WO2013147341A1 - Motor for driving compressor of electric vehicle in which magnet is mounted by means of insertion - Google Patents

Motor for driving compressor of electric vehicle in which magnet is mounted by means of insertion Download PDF

Info

Publication number
WO2013147341A1
WO2013147341A1 PCT/KR2012/002311 KR2012002311W WO2013147341A1 WO 2013147341 A1 WO2013147341 A1 WO 2013147341A1 KR 2012002311 W KR2012002311 W KR 2012002311W WO 2013147341 A1 WO2013147341 A1 WO 2013147341A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
shaft
magnet
bushing
bearing
Prior art date
Application number
PCT/KR2012/002311
Other languages
French (fr)
Korean (ko)
Inventor
이율재
장성태
Original Assignee
신옥테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신옥테크 주식회사 filed Critical 신옥테크 주식회사
Publication of WO2013147341A1 publication Critical patent/WO2013147341A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/187Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to inner stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • H02K21/222Flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1735Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at only one end of the rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a motor, and more particularly, to a BLDC (Brushless DC) motor, characterized in that a plurality of protrusions are formed on the inner surface of the outer rotor, the magnet is inserted into the groove formed between the protrusions.
  • BLDC Battery-Coupled DC
  • a plurality of base forming processes for forming a base of the rotor cover and a cross-sectional heat transfer-shaped support region corresponding to each of the curved surfaces of the magnet and protruding outward in the radial direction are formed in plural.
  • the inner surface of the supporting region is formed with a radius of curvature smaller than that of the curved surface of the magnet.
  • Such a motor has a problem in that a plurality of magnets are disposed on the outer circumferential surface of the rotor core, and a rotor cover including the rotor core and the magnet increases the unit cost and the assembly time increases as the number of parts increases.
  • the present invention is to solve the above-mentioned problems, it is an object to prevent the magnet departure by configuring a structure in which a plurality of projections are formed on the inner surface of the outer rotor and the magnet is inserted into the groove formed between the projections.
  • the motor of the present invention comprises a bushing; A stator installed on an outer surface of the bushing; A rotor rotatably installed relative to the stator; A shaft connected to the rotor and rotatably installed relative to the bushing;
  • the rotor includes an out rotor housing, an out rotor installed in the out rotor housing, and a magnet fixed to the out rotor; A plurality of protrusions are formed on an inner surface of the outer rotor, and the magnet is inserted into the groove formed between the protrusions.
  • the present invention has a merit that the plurality of protrusions are formed on the inner surface of the outer rotor and the magnet is inserted into the groove formed between the protrusions, thereby reducing the unit cost according to the number of parts.
  • the present invention has an advantage that can easily fix the magnet on the inner surface of the outer rotor, and does not damage the magnet during assembly to reduce the defective rate due to damage to the magnet.
  • the present invention can prevent the magnet detachment phenomenon by the insert assembly method, can not only facilitate the workability, but also has the advantage of increased productivity.
  • FIG. 1 is an exploded view illustrating each member constituting a conventional rotor.
  • FIG. 2 is a perspective view of a motor according to a preferred embodiment of the present invention.
  • FIG 3 is a perspective view of a rotor according to a preferred embodiment of the present invention.
  • FIG. 4 is a perspective view of a stator according to a preferred embodiment of the present invention.
  • FIG. 5 is a perspective view of a shaft according to a preferred embodiment of the present invention.
  • FIG. 6 is a perspective view of a bushing according to a preferred embodiment of the present invention.
  • FIG. 7 is a perspective view of a rotor according to another embodiment of the present invention.
  • the motor of the present invention includes a bushing 100, a stator 200 installed on an outer surface of the bushing 100, and a rotor 300 rotatably installed with respect to the stator 200.
  • the shaft 400 is connected to the rotor 300 and rotatably installed with respect to the bushing 100, and includes a first bearing 470 and a second bearing 480 installed on an inner surface of the bushing 100.
  • the rotor 300 of the present invention includes an outer rotor housing 310, an outer rotor 320 installed inside the outer rotor housing 310, and a magnet 330 fixed to an inner circumferential surface of the outer rotor 320.
  • the outer rotor 320 in which the magnet 330 to be described below is inserted into the rotor 300 has a plurality of protrusions 340 formed therein, and the magnet 330 is formed in the groove 350 formed between the protrusions 340. Insert assembly is fixed so that the magnet 330 is not separated.
  • the rotor 300 and the shaft 400 may forcibly press-fit the shaft 400 by forming a null ring 440 at a force indentation method by an interference fit and a coupling portion of the shaft 400.
  • the first bearing 470 and the second bearing 480 have a structure for transmitting power and displacement by rotating the object with a small friction while supporting force and weight.
  • the first bearing 470 and the second bearing 480 are arranged in a structure in which the rotor 300 distributes an unbalanced load generated by the rotation of the shaft 400.
  • the first bearing 470 is disposed inside the outer rotor housing 310, and it is advantageous to install the first bearing 470 as close to the outer rotor housing 310 and the first shaft 410 as possible by the load applied to the outer rotor housing 310. .
  • the second bearing 480 is disposed outside the outer rotor housing 310.
  • the arrangement structure of the first bearing 470 and the second bearing 480 can effectively reduce the vibration transmitted during the rotation.
  • the rotor 300 includes an out rotor housing 310, an out rotor 320, and a magnet 330, and an accommodating space for accommodating the stator 200 to be described below is formed therein.
  • the outer rotor housing 310 is made of a contact structure formed integrally, thereby reducing the weight to reduce the rotational resistance and noise to enable high-speed rotation.
  • the number of parts of the rotor 300 is reduced and the manufacturing cost is reduced by the simplification of the manufacturing process.
  • the outer rotor housing 310 has a shaft through hole 311, a housing 315, a first recess 312, a second recess 313, a third recess 314, a first gap 316, A second interval 317, a third interval 318.
  • the shaft through hole 311 is formed at the center of the rotor 300 to penetrate the shaft 400 to be described below.
  • the housing 315 forms the entire frame of the outer rotor housing 310 and has a hollow cylindrical shape.
  • the housing 315 has a first recess 312 formed at an upper side thereof with respect to the axial direction, so that the second recess 313 and the second recess 314 have a third gap 318 at a lower side thereof. Is placed.
  • first concave portion 312, the second concave portion 313, and the third concave portion 314 may reduce the weight.
  • the surface rim 319 of the housing 315 is also rounded.
  • the first gap 316 is a gap between the first recesses 312 and the second recesses 313, and the first gap 316 is uniformly formed from the center of the outer rotor housing 310 to the outer circumferential surface.
  • the second gap 317 is a gap between the first recesses 312 and the third recesses 314, and the second gap 317 is uniformly formed from the center of the outer rotor housing 310 to the outer circumferential surface.
  • the third gap 318 is formed between the second recess 313 and the third recess 314, and the gap of the third gap 318 is wider from the center of the outer rotor housing 310 toward the outer circumferential surface thereof. It is formed into a wider structure.
  • the housing 315 is made of aluminum.
  • the out rotor 320 is installed on the inner surface of the out rotor housing 310 and allows the out rotor 320 to be fixed by the protrusion 322 included in the out rotor housing 310.
  • the outer rotor 320 generates a discharge between the wire and the workpiece, and uses a wire processing method for processing a workpiece using the discharge spark as a saw blade, and is also made of aluminum.
  • Magnet 330 is fixed to the inner surface of the outer rotor 320, a plurality of spaced at regular intervals are coupled to the outer rotor 320.
  • the number of magnets 330 is twelve.
  • the magnet 330 is preferably nickel plated.
  • the housing 315 forms the entire frame of the outer rotor housing 310 and has a hollow shape.
  • the cross section of the housing 315 is in the form of a letter "C" as a whole.
  • the housing 315 has a shape in which the outer diameter of the outer rotor housing 310 becomes smaller toward the first bearing 470 and the second bearing 480 where the shaft 400 and the rotor 300 are connected. have.
  • the center of gravity can be moved to the left, ie toward the first shaft.
  • the housing 315 can secure a balance while balancing the center of gravity, thereby reducing vibration and reducing noise.
  • the stator 200 is fixed to the inside of the outer rotor housing 310 and is configured to control the operation of the rotor 300.
  • stator 200 is formed to at least partially contact the magnet 330.
  • the stator 200 includes a bushing insertion hole 210, a plurality of teeth 220, a first corner 221, a second corner 222, a third corner 223, a fourth corner 224, and a fifth corner. 225, sixth corner 226, seventh corner 227, and eighth corner 228.
  • stator 200 is formed by stacking a plurality of thin stator 200, it is possible to efficiently perform the action of the electromagnet.
  • the bushing insertion hole 210 accommodates the bushing 100 to be described below.
  • a plurality of teeth 220 are spaced apart along the outer circumferential direction of the bushing insertion hole 210.
  • the number of teeth 220 increases, the number of turns of the coil also increases, but the height and number of the teeth 220 may be any number, but the number of teeth 220 is preferably nine.
  • a coil (not shown) is wound around the tooth 220, and when a current is applied to the stator 200, the rotor 300 is operated by an electromagnetic action between the tooth 220 and the magnet 330. Will rotate.
  • the first edge 221 is formed to be spaced apart from the bushing insertion hole 210 by a predetermined interval, and connects the tooth 220 and another tooth 220.
  • the gap between the second edge 222 and the third edge 223 is made narrower toward the outer circumferential surface in the bushing insertion hole 210.
  • the angle formed by the second edge 222 and the fourth edge 224 may be formed at an obtuse angle, and the angle formed by the third edge 223 and the eighth edge 228 may also be formed at an obtuse angle.
  • the angle formed by the fourth edge 224 and the fifth edge 225 may be formed at an obtuse angle, and the angle formed by the seventh edge 227 and the eighth edge 228 may also be formed at an obtuse angle.
  • the sixth edge 226 is rounded to be accommodated in the outer rotor housing 310, and the sixth edge 226 is formed to at least partially contact the magnet 330.
  • the shaft 400 is inserted into the shaft through hole 311 in the center of the rotor 300 to be rotatably supported in the rotor 300.
  • the shaft 400 includes a first shaft 410, a second shaft 420, and a third shaft 430, and the first shaft 410 is connected to the second shaft 420, and the second shaft 420 is connected to the third shaft 430
  • the diameter of the first shaft 410 has a diameter larger than the diameter of the second shaft 420, and the diameter of the second shaft 420 has a diameter larger than the diameter of the third shaft 430.
  • the first shaft 410 is fixed in the shaft through hole 311 in a cylindrical shape and rotatably supported in the rotor 300.
  • the knurling 440 is formed on the outer circumferential surface of the first shaft 410, and may be fixed to the inner circumferential surface of the shaft through hole 311 by the knurling 440.
  • the shaft 400 is easily pressed into the rotor 300 to prevent the shaft 400 from slipping away from the rotor 300. Can be.
  • the second shaft 420 is accommodated in the bushing 100 in a cylindrical shape.
  • the second shaft 420 is provided with a locking portion 450 on the shaft surface 451 so that the seed ring 490 can be mounted.
  • the locking portion 450 has fixing grooves 452 formed at both ends thereof so as to be fixed to the shaft surface 451 of the second shaft 420 with the seed ring 490.
  • the seal ring 490 is formed to prevent the shaft 400 from being separated.
  • the third shaft 430 is formed in the bushing 100, one side 431 is a straight line, and the other side 432 is formed of a column having a half moon-shaped bottom surface in a circle.
  • the third shaft 430 is connected to a compressor for compressing the CO 2 refrigerant of the electric vehicle to change the torque and speed of the rotor to transfer to the shaft 300.
  • the first bearing 470 and the second bearing 480 are located outside the second shaft 420, and the first bearing 470 and the second bearing 480 are located inside the bushing 100. .
  • a bearing (not shown) may be installed on the first shaft 410.
  • the bushing 100 includes a first bushing 110, a second bushing 120, a third bushing 130, a fastening groove 134, and a hole 150.
  • Bushing 100 has a cylindrical shape with a different diameter, the diameter of the first bushing 110 is a cylindrical shape smaller than the diameter of the second bushing 120, the diameter of the second bushing 120 is a third bushing ( It is formed in a cylindrical shape smaller than the diameter of 130).
  • a hole 150 is formed at the center of the bushing 100.
  • the hole 150 has an “I” shape empty space formed therein so that the second shaft 420 can penetrate.
  • the hole 150 of "I" shape is formed in the cylinder shape from which diameter differs.
  • the first surface 111 is a circumferential side surface portion around the axial direction, and the second shaft 420 and the first bearing 470 are accommodated.
  • the first bearing 470 is pressed into the first surface 111, and the first surface 111 is formed in a direction perpendicular to the second surface 112.
  • the second surface 112 is a surface formed in a direction perpendicular to the axial direction and is formed to hold the first bearing 470, and has a flat surface.
  • the third surface 113 is a surface perpendicular to the second surface 112, and has a cylindrical side surface portion smaller than the first surface 111, and the second shaft 420 is accommodated.
  • the fourth surface 114 is a surface formed in a direction perpendicular to the axial direction and has a flat surface and is formed in a direction perpendicular to the third surface 113.
  • the space formed by the third surface 113 and the fourth surface 114 is thermally expanded when the first bearing 470 rotates, the space is formed as a thermal expansion clearance.
  • the bushing 100 receives the first bearing 470 and the second bearing 480, and the first bearing 470 and the second bearing 480 are located outside the shaft 400 and rotatably supported. .
  • the first bearing 470 includes a first ball 471, a first inner ring 472, and a first outer ring 473.
  • the first ball 471 is positioned between the first inner ring 472 and the first outer ring 473 in the first bearing 470.
  • the first inner ring 472 may be in contact with the outside of the second shaft 420 to fix the second shaft 420.
  • the first outer ring 473 is in contact with the bushing 100, and the outer circumferential surface of the first outer ring 473 is in contact with the second surface 112 of the first surface 111 and the first outer ring 473.
  • a free space is formed between the fifth surface 115 and the second shaft 420 to allow the shaft 400 to rotate inside the bushing 100.
  • the sixth surface 121 is a surface formed in a direction perpendicular to the axial direction, and has a flat surface.
  • the seventh surface 122 is a surface perpendicular to the sixth surface 121, and the space formed by the sixth surface 121 and the seventh surface 122 is thermally expanded when the second bearing 480 rotates. It is formed as free space.
  • the eighth surface 123 is a surface formed in a direction perpendicular to the axial direction and is formed to hold the second bearing 480, and has a flat surface.
  • the ninth surface 124 is a cylindrical lateral surface portion around the axial direction, and the second shaft 420 and the second bearing 480 are accommodated.
  • the second bearing 480 is press-fitted into the ninth surface 111, and the eighth surface 123 is formed in a direction perpendicular to the ninth surface 124.
  • the second bearing 480 includes a second ball 481, a second inner ring 482, and a second outer ring 483.
  • the second ball 481 is positioned between the second inner ring 482 and the second outer ring 483 inside the second bearing 480.
  • the second inner ring 482 may be in contact with the outside of the second shaft 420 to fix the second shaft 420.
  • the second outer ring 483 is in contact with the bushing 100, and the outer circumferential surface of the second outer ring 483 is in contact with the eighth surface 123 of the ninth surface 124 and the second outer ring 483.
  • the seed ring 490 may be installed at the end of the second bearing 480 to fix the second bearing 480.
  • the seal 490 may prevent the shaft 400 from being separated, thereby reducing rotational failure or damage of the motor 300.
  • the first bearing 470 and the second bearing 480 are configured to rotate the shaft 400 while supporting a load applied to the shaft 400.
  • the first bearing 470 and the second bearing 480 are provided with a ball between the shaft and the bearing to reduce friction by rolling contact. It is desirable to construct a ball bearing which helps to reduce the rotation.
  • the first step 125 and the second step 131 are formed on the outer circumferential surface of the bushing 100.
  • the first step 125 is a boundary between the first bushing 110 and the second bushing 120 and is in contact with one side of the out rotor 320 so that the out rotor 320 does not fall out.
  • the first step 125 is formed with a flat surface.
  • the second stepped portion 131 is a boundary portion between the second bushing 120 and the third bushing 130, and has a flat surface.
  • the fastening groove 134 is formed on one surface of the third bushing 130 so that the fastening member can be fastened, and the fastening groove 134 is axially disposed between one surface of the third bushing 130 and the second step 131. Is formed.
  • a shaft through hole 311 is formed at the center of the outer rotor 320, and a plurality of protrusions 340 are formed at the inner edge of the outer rotor 320.
  • a plurality of protrusions 340 are formed on the inner surface of the shaft through-hole 311 at regular intervals, and a plurality of grooves 350 are formed between the protrusions 340.
  • Magnet 330 is composed of one or a plurality of magnets, the magnet 330 is configured to conduct the magnetic flux induced by the current of the winding field of the stator 200.
  • the protrusion 340 has a third side 363, an eighth side 365, a ninth side 366, a fourth side 364, a tenth side 367, an eleventh side 368, and a first side.
  • the groove 350 Surrounded by 361, the groove 350 has a tenth side 367, an eleventh side 368, a first side 361, a second side 362, a third side 363, and an eighth side 365, it is surrounded by a ninth side 366.
  • the number of grooves 350 formed between the protrusions 340 is the same as the number of magnets 330.
  • the magnet 330 is formed by forming protrusions on the protrusion 340 including the eighth side 365, the ninth side 366, the fourth side 364, the tenth side 367, and the eleventh side 368. ) May be mounted on the out rotor 320 to prevent the detachment.
  • the magnet 330 is inserted into the groove 35, so that the rotor 300 can be easily rotated.
  • the magnet 330 is inserted into the groove 350 formed between the projections 340 is composed of a structure that the magnet 330 is the outer rotor 320 Since it does not deviate from the loss of rotational force is prevented to improve the productivity and reliability of the motor.

Abstract

The present invention relates to a motor comprising: a bushing; a stator arranged on an outer surface of the bushing; a rotor arranged so as to be rotatable relative to the stator; and a shaft connected to the rotor and arranged so as to be rotatable relative to the bushing. The rotor includes an outer rotor housing, an outer rotor installed in the outer rotor housing, and a magnet fixed to the outer rotor. The outer rotor has an inner surface with a plurality of protrusions, and the magnet is mounted by inserting same into the groove formed between the protrusions. According to the above-described configuration of the motor, the plurality of protrusions are formed on the inner surface of the outer rotor, and the magnet is mounted by inserting same into the groove formed between the protrusions, thus promoting a reduction in the number of parts and a reduction in cost, preventing the magnet from escaping to achieve work convenience, improving productivity and achieving efficient use of the motor.

Description

마그넷이 인서트 조립되는 전기자동차의 압축기 구동용 모터Compressor drive motor of electric vehicle with magnet inserted
본 발명은 모터에 관한 것으로, 보다 구체적으로는 아웃 로터의 내면에 복수개의 돌기가 형성되고 돌기 사이에 형성된 홈에 마그넷이 인서트 조립되는 것을 특징으로 하는 BLDC (Brushless DC) 모터에 관한 것이다.The present invention relates to a motor, and more particularly, to a BLDC (Brushless DC) motor, characterized in that a plurality of protrusions are formed on the inner surface of the outer rotor, the magnet is inserted into the groove formed between the protrusions.
종래의 로터의 제조 방법에 관한 기술은 일본공개공보 2011-182602호에 제시되어 있다. A technique related to a conventional rotor manufacturing method is disclosed in Japanese Laid-Open Patent Publication No. 2011-182602.
로터 커버(rotor cover)의 베이스(bass)를 형성하는 베이스(bass) 형성 공정과, 마그넷(magnet)의 곡돌면의 각각에 대응하고 지름 방향 외측에 돌출하는 단면 열반달 모양의 지지 영역을 복수 형성하는 지지 영역 형성 공정과, 로터 코어(rotor core)의 외주면에 복수의 마그넷(magnet)을 배치하고, 이것들을 베이스(bass)에 장착하는 장착 공정과, 베이스(bass)에 있어서 개구의 주위의 부분을 변형시키고 지름 방향 내측에 내다는 차양부를 형성하는 차양부 형성 공정을 포함한다. 지지 영역 형성 공정에 있어서, 지지 영역의 내면이 마그넷(magnet)의 곡돌면 보다도 작은 곡율 반경으로 형성되는 것을 특징으로 한다.A plurality of base forming processes for forming a base of the rotor cover and a cross-sectional heat transfer-shaped support region corresponding to each of the curved surfaces of the magnet and protruding outward in the radial direction are formed in plural. A support region forming step to be arranged, a mounting step of arranging a plurality of magnets on the outer circumferential surface of the rotor core and mounting them on a base, and a portion around the opening in the base And a shade portion forming step of forming a shade portion that deforms and extends inside the radial direction. In the supporting region forming step, the inner surface of the supporting region is formed with a radius of curvature smaller than that of the curved surface of the magnet.
이러한 모터는 로터 코어의 외주면에 복수의 마그넷을 배치하고, 로터 코어 및 마그넷을 포함하는 로터 커버를 구비함으로써 부품수 증가에 따른 단가 상승 및 조립 시간이 증가하는 문제점이 있다.Such a motor has a problem in that a plurality of magnets are disposed on the outer circumferential surface of the rotor core, and a rotor cover including the rotor core and the magnet increases the unit cost and the assembly time increases as the number of parts increases.
또한, 종래 마그넷 본드 조립 방식은 고속 회전 및 고온 고압에 의해 마그넷 이탈 현상이 발생된다.In addition, in the conventional magnet bond assembly method, a magnet separation phenomenon occurs due to high speed rotation and high temperature and high pressure.
또한, 공정에 불편함이 초래될 뿐만 아니라 생산성이 크게 저하되는 문제점이 있다.In addition, there is a problem that not only causes inconvenience to the process but also greatly reduces productivity.
본 발명은 전술한 문제점을 해결하기 위한 것으로, 아웃 로터의 내면에 복수개의 돌기가 형성되고 돌기 사이에 형성된 홈에 마그넷이 인서트 조립되는 구조를 구성함으로써 마그넷 이탈을 방지할 수 있는데 그 목적이 있다.The present invention is to solve the above-mentioned problems, it is an object to prevent the magnet departure by configuring a structure in which a plurality of projections are formed on the inner surface of the outer rotor and the magnet is inserted into the groove formed between the projections.
본 발명의 모터는 부싱; 상기 부싱의 외면에 설치되는 스테이터; 상기 스테이터에 대하여 회전 가능하게 설치되는 로터; 상기 로터에 연결되어 상기 부싱에 대하여 회전 가능하게 설치되는 샤프트를 포함하되; 상기 로터는 아웃 로터 하우징과, 상기 아웃 로터 하우징에 설치되는 아웃 로터와, 상기 아웃 로터에 고정되는 마그넷을 포함하되; 상기 아웃 로터의 내면에는 복수개의 돌기가 형성되고, 상기 돌기 사이에 형성된 홈에 상기 마그넷이 인서트 조립되는 것을 특징으로 한다.The motor of the present invention comprises a bushing; A stator installed on an outer surface of the bushing; A rotor rotatably installed relative to the stator; A shaft connected to the rotor and rotatably installed relative to the bushing; The rotor includes an out rotor housing, an out rotor installed in the out rotor housing, and a magnet fixed to the out rotor; A plurality of protrusions are formed on an inner surface of the outer rotor, and the magnet is inserted into the groove formed between the protrusions.
본 발명은 아웃 로터의 내면에 복수개의 돌기가 형성되고 돌기 사이에 형성된 홈에 마그넷이 인서트 조립되는 구조로 구성됨으로써, 부품수 감소에 따른 단가절감을 도모할 수 있는 장점이 있다.The present invention has a merit that the plurality of protrusions are formed on the inner surface of the outer rotor and the magnet is inserted into the groove formed between the protrusions, thereby reducing the unit cost according to the number of parts.
또한 본 발명은 아웃 로터의 내면에 마그넷을 용이하게 고정시키며, 조립시 마그넷에 손상을 가하지 않게 되어 마그넷의 손상으로 인한 불량률을 감소시킬 수 있는 장점이 있다.In addition, the present invention has an advantage that can easily fix the magnet on the inner surface of the outer rotor, and does not damage the magnet during assembly to reduce the defective rate due to damage to the magnet.
또한 본 발명은 인서트 조립 방식에 의해 마그넷 이탈 현상을 방지할 수 있으며, 작업성을 편리하게 할 수 있을 뿐만 아니라 생산성이 증대되는 장점이 있다.In addition, the present invention can prevent the magnet detachment phenomenon by the insert assembly method, can not only facilitate the workability, but also has the advantage of increased productivity.
도 1은 종래 로터를 구성하는 각 부재를 나타내는 분해 조립도이다.1 is an exploded view illustrating each member constituting a conventional rotor.
도 2는 본 발명의 바람직한 실시예에 따른 모터의 사시도이다.2 is a perspective view of a motor according to a preferred embodiment of the present invention.
도 3는 본 발명의 바람직한 실시예에 따른 로터의 사시도이다.3 is a perspective view of a rotor according to a preferred embodiment of the present invention.
도 4는 본 발명의 바람직한 실시예에 따른 스테이터의 사시도이다.4 is a perspective view of a stator according to a preferred embodiment of the present invention.
도 5는 본 발명의 바람직한 실시예에 따른 샤프트의 사시도이다.5 is a perspective view of a shaft according to a preferred embodiment of the present invention.
도 6은 본 발명의 바람직한 실시예에 따른 부싱의 사시도이다.6 is a perspective view of a bushing according to a preferred embodiment of the present invention.
도 7은 본 발명의 또 다른 실시예에 따른 로터의 사시도이다.7 is a perspective view of a rotor according to another embodiment of the present invention.
이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that it can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
[모터의 구성][Configuration of Motor]
도 2 내지 도 7에 도시된 바와 같이, 본 발명의 모터는 부싱(100), 부싱(100)의 외면에 설치되는 스테이터(200), 스테이터(200)에 대하여 회전 가능하게 설치되는 로터(300), 로터(300)에 연결되어 부싱(100)에 대하여 회전 가능하게 설치되는 샤프트(400), 부싱(100)의 내면에 설치되는 제1 베어링(470), 제2 베어링(480)을 포함한다.As shown in FIGS. 2 to 7, the motor of the present invention includes a bushing 100, a stator 200 installed on an outer surface of the bushing 100, and a rotor 300 rotatably installed with respect to the stator 200. The shaft 400 is connected to the rotor 300 and rotatably installed with respect to the bushing 100, and includes a first bearing 470 and a second bearing 480 installed on an inner surface of the bushing 100.
본 발명의 로터(300)는 아웃 로터 하우징(310), 아웃 로터 하우징(310) 내부에 설치되는 아웃 로터(320), 아웃 로터(320) 내주면에 고정되는 마그넷(330)을 포함한다.The rotor 300 of the present invention includes an outer rotor housing 310, an outer rotor 320 installed inside the outer rotor housing 310, and a magnet 330 fixed to an inner circumferential surface of the outer rotor 320.
또한 하기에 설명될 마그넷(330)이 로터(300)에 인서트되는 아웃 로터(320)는 복수개의 돌기(340)가 형성되고, 돌기(340) 사이에 형성된 홈(350)에 마그넷(330)이 인서트 조립되어 마그넷(330)이 이탈되지 않도록 고정해준다. In addition, the outer rotor 320 in which the magnet 330 to be described below is inserted into the rotor 300 has a plurality of protrusions 340 formed therein, and the magnet 330 is formed in the groove 350 formed between the protrusions 340. Insert assembly is fixed so that the magnet 330 is not separated.
로터(300)와 샤프트(400)는 억지 끼워 맞춤에 의한 강제 압입 방식 및 샤프트(400) 결합부에 널링(440)을 형성하여 샤프트(400)를 강제 압입 시킬 수 있다.The rotor 300 and the shaft 400 may forcibly press-fit the shaft 400 by forming a null ring 440 at a force indentation method by an interference fit and a coupling portion of the shaft 400.
제1 베어링(470) 및 제2 베어링(480)은 힘과 무게를 지지하면서 물체를 적은 마찰력으로 회전 운동을 시켜 동력과 변위를 전달하기 위한 구조로 이루어진다.The first bearing 470 and the second bearing 480 have a structure for transmitting power and displacement by rotating the object with a small friction while supporting force and weight.
제1 베어링(470) 및 제2 베어링(480)은 로터(300)가 샤프트(400)의 회전에 의해 발생하는 불평형 하중을 분산시키기 위한 구조로 배치된다.The first bearing 470 and the second bearing 480 are arranged in a structure in which the rotor 300 distributes an unbalanced load generated by the rotation of the shaft 400.
제1 베어링(470)은 아웃 로터 하우징(310) 내부에 배치되며, 아웃 로터 하우징(310)에 받는 하중에 의해 최대한 아웃 로터 하우징(310) 및 제1 샤프트(410)와 가깝게 설치하는 것이 유리하다.The first bearing 470 is disposed inside the outer rotor housing 310, and it is advantageous to install the first bearing 470 as close to the outer rotor housing 310 and the first shaft 410 as possible by the load applied to the outer rotor housing 310. .
또한, 제2 베어링(480)은 아웃 로터 하우징(310) 외부에 배치된다. In addition, the second bearing 480 is disposed outside the outer rotor housing 310.
이러한 제1 베어링(470) 및 제2 베어링(480)의 배치 구조는 회전시에 전달되는 진동을 효율적으로 저감시킬 수 있다.The arrangement structure of the first bearing 470 and the second bearing 480 can effectively reduce the vibration transmitted during the rotation.
[로터의 제1 실시예] [First Embodiment of Rotor]
로터(300)는 아웃 로터 하우징(310), 아웃 로터(320) 및 마그넷(330)을 포함하며, 내부에 하기에 설명될 스테이터(200)를 수용할 수 있는 수용 공간이 형성된다.The rotor 300 includes an out rotor housing 310, an out rotor 320, and a magnet 330, and an accommodating space for accommodating the stator 200 to be described below is formed therein.
아웃 로터 하우징(310)은 일체로 형성되는 컴택트 구조로 이루어짐으로써, 무게를 감소시켜 회전저항 및 소음을 감소시켜 고속회전을 가능하게 한다.The outer rotor housing 310 is made of a contact structure formed integrally, thereby reducing the weight to reduce the rotational resistance and noise to enable high-speed rotation.
또한 로터(300)의 부품수가 절감됨과 아울러 제조공정의 단순화로 제조원가가 절감된다.In addition, the number of parts of the rotor 300 is reduced and the manufacturing cost is reduced by the simplification of the manufacturing process.
아웃 로터 하우징(310)은 샤프트 관통홀(311), 하우징(315), 제1 오목부(312), 제2 오목부(313), 제3 오목부(314), 제1 간격(316), 제2 간격(317), 제3 간격(318)을 포함한다.The outer rotor housing 310 has a shaft through hole 311, a housing 315, a first recess 312, a second recess 313, a third recess 314, a first gap 316, A second interval 317, a third interval 318.
샤프트 관통홀(311)은 하기에 설명될 샤프트(400)를 관통할 수 있도록 로터(300)의 중앙에 형성되어 있다.The shaft through hole 311 is formed at the center of the rotor 300 to penetrate the shaft 400 to be described below.
하우징(315)은 아웃 로터 하우징(310)의 전체 틀을 이루고 있으며, 속이 빈 원기둥 형상으로 되어 있다.The housing 315 forms the entire frame of the outer rotor housing 310 and has a hollow cylindrical shape.
하우징(315)은 축방향을 기준으로 상측에는 제1 오목부(312)가 형성되어 있으므로, 하측에는 제2 오목부(313) 및 제2 오목부(314)가 제3 간격(318)을 두고 배치된다.The housing 315 has a first recess 312 formed at an upper side thereof with respect to the axial direction, so that the second recess 313 and the second recess 314 have a third gap 318 at a lower side thereof. Is placed.
제1 오목부(312)와 제2 오목부(313) 및 제3 오목부(314)의 크기와 구조가 다르게 형성되는 것은 무게를 경량화시킬 수 있다.Different sizes and structures of the first concave portion 312, the second concave portion 313, and the third concave portion 314 may reduce the weight.
또한 하우징(315)의 표면 테두리(319)는 둥글게 라운드 처리된다.The surface rim 319 of the housing 315 is also rounded.
제1 간격(316)은 제1 오목부(312)와 제2 오목부(313) 사이의 간격이며, 제1 간격(316)은 아웃 로터 하우징(310)의 중심에서 외주면까지 일정하게 형성된다.The first gap 316 is a gap between the first recesses 312 and the second recesses 313, and the first gap 316 is uniformly formed from the center of the outer rotor housing 310 to the outer circumferential surface.
제2 간격(317)은 제1 오목부(312)과 제3 오목부(314) 사이의 간격이며, 제2 간격(317)은 아웃 로터 하우징(310)의 중심에서 외주면까지 일정하게 형성된다.The second gap 317 is a gap between the first recesses 312 and the third recesses 314, and the second gap 317 is uniformly formed from the center of the outer rotor housing 310 to the outer circumferential surface.
제3 간격(318)은 제2 오목부(313)과 제3 오목부(314) 사이에 형성되며, 제3 간격(318)의 간격은 아웃 로터 하우징(310)의 중심에서 외주면으로 갈수록 폭이 넓어진 구조로 형성된다.The third gap 318 is formed between the second recess 313 and the third recess 314, and the gap of the third gap 318 is wider from the center of the outer rotor housing 310 toward the outer circumferential surface thereof. It is formed into a wider structure.
하우징(315)은 알루미늄 재질로 되어있다.The housing 315 is made of aluminum.
아웃 로터(320)는 아웃 로터 하우징(310)의 내면에 설치되며, 아웃 로터 하우징(310)에 포함되는 돌출부(322)에 의해 아웃 로터(320)가 고정되도록 한다.The out rotor 320 is installed on the inner surface of the out rotor housing 310 and allows the out rotor 320 to be fixed by the protrusion 322 included in the out rotor housing 310.
아웃 로터(320)는 와이어와 가공물 사이에 방전을 일으켜 방전스파크를 톱날처럼 사용하여 공작물을 가공하는 와이어 가공법 등이 이용되며, 또한 알루미늄 소재로 되어 있다.The outer rotor 320 generates a discharge between the wire and the workpiece, and uses a wire processing method for processing a workpiece using the discharge spark as a saw blade, and is also made of aluminum.
마그넷(330)은 아웃 로터(320)의 내면에 고정되며, 일정한 간격을 두고 다수개 배치되어 아웃 로터(320)와 결합된다. Magnet 330 is fixed to the inner surface of the outer rotor 320, a plurality of spaced at regular intervals are coupled to the outer rotor 320.
마그넷(330)의 개수는 12개이다.The number of magnets 330 is twelve.
또한 마그넷(330)은 니켈도금 하는 것이 바람직하다.In addition, the magnet 330 is preferably nickel plated.
[로터의 제2 실시예(도 7)][Second embodiment of the rotor (Fig. 7)]
하우징(315)은 아웃 로터 하우징(310)의 전체 틀을 이루고 있으며, 속이 빈 형상으로 되어 있다.The housing 315 forms the entire frame of the outer rotor housing 310 and has a hollow shape.
즉 하우징(315)의 단면은 전체적으로 "ㄷ"자 형태로 되어 있다.That is, the cross section of the housing 315 is in the form of a letter "C" as a whole.
또한, 하우징(315)은 샤프트(400)와 로터(300)가 연결되는 곳에서 제1 베어링(470) 및 제2 베어링(480) 쪽으로 갈수록 아웃 로터 하우징(310)의 외경이 작아지는 형상으로 되어 있다.In addition, the housing 315 has a shape in which the outer diameter of the outer rotor housing 310 becomes smaller toward the first bearing 470 and the second bearing 480 where the shaft 400 and the rotor 300 are connected. have.
하우징(315)의 면적을 다르게 하여, 무게중심을 좌측 즉 제1 샤프트 쪽으로 이동시킬 수 있다.By varying the area of the housing 315, the center of gravity can be moved to the left, ie toward the first shaft.
또한 하우징(315)은 무게중심의 균형을 잡으면서 밸런스 확보가 가능하여 진동을 저감시킬 수 있음과 함께 소음을 저감시킬 수 있다.In addition, the housing 315 can secure a balance while balancing the center of gravity, thereby reducing vibration and reducing noise.
[스테이터의 구성][Configuration of Stator]
스테이터(200)는 아웃 로터 하우징(310)의 내부에 고정되며, 로터(300)의 동작을 제어하도록 구성된다.The stator 200 is fixed to the inside of the outer rotor housing 310 and is configured to control the operation of the rotor 300.
또한, 스테이터(200)는 마그넷(330)을 적어도 부분적으로 접할 수 있도록 형성된다.In addition, the stator 200 is formed to at least partially contact the magnet 330.
스테이터(200)는 부싱 삽입홀(210), 복수 개의 티스(220), 제1 모서리(221), 제2 모서리(222), 제3 모서리(223), 제4 모서리(224), 제5 모서리(225), 제6 모서리(226), 제7 모서리(227), 제8 모서리(228)을 포함한다. The stator 200 includes a bushing insertion hole 210, a plurality of teeth 220, a first corner 221, a second corner 222, a third corner 223, a fourth corner 224, and a fifth corner. 225, sixth corner 226, seventh corner 227, and eighth corner 228.
또한, 스테이터(200)는 여러 장의 얇은 스테이터(200)를 적층하여 형성됨으로써, 전자석의 작용을 효율적으로 수행할 수 있다.In addition, the stator 200 is formed by stacking a plurality of thin stator 200, it is possible to efficiently perform the action of the electromagnet.
부싱 삽입홀(210)은 하기에 설명될 부싱(100)을 수용한다.The bushing insertion hole 210 accommodates the bushing 100 to be described below.
티스(220)는 부싱 삽입홀(210)을 중심으로 외부의 둘레 방향을 따라 이격되어 복수 개 배치된다.A plurality of teeth 220 are spaced apart along the outer circumferential direction of the bushing insertion hole 210.
티스(220)가 많아질수록 코일의 권선수도 많아지므로, 티스(220)의 높이와 개수는 무방하나, 티스(220)의 개수는 9개가 바람직하다.As the number of teeth 220 increases, the number of turns of the coil also increases, but the height and number of the teeth 220 may be any number, but the number of teeth 220 is preferably nine.
티스(220)에는 코일(미도시)이 권선되며, 코일(미도시)에 전류가 스테이터(200)에 인가되면, 티스(220)와 마그넷(330) 간의 전자기적인 작용을 통해 로터(300)는 회전하게 된다.A coil (not shown) is wound around the tooth 220, and when a current is applied to the stator 200, the rotor 300 is operated by an electromagnetic action between the tooth 220 and the magnet 330. Will rotate.
제1 모서리(221)는 부싱 삽입홀(210)과 소정간격 이격되게 형성되며, 티스(220)와 다른 티스(220)를 연결한다.The first edge 221 is formed to be spaced apart from the bushing insertion hole 210 by a predetermined interval, and connects the tooth 220 and another tooth 220.
제2 모서리(222) 및 제3 모서리(223) 사이의 간격은 부싱 삽입홀(210)에서 외주면으로 갈수록 좁아진 구조로 이루어진다. The gap between the second edge 222 and the third edge 223 is made narrower toward the outer circumferential surface in the bushing insertion hole 210.
제2 모서리(222)와 제4 모서리(224)가 이루는 각도는 둔각으로 이루어지며, 제3 모서리(223)와 제8 모서리(228)가 이루는 각도 또한 둔각으로 이루어질 수 있다.The angle formed by the second edge 222 and the fourth edge 224 may be formed at an obtuse angle, and the angle formed by the third edge 223 and the eighth edge 228 may also be formed at an obtuse angle.
제4 모서리(224)와 제5 모서리(225)가 이루는 각도는 둔각으로 이루어지며, 제7 모서리(227)와 제8 모서리(228)가 이루는 각도 또한 둔각으로 이루어질 수 있다.The angle formed by the fourth edge 224 and the fifth edge 225 may be formed at an obtuse angle, and the angle formed by the seventh edge 227 and the eighth edge 228 may also be formed at an obtuse angle.
제6 모서리(226)는 아웃 로터 하우징(310)의 내부에 수용될 수 있도록 라운드 형태로, 제6 모서리(226)는 마그넷(330)을 적어도 부분적으로 접할 수 있도록 형성된다.The sixth edge 226 is rounded to be accommodated in the outer rotor housing 310, and the sixth edge 226 is formed to at least partially contact the magnet 330.
[샤프트의 구성][Configuration of Shaft]
샤프트(400)는 로터(300) 중앙의 샤프트 관통홀(311)에 삽입되어 로터(300) 내부에서 회전가능하게 지지된다.The shaft 400 is inserted into the shaft through hole 311 in the center of the rotor 300 to be rotatably supported in the rotor 300.
샤프트(400)는 제1 샤프트(410), 제2 샤프트(420), 제3 샤프트(430)를 포함하며, 제1 샤프트(410)는 제2 샤프트(420)와 연결되어 있으며, 제2 샤프트(420)는 제3 샤프트(430)와 연결되어 있다The shaft 400 includes a first shaft 410, a second shaft 420, and a third shaft 430, and the first shaft 410 is connected to the second shaft 420, and the second shaft 420 is connected to the third shaft 430
제1 샤프트(410)의 직경은 제2 샤프트(420)의 직경보다 큰 직경을 가지며, 제2 샤프트(420)의 직경은 제3 샤프트(430)의 직경보다 큰 직경을 가진다. The diameter of the first shaft 410 has a diameter larger than the diameter of the second shaft 420, and the diameter of the second shaft 420 has a diameter larger than the diameter of the third shaft 430.
제1 샤프트(410)는 원기둥형상으로 샤프트 관통홀(311) 내부에 고정되며 로터(300) 내부에서 회전 가능하게 지지된다. The first shaft 410 is fixed in the shaft through hole 311 in a cylindrical shape and rotatably supported in the rotor 300.
널링(440)은 제1 샤프트(410)의 외주면에 형성되며, 널링(440)에 의해 샤프트 관통홀(311)의 내주면에 고정될 수 있다.The knurling 440 is formed on the outer circumferential surface of the first shaft 410, and may be fixed to the inner circumferential surface of the shaft through hole 311 by the knurling 440.
샤프트(300)가 로터(300)에 축방향으로 압입하게 되면, 널링(440)에 의해 로터(300)로부터 샤프트(300)에 가해지는 압착력은 증가하게 된다. When the shaft 300 is axially pressed into the rotor 300, the pressing force applied from the rotor 300 to the shaft 300 by the knurling 440 increases.
또한 널링(440)이 축방향의 직선 형상 패턴으로 일정간격 배치되므로, 샤프트(400)가 용이하게 로터(300)에 압입되어 샤프트(400)가 로터(300) 내부에서 미끄러져 이탈되는 것을 방지할 수 있다.In addition, since the knurling 440 is disposed at regular intervals in an axial linear pattern, the shaft 400 is easily pressed into the rotor 300 to prevent the shaft 400 from slipping away from the rotor 300. Can be.
제2 샤프트(420)는 원기둥 형상으로 부싱(100) 내부에 수용된다.The second shaft 420 is accommodated in the bushing 100 in a cylindrical shape.
또한, 제2 샤프트(420)에는 씨링(490)이 장착될 수 있도록 샤프트면(451)에 걸림부(450)가 형성되어 있다.In addition, the second shaft 420 is provided with a locking portion 450 on the shaft surface 451 so that the seed ring 490 can be mounted.
걸림부(450)는 제2 샤프트(420)의 샤프트면(451)에 씨링(490)으로 고정될 수 있도록 양단으로 고정홈(452)이 형성된다.The locking portion 450 has fixing grooves 452 formed at both ends thereof so as to be fixed to the shaft surface 451 of the second shaft 420 with the seed ring 490.
씨링(490)은 샤프트(400)가 이탈되는 것을 방지하도록 형성된다.The seal ring 490 is formed to prevent the shaft 400 from being separated.
제3 샤프트(430)는 부싱(100) 내부에 형성되며, 일측(431)은 직선으로 되어있으며, 타측(432)은 원으로 된 반달형상의 밑면을 가진 기둥으로 형성된다.The third shaft 430 is formed in the bushing 100, one side 431 is a straight line, and the other side 432 is formed of a column having a half moon-shaped bottom surface in a circle.
제3 샤프트(430)는 로터의 토크 및 속도를 변경하여 샤프트(300)로 전달하도록 하는 전기 자동차의 CO2 냉매를 압축하기 위한 압축기에 연결된다.The third shaft 430 is connected to a compressor for compressing the CO 2 refrigerant of the electric vehicle to change the torque and speed of the rotor to transfer to the shaft 300.
제1 베어링(470) 및 제2 베어링(480)은 제2 샤프트(420)의 외부에 위치되며, 또한 제1 베어링(470) 및 제2 베어링(480)은 부싱(100)의 내부에 위치된다. The first bearing 470 and the second bearing 480 are located outside the second shaft 420, and the first bearing 470 and the second bearing 480 are located inside the bushing 100. .
샤프트(400)의 회전시 진동을 최소화하기 위하여 제1 샤프트(410)에는 도시하지 않은 베어링이 설치될 수 있다.In order to minimize vibration during rotation of the shaft 400, a bearing (not shown) may be installed on the first shaft 410.
[부싱의 구성][Configuration of Bushing]
부싱(100)은 제1 부싱(110), 제2 부싱(120), 제3 부싱(130), 체결홈(134), 홀(150)이 포함된다.The bushing 100 includes a first bushing 110, a second bushing 120, a third bushing 130, a fastening groove 134, and a hole 150.
부싱(100)은 직경이 다른 원기둥 형상으로 되어 있으며, 제1 부싱(110)의 직경은 제2 부싱(120)의 직경보다 작은 원기둥 형상이며, 제2 부싱(120)의 직경은 제3 부싱(130)의 직경보다 작은 원기둥 형상으로 형성되어 있다. Bushing 100 has a cylindrical shape with a different diameter, the diameter of the first bushing 110 is a cylindrical shape smaller than the diameter of the second bushing 120, the diameter of the second bushing 120 is a third bushing ( It is formed in a cylindrical shape smaller than the diameter of 130).
부싱(100)의 중앙에는 홀(150)이 형성되어 있으며. 홀(150)은 제2 샤프트(420)가 관통할 수 있도록 내부에 "I"형상의 빈 공간이 형성되어 있다.A hole 150 is formed at the center of the bushing 100. The hole 150 has an “I” shape empty space formed therein so that the second shaft 420 can penetrate.
"I"형상의 홀(150)은 직경이 다른 원기둥 형상으로 형성되어 있다.The hole 150 of "I" shape is formed in the cylinder shape from which diameter differs.
제1 면(111)은 축방향을 중심으로 원기둥 형상의 옆면둘레부분이며, 제2 샤프트(420) 및 제1 베어링(470)이 수용된다.The first surface 111 is a circumferential side surface portion around the axial direction, and the second shaft 420 and the first bearing 470 are accommodated.
제1 베어링(470)은 제1 면(111)에 압입되며, 제1 면(111)은 제2 면(112)에 수직 방향으로 형성되어 있다.The first bearing 470 is pressed into the first surface 111, and the first surface 111 is formed in a direction perpendicular to the second surface 112.
제2 면(112)은 축방향에 수직인 방향으로 형성된 면으로 제1 베어링(470)을 보유 지지하기 위하여 형성되며, 표면이 평탄한 면으로 이루어져 있다.The second surface 112 is a surface formed in a direction perpendicular to the axial direction and is formed to hold the first bearing 470, and has a flat surface.
제3 면(113)은 제2 면(112)과 수직인 면으로, 제1 면(111)보다 작은 원기둥 형상의 옆면둘레부분이며, 제2 샤프트(420)가 수용된다.The third surface 113 is a surface perpendicular to the second surface 112, and has a cylindrical side surface portion smaller than the first surface 111, and the second shaft 420 is accommodated.
제4 면(114)는 축방향에 수직인 방향으로 형성된 면으로 표면이 평탄하며, 제3 면(113)과 수직 방향으로 형성되어 있다. The fourth surface 114 is a surface formed in a direction perpendicular to the axial direction and has a flat surface and is formed in a direction perpendicular to the third surface 113.
제3 면(113)과 제4 면(114)이 이루고 있는 공간은 제1 베어링(470)의 회전시 열팽창 되기 때문에 열팽창 여유 공간으로 형성된다.Since the space formed by the third surface 113 and the fourth surface 114 is thermally expanded when the first bearing 470 rotates, the space is formed as a thermal expansion clearance.
부싱(100)은 제1 베어링(470) 및 제2 베어링(480)을 수용하며, 제1 베어링(470) 및 제2 베어링(480)은 샤프트(400)의 외부에 위치하여 회전가능하게 지지된다.The bushing 100 receives the first bearing 470 and the second bearing 480, and the first bearing 470 and the second bearing 480 are located outside the shaft 400 and rotatably supported. .
제1 베어링(470)은 제1 볼(471), 제1 내륜(472), 제1 외륜(473)이 포함된다.The first bearing 470 includes a first ball 471, a first inner ring 472, and a first outer ring 473.
제1 볼(471)은 제1 베어링(470) 내부에서 제1 내륜(472)과 제1 외륜(473) 사이에 위치된다.The first ball 471 is positioned between the first inner ring 472 and the first outer ring 473 in the first bearing 470.
제1 내륜(472)은 제2 샤프트(420)의 외측에 접하여 제2 샤프트(420)를 고정할 수 있다.The first inner ring 472 may be in contact with the outside of the second shaft 420 to fix the second shaft 420.
제1 외륜(473)은 부싱(100)에 접하며, 제1 외륜(473)의 외주면은 제1 면(111)과 제1 외륜(473)의 측면은 제2 면(112)과 접한다.The first outer ring 473 is in contact with the bushing 100, and the outer circumferential surface of the first outer ring 473 is in contact with the second surface 112 of the first surface 111 and the first outer ring 473.
제5 면(115)과 제2 샤프트(420) 사이에는 부싱(100) 내부에서 샤프트(400)가 회전할 수 있도록 여유 공간이 형성된다.A free space is formed between the fifth surface 115 and the second shaft 420 to allow the shaft 400 to rotate inside the bushing 100.
제6 면(121)은 축방향의 수직인 방향으로 형성된 면으로, 표면이 평탄한 면으로 이루어져 있다.The sixth surface 121 is a surface formed in a direction perpendicular to the axial direction, and has a flat surface.
제7 면(122)은 제6 면(121)과 수직인 면으로, 제6 면(121)과 제7 면(122)이 이루고 있는 공간은 제2 베어링(480)의 회전시 열팽창 되기 때문에 열팽창 여유 공간으로 형성된다.The seventh surface 122 is a surface perpendicular to the sixth surface 121, and the space formed by the sixth surface 121 and the seventh surface 122 is thermally expanded when the second bearing 480 rotates. It is formed as free space.
제8 면(123)은 축방향에 수직인 방향으로 형성된 면으로, 제2 베어링(480)을 보유 지지하기 위하여 성성되며, 표면이 평탄한 면으로 이루어져 있다.The eighth surface 123 is a surface formed in a direction perpendicular to the axial direction and is formed to hold the second bearing 480, and has a flat surface.
제9 면(124)은 축방향을 중심으로 원기둥 형상의 옆면둘레부분이며, 제2 샤프트(420) 및 제2 베어링(480)이 수용된다.The ninth surface 124 is a cylindrical lateral surface portion around the axial direction, and the second shaft 420 and the second bearing 480 are accommodated.
제2 베어링(480)은 제9 면(111)에 압입되며, 제8 면(123)은 제9 면(124)과 수직 방향으로 형성되어 있다.The second bearing 480 is press-fitted into the ninth surface 111, and the eighth surface 123 is formed in a direction perpendicular to the ninth surface 124.
제2 베어링(480)은 제2 볼(481), 제2 내륜(482), 제2 외륜(483)이 포함된다.The second bearing 480 includes a second ball 481, a second inner ring 482, and a second outer ring 483.
제2 볼(481)은 제2 베어링(480) 내부에서 제2 내륜(482)과 제2 외륜(483) 사이에 위치된다.The second ball 481 is positioned between the second inner ring 482 and the second outer ring 483 inside the second bearing 480.
제2 내륜(482)은 제2 샤프트(420)의 외측에 접하여 제2 샤프트(420)를 고정할 수 있다.The second inner ring 482 may be in contact with the outside of the second shaft 420 to fix the second shaft 420.
제2 외륜(483)은 부싱(100)에 접하며, 제2 외륜(483)의 외주면은 제9 면(124)과 제2 외륜(483)의 측면은 제8 면(123)과 접한다.The second outer ring 483 is in contact with the bushing 100, and the outer circumferential surface of the second outer ring 483 is in contact with the eighth surface 123 of the ninth surface 124 and the second outer ring 483.
제2 베어링(480)의 끝단에는 씨링(490)을 설치하여, 제2 베어링(480)을 고정시킬 수 있다.The seed ring 490 may be installed at the end of the second bearing 480 to fix the second bearing 480.
또한, 씨링(490)은 샤프트(400)가 이탈되는 것을 방지하여 모터(300)의 회전불량이나 파손을 줄일 수 있다.In addition, the seal 490 may prevent the shaft 400 from being separated, thereby reducing rotational failure or damage of the motor 300.
제1 베어링(470) 및 제2 베어링(480)은 샤프트(400)에 걸리는 하중을 지지하면서 샤프트(400)를 회전시키는 구조로 이루어져 있으며, 축과 베어링 사이에 볼을 넣어서 구름접촉에 의해 마찰을 적게 하고 회전을 돕는 볼베어링을 구성하는 것이 바람직하다.The first bearing 470 and the second bearing 480 are configured to rotate the shaft 400 while supporting a load applied to the shaft 400. The first bearing 470 and the second bearing 480 are provided with a ball between the shaft and the bearing to reduce friction by rolling contact. It is desirable to construct a ball bearing which helps to reduce the rotation.
부싱(100)의 외주면에는 제1 단턱(125) 및 제2 단턱(131)이 형성되어 있다.The first step 125 and the second step 131 are formed on the outer circumferential surface of the bushing 100.
제1 단턱(125)은 제1 부싱(110)과 제2 부싱(120)의 경계 부분이며, 아웃 로터(320)가 빠지지 않도록 아웃 로터(320)의 일측과 접하게 된다.The first step 125 is a boundary between the first bushing 110 and the second bushing 120 and is in contact with one side of the out rotor 320 so that the out rotor 320 does not fall out.
또한 제1 단턱(125)은 표면이 평탄한 면으로 형성되어 있다.In addition, the first step 125 is formed with a flat surface.
제2 단턱(131)은 제2 부싱(120)과 제3 부싱(130)의 경계 부분이며, 표면이 평탄한 면으로 형성되어 있다.The second stepped portion 131 is a boundary portion between the second bushing 120 and the third bushing 130, and has a flat surface.
체결홈(134)은 체결부재가 체결될 수 있도록 제3 부싱(130)의 일면에 형성되며, 체결홈(134)은 제3 부싱(130)의 일면과 제2 단턱(131) 사이에 축방향으로 형성된다.The fastening groove 134 is formed on one surface of the third bushing 130 so that the fastening member can be fastened, and the fastening groove 134 is axially disposed between one surface of the third bushing 130 and the second step 131. Is formed.
[로터 인서트 조립 방식][Rotor Insert Assembly Method]
아웃 로터(320)의 중심에는 샤프트 관통홀(311)이 형성되며, 아웃 로터(320)의 내면 테두리에는 복수개의 돌기(340)가 형성되어 있다.A shaft through hole 311 is formed at the center of the outer rotor 320, and a plurality of protrusions 340 are formed at the inner edge of the outer rotor 320.
내면에는 샤프트 관통홀(311)을 중심에 두고 일정 간격을 유지하며 복수개의 돌기(340)가 형성되고, 돌기(340) 사이에는 복수 개의 홈(350)이 형성된다.A plurality of protrusions 340 are formed on the inner surface of the shaft through-hole 311 at regular intervals, and a plurality of grooves 350 are formed between the protrusions 340.
마그넷(330)은 하나 혹은 다수개의 자석으로 구성되며, 마그넷(330)은 스테이터(200)의 권선 계자의 전류에 의해 유도된 자속을 전도하도록 구성된다. Magnet 330 is composed of one or a plurality of magnets, the magnet 330 is configured to conduct the magnetic flux induced by the current of the winding field of the stator 200.
돌기(340)는 제3 측면(363), 제8 측면(365), 제9 측면(366), 제4 측면(364), 제10 측면(367), 제11 측면(368), 제1 측면(361)으로 둘러싸여 있고, 홈(350)은 제10 측면(367), 제11 측면(368), 제1 측면(361), 제2 측면(362), 제3 측면(363), 제8 측면(365), 제9 측면(366)으로 둘러싸여 있다.The protrusion 340 has a third side 363, an eighth side 365, a ninth side 366, a fourth side 364, a tenth side 367, an eleventh side 368, and a first side. Surrounded by 361, the groove 350 has a tenth side 367, an eleventh side 368, a first side 361, a second side 362, a third side 363, and an eighth side 365, it is surrounded by a ninth side 366.
돌기(340) 사이에 형성된 홈(350)의 개수는 마그넷(330)의 개수와 동일하다.The number of grooves 350 formed between the protrusions 340 is the same as the number of magnets 330.
마그넷(330)이 홈(350)에 인서트 조립될 때, 마그넷(330)의 제5 측면(331)과 아웃 로터(320)의 제1 측면(361), 마그넷(330)의 제6 측면(332)과 아웃 로터(320)의 제2 측면(362), 마그넷(330)의 제7 측면(333)과 아웃 로터(320)의 제3 측면(363)이 접하게 된다. When the magnet 330 is inserted into the groove 350, the fifth side 331 of the magnet 330, the first side 361 of the out rotor 320, and the sixth side 332 of the magnet 330. ) And the second side 362 of the out rotor 320, the seventh side 333 of the magnet 330 and the third side 363 of the out rotor 320 are in contact with each other.
또한 돌기(340)에 제8 측면(365), 제9 측면(366), 제4 측면(364), 제10 ㅊ측(367), 제11 측면(368)을 포함한 돌출부를 형성함으로써, 마그넷(330)이 아웃 로터(320)에 장착되어 이탈을 방지할 수 있다.The magnet 330 is formed by forming protrusions on the protrusion 340 including the eighth side 365, the ninth side 366, the fourth side 364, the tenth side 367, and the eleventh side 368. ) May be mounted on the out rotor 320 to prevent the detachment.
결국 마그넷(330)이 홈(35)에 인서트 됨으로써, 로터(300)의 회전이 용이하게 되는 것이다.As a result, the magnet 330 is inserted into the groove 35, so that the rotor 300 can be easily rotated.
본 발명의 목적을 벗어나지 않는 범위 내어서 본 발명의 모터는 돌기(340) 사이에 형성된 홈(350)에 마그넷(330)이 인서트 조립되는 구조로 구성되어 있어 마그넷(330)이 아웃 로터(320)로부터 이탈되지 않으므로 회전력의 손실이 방지되어 모터의 생산성과 신뢰성이 향상되는 것이다.Within the scope of the present invention without departing from the object of the present invention, the magnet 330 is inserted into the groove 350 formed between the projections 340 is composed of a structure that the magnet 330 is the outer rotor 320 Since it does not deviate from the loss of rotational force is prevented to improve the productivity and reliability of the motor.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.
(부호의 설명)(Explanation of the sign)
100 : 부싱, 110 : 제1 부싱100: bushing, 110: first bushing
120 : 제2 부싱, 130 : 제3 부싱120: second bushing, 130: third bushing
200 : 스테이터, 300 : 로터200: stator, 300: rotor
310 : 아웃 로터 하우징, 320 : 아웃 로터310: Out rotor housing, 320: Out rotor
330 : 마그넷, 340 : 돌기330: magnet, 340: projection
350 : 홈, 400 : 샤프트350: groove, 400: shaft
440 : 널링 440: knurling
470 : 제1 베어링, 480 : 제2 베어링470: first bearing, 480: second bearing

Claims (1)

  1. 부싱;bushing;
    상기 부싱의 외면에 설치되는 스테이터;A stator installed on an outer surface of the bushing;
    상기 스테이터에 대하여 회전 가능하게 설치되는 로터;A rotor rotatably installed relative to the stator;
    상기 로터에 연결되어 상기 부싱에 대하여 회전 가능하게 설치되는 샤프트를 포함하되;A shaft connected to the rotor and rotatably installed relative to the bushing;
    상기 로터는 아웃 로터 하우징과, 상기 아웃 로터 하우징에 설치되는 아웃 로터와, 상기 아웃 로터에 고정되는 마그넷을 포함하되;The rotor includes an out rotor housing, an out rotor installed in the out rotor housing, and a magnet fixed to the out rotor;
    상기 아웃 로터의 내면에는 복수개의 돌기가 형성되고,A plurality of protrusions are formed on the inner surface of the outer rotor,
    상기 돌기 사이에 형성된 홈에 상기 마그넷이 인서트 조립되는 것을 특징으로 하는 모터.And the magnet is inserted into the groove formed between the protrusions.
PCT/KR2012/002311 2012-03-28 2012-03-29 Motor for driving compressor of electric vehicle in which magnet is mounted by means of insertion WO2013147341A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120031975 2012-03-28
KR10-2012-0031975 2012-03-28

Publications (1)

Publication Number Publication Date
WO2013147341A1 true WO2013147341A1 (en) 2013-10-03

Family

ID=49260568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002311 WO2013147341A1 (en) 2012-03-28 2012-03-29 Motor for driving compressor of electric vehicle in which magnet is mounted by means of insertion

Country Status (1)

Country Link
WO (1) WO2013147341A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107542667A (en) * 2017-10-16 2018-01-05 瑞智(青岛)精密机电有限公司 A kind of external-rotor-type high energy efficiency, the Rotary Compressor of low noise

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233122A (en) * 2001-02-05 2002-08-16 Matsushita Electric Ind Co Ltd Outer rotor motor, manufacturing method of the motor, and electric vehicle mounting the motor
JP2003219619A (en) * 2002-01-22 2003-07-31 Matsushita Electric Ind Co Ltd Motor
KR20040010185A (en) * 2002-07-16 2004-01-31 니혼 서보 가부시키가이샤 Permanent Magnet Type Rotating Electric Machine
JP2004364424A (en) * 2003-06-05 2004-12-24 Mitsubishi Electric Engineering Co Ltd Outer rotor type brushless motor for automatic door
KR100651699B1 (en) * 2005-08-31 2006-12-01 현대중공업 주식회사 Magnet rotor structure of out rotor type motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233122A (en) * 2001-02-05 2002-08-16 Matsushita Electric Ind Co Ltd Outer rotor motor, manufacturing method of the motor, and electric vehicle mounting the motor
JP2003219619A (en) * 2002-01-22 2003-07-31 Matsushita Electric Ind Co Ltd Motor
KR20040010185A (en) * 2002-07-16 2004-01-31 니혼 서보 가부시키가이샤 Permanent Magnet Type Rotating Electric Machine
JP2004364424A (en) * 2003-06-05 2004-12-24 Mitsubishi Electric Engineering Co Ltd Outer rotor type brushless motor for automatic door
KR100651699B1 (en) * 2005-08-31 2006-12-01 현대중공업 주식회사 Magnet rotor structure of out rotor type motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107542667A (en) * 2017-10-16 2018-01-05 瑞智(青岛)精密机电有限公司 A kind of external-rotor-type high energy efficiency, the Rotary Compressor of low noise

Similar Documents

Publication Publication Date Title
WO2017105147A1 (en) Electric motor rotor having permanent magnet embedded therein, and electric motor using same
WO2018044027A1 (en) Stator, and motor comprising same
WO2015065088A1 (en) Magnet-embedded motor and compressor having magnet-embedded motor
WO2017183783A1 (en) Compressor
WO2011158993A1 (en) Brushless dc motor having a slotless stator
WO2010044537A2 (en) Step actuator
WO2018128398A1 (en) Motor and transmission
WO2017188659A1 (en) Power terminal and motor including same
WO2018101638A1 (en) Cover assembly, motor and electric steering device including same
JP4195788B2 (en) Synchronous rotating electrical machine with external rotor
WO2018016744A1 (en) Motor
WO2013085231A1 (en) Rotor including permanent magnets having different thicknesses and motor including same
WO2018016839A1 (en) Brushless direct current vibration motor
WO2020060093A1 (en) Motor
WO2013147341A1 (en) Motor for driving compressor of electric vehicle in which magnet is mounted by means of insertion
WO2018139791A1 (en) Motor
WO2016002994A1 (en) Motor
WO2018012885A1 (en) Rotor and motor comprising same
WO2021187820A1 (en) Motor using asymmetric stator shoes and manufacturing method therefor
WO2020085877A1 (en) Electric generator comprising multiple rotors and stators
JP2000201444A (en) Permanent magnet type electric rotating machine
WO2009096739A2 (en) Generator and wind power generating system comprising same
WO2019098809A1 (en) Rotor for electric motor, electric motor comprising same, supercharger comprising same, and assembly method for electric motor
WO2020226323A1 (en) Rotor for motor and motor comprising same
WO2024039067A1 (en) Rotor core structure of motor and rotor of motor including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 12872847

Country of ref document: EP

Kind code of ref document: A1