WO2013145912A1 - Frozen dessert manufacturing device - Google Patents

Frozen dessert manufacturing device Download PDF

Info

Publication number
WO2013145912A1
WO2013145912A1 PCT/JP2013/053458 JP2013053458W WO2013145912A1 WO 2013145912 A1 WO2013145912 A1 WO 2013145912A1 JP 2013053458 W JP2013053458 W JP 2013053458W WO 2013145912 A1 WO2013145912 A1 WO 2013145912A1
Authority
WO
WIPO (PCT)
Prior art keywords
brine
mold
tank
manufacturing apparatus
frozen
Prior art date
Application number
PCT/JP2013/053458
Other languages
French (fr)
Japanese (ja)
Inventor
佑輔 生野
治充 柳川
Original Assignee
株式会社イズミフードマシナリ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イズミフードマシナリ filed Critical 株式会社イズミフードマシナリ
Publication of WO2013145912A1 publication Critical patent/WO2013145912A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/04Production of frozen sweets, e.g. ice-cream
    • A23G9/22Details, component parts or accessories of apparatus insofar as not peculiar to a single one of the preceding groups
    • A23G9/221Moulds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/04Production of frozen sweets, e.g. ice-cream

Definitions

  • the present invention relates to a frozen confectionery manufacturing apparatus, and more particularly to a frozen confectionery manufacturing apparatus in which a frozen confectionery raw material is produced by cooling a frozen confectionery raw material with brine in a brine tank while moving a mold filled with the frozen confectionery raw material in the brine tank. It is.
  • a frozen dessert manufacturing apparatus that freezes a frozen dessert raw material while moving a mold filled with the frozen dessert raw material in a brine tank has been widely used. Then, the cooled brine is supplied to the brine stored in the brine tank from the brine supply pipe disposed in the brine tank through a brine outlet formed of a number of round holes formed in the brine supply pipe.
  • a frozen confectionery manufacturing apparatus has been proposed and put into practical use (see, for example, Patent Document 1).
  • This heat transfer amount Q is proportional to the surface area of the solid (mold) that receives heat and the temperature difference between the solid (mold) and the medium (brine), and is expressed by the following equation.
  • Q h ⁇ A ⁇ (Tw-Ta)
  • h Nu ⁇ k / L
  • Nu 0.664 ⁇ Re 1/2 ⁇ Pr 1/3
  • h proportionality constant (thermal conductivity coefficient) (W / (m 2 ⁇ K))
  • A Surface area (m 2 )
  • Tw Mold surface temperature (K)
  • Ta Brine temperature
  • Nu Nusselt number k: Thermal conductivity of fluid (W / (m ⁇ K))
  • L Plate length in the flow direction (m)
  • the flow rate of the brine is greatly increased, so that the brines supplied through the adjacent brine outlets of the brine supply pipe interfere with each other, thereby inhibiting the flow of the brine and increasing the width direction.
  • temperature unevenness is likely to occur in the cooling temperature of a mold having a plurality of lined bag portions.
  • the present invention provides a mold having a plurality of bag portions arranged in the width direction of the brine tank by uniformly hitting the brine with a large flow velocity against the mold surface.
  • An object of the present invention is to provide a frozen dessert manufacturing apparatus that can prevent the occurrence of temperature unevenness in the cooling temperature and has high cooling efficiency.
  • the frozen dessert manufacturing apparatus of the present invention is configured such that the inside of a brine tank provided with a brine jet outlet for supplying cooled brine to the brine stored in the brine tank is the length of the brine tank.
  • a slit shape opened across the width direction of the brine tank perpendicular to the moving direction of the mold A plurality of brine outlets are formed at intervals in the longitudinal direction of the brine tank.
  • the brine outlet can be formed such that the direction in which the brine is ejected is vertically upward.
  • the brine outlet can be formed such that the direction of the brine jet is obliquely upward.
  • the brine outlet can be formed with an interval of 10 mm to 100 mm from the lower end of the mold.
  • brine outlets are respectively formed in a plurality of brine supply pipes arranged across the width direction of the brine tank orthogonal to the moving direction of the mold and spaced in the longitudinal direction of the brine tank. Can do.
  • the flow rate of the brine supplied from the brine outlet per 1 m 2 of the brine tank can be set to 150 L / min to 350 L / min, and the jetting speed of the brine can be set to 0.4 m / sec to 1.5 m / sec.
  • a plurality of slit-like brine outlets opened across the width direction of the brine tank perpendicular to the moving direction of the mold are formed at intervals in the longitudinal direction of the brine tank.
  • the brine ejection port is configured by a number of round holes formed in the brine supply pipe. The brine supplied through the adjacent brine outlets of the brine supply pipe does not interfere with each other as in the case of the frozen dessert manufacturing apparatus, and the resistance received from the brine stored in the brine tank is small.
  • the brine outlet so that the direction of the brine ejection is vertically upward, the brine ejected at the shortest distance from the brine outlet to the mold hits the mold, and the decrease in the brine ejection speed is minimized.
  • the cooling efficiency can be improved.
  • the brine outlet so that the direction of jetting of the brine is obliquely upward, the brine can be uniformly applied to the front surface or the back surface of the mold, and a plurality of rows are arranged in the width direction of the brine tank. It is possible to prevent the occurrence of temperature unevenness in the cooling temperature of the mold provided with the bag portion, and to improve the cooling efficiency.
  • brine outlets in the brine supply pipes that are arranged in plural in the width direction of the brine tank orthogonal to the moving direction of the mold and at intervals in the longitudinal direction of the brine tank.
  • the brine outlet can be easily formed, and the supply amount of the cooled brine to each brine outlet can be easily adjusted.
  • the flow rate of brine supplied from the brine outlet per 1 m 2 of the brine tank is set to 150 L / min to 350 L / min, and the injection speed of the brine is set to 0.4 m / sec to 1.5 m / sec.
  • the cold confectionery raw material filled in the inside can be cooled to a desired temperature (for example, about ⁇ 16 ° C.) as a product in a short time.
  • FIG. 2 is a sectional view taken along line XX in FIG.
  • FIG. 3 is a YY sectional view of FIG. 2. It is a perspective view explaining the brine jet nozzle of the frozen confectionery manufacturing apparatus. It is a perspective view of the mold of the frozen dessert manufacturing apparatus. It is a graph which shows the result of the cooling test of the same frozen dessert manufacturing apparatus and the conventional frozen dessert manufacturing apparatus.
  • This frozen dessert manufacturing apparatus 1 includes a brine tank 2 provided with a brine outlet 3 for supplying brine cooled by the brine cooling means 5 to the brine stored in the brine tank 2, and the plate-like member 40 has a frozen dessert shape.
  • a mold 4 (see FIG. 5) filled with a frozen dessert material provided with a plurality of bag portions 41, an endless conveying means 6 attached so as to bridge the mold 4, and before the brine tank 2
  • the raw material filling means 7 for filling the bag portion 41 of the mold 4 with the frozen confectionery raw material, and the frozen confection removal means 8 for taking out the frozen confection from the bag portion 41 of the mold 4 when the mold 4 comes out of the brine tank 2 are provided.
  • the frozen confectionery manufacturing apparatus 1 can be provided with a stick inserter (not shown) for inserting a stick into the frozen confectionery raw material partially frozen while moving in the brine tank 2.
  • the brine cooled by the brine cooling means 5 is supplied and ejected from the brine outlet 3, thereby cooling the mold 4 in the brine tank 2 and increasing the temperature in the brine tank 2.
  • the brine overflows from the weir 20 and is circulated to the brine cooling means 5.
  • the brine that has been circulated to the brine cooling means 5 is cooled and supplied to the brine tank 2 from the brine outlet 3 and ejected again. Thereby, the brine in the brine tank 2 is always maintained at a predetermined temperature (for example, ⁇ 35 ° C.), so that the frozen confectionery material in the bag portion 41 of the mold 4 can be cooled and frozen.
  • the brine outlet 3 formed in the brine tank 2 is formed in a slit shape that opens across the width direction of the brine tank 2 orthogonal to the moving direction of the mold 4, and a plurality of them are provided at intervals in the longitudinal direction of the brine tank 2. Try to form.
  • the slit-like brine outlet 3 preferably covers 80% or more, more preferably 90% or more of the dimension in the width direction of the brine tank 2 (the dimension between the opposing weirs 20). Form.
  • the brine ejection port 3 is ejected in a planar shape from the slit-like brine ejection port 3, the brine ejection port is composed of a number of round holes formed in the brine supply pipe.
  • the brine supplied through the brine outlets adjacent to the brine supply pipe do not interfere with each other as in the conventional frozen dessert manufacturing apparatus, and the resistance received from the brine stored in the brine tank 2 is small.
  • the brine outlet 3 is located below the mold 4 moving in the brine tank 2, across the width direction of the brine tank 2 orthogonal to the moving direction of the mold 4, and as shown in FIG.
  • a plurality of brine supply pipes 30 are provided at intervals P in the longitudinal direction.
  • the longitudinal interval P in which the brine supply pipe 30 is disposed is an equal interval, for example, an interval of 100 mm to 400 mm, preferably an interval of 200 mm to 300 mm (in this embodiment, an interval of about 250 mm). It is arranged.
  • the brines supplied through the adjacent brine jets 3 do not interfere with each other, and the movement direction is Brine can be uniformly applied to the molds 4 arranged at equal intervals of 50 to 70 mm (63.5 mm in this embodiment), and a plurality of bag portions 41 arranged in the width direction of the brine tank 2 are provided. It is possible to prevent the occurrence of temperature unevenness in the cooling temperature of the mold 4 and improve the cooling efficiency.
  • the interval P in the longitudinal direction in which the brine supply pipe 30 is disposed that is, the interval between the brine outlets 3 is equal throughout the entire length in the longitudinal direction of the brine tank 2. It is possible to adjust the cooling state of the frozen confectionery raw material filled in the bag portion 41 of the mold 4 by setting it narrow on the entry side of 4 and wide on the exit side, or vice versa.
  • the slit width a of the brine outlet 3 is, for example, 1 mm to 3 mm (in the present embodiment, about 1 mm to 3 mm) so that a predetermined initial velocity of the brine can be obtained and a high-viscosity brine can be smoothly ejected. About 2 mm).
  • the slit length b can be a single continuous slit over substantially the entire length of the brine supply pipe 30, but in this embodiment, in order to maintain the strength, the connection portion is partially provided. It is made to form in the intermittent shape which provided.
  • the brine supply pipe 30 is connected to the brine cooling means 5 via the brine supply mother pipe 31. More specifically, a connecting port 30a is formed in the brine supply pipe 30 to be connected to the brine supply ports 31a formed in the two brine supply mother pipes 31 arranged over substantially the entire length of the brine tank 2 in the longitudinal direction.
  • the brine supply pipe 30 is horizontally arranged so as to span the two brine supply mother pipes 31. Note that the brine supply pipe 30 can be arranged horizontally, for example, in a mountain shape with a raised central portion.
  • the brine ejection port 3 is formed in the brine supply pipe 30 so that the ejection direction of the brine is vertically upward. As a result, the brine ejected at the shortest distance from the brine ejection port 3 to the mold 4 hits the mold 4, minimizing a decrease in the ejection speed of the brine, and improving the cooling efficiency.
  • the brine outlet 3 is formed in the brine supply pipe 30 so that the brine jet direction is vertically upward, and as shown by the two-dot chain line in FIG. 3, the brine jet direction is obliquely upward. It can also be formed.
  • the angle ⁇ in the case of forming obliquely upward is the distance from the brine outlet 3 to the mold 4, the viscosity of the brine, etc.
  • the distance until the brine ejected from the brine outlet 3 reaches the mold 4 it is usually 45 degrees or less, preferably 30 degrees or less. More preferably, the angle is set to about 5 to 15 degrees.
  • the brine can be uniformly applied to the front surface or the back surface of the mold 4, and temperature unevenness occurs in the cooling temperature of the mold 4 including the plurality of bag portions 41 arranged in the width direction of the brine tank 2. Can be prevented and the cooling efficiency can be improved.
  • the ejection direction of the brine is the same in the entire length of the brine tank 2, and is different between the entrance side (right side in FIG. 1) and the exit side (left side in FIG. 1) of the mold 4 of the brine tank 2. Can be.
  • the brine hits the back side of the mold 4 in the moving direction of the mold 4 so that the brine tank 2 is vertically upward in the vicinity of the center of the brine tank 2.
  • the brine can hit the front side of the mold 4 in the direction opposite to the moving direction of the mold 4.
  • the brine jet 3 is formed with an interval L of 10 mm to 100 mm from the lower end of the mold 4.
  • the interval L can be as close as possible to the mold 4 because the brine is ejected in a planar shape from the brine ejection port 3 formed in a slit shape, preferably 10 mm to 70 mm, more preferably 10 mm. By setting it to ⁇ 50 mm, it is possible to minimize the decrease in the speed of the brine and improve the cooling efficiency.
  • a drive mechanism (not shown) that moves the brine outlet 3 up and down can be provided so that the interval L can be changed according to the mold 4 that is changed according to the shape of the frozen dessert.
  • interval L can also be set to the value which an operator seems to be optimal during the driving
  • the frozen confectionery manufacturing apparatus 1 when used to manufacture the frozen confectionery (this case), the frozen confectionery is prepared using the conventional frozen confectionery manufacturing apparatus configured with a number of round holes formed in the brine supply pipe.
  • a cooling test (brine temperature is ⁇ 35 ° C. ⁇ 0.5 ° C. and time for cooling the frozen confectionery raw material to ⁇ 16 ° C. (hereinafter referred to as “freezing time”)) compared with the case of manufacturing (conventional). The results obtained will be described with reference to FIG.
  • the mold 4 was moved intermittently in the brine tank 2 by the conveying means 6, and in the cooling test, it was performed at 16.7 cycles / min and 25 cycles / min.
  • the brine tank 2 used in the experiment had a longitudinal dimension of 1850 mm and a width dimension of 490 mm (surface area of about 1 m 2 ).
  • the mold 4 was reciprocated in the longitudinal direction of the brine tank 2, and the freezing time was measured.
  • the conventional frozen dessert manufacturing apparatus uses a brine flow rate of 500 L / min and a brine ejection speed of about 1.0 m / sec (with a mold movement cycle). 25 cycles).
  • the freezing time is about 400 seconds when the brine flow rate is 250 L / min and the brine ejection speed is about 0.8 m / sec (the mold movement cycle is 25 cycles). I was able to.
  • the freezing time is not significantly different from the conventional frozen dessert manufacturing apparatus, but when the brine flow rate is increased, the cooling efficiency is improved ( As a result, the effect of shortening the freezing time was noticeable.
  • the flow rate of the brine supplied from the brine outlet per 1 m 2 of the brine tank is 150 L / min to 350 L / min, and the ejection speed of the brine is 0.4 m / sec to 1.5 m / sec.
  • the cold confectionery raw material filled in the mold could be cooled to a desired temperature (for example, about ⁇ 16 ° C.) to become a product in a short time.
  • Table 1 shows the results of measuring the freezing time of each bag 41 when the number of the bags 41 arranged in the width direction of the brine tank 2 of the mold 4 is six.
  • the temperature unevenness of each bag part 41 (the time difference between the bag part with the longest freezing time and the bag part with the shortest freezing time (usually, the time difference increases by increasing the flow rate of brine))
  • the manufacturing apparatus 1 it was shortened compared with the conventional frozen dessert manufacturing apparatus, and it confirmed that the frozen dessert of the stable quality could be manufactured.
  • the frozen dessert manufacturing apparatus of this invention was demonstrated based on the Example, this invention is not limited to the structure described in the said Example, The structure is suitably changed in the range which does not deviate from the meaning. Is something that can be done.
  • the frozen dessert manufacturing apparatus of the present invention temperature unevenness occurs in the cooling temperature of the mold having a plurality of bag portions arranged in the width direction of the brine tank by uniformly hitting the brine with a large flow velocity against the mold surface.
  • the frozen dessert material is produced by cooling the frozen dessert material with the brine in the brine tank while moving the mold filled with the frozen dessert material in the brine tank. It can use suitably for the use of the frozen dessert manufacturing apparatus made.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Confectionery (AREA)

Abstract

To provide a frozen dessert manufacturing device that can prevent occurrences of temperature variations in cooling temperature for a mold provided with a plurality of bag parts, which are arranged in the direction of width of a brine tank, by having brine with a high flow rate come into contact with the mold surfaces and that also has a high cooling effectiveness, this frozen dessert manufacturing device that freezes starting materials for a frozen dessert by moving, within the brine tank (2), which is provided with brine spray openings (3) that supply cooled brine to the brine retained in the brine tank (2), a mold (4), which is filled with starting materials for a frozen dessert, in the longitudinal direction of a brine tank (2), has the plurality of slit-shaped brine spray openings (3), which opens along the width direction of the brine tank (2) which is orthogonal to the direction of movement of the mold (4), formed spaced apart from each other in the longitudinal direction of the brine tank (2).

Description

冷菓製造装置Frozen confectionery
 本発明は、冷菓製造装置に関し、特に、冷菓原料を充填したモールドをブライン槽内を移動させながらブライン槽内のブラインによって冷菓原料を冷却することによって冷菓を製造するようにした冷菓製造装置に関するものである。 The present invention relates to a frozen confectionery manufacturing apparatus, and more particularly to a frozen confectionery manufacturing apparatus in which a frozen confectionery raw material is produced by cooling a frozen confectionery raw material with brine in a brine tank while moving a mold filled with the frozen confectionery raw material in the brine tank. It is.
 従来、冷菓用原料を充填したモールドをブライン槽内を移動させながら冷菓用原料を凍結するようにした冷菓製造装置が汎用されている。
 そして、ブライン槽内に貯留されたブラインに、ブライン槽に配設されたブライン供給管から、このブライン供給管に形成した多数の丸孔からなるブライン噴出口を介して冷却したブラインを供給するようにした冷菓製造装置が提案され、実用化されている(例えば、特許文献1参照)。
2. Description of the Related Art Conventionally, a frozen dessert manufacturing apparatus that freezes a frozen dessert raw material while moving a mold filled with the frozen dessert raw material in a brine tank has been widely used.
Then, the cooled brine is supplied to the brine stored in the brine tank from the brine supply pipe disposed in the brine tank through a brine outlet formed of a number of round holes formed in the brine supply pipe. A frozen confectionery manufacturing apparatus has been proposed and put into practical use (see, for example, Patent Document 1).
 ところで、この冷菓製造装置において、冷却効率を向上させるためには、ブラインからモールド内の冷菓原料に熱が伝わる速度(熱移動量Q)を上げる必要がある。 By the way, in this frozen confection manufacturing apparatus, in order to improve the cooling efficiency, it is necessary to increase the speed (heat transfer amount Q) at which heat is transferred from the brine to the frozen confectionery raw material in the mold.
 この熱移動量Qは、熱を受ける固体(モールド)の表面積及び固体(モールド)と媒質(ブライン)の温度差に比例し、以下の式で表される。
 Q=h・A・(Tw-Ta)
 h=Nu・k/L
 Nu=0.664・Re1/2・Pr1/3
 ここで、h:比例定数(熱伝導係数)(W/(m・K))
     A:表面積(m
     Tw:モールドの表面温度(K)
     Ta:ブライン温度(K)
     Nu:ヌセルト数
     k:流体の熱伝導率(W/(m・K))
     L:流れ方向の板長(m)
     Re:レイノルズ数(=U・L/ν)(U:流速、ν:動粘性係数)
     Pr:プラントル数(=η・Cp/k)(η:粘性係数、Cp:比熱)
である。
 上記の式より、熱移動量Qを向上させるためには、固定値である表面積A並びに温度Tw及びTa以外の熱伝導係数hを大きくする必要がある。
 そして、熱伝導係数hを決定するパラメータのうち、使用するブラインを変更しない(動粘性係数νや粘性係数ηが変わらない)場合には、変動させることができるパラメータは流速Uとなる。
 したがって、ブラインからモールド内の冷菓原料に熱が伝わる速度(熱移動量Q)を上げるためには、モールドに当たるブラインの流速Uを上げる必要がある。
This heat transfer amount Q is proportional to the surface area of the solid (mold) that receives heat and the temperature difference between the solid (mold) and the medium (brine), and is expressed by the following equation.
Q = h · A · (Tw-Ta)
h = Nu · k / L
Nu = 0.664 · Re 1/2 · Pr 1/3
Where h: proportionality constant (thermal conductivity coefficient) (W / (m 2 · K))
A: Surface area (m 2 )
Tw: Mold surface temperature (K)
Ta: Brine temperature (K)
Nu: Nusselt number k: Thermal conductivity of fluid (W / (m · K))
L: Plate length in the flow direction (m)
Re: Reynolds number (= U · L / ν) (U: flow velocity, ν: kinematic viscosity coefficient)
Pr: Prandtl number (= η · Cp / k) (η: viscosity coefficient, Cp: specific heat)
It is.
From the above formula, in order to improve the heat transfer amount Q, it is necessary to increase the fixed surface area A and the heat conduction coefficient h other than the temperatures Tw and Ta.
If the brine to be used is not changed among the parameters for determining the heat conduction coefficient h (the kinematic viscosity coefficient ν and the viscosity coefficient η do not change), the parameter that can be changed is the flow velocity U.
Therefore, in order to increase the speed (heat transfer amount Q) at which heat is transferred from the brine to the frozen dessert material in the mold, it is necessary to increase the flow rate U of the brine hitting the mold.
 ところで、モールドに当たるブラインの流速Uを上げるには、例えば、ブライン供給管からブライン噴出口を介して供給する冷却したブラインの流量(循環量)を増やすことが考えられる。
 しかしながら、単に、ブラインの流量を増やす方法では、本件出願人が行った実験では、例えば、ブラインの流量が100L/minの場合に、常温で供給されたモールド内の冷菓原料の温度を-16℃に到達させるために必要となる凍結時間が、約550秒であるブライン噴出口を備えたブライン槽の場合、この凍結時間を約400秒にまで短縮するためにはブラインの流量を5倍以上にする必要があり、設備が大型化するとともに、エネルギ消費が大きくなるという問題があった。
 また、この場合、ブラインの流量が大幅に増大することで、ブライン供給管の隣接するブライン噴出口を介して供給されたブライン同士が干渉し合うことによって、ブラインの流れが阻害され、幅方向に並ぶ複数の袋部を備えたモールドの冷却温度に温度ムラが発生しやすくなるという問題があった。
By the way, in order to increase the flow velocity U of the brine hitting the mold, for example, it is conceivable to increase the flow rate (circulation amount) of the cooled brine supplied from the brine supply pipe through the brine outlet.
However, in the method of simply increasing the flow rate of brine, in the experiment conducted by the present applicant, for example, when the flow rate of brine is 100 L / min, the temperature of the frozen dessert material in the mold supplied at room temperature is set to −16 ° C. In order to reduce the freezing time to about 400 seconds in the case of a brine tank equipped with a brine outlet whose freezing time is about 550 seconds, the flow rate of brine must be increased by 5 times or more. There is a problem that the equipment becomes larger and the energy consumption increases.
Further, in this case, the flow rate of the brine is greatly increased, so that the brines supplied through the adjacent brine outlets of the brine supply pipe interfere with each other, thereby inhibiting the flow of the brine and increasing the width direction. There has been a problem that temperature unevenness is likely to occur in the cooling temperature of a mold having a plurality of lined bag portions.
 また、ブラインは、粘度が高いため、多数の丸孔からなるブライン噴出口での初速度をモールドの近傍まで維持することは困難であり、これに対処するため、ブライン噴出口をモールドに近接して配設した場合、ブラインの流れに偏りが生じ、幅方向に並ぶ複数の袋部を備えたモールドの冷却温度に温度ムラが発生しやすくなるという問題があった。 In addition, since the brine has a high viscosity, it is difficult to maintain the initial velocity at the brine outlet composed of a large number of round holes up to the vicinity of the mold. To cope with this, the brine outlet is placed close to the mold. When arranged in such a way, there is a problem that the flow of brine is biased, and temperature unevenness is likely to occur in the cooling temperature of the mold having a plurality of bag portions arranged in the width direction.
特開2011-67198号公報JP 2011-67198 A
 本発明は、上記従来の冷菓製造装置の有する問題点に鑑み、モールドの表面に対して、流速の大きなブラインが均一に当たることによって、ブライン槽の幅方向に並ぶ複数の袋部を備えたモールドの冷却温度に温度ムラが発生することを防止することができるとともに、冷却効率の高い冷菓製造装置を提供することを目的とする。 In view of the problems of the conventional frozen confectionery manufacturing apparatus, the present invention provides a mold having a plurality of bag portions arranged in the width direction of the brine tank by uniformly hitting the brine with a large flow velocity against the mold surface. An object of the present invention is to provide a frozen dessert manufacturing apparatus that can prevent the occurrence of temperature unevenness in the cooling temperature and has high cooling efficiency.
 上記目的を達成するため、本発明の冷菓製造装置は、ブライン槽内に貯留されたブラインに、冷却されたブラインを供給するブライン噴出口を備えたブライン槽の槽内を、該ブライン槽の長手方向に冷菓用原料を充填したモールドを移動させることによって前記冷菓用原料を凍結させるようにした冷菓製造装置において、モールドの移動方向に対して直交するブライン槽の幅方向に亘って開口したスリット状のブライン噴出口を、ブライン槽の長手方向に間隔をあけて複数形成したことを特徴とする。 In order to achieve the above object, the frozen dessert manufacturing apparatus of the present invention is configured such that the inside of a brine tank provided with a brine jet outlet for supplying cooled brine to the brine stored in the brine tank is the length of the brine tank. In the frozen confectionery manufacturing apparatus in which the frozen confectionery raw material is frozen by moving the mold filled with the frozen confectionery raw material in the direction, a slit shape opened across the width direction of the brine tank perpendicular to the moving direction of the mold A plurality of brine outlets are formed at intervals in the longitudinal direction of the brine tank.
 この場合において、前記ブライン噴出口を、ブラインの噴出方向が鉛直上向きとなるように形成することができる。 In this case, the brine outlet can be formed such that the direction in which the brine is ejected is vertically upward.
 また、前記ブライン噴出口を、ブラインの噴出方向が斜め上向きとなるように形成することができる。 Further, the brine outlet can be formed such that the direction of the brine jet is obliquely upward.
 また、前記ブライン噴出口を、モールドの下端から10mm~100mmの間隔をあけて形成することができる。 Also, the brine outlet can be formed with an interval of 10 mm to 100 mm from the lower end of the mold.
 また、前記ブライン噴出口を、モールドの移動方向に対して直交するブライン槽の幅方向に亘って、かつ、ブライン槽の長手方向に間隔をあけて複数配設したブライン供給管にそれぞれ形成することができる。 In addition, the brine outlets are respectively formed in a plurality of brine supply pipes arranged across the width direction of the brine tank orthogonal to the moving direction of the mold and spaced in the longitudinal direction of the brine tank. Can do.
 また、ブライン槽の面積1m当たりのブライン噴出口から供給するブラインの流量を150L/min~350L/min、ブラインの噴出速度を0.4m/sec~1.5m/secとすることができる。 Further, the flow rate of the brine supplied from the brine outlet per 1 m 2 of the brine tank can be set to 150 L / min to 350 L / min, and the jetting speed of the brine can be set to 0.4 m / sec to 1.5 m / sec.
 本発明の冷菓製造装置によれば、モールドの移動方向に対して直交するブライン槽の幅方向に亘って開口したスリット状のブライン噴出口を、ブライン槽の長手方向に間隔をあけて複数形成することにより、ブライン噴出口から噴出されるブラインは、スリット状のブライン噴出口から面状に噴出されることとなるため、ブライン噴出口をブライン供給管に形成した多数の丸孔で構成した従来の冷菓製造装置のようにブライン供給管の隣接するブライン噴出口を介して供給されたブライン同士が干渉し合うことがなく、また、ブライン槽内に貯留されたブラインから受ける抵抗が小さいため、ブライン噴出口での初速度をモールドの近傍まで維持しやすく、さらに、ブラインの流れに偏りが生じにくいことと相俟って、ブライン槽の幅方向に並ぶ複数の袋部を備えたモールドの冷却温度に温度ムラが発生することを防止することができるとともに、冷却効率を向上させることができる。 According to the frozen dessert manufacturing apparatus of the present invention, a plurality of slit-like brine outlets opened across the width direction of the brine tank perpendicular to the moving direction of the mold are formed at intervals in the longitudinal direction of the brine tank. Thus, since the brine ejected from the brine ejection port is ejected in a planar shape from the slit-like brine ejection port, the brine ejection port is configured by a number of round holes formed in the brine supply pipe. The brine supplied through the adjacent brine outlets of the brine supply pipe does not interfere with each other as in the case of the frozen dessert manufacturing apparatus, and the resistance received from the brine stored in the brine tank is small. It is easy to maintain the initial velocity at the outlet to the vicinity of the mold, and in addition to the fact that the flow of brine is less likely to be biased, the width direction of the brine tank The temperature unevenness can be prevented from being generated in the cooling temperature of the mold having a plurality of bag portions arranged, thereby improving the cooling efficiency.
 また、ブライン噴出口を、ブラインの噴出方向が鉛直上向きとなるように形成することにより、ブライン噴出口からモールドまでの最短距離で噴出されたブラインがモールドに当たり、ブラインの噴出速度の低下を最小限に抑え、冷却効率を向上させることができる。 In addition, by forming the brine outlet so that the direction of the brine ejection is vertically upward, the brine ejected at the shortest distance from the brine outlet to the mold hits the mold, and the decrease in the brine ejection speed is minimized. The cooling efficiency can be improved.
 また、ブライン噴出口を、ブラインの噴出方向が斜め上向きとなるように形成することにより、モールドの前面又は背面に対して、ブラインを均一に当てることができ、ブライン槽の幅方向に並ぶ複数の袋部を備えたモールドの冷却温度に温度ムラが発生することを防止することができるとともに、冷却効率を向上させることができる。 In addition, by forming the brine outlet so that the direction of jetting of the brine is obliquely upward, the brine can be uniformly applied to the front surface or the back surface of the mold, and a plurality of rows are arranged in the width direction of the brine tank. It is possible to prevent the occurrence of temperature unevenness in the cooling temperature of the mold provided with the bag portion, and to improve the cooling efficiency.
 また、ブライン噴出口を、モールドの下端から10mm~100mmの間隔をあけて形成することにより、ブライン噴出速度の低下を最小限に抑え、冷却効率を向上させることができる。 In addition, by forming the brine outlets at an interval of 10 mm to 100 mm from the lower end of the mold, it is possible to minimize the decrease in the brine ejection speed and improve the cooling efficiency.
 また、ブライン噴出口を、モールドの移動方向に対して直交するブライン槽の幅方向に亘って、かつ、ブライン槽の長手方向に間隔をあけて複数配設したブライン供給管にそれぞれ形成することにより、ブライン噴出口を簡易に形成することができるとともに、各ブライン噴出口への冷却されたブラインの供給量の調整を簡易に行うことができる。 Further, by forming the brine outlets in the brine supply pipes that are arranged in plural in the width direction of the brine tank orthogonal to the moving direction of the mold and at intervals in the longitudinal direction of the brine tank. The brine outlet can be easily formed, and the supply amount of the cooled brine to each brine outlet can be easily adjusted.
 また、ブライン槽の面積1m当たりのブライン噴出口から供給するブラインの流量を150L/min~350L/min、ブラインの噴出速度を0.4m/sec~1.5m/secとすることにより、モールド内に充填した常温の冷菓原料を短時間で製品となる所望の温度(例えば、約-16℃)まで冷却することができる。 Further, the flow rate of brine supplied from the brine outlet per 1 m 2 of the brine tank is set to 150 L / min to 350 L / min, and the injection speed of the brine is set to 0.4 m / sec to 1.5 m / sec. The cold confectionery raw material filled in the inside can be cooled to a desired temperature (for example, about −16 ° C.) as a product in a short time.
本発明の冷菓製造装置の一実施例を示す一部切り欠きの全体概略図である。It is the whole schematic diagram of the notch which shows one Example of the frozen confectionery manufacturing apparatus of this invention. 図1のX-X断面図である。FIG. 2 is a sectional view taken along line XX in FIG. 図2のY-Y断面図である。FIG. 3 is a YY sectional view of FIG. 2. 同冷菓製造装置のブライン噴出口を説明する斜視図である。It is a perspective view explaining the brine jet nozzle of the frozen confectionery manufacturing apparatus. 同冷菓製造装置のモールドの斜視図である。It is a perspective view of the mold of the frozen dessert manufacturing apparatus. 同冷菓製造装置及び従来の冷菓製造装置の冷却テストの結果を示すグラフである。It is a graph which shows the result of the cooling test of the same frozen dessert manufacturing apparatus and the conventional frozen dessert manufacturing apparatus.
 以下、本発明の冷菓製造装置の実施の形態を、図面に基づいて説明する。 Hereinafter, embodiments of the frozen dessert manufacturing apparatus of the present invention will be described with reference to the drawings.
 図1~図5に、本発明の冷菓製造装置の一実施例を示す。
 この冷菓製造装置1は、ブライン槽2内に貯留されたブラインに、ブライン冷却手段5によって冷却されたブラインを供給するブライン噴出口3を備えたブライン槽2と、板状部材40に冷菓の形状をした複数の袋部41を設けた冷菓原料を充填するモールド4(図5参照。)と、このモールド4を架け渡すようにして取り付けた無端状の搬送手段6と、ブライン槽2の手前でモールド4の袋部41に冷菓原料を充填する原料充填手段7と、モールド4がブライン槽2から出たところでモールド4の袋部41から凍結した冷菓を取り出す冷菓取出手段8とを備えるようにしている。
 また、冷菓製造装置1には、ブライン槽2を移動する途中で部分的に凍結した冷菓原料にスティックを挿入するスティックインサータ(図示省略)を配備することができる。
1 to 5 show an embodiment of a frozen dessert manufacturing apparatus according to the present invention.
This frozen dessert manufacturing apparatus 1 includes a brine tank 2 provided with a brine outlet 3 for supplying brine cooled by the brine cooling means 5 to the brine stored in the brine tank 2, and the plate-like member 40 has a frozen dessert shape. A mold 4 (see FIG. 5) filled with a frozen dessert material provided with a plurality of bag portions 41, an endless conveying means 6 attached so as to bridge the mold 4, and before the brine tank 2 The raw material filling means 7 for filling the bag portion 41 of the mold 4 with the frozen confectionery raw material, and the frozen confection removal means 8 for taking out the frozen confection from the bag portion 41 of the mold 4 when the mold 4 comes out of the brine tank 2 are provided. Yes.
In addition, the frozen confectionery manufacturing apparatus 1 can be provided with a stick inserter (not shown) for inserting a stick into the frozen confectionery raw material partially frozen while moving in the brine tank 2.
 ブライン槽2は、ブライン冷却手段5によって冷却されたブラインが、ブライン噴出口3から供給、噴出されることで、ブライン槽2内でモールド4を冷却するとともに、ブライン槽2内の温度が上昇したブラインを、堰20から溢れ出させるようにし、ブライン冷却手段5に環流させるようにしている。
 そして、ブライン冷却手段5に環流したブラインは、冷却され、再びブライン噴出口3からブライン槽2に供給、噴出されるように構成されている。
 これにより、ブライン槽2内のブラインは、常に所定温度(例えば、-35℃)を保ち、モールド4の袋部41内の冷菓原料を冷却、凍結することができるようにしている。
In the brine tank 2, the brine cooled by the brine cooling means 5 is supplied and ejected from the brine outlet 3, thereby cooling the mold 4 in the brine tank 2 and increasing the temperature in the brine tank 2. The brine overflows from the weir 20 and is circulated to the brine cooling means 5.
The brine that has been circulated to the brine cooling means 5 is cooled and supplied to the brine tank 2 from the brine outlet 3 and ejected again.
Thereby, the brine in the brine tank 2 is always maintained at a predetermined temperature (for example, −35 ° C.), so that the frozen confectionery material in the bag portion 41 of the mold 4 can be cooled and frozen.
 ブライン槽2に形成されるブライン噴出口3は、モールド4の移動方向に対して直交するブライン槽2の幅方向に亘って開口したスリット状とし、ブライン槽2の長手方向に間隔をあけて複数形成するようにしている。
 この場合、スリット状のブライン噴出口3は、ブライン槽2の幅方向の寸法(対向する堰20間の寸法)の、好ましくは、80%以上、より好ましくは、90%以上をカバーするように形成する。
 これにより、ブライン噴出口3から噴出されるブラインは、スリット状のブライン噴出口3から面状に噴出されることとなるため、ブライン噴出口をブライン供給管に形成した多数の丸孔で構成した従来の冷菓製造装置のようにブライン供給管の隣接するブライン噴出口を介して供給されたブライン同士が干渉し合うことがなく、また、ブライン槽2内に貯留されたブラインから受ける抵抗が小さいため、ブライン噴出口3での初速度をモールド4の近傍まで維持しやすく、さらに、ブラインの流れに偏りが生じにくいことと相俟って、ブライン槽2の幅方向に並ぶ複数の袋部41を備えたモールド4の冷却温度に温度ムラが発生することを防止することができるとともに、冷却効率を向上させることができる。
The brine outlet 3 formed in the brine tank 2 is formed in a slit shape that opens across the width direction of the brine tank 2 orthogonal to the moving direction of the mold 4, and a plurality of them are provided at intervals in the longitudinal direction of the brine tank 2. Try to form.
In this case, the slit-like brine outlet 3 preferably covers 80% or more, more preferably 90% or more of the dimension in the width direction of the brine tank 2 (the dimension between the opposing weirs 20). Form.
Thereby, since the brine ejected from the brine ejection port 3 is ejected in a planar shape from the slit-like brine ejection port 3, the brine ejection port is composed of a number of round holes formed in the brine supply pipe. The brine supplied through the brine outlets adjacent to the brine supply pipe do not interfere with each other as in the conventional frozen dessert manufacturing apparatus, and the resistance received from the brine stored in the brine tank 2 is small. In addition, it is easy to maintain the initial velocity at the brine outlet 3 to the vicinity of the mold 4, and in addition to the fact that the flow of brine is less likely to be biased, a plurality of bag portions 41 aligned in the width direction of the brine tank 2 are formed. It is possible to prevent the occurrence of temperature unevenness in the cooling temperature of the mold 4 provided, and to improve the cooling efficiency.
 ブライン噴出口3は、ブライン槽2を移動するモールド4の下方で、モールド4の移動方向に対して直交するブライン槽2の幅方向に亘って、かつ、図4に示すように、ブライン槽2の長手方向に間隔Pをあけて複数配設したブライン供給管30に形成するようにしている。
 これにより、ブライン噴出口3を簡易に形成することができるとともに、各ブライン噴出口3への冷却されたブラインの供給量の調整を簡易に行うことができる。
 この場合、ブライン供給管30を配設する長手方向の間隔Pは、等間隔に、例えば、100mm~400mmの間隔、好ましくは200mm~300mmの間隔(本実施例においては、約250mmの間隔)で配設するようにしている。
 このように、ブライン供給管30を長手方向に間隔Pをあけて配設することにより、隣接するブライン噴出口3を介して供給されたブライン同士が干渉し合うことがなく、移動方向に対して50~70mm(本実施例においては、63.5mm)の等間隔に並ぶモールド4に対して、ブラインを均一に当てることができ、ブライン槽2の幅方向に並ぶ複数の袋部41を備えたモールド4の冷却温度に温度ムラが発生することを防止することができるとともに、冷却効率を向上させることができる。
 なお、ブライン供給管30を配設する長手方向の間隔P、すなわち、ブライン噴出口3の間隔は、ブライン槽2の長手方向の全長に亘って等間隔とするほか、例えば、ブライン槽2のモールド4の入側では狭く、出側では広く設定したり、その逆に設定することで、モールド4の袋部41に充填した冷菓原料の冷却状態を調整するようにすることができる。
The brine outlet 3 is located below the mold 4 moving in the brine tank 2, across the width direction of the brine tank 2 orthogonal to the moving direction of the mold 4, and as shown in FIG. A plurality of brine supply pipes 30 are provided at intervals P in the longitudinal direction.
Thereby, while being able to form the brine ejection port 3 simply, adjustment of the supply amount of the cooled brine to each brine ejection port 3 can be performed easily.
In this case, the longitudinal interval P in which the brine supply pipe 30 is disposed is an equal interval, for example, an interval of 100 mm to 400 mm, preferably an interval of 200 mm to 300 mm (in this embodiment, an interval of about 250 mm). It is arranged.
In this manner, by arranging the brine supply pipe 30 with the interval P in the longitudinal direction, the brines supplied through the adjacent brine jets 3 do not interfere with each other, and the movement direction is Brine can be uniformly applied to the molds 4 arranged at equal intervals of 50 to 70 mm (63.5 mm in this embodiment), and a plurality of bag portions 41 arranged in the width direction of the brine tank 2 are provided. It is possible to prevent the occurrence of temperature unevenness in the cooling temperature of the mold 4 and improve the cooling efficiency.
In addition, the interval P in the longitudinal direction in which the brine supply pipe 30 is disposed, that is, the interval between the brine outlets 3 is equal throughout the entire length in the longitudinal direction of the brine tank 2. It is possible to adjust the cooling state of the frozen confectionery raw material filled in the bag portion 41 of the mold 4 by setting it narrow on the entry side of 4 and wide on the exit side, or vice versa.
 ブライン噴出口3のスリット幅aは、ブラインの所定の初速度が得られ、かつ、粘度の高いブラインを円滑に噴出させることができるように、例えば、1mm~3mm(本実施例においては、約2mm程度)に形成するようにしている。
 また、スリット長さbは、ブライン供給管30の略全長に亘る1本の連続したスリットとすることも可能であるが、本実施例においては、強度を保持するために、部分的に接続部を設けた断続的な形状に形成するようにしている。
The slit width a of the brine outlet 3 is, for example, 1 mm to 3 mm (in the present embodiment, about 1 mm to 3 mm) so that a predetermined initial velocity of the brine can be obtained and a high-viscosity brine can be smoothly ejected. About 2 mm).
In addition, the slit length b can be a single continuous slit over substantially the entire length of the brine supply pipe 30, but in this embodiment, in order to maintain the strength, the connection portion is partially provided. It is made to form in the intermittent shape which provided.
 ブライン供給管30は、ブライン供給母管31を介して、ブライン冷却手段5に接続するようにしている。
 より具体的には、ブライン槽2の長手方向の略全長に亘って配設した2本のブライン供給母管31に形成したブライン供給口31aと連結する連結口30aをブライン供給管30に形成し、ブライン供給管30を2本のブライン供給母管31に架け渡すように水平に配設するようにしている。
 なお、ブライン供給管30は、水平に配設するほか、例えば、中央部を高くした山形となるように配設することもできる。
The brine supply pipe 30 is connected to the brine cooling means 5 via the brine supply mother pipe 31.
More specifically, a connecting port 30a is formed in the brine supply pipe 30 to be connected to the brine supply ports 31a formed in the two brine supply mother pipes 31 arranged over substantially the entire length of the brine tank 2 in the longitudinal direction. The brine supply pipe 30 is horizontally arranged so as to span the two brine supply mother pipes 31.
Note that the brine supply pipe 30 can be arranged horizontally, for example, in a mountain shape with a raised central portion.
 ブライン噴出口3は、ブライン供給管30に、ブラインの噴出方向が鉛直上向きとなるように形成するようにしている。
 これにより、ブライン噴出口3からモールド4までの最短距離で噴出されたブラインがモールド4に当たり、ブラインの噴出速度の低下を最小限に抑え、冷却効率を向上させることができる。
The brine ejection port 3 is formed in the brine supply pipe 30 so that the ejection direction of the brine is vertically upward.
As a result, the brine ejected at the shortest distance from the brine ejection port 3 to the mold 4 hits the mold 4, minimizing a decrease in the ejection speed of the brine, and improving the cooling efficiency.
 また、ブライン噴出口3は、ブライン供給管30に、ブラインの噴出方向が鉛直上向きとなるように形成するほか、図3の二点鎖線で示すように、ブラインの噴出方向が斜め上向きとなるように形成することもできる。
 斜め上向きに形成する場合の角度α(図3に示す鉛直上向きを0度としたときの時計回り及び反時計回りの角度α)は、ブライン噴出口3からモールド4までの距離、ブラインの粘性等の諸条件に応じて任意に設定することができるが、ブライン噴出口3から噴出されたブラインがモールド4に到達するまでの距離を考慮して、通常、45度以下、好ましくは、30度以下、より好ましくは、5~15度程度の角度に設定するようにする。
 これにより、モールド4の前面又は背面に対して、ブラインを均一に当てることができ、ブライン槽2の幅方向に並ぶ複数の袋部41を備えたモールド4の冷却温度に温度ムラが発生することを防止することができるとともに、冷却効率を向上させることができる。
 なお、ブラインの噴出方向は、ブライン槽2の全長に亘って同じ方向とするほか、ブライン槽2のモールド4の入側(図1における右側)と出側(図1における左側)とで異なるようにすることができる。例えば、ブライン槽2の入側では、モールド4の移動方向に向け、モールド4の背面側にブラインが当たるようにし、ブライン槽2の中央部近傍で鉛直上向きとなるようにするとともに、ブライン槽2の出側では、モールド4の移動方向と逆方向に向け、モールド4の前面側にブラインが当たるようにすることができる。
Further, the brine outlet 3 is formed in the brine supply pipe 30 so that the brine jet direction is vertically upward, and as shown by the two-dot chain line in FIG. 3, the brine jet direction is obliquely upward. It can also be formed.
The angle α in the case of forming obliquely upward (clockwise and counterclockwise angle α when the vertical upward direction shown in FIG. 3 is 0 degree) is the distance from the brine outlet 3 to the mold 4, the viscosity of the brine, etc. However, considering the distance until the brine ejected from the brine outlet 3 reaches the mold 4, it is usually 45 degrees or less, preferably 30 degrees or less. More preferably, the angle is set to about 5 to 15 degrees.
Thereby, the brine can be uniformly applied to the front surface or the back surface of the mold 4, and temperature unevenness occurs in the cooling temperature of the mold 4 including the plurality of bag portions 41 arranged in the width direction of the brine tank 2. Can be prevented and the cooling efficiency can be improved.
In addition, the ejection direction of the brine is the same in the entire length of the brine tank 2, and is different between the entrance side (right side in FIG. 1) and the exit side (left side in FIG. 1) of the mold 4 of the brine tank 2. Can be. For example, on the entrance side of the brine tank 2, the brine hits the back side of the mold 4 in the moving direction of the mold 4 so that the brine tank 2 is vertically upward in the vicinity of the center of the brine tank 2. On the exit side, the brine can hit the front side of the mold 4 in the direction opposite to the moving direction of the mold 4.
 また、ブライン噴出口3は、モールド4の下端から10mm~100mmの間隔Lをあけて形成するようにしている。
 この間隔Lは、ブラインが、スリット状に形成したブライン噴出口3から面状に噴出されるため、モールド4に可及的に近付けることもでき、好ましくは、10mm~70mm、さらに好ましくは、10mm~50mmとすることにより、ブラインの速度の低下を最小限に抑え、冷却効率を向上させることができる。
 また、冷菓の形状に合わせて変更するモールド4に合わせて、間隔Lを変更することができるように、ブライン噴出口3を上下に移動させる駆動機構(図示省略)を設けることができる。
 そして、駆動機構を備えることで、間隔Lを、冷菓製造装置1の運転中に作業者が最適と思われる値に設定することもできる。
The brine jet 3 is formed with an interval L of 10 mm to 100 mm from the lower end of the mold 4.
The interval L can be as close as possible to the mold 4 because the brine is ejected in a planar shape from the brine ejection port 3 formed in a slit shape, preferably 10 mm to 70 mm, more preferably 10 mm. By setting it to ˜50 mm, it is possible to minimize the decrease in the speed of the brine and improve the cooling efficiency.
In addition, a drive mechanism (not shown) that moves the brine outlet 3 up and down can be provided so that the interval L can be changed according to the mold 4 that is changed according to the shape of the frozen dessert.
And by providing a drive mechanism, the space | interval L can also be set to the value which an operator seems to be optimal during the driving | operation of the frozen dessert manufacturing apparatus 1. FIG.
 次に、上記冷菓製造装置1を使用して冷菓を製造した場合(本件)と、ブライン噴出口をブライン供給管に形成した多数の丸孔で構成した従来の冷菓製造装置を使用して冷菓を製造した場合(従来)とを比較した冷却テスト(ブライン温度が-35℃±0.5℃で、常温の冷菓原料を-16℃まで冷却する時間(以下、「凍結時間」という。))を行った結果を、図6に基づいて説明する。 Next, when the frozen confectionery manufacturing apparatus 1 is used to manufacture the frozen confectionery (this case), the frozen confectionery is prepared using the conventional frozen confectionery manufacturing apparatus configured with a number of round holes formed in the brine supply pipe. A cooling test (brine temperature is −35 ° C. ± 0.5 ° C. and time for cooling the frozen confectionery raw material to −16 ° C. (hereinafter referred to as “freezing time”)) compared with the case of manufacturing (conventional). The results obtained will be described with reference to FIG.
 ここで、モールド4は、搬送手段6によってブライン槽2内を間歇的に移動するようにしており、冷却テストにおいては、16.7サイクル/分及び25サイクル/分で行った。
 また、実験に使用したブライン槽2は、長手方向の寸法が1850mm、幅方向の寸法が490mm(表面積約1m)のものを使用した。
 なお、ブライン槽2の長手方向の寸法の関係から、モールド4を、ブライン槽2の長手方向を往復移動させて凍結時間を計測した。
Here, the mold 4 was moved intermittently in the brine tank 2 by the conveying means 6, and in the cooling test, it was performed at 16.7 cycles / min and 25 cycles / min.
In addition, the brine tank 2 used in the experiment had a longitudinal dimension of 1850 mm and a width dimension of 490 mm (surface area of about 1 m 2 ).
In addition, from the relationship of the dimension of the longitudinal direction of the brine tank 2, the mold 4 was reciprocated in the longitudinal direction of the brine tank 2, and the freezing time was measured.
 図6に示すように、従来のブライン噴出口を備えた冷菓製造装置における、ブラインの流量100L/minでモールドの移動サイクルを16.7サイクルとした場合、冷菓原料を-16℃に到達させるために必要な時間は約560秒である。 As shown in FIG. 6, in a conventional frozen confectionery production apparatus equipped with a conventional brine outlet, when the mold transfer cycle is 16.7 cycles at a brine flow rate of 100 L / min, the frozen confectionery raw material reaches −16 ° C. The time required for this is about 560 seconds.
 この凍結時間を、約400秒に(28%の改善)するために、従来の冷菓製造装置では、ブラインの流量500L/minで、ブラインの噴出速度約1.0m/sec(モールドの移動サイクルを25サイクル)とすることで達成することができた。 In order to reduce this freezing time to about 400 seconds (an improvement of 28%), the conventional frozen dessert manufacturing apparatus uses a brine flow rate of 500 L / min and a brine ejection speed of about 1.0 m / sec (with a mold movement cycle). 25 cycles).
 一方、上記冷菓製造装置1の場合、ブラインの流量250L/minで、ブラインの噴出速度約0.8m/sec(モールドの移動サイクルを25サイクル)としたときに凍結時間を、約400秒とすることができた。
 冷菓製造装置1の場合、ブラインの流量100L/minの場合には、従来の冷菓製造装置と比べて凍結時間に大きな違いはないものの、ブラインの流量を増加させたときに、冷却効率の向上(凍結時間の短縮)の効果が顕著に表れる結果が得られた。
On the other hand, in the case of the frozen dessert manufacturing apparatus 1, the freezing time is about 400 seconds when the brine flow rate is 250 L / min and the brine ejection speed is about 0.8 m / sec (the mold movement cycle is 25 cycles). I was able to.
In the case of the frozen dessert manufacturing apparatus 1, when the flow rate of brine is 100 L / min, the freezing time is not significantly different from the conventional frozen dessert manufacturing apparatus, but when the brine flow rate is increased, the cooling efficiency is improved ( As a result, the effect of shortening the freezing time was noticeable.
 この冷却テストの結果から、ブライン槽の面積1m当たりのブライン噴出口から供給するブラインの流量を150L/min~350L/min、ブラインの噴出速度を0.4m/sec~1.5m/secとすることにより、モールド内に充填した常温の冷菓原料を短時間で製品となる所望の温度(例えば、約-16℃)まで冷却することができることが確認できた。 As a result of this cooling test, the flow rate of the brine supplied from the brine outlet per 1 m 2 of the brine tank is 150 L / min to 350 L / min, and the ejection speed of the brine is 0.4 m / sec to 1.5 m / sec. As a result, it was confirmed that the cold confectionery raw material filled in the mold could be cooled to a desired temperature (for example, about −16 ° C.) to become a product in a short time.
 また、モールド4のブライン槽2の幅方向に配設される袋部41を6個としたときの各袋部41の凍結時間を計測した結果を表1に示す。 Also, Table 1 shows the results of measuring the freezing time of each bag 41 when the number of the bags 41 arranged in the width direction of the brine tank 2 of the mold 4 is six.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、各袋部41の温度ムラ(凍結時間が最長の袋部と最短の袋部との時間差(通常、ブラインの流量を増やすことで時間差が大きくなる))は、上記冷菓製造装置1の場合、従来の冷菓製造装置と比べ短縮することができ、安定した品質の冷菓を製造することができることを確認した。 As shown in Table 1, the temperature unevenness of each bag part 41 (the time difference between the bag part with the longest freezing time and the bag part with the shortest freezing time (usually, the time difference increases by increasing the flow rate of brine)) In the case of the manufacturing apparatus 1, it was shortened compared with the conventional frozen dessert manufacturing apparatus, and it confirmed that the frozen dessert of the stable quality could be manufactured.
 以上、本発明の冷菓製造装置について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。 As mentioned above, although the frozen dessert manufacturing apparatus of this invention was demonstrated based on the Example, this invention is not limited to the structure described in the said Example, The structure is suitably changed in the range which does not deviate from the meaning. Is something that can be done.
 本発明の冷菓製造装置は、モールドの表面に対して、流速の大きなブラインが均一に当たることによって、ブライン槽の幅方向に並ぶ複数の袋部を備えたモールドの冷却温度に温度ムラが発生することを防止することができ、また、冷却効率も高いものであることから、冷菓原料を充填したモールドをブライン槽内を移動させながらブライン槽内のブラインによって冷菓原料を冷却することによって冷菓を製造するようにした冷菓製造装置の用途に好適に用いることができる。 In the frozen dessert manufacturing apparatus of the present invention, temperature unevenness occurs in the cooling temperature of the mold having a plurality of bag portions arranged in the width direction of the brine tank by uniformly hitting the brine with a large flow velocity against the mold surface. In addition, since the cooling efficiency is high, the frozen dessert material is produced by cooling the frozen dessert material with the brine in the brine tank while moving the mold filled with the frozen dessert material in the brine tank. It can use suitably for the use of the frozen dessert manufacturing apparatus made.
 1  冷菓製造装置
 2  ブライン槽
 20 堰
 3  ブライン噴出口
 30 ブライン供給管
 31 ブライン供給母管
 4  モールド
 a  スリット幅
 b  スリット長さ
 P  ブライン供給管の間隔
DESCRIPTION OF SYMBOLS 1 Frozen dessert manufacturing apparatus 2 Brine tank 20 Weir 3 Brine outlet 30 Brine supply pipe 31 Brine supply mother pipe 4 Mold a Slit width b Slit length P Brine supply pipe interval

Claims (6)

  1.  ブライン槽内に貯留されたブラインに、冷却されたブラインを供給するブライン噴出口を備えたブライン槽の槽内を、該ブライン槽の長手方向に冷菓用原料を充填したモールドを移動させることによって前記冷菓用原料を凍結させるようにした冷菓製造装置において、モールドの移動方向に対して直交するブライン槽の幅方向に亘って開口したスリット状のブライン噴出口を、ブライン槽の長手方向に間隔をあけて複数形成したことを特徴とする冷菓製造装置。 By moving the mold filled with the frozen dessert material in the longitudinal direction of the brine tank in the brine tank provided with a brine outlet for supplying cooled brine to the brine stored in the brine tank. In the frozen confectionery manufacturing apparatus in which the frozen confectionery raw material is frozen, slit-like brine jets opened across the width direction of the brine tank perpendicular to the moving direction of the mold are spaced apart in the longitudinal direction of the brine tank. A frozen dessert manufacturing apparatus characterized in that a plurality of them are formed.
  2.  前記ブライン噴出口を、ブラインの噴出方向が鉛直上向きとなるように形成したことを特徴とする請求項1記載の冷菓製造装置。 2. The frozen confectionery manufacturing apparatus according to claim 1, wherein the brine outlet is formed such that the direction of brine ejection is vertically upward.
  3.  前記ブライン噴出口を、ブラインの噴出方向が斜め上向きとなるように形成したことを特徴とする請求項1記載の冷菓製造装置。 2. The frozen confectionery manufacturing apparatus according to claim 1, wherein the brine outlet is formed so that a direction in which the brine is ejected is obliquely upward.
  4.  前記ブライン噴出口を、モールドの下端から10mm~100mmの間隔をあけて形成するようにしたことを特徴とする請求項1、2又は3記載の冷菓製造装置。 The frozen dessert manufacturing apparatus according to claim 1, 2 or 3, wherein the brine outlet is formed with an interval of 10 mm to 100 mm from the lower end of the mold.
  5.  前記ブライン噴出口を、モールドの移動方向に対して直交するブライン槽の幅方向に亘って、かつ、ブライン槽の長手方向に間隔をあけて複数配設したブライン供給管にそれぞれ形成したことを特徴とする請求項1、2、3又は4記載の冷菓製造装置。 The brine outlet is formed in a plurality of brine supply pipes arranged across the width direction of the brine tank orthogonal to the moving direction of the mold and at intervals in the longitudinal direction of the brine tank. The frozen confectionery manufacturing apparatus according to claim 1, 2, 3, or 4.
  6.  ブライン槽の面積1m当たりのブライン噴出口から供給するブラインの流量を150L/min~350L/min、ブラインの噴出速度を0.4m/sec~1.5m/secとしたことを特徴とする請求項1、2、3、4又は5記載の冷菓製造装置。 The flow rate of the brine supplied from the brine outlet per 1 m 2 of the brine tank is 150 L / min to 350 L / min, and the jet speed of the brine is 0.4 m / sec to 1.5 m / sec. Item 6. A frozen confectionery manufacturing apparatus according to item 1, 2, 3, 4 or 5.
PCT/JP2013/053458 2012-03-27 2013-02-14 Frozen dessert manufacturing device WO2013145912A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-071785 2012-03-27
JP2012071785A JP5871318B2 (en) 2012-03-27 2012-03-27 Frozen confectionery manufacturing equipment

Publications (1)

Publication Number Publication Date
WO2013145912A1 true WO2013145912A1 (en) 2013-10-03

Family

ID=49259194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053458 WO2013145912A1 (en) 2012-03-27 2013-02-14 Frozen dessert manufacturing device

Country Status (2)

Country Link
JP (1) JP5871318B2 (en)
WO (1) WO2013145912A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015112097A (en) * 2013-12-16 2015-06-22 株式会社イズミフードマシナリ Ice cream manufacturing apparatus
JP2021073875A (en) * 2019-11-07 2021-05-20 サイトー機械金属株式会社 Cooling device for ice candy mold

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6253090B2 (en) * 2013-12-12 2017-12-27 株式会社イズミフードマシナリ Frozen confectionery manufacturing equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260191U (en) * 1985-10-05 1987-04-14
JPH01127487U (en) * 1988-02-25 1989-08-31
JPH029363A (en) * 1988-02-17 1990-01-12 Cabinnovent Aps Apparatus and method for heating or cooling food
JPH0387166A (en) * 1989-09-29 1991-04-11 Besuto F Kk Method for freeze-storage of food
JPH04120489U (en) * 1991-04-12 1992-10-28 八洋エンジニアリング株式会社 Refrigeration processing equipment
JP2011067198A (en) * 2009-08-27 2011-04-07 Saitoo Kikai Kinzoku Kk Chiller for ice cream production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226134B1 (en) * 2012-01-19 2013-07-03 サイトー機械金属株式会社 Ice confection mold cooling equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260191U (en) * 1985-10-05 1987-04-14
JPH029363A (en) * 1988-02-17 1990-01-12 Cabinnovent Aps Apparatus and method for heating or cooling food
JPH01127487U (en) * 1988-02-25 1989-08-31
JPH0387166A (en) * 1989-09-29 1991-04-11 Besuto F Kk Method for freeze-storage of food
JPH04120489U (en) * 1991-04-12 1992-10-28 八洋エンジニアリング株式会社 Refrigeration processing equipment
JP2011067198A (en) * 2009-08-27 2011-04-07 Saitoo Kikai Kinzoku Kk Chiller for ice cream production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015112097A (en) * 2013-12-16 2015-06-22 株式会社イズミフードマシナリ Ice cream manufacturing apparatus
JP2021073875A (en) * 2019-11-07 2021-05-20 サイトー機械金属株式会社 Cooling device for ice candy mold

Also Published As

Publication number Publication date
JP5871318B2 (en) 2016-03-01
JP2013201917A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
KR101452609B1 (en) Glass plate production device and glass plate cooling method
WO2013145912A1 (en) Frozen dessert manufacturing device
CA2679695A1 (en) Device and method for cooling hot strip
KR20180086220A (en) Glass manufacturing apparatus having a cooling device and method of using the same
WO2016170757A1 (en) Production apparatus and production method for molten metal plated steel strip
CN101394947B (en) Method for setting arrangement of spray cooling nozzle, and cooling equipment for heated steel strip
JP6253090B2 (en) Frozen confectionery manufacturing equipment
JP2011067198A (en) Chiller for ice cream production
JP6480656B2 (en) Frozen confectionery manufacturing equipment
KR100887534B1 (en) Apparatus for cooling Zn-Al alloy hot-dip plated steel sheet
JP5465701B2 (en) Rapid and high-precision temperature control device for glass substrate surface in manufacturing process of liquid crystal display etc.
KR100918667B1 (en) Manufacturing device of icecream with stratiform chocolate
EP2854559A1 (en) Mold with optimized heat transfer properties
DK169884B1 (en) Apparatus and method for freezing a liquid product in a mold
JP2017124607A5 (en)
CN113941705B (en) Cooling device and method for 3D printing of liquid metal
KR101281799B1 (en) Ice making module and ice maker having the same
CN108188192B (en) A kind of big Wall-Thickness Difference multi-cavity aluminum profile lateral bending problem accurate control method of big specification
KR101281800B1 (en) Ice making module and ice maker having the same
JP2006175425A (en) Coating method and apparatus
JP5412201B2 (en) Casting mold
IT202000010903A1 (en) METHOD OF CONTROLLING A SECONDARY COOLING APPARATUS IN A CONTINUOUS CASTING MACHINE FOR METALLIC PRODUCTS
US20080175973A1 (en) Process and apparatus for moulding a frozen aerated product
KR101186465B1 (en) Substrate cooling apparatus for manufacturing polycrystaline silicon wafer for solar cell
JP2011167737A (en) Apparatus and method for cooling hot steel plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201405864

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769963

Country of ref document: EP

Kind code of ref document: A1