WO2013146391A1 - Method for separation and recovery of alkali metal and alkali metal separation and recovery apparatus - Google Patents

Method for separation and recovery of alkali metal and alkali metal separation and recovery apparatus Download PDF

Info

Publication number
WO2013146391A1
WO2013146391A1 PCT/JP2013/057539 JP2013057539W WO2013146391A1 WO 2013146391 A1 WO2013146391 A1 WO 2013146391A1 JP 2013057539 W JP2013057539 W JP 2013057539W WO 2013146391 A1 WO2013146391 A1 WO 2013146391A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
alkali metal
ion
nanofiltration membrane
divalent
Prior art date
Application number
PCT/JP2013/057539
Other languages
French (fr)
Japanese (ja)
Inventor
寛生 高畠
谷口 雅英
佐々木 崇夫
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2013146391A1 publication Critical patent/WO2013146391A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/252Recirculation of concentrate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a method and apparatus for recovering alkali metals such as lithium and potassium from lake water, groundwater, industrial wastewater and the like.
  • lithium carbonate is used for a surface acoustic wave filter in addition to an electrode material of a lithium ion battery and a heat-resistant glass additive.
  • High purity products are used as filters and transmitters for mobile phones and car navigation systems.
  • Lithium bromide is used as a refrigerant absorbent for large-scale air-conditioning absorption refrigerators in buildings and factories, and lithium hydroxide is used as a raw material for grease and lithium batteries (primary and secondary) for automobiles.
  • Applications of metallic lithium include foil as a negative electrode material for primary batteries and raw materials for butyl lithium for synthetic rubber catalysts.
  • salt lake brine and ore is contained in salt lake brine and ore, and it is advantageous to recover resources from salt lake brine in terms of production cost.
  • Salt lake brackish water exists mainly in Chile, Peru, and Argentina and has a large reserve.
  • the composition is broadly classified into chloride brine, sulfate brine, carbonate brine, and calcium brine.
  • sulfate brine which has the largest amount of resources, has a low solubility of sulfate during the purification process. Many of them form salts or contain a lot of alkaline earth metal salts or sulfates, and it is difficult to efficiently recover lithium.
  • Patent Documents 1 and 2 As a measure to solve this, a method using an adsorbent (for example, refer to Patent Documents 1 and 2) has been proposed, but the cost is difficult, and as a technique for stably recovering lithium at a low cost. Not established. Conventional low-cost methods include drying the brine in the sun and removing impurities while concentrating, but when the lithium concentration is low or the alkaline earth metal salt or sulfate concentration is high, etc. There was a problem that it was difficult to apply. Furthermore, electrodialysis methods and membrane filtration methods are being studied (for example, see Non-Patent Document 1), but have not yet been put into practical use.
  • An object of the present invention is to provide a method and an apparatus for efficiently recovering alkali metal from raw water containing alkali metal such as lithium and potassium such as lake water, groundwater, industrial wastewater.
  • the present invention relates to the following (1) to (7).
  • (1) Permeating and separating raw water containing alkali metal and divalent ions using a nanofiltration membrane to obtain permeated water and concentrated water; and at least part of the alkali metal contained in the permeated water
  • An alkali metal separation and recovery method comprising recovering, By removing divalent ions contained in the concentrated water, divalent ion-removed water having a larger ratio of alkali metal ion equivalent weight concentration to divalent ion weight concentration than the concentrated water is obtained.
  • the turbidity-treated water is obtained by turbidizing at least a part of the raw water, and at least a part of the turbidity-treated water is permeated and separated using the nanofiltration membrane.
  • a nanofiltration membrane unit that permeates and separates raw water containing alkali metal and divalent ions using a nanofiltration membrane to obtain permeated water and concentrated water, and at least alkali metal contained in the permeated water
  • a recovery unit for recovering a part
  • a divalent ion removal unit for removing at least a part of the divalent ions contained in the concentrated water
  • An alkali metal separation and recovery apparatus wherein at least a part of the divalent ion-removed water obtained by the divalent ion removal unit is refluxed to the raw water.
  • alkali metals such as lithium and potassium can be efficiently recovered from raw water in which various solutes coexist.
  • FIG. 1 is a schematic flowchart showing an alkali metal separation and recovery method according to an embodiment of the present invention.
  • FIG. 1 An example of the execution flow of the alkali metal recovery of the present invention is shown in FIG.
  • raw water 1 containing alkali metal or the like is temporarily stored in a raw water tank 2 and then sent to a pretreatment unit 4 by a supply pump 3 for processing.
  • the pretreated feed water is sent to the nanofiltration membrane unit 6 by the booster pump 5, and the nanofiltration membrane permeated water (hereinafter also simply referred to as “permeated water”) 7 and the nanofiltration membrane from which the alkali metal is permeated and separated.
  • Concentrated water hereinafter simply referred to as “concentrated water” 8 is obtained.
  • the nanofiltration membrane permeated water 7 is sent to the recovery unit 11 and the alkali metal 12 is recovered.
  • the nanofiltration membrane concentrated water 8 is sent to the divalent ion removal unit 9, and at least a part of the divalent ions 14 contained in the nanofiltration membrane concentrated water 8 is removed and discharged.
  • the divalent ion-removed water 10 having a large ratio of the alkali metal ion equivalent weight concentration to the divalent ion weight concentration is obtained, and at least a part of the divalent ion-removed water 10 is refluxed to the raw water 1.
  • the raw water 1 to be treated by the method of the present invention includes at least one kind of alkali metals such as lithium, sodium, potassium, rubidium and cesium, alkaline earth metal ions such as magnesium ions, calcium and strontium, sulfate ions, At least one kind of anions such as carbonate ions is included.
  • alkali metals such as lithium, sodium, potassium, rubidium and cesium
  • alkaline earth metal ions such as magnesium ions, calcium and strontium
  • sulfate ions At least one kind of anions such as carbonate ions is included.
  • typical elements aluminum, tin, lead, etc.
  • transition elements iron, copper, cobalt, manganese, etc.
  • one or more conjugate bases A compound composed of a salt with (for example, chloride ion, nitrate ion, sulfate ion, carbonate ion, acetate ion, etc.) is dissolved.
  • concentration of each of these components is not particularly limited, but the alkali metal ion equivalent weight concentration and / or divalent ion weight concentration of water supplied to the nanofiltration membrane unit is 0.5 ppm or more and 10,000 ppm or less from the viewpoint of the efficiency of separation and recovery.
  • a desired purified alkali metal salt such as lithium carbonate or potassium chloride is separated and recovered by subjecting the nanofiltration membrane permeated water 7 obtained by permeating and separating the raw water 1 as a purification inhibitor.
  • divalent ions such as alkaline earth metal ions, magnesium ions, sulfate ions, etc. that are likely to form hardly soluble salts are exemplified.
  • the divalent ion weight concentration in the raw water 1 is 1000 times or less compared to the alkali metal ion equivalent weight concentration.
  • the content of the purification inhibitor such as divalent ions in the raw water 1 varies depending on the composition of the purification inhibitor and the properties of the raw water.
  • magnesium ions and sulfate ions are in the range of 100 ppm to 30000 ppm, respectively. Included.
  • the alkali metal ion refers to lithium ion, sodium ion, potassium ion, rubidium ion, and cesium ion
  • the alkali metal ion equivalent weight concentration refers to one or more alkalis selected from these alkali metal ion groups. It refers to the ion equivalent weight concentration of metal ions, or the sum thereof.
  • the divalent ion refers to beryllium ion, magnesium ion, calcium ion, strontium ion, sulfate ion, and carbonate ion.
  • the divalent ion weight concentration refers to one or more selected from these divalent ion groups.
  • alkali metal ion equivalent weight concentration and divalent ion weight concentration can be determined, for example, by quantifying various ion concentrations of an aqueous solution containing an alkali metal salt by ion chromatography.
  • the nanofiltration membrane permeate 7 and the nanofiltration membrane concentrated water 8 are obtained by treating the supply water with the nanofiltration membrane unit 6.
  • the nanofiltration membrane has a low removal rate of alkali metal ions, but preferably has a property of high removal rate of divalent ions.
  • the nanofiltration membrane permeated water 7 having a higher alkali metal ion equivalent weight concentration with respect to the divalent ion weight concentration than the supply water can be obtained, whereby the alkali metal recovery efficiency in the recovery unit 11 is increased.
  • the removal treatment by the nanofiltration membrane unit 6 is performed until the magnesium ion concentration in the aqueous solution containing the alkali metal salt (the nanofiltration membrane permeated water 7) is 7 times or less than the lithium ion concentration in the aqueous solution. Preferably it is done. If this ratio exceeds 7 times, the recovery efficiency of the purified alkali metal salt is significantly reduced.
  • the recovery unit 11 functions as a purification inhibitor for alkali metal recovery when divalent ions such as alkaline earth metal ions, magnesium ions, and sulfate ions are contained in a certain ratio or more with respect to the alkali metal. Therefore, the nanofiltration membrane concentrated water 8 containing a high concentration of divalent ions is generally drained, but the proportion of alkali metal ions in the nanofiltration membrane concentrated water 8 is smaller than that of other components. Since it is contained more than the raw water concentration, it is preferably refluxed to the raw water 1.
  • the nanofiltration membrane concentrated water 8 is recirculated to the raw water 1 as divalent ion-removed water 10 having a large ratio of the alkali metal ion equivalent weight concentration to the divalent ion weight concentration.
  • the recovery rate of the alkali metal 12 from the raw water 1 can be increased while suppressing alkali metal recovery inhibition.
  • the nanofiltration membrane is a membrane defined by IUPAC as “a pressure-driven membrane in which particles and polymers having a size of less than 2 nm are blocked”.
  • the nanofiltration membrane effective for application to the present invention has a charge on the membrane surface, and particularly improves the separation efficiency of ions by the combination of pore separation (size separation) and electrostatic separation by membrane surface charge. It is preferable to apply a nanofiltration membrane capable of removing polymers by size separation while separating alkali metal ions to be collected and other ions having different charge characteristics by charging.
  • nanofiltration membrane suitable for the present invention, glucose removal particularly when permeating a 1000 ppm isopropyl alcohol aqueous solution at 25 ° C. and pH 6.5 and a 1000 ppm glucose aqueous solution at 25 ° C. and pH 6.5 at an operating pressure of 0.5 MPa, respectively.
  • a nanofiltration membrane with a rate of 90% or more and a difference between the glucose removal rate and the isopropyl alcohol removal rate of 30% or more, alkali metal salts, especially lithium salts, and purification inhibition are inhibited regardless of the total salt concentration. This is particularly preferred since the separation of substances is achieved with very high efficiency.
  • the nanofiltration membrane unit 6 is composed of modularized nanofiltration membranes. For example, one or a plurality of spiral nanofiltration membrane elements connected to each other and housed in a container, or connected in series or in parallel. Refers to
  • nanofiltration membrane unit 6 With respect to the nanofiltration membrane unit 6, one-stage processing is also possible, and in the case of increasing the recovery rate, there is no problem in making the so-called multistage in which the concentrated water is further processed by the next nanofiltration membrane unit 6. It is possible to set appropriately so that the performance of the filtration membrane can be expressed highly.
  • the nanofiltration membrane unit 6 has different performance at each stage.
  • it is easy to make the separation performance such as the pore diameter of the nanofiltration membrane different.
  • the molecular weight and charge characteristics of the nanofiltration membrane are changed according to the supply water quality gradually changing in each stage of the nanofiltration membrane unit 6. It is possible to increase the separation efficiency by optimizing.
  • the permeation amount decreases due to pressure loss due to flow resistance and decrease in effective filtration pressure due to an increase in feed water concentration from the previous stage to the subsequent stage, the pure water permeability of the nanofiltration membrane in the subsequent stage is improved. The larger one is preferable.
  • the pure water permeation performance as used herein can be measured by allowing pure water applied with a pressure of 0.5 MPa to pass through the nanofiltration membrane, and water permeated per unit membrane area and unit time at 25 ° C. It is a value obtained by measuring the amount.
  • the concentration of the feed water rises as the latter stage, not a small amount of alkali metal ions permeate the nanofiltration membrane, so that the other solutes (alkaline earth metals and The ratio of the concentration of polyvalent ions such as sulfate ions) increases, and the alkali metal content of the permeated water also decreases from the previous stage. Therefore, it is preferable to use a nanofiltration membrane with higher separation performance as the latter stage. Specifically, regarding the ratio of the sulfate ion permeability to the alkali metal permeability, the ratio of the first stage nanofiltration membrane unit is smaller than the ratio of the final stage nanofiltration membrane unit, thereby making the present invention more efficient. Can be realized.
  • Such a nanofiltration membrane can be realized by increasing the pore diameter (fractionated molecular weight) while increasing the surface charge of the nanofiltration membrane in the subsequent stage as compared with the previous stage.
  • B. ⁇ Kaeselev et al. “Photoinduced grafting of ultrafiltration membranes: comparison of poly (ether sulfone) and poly (sulfone)” (Journal of Membrane Science) Examples thereof include a method in which radicals (active sites) are produced by UV, electron beam, plasma, etc., and graft polymerization is performed, and a method in which a polymer chain is cleaved with an oxidizing agent or the like.
  • a polycondensation reaction between a polyfunctional amine and a polyfunctional acid halide is performed from the viewpoint of achieving both high water permeability and separation performance and high potential for comprehensive membrane performance.
  • a composite semipermeable membrane having an ultrathin film layer of the obtained crosslinked polyamide on a microporous support membrane is preferred.
  • aliphatic polyamide is the main component (that is, the number of amide bonds of aliphatic polyamide is larger than that of aromatic polyamide), and high permeation performance is required.
  • an aromatic polyamide is a main component.
  • piperazine-based amines represented by the following formula [I] and derivatives thereof are preferable.
  • Piperazine, 2,5-dimethylpiperazine, 2-methylpiperazine, 2,6-dimethylpiperazine, 2,3,5 -Trimethylpiperazine, 2,5-diethylpiperazine, 2,3,5-triethylpiperazine, 2-n-propylpiperazine, 2,5-di-n-butylpiperazine and the like are exemplified.
  • R1 to R8 independently represent H, OH, COOH, SO 3 H, NH 2 , or C1 to C4 linear or cyclic saturated or unsaturated aliphatic group. .
  • the polyfunctional amine is an amine having two or more amino groups in one molecule, and includes an o-aromatic diamine having two amino groups in the ortho position (o-). Those are preferred. Further, the polyfunctional amines include m-aromatic diamines having two amino groups at the meta position (m-), p-aromatic diamines having two amino groups at the para position (p-), and aliphatic systems. At least one selected from the group consisting of amines and derivatives thereof is more preferable, and among them, a dense and rigid structure has excellent potential for blocking performance and water permeability, and further has excellent durability, particularly heat resistance. More preferably, it contains m-aromatic diamine and p-aromatic diamine, which are easy to obtain.
  • o-phenylenediamine is preferably used as the o-aromatic diamine.
  • m-aromatic diamine m-phenylenediamine is preferable, but 3,5-diaminobenzoic acid, 2,6-diaminopyridine and the like can also be used.
  • p-aromatic diamine p-phenylenediamine is preferable, but 2,5-diaminobenzenesulfonic acid, p-xylylenediamine and the like can also be used.
  • the molar ratio of these polyfunctional amines in the film-forming stock solution can be appropriately selected depending on the amine and acid halide used. However, the higher the addition ratio of o-aromatic diamine, the better the water permeability. On the other hand, the blocking performance of the entire solute is reduced. Moreover, the separation performance of multivalent ions and monovalent ions is improved by increasing the number of aliphatic polyfunctional amines. As a result, it is possible to obtain the liquid separation membrane (filtration membrane) of the present invention that satisfies the intended water permeability performance, ion separation performance, and blocking performance of the entire solute.
  • the heat stability is lowered. Therefore, when heat resistance is important, the heat resistance can be improved by reducing the number of aliphatic amines.
  • polyfunctional acid halides are acid halides or polyfunctional acid anhydride halides having two or more carbonyl halide groups in one molecule, and the function of separating crosslinked polyamide by reaction with the above polyfunctional amine.
  • the polyfunctional acid halide include 1,3,5-cyclohexanetricarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3,5-benzenetricarboxylic acid, 1,2,4.
  • -Acid halides such as benzenetricarboxylic acid, 1,3-benzenedicarboxylic acid, and 1,4-benzenedicarboxylic acid, and mixtures thereof.
  • a dicarboxylic acid represented by the following formula [II] or a tricarboxylic acid represented by the following formula [III] which has a good film forming property and is capable of easily obtaining a film having uniform solute blocking performance and less defects and variations.
  • An acid is preferred, and in particular, trimesic acid chloride, which is an acid halide of 1,3,5-benzenetricarboxylic acid, is preferred from the viewpoints of economy, ease of handling, ease of reaction, and the like.
  • R represents H or a C1-C3 hydrocarbon.
  • R represents H or a C1-C3 hydrocarbon.
  • the polyfunctional acid anhydride halide is a carbonyl halide of benzoic anhydride or phthalic anhydride having one or more acid anhydride moieties and one or more halogenated carbonyl groups in one molecule.
  • a trimellitic anhydride halide represented by the following general formula [IV] and derivatives thereof are preferably used.
  • X1 and X2 are independently of each other a C1-C3 linear or cyclic saturated or unsaturated aliphatic group, H, OH, COOH, SO 3 H, COF, COCl, COBr, Alternatively, it represents COI and may form an acid anhydride between X1 and X2.
  • X3 is a C1-C3 linear or cyclic saturated or unsaturated aliphatic group, H, OH, COOH, SO 3 represents H, COF, COCl, COBr, or COI, and Y represents H, F, Cl, Br, I, or a C1-C3 hydrocarbon.
  • the feed water of each stage it is also preferable to pressurize the feed water of each stage.
  • the pressure is increased by a booster pump or the like to increase the processing performance of the subsequent stage.
  • the water permeability of the rear stage can be substantially increased.
  • the magnesium sulfate removal rate when passing through a 2000 ppm magnesium sulfate aqueous solution at 25 ° C. and pH 6.5 and a 2000 ppm lithium chloride aqueous solution at 25 ° C. and pH 6.5 at an operating pressure of 0.5 MPa is preferably 90% or more, preferably
  • the lithium chloride removal rate is 70% or less, preferably 50% or less, more preferably 30% or less, the total salt concentration can be reduced. Regardless, the separation of alkali metal and divalent ions is achieved with extremely high efficiency.
  • the energy recovery apparatus includes a pump-integrated type in which liquid discharged from the discharge side of the booster pump 5 directly flows into the energy recovery apparatus, and a part of the supplied water flows into the booster pump 5 and the remaining part of the energy is supplied to the energy recovery apparatus.
  • a pump separation type mold which flows in, in this invention, if the pressure energy of the nanofiltration membrane concentrated water 8 is utilized, it will not specifically limit.
  • Specific examples include a turbine (Francis type, Pelton type), a reverse pump, a hydro turbocharger, and a pressure exchanger (piston type, rotor type).
  • the nanofiltration membrane permeated water 7 containing alkali metal is obtained by the nanofiltration membrane unit 6 and the nanofiltration membrane concentrated water 8 obtained at the same time contains a large amount of divalent ions, which are alkali metal purification inhibitors, and is drained.
  • the nanofiltration membrane concentrated water 8 is removed by divalent ions because the alkali metal ions to be recovered are contained at a concentration higher than the raw water concentration although the ratio is smaller than that of the other components.
  • At least a part of the divalent ions is removed by the unit 9, and the obtained divalent ion-removed water 10 is refluxed to the raw water.
  • the divalent ion-removed water 10 may be refluxed downstream of the pretreatment unit 4, but inside the nanofiltration membrane unit 6 or the divalent ion removal unit 9. It is more preferable to return to the upstream side of the pretreatment unit 4 on the assumption that the divalent ion-removed water 10 contains a solid content due to the biological growth of
  • the divalent ion removal unit 9 as long as it produces divalent ion-removed water having a larger ratio of the alkali metal ion equivalent weight concentration to the divalent ion weight concentration than the nanofiltration membrane concentrated water 8, although not limited, For example, a crystallization process, an adsorption process, an ion exchange process, etc. are mentioned.
  • Crystallization treatment uses a difference between the solubility of alkali metal and the solubility of divalent ions to crystallize more divalent ions than alkali metal, and remove the crystallized solids by solid-liquid separation. Is the method.
  • the crystallization method is determined based on the relationship between the target alkali metal and divalent ions, and the means is not particularly limited.
  • heat is applied to the nanofiltration membrane concentrated water 8 to evaporate some water. Examples thereof include cooling the concentrated water to lower the water temperature, and adding a pH adjusting agent such as acid or alkali to the concentrated water to change the pH.
  • the method of evaporating moisture by applying heat to the nanofiltration membrane concentrated water 8 is preferable because it simultaneously increases the alkali metal concentration and improves the alkali metal recovery efficiency by the alkali metal recovery unit.
  • the amount of heat and time, the cooling temperature and time, the amount of acid and alkali added, and the like added during evaporation be appropriately determined according to the type and concentration of the target alkali metal and divalent ions.
  • Examples of the solid-liquid separation in the crystallization process include sedimentation separation and membrane separation.
  • the solid-liquid separation treatment is omitted, and the divalent ion-removed water is refluxed upstream of the turbidity treatment step.
  • Solid-liquid separation may also be used.
  • the adsorption treatment is a method of adsorbing and removing divalent ions from the nanofiltration membrane concentrated water by bringing the adsorbent that adsorbs the divalent ions to be removed into contact with the nanofiltration membrane concentrated water.
  • Adsorbents include polar adsorbents such as silica and alumina, and nonpolar adsorbents such as activated carbon, but polar adsorbents capable of selectively adsorbing divalent ions are preferable.
  • the ion exchange treatment is not particularly limited as long as the ion exchange resin has a function of taking in divalent ions contained in the nanofiltration membrane concentrated water and releasing another kind of ions instead.
  • the material include organic materials and inorganic materials.
  • the ion species to be removed include a cation exchange resin and an anion exchange resin, which are appropriately selected according to the material to be removed. At that time, it is preferable that the ions to be released do not reduce the efficiency of the nanofiltration membrane unit 6 and the recovery unit 11 that recovers the alkali metal.
  • the recovery alkali metal salt in the nanofiltration membrane permeated water 7 is recovered by the recovery unit 11.
  • the purified alkali metal salt can be recovered by a known method of recovering potassium chloride by utilizing the temperature dependency of solubility or adding a poor solvent such as ethanol.
  • a lithium salt it is recovered as lithium carbonate, for example, by adding a carbonate to an aqueous solution, taking advantage of its low solubility compared to other alkali metal salts. This is because sodium carbonate and potassium carbonate have a sufficiently high solubility in water (20 g or more with respect to 100 mL of water), whereas the solubility of lithium carbonate is only 1.33 g with respect to 100 mL of water at 25 ° C. This is to take advantage of the decrease.
  • the recovered residual liquid 13 after recovering the alkali metal by the recovery unit 11 can be drained or can be refluxed in the supply water (raw water) depending on the alkali metal content.
  • the pretreatment unit 4 is not particularly limited, and can be appropriately selected such as removal of turbid components and sterilization depending on the raw aqueous state.
  • pretreating raw water and modifying it to a water quality suitable for the nanofiltration membrane supply water it is possible to reduce the burden on the nanofiltration membrane and to operate while stably holding the nanofiltration membrane.
  • a turbidity treatment such as sand filtration, microfiltration membrane, ultrafiltration membrane, etc.
  • a turbidity treatment such as sand filtration, microfiltration membrane, ultrafiltration membrane, etc.
  • Chlorine is preferably used as the disinfectant, and for example, chlorine gas or sodium hypochlorite may be added to the feed water as free chlorine so as to be in the range of 1 to 5 mg / l.
  • chlorine gas or sodium hypochlorite may be added to the feed water as free chlorine so as to be in the range of 1 to 5 mg / l.
  • the specific bactericidal agent does not have chemical durability.
  • the disinfectant ineffective near the feed water inlet side of the nanofiltration membrane unit 6.
  • free chlorine its concentration is measured, and the addition amount of chlorine gas and sodium hypochlorite is controlled based on this measured value, or a reducing agent such as sodium bisulfite is added.
  • a flocculant such as polyaluminum chloride, sulfate band, iron (III) chloride.
  • the agglomerated supply water is then subjected to sand filtration after settling on an inclined plate or the like, or by filtration through a microfiltration membrane or an ultrafiltration membrane in which a plurality of hollow fiber membranes are bundled. It can be set as the feed water suitable for letting the latter nanofiltration membrane unit 6 pass.
  • sand filtration when sand filtration is used for pretreatment, it is possible to apply gravity-type filtration that naturally flows down, or it is possible to apply pressure-type filtration in which a pressure tank is filled with sand. .
  • sand to be filled single-component sand can be applied.
  • anthracite, silica sand, garnet, pumice, and the like can be combined to increase the filtration efficiency.
  • the microfiltration membrane and the ultrafiltration membrane are not particularly limited, and a flat membrane, a hollow fiber membrane, a tubular membrane, a pleated shape, or any other shape can be used as appropriate.
  • the material of the membrane is not particularly limited, and it is possible to use an inorganic material such as polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, cellulose acetate, or ceramic. it can. Moreover, even if it is a filtration system, any of the pressure filtration system which pressurizes and filters supply water, and the suction filtration system which sucks and filters the permeation
  • agglomerated membrane filtration or membrane separation activated sludge method in which a microfiltration membrane or an ultrafiltration membrane is immersed in a coagulation sedimentation tank or a biological treatment tank for filtration, is applied.
  • MLR membrane separation activated sludge method
  • the organic matter when the supply water (raw water) contains a lot of soluble organic matter, the organic matter can be decomposed by adding chlorine gas or sodium hypochlorite. Can also be removed.
  • a chelating agent such as an organic polymer electrolyte or sodium hexametaphosphate may be added, or exchanged with soluble ions using an ion exchange resin or the like.
  • iron or manganese when iron or manganese is present in a soluble state, it is preferable to use an aeration oxidation filtration method or a contact oxidation filtration method.
  • the present invention relates to an apparatus for recovering alkali metals such as lithium and potassium from lake water, groundwater, industrial wastewater and the like, and a method for operating the same, and is concentrated by adding divalent ion-removed water to raw water containing alkali metals.
  • alkali metals can be efficiently separated and recovered from water containing various solutes that are difficult to separate and recover.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

The present invention is related to a method for separation and recovery of alkali metal in which raw water containing an alkali metal and a bivalent ion is permeably separated using a nanofiltration membrane to yield permeated water and concentrated water, the bivalent ion being removed from the concentrated water and circulated back to the raw water, and at least part of the alkali metal being recovered from the permeated water.

Description

アルカリ金属分離回収方法およびアルカリ金属分離回収装置Alkali metal separation and recovery method and alkali metal separation and recovery apparatus
 本発明は、湖水、地下水、産業廃水などからリチウムやカリウムなどのアルカリ金属を回収する方法および装置に関するものである。 The present invention relates to a method and apparatus for recovering alkali metals such as lithium and potassium from lake water, groundwater, industrial wastewater and the like.
 近年、世界の経済発展に伴い、鉱物資源の需要拡大が著しい。しかし、半導体産業をはじめとして広く工業的に不可欠な鉱物資源のうち、地殻中の埋蔵量が多いものであっても、採掘や精錬のコストが高く経済的に採算が取れない資源や、特定地域に資源が局在化しており、これまで採掘が見合わせられてきたものも少なくなかった。一方で、環境問題も大きくクローズアップされてきており、循環型社会構築が望まれている。特に、二酸化炭素排出削減で注目を浴びている点から、電気自動車、それに使用されるモーターやバッテリー開発が加速されている。特に、バッテリーに関しては、リチウムイオン二次電池が、そのエネルギー密度、軽量さから電気自動車の主力バッテリーとして期待されている。リチウム化合物の用途として、例えば炭酸リチウムはリチウムイオン電池の電極材や耐熱ガラス添加剤のほか、弾性表面波フィルター向けにも用いられる。特に高純度のものは、携帯電話、カーナビ等フィルター及び発信器として使用されている。臭化リチウムの用途はビル、工場などの大型空調用吸収式冷凍機の冷媒吸収材として、水酸化リチウムの用途は自動車等のグリース及びリチウム電池(一次、二次)向けの原料である。金属リチウムの用途は一次電池の負極材としての箔及び合成ゴム触媒用のブチルリチウム向け原料などである。 In recent years, with the global economic development, the demand for mineral resources has increased significantly. However, among the mineral resources that are widely industrially indispensable including the semiconductor industry, even if the reserves in the crust are large, resources that are not economically profitable due to high mining and refining costs, and certain areas However, many resources have been postponed until now. On the other hand, environmental problems have been greatly highlighted, and the construction of a recycling society is desired. In particular, the development of electric vehicles, motors used in them, and batteries are accelerating because they are attracting attention for reducing carbon dioxide emissions. In particular, regarding batteries, lithium ion secondary batteries are expected as the main battery of electric vehicles because of their energy density and light weight. As an application of the lithium compound, for example, lithium carbonate is used for a surface acoustic wave filter in addition to an electrode material of a lithium ion battery and a heat-resistant glass additive. High purity products are used as filters and transmitters for mobile phones and car navigation systems. Lithium bromide is used as a refrigerant absorbent for large-scale air-conditioning absorption refrigerators in buildings and factories, and lithium hydroxide is used as a raw material for grease and lithium batteries (primary and secondary) for automobiles. Applications of metallic lithium include foil as a negative electrode material for primary batteries and raw materials for butyl lithium for synthetic rubber catalysts.
 リチウムは、塩湖かん水、および鉱石中に含まれており、生産コスト面で塩湖かん水からの資源回収が有利である。塩湖かん水は、主にチリ、ボリビア、アルゼンチンに存在し、埋蔵量も多い。組成としては、大きく、塩化物かん水、硫酸塩かん水、炭酸塩かん水、カルシウムかん水に分類されるが、このなかで、もっとも資源量が多い硫酸塩かん水は、精製の過程で硫酸塩が難溶性の塩を形成したり、アルカリ土類金属塩や硫酸塩を多く含有したりするものが多く、効率的にリチウム回収することが困難であった。 リ チ ウ ム Lithium is contained in salt lake brine and ore, and it is advantageous to recover resources from salt lake brine in terms of production cost. Salt lake brackish water exists mainly in Chile, Bolivia, and Argentina and has a large reserve. The composition is broadly classified into chloride brine, sulfate brine, carbonate brine, and calcium brine. Among these, sulfate brine, which has the largest amount of resources, has a low solubility of sulfate during the purification process. Many of them form salts or contain a lot of alkaline earth metal salts or sulfates, and it is difficult to efficiently recover lithium.
 これを解決する方策として、吸着剤による方法(例えば、特許文献1,2参照)などが提案されているが、コストが高いことが難点であり、低コストで安定的にリチウムを回収する技術として確立されていない。従来の低コスト方法としては、かん水を天日乾燥して、濃縮しつつ不純物を取り除く方法が挙げられるが、リチウム濃度が低い場合やアルカリ土類金属塩や硫酸塩の濃度が高い場合などには適用困難という問題があった。さらに、電気透析法や膜濾過法も検討されつつある(例えば、非特許文献1参照)が、実用化に至っていない。 As a measure to solve this, a method using an adsorbent (for example, refer to Patent Documents 1 and 2) has been proposed, but the cost is difficult, and as a technique for stably recovering lithium at a low cost. Not established. Conventional low-cost methods include drying the brine in the sun and removing impurities while concentrating, but when the lithium concentration is low or the alkaline earth metal salt or sulfate concentration is high, etc. There was a problem that it was difficult to apply. Furthermore, electrodialysis methods and membrane filtration methods are being studied (for example, see Non-Patent Document 1), but have not yet been put into practical use.
 一方、同じアルカリ金属であるカリウムは、肥料をはじめ、食品、飼料、工業薬品、医薬品などに多用されている。現在、リチウムのような深刻な資源問題にはなっていないものの、発展途上国の爆発的な人口増加・経済成長に伴う資源の枯渇が懸念されている。 On the other hand, potassium, which is the same alkali metal, is frequently used for fertilizers, foods, feeds, industrial chemicals, pharmaceuticals and the like. Although it is not currently a serious resource problem like lithium, there is concern about the depletion of resources due to explosive population growth and economic growth in developing countries.
日本国特開2009-161794号公報Japanese Unexamined Patent Publication No. 2009-161794 日本国特開平4-293541号公報Japanese Laid-Open Patent Publication No. 4-293541
 本発明の課題は、湖水、地下水、産業廃水などのリチウムやカリウムなどのアルカリ金属を含有する原水からアルカリ金属を効率的に回収する方法および装置を提供することにある。 An object of the present invention is to provide a method and an apparatus for efficiently recovering alkali metal from raw water containing alkali metal such as lithium and potassium such as lake water, groundwater, industrial wastewater.
 前記課題を解決するために、本発明は以下の(1)~(7)に関する。
(1)ナノ濾過膜を用いてアルカリ金属と2価イオンとを含有する原水を透過分離して透過水と濃縮水を得ること、及び
 前記透過水に含有されているアルカリ金属の少なくとも一部を回収すること
を含むアルカリ金属分離回収方法であって、
前記濃縮水に含有されている2価イオンを除去することで、前記濃縮水より、アルカリ金属イオン換算重量濃度の2価イオン重量濃度に対する比率が大きい2価イオン除去水を得て、該2価イオン除去水の少なくとも一部を前記原水に還流させることを特徴とするアルカリ金属分離回収方法。
(2)前記濃縮水を晶析処理することにより、前記2価イオンを除去して前記2価イオン除去水を得ることを特徴とする上記(1)に記載のアルカリ金属分離回収方法。
(3)前記晶析処理が、前記濃縮水の一部を蒸発させること、前記濃縮水の水温を下げること、および、前記濃縮水にpH調整剤を添加してpHを変化させることから選択される少なくとも1つの処理であることを特徴とする上記(2)に記載のアルカリ金属分離回収方法。
(4)前記濃縮水を吸着処理もしくはイオン交換処理することにより、2価イオンを除去して前記2価イオン除去水を得ることを特徴とする上記(1)に記載のアルカリ金属分離回収方法。
(5)前記原水の少なくとも一部を除濁処理することで除濁処理水を得て、該除濁処理水の少なくとも一部を前記ナノ濾過膜を用いて透過分離することを特徴とする上記(1)~(4)のいずれか1つに記載のアルカリ金属分離回収方法。
(6)前記2価イオン除去水の少なくとも一部を前記原水に還流させた後に、前記除濁処理することを特徴とする上記(5)に記載のアルカリ金属分離回収方法。
(7)ナノ濾過膜を用いてアルカリ金属と2価イオンとを含有する原水を透過分離して透過水と濃縮水を得るナノ濾過膜ユニットと、前記透過水に含有されているアルカリ金属の少なくとも一部を回収する回収ユニットと、前記濃縮水に含有されている2価イオンの少なくとも一部を除去する2価イオン除去ユニットとを備え、
 該2価イオン除去ユニットで得られた2価イオン除去水の少なくとも一部を前記原水に還流することを特徴とするアルカリ金属分離回収装置。
In order to solve the above problems, the present invention relates to the following (1) to (7).
(1) Permeating and separating raw water containing alkali metal and divalent ions using a nanofiltration membrane to obtain permeated water and concentrated water; and at least part of the alkali metal contained in the permeated water An alkali metal separation and recovery method comprising recovering,
By removing divalent ions contained in the concentrated water, divalent ion-removed water having a larger ratio of alkali metal ion equivalent weight concentration to divalent ion weight concentration than the concentrated water is obtained. A method for separating and recovering an alkali metal, wherein at least a part of ion-removed water is refluxed to the raw water.
(2) The alkali metal separation and recovery method according to (1), wherein the divalent ions are removed by crystallization treatment of the concentrated water to obtain the divalent ion-removed water.
(3) The crystallization treatment is selected from evaporating a part of the concentrated water, lowering the water temperature of the concentrated water, and changing the pH by adding a pH adjuster to the concentrated water. The alkali metal separation and recovery method according to (2) above, wherein the method is at least one treatment.
(4) The method for separating and recovering alkali metal according to (1) above, wherein the divalent ions are removed by adsorption treatment or ion exchange treatment of the concentrated water to obtain the divalent ion-removed water.
(5) The turbidity-treated water is obtained by turbidizing at least a part of the raw water, and at least a part of the turbidity-treated water is permeated and separated using the nanofiltration membrane. (1) The method for separating and recovering an alkali metal according to any one of (4).
(6) The alkali metal separation and recovery method according to (5), wherein the turbidity treatment is performed after at least a part of the divalent ion-removed water is refluxed to the raw water.
(7) A nanofiltration membrane unit that permeates and separates raw water containing alkali metal and divalent ions using a nanofiltration membrane to obtain permeated water and concentrated water, and at least alkali metal contained in the permeated water A recovery unit for recovering a part, and a divalent ion removal unit for removing at least a part of the divalent ions contained in the concentrated water,
An alkali metal separation and recovery apparatus, wherein at least a part of the divalent ion-removed water obtained by the divalent ion removal unit is refluxed to the raw water.
 本発明によれば、様々な溶質が共存する原水からリチウムやカリウムなどのアルカリ金属を効率的に回収することが可能となる。 According to the present invention, alkali metals such as lithium and potassium can be efficiently recovered from raw water in which various solutes coexist.
図1は、本発明の一実施態様に係る、アルカリ金属分離回収方法を示す概略フロー図である。FIG. 1 is a schematic flowchart showing an alkali metal separation and recovery method according to an embodiment of the present invention.
 以下、本発明の望ましい実施の形態の一例を、図面を用いて説明する。ただし、本発明の範囲はこれらの実施態様に限られるものではない。 Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to these embodiments.
 本発明のアルカリ金属回収の実施フローの一例を図1に示す。本発明に係るアルカリ金属回収装置では、図1に示したように、アルカリ金属等を含有する原水1が原水タンク2で一旦貯留された後、供給ポンプ3によって前処理ユニット4に送られて処理され、前処理された供給水は昇圧ポンプ5でナノ濾過膜ユニット6に送られ、アルカリ金属が透過分離されたナノ濾過膜透過水(以下、単に「透過水」ともいう)7とナノ濾過膜濃縮水(以下、単に「濃縮水」ともいう)8を得る。ナノ濾過膜透過水7は、回収ユニット11に送られ、アルカリ金属12が回収される。一方、ナノ濾過膜濃縮水8は、2価イオン除去ユニット9に送液され、ナノ濾過膜濃縮水8に含まれる2価イオン14の少なくとも一部が除去・排出され、ナノ濾過膜濃縮水8より、アルカリ金属イオン換算重量濃度の2価イオン重量濃度に対する比率が大きい2価イオン除去水10を得て、該2価イオン除去水10の少なくとも一部を原水1に還流させる。 An example of the execution flow of the alkali metal recovery of the present invention is shown in FIG. In the alkali metal recovery apparatus according to the present invention, as shown in FIG. 1, raw water 1 containing alkali metal or the like is temporarily stored in a raw water tank 2 and then sent to a pretreatment unit 4 by a supply pump 3 for processing. The pretreated feed water is sent to the nanofiltration membrane unit 6 by the booster pump 5, and the nanofiltration membrane permeated water (hereinafter also simply referred to as “permeated water”) 7 and the nanofiltration membrane from which the alkali metal is permeated and separated. Concentrated water (hereinafter simply referred to as “concentrated water”) 8 is obtained. The nanofiltration membrane permeated water 7 is sent to the recovery unit 11 and the alkali metal 12 is recovered. On the other hand, the nanofiltration membrane concentrated water 8 is sent to the divalent ion removal unit 9, and at least a part of the divalent ions 14 contained in the nanofiltration membrane concentrated water 8 is removed and discharged. Thus, the divalent ion-removed water 10 having a large ratio of the alkali metal ion equivalent weight concentration to the divalent ion weight concentration is obtained, and at least a part of the divalent ion-removed water 10 is refluxed to the raw water 1.
 本発明の方法により処理する原水1には、リチウム、ナトリウム、カリウム、ルビジウム、セシウムなどのアルカリ金属のうち少なくとも一種の金属と、マグネシウムイオン、カルシウムやストロンチウムなどのアルカリ土類金属イオン、硫酸イオン、炭酸イオンなどの陰イオンのうち少なくとも1種のイオンが含まれる。本発明の方法を実施する塩湖かん水などにおいては、上記の他に、典型元素(アルミニウム、スズ、鉛など)、遷移元素(鉄、銅、コバルト、マンガンなど)、および1種以上の共役塩基(例えば塩化物イオン、硝酸イオン、硫酸イオン、炭酸イオン、酢酸イオンなど)との塩からなる化合物が溶存している。これらの各成分の濃度は特に限定されないが、分離回収の効率の点からナノ濾過膜ユニットへの供給水のアルカリ金属イオン換算重量濃度および/または2価イオン重量濃度が、0.5ppm以上10000ppm以下の範囲であることが好ましく、より好ましくは5ppm以上5000ppm以下の範囲であり、さらに好ましくは50ppm以上2000ppm以下の範囲であり、上記濃度範囲の水溶液を原水1とすることが好ましい。 The raw water 1 to be treated by the method of the present invention includes at least one kind of alkali metals such as lithium, sodium, potassium, rubidium and cesium, alkaline earth metal ions such as magnesium ions, calcium and strontium, sulfate ions, At least one kind of anions such as carbonate ions is included. In the salt lake irrigation and the like for carrying out the method of the present invention, in addition to the above, typical elements (aluminum, tin, lead, etc.), transition elements (iron, copper, cobalt, manganese, etc.), and one or more conjugate bases A compound composed of a salt with (for example, chloride ion, nitrate ion, sulfate ion, carbonate ion, acetate ion, etc.) is dissolved. The concentration of each of these components is not particularly limited, but the alkali metal ion equivalent weight concentration and / or divalent ion weight concentration of water supplied to the nanofiltration membrane unit is 0.5 ppm or more and 10,000 ppm or less from the viewpoint of the efficiency of separation and recovery. It is preferable that it is the range of 5 ppm or more and 5000 ppm or less, More preferably, it is the range of 50 ppm or more and 2000 ppm or less, and it is preferable to use the aqueous solution of the said concentration range as the raw water 1.
 ここで、例えば炭酸リチウムや塩化カリウムなどの所望の精製アルカリ金属塩を、原水1を透過分離して得られたナノ濾過膜透過水7を後処理して分離回収するにあたり、その精製阻害物質として例えば、地殻中の有機物の他、難溶性塩を生成しやすいアルカリ土類金属イオン、マグネシウムイオン、硫酸イオンなどの2価イオンが例示される。本発明では、アルカリ金属塩水溶液から精製アルカリ金属塩を分離回収する効率の観点から、例えば、原水1中の2価イオン重量濃度がアルカリ金属イオン換算重量濃度に比して1000倍以下であることが好ましく、より好ましくは500倍以下、さらに好ましくは100倍以下であると効率的である。なお、原水1中の2価イオンなどの精製阻害物質の含有量は、精製阻害物質の組成や原水の性状によって異なるが、例えば塩湖かん水ではマグネシウムイオン、硫酸イオンがそれぞれ100ppm以上30000ppm以下の範囲で含まれている。 Here, for example, a desired purified alkali metal salt such as lithium carbonate or potassium chloride is separated and recovered by subjecting the nanofiltration membrane permeated water 7 obtained by permeating and separating the raw water 1 as a purification inhibitor. For example, in addition to organic substances in the crust, divalent ions such as alkaline earth metal ions, magnesium ions, sulfate ions, etc. that are likely to form hardly soluble salts are exemplified. In the present invention, from the viewpoint of the efficiency of separating and recovering the purified alkali metal salt from the aqueous alkali metal salt solution, for example, the divalent ion weight concentration in the raw water 1 is 1000 times or less compared to the alkali metal ion equivalent weight concentration. Is preferable, more preferably 500 times or less, and still more preferably 100 times or less. The content of the purification inhibitor such as divalent ions in the raw water 1 varies depending on the composition of the purification inhibitor and the properties of the raw water. For example, in salt lake brine, magnesium ions and sulfate ions are in the range of 100 ppm to 30000 ppm, respectively. Included.
 本発明では、アルカリ金属イオンとは、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオンを指し、アルカリ金属イオン換算重量濃度とは、これらのアルカリ金属イオン群から選ばれる1種以上のアルカリ金属イオンのイオン換算重量濃度、もしくはその和を指す。また、2価イオンとは、ベリリウムイオン、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、硫酸イオン、炭酸イオンを指し、2価イオン重量濃度とは、これらの2価イオン群から選ばれる1種以上の2価イオンのイオン換算重量濃度、もしくはその和を指す。これらのアルカリ金属イオン換算重量濃度および2価イオン重量濃度は、例えばイオンクロマトグラフ測定によりアルカリ金属塩を含む水溶液の各種イオン濃度を定量することで求められる。 In the present invention, the alkali metal ion refers to lithium ion, sodium ion, potassium ion, rubidium ion, and cesium ion, and the alkali metal ion equivalent weight concentration refers to one or more alkalis selected from these alkali metal ion groups. It refers to the ion equivalent weight concentration of metal ions, or the sum thereof. The divalent ion refers to beryllium ion, magnesium ion, calcium ion, strontium ion, sulfate ion, and carbonate ion. The divalent ion weight concentration refers to one or more selected from these divalent ion groups. It refers to the ion-concentrated weight concentration of valence ions, or the sum thereof. These alkali metal ion equivalent weight concentration and divalent ion weight concentration can be determined, for example, by quantifying various ion concentrations of an aqueous solution containing an alkali metal salt by ion chromatography.
 本発明においては、ナノ濾過膜ユニット6にて供給水を処理することで、ナノ濾過膜透過水7およびナノ濾過膜濃縮水8を得る。ナノ濾過膜は、後述の通り、アルカリ金属イオンの除去率が低いが、2価イオンの除去率が高い性質を有することが好ましい。これにより、供給水より2価イオン重量濃度に対するアルカリ金属イオン換算重量濃度が高いナノ濾過膜透過水7を得ることができ、これにより、回収ユニット11におけるアルカリ金属の回収効率が高くなる。特に、アルカリ金属塩を含む水溶液(ナノ濾過膜透過水7)中のマグネシウムイオン濃度が、該水溶液中のリチウムイオン濃度に比して7倍以下となるまで、ナノ濾過膜ユニット6による除去処理を行うことが好ましい。この比が7倍を超えると、精製アルカリ金属塩の回収効率が著しく低下する。 In the present invention, the nanofiltration membrane permeate 7 and the nanofiltration membrane concentrated water 8 are obtained by treating the supply water with the nanofiltration membrane unit 6. As will be described later, the nanofiltration membrane has a low removal rate of alkali metal ions, but preferably has a property of high removal rate of divalent ions. Thereby, the nanofiltration membrane permeated water 7 having a higher alkali metal ion equivalent weight concentration with respect to the divalent ion weight concentration than the supply water can be obtained, whereby the alkali metal recovery efficiency in the recovery unit 11 is increased. In particular, the removal treatment by the nanofiltration membrane unit 6 is performed until the magnesium ion concentration in the aqueous solution containing the alkali metal salt (the nanofiltration membrane permeated water 7) is 7 times or less than the lithium ion concentration in the aqueous solution. Preferably it is done. If this ratio exceeds 7 times, the recovery efficiency of the purified alkali metal salt is significantly reduced.
 上記のように、回収ユニット11では、アルカリ土類金属イオン、マグネシウムイオン、硫酸イオンなどの2価イオンがアルカリ金属に対し一定比率以上含有するときには、アルカリ金属回収の精製阻害物質として機能する。そのため2価イオンを高濃度に含むナノ濾過膜濃縮水8は、排水するのが一般的であるが、ナノ濾過膜濃縮水8にもアルカリ金属イオンが他の成分よりも比率は少ないとはいえ原水濃度以上に含有されているので、原水1に還流させることが好ましい。この際、ナノ濾過膜濃縮水8は、アルカリ金属イオン換算重量濃度の2価イオン重量濃度に対する比率が大きい2価イオン除去水10として原水1に還流させることで、回収ユニット11における2価イオンのアルカリ金属回収阻害を抑制しながら、原水1からのアルカリ金属12の回収率を高めることができる。 As described above, the recovery unit 11 functions as a purification inhibitor for alkali metal recovery when divalent ions such as alkaline earth metal ions, magnesium ions, and sulfate ions are contained in a certain ratio or more with respect to the alkali metal. Therefore, the nanofiltration membrane concentrated water 8 containing a high concentration of divalent ions is generally drained, but the proportion of alkali metal ions in the nanofiltration membrane concentrated water 8 is smaller than that of other components. Since it is contained more than the raw water concentration, it is preferably refluxed to the raw water 1. At this time, the nanofiltration membrane concentrated water 8 is recirculated to the raw water 1 as divalent ion-removed water 10 having a large ratio of the alkali metal ion equivalent weight concentration to the divalent ion weight concentration. The recovery rate of the alkali metal 12 from the raw water 1 can be increased while suppressing alkali metal recovery inhibition.
 本発明において、ナノ濾過膜とは、IUPACで「2nmより小さい程度の粒子や高分子が阻止される圧力駆動の膜」と定義される膜である。本発明への適用に効果的なナノ濾過膜は、膜表面に荷電を有し、細孔による分離(サイズ分離)と膜表面の荷電による静電気的な分離の組み合わせによって特にイオンの分離効率を向上させたものが好ましく、回収目的とするアルカリ金属イオンとそのほかの荷電特性が異なるイオンを荷電によって分離しつつ、サイズ分離による高分子類の除去が可能なナノ濾過膜を適用することが好ましい。 In the present invention, the nanofiltration membrane is a membrane defined by IUPAC as “a pressure-driven membrane in which particles and polymers having a size of less than 2 nm are blocked”. The nanofiltration membrane effective for application to the present invention has a charge on the membrane surface, and particularly improves the separation efficiency of ions by the combination of pore separation (size separation) and electrostatic separation by membrane surface charge. It is preferable to apply a nanofiltration membrane capable of removing polymers by size separation while separating alkali metal ions to be collected and other ions having different charge characteristics by charging.
 本発明に適したナノ濾過膜としては、特に0.5MPaの操作圧力で25℃、pH6.5の1000ppmイソプロピルアルコール水溶液および25℃、pH6.5の1000ppmグルコース水溶液をそれぞれ透過させた時のグルコース除去率が90%以上であり、かつ、グルコース除去率とイソプロピルアルコール除去率の差が30%以上であるナノ濾過膜を用いることで、総塩濃度によらずアルカリ金属塩、中でもリチウム塩と精製阻害物質の分離が極めて高効率で達成されるため特に好ましい。 As a nanofiltration membrane suitable for the present invention, glucose removal particularly when permeating a 1000 ppm isopropyl alcohol aqueous solution at 25 ° C. and pH 6.5 and a 1000 ppm glucose aqueous solution at 25 ° C. and pH 6.5 at an operating pressure of 0.5 MPa, respectively. By using a nanofiltration membrane with a rate of 90% or more and a difference between the glucose removal rate and the isopropyl alcohol removal rate of 30% or more, alkali metal salts, especially lithium salts, and purification inhibition are inhibited regardless of the total salt concentration. This is particularly preferred since the separation of substances is achieved with very high efficiency.
 また、ナノ濾過膜ユニット6は、ナノ濾過膜をモジュール化したものから構成され、例えば、スパイラル型のナノ濾過膜エレメントを単数もしくは複数連結して容器に収納したものやそれを直列や並列に接続したものを指す。 The nanofiltration membrane unit 6 is composed of modularized nanofiltration membranes. For example, one or a plurality of spiral nanofiltration membrane elements connected to each other and housed in a container, or connected in series or in parallel. Refers to
 ナノ濾過膜ユニット6に関しては、1ステージ処理も可能であるし、回収率を高める場合は、濃縮水をさらに次のナノ濾過膜ユニット6で処理する、いわゆるマルチステージにすることも問題なく、ナノ濾過膜の性能を高く発現できるように適宜設定することが可能である。 With respect to the nanofiltration membrane unit 6, one-stage processing is also possible, and in the case of increasing the recovery rate, there is no problem in making the so-called multistage in which the concentrated water is further processed by the next nanofiltration membrane unit 6. It is possible to set appropriately so that the performance of the filtration membrane can be expressed highly.
 マルチステージにする場合、それぞれのステージで異なる性能のナノ濾過膜ユニット6にすると好適である。ナノ濾過膜ユニット6が異なるようにするためには、ナノ濾過膜の細孔径等の分離性能を異なるようにすることが簡便である。本発明においてアルカリ金属を効率的に透過させて他の溶質を阻止するために、ナノ濾過膜ユニット6の各ステージにおいて徐々に変化する供給水質に応じて、ナノ濾過膜の分画分子量や荷電特性を最適化することによって分離効率を高めることが可能となる。特に、前ステージから後ステージになるに従って、流動抵抗による圧力損失や供給水濃度の上昇による有効濾過圧力減少によって、透過量が減少するため、後ステージのナノ濾過膜の純水透水性能が前ステージよりも大きい方が好ましい。 In the case of a multi-stage, it is preferable that the nanofiltration membrane unit 6 has different performance at each stage. In order to make the nanofiltration membrane unit 6 different, it is easy to make the separation performance such as the pore diameter of the nanofiltration membrane different. In order to efficiently permeate the alkali metal and block other solutes in the present invention, the molecular weight and charge characteristics of the nanofiltration membrane are changed according to the supply water quality gradually changing in each stage of the nanofiltration membrane unit 6. It is possible to increase the separation efficiency by optimizing. In particular, since the permeation amount decreases due to pressure loss due to flow resistance and decrease in effective filtration pressure due to an increase in feed water concentration from the previous stage to the subsequent stage, the pure water permeability of the nanofiltration membrane in the subsequent stage is improved. The larger one is preferable.
 ここでいう純水透水性能とは、ナノ濾過膜に0.5MPaの圧力をかけた純水を透過させることによって測定することができ、25℃において単位膜面積、単位時間あたりに透過した水の量を測定して得られる値である。 The pure water permeation performance as used herein can be measured by allowing pure water applied with a pressure of 0.5 MPa to pass through the nanofiltration membrane, and water permeated per unit membrane area and unit time at 25 ° C. It is a value obtained by measuring the amount.
 さらに、供給水の濃度は後ステージほど上昇するが、少なくはない量のアルカリ金属イオンがナノ濾過膜を透過するため、後ステージの供給水ほどアルカリ金属濃度に対するその他の溶質(アルカリ土類金属や硫酸イオンのような多価イオン)濃度の比率が高くなり、透過水のアルカリ金属含有率も前段より低下する。そのため、後ステージほど分離性能の高いナノ濾過膜を用いることが好ましい。具体的には、アルカリ金属透過率に対する硫酸イオン透過率の比について、第1ステージのナノ濾過膜ユニットにおける比が最終ステージのナノ濾過膜ユニットにおける比よりも小さくすることによって、本発明をより効率的に実現することが可能となる。このようなナノ濾過膜は、前ステージよりも後ステージのナノ濾過膜の表面荷電を強くしつつ、細孔径(分画分子量)を大きめにすることによって、実現することができる。表面荷電を強くする方法としては、例えば、B. Kaeselevらの「Photoinduced grafting of ultrafiltration membranes:comparison of poly (ether sulfone) and poly(sulfone)」(ジャーナルオブメンブレンサイエンス)に示されるように膜表面にUV、また、電子線、プラズマなどでラジカル(活性点)をつくってグラフト重合させるといった方法や、酸化剤などで高分子鎖を断裂するなどの方法が例として挙げられる。また、本発明に適用するナノ濾過膜としては、透水性能と分離性能を両立し、総合的な膜性能のポテンシャルが高いという観点から、多官能アミンと多官能酸ハロゲン化物との重縮合反応により得られる架橋ポリアミドの超薄膜層を微多孔性支持膜上に有してなる複合半透膜であることが好ましい。 Furthermore, although the concentration of the feed water rises as the latter stage, not a small amount of alkali metal ions permeate the nanofiltration membrane, so that the other solutes (alkaline earth metals and The ratio of the concentration of polyvalent ions such as sulfate ions) increases, and the alkali metal content of the permeated water also decreases from the previous stage. Therefore, it is preferable to use a nanofiltration membrane with higher separation performance as the latter stage. Specifically, regarding the ratio of the sulfate ion permeability to the alkali metal permeability, the ratio of the first stage nanofiltration membrane unit is smaller than the ratio of the final stage nanofiltration membrane unit, thereby making the present invention more efficient. Can be realized. Such a nanofiltration membrane can be realized by increasing the pore diameter (fractionated molecular weight) while increasing the surface charge of the nanofiltration membrane in the subsequent stage as compared with the previous stage. For example, B. 表面 Kaeselev et al., “Photoinduced grafting of ultrafiltration membranes: comparison of poly (ether sulfone) and poly (sulfone)” (Journal of Membrane Science) Examples thereof include a method in which radicals (active sites) are produced by UV, electron beam, plasma, etc., and graft polymerization is performed, and a method in which a polymer chain is cleaved with an oxidizing agent or the like. In addition, as a nanofiltration membrane applied to the present invention, a polycondensation reaction between a polyfunctional amine and a polyfunctional acid halide is performed from the viewpoint of achieving both high water permeability and separation performance and high potential for comprehensive membrane performance. A composite semipermeable membrane having an ultrathin film layer of the obtained crosslinked polyamide on a microporous support membrane is preferred.
 さらに、高分離効率が求められる前ステージにおいては、脂肪族系ポリアミドを主成分(すなわち、脂肪族ポリアミドのアミド結合数が芳香族ポリアミドのアミド結合よりも多い。)とし、高透過性能が求められる後ステージのナノ濾過膜としては、芳香族系ポリアミドを主成分とすることが好ましい。 Furthermore, in the previous stage where high separation efficiency is required, aliphatic polyamide is the main component (that is, the number of amide bonds of aliphatic polyamide is larger than that of aromatic polyamide), and high permeation performance is required. As the nanofiltration membrane of the subsequent stage, it is preferable that an aromatic polyamide is a main component.
 脂肪族アミンとしては、下記式[I]に示すようなピペラジン系アミン及びその誘導体が好ましく、ピペラジン、2,5-ジメチルピペラジン、2-メチルピペラジン、2,6-ジメチルピペラジン、2,3,5-トリメチルピペラジン、2,5-ジエチルピペラジン、2,3,5-トリエチルピペラジン、2-n-プロピルピペラジン、2,5-ジ-n-ブチルピペラジンなどが例示される。中でもより高い溶質除去性能、水透過性能を有するナノ濾過膜を幅広い組成比で得ることができるピペラジンや2,5-ジメチルピペラジンを用いることが特に好ましい。 As the aliphatic amine, piperazine-based amines represented by the following formula [I] and derivatives thereof are preferable. Piperazine, 2,5-dimethylpiperazine, 2-methylpiperazine, 2,6-dimethylpiperazine, 2,3,5 -Trimethylpiperazine, 2,5-diethylpiperazine, 2,3,5-triethylpiperazine, 2-n-propylpiperazine, 2,5-di-n-butylpiperazine and the like are exemplified. Among them, it is particularly preferable to use piperazine or 2,5-dimethylpiperazine, which can obtain a nanofiltration membrane having higher solute removal performance and water permeation performance with a wide composition ratio.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式[I]式中、R1~R8は互いに独立して、H,OH,COOH,SOH,NH,あるいはC1~C4の直鎖状又は環状の飽和または不飽和脂肪族基を表す。) (In the formula [I], R1 to R8 independently represent H, OH, COOH, SO 3 H, NH 2 , or C1 to C4 linear or cyclic saturated or unsaturated aliphatic group. .)
 芳香族系ポリアミドの場合、多官能アミンとしては、一分子中に2個以上のアミノ基を有するアミンであり、オルト位(o-)に2個のアミノ基を有するo-芳香族ジアミンを含むものが好ましい。さらに多官能アミンとしては、メタ位(m-)に2個のアミノ基を有するm-芳香族ジアミン、パラ位(p-)に2個のアミノ基を有するp-芳香族ジアミンならびに脂肪族系アミンおよびその誘導体からなる群から選ばれる少なくとも1種がより好ましく、中でも、緻密で剛直な構造を有するために阻止性能と透水性能のポテンシャルに優れ、さらに耐久性、特に耐熱性に優れた膜を得ることが容易なm-芳香族ジアミンやp-芳香族ジアミンを含んでいることがさらに好ましい。 In the case of an aromatic polyamide, the polyfunctional amine is an amine having two or more amino groups in one molecule, and includes an o-aromatic diamine having two amino groups in the ortho position (o-). Those are preferred. Further, the polyfunctional amines include m-aromatic diamines having two amino groups at the meta position (m-), p-aromatic diamines having two amino groups at the para position (p-), and aliphatic systems. At least one selected from the group consisting of amines and derivatives thereof is more preferable, and among them, a dense and rigid structure has excellent potential for blocking performance and water permeability, and further has excellent durability, particularly heat resistance. More preferably, it contains m-aromatic diamine and p-aromatic diamine, which are easy to obtain.
 ここで、o-芳香族ジアミンとして好ましく用いられるのはo-フェニレンジアミンである。m-芳香族ジアミンとしては、m-フェニレンジアミンが好ましいが、3,5-ジアミノ安息香酸や2,6-ジアミノピリジン等を用いることもできる。p-芳香族ジアミンとしてはp-フェニレンジアミンが好ましいが、2,5-ジアミノベンゼンスルホン酸やp-キシリレンジアミン等を用いることもできる。 Here, o-phenylenediamine is preferably used as the o-aromatic diamine. As the m-aromatic diamine, m-phenylenediamine is preferable, but 3,5-diaminobenzoic acid, 2,6-diaminopyridine and the like can also be used. As the p-aromatic diamine, p-phenylenediamine is preferable, but 2,5-diaminobenzenesulfonic acid, p-xylylenediamine and the like can also be used.
 これら多官能アミンの製膜原液中におけるモル比は、用いるアミンおよび酸ハロゲン化物によって適宜最適な組成比を選ぶことができるが、o-芳香族ジアミンの添加比率が高いほど透水性は向上し、反面、溶質全体の阻止性能は低下する。また、脂肪族多官能アミンを多くすることで、多価イオンと一価イオンの分離性能が向上する。これによって目的とする透水性能とイオン分離性能、溶質全体の阻止性能を満足する本発明の液体分離膜(濾過膜)を得ることが可能となる。 The molar ratio of these polyfunctional amines in the film-forming stock solution can be appropriately selected depending on the amine and acid halide used. However, the higher the addition ratio of o-aromatic diamine, the better the water permeability. On the other hand, the blocking performance of the entire solute is reduced. Moreover, the separation performance of multivalent ions and monovalent ions is improved by increasing the number of aliphatic polyfunctional amines. As a result, it is possible to obtain the liquid separation membrane (filtration membrane) of the present invention that satisfies the intended water permeability performance, ion separation performance, and blocking performance of the entire solute.
 また、アミン成分として脂肪族アミンが多いと耐熱安定性が低下するため、耐熱性を重視したい場合は、脂肪族アミンを少なくすることによって耐熱性の向上を達成することもできる。 In addition, when there are a large number of aliphatic amines as the amine component, the heat stability is lowered. Therefore, when heat resistance is important, the heat resistance can be improved by reducing the number of aliphatic amines.
 一方、多官能酸ハロゲン化物としては、一分子中に2個以上のハロゲン化カルボニル基を有する酸ハロゲン化物や多官能酸無水物ハロゲン化物で、上記多官能アミンとの反応により架橋ポリアミドの分離機能層を形成するものであれば特に限定されるものではない。多官能酸ハロゲン化物としては、例えば1,3,5-シクロヘキサントリカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3,5-ベンゼントリカルボン酸、1,2,4-ベンゼントリカルボン酸、1,3-ベンゼンジカルボン酸、および1,4-ベンゼンジカルボン酸等の酸ハロゲン化物やそれらの混合物などが挙げられる。中でも、製膜性が良好で、全溶質阻止性能が均質で欠陥やばらつきの少ない膜を得やすい、下記式[II]で表されるジカルボン酸や、下記式[III]式で表されるトリカルボン酸が好ましく、とくに、経済性、取り扱い易さ、反応の容易さ等の点から、1,3,5-ベンゼントリカルボン酸の酸ハロゲン化物であるトリメシン酸クロライドが好ましい。 On the other hand, polyfunctional acid halides are acid halides or polyfunctional acid anhydride halides having two or more carbonyl halide groups in one molecule, and the function of separating crosslinked polyamide by reaction with the above polyfunctional amine. There is no particular limitation as long as it forms a layer. Examples of the polyfunctional acid halide include 1,3,5-cyclohexanetricarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3,5-benzenetricarboxylic acid, 1,2,4. -Acid halides such as benzenetricarboxylic acid, 1,3-benzenedicarboxylic acid, and 1,4-benzenedicarboxylic acid, and mixtures thereof. Among them, a dicarboxylic acid represented by the following formula [II] or a tricarboxylic acid represented by the following formula [III], which has a good film forming property and is capable of easily obtaining a film having uniform solute blocking performance and less defects and variations. An acid is preferred, and in particular, trimesic acid chloride, which is an acid halide of 1,3,5-benzenetricarboxylic acid, is preferred from the viewpoints of economy, ease of handling, ease of reaction, and the like.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式[II]中、RはHまたはC1~C3の炭化水素を表す。) (In the formula [II], R represents H or a C1-C3 hydrocarbon.)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式[III]中、RはHまたはC1~C3の炭化水素を表す。) (In the formula [III], R represents H or a C1-C3 hydrocarbon.)
 また、多官能酸無水物ハロゲン化物としては、一分子中に1個以上の酸無水物部分と1個以上のハロゲン化カルボニル基を有し、無水安息香酸、無水フタル酸のカルボニルハロゲン化物である、下記一般式[IV]で表されるトリメリット酸無水物ハロゲン化物及びその誘導体が好ましく用いられる。 The polyfunctional acid anhydride halide is a carbonyl halide of benzoic anhydride or phthalic anhydride having one or more acid anhydride moieties and one or more halogenated carbonyl groups in one molecule. A trimellitic anhydride halide represented by the following general formula [IV] and derivatives thereof are preferably used.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式[IV]中、X1およびX2は互いに独立して、C1~C3の直鎖状又は環状の飽和または不飽和脂肪族基,H,OH,COOH,SOH,COF,COCl,COBr,あるいはCOIを表し、X1とX2との間で酸無水物を形成していてもよい。X3はC1~C3の直鎖状又は環状の飽和または不飽和脂肪族基,H,OH,COOH,SOH,COF,COCl,COBr,あるいはCOIを表す。YはH,F,Cl,Br,IまたはC1~C3の炭化水素を表す。) (In the formula [IV], X1 and X2 are independently of each other a C1-C3 linear or cyclic saturated or unsaturated aliphatic group, H, OH, COOH, SO 3 H, COF, COCl, COBr, Alternatively, it represents COI and may form an acid anhydride between X1 and X2. X3 is a C1-C3 linear or cyclic saturated or unsaturated aliphatic group, H, OH, COOH, SO 3 represents H, COF, COCl, COBr, or COI, and Y represents H, F, Cl, Br, I, or a C1-C3 hydrocarbon.)
 また、前ステージと後ステージのナノ濾過膜を異なるようにする以外に、それぞれのステージの供給水を昇圧することも好ましい。すなわち、前ステージの濃縮水を後ステージの供給水とするにあたって、ブースターポンプなどで昇圧し、後ステージの処理性能を上げるという方法である。これによって、後ステージの透水性を実質的に上げることが可能となる。 In addition to making the nanofiltration membranes of the front stage and the rear stage different, it is also preferable to pressurize the feed water of each stage. In other words, when the concentrated water of the previous stage is used as the supply water of the subsequent stage, the pressure is increased by a booster pump or the like to increase the processing performance of the subsequent stage. As a result, the water permeability of the rear stage can be substantially increased.
 さらに、ナノ濾過膜ユニット6では、アルカリ金属の回収を阻害するマグネシウム塩および/または硫酸塩などの2価イオンが除去されることが好ましい。そこで、0.5MPaの操作圧力で25℃、pH6.5の2000ppm硫酸マグネシウム水溶液および25℃、pH6.5の2000ppm塩化リチウム水溶液をそれぞれ透過させた時の硫酸マグネシウム除去率が90%以上、好ましくは95%以上、さらに好ましくは97%以上であり、かつ、塩化リチウム除去率が70%以下、好ましくは50%以下、さらに好ましくは30%以下であるナノ濾過膜を用いることで、総塩濃度によらずアルカリ金属と2価イオンの分離が極めて高効率で達成される。 Furthermore, in the nanofiltration membrane unit 6, it is preferable to remove divalent ions such as magnesium salt and / or sulfate which inhibits recovery of alkali metal. Therefore, the magnesium sulfate removal rate when passing through a 2000 ppm magnesium sulfate aqueous solution at 25 ° C. and pH 6.5 and a 2000 ppm lithium chloride aqueous solution at 25 ° C. and pH 6.5 at an operating pressure of 0.5 MPa is preferably 90% or more, preferably By using a nanofiltration membrane that is 95% or more, more preferably 97% or more, and the lithium chloride removal rate is 70% or less, preferably 50% or less, more preferably 30% or less, the total salt concentration can be reduced. Regardless, the separation of alkali metal and divalent ions is achieved with extremely high efficiency.
 また、ナノ濾過膜濃縮水8は、圧力エネルギーを有したまま排出されるので、この圧力エネルギーを回収することによって、エネルギー費用が低減できる。圧力エネルギーの回収装置にはエネルギー回収装置が用いられる。エネルギー回収装置には、一般に昇圧ポンプ5の吐出側から出る液体が直接エネルギー回収装置に流入するポンプ一体型と、供給水の一部が昇圧ポンプ5に流入し残りの一部がエネルギー回収装置に流入するポンプ分離型とがあるが、本発明では、ナノ濾過膜濃縮水8の圧力エネルギーを利用するものであれば、特に限定しない。具体的には、タービン(フランシス型、ペルトン型)や逆転ポンプ、ハイドロターボチャージャー、プレシャーエクスチェンジャー(ピストン型、ローター型)などが挙げられる。 Further, since the nanofiltration membrane concentrated water 8 is discharged while having pressure energy, the energy cost can be reduced by collecting the pressure energy. An energy recovery device is used as the pressure energy recovery device. In general, the energy recovery apparatus includes a pump-integrated type in which liquid discharged from the discharge side of the booster pump 5 directly flows into the energy recovery apparatus, and a part of the supplied water flows into the booster pump 5 and the remaining part of the energy is supplied to the energy recovery apparatus. Although there exists a pump separation type | mold which flows in, in this invention, if the pressure energy of the nanofiltration membrane concentrated water 8 is utilized, it will not specifically limit. Specific examples include a turbine (Francis type, Pelton type), a reverse pump, a hydro turbocharger, and a pressure exchanger (piston type, rotor type).
 ナノ濾過膜ユニット6でアルカリ金属を含有したナノ濾過膜透過水7を得ると同時に得られたナノ濾過膜濃縮水8は、アルカリ金属の精製阻害物質である2価イオンを多く含有するため排水するのが一般的であるが、回収したいアルカリ金属イオンを他の成分よりも比率は少ないとはいえ原水濃度以上に含有しているため、本発明では、ナノ濾過膜濃縮水8を2価イオン除去ユニット9にて2価イオンの少なくとも一部を除去し、得られた2価イオン除去水10を原水に還流する。前処理ユニット4の負荷を低減するために、2価イオン除去水10は、前処理ユニット4の下流側に還流してもよいが、ナノ濾過膜ユニット6内部や2価イオン除去ユニット9内部での生物増殖などに起因して、2価イオン除去水10に固形分が含まれる場合を想定して、前処理ユニット4の上流側に還流することが、より好ましい。 The nanofiltration membrane permeated water 7 containing alkali metal is obtained by the nanofiltration membrane unit 6 and the nanofiltration membrane concentrated water 8 obtained at the same time contains a large amount of divalent ions, which are alkali metal purification inhibitors, and is drained. In general, the nanofiltration membrane concentrated water 8 is removed by divalent ions because the alkali metal ions to be recovered are contained at a concentration higher than the raw water concentration although the ratio is smaller than that of the other components. At least a part of the divalent ions is removed by the unit 9, and the obtained divalent ion-removed water 10 is refluxed to the raw water. In order to reduce the load on the pretreatment unit 4, the divalent ion-removed water 10 may be refluxed downstream of the pretreatment unit 4, but inside the nanofiltration membrane unit 6 or the divalent ion removal unit 9. It is more preferable to return to the upstream side of the pretreatment unit 4 on the assumption that the divalent ion-removed water 10 contains a solid content due to the biological growth of
 ここで、2価イオン除去ユニット9としては、ナノ濾過膜濃縮水8より、アルカリ金属イオン換算重量濃度の2価イオン重量濃度に対する比率が大きい2価イオン除去水を生産するものであれば、特に限定されないが、例えば、晶析処理、吸着処理、イオン交換処理などが挙げられる。 Here, as the divalent ion removal unit 9, as long as it produces divalent ion-removed water having a larger ratio of the alkali metal ion equivalent weight concentration to the divalent ion weight concentration than the nanofiltration membrane concentrated water 8, Although not limited, For example, a crystallization process, an adsorption process, an ion exchange process, etc. are mentioned.
 晶析処理とは、アルカリ金属の溶解度と2価イオンの溶解度との差を利用して、2価イオンをアルカリ金属より多く結晶化させ、結晶化させた固形分を固液分離することにより取り除く方法である。結晶化方法は対象となるアルカリ金属と2価イオンとの関係で決定されるものであり、特に手段を限定しないが、ナノ濾過膜濃縮水8に熱を加えて一部の水分を蒸発させること、濃縮水を冷却して水温を下げること、濃縮水に酸やアルカリなどのpH調整剤を添加してpHを変化させることなどが例示される。特にナノ濾過膜濃縮水8に熱を加えて水分を蒸発させる方法は、同時にアルカリ金属濃度を上昇させ、アルカリ金属回収ユニットによるアルカリ金属回収効率を向上させるため、好ましい。また、例えば、リチウムとマグネシウムが共存しており、マグネシウムを除去したい場合には、アルカリを添加しpHを高めることによって、マグネシウムを効率的に取り除くことができる。蒸発の際に加える熱量や時間、冷却温度や時間、酸やアルカリ添加量などは、対象となるアルカリ金属と2価イオンの種類や濃度に応じて適宜定めることが好ましい。 Crystallization treatment uses a difference between the solubility of alkali metal and the solubility of divalent ions to crystallize more divalent ions than alkali metal, and remove the crystallized solids by solid-liquid separation. Is the method. The crystallization method is determined based on the relationship between the target alkali metal and divalent ions, and the means is not particularly limited. However, heat is applied to the nanofiltration membrane concentrated water 8 to evaporate some water. Examples thereof include cooling the concentrated water to lower the water temperature, and adding a pH adjusting agent such as acid or alkali to the concentrated water to change the pH. In particular, the method of evaporating moisture by applying heat to the nanofiltration membrane concentrated water 8 is preferable because it simultaneously increases the alkali metal concentration and improves the alkali metal recovery efficiency by the alkali metal recovery unit. For example, when lithium and magnesium coexist and it is desired to remove magnesium, magnesium can be efficiently removed by adding an alkali to raise the pH. It is preferable that the amount of heat and time, the cooling temperature and time, the amount of acid and alkali added, and the like added during evaporation be appropriately determined according to the type and concentration of the target alkali metal and divalent ions.
 晶析処理の固液分離には、沈降分離、膜分離などが例示される。ここで、原水の前処理ユニット4として除濁処理を備えている場合には、当該固液分離処理を省略して、除濁処理工程の上流側に2価イオン除去水を還流することで、固液分離を兼用してもよい。 Examples of the solid-liquid separation in the crystallization process include sedimentation separation and membrane separation. Here, when the raw water pretreatment unit 4 is equipped with a turbidity treatment, the solid-liquid separation treatment is omitted, and the divalent ion-removed water is refluxed upstream of the turbidity treatment step. Solid-liquid separation may also be used.
 吸着処理は、除去対象となる2価イオンを吸着する吸着剤とナノ濾過膜濃縮水とを接触させることで、ナノ濾過膜濃縮水から2価イオンを吸着・除去する方法である。吸着剤には、シリカ、アルミナ系の極性吸着剤と活性炭などの非極性吸着剤とがあるが、2価イオンを選択的に吸着可能な極性吸着剤であることが好ましい。 The adsorption treatment is a method of adsorbing and removing divalent ions from the nanofiltration membrane concentrated water by bringing the adsorbent that adsorbs the divalent ions to be removed into contact with the nanofiltration membrane concentrated water. Adsorbents include polar adsorbents such as silica and alumina, and nonpolar adsorbents such as activated carbon, but polar adsorbents capable of selectively adsorbing divalent ions are preferable.
 イオン交換処理は、イオン交換樹脂が、ナノ濾過膜濃縮水中に含まれる2価イオンを取り込み、代わりに別種のイオンを放出する作用を有するものであれば、特に限定しない。素材として、有機物系材料、無機物系材料が挙げられ、除去対象イオン種として、陽イオン交換樹脂、陰イオン交換樹脂などがあるが、除去対象物質に応じて適宜選択される。その際、放出されるイオンが、ナノ濾過膜ユニット6やアルカリ金属を回収する回収ユニット11の効率を低下させないものであることが好ましい。 The ion exchange treatment is not particularly limited as long as the ion exchange resin has a function of taking in divalent ions contained in the nanofiltration membrane concentrated water and releasing another kind of ions instead. Examples of the material include organic materials and inorganic materials. Examples of the ion species to be removed include a cation exchange resin and an anion exchange resin, which are appropriately selected according to the material to be removed. At that time, it is preferable that the ions to be released do not reduce the efficiency of the nanofiltration membrane unit 6 and the recovery unit 11 that recovers the alkali metal.
 本発明では、回収ユニット11によって、ナノ濾過膜透過水7中の精製アルカリ金属塩の回収を行う。 In the present invention, the recovery alkali metal salt in the nanofiltration membrane permeated water 7 is recovered by the recovery unit 11.
 精製アルカリ金属塩の回収は、例えばカリウム塩の場合、溶解度の温度依存性を利用、またはエタノールなどの貧溶媒を添加して塩化カリウムを回収する公知の方法で回収を行うことができる。リチウム塩の場合は、他のアルカリ金属塩に比べて溶解度が小さいことを利用して、例えば炭酸塩を水溶液に添加することで炭酸リチウムとして回収する。これは炭酸ナトリウムや炭酸カリウムは水への溶解度が十分高い(水100mLに対し20g以上)ことに対し、炭酸リチウムの溶解度が25℃で水100mL対して1.33gしか溶けず、さらに高温では溶解度が低下することを利用したものである。 For example, in the case of a potassium salt, the purified alkali metal salt can be recovered by a known method of recovering potassium chloride by utilizing the temperature dependency of solubility or adding a poor solvent such as ethanol. In the case of a lithium salt, it is recovered as lithium carbonate, for example, by adding a carbonate to an aqueous solution, taking advantage of its low solubility compared to other alkali metal salts. This is because sodium carbonate and potassium carbonate have a sufficiently high solubility in water (20 g or more with respect to 100 mL of water), whereas the solubility of lithium carbonate is only 1.33 g with respect to 100 mL of water at 25 ° C. This is to take advantage of the decrease.
 回収ユニット11でアルカリ金属を回収した後の回収残液13は、排水することもできれば、そのアルカリ金属含有量によっては、供給水(原水)中に還流させることも可能である。 The recovered residual liquid 13 after recovering the alkali metal by the recovery unit 11 can be drained or can be refluxed in the supply water (raw water) depending on the alkali metal content.
 また、前処理ユニット4は、特に制約されるものではなく、原水性状によって、濁質成分の除去や殺菌など適宜選択することができる。原水を前処理し、ナノ濾過膜供給水に適した水質に改質することによって、ナノ濾過膜の負担を低減し、ナノ濾過膜を安定的に保持しながら運転することが可能となる。 Further, the pretreatment unit 4 is not particularly limited, and can be appropriately selected such as removal of turbid components and sterilization depending on the raw aqueous state. By pretreating raw water and modifying it to a water quality suitable for the nanofiltration membrane supply water, it is possible to reduce the burden on the nanofiltration membrane and to operate while stably holding the nanofiltration membrane.
 供給水(原水)の濁質を除去する必要がある場合は、前処理ユニット4として砂濾過や精密濾過膜、限外濾過膜などの除濁処理を適用することが効果的である。このときバクテリアや藻類などの微生物が多い場合は、殺菌剤を添加することも好ましい。殺菌剤としては塩素を用いることが好ましく、たとえば塩素ガスや次亜塩素酸ナトリウムを遊離塩素として1~5mg/lの範囲内となるように供給水に添加するとよい。なお、前処理ユニット4の後段のナノ濾過膜ユニット6で使用されるナノ濾過膜によっては特定の殺菌剤に化学的な耐久性がない場合があるので、その場合は、なるべく供給水の上流側で添加し、さらに、ナノ濾過膜ユニット6の供給水入口側近傍にて殺菌剤を無効にすることが好ましい。例えば、遊離塩素の場合は、その濃度を測定し、この測定値に基づいて塩素ガスや次亜塩素酸ナトリウムの添加量を制御したり、亜硫酸水素ナトリウムなどの還元剤を添加したりするとよい。 When it is necessary to remove turbidity from the supplied water (raw water), it is effective to apply a turbidity treatment such as sand filtration, microfiltration membrane, ultrafiltration membrane, etc. as the pretreatment unit 4. At this time, when there are many microorganisms such as bacteria and algae, it is also preferable to add a bactericidal agent. Chlorine is preferably used as the disinfectant, and for example, chlorine gas or sodium hypochlorite may be added to the feed water as free chlorine so as to be in the range of 1 to 5 mg / l. In addition, depending on the nanofiltration membrane used in the nanofiltration membrane unit 6 subsequent to the pretreatment unit 4, there may be a case where the specific bactericidal agent does not have chemical durability. Further, it is preferable to make the disinfectant ineffective near the feed water inlet side of the nanofiltration membrane unit 6. For example, in the case of free chlorine, its concentration is measured, and the addition amount of chlorine gas and sodium hypochlorite is controlled based on this measured value, or a reducing agent such as sodium bisulfite is added.
 また、濁質以外にバクテリアやタンパク質、天然有機成分などを含有する場合は、ポリ塩化アルミニウム、硫酸バンド、塩化鉄(III)などの凝集剤を加えることも効果的である。凝集させた供給水は、その後に斜向板などで沈降させた上で砂濾過を行ったり、複数本の中空糸膜を束ねた精密濾過膜や限外濾過膜による濾過を行ったりすることによって後段のナノ濾過膜ユニット6を通過させるのに適した供給水とすることができる。特に、凝集剤の添加にあたっては、凝集しやすいようにpHを調整することが好ましい。 In addition, in the case of containing bacteria, proteins, natural organic components, etc. in addition to turbid substances, it is also effective to add a flocculant such as polyaluminum chloride, sulfate band, iron (III) chloride. The agglomerated supply water is then subjected to sand filtration after settling on an inclined plate or the like, or by filtration through a microfiltration membrane or an ultrafiltration membrane in which a plurality of hollow fiber membranes are bundled. It can be set as the feed water suitable for letting the latter nanofiltration membrane unit 6 pass. In particular, when adding the flocculant, it is preferable to adjust the pH so as to facilitate aggregation.
 ここで、前処理に砂濾過を用いる場合は、自然に流下する方式の重力式濾過を適用することもできれば、加圧タンクの中に砂を充填した加圧式濾過を適用することも可能である。充填する砂も、単一成分の砂を適用することが可能であるが、例えば、アンスラサイト、珪砂、ガーネット、軽石などを組み合わせて、濾過効率を高めることが可能である。精密濾過膜や限外濾過膜についても、特に制約はなく、平膜、中空糸膜、管状型膜、プリーツ型、その他いかなる形状のものも適宜用いることができる。膜の素材についても、特に限定されるものではなく、ポリアクリロニトリル、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリスルホン、ポリビニルアルコール、酢酸セルロースや、セラミック等の無機素材を用いることができる。また、濾過方式にしても供給水を加圧して濾過する加圧濾過方式や透過側を吸引して濾過する吸引濾過方式のいずれも適用可能である。特に、吸引濾過方式の場合は、凝集沈殿槽や生物処理槽に精密濾過膜や限外濾過膜を浸漬して濾過する、いわゆる凝集膜濾過や膜分離式活性汚泥法(MBR)を適用することも好ましい。 Here, when sand filtration is used for pretreatment, it is possible to apply gravity-type filtration that naturally flows down, or it is possible to apply pressure-type filtration in which a pressure tank is filled with sand. . As the sand to be filled, single-component sand can be applied. For example, anthracite, silica sand, garnet, pumice, and the like can be combined to increase the filtration efficiency. The microfiltration membrane and the ultrafiltration membrane are not particularly limited, and a flat membrane, a hollow fiber membrane, a tubular membrane, a pleated shape, or any other shape can be used as appropriate. The material of the membrane is not particularly limited, and it is possible to use an inorganic material such as polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, cellulose acetate, or ceramic. it can. Moreover, even if it is a filtration system, any of the pressure filtration system which pressurizes and filters supply water, and the suction filtration system which sucks and filters the permeation | transmission side are applicable. In particular, in the case of the suction filtration method, so-called agglomerated membrane filtration or membrane separation activated sludge method (MBR), in which a microfiltration membrane or an ultrafiltration membrane is immersed in a coagulation sedimentation tank or a biological treatment tank for filtration, is applied. Is also preferable.
 一方、供給水(原水)に溶解性の有機物が多く含まれている場合は、塩素ガスや次亜塩素酸ナトリウムの添加によってそれら有機物を分解することができるが、加圧浮上や活性炭濾過を行うことによっても除去が可能である。また、溶解性の無機物が多く含まれている場合は、有機系高分子電解質やヘキサメタ燐酸ソーダなどのキレート剤を添加したり、イオン交換樹脂などを用いて溶解性イオンと交換したりするとよい。また、鉄やマンガンが可溶な状態で存在しているときは、曝気酸化濾過法や接触酸化濾過法などを用いることが好ましい。 On the other hand, when the supply water (raw water) contains a lot of soluble organic matter, the organic matter can be decomposed by adding chlorine gas or sodium hypochlorite. Can also be removed. In addition, when a large amount of soluble inorganic substance is contained, a chelating agent such as an organic polymer electrolyte or sodium hexametaphosphate may be added, or exchanged with soluble ions using an ion exchange resin or the like. Further, when iron or manganese is present in a soluble state, it is preferable to use an aeration oxidation filtration method or a contact oxidation filtration method.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2012年3月30日出願の日本特許出願2012-082763に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2012-082763 filed on Mar. 30, 2012, the contents of which are incorporated herein by reference.
 本発明は、湖水、地下水、産業廃水などからリチウムやカリウムなどのアルカリ金属を回収する装置およびその運転方法に関するものであり、アルカリ金属を含有する原水に2価イオン除去水を添加することによって濃縮、分離、回収が困難な多種の溶質が含まれる水からアルカリ金属を効率的に分離回収することができる。 The present invention relates to an apparatus for recovering alkali metals such as lithium and potassium from lake water, groundwater, industrial wastewater and the like, and a method for operating the same, and is concentrated by adding divalent ion-removed water to raw water containing alkali metals. Thus, alkali metals can be efficiently separated and recovered from water containing various solutes that are difficult to separate and recover.
 1:原水
 2:原水タンク
 3:供給ポンプ
 4:前処理ユニット
 5:昇圧ポンプ
 6:ナノ濾過膜ユニット
 7:ナノ濾過膜透過水(透過水)
 8:ナノ濾過膜濃縮水(濃縮水)
 9:2価イオン除去ユニット
 10:2価イオン除去水
 11:回収ユニット
 12:アルカリ金属
 13:回収残液
 14:2価イオン
1: Raw water 2: Raw water tank 3: Supply pump 4: Pretreatment unit 5: Booster pump 6: Nanofiltration membrane unit 7: Nanofiltration membrane permeated water (permeated water)
8: Nanofiltration membrane concentrated water (concentrated water)
9: Divalent ion removal unit 10: Divalent ion removal water 11: Recovery unit 12: Alkali metal 13: Recovery residual liquid 14: Divalent ion

Claims (7)

  1.  ナノ濾過膜を用いてアルカリ金属と2価イオンとを含有する原水を透過分離して透過水と濃縮水を得ること、及び
     前記透過水に含有されているアルカリ金属の少なくとも一部を回収すること
    を含むアルカリ金属分離回収方法であって、
     前記濃縮水に含有されている2価イオンを除去することで、前記濃縮水より、アルカリ金属イオン換算重量濃度の2価イオン重量濃度に対する比率が大きい2価イオン除去水を得て、該2価イオン除去水の少なくとも一部を前記原水に還流させることを特徴とするアルカリ金属分離回収方法。
    Permeating and separating raw water containing alkali metal and divalent ions using a nanofiltration membrane to obtain permeated water and concentrated water, and recovering at least a part of the alkali metal contained in the permeated water An alkali metal separation and recovery method comprising:
    By removing divalent ions contained in the concentrated water, divalent ion-removed water having a larger ratio of alkali metal ion equivalent weight concentration to divalent ion weight concentration than the concentrated water is obtained. A method for separating and recovering an alkali metal, wherein at least a part of ion-removed water is refluxed to the raw water.
  2.  前記濃縮水を晶析処理することにより、前記2価イオンを除去して前記2価イオン除去水を得ることを特徴とする請求項1に記載のアルカリ金属分離回収方法。 2. The alkali metal separation and recovery method according to claim 1, wherein the divalent ions are removed by crystallization treatment of the concentrated water to obtain the divalent ion-removed water.
  3.  前記晶析処理が、前記濃縮水の一部を蒸発させること、前記濃縮水の水温を下げること、および、前記濃縮水にpH調整剤を添加してpHを変化させることから選択される少なくとも1つの処理であることを特徴とする請求項2に記載のアルカリ金属分離回収方法。 The crystallization treatment is at least one selected from evaporating a part of the concentrated water, lowering the temperature of the concentrated water, and changing the pH by adding a pH adjuster to the concentrated water. The method for separating and recovering alkali metal according to claim 2, wherein the process is one treatment.
  4.  前記濃縮水を吸着処理もしくはイオン交換処理することにより、2価イオンを除去して前記2価イオン除去水を得ることを特徴とする請求項1に記載のアルカリ金属分離回収方法。 2. The alkali metal separation and recovery method according to claim 1, wherein the divalent ions are removed by adsorption treatment or ion exchange treatment of the concentrated water to obtain the divalent ion-removed water.
  5.  前記原水の少なくとも一部を除濁処理することで除濁処理水を得て、該除濁処理水の少なくとも一部を前記ナノ濾過膜を用いて透過分離することを特徴とする請求項1~請求項4のいずれか1項に記載のアルカリ金属分離回収方法。 The turbidity-treated water is obtained by turbidity-treating at least a part of the raw water, and at least a part of the turbidity-treated water is permeated and separated using the nanofiltration membrane. The alkali metal separation and recovery method according to claim 4.
  6.  前記2価イオン除去水の少なくとも一部を前記原水に還流させた後に、前記除濁処理することを特徴とする請求項5に記載のアルカリ金属分離回収方法。 6. The alkali metal separation and recovery method according to claim 5, wherein the turbidity treatment is performed after at least a part of the divalent ion-removed water is refluxed to the raw water.
  7.  ナノ濾過膜を用いてアルカリ金属と2価イオンとを含有する原水を透過分離して透過水と濃縮水を得るナノ濾過膜ユニットと、前記透過水に含有されているアルカリ金属の少なくとも一部を回収する回収ユニットと、前記濃縮水に含有されている2価イオンの少なくとも一部を除去する2価イオン除去ユニットとを備え、
     該2価イオン除去ユニットで得られた2価イオン除去水の少なくとも一部を前記原水に還流することを特徴とするアルカリ金属分離回収装置。
    A nanofiltration membrane unit that permeates and separates raw water containing alkali metal and divalent ions using a nanofiltration membrane to obtain permeated water and concentrated water; and at least a part of the alkali metal contained in the permeated water. A recovery unit for recovery, and a divalent ion removal unit for removing at least a part of the divalent ions contained in the concentrated water,
    An alkali metal separation and recovery apparatus, wherein at least a part of the divalent ion-removed water obtained by the divalent ion removal unit is refluxed to the raw water.
PCT/JP2013/057539 2012-03-30 2013-03-15 Method for separation and recovery of alkali metal and alkali metal separation and recovery apparatus WO2013146391A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012082763 2012-03-30
JP2012-082763 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146391A1 true WO2013146391A1 (en) 2013-10-03

Family

ID=49259652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057539 WO2013146391A1 (en) 2012-03-30 2013-03-15 Method for separation and recovery of alkali metal and alkali metal separation and recovery apparatus

Country Status (3)

Country Link
JP (1) JPWO2013146391A1 (en)
AR (1) AR090552A1 (en)
WO (1) WO2013146391A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106276987A (en) * 2016-08-05 2017-01-04 四川思达能环保科技有限公司 The method for concentration of lithium leachate
CN106282557A (en) * 2016-08-05 2017-01-04 四川思达能环保科技有限公司 The method for concentration of lithium leachate
WO2017013536A1 (en) * 2015-07-23 2017-01-26 I.D.E. Technologies Ltd Imroved reverse osmosis or nanofiltration process for cleaning water
JPWO2015141693A1 (en) * 2014-03-18 2017-04-13 東レ株式会社 Semipermeable membrane separator and method of operating semipermeable membrane separator
JP2017176969A (en) * 2016-03-29 2017-10-05 アクアス株式会社 Processing method of raw water
JP2020020016A (en) * 2018-08-02 2020-02-06 住友金属鉱山株式会社 Purification method of lithium
WO2020158456A1 (en) * 2019-01-30 2020-08-06 東洋紡株式会社 Concentration system and concentration method
WO2021159144A1 (en) * 2020-02-06 2021-08-12 Schlumberger Technology Corporation Integrated lithium extraction
EP3885031A4 (en) * 2018-12-26 2022-07-27 Toray Industries, Inc. Alkali metal salt manufacturing method
KR20220147157A (en) * 2020-04-21 2022-11-02 도레이 카부시키가이샤 How to recover rare metal salts
WO2023196348A1 (en) * 2022-04-04 2023-10-12 Energy Exploration Technologies, Inc. Systems and methods for metal production from brine solutions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112850851B (en) * 2021-02-01 2022-04-15 中国科学院青海盐湖研究所 Method for increasing Li content in sodium sulfate subtype salt lake brine+Method of yield

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11504564A (en) * 1995-04-17 1999-04-27 ケメテイツクス インターナシヨナル カンパニー リミテツド Nanofiltration of concentrated salt solution
JP2001508925A (en) * 1997-06-23 2001-07-03 パシフィック・リシアム・リミテッド Lithium recovery and purification
JP2003154362A (en) * 2001-11-22 2003-05-27 Toray Ind Inc Method and apparatus for treating water
WO2010006366A1 (en) * 2008-07-18 2010-01-21 Rincon Lithium Limited A process for recovering lithium from a brine
JP2010227768A (en) * 2009-03-26 2010-10-14 Metawater Co Ltd Softener and method of operating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11504564A (en) * 1995-04-17 1999-04-27 ケメテイツクス インターナシヨナル カンパニー リミテツド Nanofiltration of concentrated salt solution
JP2001508925A (en) * 1997-06-23 2001-07-03 パシフィック・リシアム・リミテッド Lithium recovery and purification
JP2003154362A (en) * 2001-11-22 2003-05-27 Toray Ind Inc Method and apparatus for treating water
WO2010006366A1 (en) * 2008-07-18 2010-01-21 Rincon Lithium Limited A process for recovering lithium from a brine
JP2010227768A (en) * 2009-03-26 2010-10-14 Metawater Co Ltd Softener and method of operating the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIANMING WEN ET AL.: "Preliminary study on recovering lithium chloride from lithium- containing waters by nanofiltration", SEPARATION AND PURIFICATION TECHNOLOGY, vol. 49, 2006, pages 230 - 236 *
YANG GANG ET AL.: "Investigation of Mg2+/Li+ Separation by Nanofiltration", CHINESE JOURNAL OF CHEMICAL ENGINEERING, vol. 19, no. 4, 2011, pages 586 - 591 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015141693A1 (en) * 2014-03-18 2017-04-13 東レ株式会社 Semipermeable membrane separator and method of operating semipermeable membrane separator
EA036084B1 (en) * 2015-07-23 2020-09-24 Ай.Ди.И. ТЕКНОЛОДЖИЗ ЛТД. Improved reverse osmosis or nanofiltration process for cleaning water
WO2017013536A1 (en) * 2015-07-23 2017-01-26 I.D.E. Technologies Ltd Imroved reverse osmosis or nanofiltration process for cleaning water
JP2017176969A (en) * 2016-03-29 2017-10-05 アクアス株式会社 Processing method of raw water
CN106276987A (en) * 2016-08-05 2017-01-04 四川思达能环保科技有限公司 The method for concentration of lithium leachate
CN106282557B (en) * 2016-08-05 2018-08-28 四川思达能环保科技有限公司 The method for concentration of lithium leachate
CN106282557A (en) * 2016-08-05 2017-01-04 四川思达能环保科技有限公司 The method for concentration of lithium leachate
JP2020020016A (en) * 2018-08-02 2020-02-06 住友金属鉱山株式会社 Purification method of lithium
JP7115123B2 (en) 2018-08-02 2022-08-09 住友金属鉱山株式会社 Lithium purification method
EP3885031A4 (en) * 2018-12-26 2022-07-27 Toray Industries, Inc. Alkali metal salt manufacturing method
WO2020158456A1 (en) * 2019-01-30 2020-08-06 東洋紡株式会社 Concentration system and concentration method
JPWO2020158456A1 (en) * 2019-01-30 2021-12-02 東洋紡株式会社 Concentration system and concentration method
WO2021159144A1 (en) * 2020-02-06 2021-08-12 Schlumberger Technology Corporation Integrated lithium extraction
KR20220147157A (en) * 2020-04-21 2022-11-02 도레이 카부시키가이샤 How to recover rare metal salts
KR102528926B1 (en) * 2020-04-21 2023-05-09 도레이 카부시키가이샤 Recovery method of rare metal salt
WO2023196348A1 (en) * 2022-04-04 2023-10-12 Energy Exploration Technologies, Inc. Systems and methods for metal production from brine solutions

Also Published As

Publication number Publication date
JPWO2013146391A1 (en) 2015-12-10
AR090552A1 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
WO2013146391A1 (en) Method for separation and recovery of alkali metal and alkali metal separation and recovery apparatus
WO2012077610A1 (en) Alkali metal separation and recovery method and alkali metal separation and recovery apparatus
CN104843927B (en) Desulfurization wastewater technique of zero discharge and system
WO2012093724A1 (en) Method for alkali metal separation and recovery, and device for alkali metal separation and recovery
Ali et al. A review of membrane crystallization, forward osmosis and membrane capacitive deionization for liquid mining
Cui et al. Novel forward osmosis process to effectively remove heavy metal ions
WO2013005694A1 (en) Method for separating and recovering alkali metal, and apparatus for separating and recovering alkali metal
KR101577769B1 (en) Forward osmosis separation processes
US10315936B2 (en) Forward osmosis separation processes
Shaffer et al. Forward osmosis: where are we now?
JP5842815B2 (en) Separation and recovery method for purified alkali metal salts
US20150273396A1 (en) Draw solutions and draw solute recovery for osmotically driven membrane processes
CN106430794A (en) Resourceful treatment method and treatment system for desulfuration wastewater
CN105392552B (en) The treating method and apparatus of boron water
KR20170071502A (en) Forward osmosis process for concentration of lithium containing solutions
MX2013003271A (en) Osmotically driven membrane processes and systems and methods for draw solute recovery.
KR20150070895A (en) A Draw Solution for forward osmosis using salt of organic acid and use thereof
Gabelich et al. Concentrate treatment for inland desalting
Zhang et al. Based on high cross-linked structure design to fabricate PEI-based nanofiltration membranes for Mg2+/Li+ separation
CN113226520B (en) Method for producing alkali metal salt
WO2023140055A1 (en) Method for fixing carbon dioxide
KR20140119566A (en) A Draw Solution for forward osmosis using salt of polyethyleneimine and use thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013534111

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767596

Country of ref document: EP

Kind code of ref document: A1