WO2013146149A1 - Fuel cell module - Google Patents

Fuel cell module Download PDF

Info

Publication number
WO2013146149A1
WO2013146149A1 PCT/JP2013/056167 JP2013056167W WO2013146149A1 WO 2013146149 A1 WO2013146149 A1 WO 2013146149A1 JP 2013056167 W JP2013056167 W JP 2013056167W WO 2013146149 A1 WO2013146149 A1 WO 2013146149A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurizer
hydrogen
fuel cell
reformer
cell module
Prior art date
Application number
PCT/JP2013/056167
Other languages
French (fr)
Japanese (ja)
Inventor
俊幸 海野
修平 咲間
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2013146149A1 publication Critical patent/WO2013146149A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell module.
  • a reformer that generates a reformed gas using a hydrogen-containing fuel, a cell stack that generates power using the reformed gas, and a casing that houses at least the reformer and the cell stack And a desulfurizer that desulfurizes the hydrogen-containing fuel supplied to the reformer is known.
  • Patent Document 1 describes a fuel cell module that uses a desulfurizer isolated from a casing without heating.
  • a desulfurization catalyst of this desulfurizer for example, a zeolite desulfurization catalyst supporting metal fine particles Etc. are used.
  • Patent Document 2 describes a fuel cell module that is used by heating a desulfurizer with the heat of exhaust gas from a cell stack.
  • the desulfurization catalyst may be limited to a relatively expensive one such as a zeolite desulfurization catalyst, or the overall energy efficiency may be reduced due to a decrease in exhaust gas temperature. Therefore, in recent fuel cell modules, with increasing spread to homes and the like, it is strongly required to realize cost reduction while maintaining energy efficiency.
  • an object of one aspect of the present invention is to provide a fuel cell module capable of realizing cost reduction while maintaining energy efficiency.
  • a fuel cell module includes a reformer that generates a reformed gas using a hydrogen-containing fuel, a cell stack that generates power using the reformed gas, and a modification. And a desulfurizer that desulfurizes the hydrogen-containing fuel supplied to the reformer, and the desulfurizer is thermally connected to the outer surface of the housing. Is attached.
  • the desulfurizer since the desulfurizer is attached so as to be thermally connected to the outer surface of the casing, the desulfurizer is not heated by the heat of the exhaust gas.
  • the desulfurizer can be heated by transferring heat from the cell stack, which has only been released from the body to the outside, from the casing to the desulfurizer. Therefore, it is possible to suppress a decrease in energy efficiency due to heating of the desulfurizer.
  • the desulfurizer can be heated and maintained at a high temperature in this way, it is possible to use a relatively inexpensive metal-based desulfurization catalyst that requires heating as the desulfurization catalyst. Therefore, according to one aspect of the present invention, cost reduction can be realized while maintaining energy efficiency.
  • the desulfurizer may be attached to the outer surface of the housing via a heat insulating material.
  • the heat transfer from the housing to the desulfurizer can be controlled by the heat insulating material, and as a result, the temperature of the desulfurizer can be controlled.
  • the casing and the desulfurizer may be wrapped with a heat insulating material.
  • the above effect that is, the effect of heating the desulfurizer by transferring heat from the heat generated by the cell stack from the casing to the desulfurizer instead of heating the desulfurizer with the heat of the exhaust gas, is effective. Can be demonstrated.
  • the desulfurizer has a flow path through which the hydrogen-containing fuel is circulated, and the flow path can exchange heat with each other between the inlet side through which the hydrogen-containing fuel flows and the outlet side through which the hydrogen-containing fuel flows out. It may be folded back. In this case, the temperature distribution of the desulfurizer can be made uniform, and the hydrogen-containing fuel can be suitably desulfurized.
  • FIG. 1 is a schematic block diagram showing a fuel cell module according to an embodiment of the present invention.
  • the fuel cell module 1 of this embodiment includes a housing 6 that houses at least a reformer 2, a cell stack 3, a combustion unit 4, and a water vaporizer 5.
  • the fuel cell module 1 generates power in the cell stack 3 using a hydrogen-containing fuel and an oxidant.
  • the type of the cell stack 3 in the fuel cell module 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and a phosphoric acid type.
  • PEFC polymer electrolyte fuel cell
  • SOFC solid oxide fuel cell
  • phosphoric acid type a phosphoric acid type.
  • hydrocarbon fuel a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used.
  • hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil.
  • methanol and ethanol are mentioned as alcohols.
  • ethers include dimethyl ether.
  • biofuels include biogas, bioethanol, biodiesel, and biojet.
  • oxygen-enriched air is used as the oxidizing agent.
  • the reformer 2 generates a reformed gas as a hydrogen rich gas (hydrogen containing gas) from the supplied hydrogen containing fuel.
  • the reformer 2 reforms the hydrogen-containing fuel and generates a reformed gas by a reforming reaction using a reforming catalyst.
  • the reforming method in the reformer 2 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed.
  • the reformer 2 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen-rich gas required for the cell stack 3.
  • the reformer 2 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part). The reformer 2 supplies the reformed gas to the cell stack 3.
  • PEFC polymer electrolyte fuel cell
  • PAFC phosphoric acid fuel cell
  • the cell stack 3 generates power using the reformed gas and oxidant from the reformer 2.
  • the cell stack 3 supplies the reformed gas and the oxidant, which have not been used for power generation, to the combustion unit 4 as off-gas.
  • the combustion unit 4 burns off gas supplied from the cell stack 3 and heats the reformer 2 and the water vaporizer 5.
  • the combustion unit 4 is located at the upper part of the cell stack 3.
  • the combustor 4 is composed of, for example, a case.
  • the reformed gas and the oxidant that have not been used for power generation are combusted in the case, and the reformer 2 and the water vaporizer 5 that are thermally connected to the case are provided. You may heat indirectly.
  • the combustion part 4 is comprised without a case, for example, burns the reformed gas and oxidant which were not used for electric power generation at the upper part of the cell stack 3, and heats the reformer 2 and the water vaporizer 5 directly. May be.
  • the exhaust gas generated by the combustion of the combustion unit 4 is exhausted outside the housing 6.
  • the water vaporizer 5 is an evaporator that heats and vaporizes supplied water to generate water vapor supplied to the reformer 2.
  • the water vaporizer 5 supplies the generated steam to the reformer 2. Heating of the water in the water vaporizer 5 can use heat generated in the fuel cell module 1 such as recovering heat of the reformer 2, heat of the combustion unit 4, or exhaust gas.
  • the water vaporizer 5 is disposed on the upper side of the combustion unit 4.
  • the housing 6 is a metal box having a rectangular parallelepiped shape, and has an internal space for accommodating at least the reformer 2, the cell stack 3, the combustion unit 4, and the water vaporizer 5.
  • the fuel cell module 1 of the present embodiment includes a desulfurizer 7.
  • the desulfurizer 7 has a long box-like outer shape, and desulfurizes the hydrogen-containing fuel supplied to the reformer 2.
  • the desulfurizer 7 has a desulfurization catalyst 7x for removing sulfur compounds contained in the hydrogen-containing fuel.
  • a desulfurization method of the desulfurizer 7 for example, a hydrodesulfurization method in which a sulfur compound is removed by reacting with hydrogen is employed.
  • the desulfurizer 7 supplies the desulfurized hydrogen-containing fuel to the reformer 2.
  • As the desulfurization catalyst 7x a metal desulfurization catalyst represented by Ni is used.
  • the desulfurizer 7 has a flow path 8 through which hydrogen-containing fuel flows.
  • the flow path 8 is filled with the desulfurization catalyst 7x.
  • the flow path 8 is folded back so that heat exchange can be performed between the inlet 8a side through which the hydrogen-containing fuel flows and the outlet 8b side through which the hydrogen-containing fuel flows out.
  • an inlet portion 8 a is provided at the lower portion of one side surface 7 a of the desulfurizer 7, and an outlet portion 8 b is provided at the upper portion of the side surface 7 a of the desulfurizer 7.
  • the inlet portion 8a side and the outlet portion 8b side in the flow path 8 are in contact with each other via a metal plate 7c extending in the longitudinal direction so as to vertically define the inside of the desulfurizer 7.
  • Such a flow path 8 extends straight from the inlet portion 8a to the vicinity of the other side surface 7b, is then folded back toward the side surface 7a so as to wrap around upward, and extends straight to the outlet portion 8b.
  • a diffusion layer 7y for diffusing the hydrogen-containing fuel is provided on each of the inlet 8a side and the outlet 8b side in the flow path 8.
  • An inlet pipe 7d for flowing hydrogen-containing fuel into the inlet section 8a is connected to the inlet section 8a, and an outlet pipe 7e for flowing hydrogen-containing fuel to the outside of the outlet section 8b is connected to the outlet section 8b.
  • the desulfurizer 7 is disposed horizontally on the upper surface (outer surface) 6a of the housing 6 via a heat insulating material 9, and is attached so as to be thermally connected to the upper surface 6a of the housing 6. Specifically, the desulfurizer 7 is placed on the upper surface 6 a of the casing 6 so as to sandwich the heat insulating material 9 between the desulfurizer 7 and the casing 6. In other words, the housing 6, the heat insulating material 9, and the desulfurizer 7 are in contact with each other and are stacked in this order from the bottom to the top.
  • the heat insulating material 9 has a plate shape having a predetermined thickness, and spreads on the upper surface 6a of the housing 6 so as to include at least the desulfurizer 7 when viewed from above. That is, the heat insulating material 9 is interposed between the desulfurizer 7 and the housing 6 so that the desulfurizer 7 and the housing 6 do not directly face each other.
  • this heat insulating material 9 by appropriately setting the predetermined thickness, the amount of heat transferred from the housing 6 to the desulfurizer 7 can be controlled, and the temperature of the desulfurizer 7 can be maintained at a predetermined temperature.
  • the thickness of the heat insulating material 9 here is set so that the desulfurizer 7 does not exceed the upper limit temperature, thereby improving safety and reliability.
  • the material and specification are not limited, A various thing can be used.
  • the casing 6 and the desulfurizer 7 that are thermally connected to each other with the heat insulating material 9 interposed therebetween are wrapped with an outer heat insulating material (heat insulating material) 10 so as to cover the outer periphery thereof.
  • the outer heat insulating material 10 surrounds the casing 6, the desulfurizer 7 and the heat insulating material 9 so as to be thermally sealed from the outside, and these are fixed and integrated with each other.
  • the outer heat insulating material 10 the material and specification are not limited similarly to the said heat insulating material 9, A various thing can be used.
  • the desulfurizer 7 is attached so as to be thermally connected to the upper surface 6 a of the housing 6. Therefore, instead of heating the desulfurizer 7 by the heat of the exhaust gas, as shown in FIG. 3, the heat generation of the cell stack 3 itself and the combustion of the combustion unit 4 that were conventionally only released from the housing 6 to the outside. Heat from the housing 6 is transferred from the housing 6 to the desulfurizer 7, and the desulfurizer 7 can be heated to 100 ° C or higher (preferably 150 ° C to 300 ° C). From the viewpoint of heating the desulfurizer 7, the cell stack 3 is preferably a solid oxide fuel cell or a molten carbonate fuel cell having a high operating temperature.
  • the desulfurizer 7 since it is not necessary to heat the desulfurizer 7 with the exhaust gas, it is possible to prevent the overall energy efficiency from being lowered due to a decrease in the exhaust gas temperature. That is, it is possible to suppress a decrease in energy efficiency due to heating of the desulfurizer 7. Further, since the desulfurizer 7 can be heated and maintained at a high temperature, a relatively inexpensive metal-based desulfurization catalyst that requires heating can be used as the desulfurization catalyst, and the zeolite desulfurization agent carrying metal fine particles is supported. It is not necessary to use a relatively expensive desulfurization catalyst represented by Therefore, according to the present embodiment, it is possible to realize cost reduction while maintaining energy efficiency.
  • the desulfurizer 7 can be integrated with the housing 6, and it is not necessary to arrange the desulfurizer 7 separately from the housing 6, so that the configuration can be made compact. Moreover, in this embodiment, the structure which directly heat-exchanges the desulfurizer 7 with waste gas is also unnecessary. In addition, since the desulfurizer 7 is not heated as much as the reformer 2, the desulfurization catalyst 7x is not limited to those that can be used in a temperature range very close to the reforming catalyst (for example, about 600 ° C.).
  • the desulfurizer 7 is attached to the upper surface 6a of the housing 6 via the heat insulating material 9 as described above, the heat insulating material 9 connects the housing 6 to the desulfurizer 7. It becomes possible to control the temperature of the desulfurizer 7 by controlling the heat transfer.
  • the desulfurizer is configured by transferring heat from the casing 6 to the desulfurizer 7 instead of the above-described effects, that is, heating the desulfurizer 7 with the heat of the exhaust gas, rather than the heat generated by the cell stack 3 or the combustion of the combustion unit 4. The effect of heating 7 can be effectively exhibited.
  • the flow path 8 of the desulfurizer 7 is folded back, and heat exchange is possible between the inlet 8a side and the outlet 8b side of the flow path 8. Therefore, in the desulfurizer 7, the hydrogen-containing fuel that has flowed into the inlet portion 8a is heated with the hydrogen-containing fuel that flows out from the outlet portion 8b.
  • the temperature distribution O1 of the desulfurizer 7 that has conventionally been low on the inlet 8a side of the flow path 8 and easily increased on the outlet 8b side is suitable for the desulfurization catalyst 7x.
  • the temperature distribution O2 can be made uniform so as to be maintained within a range (for example, 150 ° C. to 300 ° C.).
  • the cell stack 3, the combustion unit 4, the reformer 2, and the desulfurizer 7 are arranged in this order from the bottom to the top, and the desulfurizer 7 is heated. ing. Therefore, heat can be suitably transferred to the desulfurizer 7 using the property (convection) in which the heat is directed from the bottom to the top.
  • the arrangement position of the water vaporizer 5 is not limited to the above embodiment, and the water vaporizer 5 may be arranged at the bottom in the housing 6.
  • the desulfurizer 7 is attached to the upper surface 6 a of the housing 6.
  • the desulfurizer 7 may be attached to the bottom surface or the side surface of the housing 6. It is only necessary to be attached so as to be connected.
  • the direction in which the desulfurizer 7 is arranged is horizontal in the above embodiment, but may be vertical, and as shown in FIG. 5 (a), the desulfurizer 7 of FIG. May be reversed.
  • the form of the flow path 8 in the desulfurizer 7 is not limited to the above embodiment.
  • an inlet portion 8a ′ is provided substantially at the center of the side surface 7a in the desulfurizer 7, and an outlet portion 8b is provided above the side surface 7a so as to be close to the inlet portion 8a ′.
  • Such a flow path 8 extends straight from the inlet portion 8a to the vicinity of the side surface 7b in the pipe 7d, and then is folded back toward the side surface 7a so as to wrap around from above and below outside the pipe 7d. It extends toward.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell module is provided with a reformer that generates reformed gas using hydrogen-containing fuel, a cell stack that generates power using the reformed gas, a housing that houses at least the reformer and the cell stack therein, and a desulfurizer that desulfurizes the hydrogen-containing fuel supplied to the reformer. The desulfurizer is mounted onto the housing so as to be thermally connected to the outer surface thereof.

Description

燃料電池モジュールFuel cell module
 本発明は、燃料電池モジュールに関する。 The present invention relates to a fuel cell module.
 従来、燃料電池モジュールとしては、水素含有燃料を用いて改質ガスを発生させる改質器と、改質ガスを用いて発電を行うセルスタックと、改質器及びセルスタックを少なくとも収納する筐体と、改質器に供給される水素含有燃料の脱硫を行う脱硫器と、を備えたものが知られている。 Conventionally, as a fuel cell module, a reformer that generates a reformed gas using a hydrogen-containing fuel, a cell stack that generates power using the reformed gas, and a casing that houses at least the reformer and the cell stack And a desulfurizer that desulfurizes the hydrogen-containing fuel supplied to the reformer is known.
 例えば特許文献1には、筐体に対し隔離された脱硫器を加熱せずに使用する燃料電池モジュールが記載されており、この脱硫器の脱硫触媒としては、例えば金属微粒子を担持したゼオライト脱硫触媒等が用いられている。また、例えば特許文献2には、セルスタックの排ガスの熱で脱硫器を加熱して使用する燃料電池モジュールが記載されている。 For example, Patent Document 1 describes a fuel cell module that uses a desulfurizer isolated from a casing without heating. As a desulfurization catalyst of this desulfurizer, for example, a zeolite desulfurization catalyst supporting metal fine particles Etc. are used. For example, Patent Document 2 describes a fuel cell module that is used by heating a desulfurizer with the heat of exhaust gas from a cell stack.
特開2009-032406号公報JP 2009-032406 A 特開2006-309982号公報JP 2006-309982 A
 ここで、上述した燃料電池モジュールでは、脱硫触媒がゼオライト脱硫触媒等の比較的高価なものに限られてしまうおそれや、排ガス温度の低下により全体のエネルギ効率が低下してしまうおそれがある。そこで、近年の燃料電池モジュールにおいては、家庭等への益々の普及に伴い、そのエネルギ効率を維持しつつ低コスト化を実現することが強く要求されている。 Here, in the fuel cell module described above, the desulfurization catalyst may be limited to a relatively expensive one such as a zeolite desulfurization catalyst, or the overall energy efficiency may be reduced due to a decrease in exhaust gas temperature. Therefore, in recent fuel cell modules, with increasing spread to homes and the like, it is strongly required to realize cost reduction while maintaining energy efficiency.
 そこで、本発明の一側面は、エネルギ効率を維持しつつ低コスト化を実現することが可能な燃料電池モジュールを提供することを課題とする。 Accordingly, an object of one aspect of the present invention is to provide a fuel cell module capable of realizing cost reduction while maintaining energy efficiency.
 上記課題を解決するため、本発明の一側面に係る燃料電池モジュールは、水素含有燃料を用いて改質ガスを発生させる改質器と、改質ガスを用いて発電を行うセルスタックと、改質器及びセルスタックを少なくとも収納する筐体と、改質器に供給される水素含有燃料の脱硫を行う脱硫器と、を備え、脱硫器は、筐体の外面に対し熱的に接続するように取り付けられている。 In order to solve the above-described problems, a fuel cell module according to one aspect of the present invention includes a reformer that generates a reformed gas using a hydrogen-containing fuel, a cell stack that generates power using the reformed gas, and a modification. And a desulfurizer that desulfurizes the hydrogen-containing fuel supplied to the reformer, and the desulfurizer is thermally connected to the outer surface of the housing. Is attached.
 この本発明の一側面に係る燃料電池モジュールでは、脱硫器が筐体の外面に熱的に接続するように取り付けられているため、排ガスの熱によって脱硫器を加熱するのではなく、従来は筐体から外部へ放出されるだけであったセルスタックの発熱等による熱を、筐体から脱硫器へ伝熱させて脱硫器を加熱することができる。よって、脱硫器の加熱に起因してエネルギ効率が低下するのを抑制可能となる。また、このように脱硫器を加熱して高温に維持することができるため、加熱が要される比較的安価な金属系脱硫触媒等を脱硫触媒として使用することが可能となる。従って、本発明の一側面によれば、エネルギ効率を維持しつつ低コスト化を実現することができる。 In the fuel cell module according to one aspect of the present invention, since the desulfurizer is attached so as to be thermally connected to the outer surface of the casing, the desulfurizer is not heated by the heat of the exhaust gas. The desulfurizer can be heated by transferring heat from the cell stack, which has only been released from the body to the outside, from the casing to the desulfurizer. Therefore, it is possible to suppress a decrease in energy efficiency due to heating of the desulfurizer. In addition, since the desulfurizer can be heated and maintained at a high temperature in this way, it is possible to use a relatively inexpensive metal-based desulfurization catalyst that requires heating as the desulfurization catalyst. Therefore, according to one aspect of the present invention, cost reduction can be realized while maintaining energy efficiency.
 また、脱硫器は、筐体の外面に対し断熱材を介して取り付けられていてもよい。この場合、断熱材によって筐体から脱硫器への伝熱を制御することができ、その結果、脱硫器の温度を制御することが可能となる。 Moreover, the desulfurizer may be attached to the outer surface of the housing via a heat insulating material. In this case, the heat transfer from the housing to the desulfurizer can be controlled by the heat insulating material, and as a result, the temperature of the desulfurizer can be controlled.
 また、筐体及び脱硫器は、断熱材で包まれていてもよい。この場合、上記作用効果、すなわち、排ガスの熱で脱硫器を加熱するのではなくセルスタックの発熱等による熱を筐体から脱硫器へ伝熱させて脱硫器を加熱するという作用効果を、効果的に発揮することができる。 Further, the casing and the desulfurizer may be wrapped with a heat insulating material. In this case, the above effect, that is, the effect of heating the desulfurizer by transferring heat from the heat generated by the cell stack from the casing to the desulfurizer instead of heating the desulfurizer with the heat of the exhaust gas, is effective. Can be demonstrated.
 また、脱硫器は、その内部に水素含有燃料を流通させる流路を有し、流路は、水素含有燃料を流入させる入口部側と水素含有燃料を流出させる出口部側とで互いに熱交換可能になるよう折り返されていてもよい。この場合、脱硫器の温度分布を均一化することができ、水素含有燃料を好適に脱硫することが可能となる。 Further, the desulfurizer has a flow path through which the hydrogen-containing fuel is circulated, and the flow path can exchange heat with each other between the inlet side through which the hydrogen-containing fuel flows and the outlet side through which the hydrogen-containing fuel flows out. It may be folded back. In this case, the temperature distribution of the desulfurizer can be made uniform, and the hydrogen-containing fuel can be suitably desulfurized.
 本発明の一側面によれば、エネルギ効率を維持しつつ低コスト化を実現することが可能となる。 According to one aspect of the present invention, it is possible to realize cost reduction while maintaining energy efficiency.
一実施形態に係る燃料電池モジュールを示す概略ブロック図である。It is a schematic block diagram which shows the fuel cell module which concerns on one Embodiment. 図1の燃料電池モジュールにおける脱硫器を示す断面図である。It is sectional drawing which shows the desulfurizer in the fuel cell module of FIG. 図1の燃料電池モジュールを説明するための概略斜視図である。It is a schematic perspective view for demonstrating the fuel cell module of FIG. 図1の燃料電池モジュールにおける脱硫器の温度分布を流路に沿って示すグラフである。It is a graph which shows the temperature distribution of the desulfurizer in the fuel cell module of FIG. 1 along a flow path. (a)は図1の燃料電池モジュールにおける脱硫器の変形例を示す断面図、(b)は図1の燃料電池モジュールにおける脱硫器の他の変形例を示す断面図である。(A) is sectional drawing which shows the modification of the desulfurizer in the fuel cell module of FIG. 1, (b) is sectional drawing which shows the other modification of the desulfurizer in the fuel cell module of FIG.
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、以下の説明において同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
 図1は、本発明の一実施形態に係る燃料電池モジュールを示す概略ブロック図である。図1に示すように、本実施形態の燃料電池モジュール1は、改質器2、セルスタック3、燃焼部4及び水気化器5を少なくとも収容する筐体6を備えている。 FIG. 1 is a schematic block diagram showing a fuel cell module according to an embodiment of the present invention. As shown in FIG. 1, the fuel cell module 1 of this embodiment includes a housing 6 that houses at least a reformer 2, a cell stack 3, a combustion unit 4, and a water vaporizer 5.
 この燃料電池モジュール1は、水素含有燃料及び酸化剤を用いて、セルスタック3にて発電を行う。燃料電池モジュール1におけるセルスタック3の種類は特に限定されず、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、固体酸化物形燃料電池(SOFC:Solid Oxide FuelCell)、リン酸形燃料電池(PAFC:Phosphoric
Acid FuelCell)、溶融炭酸塩形燃料電池(MCFC:Molten Carbonate Fuel
Cell)、及び、その他の種類を採用することができる。
The fuel cell module 1 generates power in the cell stack 3 using a hydrogen-containing fuel and an oxidant. The type of the cell stack 3 in the fuel cell module 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and a phosphoric acid type. Fuel cell (PAFC: Phosphoric)
Acid FuelCell), Molten Carbonate Fuel Cell (MCFC)
Cell) and other types can be employed.
 水素含有燃料として、例えば、炭化水素系燃料が用いられる。炭化水素系燃料として、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料として、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。 As the hydrogen-containing fuel, for example, a hydrocarbon fuel is used. As the hydrocarbon fuel, a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used. Examples of hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil.
 なお、アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。酸化剤として、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。 In addition, methanol and ethanol are mentioned as alcohols. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet. As the oxidizing agent, for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
 改質器2は、供給される水素含有燃料から水素リッチガス(水素含有ガス)としての改質ガスを発生させる。改質器2は、改質触媒を用いた改質反応により、水素含有燃料を改質して改質ガスを発生させる。改質器2での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。なお、改質器2は、セルスタック3に要求される水素リッチガスの性状によって、改質触媒により改質する改質器の他に性状を調整するための構成を有する場合もある。例えば、セルスタック3のタイプが固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)であった場合、改質器2は、水素リッチガス中の一酸化炭素を除去するための構成(例えば、シフト反応部、選択酸化反応部)を有する。改質器2は、改質ガスをセルスタック3へ供給する。 The reformer 2 generates a reformed gas as a hydrogen rich gas (hydrogen containing gas) from the supplied hydrogen containing fuel. The reformer 2 reforms the hydrogen-containing fuel and generates a reformed gas by a reforming reaction using a reforming catalyst. The reforming method in the reformer 2 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed. The reformer 2 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen-rich gas required for the cell stack 3. For example, when the type of the cell stack 3 is a polymer electrolyte fuel cell (PEFC) or a phosphoric acid fuel cell (PAFC), the reformer 2 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part). The reformer 2 supplies the reformed gas to the cell stack 3.
 セルスタック3は、改質器2からの改質ガス及び酸化剤を用いて発電を行う。このセルスタック3は、発電に用いられなかった改質ガス及び酸化剤をオフガスとして、燃焼部4へ供給する。 The cell stack 3 generates power using the reformed gas and oxidant from the reformer 2. The cell stack 3 supplies the reformed gas and the oxidant, which have not been used for power generation, to the combustion unit 4 as off-gas.
 燃焼部4は、セルスタック3から供給されるオフガスを燃焼させ、改質器2及び水気化器5を加熱する。この燃焼部4は、セルスタック3の上部に位置している。燃焼部4は例えばケースから構成され、発電に用いられなかった改質ガス及び酸化剤をこのケース内で燃焼し、このケースと熱的に接続している改質器2及び水気化器5を間接的に加熱してもよい。又は、燃焼部4は例えばケース無しで構成され、セルスタック3の上部で、発電に用いられなかった改質ガス及び酸化剤を燃焼し、改質器2及び水気化器5を直接的に加熱してもよい。燃焼部4の燃焼で発生した排ガスは、筐体6外へ排気される。 The combustion unit 4 burns off gas supplied from the cell stack 3 and heats the reformer 2 and the water vaporizer 5. The combustion unit 4 is located at the upper part of the cell stack 3. The combustor 4 is composed of, for example, a case. The reformed gas and the oxidant that have not been used for power generation are combusted in the case, and the reformer 2 and the water vaporizer 5 that are thermally connected to the case are provided. You may heat indirectly. Or the combustion part 4 is comprised without a case, for example, burns the reformed gas and oxidant which were not used for electric power generation at the upper part of the cell stack 3, and heats the reformer 2 and the water vaporizer 5 directly. May be. The exhaust gas generated by the combustion of the combustion unit 4 is exhausted outside the housing 6.
 水気化器5は、供給される水を加熱し気化させ、改質器2に供給される水蒸気を生成する蒸発器である。水気化器5は、生成した水蒸気を改質器2へ供給する。この水気化器5における水の加熱は、例えば、改質器2の熱、燃焼部4の熱、あるいは排ガスの熱を回収する等、燃料電池モジュール1内で発生した熱を用いることができる。本実施形態では、水気化器5は、燃焼部4の上方側に配置されている。 The water vaporizer 5 is an evaporator that heats and vaporizes supplied water to generate water vapor supplied to the reformer 2. The water vaporizer 5 supplies the generated steam to the reformer 2. Heating of the water in the water vaporizer 5 can use heat generated in the fuel cell module 1 such as recovering heat of the reformer 2, heat of the combustion unit 4, or exhaust gas. In the present embodiment, the water vaporizer 5 is disposed on the upper side of the combustion unit 4.
 筐体6は、直方体状を呈する金属製の箱体とされ、少なくとも改質器2、セルスタック3、燃焼部4及び水気化器5を収納するための内部空間を有している。 The housing 6 is a metal box having a rectangular parallelepiped shape, and has an internal space for accommodating at least the reformer 2, the cell stack 3, the combustion unit 4, and the water vaporizer 5.
 また、図1,2に示すように、本実施形態の燃料電池モジュール1は、脱硫器7を備えている。脱硫器7は、その外形が長尺箱状を呈しており、改質器2に供給される水素含有燃料の脱硫を行う。この脱硫器7は、水素含有燃料に含有される硫黄化合物を除去するための脱硫触媒7xを有している。脱硫器7の脱硫方式としては、例えば硫黄化合物を水素と反応させて除去する水素化脱硫方式が採用されている。脱硫器7は、脱硫した水素含有燃料を改質器2へ供給する。脱硫触媒7xとしては、Niに代表される金属系脱硫触媒が用いられている。 Further, as shown in FIGS. 1 and 2, the fuel cell module 1 of the present embodiment includes a desulfurizer 7. The desulfurizer 7 has a long box-like outer shape, and desulfurizes the hydrogen-containing fuel supplied to the reformer 2. The desulfurizer 7 has a desulfurization catalyst 7x for removing sulfur compounds contained in the hydrogen-containing fuel. As the desulfurization method of the desulfurizer 7, for example, a hydrodesulfurization method in which a sulfur compound is removed by reacting with hydrogen is employed. The desulfurizer 7 supplies the desulfurized hydrogen-containing fuel to the reformer 2. As the desulfurization catalyst 7x, a metal desulfurization catalyst represented by Ni is used.
 脱硫器7は、水素含有燃料を流通させる流路8を内部に有している。この流路8には、上記脱硫触媒7xが充填されている。また、流路8は、水素含有燃料を流入させる入口部8a側と、水素含有燃料を流出させる出口部8b側と、の間で互いに熱交換可能になるよう折り返されている。 The desulfurizer 7 has a flow path 8 through which hydrogen-containing fuel flows. The flow path 8 is filled with the desulfurization catalyst 7x. The flow path 8 is folded back so that heat exchange can be performed between the inlet 8a side through which the hydrogen-containing fuel flows and the outlet 8b side through which the hydrogen-containing fuel flows out.
 具体的には、流路8では、脱硫器7における一方の側面7a下部に入口部8aが設けられ、脱硫器7における側面7a上部に出口部8bが設けられている。流路8における入口部8a側及び出口部8b側は、脱硫器7内を上下に画設するよう長手方向に延びる金属板7cを介して、互いに当接されている。このような流路8は、入口部8aから他方の側面7b近傍まで真っ直ぐ延びた後、上方へ回り込むよう側面7a側へ向けて折り返され、そして、出口部8bまで真っ直ぐ延びている。 Specifically, in the flow path 8, an inlet portion 8 a is provided at the lower portion of one side surface 7 a of the desulfurizer 7, and an outlet portion 8 b is provided at the upper portion of the side surface 7 a of the desulfurizer 7. The inlet portion 8a side and the outlet portion 8b side in the flow path 8 are in contact with each other via a metal plate 7c extending in the longitudinal direction so as to vertically define the inside of the desulfurizer 7. Such a flow path 8 extends straight from the inlet portion 8a to the vicinity of the other side surface 7b, is then folded back toward the side surface 7a so as to wrap around upward, and extends straight to the outlet portion 8b.
 また、流路8における入口部8a側及び出口部8b側のそれぞれには、水素含有燃料を拡散させるための拡散層7yが設けられている。入口部8aには、当該入口部8a内へと水素含有燃料を流通させる流入配管7dが接続され、出口部8bには、当該出口部8b外へと水素含有燃料を流通させる流出配管7eが接続されている。 Further, a diffusion layer 7y for diffusing the hydrogen-containing fuel is provided on each of the inlet 8a side and the outlet 8b side in the flow path 8. An inlet pipe 7d for flowing hydrogen-containing fuel into the inlet section 8a is connected to the inlet section 8a, and an outlet pipe 7e for flowing hydrogen-containing fuel to the outside of the outlet section 8b is connected to the outlet section 8b. Has been.
 この脱硫器7は、筐体6の上面(外面)6aに断熱材9を介して横置きに配設され、筐体6の上面6aに対し熱的に接続するよう取り付けられている。具体的には、脱硫器7は、筐体6との間で断熱材9を挟み込むようにして当該筐体6の上面6a上に載置されている。換言すると、筐体6、断熱材9及び脱硫器7は、互いに当接されると共に、下方から上方にこの順で積層されている。 The desulfurizer 7 is disposed horizontally on the upper surface (outer surface) 6a of the housing 6 via a heat insulating material 9, and is attached so as to be thermally connected to the upper surface 6a of the housing 6. Specifically, the desulfurizer 7 is placed on the upper surface 6 a of the casing 6 so as to sandwich the heat insulating material 9 between the desulfurizer 7 and the casing 6. In other words, the housing 6, the heat insulating material 9, and the desulfurizer 7 are in contact with each other and are stacked in this order from the bottom to the top.
 断熱材9は、所定厚さを有する板状を呈しており、上方から見て少なくとも脱硫器7を含むように筐体6の上面6aにて拡がっている。つまり、脱硫器7及び筐体6が直接対向しないように脱硫器7及び筐体6間に断熱材9が介在されている。この断熱材9では、その所定厚さを適宜設定することで、筐体6から脱硫器7へ伝熱される熱量を制御し、脱硫器7の温度を所定温度に維持させることができる。ここでの断熱材9の厚さは、脱硫器7が上限温度以上にならないよう設定されており、これにより、安全性及び信頼性が高められている。なお、断熱材9としては、その材質や仕様は限定されず、種々のものを使用することができる。 The heat insulating material 9 has a plate shape having a predetermined thickness, and spreads on the upper surface 6a of the housing 6 so as to include at least the desulfurizer 7 when viewed from above. That is, the heat insulating material 9 is interposed between the desulfurizer 7 and the housing 6 so that the desulfurizer 7 and the housing 6 do not directly face each other. In this heat insulating material 9, by appropriately setting the predetermined thickness, the amount of heat transferred from the housing 6 to the desulfurizer 7 can be controlled, and the temperature of the desulfurizer 7 can be maintained at a predetermined temperature. The thickness of the heat insulating material 9 here is set so that the desulfurizer 7 does not exceed the upper limit temperature, thereby improving safety and reliability. In addition, as the heat insulating material 9, the material and specification are not limited, A various thing can be used.
 また、断熱材9を挟んで互いに熱的に接続された筐体6及び脱硫器7は、その外囲が覆われよう外側断熱材(断熱材)10で包まれている。外側断熱材10は、筐体6、脱硫器7及び断熱材9を外部に対し熱的に密閉するように取り囲むと共に、これらを互いに固定して一体化させている。なお、外側断熱材10としては、上記断熱材9と同様に、その材質や仕様は限定されず、種々のものを使用することができる。 The casing 6 and the desulfurizer 7 that are thermally connected to each other with the heat insulating material 9 interposed therebetween are wrapped with an outer heat insulating material (heat insulating material) 10 so as to cover the outer periphery thereof. The outer heat insulating material 10 surrounds the casing 6, the desulfurizer 7 and the heat insulating material 9 so as to be thermally sealed from the outside, and these are fixed and integrated with each other. In addition, as the outer heat insulating material 10, the material and specification are not limited similarly to the said heat insulating material 9, A various thing can be used.
 以上、本実施形態の燃料電池モジュール1では、脱硫器7が筐体6の上面6aに熱的に接続するように取り付けられている。そのため、排ガスの熱により脱硫器7を加熱するのではなく、図3に示すように、従来は筐体6から外部へ放出されるだけであったセルスタック3自体の発熱や燃焼部4の燃焼等による熱を、筐体6から脱硫器7へ伝熱させ、脱硫器7を100℃以上(好ましくは150℃~300℃)に加熱することができる。なお、脱硫器7を加熱する観点からは、セルスタック3は動作温度が高い固体酸化物形燃料電池、溶融炭酸塩形燃料電池であることが好ましい。 As described above, in the fuel cell module 1 of the present embodiment, the desulfurizer 7 is attached so as to be thermally connected to the upper surface 6 a of the housing 6. Therefore, instead of heating the desulfurizer 7 by the heat of the exhaust gas, as shown in FIG. 3, the heat generation of the cell stack 3 itself and the combustion of the combustion unit 4 that were conventionally only released from the housing 6 to the outside. Heat from the housing 6 is transferred from the housing 6 to the desulfurizer 7, and the desulfurizer 7 can be heated to 100 ° C or higher (preferably 150 ° C to 300 ° C). From the viewpoint of heating the desulfurizer 7, the cell stack 3 is preferably a solid oxide fuel cell or a molten carbonate fuel cell having a high operating temperature.
 従って、例えば、脱硫器7を排ガスで加熱することが必要でないため、排ガス温度の低下で全体のエネルギ効率しまうのを防止することができる。すなわち、脱硫器7の加熱に起因してエネルギ効率が低下するのを抑制可能となる。また、脱硫器7を加熱して高温に維持することができるため、加熱が必要な比較的安価な金属系脱硫触媒等を脱硫触媒として使用することが可能となり、金属微粒子を担持したゼオライト脱硫剤に代表される比較的高価な脱硫触媒を用いることが不要となる。よって、本実施形態によれば、エネルギ効率を維持しつつ低コスト化を実現することができる。 Therefore, for example, since it is not necessary to heat the desulfurizer 7 with the exhaust gas, it is possible to prevent the overall energy efficiency from being lowered due to a decrease in the exhaust gas temperature. That is, it is possible to suppress a decrease in energy efficiency due to heating of the desulfurizer 7. Further, since the desulfurizer 7 can be heated and maintained at a high temperature, a relatively inexpensive metal-based desulfurization catalyst that requires heating can be used as the desulfurization catalyst, and the zeolite desulfurization agent carrying metal fine particles is supported. It is not necessary to use a relatively expensive desulfurization catalyst represented by Therefore, according to the present embodiment, it is possible to realize cost reduction while maintaining energy efficiency.
 また、本実施形態では、脱硫器7を筐体6と一体化でき、筐体6から隔離して配置することが不要となるため、その構成のコンパクト化が可能となる。また、本実施形態では、脱硫器7を排ガスと直接熱交換する構造体も不要である。また、脱硫器7が改質器2と同等に加熱されない構造となるため、改質触媒と極めて近い温度帯(例えば600℃程度)で使用できるものに脱硫触媒7xが限られることもない。 Further, in this embodiment, the desulfurizer 7 can be integrated with the housing 6, and it is not necessary to arrange the desulfurizer 7 separately from the housing 6, so that the configuration can be made compact. Moreover, in this embodiment, the structure which directly heat-exchanges the desulfurizer 7 with waste gas is also unnecessary. In addition, since the desulfurizer 7 is not heated as much as the reformer 2, the desulfurization catalyst 7x is not limited to those that can be used in a temperature range very close to the reforming catalyst (for example, about 600 ° C.).
 また、本実施形態では、上述したように、脱硫器7が筐体6の上面6aに対し断熱材9を介して取り付けられているため、この断熱材9によって筐体6から脱硫器7への伝熱を制御して脱硫器7の温度を制御することが可能となる。 Moreover, in this embodiment, since the desulfurizer 7 is attached to the upper surface 6a of the housing 6 via the heat insulating material 9 as described above, the heat insulating material 9 connects the housing 6 to the desulfurizer 7. It becomes possible to control the temperature of the desulfurizer 7 by controlling the heat transfer.
 また、本実施形態では、上述したように、筐体6及び脱硫器7が外側断熱材10で包まれている。よって、上記作用効果、すなわち、排ガスの熱で脱硫器7を加熱するのではなくセルスタック3の発熱や燃焼部4の燃焼等による熱を筐体6から脱硫器7へ伝熱させて脱硫器7を加熱するという作用効果を、効果的に発揮することができる。 In this embodiment, as described above, the casing 6 and the desulfurizer 7 are wrapped with the outer heat insulating material 10. Therefore, the desulfurizer is configured by transferring heat from the casing 6 to the desulfurizer 7 instead of the above-described effects, that is, heating the desulfurizer 7 with the heat of the exhaust gas, rather than the heat generated by the cell stack 3 or the combustion of the combustion unit 4. The effect of heating 7 can be effectively exhibited.
 また、本実施形態では、上述したように、脱硫器7の流路8が折り返されており、この流路8の入口部8a側と出口部8b側とで互いに熱交換可能になっている。よって、脱硫器7では、入口部8aに流入された水素含有燃料が出口部8bから流出される水素含有燃料で加熱されることとなる。その結果、例えば図3に例示されるように、従来は流路8の入口部8a側で低く出口部8b側で高くなり易かった脱硫器7の温度分布O1を、脱硫触媒7xに好適な温度範囲(例えば150℃~300)内に維持されるように均一化した温度分布O2とすることが可能となる。 Further, in the present embodiment, as described above, the flow path 8 of the desulfurizer 7 is folded back, and heat exchange is possible between the inlet 8a side and the outlet 8b side of the flow path 8. Therefore, in the desulfurizer 7, the hydrogen-containing fuel that has flowed into the inlet portion 8a is heated with the hydrogen-containing fuel that flows out from the outlet portion 8b. As a result, for example, as illustrated in FIG. 3, the temperature distribution O1 of the desulfurizer 7 that has conventionally been low on the inlet 8a side of the flow path 8 and easily increased on the outlet 8b side is suitable for the desulfurization catalyst 7x. The temperature distribution O2 can be made uniform so as to be maintained within a range (for example, 150 ° C. to 300 ° C.).
 なお、本実施形態の燃料電池モジュール1では、セルスタック3、燃焼部4、改質器2及び脱硫器7が、下から上にこの順で配置される構成とされて脱硫器7が加熱されている。そのため、熱が下から上に向かう性質(対流)を利用して脱硫器7へ好適に熱伝達させることができる。 In the fuel cell module 1 of the present embodiment, the cell stack 3, the combustion unit 4, the reformer 2, and the desulfurizer 7 are arranged in this order from the bottom to the top, and the desulfurizer 7 is heated. ing. Therefore, heat can be suitably transferred to the desulfurizer 7 using the property (convection) in which the heat is directed from the bottom to the top.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用したものであってもよい。 The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments. The present invention is modified without departing from the scope described in the claims or applied to others. It may be.
 例えば、水気化器5の配置位置は上記実施形態に限定されず、筐体6内の底部に水気化器5が配置される場合もある。 For example, the arrangement position of the water vaporizer 5 is not limited to the above embodiment, and the water vaporizer 5 may be arranged at the bottom in the housing 6.
 また、上記実施形態では、脱硫器7が筐体6の上面6aに取り付けられているが、筐体6の底面や側面に取り付けられていてもよく、要は、筐体6の外面に対し熱的に接続するよう取り付けられていればよい。また、脱硫器7が配置される向きについては、上記実施形態では横置きとされているが、縦置きとされてもよいし、図5(a)に示すように、図2の脱硫器7とは逆置きとされていてもよい。 In the above embodiment, the desulfurizer 7 is attached to the upper surface 6 a of the housing 6. However, the desulfurizer 7 may be attached to the bottom surface or the side surface of the housing 6. It is only necessary to be attached so as to be connected. Further, the direction in which the desulfurizer 7 is arranged is horizontal in the above embodiment, but may be vertical, and as shown in FIG. 5 (a), the desulfurizer 7 of FIG. May be reversed.
 また、脱硫器7における流路8の形態は、上記実施形態に限定されるものではない。例えば図5(b)に例示された流路8’では、脱硫器7における側面7aの略中央に入口部8a’が設けられ、当該入口部8a’に近接するよう側面7a上部に出口部8b’が設けられている。このような流路8は、入口部8aから配管7d内において側面7b近傍まで真っ直ぐ延びた後、配管7d外において上方及び下方から回り込むように側面7a側へ向けて折り返され、そして、出口部8bへ向かって延びている。 Further, the form of the flow path 8 in the desulfurizer 7 is not limited to the above embodiment. For example, in the flow path 8 ′ illustrated in FIG. 5B, an inlet portion 8a ′ is provided substantially at the center of the side surface 7a in the desulfurizer 7, and an outlet portion 8b is provided above the side surface 7a so as to be close to the inlet portion 8a ′. 'Is provided. Such a flow path 8 extends straight from the inlet portion 8a to the vicinity of the side surface 7b in the pipe 7d, and then is folded back toward the side surface 7a so as to wrap around from above and below outside the pipe 7d. It extends toward.
 このような流路8’においても、入口部8a側の配管7d内の水素含有燃料が出口部8bから流出する水素含有燃料で加熱される、つまり、脱硫器7を流通する水素含有燃料は、流路8’における入口部8a側と出口部8b側にて互いに熱交換されることとなる。 Also in such a flow path 8 ′, the hydrogen-containing fuel in the pipe 7d on the inlet portion 8a side is heated by the hydrogen-containing fuel flowing out from the outlet portion 8b, that is, the hydrogen-containing fuel flowing through the desulfurizer 7 is Heat exchange is performed between the inlet 8a side and the outlet 8b side of the flow path 8 ′.
 本発明によれば、エネルギ効率を維持しつつ低コスト化を実現することが可能となる。 According to the present invention, it is possible to realize cost reduction while maintaining energy efficiency.
 1…燃料電池モジュール、2…改質器、3…セルスタック、6…筐体、6a…上面(外面)、7…脱硫器、8、8’…流路、8a,8a’…入口部、8b,8b’…出口部、9…断熱材、10…外側断熱材(断熱材)。 DESCRIPTION OF SYMBOLS 1 ... Fuel cell module, 2 ... Reformer, 3 ... Cell stack, 6 ... Case, 6a ... Upper surface (outer surface), 7 ... Desulfurizer, 8, 8 '... Flow path, 8a, 8a' ... Inlet part, 8b, 8b '... outlet, 9 ... heat insulating material, 10 ... outer heat insulating material (heat insulating material).

Claims (4)

  1.  水素含有燃料を用いて改質ガスを発生させる改質器と、
     前記改質ガスを用いて発電を行うセルスタックと、
     前記改質器及び前記セルスタックを少なくとも収納する筐体と、
     前記改質器に供給される前記水素含有燃料の脱硫を行う脱硫器と、を備え、
     前記脱硫器は、前記筐体の外面に対し熱的に接続するように取り付けられている燃料電池モジュール。
    A reformer that generates reformed gas using hydrogen-containing fuel;
    A cell stack for generating power using the reformed gas;
    A housing that houses at least the reformer and the cell stack;
    A desulfurizer that desulfurizes the hydrogen-containing fuel supplied to the reformer,
    The desulfurizer is a fuel cell module attached so as to be thermally connected to an outer surface of the casing.
  2.  前記脱硫器は、前記筐体の外面に対し断熱材を介して取り付けられている請求項1記載の燃料電池モジュール。 The fuel cell module according to claim 1, wherein the desulfurizer is attached to an outer surface of the casing via a heat insulating material.
  3.  前記筐体及び前記脱硫器は、断熱材で包まれている請求項1又は2記載の燃料電池モジュール。 The fuel cell module according to claim 1 or 2, wherein the casing and the desulfurizer are wrapped with a heat insulating material.
  4.  前記脱硫器は、その内部に前記水素含有燃料を流通させる流路を有し、
     前記流路は、前記水素含有燃料を流入させる入口部側と前記水素含有燃料を流出させる出口部側とで互いに熱交換可能になるよう折り返されている請求項1~3の何れか一項記載の燃料電池モジュール。
    The desulfurizer has a flow path for circulating the hydrogen-containing fuel therein,
    4. The flow path according to claim 1, wherein the flow path is folded back so that heat exchange can be performed between an inlet portion side through which the hydrogen-containing fuel flows and an outlet portion side through which the hydrogen-containing fuel flows out. Fuel cell module.
PCT/JP2013/056167 2012-03-26 2013-03-06 Fuel cell module WO2013146149A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012069371A JP5939858B2 (en) 2012-03-26 2012-03-26 Fuel cell module
JP2012-069371 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013146149A1 true WO2013146149A1 (en) 2013-10-03

Family

ID=49259420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056167 WO2013146149A1 (en) 2012-03-26 2013-03-06 Fuel cell module

Country Status (2)

Country Link
JP (1) JP5939858B2 (en)
WO (1) WO2013146149A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115091A (en) * 2013-12-09 2015-06-22 パナソニックIpマネジメント株式会社 Solid oxide fuel cell system and manufacturing method therefor
JP6546398B2 (en) * 2015-01-23 2019-07-17 東京瓦斯株式会社 Fuel cell system
JP6093392B2 (en) * 2015-04-17 2017-03-08 本田技研工業株式会社 Fuel cell module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202581A (en) * 2005-01-20 2006-08-03 Mitsubishi Electric Corp Fuel treatment device, fuel treatment method using fuel treatment device, fuel cell having fuel treatment device, and fuel supply method to fuel cell having fuel treatment device
JP2009059657A (en) * 2007-09-03 2009-03-19 Nippon Oil Corp Indirect interior-reformed solid oxide fuel cell
JP2009079155A (en) * 2007-09-26 2009-04-16 Toshiba Fuel Cell Power Systems Corp Liquid fuel desulfurization apparatus and liquid fuel desulfurization system
JP2010272333A (en) * 2009-05-21 2010-12-02 Jx Nippon Oil & Energy Corp Fuel cell system
JP2012169046A (en) * 2011-02-10 2012-09-06 Aisin Seiki Co Ltd Desulfurization apparatus for fuel cell system and fuel cell system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117652A (en) * 2006-11-06 2008-05-22 Fuji Electric Holdings Co Ltd Desulfurizer for fuel cell power generation
JP5904828B2 (en) * 2012-03-12 2016-04-20 アイシン精機株式会社 Fuel cell device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202581A (en) * 2005-01-20 2006-08-03 Mitsubishi Electric Corp Fuel treatment device, fuel treatment method using fuel treatment device, fuel cell having fuel treatment device, and fuel supply method to fuel cell having fuel treatment device
JP2009059657A (en) * 2007-09-03 2009-03-19 Nippon Oil Corp Indirect interior-reformed solid oxide fuel cell
JP2009079155A (en) * 2007-09-26 2009-04-16 Toshiba Fuel Cell Power Systems Corp Liquid fuel desulfurization apparatus and liquid fuel desulfurization system
JP2010272333A (en) * 2009-05-21 2010-12-02 Jx Nippon Oil & Energy Corp Fuel cell system
JP2012169046A (en) * 2011-02-10 2012-09-06 Aisin Seiki Co Ltd Desulfurization apparatus for fuel cell system and fuel cell system

Also Published As

Publication number Publication date
JP2013201054A (en) 2013-10-03
JP5939858B2 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP6030547B2 (en) Fuel cell module
JP2008287959A (en) Indirect internal reform type high-temperature type fuel cell
WO2012137934A1 (en) Fuel cell module
JP5852011B2 (en) Fuel cell system
JP5000412B2 (en) Operating temperature control method for solid oxide fuel cell system
JP2009059658A (en) Indirect interior-reformed solid oxide fuel cell
JP6114197B2 (en) Fuel cell system
WO2012091029A1 (en) Fuel cell system
JP5939858B2 (en) Fuel cell module
JP5095264B2 (en) Reformer and indirect internal reforming type high temperature fuel cell
JP2009059657A (en) Indirect interior-reformed solid oxide fuel cell
JP2004299939A (en) Fuel reformer, and fuel battery generator
JP5291915B2 (en) Indirect internal reforming type solid oxide fuel cell and operation method thereof
WO2012090875A1 (en) Fuel cell system and desulfurization device
JP5584022B2 (en) Fuel cell system and starting method thereof
WO2012090865A1 (en) Desulfurization device and fuel cell system
JP5738319B2 (en) Fuel cell system
JPWO2012091030A1 (en) Fuel cell system
WO2012091131A1 (en) Fuel cell system
WO2012091132A1 (en) Fuel cell system
JP2016062797A (en) Desulfurization container
JP5738317B2 (en) Desulfurization apparatus and fuel cell system
JP5557260B2 (en) Operating temperature control method for solid oxide fuel cell system
JP2015191785A (en) reformer
JP2013109989A (en) Fuel cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767539

Country of ref document: EP

Kind code of ref document: A1