴管は、下段に位置する前記熱音響機関の前記共鳴管内に生じる音波の共鳴周波数が上段に位置する前記熱音響機関の前記共鳴管内に生じる音波の共鳴周波数より低くなるように設定されるものである。 In order to achieve the above-described object, a thermoacoustic pump according to the present invention includes a plurality of thermoacoustic engines in which a heating unit, a stack, and a cooling unit are disposed in a resonance tube filled with a working fluid. A connection pipe for connecting the resonance pipes of the thermoacoustic engine in multiple stages, a suction pipe connected to the resonance pipe of the thermoacoustic engine located in the uppermost stage, and attached to the suction pipe and located in the uppermost stage A suction check valve for allowing a flow toward the thermoacoustic engine and blocking a reverse flow; and the thermoacoustic mounted on the connecting pipe and positioned on the lower side from the thermoacoustic engine side A check valve for connection that allows a flow toward the engine side and prevents a flow in the reverse direction, a discharge pipe connected to the resonance pipe of the thermoacoustic engine located at the lowest stage, and attached to the discharge pipe Toward the thermoacoustic engine located at the bottom A discharge check valve that prevents flow and allows reverse flow, and the resonance tube has a resonance frequency of sound waves generated in the resonance tube of the thermoacoustic engine located in the lower stage in the upper stage It is set to be lower than the resonance frequency of the sound wave generated in the resonance tube of the thermoacoustic engine.
 前記共鳴管の管路長を下段側の前記熱音響機関ほど長くすることで、前記共鳴管は、下段に位置する前記熱音響機関の前記共鳴管内に生じる音波の共鳴周波数が上段に位置する前記熱音響機関の前記共鳴管内に生じる音波の共鳴周波数より低くなるように設定されても良い。 By making the pipe length of the resonance tube longer as the thermoacoustic engine on the lower stage side, the resonance tube has the resonance frequency of the sound wave generated in the resonance tube of the thermoacoustic engine located in the lower stage on the upper stage. You may set so that it may become lower than the resonant frequency of the sound wave produced in the said resonance tube of a thermoacoustic engine.
 前記熱音響ポンプは、前記吐出用逆止弁よりも下流の前記吐出管に配設され、前記吐出用逆止弁を通過した作動流体を貯留するタンクをさらに備えても良い。 The thermoacoustic pump may further include a tank that is disposed in the discharge pipe downstream of the discharge check valve and stores the working fluid that has passed through the discharge check valve.
 前記熱音響ポンプは、前記接続管に配設されたサージタンクをさらに備えても良い。 The thermoacoustic pump may further include a surge tank disposed in the connection pipe.
 本発明によれば、ピストン等の可動部品が無く、耐久性が高く、且つ、熱音響機関を利用する際に、熱源温度を上げることなく必要な圧力を得ることができるポンプを提供することができるという優れた効果を奏する。 According to the present invention, there is provided a pump that has no moving parts such as a piston, has high durability, and can obtain a necessary pressure without increasing a heat source temperature when using a thermoacoustic engine. There is an excellent effect of being able to.
本発明の一実施形態に係る熱音響ポンプの構成図である。It is a block diagram of the thermoacoustic pump which concerns on one Embodiment of this invention. 本発明の一実施形態に係る熱音響ポンプの作動原理を説明する図である。It is a figure explaining the working principle of the thermoacoustic pump which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る熱音響ポンプの構成図である。It is a block diagram of the thermoacoustic pump which concerns on other embodiment of this invention. 本発明の他の実施形態に係る熱音響ポンプの構成図である。It is a block diagram of the thermoacoustic pump which concerns on other embodiment of this invention. (a)及び(b)は、本発明の他の実施形態に係る熱音響ポンプの構成図である。(A) And (b) is a block diagram of the thermoacoustic pump which concerns on other embodiment of this invention.
 以下、本発明の好適な実施形態を添付図面に基づいて詳述する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 本発明の一実施形態に係る熱音響ポンプの構造を図1に示す。 FIG. 1 shows the structure of a thermoacoustic pump according to an embodiment of the present invention.
 図1に示すように、本実施形態に係る熱音響ポンプ10は、複数(本実施形態では、二つ)の熱音響機関11と、接続管12と、吸入管13と、第一チェック弁(吸入用逆止弁)14と、第二チェック弁(接続用逆止弁)15と、吐出管16と、第三チェック弁(吐出用逆止弁)17と、タンク(エアータンク)18とを備えている。 As shown in FIG. 1, a thermoacoustic pump 10 according to this embodiment includes a plurality of (in this embodiment, two) thermoacoustic engines 11, a connection pipe 12, a suction pipe 13, and a first check valve ( An intake check valve 14, a second check valve (connection check valve) 15, a discharge pipe 16, a third check valve (discharge check valve) 17, and a tank (air tank) 18. I have.
 各熱音響機関11は、作動流体が充填された共鳴管20に、加熱部(加熱器)21とスタック(再生器)22と冷却部(冷却器)23とを配設して構成されている。共鳴管20内の作動流体を加熱部21において局所的に加熱し、冷却部23において冷却すると、熱エネルギの一部が力学的エネルギである音響エネルギに変換されて共鳴管20内の作動流体が自励振動を起こし、共鳴管20内に音響振動すなわち音波が発生する。 Each thermoacoustic engine 11 is configured by arranging a heating unit (heater) 21, a stack (regenerator) 22, and a cooling unit (cooler) 23 in a resonance tube 20 filled with a working fluid. . When the working fluid in the resonance tube 20 is locally heated in the heating unit 21 and cooled in the cooling unit 23, part of the thermal energy is converted into acoustic energy, which is mechanical energy, and the working fluid in the resonance tube 20 is converted. A self-excited vibration is generated, and an acoustic vibration, that is, a sound wave is generated in the resonance tube 20.
 共鳴管20は、ループ状(矩形ループ)に形成されたループ管部24と、直線状に形成され、ループ管部24に接続された直線管部25とを有する。本実施形態では、加熱部21、スタック22及び冷却部23は、ループ管部24に配設されている。作動流体には、空気、ヘリウム、窒素、アルゴン等の気体(圧縮性流体)を用いるのが好ましい。 The resonance tube 20 includes a loop tube portion 24 formed in a loop shape (rectangular loop) and a straight tube portion 25 formed in a straight line shape and connected to the loop tube portion 24. In the present embodiment, the heating unit 21, the stack 22, and the cooling unit 23 are disposed in the loop pipe unit 24. As the working fluid, it is preferable to use a gas (compressible fluid) such as air, helium, nitrogen, or argon.
 本実施形態に係る熱音響ポンプ10では、共鳴管20は、下段に位置する熱音響機関11の共鳴管20内に生じる音波の共鳴周波数が上段に位置する熱音響機関11の共鳴管20内に生じる音波の共鳴周波数より低くなるように設定されている。共鳴管20は、共鳴管20の管路長、共鳴管20の管路太さを適宜変更することで、その共鳴管20内に生じる音波の共鳴周波数を設定することができる。本実施形態では、直線管部25の管路長を下段側の熱音響機関11ほど長くすることで、共鳴管20は、下段に位置する熱音響機関11の共鳴管20内に生じる音波の共鳴周波数が上段に位置する熱音響機関11の共鳴管20内に生じる音波の共鳴周波数より低くなるように設定されている。 In the thermoacoustic pump 10 according to the present embodiment, the resonance tube 20 is provided in the resonance tube 20 of the thermoacoustic engine 11 in which the resonance frequency of sound waves generated in the resonance tube 20 of the thermoacoustic engine 11 located in the lower stage is located in the upper stage. It is set to be lower than the resonance frequency of the generated sound wave. The resonance tube 20 can set the resonance frequency of the sound wave generated in the resonance tube 20 by appropriately changing the tube length of the resonance tube 20 and the tube thickness of the resonance tube 20. In the present embodiment, the resonance tube 20 resonates sound waves generated in the resonance tube 20 of the thermoacoustic engine 11 located at the lower stage by increasing the length of the straight pipe section 25 as the lower thermoacoustic engine 11. The frequency is set to be lower than the resonance frequency of the sound wave generated in the resonance tube 20 of the thermoacoustic engine 11 located in the upper stage.
 ここで、スタック22の内部で行われる熱交換は、作動流体の角速度ω(オメガ)と作動流体の熱緩和時間τ(タウ)との積で定義されるωτにより決定される。また、作動流体の角速度ωは、ω=2πfにより求められる。但し、fは作動流体の周波数(音波の共鳴周波数)である。さらに、作動流体の熱緩和時間τは、流路壁部(後述する金属メッシュ材料27の骨格材)の温度と流路内の作動流体の温度とが平衡になるまでの時間を表し、τ=r2/(2α)により求められる。但し、rは流路径(図1のA-A断面参照)であり、αは作動流体の熱拡散係数である。上段に位置する熱音響機関11のスタック22におけるωτと、下段に位置する熱音響機関11のスタック22におけるωτとが等しくなるように共鳴周波数を設定するのが好ましい。 Here, the heat exchange performed inside the stack 22 is determined by ωτ defined by the product of the angular velocity ω (omega) of the working fluid and the thermal relaxation time τ (tau) of the working fluid. Further, the angular velocity ω of the working fluid is obtained by ω = 2πf. Here, f is the frequency of the working fluid (resonant frequency of sound waves). Furthermore, the thermal relaxation time τ of the working fluid represents a time until the temperature of the flow path wall (a skeleton material of the metal mesh material 27 described later) and the temperature of the working fluid in the flow path become equilibrium, and τ = It is obtained by r 2 / (2α). However, r is a flow path diameter (refer to AA cross section in FIG. 1), and α is a thermal diffusion coefficient of the working fluid. The resonance frequency is preferably set so that ωτ in the stack 22 of the thermoacoustic engine 11 located in the upper stage is equal to ωτ in the stack 22 of the thermoacoustic engine 11 located in the lower stage.
 加熱部21は、高温熱源との熱交換を行うものである。加熱部21は、加熱部21内に流路(ループ管部24の長手方向)と平行になるように複数配設された内部フィン26を有している。また、高温熱源には、他のシステムで生じた廃熱(車両廃熱や工場廃熱等)を用いるのが好ましい。 The heating unit 21 performs heat exchange with a high-temperature heat source. The heating unit 21 has a plurality of internal fins 26 arranged in the heating unit 21 so as to be parallel to the flow path (longitudinal direction of the loop tube portion 24). In addition, it is preferable to use waste heat (vehicle waste heat, factory waste heat, etc.) generated in other systems as the high-temperature heat source.
 スタック22は、加熱部21と冷却部23との間で温度勾配を保持するものである。スタック22は、スタック22内に流路(ループ管部24の長手方向)を横断するように複数積層された金属メッシュ材料(例えば、金網)27を有している。 The stack 22 maintains a temperature gradient between the heating unit 21 and the cooling unit 23. The stack 22 includes a metal mesh material (for example, a wire mesh) 27 that is stacked in plural in the stack 22 so as to cross the flow path (longitudinal direction of the loop tube portion 24).
 冷却部23は、低温熱源との熱交換を行うものである。冷却部23は、冷却部23内に流路(ループ管部24の長手方向)と平行になるように複数配設された内部フィン28を有している。 The cooling unit 23 performs heat exchange with a low-temperature heat source. The cooling unit 23 has a plurality of internal fins 28 arranged in the cooling unit 23 so as to be parallel to the flow path (longitudinal direction of the loop tube portion 24).
 接続管12は、複数の熱音響機関11の共鳴管20(本実施形態では、直線管部25)を多段に接続するためのものである。接続管12は、ループ管部24及び直線管部25よりも十分に径が小さい細管からなる。接続管12は、各熱音響機関11に対して、共鳴管20内の圧力変動が最も大きくなる箇所に接続するのが好ましい。また、接続管12は、各熱音響機関11に対して、熱音響機関11のエンジン部分(加熱部21、スタック22、冷却部23)から離れた箇所に接続するのが好ましい。 The connection tube 12 is for connecting the resonance tubes 20 (in the present embodiment, the straight tube portion 25) of the plurality of thermoacoustic engines 11 in multiple stages. The connecting pipe 12 is a thin pipe having a sufficiently smaller diameter than the loop pipe section 24 and the straight pipe section 25. The connecting pipe 12 is preferably connected to each thermoacoustic engine 11 at a location where the pressure fluctuation in the resonance pipe 20 is greatest. Further, the connecting pipe 12 is preferably connected to each thermoacoustic engine 11 at a location away from the engine portion (the heating unit 21, the stack 22, the cooling unit 23) of the thermoacoustic engine 11.
 吸入管13は、最上段に位置する熱音響機関11の共鳴管20(本実施形態では、直線管部25)に接続され、作動流体を最上段に位置する熱音響機関11の共鳴管20内に吸入するためのものである。吸入管13は、ループ管部24及び直線管部25よりも十分に径が小さい細管からなる。吸入管13の下流端は、最上段に位置する熱音響機関11に対して、共鳴管20内の圧力変動が最も大きくなる箇所に接続するのが好ましい。また、吸入管13の下流端は、最上段に位置する熱音響機関11に対して、熱音響機関11のエンジン部分(加熱部21、スタック22、冷却部23)から離れた箇所に接続するのが好ましい。本実施形態では、吸入管13の上流端は、大気開放されている。 The suction pipe 13 is connected to the resonance pipe 20 (in the present embodiment, the straight pipe section 25) of the thermoacoustic engine 11 located at the uppermost stage, and the working fluid is inside the resonance pipe 20 of the thermoacoustic engine 11 located at the uppermost stage. For inhalation. The suction pipe 13 is composed of a thin pipe having a diameter sufficiently smaller than that of the loop pipe section 24 and the straight pipe section 25. The downstream end of the suction pipe 13 is preferably connected to a location where the pressure fluctuation in the resonance pipe 20 is the largest with respect to the thermoacoustic engine 11 located at the uppermost stage. In addition, the downstream end of the suction pipe 13 is connected to a location away from the engine portion (the heating unit 21, the stack 22, the cooling unit 23) of the thermoacoustic engine 11 with respect to the thermoacoustic engine 11 located at the uppermost stage. Is preferred. In the present embodiment, the upstream end of the suction pipe 13 is open to the atmosphere.
 第一チェック弁14は、最上段に位置する熱音響機関11の共鳴管20に向かって作動流体が流れるように吸入管13に取り付けられている。すなわち、第一チェック弁14は、最上段に位置する熱音響機関11側に向かう流れを許容し、その逆方向の流れを阻止するものである。第一チェック弁14の開弁圧(セット荷重)は、例えば、第一チェック弁14の上流側圧力が下流側圧力よりも大きくなると開弁するように設定される。 The first check valve 14 is attached to the suction pipe 13 so that the working fluid flows toward the resonance pipe 20 of the thermoacoustic engine 11 located at the uppermost stage. In other words, the first check valve 14 allows the flow toward the thermoacoustic engine 11 located at the uppermost stage and blocks the flow in the opposite direction. The valve opening pressure (set load) of the first check valve 14 is set so as to open when the upstream pressure of the first check valve 14 becomes larger than the downstream pressure, for example.
 第二チェック弁15は、上段に位置する熱音響機関11の共鳴管20から下段に位置する熱音響機関11の共鳴管20に向かって作動流体が流れるように接続管12に取り付けられている。すなわち、第二チェック弁15は、上段に位置する熱音響機関11側から下段に位置する熱音響機関11側に向かう流れを許容し、その逆方向の流れを阻止するものである。第二チェック弁15の開弁圧(セット荷重)は、例えば、第二チェック弁15の上流側圧力が下流側圧力よりも大きくなると開弁するように設定される。 The second check valve 15 is attached to the connection pipe 12 so that the working fluid flows from the resonance pipe 20 of the thermoacoustic engine 11 located in the upper stage toward the resonance pipe 20 of the thermoacoustic engine 11 located in the lower stage. In other words, the second check valve 15 allows a flow from the thermoacoustic engine 11 located in the upper stage toward the thermoacoustic engine 11 located in the lower stage, and blocks the flow in the opposite direction. For example, the valve opening pressure (set load) of the second check valve 15 is set to open when the upstream pressure of the second check valve 15 becomes larger than the downstream pressure.
 吐出管16は、最下段に位置する熱音響機関11の共鳴管20(本実施形態では、直線管部25)に接続され、作動流体を最下段に位置する熱音響機関11の共鳴管20内から吐出するためのものである。吐出管16は、ループ管部24及び直線管部25よりも十分に径が小さい細管からなる。吐出管16の上流端は、最下段に位置する熱音響機関11に対して、共鳴管20内の圧力変動が最も大きくなる箇所に接続するのが好ましい。また、吐出管16の上流端は、最下段に位置する熱音響機関11に対して、熱音響機関11のエンジン部分(加熱部21、スタック22、冷却部23)から離れた箇所に接続するのが好ましい。本実施形態では、吐出管16の下流端は、タンク18に接続されている。 The discharge pipe 16 is connected to the resonance pipe 20 (in this embodiment, the straight pipe section 25) of the thermoacoustic engine 11 located at the lowest stage, and the working fluid is inside the resonance pipe 20 of the thermoacoustic engine 11 located at the lowest stage. It is for discharging from. The discharge pipe 16 is composed of a thin pipe having a diameter sufficiently smaller than that of the loop pipe section 24 and the straight pipe section 25. The upstream end of the discharge pipe 16 is preferably connected to a location where the pressure fluctuation in the resonance pipe 20 is the largest with respect to the thermoacoustic engine 11 located at the lowest stage. Further, the upstream end of the discharge pipe 16 is connected to a location away from the engine portion (heating unit 21, stack 22, cooling unit 23) of the thermoacoustic engine 11 with respect to the thermoacoustic engine 11 located at the lowest stage. Is preferred. In the present embodiment, the downstream end of the discharge pipe 16 is connected to the tank 18.
 第三チェック弁17は、最下段に位置する熱音響機関11の共鳴管20からタンク18に向かって作動流体が流れるように吐出管16に取り付けられている。すなわち、第三チェック弁17は、タンク18側から最下段に位置する熱音響機関11側に向かう流れを阻止し、その逆方向の流れを許容するものである。第三チェック弁17の開弁圧(セット荷重)は、例えば、第三チェック弁17の上流側圧力が下流側圧力よりも大きくなると開弁するように設定される。 The third check valve 17 is attached to the discharge pipe 16 so that the working fluid flows from the resonance pipe 20 of the thermoacoustic engine 11 located at the lowermost stage toward the tank 18. That is, the third check valve 17 blocks the flow from the tank 18 side toward the thermoacoustic engine 11 located at the lowest stage and allows the flow in the opposite direction. The valve opening pressure (set load) of the third check valve 17 is set so as to open when the upstream pressure of the third check valve 17 becomes larger than the downstream pressure, for example.
 タンク18は、第三チェック弁17よりも下流の吐出管16に配設され、第三チェック弁17を通過した作動流体を貯留するものである。タンク18は、タンク18に貯留した作動流体を他のシステムにおいて使用するために、吐出管16に対して着脱可能に接続されている。なお、本実施形態ではタンク18は吐出管16の下流端に接続されているが、タンク18を吐出管16の途中に接続すると共に、タンク18よりも下流の吐出管16に止め弁を設けても良い。 The tank 18 is disposed in the discharge pipe 16 downstream of the third check valve 17 and stores the working fluid that has passed through the third check valve 17. The tank 18 is detachably connected to the discharge pipe 16 in order to use the working fluid stored in the tank 18 in another system. In this embodiment, the tank 18 is connected to the downstream end of the discharge pipe 16, but the tank 18 is connected to the discharge pipe 16 and a stop valve is provided on the discharge pipe 16 downstream of the tank 18. Also good.
 図2を用いて本実施形態に係る熱音響ポンプ10の作動原理を説明する。なお、図2では、上段に位置する一段目の熱音響機関11の共鳴管20内の圧力を細線で示し、下段に位置する二段目の熱音響機関11の共鳴管20内の圧力を太線で示している。 The operation principle of the thermoacoustic pump 10 according to the present embodiment will be described with reference to FIG. In FIG. 2, the pressure in the resonance tube 20 of the first-stage thermoacoustic engine 11 located in the upper stage is indicated by a thin line, and the pressure in the resonance tube 20 of the second-stage thermoacoustic engine 11 located in the lower stage is indicated by a thick line. Is shown.
 作動流体は、空気であるとする。また、熱音響機関11の共鳴管20内の圧力は、初期状態で大気圧であるとする。この初期状態から熱音響機関11が自励発振を始めると、熱音響機関11の共鳴管20内に周期的な圧力変動が発生する。このとき、一段目の熱音響機関11の共鳴管20内の圧力が大気圧よりも低い負圧の領域(負圧時)では、外気が吸入管13及び第一チェック弁14を通って外部から一段目の熱音響機関11の共鳴管20内に流入する。第一チェック弁14の上流側圧力(外部の圧力すなわち大気圧)が下流側圧力(一段目の熱音響機関11の共鳴管20内の圧力)よりも高くなるためである。 Suppose that the working fluid is air. Further, it is assumed that the pressure in the resonance tube 20 of the thermoacoustic engine 11 is atmospheric pressure in the initial state. When the thermoacoustic engine 11 starts self-oscillation from this initial state, periodic pressure fluctuations are generated in the resonance tube 20 of the thermoacoustic engine 11. At this time, in a negative pressure region where the pressure in the resonance pipe 20 of the first stage thermoacoustic engine 11 is lower than atmospheric pressure (at the time of negative pressure), outside air passes from the outside through the suction pipe 13 and the first check valve 14. It flows into the resonance tube 20 of the first stage thermoacoustic engine 11. This is because the upstream pressure (external pressure, that is, atmospheric pressure) of the first check valve 14 becomes higher than the downstream pressure (pressure in the resonance tube 20 of the first stage thermoacoustic engine 11).
 次に、熱音響機関11の共鳴管20内の圧力が上昇すると、共鳴管20内の圧力は大気圧以上となる。このとき、二段目の熱音響機関11の共鳴管20内の圧力が一段目の熱音響機関11の共鳴管20内の圧力よりも低いと、圧縮空気が接続管12及び第二チェック弁15を通って一段目の熱音響機関11の共鳴管20から二段目の熱音響機関11の共鳴管20に流れる。また、二段目の熱音響機関11の共鳴管20内の圧力が大気圧以上である正圧の領域(正圧時)においてタンク18内の圧力が二段目の熱音響機関11の共鳴管20内の圧力よりも低いと、圧縮空気が吐出管16及び第三チェック弁17を通って二段目の熱音響機関11の共鳴管20からタンク18に流れる。 Next, when the pressure in the resonance tube 20 of the thermoacoustic engine 11 increases, the pressure in the resonance tube 20 becomes atmospheric pressure or higher. At this time, if the pressure in the resonance pipe 20 of the second stage thermoacoustic engine 11 is lower than the pressure in the resonance pipe 20 of the first stage thermoacoustic engine 11, the compressed air is connected to the connection pipe 12 and the second check valve 15. And flows from the resonance tube 20 of the first-stage thermoacoustic engine 11 to the resonance tube 20 of the second-stage thermoacoustic engine 11. Further, in the positive pressure region (at the time of positive pressure) in which the pressure in the resonance tube 20 of the second stage thermoacoustic engine 11 is equal to or higher than atmospheric pressure, the pressure in the tank 18 is the resonance tube of the second stage thermoacoustic engine 11. When the pressure is lower than 20, the compressed air flows from the resonance pipe 20 of the second stage thermoacoustic engine 11 to the tank 18 through the discharge pipe 16 and the third check valve 17.
 このようなサイクルを繰り返すと熱音響機関11の共鳴管20内の平均圧力は徐々に上昇し、それに伴い共鳴管20内の圧力振幅も増大する。最終的に図2の右端のような圧力状態になると、本実施形態に係る熱音響ポンプ10により発生可能な圧力の上限(最大発生圧力)になる。図2の右端のような圧力状態においては、一段目の熱音響機関11の共鳴管20内の圧力が大気圧よりも低くならず、第一チェック弁14による一段目の熱音響機関11の共鳴管20への外気の吸入が行われなくなるためである。但し、熱音響機関11の加熱部21における加熱温度を上げれば、さらに高い圧力を熱音響機関11の共鳴管20内及びタンク18内に発生させることは可能である。 When such a cycle is repeated, the average pressure in the resonance tube 20 of the thermoacoustic engine 11 gradually increases, and the pressure amplitude in the resonance tube 20 also increases accordingly. When the pressure state finally reaches the right end in FIG. 2, the upper limit (maximum generated pressure) of the pressure that can be generated by the thermoacoustic pump 10 according to the present embodiment is reached. In the pressure state as shown in the right end of FIG. 2, the pressure in the resonance tube 20 of the first stage thermoacoustic engine 11 does not become lower than the atmospheric pressure, and the first check valve 14 resonates with the first stage thermoacoustic engine 11. This is because the outside air is not sucked into the tube 20. However, if the heating temperature in the heating unit 21 of the thermoacoustic engine 11 is increased, higher pressure can be generated in the resonance tube 20 and the tank 18 of the thermoacoustic engine 11.
 すなわち、本実施形態に係る熱音響ポンプ10は、熱音響機関11の共鳴管20内で発生する圧力振動を利用し、熱音響機関11の共鳴管20内の圧力が低圧となったときに外気を熱音響機関11の共鳴管20内に吸入し、熱音響機関11の共鳴管20内の圧力が高圧となったときに圧縮空気を熱音響機関11の共鳴管20内からタンク18に吐き出す、ピストン等の可動部品の無いコンプレッサ(エアーコンプレッサ)として機能する。 That is, the thermoacoustic pump 10 according to the present embodiment uses pressure vibration generated in the resonance tube 20 of the thermoacoustic engine 11, and the outside air when the pressure in the resonance tube 20 of the thermoacoustic engine 11 becomes low. Is sucked into the resonance tube 20 of the thermoacoustic engine 11, and when the pressure in the resonance tube 20 of the thermoacoustic engine 11 becomes high, compressed air is discharged from the resonance tube 20 of the thermoacoustic engine 11 to the tank 18. Functions as a compressor (air compressor) with no moving parts such as pistons.
 なお、タンク18は、必ずしも吐出管16に接続しておく必要はない。すなわち、圧縮空気をタンク18に貯留せずに流すだけなら、熱音響ポンプ10は、ピストン等の可動部品の無いポンプ(エアーポンプ)として機能する。 Note that the tank 18 is not necessarily connected to the discharge pipe 16. That is, if the compressed air is simply flowed without being stored in the tank 18, the thermoacoustic pump 10 functions as a pump (air pump) having no moving parts such as a piston.
 また、本実施形態に係る熱音響ポンプ10においては、二段目の熱音響機関11の共鳴管20は、一段目の熱音響機関11の共鳴管20内で圧力が上昇した状態の圧縮空気を接続管12及び第二チェック弁15を介して吸入するため、二段目の熱音響機関11の共鳴管20内の平均圧力は一段目の熱音響機関11の共鳴管20内の平均圧力よりも高圧となる。従って、吐出管16及び第三チェック弁17を通ってタンク18に流れる圧縮空気の圧力も高くすることが可能となる。また、二段目の熱音響機関11では共鳴管20内の平均圧力が一段目の熱音響機関11よりも高くなるため、共鳴管20内の圧力振幅も一段目の熱音響機関11よりも高くなり、より高い圧力を得ることができる。 In the thermoacoustic pump 10 according to the present embodiment, the resonance tube 20 of the second-stage thermoacoustic engine 11 uses compressed air in a state where the pressure is increased in the resonance tube 20 of the first-stage thermoacoustic engine 11. Since the suction is performed through the connection pipe 12 and the second check valve 15, the average pressure in the resonance pipe 20 of the second-stage thermoacoustic engine 11 is higher than the average pressure in the resonance pipe 20 of the first-stage thermoacoustic engine 11. High pressure. Therefore, the pressure of the compressed air flowing through the discharge pipe 16 and the third check valve 17 to the tank 18 can also be increased. In the second-stage thermoacoustic engine 11, the average pressure in the resonance tube 20 is higher than that in the first-stage thermoacoustic engine 11, so that the pressure amplitude in the resonance tube 20 is also higher than that in the first-stage thermoacoustic engine 11. And higher pressure can be obtained.
 ところで、熱音響機関11では共鳴管20内に充填される作動流体が同じである場合、共鳴管20内の圧力が上がると作動流体の単位体積当たりの熱容量が増加し、作動流体の加熱及び冷却に時間を要することになる。つまり、熱音響機関11を多段に配置する構成で効率の良い加圧を行うためには熱音響機関11の内圧に見合う共鳴管20を選択する必要がある。このため、本実施形態では、上述のように、直線管部25の管路長を下段側の熱音響機関11ほど長くすることで共鳴管20内に生じる音波の共鳴周波数を下段側の熱音響機関11ほど低くなるようにして、作動流体の流速を下段側の熱音響機関11ほど遅くするようにしている。 By the way, in the thermoacoustic engine 11, when the working fluid filled in the resonance tube 20 is the same, when the pressure in the resonance tube 20 increases, the heat capacity per unit volume of the working fluid increases, and the working fluid is heated and cooled. It will take time. That is, in order to perform efficient pressurization with a configuration in which the thermoacoustic engines 11 are arranged in multiple stages, it is necessary to select the resonance tube 20 that matches the internal pressure of the thermoacoustic engine 11. For this reason, in the present embodiment, as described above, the resonance frequency of the sound wave generated in the resonance tube 20 by increasing the pipe length of the straight tube portion 25 as much as the lower thermoacoustic engine 11 is set to the lower thermoacoustic. The lower the engine 11, the slower the working fluid flow rate is as the lower thermoacoustic engine 11.
 以上要するに、本実施形態に係る熱音響ポンプ10によれば、作動流体が充填された共鳴管20に、加熱部21とスタック22と冷却部23とが配設された複数の熱音響機関11と、複数の熱音響機関11の共鳴管20を多段に接続する接続管12と、最上段に位置する熱音響機関11の共鳴管20に接続された吸入管13と、吸入管13に取り付けられ、最上段に位置する熱音響機関11側に向かう流れを許容し且つ逆方向の流れを阻止する吸入用逆止弁14と、接続管12に取り付けられ、上段に位置する熱音響機関11側から下段に位置する熱音響機関11側に向かう流れを許容し且つ逆方向の流れを阻止する接続用逆止弁15と、最下段に位置する熱音響機関11の共鳴管20に接続された吐出管16と、吐出管16に取り付けられ、最下段に位置する熱音響機関11側に向かう流れを阻止し且つ逆方向の流れを許容する吐出用逆止弁17とを備え、共鳴管20は、下段に位置する熱音響機関11の共鳴管20内に生じる音波の共鳴周波数が上段に位置する熱音響機関11の共鳴管20内に生じる音波の共鳴周波数より低くなるように設定されるので、ピストン等の可動部品が無く、耐久性が高く、且つ、熱音響機関11を利用する際に、熱源温度を上げることなく必要な圧力を得ることができるポンプを提供することができる。 In short, according to the thermoacoustic pump 10 according to the present embodiment, the plurality of thermoacoustic engines 11 in which the heating unit 21, the stack 22, and the cooling unit 23 are disposed in the resonance tube 20 filled with the working fluid. A connection pipe 12 for connecting the resonance tubes 20 of the plurality of thermoacoustic engines 11 in multiple stages, a suction pipe 13 connected to the resonance pipe 20 of the thermoacoustic engine 11 located at the uppermost stage, and a suction pipe 13. A suction check valve 14 for allowing a flow toward the thermoacoustic engine 11 located at the uppermost stage and blocking a flow in the reverse direction, and attached to the connecting pipe 12 and from the thermoacoustic engine 11 located at the upper stage to the lower stage. The connection check valve 15 that allows the flow toward the thermoacoustic engine 11 located at the side and blocks the flow in the reverse direction, and the discharge pipe 16 connected to the resonance pipe 20 of the thermoacoustic engine 11 located at the lowermost stage. And attached to the discharge pipe 16 And a discharge check valve 17 that prevents the flow toward the thermoacoustic engine 11 located at the lowermost stage and allows the flow in the reverse direction, and the resonance tube 20 resonates with the thermoacoustic engine 11 located at the lower stage. Since the resonance frequency of the sound wave generated in the tube 20 is set to be lower than the resonance frequency of the sound wave generated in the resonance tube 20 of the thermoacoustic engine 11 located in the upper stage, there is no movable part such as a piston, and durability is improved. When using the thermoacoustic engine 11 which is high, it is possible to provide a pump capable of obtaining a necessary pressure without increasing the heat source temperature.
 また、本実施形態に係る熱音響ポンプ10は、オイルを必要とせず、圧縮空気にオイルの混入がない。 Also, the thermoacoustic pump 10 according to the present embodiment does not require oil, and no oil is mixed into the compressed air.
 また、熱音響機関11(加熱部21)の加熱を他のシステムで生じた廃熱(車両廃熱や工場廃熱等)により行うことで、維持費が殆どかからないポンプが実現する。 In addition, by heating the thermoacoustic engine 11 (heating unit 21) with waste heat (vehicle waste heat, factory waste heat, etc.) generated by another system, a pump that requires almost no maintenance cost is realized.
 さらに、作動圧力に見合う共鳴周波数を有する共鳴管20を各熱音響機関11に用いることにより、より効率の良い加圧が可能となると共に、高い圧力を発生可能となる。 Furthermore, by using the resonance tube 20 having a resonance frequency corresponding to the operating pressure for each thermoacoustic engine 11, more efficient pressurization and high pressure can be generated.
 以上、本発明の好適な実施形態について説明したが、本発明は上述の実施形態には限定されず他の様々な実施形態を採ることが可能である。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various other embodiments can be adopted.
 例えば、図1の実施形態では熱音響機関11の段数を二段とした場合の例を示したが、当然ながら、熱音響機関11の段数を三段、四段と増やすことで圧力をさらに上げていくことが可能である。すなわち、熱音響機関11の段数は、二段に限定されず、三段以上であっても良い。熱音響機関11の熱源温度を上げることなく、熱音響機関11の段数の変更(追加)により必要な圧力を得ることが可能となる。 For example, in the embodiment of FIG. 1, an example is shown in which the number of stages of the thermoacoustic engine 11 is two, but naturally the pressure is further increased by increasing the number of stages of the thermoacoustic engine 11 to three stages and four stages. It is possible to continue. That is, the number of stages of the thermoacoustic engine 11 is not limited to two, but may be three or more. The required pressure can be obtained by changing (adding) the number of stages of the thermoacoustic engine 11 without increasing the heat source temperature of the thermoacoustic engine 11.
 また、図3に示すように、ループ管部24の管路長(つまり、共鳴管20の管路長)を下段側の熱音響機関11ほど長くすることで、共鳴管20は、下段に位置する熱音響機関11の共鳴管20内に生じる音波の共鳴周波数が上段に位置する熱音響機関11の共鳴管20内に生じる音波の共鳴周波数より低くなるように設定されても良い。なお、図3では、矩形ループとしたループ管部24の長辺方向に対する管路長を長くしているが、矩形ループとしたループ管部24の短辺方向に対する管路長を長くしても良い。 Further, as shown in FIG. 3, the resonance pipe 20 is positioned at the lower stage by making the pipe length of the loop pipe portion 24 (that is, the pipe length of the resonance pipe 20) longer as the lower thermoacoustic engine 11. The resonance frequency of the sound wave generated in the resonance tube 20 of the thermoacoustic engine 11 may be set to be lower than the resonance frequency of the sound wave generated in the resonance tube 20 of the thermoacoustic engine 11 located in the upper stage. In FIG. 3, the pipe length in the long side direction of the loop pipe portion 24 having a rectangular loop is increased. However, the pipe length in the short side direction of the loop pipe portion 24 having a rectangular loop may be increased. good.
 また、図4に示すように、作動流体を一時的に貯留するサージタンク19を接続管12に設けても良い。図4では、サージタンク19の上下流の接続管12に、第二チェック弁15をそれぞれ配置している。 Further, as shown in FIG. 4, a surge tank 19 for temporarily storing the working fluid may be provided in the connection pipe 12. In FIG. 4, the second check valves 15 are arranged in the connection pipes 12 upstream and downstream of the surge tank 19.
 また、熱音響機関11の構造は図1の実施形態のものには限定されない。熱音響機関11の変形例を図5に示す。図5(a)に示すように、共鳴管31が、ループ状に形成されたループ管部32を有しており、ループ管部32に加熱部21とスタック22と冷却部23とが配設されていると共に、ループ管部32に、接続管12、吸入管13及び吐出管16が接続されている。また、図5(b)に示すように、共鳴管33が、直線状に形成された直線管部34を有しており、直線管部34に加熱部21とスタック22と冷却部23とが配設されていると共に、直線管部34に接続管12、吸入管13及び吐出管16が接続されている。 Further, the structure of the thermoacoustic engine 11 is not limited to that of the embodiment of FIG. A modification of the thermoacoustic engine 11 is shown in FIG. As shown in FIG. 5A, the resonance tube 31 has a loop tube portion 32 formed in a loop shape, and the heating portion 21, the stack 22, and the cooling portion 23 are arranged in the loop tube portion 32. In addition, the connecting pipe 12, the suction pipe 13 and the discharge pipe 16 are connected to the loop pipe portion 32. Further, as shown in FIG. 5B, the resonance tube 33 has a straight tube portion 34 formed in a straight line, and the heating portion 21, the stack 22, and the cooling portion 23 are provided on the straight tube portion 34. The connecting pipe 12, the suction pipe 13, and the discharge pipe 16 are connected to the straight pipe portion 34.
 また、図1の実施形態では、共鳴管20の管路長を適宜変更することで、共鳴管20内に生じる音波の共鳴周波数を下段側の熱音響機関11ほど低くなるように設定するとしたが、これには限定はされない。例えば、共鳴管20の管路太さを適宜変更する(一般的に、管路の太さが細くなると共鳴周波数が低くなる)ことが考えられる。共鳴管20の管路太さの変更が共鳴周波数に与える影響は共鳴管20の管路長を変更する場合と比較すると小さいものの、共鳴管20の管路太さを適宜変更することで、共鳴管20内に生じる音波の共鳴周波数を下段側の熱音響機関11ほど低くなるように設定することは可能である。 In the embodiment of FIG. 1, the resonance frequency of the sound wave generated in the resonance tube 20 is set to be lower as the lower thermoacoustic engine 11 by appropriately changing the pipe length of the resonance tube 20. This is not limited. For example, it is conceivable that the pipe thickness of the resonance tube 20 is appropriately changed (generally, the resonance frequency decreases as the pipe thickness decreases). Although the influence of the change in the pipe thickness of the resonance tube 20 on the resonance frequency is small compared to the case where the pipe length of the resonance pipe 20 is changed, the resonance can be obtained by appropriately changing the pipe thickness of the resonance pipe 20. It is possible to set the resonance frequency of the sound wave generated in the tube 20 to be lower for the thermoacoustic engine 11 on the lower side.
10 熱音響ポンプ
11 熱音響機関
12 接続管
13 吸入管
14 吸入用逆止弁(第一チェック弁)
15 接続用逆止弁(第二チェック弁)
16 吐出管
17 吐出用逆止弁(第三チェック弁)
18 タンク
19 サージタンク
20 共鳴管
21 加熱部
22 スタック
23 冷却部
DESCRIPTION OF SYMBOLS 10 Thermoacoustic pump 11 Thermoacoustic engine 12 Connection pipe 13 Intake pipe 14 Inhalation check valve (first check valve)
15 Check valve for connection (second check valve)
16 Discharge pipe 17 Discharge check valve (third check valve)
18 Tank 19 Surge Tank 20 Resonance Tube 21 Heating Unit 22 Stack 23 Cooling Unit

Claims (4)

  1.  作動流体が充填された共鳴管に、加熱部とスタックと冷却部とが配設された複数の熱音響機関と、前記複数の熱音響機関の前記共鳴管を多段に接続する接続管と、最上段に位置する前記熱音響機関の前記共鳴管に接続された吸入管と、前記吸入管に取り付けられ、最上段に位置する前記熱音響機関側に向かう流れを許容し且つ逆方向の流れを阻止する吸入用逆止弁と、前記接続管に取り付けられ、上段に位置する前記熱音響機関側から下段に位置する前記熱音響機関側に向かう流れを許容し且つ逆方向の流れを阻止する接続用逆止弁と、最下段に位置する前記熱音響機関の前記共鳴管に接続された吐出管と、前記吐出管に取り付けられ、最下段に位置する前記熱音響機関側に向かう流れを阻止し且つ逆方向の流れを許容する吐出用逆止弁とを備え、
     前記共鳴管は、下段に位置する前記熱音響機関の前記共鳴管内に生じる音波の共鳴周波数が上段に位置する前記熱音響機関の前記共鳴管内に生じる音波の共鳴周波数より低くなるように設定されることを特徴とする熱音響ポンプ。
    A plurality of thermoacoustic engines in which a heating unit, a stack, and a cooling unit are disposed in a resonance tube filled with a working fluid; a connection tube that connects the resonance tubes of the plurality of thermoacoustic engines in multiple stages; A suction pipe connected to the resonance pipe of the thermoacoustic engine located in the upper stage, and attached to the suction pipe, allowing a flow toward the thermoacoustic engine side located in the uppermost stage and preventing a reverse flow. And a check valve for suction that is attached to the connecting pipe and that allows a flow from the thermoacoustic engine side located in the upper stage toward the thermoacoustic engine side located in the lower stage and prevents a reverse flow A check valve, a discharge pipe connected to the resonance pipe of the thermoacoustic engine located at the lowermost stage, and attached to the discharge pipe to prevent a flow toward the thermoacoustic engine located at the lowermost stage; A discharge check valve that allows reverse flow For example,
    The resonance tube is set so that a resonance frequency of sound waves generated in the resonance tube of the thermoacoustic engine located in the lower stage is lower than a resonance frequency of sound waves generated in the resonance tube of the thermoacoustic engine located in the upper stage. A thermoacoustic pump characterized by that.
  2.  前記共鳴管の管路長を下段側の前記熱音響機関ほど長くすることで、前記共鳴管は、下段に位置する前記熱音響機関の前記共鳴管内に生じる音波の共鳴周波数が上段に位置する前記熱音響機関の前記共鳴管内に生じる音波の共鳴周波数より低くなるように設定される請求項1に記載の熱音響ポンプ。 By making the pipe length of the resonance tube longer as the thermoacoustic engine on the lower stage side, the resonance tube has the resonance frequency of the sound wave generated in the resonance tube of the thermoacoustic engine located in the lower stage on the upper stage. The thermoacoustic pump according to claim 1, wherein the thermoacoustic pump is set to be lower than a resonance frequency of a sound wave generated in the resonance tube of the thermoacoustic engine.
  3.  前記吐出用逆止弁よりも下流の前記吐出管に配設され、前記吐出用逆止弁を通過した作動流体を貯留するタンクをさらに備えた請求項1又は2に記載の熱音響ポンプ。 The thermoacoustic pump according to claim 1 or 2, further comprising a tank that is disposed in the discharge pipe downstream of the discharge check valve and stores the working fluid that has passed through the discharge check valve.
  4.  前記接続管に配設されたサージタンクをさらに備えた請求項1から3のいずれかに記載の熱音響ポンプ。 The thermoacoustic pump according to any one of claims 1 to 3, further comprising a surge tank disposed in the connection pipe.
PCT/JP2013/060192 2012-04-03 2013-04-03 Thermoacoustic pump WO2013151089A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-084783 2012-04-03
JP2012084783A JP6051565B2 (en) 2012-04-03 2012-04-03 Thermoacoustic pump

Publications (1)

Publication Number Publication Date
WO2013151089A1 true WO2013151089A1 (en) 2013-10-10

Family

ID=49300570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060192 WO2013151089A1 (en) 2012-04-03 2013-04-03 Thermoacoustic pump

Country Status (2)

Country Link
JP (1) JP6051565B2 (en)
WO (1) WO2013151089A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016184918A1 (en) * 2015-05-18 2016-11-24 Smith & Nephew Plc Heat-assisted pumping systems for use in negative pressure wound therapy
CN107795346A (en) * 2017-11-29 2018-03-13 中国电力工程顾问集团西北电力设计院有限公司 Dish-style energy storage photo-thermal acoustic power generating system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110234523B (en) * 2017-02-10 2022-10-18 日本碍子株式会社 Cold air and warm air generating system
SE2130031A1 (en) * 2021-02-02 2022-08-03 Mats Anders Olsson A revolving valve for feeding air pulses to a resonance tube for generating low-frequency sound and a method for feeding these pulses at the resonance frequency of the resonance tube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323659A (en) * 1993-05-10 1994-11-25 Kobe Steel Ltd Method and apparatus for generating pressure vibration of gas, and refrigerator with the same apparatus
JP2006002599A (en) * 2004-06-15 2006-01-05 Toyota Motor Corp Thermal acoustic engine
JP2011185456A (en) * 2010-03-04 2011-09-22 Isuzu Motors Ltd Thermoacoustic engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100545449C (en) * 2007-04-25 2009-09-30 中国科学院理化技术研究所 Utilize the thermo-acoustic engine system of temperature-variable heat source
CN101440791B (en) * 2008-12-29 2011-05-04 浙江大学 Multilevel heat acoustic compression system
CN102374688B (en) * 2011-09-06 2013-09-18 浙江大学 Refrigeration system driven by thermoacoustic compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323659A (en) * 1993-05-10 1994-11-25 Kobe Steel Ltd Method and apparatus for generating pressure vibration of gas, and refrigerator with the same apparatus
JP2006002599A (en) * 2004-06-15 2006-01-05 Toyota Motor Corp Thermal acoustic engine
JP2011185456A (en) * 2010-03-04 2011-09-22 Isuzu Motors Ltd Thermoacoustic engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016184918A1 (en) * 2015-05-18 2016-11-24 Smith & Nephew Plc Heat-assisted pumping systems for use in negative pressure wound therapy
US11071653B2 (en) 2015-05-18 2021-07-27 Smith & Nephew Plc Heat-assisted pumping systems for use in negative pressure wound therapy
CN107795346A (en) * 2017-11-29 2018-03-13 中国电力工程顾问集团西北电力设计院有限公司 Dish-style energy storage photo-thermal acoustic power generating system
CN107795346B (en) * 2017-11-29 2023-08-22 中国电力工程顾问集团西北电力设计院有限公司 Disc type energy storage photo-thermal acoustic power generation system

Also Published As

Publication number Publication date
JP2013213459A (en) 2013-10-17
JP6051565B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
JP6051565B2 (en) Thermoacoustic pump
JP2007315680A (en) Thermoacoustic stirling engine
CN107223196B (en) Thermoacoustic heat pump
US20070261416A1 (en) Hybrid cryocooler with multiple passive stages
US8397520B2 (en) Phase shift devices for pulse tube coolers
JP5423531B2 (en) Thermoacoustic engine
CN100371657C (en) Pulse tube refrigerator
US20090084116A1 (en) Gas phase shifting multistage displacer cryocooler
US20090084115A1 (en) Controlled and variable gas phase shifting cryocooler
US20090084114A1 (en) Gas phase shifting inertance gap pulse tube cryocooler
JP2007040647A (en) Pulse type heat storage engine
JP5453950B2 (en) Thermoacoustic engine
JP2013117319A (en) Thermoacoustic pump
JP2007154792A (en) Energy recovery device of internal combustion engine
JP2013117320A (en) Thermoacoustic pump
CN101346593B (en) Acoustic cooling device with coldhead and resonant driver separated
JP2013117318A (en) Thermoacoustic pump
US5488830A (en) Orifice pulse tube with reservoir within compressor
JP2013117171A (en) Thermoacoustic pump
JP5526600B2 (en) Thermoacoustic engine
JP2004294001A (en) Pulse pipe refrigerator
JP2006183566A (en) Piston device, stirling engine, and external combustion engine
JPH07260269A (en) Pulse tube refrigerator
JP5532959B2 (en) Thermoacoustic engine
JP2007192131A (en) Exhaust gas purifying catalyst device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772718

Country of ref document: EP

Kind code of ref document: A1