WO2013149575A1 - 一种防雷电路、开关电源和防雷方法 - Google Patents
一种防雷电路、开关电源和防雷方法 Download PDFInfo
- Publication number
- WO2013149575A1 WO2013149575A1 PCT/CN2013/073586 CN2013073586W WO2013149575A1 WO 2013149575 A1 WO2013149575 A1 WO 2013149575A1 CN 2013073586 W CN2013073586 W CN 2013073586W WO 2013149575 A1 WO2013149575 A1 WO 2013149575A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transformer
- lightning protection
- voltage side
- power supply
- ground
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/10—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
- H02H7/12—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/04—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
- H02H9/06—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/343—Preventing or reducing surge voltages; oscillations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G13/00—Installations of lightning conductors; Fastening thereof to supporting structure
- H02G13/80—Discharge by conduction or dissipation, e.g. rods, arresters, spark gaps
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/20—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/04—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
- H05B41/282—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
- H05B41/285—Arrangements for protecting lamps or circuits against abnormal operating conditions
- H05B41/2851—Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
Definitions
- the present invention relates to the field of electronic technologies, and in particular, to a lightning protection circuit, a switching power supply, and a lightning protection method. Background technique
- the power supply includes a transformer, the high voltage side of the transformer is the input of the power supply, and the low voltage side of the transformer is the output of the power supply.
- the general power supply is protected against the surge voltage by the lightning protection circuit on the high voltage side of the transformer, and the lightning protection circuit is not protected on the low voltage side.
- the terminal device discharges the surge voltage to the ground terminal of the low voltage side of the transformer through its own protection device, thereby suppressing the surge voltage of the terminal device by isolating the device such as a power transformer.
- the power supply can suppress the surge voltage; and when the terminal device side bleeds, the surge voltage energy is higher than that of the power supply isolation device.
- Embodiments of the present invention provide a lightning protection circuit, a switching power supply, and a lightning protection method, which can prevent a high-energy surge voltage on a terminal device side from being discharged to a power output end and damage the power supply.
- a lightning protection circuit is applied to a switching power supply, wherein an output end of the power supply is connected to a terminal device, the power supply includes a transformer, and a ground end of the high voltage side of the transformer is connected to the ground, and a low voltage side of the transformer The ground end is not connected to the ground, the circuit includes a lightning protection tube, and one end of the lightning protection tube is electrically connected to a ground end of the high voltage side of the transformer, and the other end of the lightning protection tube and the low voltage of the transformer The ground terminal of the side is electrically connected, and the ground end of the low voltage side of the transformer is electrically connected to the ground end of the terminal device, the ground end of the high voltage side of the transformer, the lightning protection pipe and the ground wire of the low voltage side of the transformer Forming a loop, wherein when the surge voltage on the terminal device is greater than a discharge voltage of the lightning protection tube, the lightning protection tube is turned on, and the lightning protection tube vents a surge voltage on the terminal device Place it on the ground terminal of the high voltage side
- a switching power supply includes the lightning protection circuit described above.
- a lightning protection method using the above switching power supply wherein a ground terminal of a low voltage side of the transformer receives a surge voltage discharged by the terminal device;
- the lightning protection tube When the surge voltage of the terminal device discharged to the ground end of the low voltage side of the transformer is greater than the discharge voltage of the lightning protection tube, the lightning protection tube is turned on, and passes through the ground end of the high voltage side of the transformer.
- a circuit composed of a grounding terminal on the low voltage side of the lightning protection tube and the transformer discharges the surge voltage to the ground terminal of the high voltage side of the transformer.
- the lightning protection circuit, the switching power supply and the lightning protection method provided by the embodiment of the invention comprise a lightning protection circuit, wherein the lightning protection circuit is applied to a switching power supply, and an output end of the power supply is connected to the terminal device, and the power supply comprises a transformer The ground end of the high voltage side of the transformer is connected to the ground, and the ground end of the low voltage side of the transformer is not connected to the ground.
- the circuit includes a lightning protection tube, and one end of the lightning protection tube and the ground end of the high voltage side of the transformer Electrically connected, the other end of the lightning protection tube is electrically connected to the ground end of the low voltage side of the transformer, and the ground end and end of the low voltage side
- the ground end of the end device is electrically connected, and the ground end of the high voltage side of the transformer, the lightning protection tube and the ground end of the low voltage side of the transformer form a loop.
- the lightning protection tube When the surge voltage is less than the discharge voltage of the lightning protection tube, the lightning protection tube is disconnected, and the surge voltage is discharged to the transformer through the isolation device of the power source such as a transformer, a Y capacitor connected across the high voltage side and the low voltage side of the transformer.
- the ground end of the high voltage side when the surge voltage is greater than the discharge voltage of the lightning protection tube, the lightning protection tube is turned on, so that the ground end of the high voltage side of the transformer, the lightning protection tube and the ground line of the low voltage side of the transformer.
- the loop formed by the end discharges the surge voltage on the terminal device to the ground end of the high voltage side of the transformer, that is, discharges to the ground, thereby preventing the surge voltage from damaging the switching power supply.
- FIG. 1 is a schematic diagram of a lightning protection circuit according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram of a simplified structure of a switching power supply according to an embodiment of the present invention
- FIG. 3 is a schematic flowchart of a lightning protection method according to an embodiment of the present invention.
- the embodiment of the present invention provides a lightning protection circuit 21, as shown in FIG. 1 and FIG. 2, the circuit can be applied to a switching power supply, and the switching power supply utilizes modern power electronic technology to control the time ratio of the switch tube being turned on and off.
- the output end of the power source 20 is connected to the terminal device 30.
- the switching power supply 20 includes a transformer 12.
- the solid triangle symbol shown in FIGS. 1 and 2 indicates that the ground terminal of the high voltage side of the transformer 12 is connected to the ground.
- the transformer 12 The ground end of the low voltage side is not connected to the earth.
- the dotted triangle symbol shown in Figures 1 and 2 indicates that the ground end of the low voltage side of the transformer is floating.
- the circuit 21 includes a lightning protection tube 11 and the lightning protection tube.
- One end of the 11 is electrically connected to the ground end of the high voltage side of the transformer 12, and the other end of the lightning protection tube 1 1 is electrically connected to the ground end of the low voltage side of the transformer 12, and the low voltage side ground end of the transformer is
- the ground terminal of the terminal device 30 is electrically connected, and the circuit composed of the ground terminal of the high voltage side of the transformer 12, the lightning protection pipe 1 1 and the ground terminal of the low voltage side of the transformer 12 is the lightning protection circuit 21.
- a protective device such as a TVS (Transient Voltage Suppressor) on the terminal device 30.
- the ground of the output terminal that is, the ground terminal of the low voltage side of the transformer 12.
- the lightning protection tube 11 may specifically be a gas discharge tube.
- the terminal device 30 When the terminal device 30 is working normally, or when the surge voltage of the terminal device side discharged to the ground end of the low voltage side of the transformer 12 is less than the discharge voltage of the lightning protection tube 11, the The lightning protection tube 11 is in an open state, so that the surge voltage smaller than the discharge voltage of the lightning protection tube 11 can be discharged to the earth through the isolation device of the power source 20, and the isolation device of the power source 20 can be a transformer 12 or a Y capacitor.
- the surge voltage from the terminal device 30 to the ground terminal of the low voltage side of the transformer 12 is greater than the discharge voltage of the lightning protection pipe 11, the lightning protection pipe 11 is turned on, at the ground end of the high voltage side of the transformer 12.
- the lightning protection pipe 1 1 The surge voltage is discharged to the ground terminal of the high voltage side of the transformer 12 in the circuit. Since the ground terminal of the high voltage side of the transformer 12 is connected to the ground, the surge voltage is discharged to the earth, thereby preventing the surge voltage from being discharged to the earth. When there is a surge of high energy on the terminal device 30, the power source is damaged.
- the discharge voltage of the lightning protection tube 11 may be greater than 3000V, or the discharge voltage of the lightning protection tube 11 may be determined according to the isolation voltage of the isolation device of the power supply, such as the isolation voltage of the transformer, the Y capacitor or the optocoupler, preferably The discharge voltage of the lightning protection tube 1 1 may be 4000V.
- the isolation device between the high voltage side and the low voltage side of the transformer of the switching power supply can suppress the surge voltage below 3000 V, so as to effectively prevent the surge voltage of the terminal device 30 side from damaging the power source 20, the lightning protection tube
- the discharge voltage of 11 can be greater than 3000V.
- the isolation voltage of the isolation device between the high voltage side and the low voltage side of the transformer is designed to have a margin, that is, the isolation voltage can be higher than 3000V.
- the discharge voltage of the lightning protection tube 11 can be 4000V. In this way, when the isolation device can also suppress the surge voltage, the lightning protection tube 11 can be prevented from being discharged to the earth through the lightning protection tube 11 after being turned on.
- the circuit may further include a first isolation device, in the loop formed on the ground end of the high voltage side of the transformer 12, the lightning protection tube 11 and the ground end of the low voltage side of the transformer 12, the first The isolation device and the lightning protection tube 11 are connected in parallel.
- the first isolation device may specifically be a Y capacitor.
- the first isolation device can be used to eliminate interference between the ground terminal of the high voltage side of the transformer 12 and the ground terminal of the low voltage side.
- the embodiment of the present invention further provides a switching power supply 20, which includes the lightning protection circuit 21 and the transformer 12 provided by the above embodiments.
- the switching power supply 20 may further include one or more of a lightning protection circuit, a rectifier circuit, a filter circuit, and a voltage stabilization circuit for preventing a surge voltage generated when the utility power is connected to the switching power supply 20 . Since the rectification, filtering, and voltage stabilizing circuits are all prior art in the field of electronic technology, this embodiment does not describe this.
- the first lightning protection circuit is configured to prevent the surge voltage of the utility power from damaging the switching power supply 20, and the first lightning protection circuit may use a lightning protection tube or other isolation device, which is not limited in this embodiment. .
- the embodiment of the present invention further provides a lightning protection method using the above-mentioned switching power supply 20 (shown in FIG. 2). As shown in FIG. 3, the method includes:
- the ground end of the low voltage side of the transformer 12 receives the surge voltage discharged by the terminal device 30.
- the terminal device 30 has a corresponding protection device, such as a TVS tube, through which the terminal device 30 can discharge the surge voltage to the ground end of the output end of the switching power supply 20, that is, the ground end of the low voltage side of the transformer 12. .
- a corresponding protection device such as a TVS tube
- the surge voltage of the terminal device 30 discharged to the ground end of the low voltage side of the transformer 12 is greater than the discharge voltage of the lightning protection tube 11, the lightning protection tube 11 is turned on, and the transformer 12 is turned on.
- a loop composed of the ground terminal of the high voltage side, the lightning protection tube 11 and the ground terminal of the low voltage side of the transformer 12 discharges the surge voltage to the ground terminal of the high voltage side of the transformer 12. Since the ground terminal of the high voltage side of the transformer 12 is connected to the ground, that is, the surge voltage is discharged to the earth, thereby preventing the surge voltage of a large energy on the terminal device 30, the power source 20 is damaged.
- the discharge voltage of the lightning protection tube 11 may be greater than 3000V, or the discharge voltage of the lightning protection tube 11 may be determined according to the isolation voltage of the isolation device of the switching power supply 20, such as the isolation voltage of the transformer, the Y capacitor or the optocoupler.
- the discharge voltage of the lightning protection tube 1 1 can be 4000 V.
- the isolation device between the high-voltage side and the low-voltage side of the transformer of the switching power supply can suppress the surge voltage below 3000 V, so that in order to effectively prevent the surge voltage of the terminal device 30 from damaging the power supply, the lightning protection tube 11
- the discharge voltage can be greater than 3000V can be.
- the isolation voltage of the isolation device between the high voltage side and the low voltage side of the transformer 12 is designed to have a certain margin, that is, the isolation voltage can be higher than 3000V.
- the discharge voltage of the lightning protection tube can be 4000V. This prevents the lightning-proof tube from escaping the surge voltage to the ground while the isolation device can also suppress the surge voltage.
- the lightning protection circuit, the switching power supply and the lightning protection method provided by the embodiment of the invention comprise a lightning protection circuit, wherein the lightning protection circuit is applied to a switching power supply, and an output end of the power supply is connected to the terminal device, and the power supply comprises a transformer The ground end of the high voltage side of the transformer is connected to the ground, and the ground end of the low voltage side of the transformer is not connected to the ground.
- the circuit includes a lightning protection tube, and one end of the lightning protection tube and the ground end of the high voltage side of the transformer Electrically connected, the other end of the lightning protection tube is electrically connected to the ground end of the low voltage side of the transformer, and the ground end of the low voltage side is electrically connected with the ground end of the terminal device, and the high voltage side ground end of the transformer is The detonator and the ground end of the low voltage side of the transformer form a loop.
- the isolation protection device on the terminal device discharges the surge voltage to the ground of the output end of the power supply, that is, the ground terminal of the low voltage side of the transformer.
- the lightning protection tube When the surge voltage is less than the discharge voltage of the lightning protection tube, the lightning protection tube is disconnected, and the surge voltage is discharged to the transformer through the isolation device of the power supply such as a transformer, a Y capacitor connected across the high voltage side and the low voltage side of the transformer.
- the ground end of the high voltage side when the surge voltage is greater than the discharge voltage of the lightning protection tube, the lightning protection tube is turned on, so that the ground line end of the high voltage side of the transformer, the lightning protection tube and the ground line of the low voltage side of the transformer.
- the loop formed by the end discharges the surge voltage on the terminal device to the ground end of the high voltage side of the transformer, that is, discharges to the ground, thereby preventing the surge voltage from damaging the switching power supply.
- the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
- the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
本发明实施例提供了一种防雷电路、开关电源和防雷方法,能够防止终端设备的高能量浪涌电压泄放到电源输出端损坏电源。该防雷电路,应用于开关电源上,电源的输出端与终端设备相连,电源包括变压器,变压器的高压侧地线端与大地相连,变压器的低压侧地线端不与大地相连,该电路包括防雷管,防雷管一端与变压器高压侧的地线端电气相连,另一端与变压器低压侧的地线端电气相连,变压器的低压侧地线端与终端设备的地线端电气相连,变压器高压侧的地线端、防雷管和变压器低压侧的地线端组成回路,当终端设备上的浪涌电压大于防雷管的放电电压时,防雷管导通,将终端设备上的浪涌电压泄放到变压器高压侧的地线端。本发明实施例适用于电子技术领域。
Description
一种防雷电路、 开关电源和防雷方法 本申请要求于 2012年 4月 1日提交中国专利局、申请号为 201210096080.6 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及电子技术领域, 尤其涉及一种防雷电路、开关电源和 防雷方法。 背景技术
电子电路在遭到雷击和在接通、断开电感负载或大型负载时常常 会产生很高的瞬时过电压, 这种瞬时过电压被称为浪涌电压, 是电子 电路的一种干扰。 现有的电源行业的防雷设计都会在市电接入后, 在 变压器的高压侧有防雷的电路设计,用于防止浪涌电压对电源造成损 坏。
通常, 电源包括变压器, 变压器高压侧为电源的输入端, 变压器 低压侧为电源的输出端。
这样,一般电源都通过变压器高压侧的防雷电路来抵抗浪涌电压, 低压侧都没有防雷电路保护。 当终端设备上产生浪涌电压时, 终端设 备通过自身的防护器件将浪涌电压泄放到变压器低压侧的地线端, 从 而通过电源的变压器等隔离器件来抑制终端设备的浪涌电压。 这样当 终端设备侧泄放的浪涌电压能量低于电源的隔离器件的抑制能力时, 电源可以抑制该浪涌电压; 而当终端设备侧泄放的浪涌电压能量高于 电源的隔离器件的抑制能力时, 电源的隔离器件会因无法抵抗该高能 量的浪涌电压而被击穿, 使得电源遭到损坏。 发明内容
本发明的实施例提供一种防雷电路、 开关电源和防雷方法, 能够 防止终端设备侧的高能量浪涌电压泄放到电源输出端后损坏电源。
为达到上述目的, 本发明的实施例釆用如下技术方案:
一种防雷电路,应用于开关电源上, 所述电源的输出端与终端设 备相连, 所述电源包括变压器, 所述变压器的高压侧的地线端与大地 相连, 所述变压器的低压侧的地线端不与大地相连, 所述电路包括防 雷管, 所述防雷管一端与所述变压器的高压侧的地线端电气相连, 所 述防雷管的另一端与所述变压器的低压侧的地线端电气相连,所述变 压器的低压侧的地线端与终端设备的地线端电气相连,所述变压器的 高压侧的地线端、 防雷管和变压器的低压侧的地线端组成回路, 以便 当所述终端设备上的浪涌电压大于所述防雷管的放电电压时,所述防 雷管导通,所述防雷管将所述终端设备上的浪涌电压泄放到所述变压 器的高压侧的地线端。
一种开关电源, 包括上述的防雷电路。
一种应用上述开关电源的防雷方法,所述变压器的低压侧的地线 端接收所述终端设备泄放的浪涌电压;
当所述终端设备泄放到所述变压器的低压侧的地线端的浪涌电 压大于所述防雷管的放电电压, 所述防雷管导通, 通过所述变压器的 高压侧的地线端、防雷管和变压器的低压侧的地线端组成的回路将所 述浪涌电压泄放到所述变压器的高压侧的地线端。
本发明实施例提供的防雷电路、 开关电源和防雷方法, 该防雷电 路包括防雷管, 该防雷电路应用在开关电源上, 该电源的输出端与终 端设备相连, 该电源包括变压器, 该变压器的高压侧的地线端与大地 相连, 该变压器的低压侧的地线端不与大地相连, 该电路包括一防雷 管, 该防雷管一端与变压器的高压侧的地线端电气相连, 该防雷管的 另一端与变压器的低压侧的地线端电气相连, 该低压侧的地线端与终
端设备的地线端电气相连, 所述变压器的高压侧的地线端、 防雷管和 变压器的低压侧的地线端组成回路。这样当终端设备上有浪涌电压时, 终端设备上的隔离防护器件将该浪涌电压泄放到电源的输出端的地线 上, 即变压器的低压侧的地线端。 当浪涌电压小于防雷管的放电电压 时, 防雷管断开, 该浪涌电压通过该电源的隔离器件如变压器、 跨接 在变压器的高压侧和低压侧的 Y电容泄放到变压器的高压侧的地线端; 当该浪涌电压大于防雷管的放电电压时, 该防雷管导通, 这样通过变 压器的高压侧的地线端、 防雷管和变压器的低压侧的地线端组成的回 路, 将该终端设备上的浪涌电压泄放到变压器的高压侧的地线端, 即 泄放到大地上, 从而防止了浪涌电压将开关电源损坏。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例 ,对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1为本发明实施例提供的一种防雷电路示意图;
图 2为本发明实施例提供的一种开关电源结构简化示意图; 图 3为本发明实施例提供的一种防雷方法的流程示意图。 具体实施方式 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的
范围。
实施例一、
本发明实施例提供了一种防雷电路 21 , 如图 1、 2所示, 该电路 可以应用于开关电源上, 开关电源是利用现代电力电子技术, 控制开 关管开通和关断的时间比率, 维持稳定输出电压的一种电源。 该电源 20的输出端与终端设备 30相连, 该开关电源 20包括变压器 12 , 如 图 1和 2所示的实心三角符号表示该变压器 12的高压侧的地线端与 大地相连, 所述变压器 12 的低压侧的地线端不与大地相连, 如图 1 和 2 所示的虚心三角符号表示该变压器的低压侧的地线端为悬空状 态, 该电路 21 包括防雷管 11 , 该防雷管 11一端与所述变压器 12的 高压侧的地线端电气相连, 该防雷管 1 1 的另一端与所述变压器 12 的低压侧的地线端电气相连, 该变压器的低压侧地线端与终端设备 30的地线端电气相连, 所述变压器 12的高压侧的地线端、 防雷管 1 1 和所述变压器 12的低压侧的地线端组成的回路即为防雷电路 21。 这 样当终端设备 30上产生浪涌电压产生时,该终端设备 30上的浪涌电 压通过终端设备 30 上的防护器件, 如 TVS ( Transient Voltage Suppressor, 瞬态电压抑制器) 管泄放到电源 20的输出端的地线上, 即变压器 12的低压侧的地线端。
该防雷管 11具体可以是气体放电管,在终端设备 30正常工作时, 或终端设备侧泄放到变压器 12的低压侧的地线端的浪涌电压小于防 雷管 11的放电电压时, 该防雷管 11处于断开状态, 这样小于防雷管 11的放电电压的浪涌电压可以通过电源 20的隔离器件泄放到大地, 该电源 20的隔离器件可以是变压器 12或 Y电容。 当从终端设备 30 泄放到变压器 12的低压侧的地线端的浪涌电压大于防雷管 11的放电 电压时, 该防雷管 11导通, 在所述变压器 12的高压侧的地线端、 防 雷管 11 和所述变压器的低压侧的地线端形成的回路中, 防雷管 1 1
将该浪涌电压在该回路中泄放到变压器 12的高压侧的地线端, 由于 该变压器 12的高压侧的地线端与大地相连, 即将该浪涌电压泄放到 大地, 从而防止了终端设备 30上有大能量的浪涌电压时, 损坏电源。
进一步的, 该防雷管 11的放电电压具体可以大于 3000V , 或者 该防雷管 11 的放电电压可以根据电源的隔离器件的隔离电压来确 定, 如变压器、 Y电容或光耦的隔离电压, 优选的该防雷管 1 1的放 电电压可以是 4000V。
例如, 一般要求, 开关电源的变压器的高压侧和低压侧之间的隔 离器件可以抑制 3000 V 以下的浪涌电压, 这样为了有效的避免终端 设备 30侧的浪涌电压损坏电源 20 , 防雷管 11 的放电电压可以大于 3000V即可。通常变压器的高压侧和低压侧之间的隔离器件的隔离电 压在设计的时候有一定裕量,即隔离电压可以高于 3000V ,则优选的, 防雷管 11 的放电电压可以为 4000V。 这样可以在隔离器件还可以抑 制浪涌电压的情况下,防止防雷管 11导通后通过防雷管 11将浪涌电 压泄放到大地。
进一步的, 该电路还可以包括第一隔离器件, 在所述变压器 12 的高压侧的地线端、防雷管 11和所述变压器 12的低压侧的地线端组 成的回路中, 该第一隔离器件和防雷管 11并联。
进一步的, 该第一隔离器件具体可以是 Y电容。
该第一隔离器件可以用于消除变压器 12的高压侧的地线端和低 压侧的地线端之间的干扰。
进一步, 如图 2所示, 本发明实施例还提供了一种开关电源 20 , 该开关电源 20 , 包括上述实施例所提供的防雷电路 21和变压器 12。
当然该开关电源 20还可以包括有第一防雷电路, 防止市电接入 到开关电源 20时产生的浪涌电压的防雷电路、 整流电路、 滤波电路 和稳压电路中的一个或多个。
由于整流、 滤波和稳压电路等都是电子技术领域的现有技术, 本 实施例对此不作赘述。
其中,该第一防雷电路用于防止市电接入处的浪涌电压损坏开关 电源 20 , 该第一防雷电路可以釆用防雷管或其它的隔离器件, 本实 施例对此不作限定。
进一步的,本发明实施例还提供了一种应用上述开关电源 20 (参 见图 2所示) 的防雷方法, 如图 3所示, 包括:
5301、 所述变压器 12 的低压侧的地线端接收所述终端设备 30 泄放的、浪涌电压。
所述终端设备 30有相应的防护器件, 如 TVS管, 终端设备 30 可以通过该防护器件将浪涌电压泄放到开关电源 20的输出端的地线 端, 即变压器 12的低压侧的地线端。
5302、 当所述终端设备 30 泄放到所述变压器 12 的低压侧的地 线端的浪涌电压大于所述防雷管 11的放电电压,所述防雷管 11导通, 通过所述变压器 12的高压侧的地线端、 防雷管 1 1和变压器 12的低 压侧的地线端组成的回路将所述浪涌电压泄放到所述变压器 12的高 压侧的地线端。 由于该变压器 12的高压侧的地线端与大地相连, 即 将该浪涌电压泄放到大地, 从而防止了终端设备 30上有大能量的浪 涌电压时, 损坏电源 20。
进一步的, 该防雷管 11的放电电压具体可以大于 3000V , 或者 该防雷管 11的放电电压可以根据开关电源 20的隔离器件的隔离电压 来确定, 如变压器、 Y 电容或光耦的隔离电压, 优选的该防雷管 1 1 的放电电压可以是 4000 V。
例如, 一般要求, 开关电源的变压器的高压侧和低压侧之间的隔 离器件可以抑制 3000 V 以下的浪涌电压, 这样为了有效的避免终端 设备 30 侧的浪涌电压损坏电源, 防雷管 11 的放电电压可以大于
3000V即可。 通常变压器 12的高压侧和低压侧之间的隔离器件的隔 离电压在设计的时候有一定裕量, 即隔离电压可以高于 3000V, 则优 选的, 防雷管的放电电压可以为 4000V。 这样可以在隔离器件还可以 抑制浪涌电压的情况下, 防止防雷管导通将浪涌电压泄放到大地。
本发明实施例提供的防雷电路、 开关电源和防雷方法, 该防雷电 路包括防雷管, 该防雷电路应用在开关电源上, 该电源的输出端与终 端设备相连, 该电源包括变压器, 该变压器的高压侧的地线端与大地 相连, 该变压器的低压侧的地线端不与大地相连, 该电路包括一防雷 管, 该防雷管一端与变压器的高压侧的地线端电气相连, 该防雷管的 另一端与变压器的低压侧的地线端电气相连,该低压侧的地线端与终 端设备的地线端电气相连, 所述变压器的高压侧地线端、 防雷管和变 压器的低压侧的地线端组成回路。 这样当终端设备上有浪涌电压时, 终端设备上的隔离防护器件将该浪涌电压泄放到电源的输出端的地 线上, 即变压器的低压侧的地线端。 当浪涌电压小于防雷管的放电电 压时, 防雷管断开, 该浪涌电压通过该电源的隔离器件如变压器、 跨 接在变压器的高压侧和低压侧的 Y 电容泄放到变压器的高压侧的地 线端; 当该浪涌电压大于防雷管的放电电压时, 该防雷管导通, 这样 通过变压器的高压侧的地线端、防雷管和变压器的低压侧的地线端组 成的回路,将该终端设备上的浪涌电压泄放到变压器的高压侧的地线 端, 即泄放到大地上, 从而防止了浪涌电压将开关电源损坏。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程 序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并
不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范 围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应以所述权利要求的保护范围为准。
Claims
1、 一种防雷电路, 应用于开关电源上, 所述电源的输出端与终 端设备相连, 所述电源包括变压器, 所述变压器的高压侧的地线端与 大地相连,所述变压器的低压侧的地线端不与大地相连,其特征在于, 所述电路包括防雷管,所述防雷管一端与所述变压器的高压侧的地线 端电气相连,所述防雷管的另一端与所述变压器的低压侧的地线端电 气相连, 所述变压器的低压侧的地线端与终端设备的地线端电气相 连, 所述变压器的高压侧的地线端、 防雷管和变压器的低压侧的地线 端组成回路,以便当所述终端设备上的浪涌电压大于所述防雷管的放 电电压时, 所述防雷管导通, 所述防雷管将所述终端设备上的浪涌电 压泄放到所述变压器的高压侧的地线端。
2、 根据权利要求 1所述的电路, 其特征在于, 所述防雷管的放 电电压大于 3000V。
3、 根据权利要求 2所述的电路, 其特征在于, 在所述变压器的 高压侧的地线端、 防雷管和变压器的低压侧的地线端组成的回路中, 还有和所述防雷管并联的隔离器件。
4、 根据权利要求 3所述的电路, 其特征在于, 所述隔离器件为 Y电容。
5、 一种开关电源, 其特征在于, 包括权利要求 1-4任一项所述 的防雷电路。
6、 一种应用权利要求 5所述的开关电源的防雷方法, 其特征在 于, 包括: 所述变压器的低压侧的地线端接收所述终端设备泄放的浪 涌电压;
当所述终端设备泄放到所述变压器的低压侧的地线端的浪涌电压 大于所述防雷管的放电电压, 所述防雷管导通, 通过所述变压器的高 压侧的地线端、 防雷管和变压器的低压侧的地线端组成的回路将所述 浪涌电压泄放到所述变压器的高压侧的地线端。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13773092.5A EP2787589B1 (en) | 2012-04-01 | 2013-04-01 | Lightning protection circuit, switching power supply and lightning protection method |
US14/331,622 US9391445B2 (en) | 2012-04-01 | 2014-07-15 | Surge protection circuit, switching power supply, and surge protection method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210096080.6A CN103368164B (zh) | 2012-04-01 | 2012-04-01 | 一种防雷电路、开关电源和防雷方法 |
CN201210096080.6 | 2012-04-01 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/331,622 Continuation US9391445B2 (en) | 2012-04-01 | 2014-07-15 | Surge protection circuit, switching power supply, and surge protection method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013149575A1 true WO2013149575A1 (zh) | 2013-10-10 |
Family
ID=49299996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/073586 WO2013149575A1 (zh) | 2012-04-01 | 2013-04-01 | 一种防雷电路、开关电源和防雷方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9391445B2 (zh) |
EP (1) | EP2787589B1 (zh) |
CN (1) | CN103368164B (zh) |
WO (1) | WO2013149575A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103515942B (zh) * | 2012-06-28 | 2017-12-22 | 中兴通讯股份有限公司 | 通信接口的防护电路 |
WO2014161009A2 (en) * | 2013-03-01 | 2014-10-02 | Computer Performance, Inc. | Power over ethernet injector |
CN105470936A (zh) * | 2014-08-15 | 2016-04-06 | 中国电信股份有限公司 | 抑制共模浪涌的网络变压器防雷电路 |
CN105591352B (zh) * | 2014-11-03 | 2018-07-03 | 深圳市康普盾电子科技有限公司 | 信号防雷器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1028322A (ja) * | 1996-07-11 | 1998-01-27 | Oodetsukusu:Kk | 地絡保護用保安器 |
CN201278411Y (zh) * | 2008-08-13 | 2009-07-22 | 中兴通讯股份有限公司 | 具有防雷功能的以太网连接器 |
CN201440607U (zh) * | 2009-06-24 | 2010-04-21 | 中国长城计算机深圳股份有限公司 | 一种防雷电路、电源装置及家用电器 |
CN101719655A (zh) * | 2009-12-23 | 2010-06-02 | 浪潮电子信息产业股份有限公司 | 实时状态监控与过压保护控制装置 |
CN202076780U (zh) * | 2011-01-30 | 2011-12-14 | 深圳市航嘉驰源电气股份有限公司 | 自适应防雷防浪涌控制电路 |
CN202111470U (zh) * | 2011-07-01 | 2012-01-11 | 东莞市盈聚电子有限公司 | 一种防雷防浪涌电路 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9611623D0 (en) * | 1996-06-04 | 1996-08-07 | Bowthorpe Ind Ltd | Improvements relating to electrical power distribution |
US5892669A (en) * | 1996-11-29 | 1999-04-06 | Samsung Electronics Co., Ltd. | Electronic products with improved surge protecting circuit |
US7106573B2 (en) * | 2003-06-16 | 2006-09-12 | Adc Dsl Systems, Inc. | Protection circuit for a digital subscriber line device |
CN100466142C (zh) | 2004-09-21 | 2009-03-04 | 张茗 | 无地线防雷特种设备 |
CN2930191Y (zh) * | 2005-08-25 | 2007-08-01 | 陈亮 | 用于灯的具有功率因数调整功能的交流到直流变流器电源 |
US7535685B2 (en) * | 2006-01-31 | 2009-05-19 | Amperion, Inc. | Radio frequency signal coupler, coupling system and method |
CN101719665B (zh) | 2009-12-24 | 2013-02-20 | 迈普通信技术股份有限公司 | 以太网端口防雷保护器与防雷电路 |
CN201589156U (zh) * | 2010-01-15 | 2010-09-22 | 佛山市托维环境亮化工程有限公司 | 带防雷功能的led路灯 |
CN102110980B (zh) | 2011-02-23 | 2014-06-04 | 华为机器有限公司 | 一种防雷保护电路 |
-
2012
- 2012-04-01 CN CN201210096080.6A patent/CN103368164B/zh active Active
-
2013
- 2013-04-01 WO PCT/CN2013/073586 patent/WO2013149575A1/zh active Application Filing
- 2013-04-01 EP EP13773092.5A patent/EP2787589B1/en active Active
-
2014
- 2014-07-15 US US14/331,622 patent/US9391445B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1028322A (ja) * | 1996-07-11 | 1998-01-27 | Oodetsukusu:Kk | 地絡保護用保安器 |
CN201278411Y (zh) * | 2008-08-13 | 2009-07-22 | 中兴通讯股份有限公司 | 具有防雷功能的以太网连接器 |
CN201440607U (zh) * | 2009-06-24 | 2010-04-21 | 中国长城计算机深圳股份有限公司 | 一种防雷电路、电源装置及家用电器 |
CN101719655A (zh) * | 2009-12-23 | 2010-06-02 | 浪潮电子信息产业股份有限公司 | 实时状态监控与过压保护控制装置 |
CN202076780U (zh) * | 2011-01-30 | 2011-12-14 | 深圳市航嘉驰源电气股份有限公司 | 自适应防雷防浪涌控制电路 |
CN202111470U (zh) * | 2011-07-01 | 2012-01-11 | 东莞市盈聚电子有限公司 | 一种防雷防浪涌电路 |
Also Published As
Publication number | Publication date |
---|---|
US9391445B2 (en) | 2016-07-12 |
EP2787589A4 (en) | 2015-01-14 |
CN103368164B (zh) | 2016-08-17 |
EP2787589B1 (en) | 2016-10-26 |
US20140334043A1 (en) | 2014-11-13 |
EP2787589A1 (en) | 2014-10-08 |
CN103368164A (zh) | 2013-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104022489B (zh) | 具有自动重启和软启动功能的电源短路保护系统及方法 | |
WO2013149575A1 (zh) | 一种防雷电路、开关电源和防雷方法 | |
JP2013009475A (ja) | サージ電流抑制回路 | |
JP2015033187A (ja) | 限流リアクトル装置 | |
CN203787956U (zh) | 浪涌电压抑制电路 | |
WO2013063987A1 (zh) | 一种双间隙串联的强制触发型火花间隙 | |
CN103986148A (zh) | 一种rs485通信线路的防雷电路 | |
US7643260B2 (en) | System for EMI filter surge voltage clamping | |
US20160013637A1 (en) | Transient voltage protection for bridge rectifier | |
CN204190381U (zh) | 一种基于电力抄表系统的抗浪涌干扰防护器 | |
CN210351011U (zh) | 一种电源防护电路及电源转换模组 | |
CN103326344B (zh) | 一种过压限制电路 | |
JP2010098872A (ja) | 空気調和機の雷サージ保護回路 | |
US20200106267A1 (en) | Low leakage transient overvoltage protection circuit using a series connected metal oxide varistor (mov) and silicon controlled rectifier (scr) | |
CN102957137B (zh) | 以太网过流过压防护装置 | |
CN209767150U (zh) | 一种防雷和防数据丢失的驱动电路和电源 | |
CN204314464U (zh) | 船用、车用综合北斗卫星导航综合接收机 | |
CN205945040U (zh) | 一种快速自驱动过压保护电路 | |
JP2011199979A (ja) | 電子機器の雷サージ保護回路 | |
CN205160060U (zh) | Led灯用浪涌过电压保护器 | |
CN104283223A (zh) | 一种并联电容器投切开关恢复过电压抑制电路 | |
CN104113054A (zh) | 防止集抄电能表受雷电破坏的组合式防雷设备 | |
CN218633328U (zh) | 一种浪涌抑制电路及装置 | |
US8390976B2 (en) | Lightning proof device for filter | |
CN215266705U (zh) | 一种保护装置、新型保护电路及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13773092 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2013773092 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013773092 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |