WO2013145841A1 - Nonwoven fabric and production method for nonwoven fabric - Google Patents

Nonwoven fabric and production method for nonwoven fabric Download PDF

Info

Publication number
WO2013145841A1
WO2013145841A1 PCT/JP2013/052054 JP2013052054W WO2013145841A1 WO 2013145841 A1 WO2013145841 A1 WO 2013145841A1 JP 2013052054 W JP2013052054 W JP 2013052054W WO 2013145841 A1 WO2013145841 A1 WO 2013145841A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper layer
nonwoven fabric
crepe
nozzle
pressure water
Prior art date
Application number
PCT/JP2013/052054
Other languages
French (fr)
Japanese (ja)
Inventor
孝義 小西
利夫 平岡
努 白井
Original Assignee
ユニ・チャーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニ・チャーム株式会社 filed Critical ユニ・チャーム株式会社
Publication of WO2013145841A1 publication Critical patent/WO2013145841A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/002Tissue paper; Absorbent paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/005Mechanical treatment

Definitions

  • the present invention relates to a nonwoven fabric, and particularly to a nonwoven fabric suitable for wipes. Moreover, this invention relates to the manufacturing method of the said nonwoven fabric.
  • a fiber sheet having a moisture content of 50 to 85% by weight is transferred to an aperture pattern net that circulates along the suction part, and the fiber sheet is sucked in a state where the fiber sheet is held on the aperture pattern net, Simultaneously with the suction or before and after the suction, water vapor having a calorie of 5 kcal / kg or more is sprayed on the fiber sheet to form a pattern corresponding to the aperture pattern net on the fiber sheet and dried in the drying step.
  • a bulky paper manufacturing method characterized by obtaining a patterned bulky paper is known as a conventional technique (for example, Patent Document 1).
  • the bulky paper produced by this production method is used as wipes for cooking paper, paper towels, tissues, and the like. According to this method for producing a bulky paper, it is possible to produce a bulky paper having a large thickness, a high absorbency, excellent softness, and appropriate strength.
  • the object of the present invention is to provide a nonwoven fabric and a method for producing the nonwoven fabric that can well remove dirt, regardless of whether the wiping direction is the machine direction of the nonwoven fabric or the width direction.
  • the present invention employs the following configuration in order to solve the above problems. That is, in the method for producing a nonwoven fabric of the present invention, a papermaking raw material containing moisture is supplied onto a belt moving in one direction, a paper layer is formed on the belt, and a high-pressure water stream is jetted onto the paper layer.
  • the step of forming concave portions extending in the machine direction and intermittently arranged in the width direction on the surface and the paper layer sprayed with the high pressure water flow adhered to the surface of the rotating cylindrical dryer A step of drying the sprayed paper layer to a moisture content of 10 to 45% and a paper layer adhered to the surface of the cylindrical dryer by separating the paper layer from the surface through a doctor blade.
  • the nonwoven fabric of the present invention includes a longitudinal direction, a transverse direction intersecting the longitudinal direction, a thickness direction perpendicular to the longitudinal direction and the transverse direction, and one surface perpendicular to the thickness direction.
  • the other surface facing the one surface in the thickness direction, extending in the vertical direction on one surface and arranged in the horizontal direction, and on one surface and the other surface A crepe extending in the direction and aligned in the longitudinal direction.
  • the present invention it is possible to obtain a non-woven fabric that can well remove dirt, regardless of whether the wiping direction is the machine direction of the non-woven fabric or the width direction.
  • FIG. 1 is a view for explaining a nonwoven fabric manufacturing apparatus 1 used in a nonwoven fabric manufacturing method according to an embodiment of the present invention.
  • a papermaking raw material containing moisture such as fiber suspension is supplied to the raw material supply head 11.
  • the papermaking raw material supplied to the raw material supply head 11 is supplied from the raw material supply head 11 onto the paper layer forming belt of the paper layer forming conveyor 16 and deposited on the paper layer forming belt.
  • the paper layer forming belt is preferably a support having air permeability through which steam can pass.
  • a wire mesh, a blanket, etc. can be used as a paper layer forming belt.
  • a short fiber having a fiber length of 20 mm or less is preferable.
  • Such short fibers include, for example, wood pulp such as soft and hardwood chemical pulp, semi-chemical pulp and mechanical pulp, mercerized pulp and cross-linked pulp obtained by chemically treating these wood pulp, and non-wood fibers such as hemp and cotton.
  • cellulosic fibers such as regenerated fibers such as rayon fibers, and synthetic fibers such as polyethylene fibers, polypropylene fibers, polyester fibers and polyamide fibers.
  • the fibers used for the papermaking raw material are particularly preferably cellulosic fibers such as wood pulp, non-wood pulp, and rayon fiber.
  • the papermaking raw material deposited on the paper layer forming belt is appropriately dehydrated by the suction box 15 to form the paper layer 23.
  • the paper layer 23 includes two high-pressure water flow nozzles 12 disposed on the paper layer formation belt and two suction boxes 15 disposed at positions facing the high-pressure water flow nozzle 12 with the paper layer formation belt interposed therebetween. Pass between.
  • the high-pressure water flow nozzle 12 injects a high-pressure water flow onto the paper sheet 23.
  • the suction box 15 sucks and collects the water sprayed from the high-pressure water flow nozzle 12.
  • a high pressure water stream is jetted from the high pressure water stream nozzle 12 onto the paper layer 23, and a recess is formed on the surface of the paper layer 23.
  • the high-pressure water flow nozzle 12 injects a plurality of high-pressure water flows 31 arranged in the width direction (CD) of the paper layer 23 toward the paper layer 23.
  • a plurality of recesses 32 that are intermittently arranged in the width direction (CD) of the paper layer 23 and extend in the machine direction (MD) are formed on the surface of the paper layer 23.
  • the hole pitch of the nozzle holes 121 (the distance between the centers of holes adjacent in the width direction (CD)) is preferably 0.5 to 1.0 mm.
  • the hole pitch of the nozzle holes 121 is smaller than 0.5 mm, the pressure resistance of the nozzles is lowered and may be damaged. Further, when the hole pitch of the nozzle holes 121 is larger than 1.0 mm, fiber entanglement may be insufficient.
  • the strength of the paper layer 23 is increased when the fibers of the paper layer 23 are entangled with each other. Thereby, even if high-pressure steam is jetted onto the paper layer 23 in a later step, the paper layer 23 is less likely to be pierced, the paper layer 23 is torn, or blown away. Further, the wet strength of the paper layer 23 can be increased without adding a paper strength enhancer to the papermaking raw material.
  • the paper layer 23 is transferred to the paper layer transport conveyor 18 by the suction pickup 17. Further, the paper layer 23 is transferred to the paper layer conveying conveyor 19 and then transferred to the drying dryer 20.
  • the drying dryer 20 dries the paper layer 23 on which the high-pressure water stream is jetted.
  • a Yankee dryer is used as the drying dryer 20.
  • the drying dryer 20 includes a rotating cylindrical dryer, and the surface of the cylindrical dryer is heated to about 160 ° C. by steam or the like.
  • the drying dryer 20 attaches the paper layer 23 to the surface of the rotating cylindrical dryer, and dries the paper layer 23.
  • the moisture content of the paper layer 23 When the moisture content of the paper layer 23 is smaller than 10%, the hydrogen bonding force between the fibers of the paper layer 23 becomes strong, and the energy required to loosen the fibers of the paper layer 23 by high-pressure steam described later becomes very high. There is a case. Further, when the moisture content of the paper layer 23 is less than 10%, the adhesion of the paper layer 23 to the surface of the cylindrical dryer is weakened, and the crepe cannot be formed on the paper layer 23 by the process of forming a crepe described later. There is.
  • the moisture content of the paper layer 23 is greater than 45%, the energy required for drying the paper layer 23 to a predetermined moisture content or less by high-pressure steam described below may become very high. Moreover, when the moisture content of the paper layer 23 is larger than 45%, the hydrogen bonding force between fibers in the paper layer becomes weak. As a result, the crepe formed on the paper layer 23 in the step of forming the crepe described later is deformed by the tension applied to the paper layer 23, or the strength of the paper layer 23 is greatly reduced during the crepe formation. May be torn.
  • the paper layer 23 adhering to the surface of the rotating cylindrical dryer in the drying dryer 20 is separated from the surface of the cylindrical dryer via the doctor blade 26.
  • a crepe extending in the width direction (CD) direction and arranged in the machine direction (MD) is formed on the paper layer 23.
  • the paper layer 23 adhering to the surface of the cylindrical dryer is separated from the surface of the cylindrical dryer after colliding with the end surface of the doctor blade 26 in contact with the surface of the cylindrical dryer. By this collision, the paper layer 23 is bent so that the cross-sectional shape in the machine direction (MD) becomes wavy, and a crepe is formed in the paper layer 23.
  • the crepe rate of the crepe formed on the paper layer 23 is preferably 5 to 50%. If the crepe rate of the crepe formed on the paper layer 23 is less than 5%, the wiping property in the machine direction (MD) of the nonwoven fabric may not be improved so much. If the crepe rate of the crepe formed on the paper layer 23 is greater than 50%, it may be difficult to form the groove portion uniformly in the paper layer on which the crepe is formed, and the production rate is less than half, resulting in poor productivity. It may become.
  • the crepe rate of the paper layer 23 can be measured, for example, as follows. (1) A measurement sample having a machine direction (MD) length of 150 mm and a width direction (CD) length of 50 mm is cut out from the paper layer on which the crepe is formed. (2) A straight line having a length of 100 mm extending in the machine direction (MD) is drawn on the surface of the cut out measurement sample in the width direction (CD) center using an oil-based ballpoint pen or the like. When drawing this straight line, be careful not to tear the paper layer. (3) The measurement sample is immersed in water for 10 seconds. (4) A measurement sample is taken out of water and placed on a glass plate. Then, the measurement sample is stretched in the machine direction (MD) until the crepe of the paper layer disappears.
  • MD machine direction
  • CD width direction
  • Crepe rate (%) (A-100) / A ⁇ 100 (7)
  • the average value of the calculated three crepe rates is defined as the crepe rate of the paper layer.
  • the paper layer 23 on which the crepe is formed moves onto the mesh-shaped outer peripheral surface of the cylindrical suction drum 13.
  • high-pressure steam is jetted onto the paper layer 23 from one steam nozzle 14 disposed above the outer peripheral surface of the suction drum 13.
  • the suction drum 13 has a built-in suction device, and water vapor ejected from the steam nozzle 14 is sucked by the suction device. Due to the high-pressure steam jetted from the steam nozzle 14, a groove portion having a width larger than the concave portion formed by the high-pressure water flow is formed on the surface of the paper layer 23.
  • the surface of the paper layer 23 that ejects high-pressure water vapor is preferably the surface opposite to the surface that ejected high-pressure water flow.
  • the fibers of the paper layer 23 on the surface opposite to the surface on which the high-pressure water flow is injected are strongly entangled, and the fibers in the paper layer are loosened by the high-pressure steam. This is because more energy is required.
  • the high-pressure steam sprayed from the steam nozzle 14 may be steam composed of 100% water, or steam containing other gas such as air. However, the high-pressure steam sprayed from the steam nozzle 14 is preferably steam composed of 100% water.
  • the temperature of the high-pressure steam is preferably 105 to 220 ° C.
  • FIG. 1 An example of the steam nozzle 14 arranged above the suction drum 13 is shown in FIG.
  • the steam nozzle 14 injects a plurality of high-pressure steams 51 arranged in the machine direction (MD) and the width direction (CD) of the paper layer 23 toward the paper layer 23 on which the crepe 52 is formed.
  • a plurality of grooves 53 extending in the machine direction (MD) along the width direction of the paper layer 23 are formed on the upper surface of the paper layer 23.
  • the width of the groove 53 is larger than the width of the recess 32 (see FIG. 2) formed by the high-pressure water flow 31.
  • a nozzle hole row of a plurality of nozzle holes arranged in the width direction (CD) may be arranged in the machine direction (MD).
  • the nozzle holes so that a plurality of nozzle hole rows of the plurality of nozzle holes arranged in the width direction (CD) are arranged in the machine direction (MD)
  • the groove portion can be reliably formed in the paper layer. This makes it possible to reliably increase the bulk of the paper layer.
  • the diameter of the nozzle hole of the steam nozzle 14 is preferably 150 to 500 ⁇ m.
  • the hole diameter of the nozzle hole is smaller than 150 ⁇ m, energy may be insufficient and the fibers may not be sufficiently scraped.
  • the hole diameter of the vapor nozzle 14 is larger than 500 ⁇ m, the energy may be too large and the substrate damage may become too large.
  • the nozzle hole hole pitch (distance between the centers of nozzle holes adjacent in the width direction (CD)) is preferably 3.0 to 7.0 mm.
  • the hole pitch of the nozzle holes is smaller than 3.0 mm, the interval in the width direction (CD) of the adjacent high-pressure steam becomes too small, and the crepe formed in the paper layer 23 by the high-pressure steam having a small mutual interval is used. Most of them may be drowned out.
  • the hole pitch of the nozzle holes is larger than 7.0 mm, the bulk of the paper layer 23 is not so high, and the effect of improving the flexibility of the paper layer 23 by high-pressure steam may be reduced.
  • the vapor pressure of the high-pressure steam injected from the steam nozzle 14 is preferably 0.2 to 1.5 MPa. If the vapor pressure of the high-pressure steam is smaller than 0.2 MPa, the bulk of the paper layer 23 may not be so high due to the high-pressure steam. Further, when the vapor pressure of the high-pressure steam is higher than 1.5 MPa, a hole may be formed in the paper layer 23, or the paper layer 23 may be torn or blown off. In addition, since the fiber of the paper layer 23 is loosened when the crepe is formed on the paper layer 23, the bulk of the paper layer 23 can be increased by the high-pressure steam having a low vapor pressure as compared with the case where the crepe is not formed.
  • the high-pressure steam 51 hits the suction drum 13. Most of the high-pressure steam 51 is returned to the suction drum 13. As a result, the fibers of the paper layer 23 are rolled up and loosened. Then, the loosened fibers of the paper layer 23 are scraped by the high-pressure steam 51, and a groove is formed in the paper layer 23. The separated fibers gather as the high-pressure water vapor 51 moves to the width direction side of the portion 54 corresponding to the paper layer 23 and the bulk of the paper layer 23 increases. Further, the moisture contained in the paper layer 23 is evaporated by the heat of the high-pressure steam 51 and is removed from the paper layer 23. Thereby, the drying of the paper layer 23 proceeds.
  • a groove is formed in the paper layer with high-pressure steam in order to increase the bulk of the paper layer. Therefore, in order to increase the amount of fibers scraped by the high pressure steam, the width of the groove formed by the high pressure steam is larger than the width of the recess formed by the high pressure water flow.
  • the crepe is reduced or eliminated on the inner surface of the groove.
  • a paper layer becomes difficult to extend in a machine direction (MD) compared with the other part in which a crepe remains. Therefore, the groove portion of the paper layer suppresses the crepe of the paper layer from extending and disappearing, and becomes a fixed portion for maintaining the shape of the crepe. Thereby, even if the manufactured nonwoven fabric becomes a wet state, the nonwoven fabric can hold a crepe.
  • MD machine direction
  • the crepe was formed on the dried paper layer 23 so as to have a moisture content of 10 to 45% or less, the crepe was firmly formed on the paper layer 23, and the paper layer 23 was formed by the high-pressure steam described above. Even if the fibers are loosened, the crepe formed in the paper layer 23 is held except for the portion on the surface of the groove.
  • FIG. 9 is a schematic perspective view of a part of the paper layer 23 (position 25 in FIG. 1) on which high-pressure steam has been jetted.
  • the paper layer 23 includes a longitudinal direction, a transverse direction intersecting the longitudinal direction, a thickness direction perpendicular to the longitudinal direction and the transverse direction, one surface perpendicular to the thickness direction, The other surface facing the surface in the thickness direction, extending in the longitudinal direction on one surface, and arranged in the lateral direction, and in the lateral direction on one surface and the other surface.
  • a crepe 52 extending in the vertical direction.
  • the vertical direction corresponds to the machine direction (MD)
  • the horizontal direction corresponds to the width direction (CD).
  • the crepe 52 is provided between adjacent grooves 53.
  • a region 55 on the surface side where a plurality of concave portions 32 formed by high-pressure water flow exists is a region where the strength of the paper layer 23 is high, and a region on the surface side where the groove 53 is formed by high-pressure steam.
  • Reference numeral 56 denotes a region where the paper layer 23 has a high bulk although the strength of the paper layer 23 is slightly weaker than the region 55 due to the high-pressure steam.
  • the crepe 52 is hardly visible on the inner surface of the groove 53, but the crepe remains between the adjacent grooves 53. Further, the crepe 52 (not shown) remains on the surface where the recess 32 is formed by the high-pressure water flow.
  • the grooves 53 can wipe off the dirt. Therefore, the groove part 53 formed in the nonwoven fabric improves the ability to wipe off the dirt in the nonwoven fabric when the nonwoven fabric is moved in the width direction (CD) of the nonwoven fabric to wipe off the dirt.
  • the paper layer 23 is easily raised when the corrugated (bellows-like) paper layer 23 is loosened with high-pressure steam.
  • the paper layer 23 can be loosened by high-pressure steam in a state where the paper layer 23 is in a corrugated shape (bellows shape), so that the paper layer 23 is likely to be raised.
  • the paper layer 23 is more likely to be raised. For this reason, as shown in FIG.
  • the non-woven fabric is wiped in the machine direction ( MD) and the balance between the wiping performance of the nonwoven fabric when wiping dirt can be controlled.
  • MD machine direction
  • the nozzle pitch of the nozzle holes 141 of the water vapor nozzle 14 is reduced, when the nonwoven fabric is moved in the width direction (CD) of the nonwoven fabric to wipe off the dirt, the ability to wipe off the dirt in the nonwoven fabric can be further improved.
  • the ratio of the remaining portion of the crepe of the nonwoven fabric increases, so when the nonwoven fabric is moved in the machine direction (MD) of the nonwoven fabric and the stain is wiped off, the stain on the nonwoven fabric is wiped off.
  • MD machine direction
  • the distance between the tip of the steam nozzle 14 and the upper surface of the paper layer 23 is preferably 1.0 to 10 mm. If the distance between the tip of the steam nozzle 14 and the upper surface of the paper layer 23 is smaller than 1.0 mm, a hole may be formed in the paper layer 23, or the paper layer 23 may be torn or blown off. Further, if the distance between the tip of the steam nozzle 14 and the upper surface of the paper layer 23 is greater than 10 mm, the force for forming grooves on the surface of the paper layer 23 in high-pressure steam is dispersed, and the paper layer 23. In some cases, the efficiency of forming the groove on the surface of the film deteriorates.
  • the image is transferred to a dry dryer 22 different from the dry dryer 20.
  • the drying dryer 22 dries the paper layer 23 sprayed with high-pressure steam until it becomes a nonwoven fabric as a final product.
  • a Yankee dryer is used as the drying dryer 22.
  • the drying dryer 22 attaches the paper layer 23 to the surface of the cylindrical dryer heated to about 150 ° C. by steam, and dries the paper layer 23.
  • the paper layer 23 after passing through the dry dryer 22 needs to be sufficiently dry.
  • the moisture content of the paper layer 23 after passing through the dry dryer 22 is preferably 5% or less.
  • the moisture content of the paper layer 23 immediately after jetting high-pressure steam is 5% or less, the paper layer 23 jetted with high-pressure steam does not have to be dried using the drying dryer 22 or the like.
  • the dried paper layer 23 (nonwoven fabric) is taken up by the winder 21.
  • FIG. 10 A micrograph of the surface of the nonwoven fabric produced as described above is shown in FIG. This surface is a surface on which high-pressure steam is jetted. From FIG. 10, the manufactured nonwoven fabric has a groove part arranged in the machine direction (MD) and aligned in the width direction (CD) and a crepe extended in the width direction (CD) and arranged in the machine direction (MD). I understand.
  • the step of forming the crepe is performed after jetting the high-pressure steam rather than before jetting the high-pressure steam, the groove formed by spraying the steam on the paper layer is destroyed in the step of forming the crepe, In some cases, the fibers may be loosened, causing troubles such as fiber loss and sheet tearing.
  • this nonwoven fabric By cutting the nonwoven fabric produced as described above into a predetermined size, this nonwoven fabric can be used as a dry wipe. Moreover, this nonwoven fabric can be used as a wet wipe by cutting the nonwoven fabric produced as described above into a predetermined dimension and impregnating the nonwoven fabric with a predetermined amount of chemical solution into the fabric.
  • the groove 53 is formed on the paper layer 23 by high-pressure steam. Therefore, a process for producing a wipe from a nonwoven fabric, for example, a process for cutting the nonwoven fabric, The crepe of the nonwoven fabric is not lost in the impregnation step or the like. Therefore, the wipes produced from the nonwoven fabric according to one embodiment of the present invention can remove stains well regardless of the direction in which the wipes are wiped off.
  • moisture content of paper layer before steam spraying basis weight of paper layer before crepe, basis weight of paper layer after crepe, dry thickness, density, dry tensile strength, dry tensile elongation, wet tensile strength, wet tensile elongation
  • the soil removal rate on the high-pressure steam jet surface and the soil removal rate on the high-pressure water jet surface were measured as follows.
  • the basis weight of the paper layer was calculated by sampling a measurement sample having a size of 30 cm ⁇ 30 cm from the paper layer before forming the crepe dried by the dry dryer 20 and measuring the weight of the sampled measurement sample.
  • a strip-shaped test piece with a width of 25 mm whose longitudinal direction is the machine direction of the paper layer and a strip-shaped test piece with a width of 25 mm whose longitudinal direction is the width direction of the paper layer are cut from the manufactured nonwoven fabric.
  • a sample was prepared. Samples for measurement in the machine direction and width direction were each for three measurements using a tensile tester (manufactured by Shimadzu Corporation, Autograph Model AGS-1kNG) equipped with a load cell with a maximum load capacity of 50N. For the sample, the tensile strength was measured under the conditions of a distance between grips of 100 mm and a tensile speed of 100 mm / min. The average value of the tensile strengths of the three measurement samples of the measurement sample in the machine direction and the width direction was taken as the dry tensile strength in the machine direction and the width direction.
  • a strip-shaped test piece with a width of 25 mm whose longitudinal direction is the machine direction of the paper layer and a strip-shaped test piece with a width of 25 mm whose longitudinal direction is the width direction of the paper layer are cut from the manufactured nonwoven fabric.
  • a sample was prepared. Samples for measurement in the machine direction and width direction were each for three measurements using a tensile tester (manufactured by Shimadzu Corporation, Autograph Model AGS-1kNG) equipped with a load cell with a maximum load capacity of 50N. The sample was measured for tensile elongation under the conditions of a distance between grips of 100 mm and a tensile speed of 100 mm / min.
  • the tensile elongation is a value obtained by dividing the maximum elongation (mm) when the measurement sample is pulled by a tensile tester by the distance between grips (100 mm).
  • the average value of the tensile elongation of each of the three measurement samples of the measurement sample in the machine direction and the width direction was defined as the dry tensile elongation in the machine direction and the width direction.
  • the tensile strength was measured under the conditions of a distance between grips of 100 mm and a tensile speed of 100 mm / min.
  • the average value of the tensile strength of each of the three measurement samples of the measurement sample in the machine direction and the width direction was defined as the wet tensile strength in the machine direction and the width direction.
  • the tensile elongation was measured under the conditions of a distance between grips of 100 mm and a tensile speed of 100 mm / min.
  • the average value of the tensile elongation of each of the three measurement samples of the measurement sample in the machine direction and the width direction was defined as the wet tensile elongation in the machine direction and the width direction.
  • the soil removal rate on the surface of the nonwoven fabric on which high-pressure water vapor was jetted was measured by the following procedure. (1) 12.6% by weight of carbon black (Carbon Black, manufactured by Yoneyama Pharmaceutical Co., Ltd.), 20.8% by weight of beef tallow extremely hardened oil (manufactured by Nippon Oil & Fats Co., Ltd.) and 66.6% by weight of fluid A simulated soil paste containing paraffin (manufactured by Nacalai Tesque) was prepared.
  • the simulated soil paste was diluted with hexane so that the soil paste: hexane (manufactured by Nacalai Tesque Co., Ltd.) was in a weight ratio of 85:15 to prepare a simulated soil agent.
  • the coefficient of friction measurement was performed once under the conditions of a feed rate of 150 mm / min and a load of 60 g, thereby wiping the simulated stain adhering to the preparation with the measurement sample.
  • the image of the slide is captured under the same conditions using the scanner described above, and the color in the slide before the simulated stain is wiped from the image data of the captured image. The same range of color as the range in which the taste was calculated was calculated.
  • the color change rate was calculated by dividing the value. This value was defined as the dirt removal rate of the measurement sample. If the measurement sample has good wiping properties, the simulated stain adhering to the preparation is wiped clean by the measurement sample, so that the color change rate, that is, the stain removal rate increases. On the other hand, if the wiping property of the measurement sample is poor, a lot of the simulated stain remains in the slide where the simulated stain is wiped off by the measurement sample, so that the color change rate, that is, the stain removal rate becomes small. Thus, the ability to wipe off the dirt of the measurement sample can be evaluated by the value of the dirt removal rate. The soil removal rate was measured for three measurement samples, and the average value was taken as the soil removal rate of the measurement sample.
  • the high pressure water jet surface is the same as the dirt removal rate on the high pressure steam jet surface, except that the measurement sample is mounted on the friction coefficient measuring device table so that the high pressure water jet surface (the surface on which the high pressure water flow is jetted) is up. The soil removal rate was measured.
  • Example 1 was produced using the nonwoven fabric manufacturing apparatus 1 in one embodiment of the present invention.
  • a papermaking raw material containing 70% by weight of softwood bleached kraft pulp (NBKP) and 30% by weight of rayon (Corona, manufactured by Daiwabo Rayon Co., Ltd.) having a fineness of 1.1 dtex and a fiber length of 7 mm was prepared.
  • the papermaking raw material was supplied on the paper layer formation belt (Nippon Filcon Co., Ltd. OS80) using the raw material head, and the papermaking raw material was spin-dry
  • the paper layer moisture content of the paper layer at this time was 80%.
  • injection flow rate (cubic M / min) 750 ⁇ total orifice opening area (m 2 ) ⁇ injection pressure (kg / cm 2 ) 0.495
  • the distance between the tip of the high-pressure water flow nozzle and the top surface of the paper layer was 10 mm. Furthermore, the hole diameter of the nozzle holes of the high-pressure water flow nozzle was 92 ⁇ m, and the hole pitch of the nozzle holes was 0.5 mm.
  • the paper layer was transferred to two paper layer conveyors, and then transferred to a Yankee dryer heated to 160 ° C. and dried.
  • the line speed in this Yankee dryer was 80 m / min.
  • the crepe process was implemented by separating the paper layer adhering to the surface of a Yankee dryer from the surface through a doctor blade, and the crepe was formed in the paper layer.
  • the line speed of the Yankee dryer that dries the paper layer sprayed with high-pressure steam described later was 68 m / min. Due to the difference in line speed between the two Yankee dryers, the crepe rate of the formed crepe could be 14%.
  • high-pressure steam was jetted onto the surface of the paper layer opposite to the surface on which the high-pressure water flow was jetted (the side opposite to the high-pressure water jet surface).
  • the vapor pressure of the high-pressure steam at this time was 0.7 MPa, and the vapor temperature was 210 ° C.
  • the distance between the tip of the steam nozzle and the upper surface of the paper layer was 2.0 mm.
  • the nozzle holes of the steam nozzles were arranged in three rows in the machine direction (MD). Furthermore, the hole diameter of the nozzle hole of the steam nozzle was 500 ⁇ m, and the hole pitch was 4.0 mm. Further, the suction force with which the suction drum sucked the paper layer was ⁇ 5 kPa.
  • a stainless steel 18 mesh perforated sleeve was used on the outer periphery of the suction drum.
  • the paper layer was transferred to a Yankee dryer heated to 150 ° C. and dried.
  • the dried paper layer is Example 1.
  • Comparative Example 2 The comparative example 2 was manufactured by the method similar to the manufacturing method of Example 1 except the point which did not implement the process which forms a crepe.
  • Table 3 shows the dirt removal rate on the high-pressure steam jet surface and the dirt removal rate on the high-pressure water jet surface in the above Examples and Comparative Examples.
  • Example 1 Comparison between Example 1 and Comparative Example 2 In Comparative Example 2, the dry thickness was small and the density was high. In Comparative Example 2, the stain removal rate in the width direction (CD) of the nonwoven fabric was large, but the stain removal rate in the machine direction (MD) of the nonwoven fabric was small. On the other hand, in Examples 1 and 2, the dry thickness was large and the density was low. In Comparative Example 1, the dirt removal rate was large not only in the width direction (CD) but also in the machine direction (MD). From these, by carrying out the step of forming a crepe, the bulk of the nonwoven fabric can be increased, and the wiping property of dirt can be improved not only in the width direction (CD) but also in the machine direction (MD) of the nonwoven fabric. all right.
  • Example 3 Comparison between Example 1 and Comparative Example 3 In Comparative Example 3, the dry thickness was small and the density was high. Moreover, in the comparative example 3, the stain

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

Provided are a nonwoven fabric that is capable of suitably removing dirt when used to wipe in the machine direction or in the width direction of said nonwoven fabric, and a production method for the nonwoven fabric. The production method for nonwoven fabric of the present invention includes: a step (12) in which a stream of high-pressure water is sprayed on a paper layer in order to form concave sections on the surface of said paper layer that extend in the machine direction and are arranged intermittently in the width direction; a step (20) in which the paper layer on which the stream of high-pressure water was sprayed is dried so as to have a water content of 10-45% or less by adhering the paper layer on which the stream of high-pressure water was sprayed to the surface of a rotating cylindrical dryer; a step (26) in which crepe is formed on the paper layer by separating the paper layer that is adhered to the surface of the cylindrical dryer from said surface using a doctor blade; and a step (14) in which grooves are formed on the surface of the paper layer while leaving the crepe that is formed on the paper layer intact by spraying high-pressure steam from a steam nozzle on the paper layer having crepe formed thereon. The nonwoven fabric of the present invention is produced using the abovementioned production method.

Description

不織布および不織布の製造方法Nonwoven fabric and method for producing nonwoven fabric
 本発明は、不織布に関し、とくにワイプスに好適な不織布に関する。また、本発明は、上記不織布の製造方法に関する。 The present invention relates to a nonwoven fabric, and particularly to a nonwoven fabric suitable for wipes. Moreover, this invention relates to the manufacturing method of the said nonwoven fabric.
 吸引部に沿って周回する開孔パターンネットに、水分率が50~85重量%の繊維シートを移送させ、その繊維シートを開孔パターンネット上に保持した状態でその繊維シートを吸引すると共に、その吸引と同時に、またはその吸引の前後に、5kcal/kg以上の熱量を有する水蒸気を繊維シートに吹き付けて、開孔パターンネットに対応するパターンを繊維シートに形成し、乾燥工程において乾燥させることによりパターン付けされた嵩高紙を得ることを特徴とする嵩高紙の製造方法が従来技術として知られている(たとえば、特許文献1)。この製造方法によって作製された嵩高紙は、クッキングペーパー、ペーパータオル、ティッシュなどのワイプスとして使用される。この嵩高紙の製造方法によれば、厚さが大きく、吸収性が高く、柔らかさに優れ、かつ適度な丈夫さを有する嵩高紙を製造することができる。 A fiber sheet having a moisture content of 50 to 85% by weight is transferred to an aperture pattern net that circulates along the suction part, and the fiber sheet is sucked in a state where the fiber sheet is held on the aperture pattern net, Simultaneously with the suction or before and after the suction, water vapor having a calorie of 5 kcal / kg or more is sprayed on the fiber sheet to form a pattern corresponding to the aperture pattern net on the fiber sheet and dried in the drying step. A bulky paper manufacturing method characterized by obtaining a patterned bulky paper is known as a conventional technique (for example, Patent Document 1). The bulky paper produced by this production method is used as wipes for cooking paper, paper towels, tissues, and the like. According to this method for producing a bulky paper, it is possible to produce a bulky paper having a large thickness, a high absorbency, excellent softness, and appropriate strength.
特開2000-34690号公報JP 2000-34690 A
 不織布をワイプスとして使用する場合、厚さが大きく、吸収性が高く、柔らかさに優れ、かつ適度な丈夫さを有する以外に、拭いたときに汚れをよく除去できることが重要である。とくに、使用者は、ワイプスの機械方向および幅方向を意識せずにワイプスを使用するので、ワイプスを使用して対象物を拭く方向がワイプスの機械方向であるかワイプスの幅方向であるかに関係なくワイプスが汚れをよく除去できることが重要である。 When using a non-woven fabric as a wipe, it is important to be able to remove dirt well when wiping, in addition to having a large thickness, high absorbency, excellent softness and moderate strength. In particular, since the user uses the wipe without being aware of the machine direction and the width direction of the wipe, whether the direction in which the object is wiped using the wipe is the machine direction of the wipe or the width direction of the wipe is determined. Regardless, it is important that the wipes can remove dirt well.
 本発明は、拭き取る方向が不織布の機械方向である場合も、幅方向である場合も、汚れをよく落とすことができる不織布およびその不織布の製造方法を提供することを目的とする。 The object of the present invention is to provide a nonwoven fabric and a method for producing the nonwoven fabric that can well remove dirt, regardless of whether the wiping direction is the machine direction of the nonwoven fabric or the width direction.
 本発明は、上記課題を解決するため、以下の構成を採用した。
 すなわち、本発明の不織布の製造方法は、水分を含んだ抄紙原料を、一方向に移動するベルト上に供給して、該ベルト上に紙層を形成する工程と、紙層に高圧水流を噴射し、機械方向に延在し、幅方向に間欠的に並ぶ凹部を表面に形成する工程と、高圧水流を噴射した紙層を、回転する円筒状ドライヤの表面に付着させることによって、高圧水流を噴射した紙層を、10~45%以下の水分率になるように乾燥する工程と、円筒状ドライヤの表面に付着させた紙層を、ドクター刃を介して該表面から引き離すことによって、紙層にクレープを形成する工程と、蒸気ノズルから、クレープを形成した紙層に高圧水蒸気を噴射することによって、凹部の幅よりも大きな幅を有し機械方向に延びる溝部を、紙層に形成したクレープを残しながら紙層の表面に形成する工程とを含む。
 また、本発明の不織布は、縦方向と、縦方向に交差する横方向と、縦方向および横方向に対して垂直をなす厚さ方向と、厚さ方向に対して垂直をなす一方の面と、一方の面に対して厚さ方向に対向する他方の面とを有し、一方の面に、縦方向に延在し、横方向に並ぶ溝部と、一方の面および他方の面に、横方向に延在し、縦方向に並ぶクレープとを有する。
The present invention employs the following configuration in order to solve the above problems.
That is, in the method for producing a nonwoven fabric of the present invention, a papermaking raw material containing moisture is supplied onto a belt moving in one direction, a paper layer is formed on the belt, and a high-pressure water stream is jetted onto the paper layer. The step of forming concave portions extending in the machine direction and intermittently arranged in the width direction on the surface and the paper layer sprayed with the high pressure water flow adhered to the surface of the rotating cylindrical dryer A step of drying the sprayed paper layer to a moisture content of 10 to 45% and a paper layer adhered to the surface of the cylindrical dryer by separating the paper layer from the surface through a doctor blade. A crepe having a width larger than the width of the recess and extending in the machine direction by injecting high-pressure steam from the steam nozzle onto the paper layer on which the crepe has been formed. While leaving the paper layer And forming on the surface.
Further, the nonwoven fabric of the present invention includes a longitudinal direction, a transverse direction intersecting the longitudinal direction, a thickness direction perpendicular to the longitudinal direction and the transverse direction, and one surface perpendicular to the thickness direction. The other surface facing the one surface in the thickness direction, extending in the vertical direction on one surface and arranged in the horizontal direction, and on one surface and the other surface A crepe extending in the direction and aligned in the longitudinal direction.
 本発明によれば、拭き取る方向が不織布の機械方向である場合も、幅方向である場合も、汚れをよく落とすことができる不織布を得ることができる。 According to the present invention, it is possible to obtain a non-woven fabric that can well remove dirt, regardless of whether the wiping direction is the machine direction of the non-woven fabric or the width direction.
図1は、本発明の一実施形態における不織布の製造方法に使用する不織布製造装置を説明するための図である。FIG. 1 is a diagram for explaining a nonwoven fabric manufacturing apparatus used in a method for manufacturing a nonwoven fabric according to an embodiment of the present invention. 図2は高圧水流ノズルの一例を示す図である。FIG. 2 is a diagram illustrating an example of a high-pressure water flow nozzle. 図3は高圧水流ノズルのノズル穴の一例を示す図である。FIG. 3 is a diagram illustrating an example of a nozzle hole of a high-pressure water flow nozzle. 図4は、高圧水流によって紙層の繊維同士が交絡する原理を説明するための図である。FIG. 4 is a diagram for explaining the principle that the fibers in the paper layer are entangled by the high-pressure water flow. 図5は、高圧水流が噴射された紙層の幅方向の断面概略図である。FIG. 5 is a schematic cross-sectional view in the width direction of a paper layer onto which a high-pressure water stream has been jetted. 図6は高圧水蒸気ノズルの一例を示す図である。FIG. 6 is a diagram illustrating an example of a high-pressure steam nozzle. 図7は高圧水蒸気ノズルのノズル穴の一例を示す図である。FIG. 7 is a view showing an example of a nozzle hole of a high-pressure steam nozzle. 図8は、高圧水蒸気によって、紙層の繊維がほぐれ、紙層の嵩が高くなる原理を説明するための図である。FIG. 8 is a diagram for explaining the principle that the fibers of the paper layer are loosened by the high-pressure steam and the bulk of the paper layer is increased. 図9は、高圧水蒸気が噴射された紙層の一部を切り出したものの概略斜視図である。FIG. 9 is a schematic perspective view of a part of the paper layer on which the high-pressure steam is jetted. 図10は、本発明の一実施形態における不織布の表面を示す顕微鏡写真である。FIG. 10 is a photomicrograph showing the surface of the nonwoven fabric in one embodiment of the present invention.
 以下、図を参照して本発明の一実施形態の不織布の製造方法を説明する。図1は、本発明の一実施形態における不織布の製造方法に使用する不織布製造装置1を説明するための図である。 Hereinafter, a method for producing a nonwoven fabric according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a view for explaining a nonwoven fabric manufacturing apparatus 1 used in a nonwoven fabric manufacturing method according to an embodiment of the present invention.
 繊維懸濁液などの水分を含んだ抄紙原料が原料供給ヘッド11に供給される。原料供給ヘッド11に供給された抄紙原料は、原料供給ヘッド11から紙層形成コンベア16の紙層形成ベルト上に供給され、紙層形成ベルト上に堆積する。紙層形成ベルトは、蒸気が通過可能な通気性を有する支持体であることが好ましい。たとえば、ワイヤーメッシュ、毛布などを紙層形成ベルトとして使用できる。 A papermaking raw material containing moisture such as fiber suspension is supplied to the raw material supply head 11. The papermaking raw material supplied to the raw material supply head 11 is supplied from the raw material supply head 11 onto the paper layer forming belt of the paper layer forming conveyor 16 and deposited on the paper layer forming belt. The paper layer forming belt is preferably a support having air permeability through which steam can pass. For example, a wire mesh, a blanket, etc. can be used as a paper layer forming belt.
 原料供給ヘッド11に供給された抄紙原料に用いる繊維として、たとえば繊維長20mm以下の短繊維が好ましい。このような短繊維には、たとえば針葉樹や広葉樹の化学パルプ、半化学パルプおよび機械パルプなどの木材パルプ、これら木材パルプを化学処理したマーセル化パルプおよび架橋パルプ、麻や綿などの非木材系繊維ならびにレーヨン繊維などの再生繊維のようなセルロース系繊維、ならびにポリエチレン繊維、ポリプロピレン繊維、ポリエステル繊維およびポリアミド繊維のような合成繊維などが挙げられる。抄紙原料に用いる繊維は、とくに木材パルプ、非木材パルプ、レーヨン繊維などのセルロース系繊維が好ましい。 As a fiber used for the papermaking raw material supplied to the raw material supply head 11, for example, a short fiber having a fiber length of 20 mm or less is preferable. Such short fibers include, for example, wood pulp such as soft and hardwood chemical pulp, semi-chemical pulp and mechanical pulp, mercerized pulp and cross-linked pulp obtained by chemically treating these wood pulp, and non-wood fibers such as hemp and cotton. And cellulosic fibers such as regenerated fibers such as rayon fibers, and synthetic fibers such as polyethylene fibers, polypropylene fibers, polyester fibers and polyamide fibers. The fibers used for the papermaking raw material are particularly preferably cellulosic fibers such as wood pulp, non-wood pulp, and rayon fiber.
 紙層形成ベルト上に堆積した抄紙原料は吸引ボックス15により適度に脱水され、紙層23が形成する。紙層23は、紙層形成ベルト上に配置された2台の高圧水流ノズル12と、紙層形成ベルトを挟んで高圧水流ノズル12に対向する位置に配置された2台の吸引ボックス15との間を通過する。高圧水流ノズル12は紙増23に高圧水流を噴射する。吸引ボックス15は高圧水流ノズル12から噴射された水を吸引して回収する。高圧水流ノズル12から高圧水流が紙層23に噴射され、紙層23の表面に凹部が形成される。 The papermaking raw material deposited on the paper layer forming belt is appropriately dehydrated by the suction box 15 to form the paper layer 23. The paper layer 23 includes two high-pressure water flow nozzles 12 disposed on the paper layer formation belt and two suction boxes 15 disposed at positions facing the high-pressure water flow nozzle 12 with the paper layer formation belt interposed therebetween. Pass between. The high-pressure water flow nozzle 12 injects a high-pressure water flow onto the paper sheet 23. The suction box 15 sucks and collects the water sprayed from the high-pressure water flow nozzle 12. A high pressure water stream is jetted from the high pressure water stream nozzle 12 onto the paper layer 23, and a recess is formed on the surface of the paper layer 23.
 高圧水流ノズル12の一例を図2に示す。高圧水流ノズル12は、紙層23の幅方向(CD)に並んだ複数の高圧水流31を紙層23に向けて噴射する。その結果、紙層23の表面には、紙層23の幅方向(CD)に間欠的に並び、機械方向(MD)に延びる複数の凹部32が形成される。 An example of the high-pressure water flow nozzle 12 is shown in FIG. The high-pressure water flow nozzle 12 injects a plurality of high-pressure water flows 31 arranged in the width direction (CD) of the paper layer 23 toward the paper layer 23. As a result, a plurality of recesses 32 that are intermittently arranged in the width direction (CD) of the paper layer 23 and extend in the machine direction (MD) are formed on the surface of the paper layer 23.
 高圧水流ノズル12のノズル穴の一例を図3に示す。高圧水流ノズル12のノズル穴121は、たとえば、紙層の幅方向(CD)に一列に並んで配置される。ノズル穴121の穴径は、好ましくは90~150μmである。ノズル穴121の穴径が90μmよりも小さいと、ノズルが詰まりやすくなる場合がある。ノズル穴121の穴径が150μmよりも大きいと、処理効率が悪くなる場合がある。 An example of the nozzle hole of the high-pressure water flow nozzle 12 is shown in FIG. The nozzle holes 121 of the high-pressure water flow nozzle 12 are arranged in a line in the width direction (CD) of the paper layer, for example. The hole diameter of the nozzle hole 121 is preferably 90 to 150 μm. When the hole diameter of the nozzle hole 121 is smaller than 90 μm, the nozzle may be easily clogged. When the hole diameter of the nozzle hole 121 is larger than 150 μm, the processing efficiency may be deteriorated.
 ノズル穴121の穴ピッチ(幅方向(CD)に隣接する穴の中心間の距離)は、好ましくは0.5~1.0mmである。ノズル穴121の穴ピッチが0.5mmよりも小さいと、ノズルの耐圧が低下し、破損する場合がある。また、ノズル穴121の穴ピッチが1.0mmよりも大きいと、繊維交絡が不十分となる場合がある。 The hole pitch of the nozzle holes 121 (the distance between the centers of holes adjacent in the width direction (CD)) is preferably 0.5 to 1.0 mm. When the hole pitch of the nozzle holes 121 is smaller than 0.5 mm, the pressure resistance of the nozzles is lowered and may be damaged. Further, when the hole pitch of the nozzle holes 121 is larger than 1.0 mm, fiber entanglement may be insufficient.
 紙層23が高圧水流を受けると、図2に示すように紙層23に凹部32が形成されるとともに紙層23の繊維同士が交絡し、紙層23の強度が高くなる。紙層23が高圧水流を受けると、紙層23の繊維同士が交絡する原理を、図4を参照して説明する。しかし、この原理は本発明を限定するものではない。 When the paper layer 23 receives a high-pressure water flow, as shown in FIG. 2, a recess 32 is formed in the paper layer 23 and the fibers of the paper layer 23 are entangled with each other, and the strength of the paper layer 23 is increased. The principle that the fibers of the paper layer 23 are entangled when the paper layer 23 receives a high-pressure water flow will be described with reference to FIG. However, this principle does not limit the present invention.
 図4に示すように、高圧水流ノズル12が高圧水流31を紙層23に噴射すると、高圧水流31は、紙層23および紙層形成ベルト41を通過する。これにより紙層23の繊維は、高圧水流31が紙層形成ベルト41を通過する部分42に向かって引き込まれることになる。その結果、紙層23の繊維が、高圧水流31が紙層形成ベルト41を通過する部分42に向かって集まり、これにより繊維同士が交絡することになる。 As shown in FIG. 4, when the high pressure water flow nozzle 12 jets the high pressure water flow 31 onto the paper layer 23, the high pressure water flow 31 passes through the paper layer 23 and the paper layer forming belt 41. As a result, the fibers of the paper layer 23 are drawn toward the portion 42 where the high-pressure water flow 31 passes through the paper layer forming belt 41. As a result, the fibers of the paper layer 23 gather toward the portion 42 where the high-pressure water stream 31 passes through the paper layer forming belt 41, and thereby the fibers are entangled.
 紙層23の繊維同士が交絡することにより紙層23の強度は高くなる。これにより、後の工程で、高圧水蒸気を紙層23に噴射しても、紙層23に穴が開いたり、紙層23が破れたり、および吹き飛んだりすることが少なくなる。また、抄紙原料に紙力増強剤を添加しなくても紙層23の湿潤強度を増加させることができる。 The strength of the paper layer 23 is increased when the fibers of the paper layer 23 are entangled with each other. Thereby, even if high-pressure steam is jetted onto the paper layer 23 in a later step, the paper layer 23 is less likely to be pierced, the paper layer 23 is torn, or blown away. Further, the wet strength of the paper layer 23 can be increased without adding a paper strength enhancer to the papermaking raw material.
 2台の高圧水流ノズル12と、2台の吸引ボックス15との間を通過した後の位置(図1の符号24の位置)の紙層23の幅方向の断面の概略図を図5に示す。高圧水流によって紙層23の表面に凹部32が形成される。高圧水流が噴射された面の反対側の面には、紙層形成ベルトのパターンに対応するパターン(不図示)が形成される。 FIG. 5 shows a schematic diagram of a cross-section in the width direction of the paper layer 23 at a position after passing between the two high-pressure water flow nozzles 12 and the two suction boxes 15 (position 24 in FIG. 1). . A recess 32 is formed on the surface of the paper layer 23 by the high-pressure water flow. A pattern (not shown) corresponding to the pattern of the paper layer forming belt is formed on the surface opposite to the surface on which the high-pressure water flow is jetted.
 その後、図1に示すように、紙層23は、吸引ピックアップ17によって紙層搬送コンベア18に転写される。さらに、紙層23は紙層搬送コンベア19に転写され、そして、乾燥ドライヤ20に転写される。 Thereafter, as shown in FIG. 1, the paper layer 23 is transferred to the paper layer transport conveyor 18 by the suction pickup 17. Further, the paper layer 23 is transferred to the paper layer conveying conveyor 19 and then transferred to the drying dryer 20.
 乾燥ドライヤ20は、高圧水流が噴射された紙層23を乾燥する。乾燥ドライヤ20には、たとえば、ヤンキードライヤが用いられる。乾燥ドライヤ20は、回転する円筒状ドライヤを含み、円筒状ドライヤの表面は蒸気などにより約160℃に加熱される。乾燥ドライヤ20は、回転する円筒状ドライヤの表面に紙層23を付着させて、紙層23を乾燥する。 The drying dryer 20 dries the paper layer 23 on which the high-pressure water stream is jetted. For example, a Yankee dryer is used as the drying dryer 20. The drying dryer 20 includes a rotating cylindrical dryer, and the surface of the cylindrical dryer is heated to about 160 ° C. by steam or the like. The drying dryer 20 attaches the paper layer 23 to the surface of the rotating cylindrical dryer, and dries the paper layer 23.
 乾燥ドライヤ20は、好ましくは10~45%、より好ましくは20~40%の水分率になるように紙層23を乾燥する。ここで、水分率とは、紙層23の乾燥質量を100%としたときの紙層に含有している水の量である。 The dry dryer 20 dries the paper layer 23 so that the moisture content is preferably 10 to 45%, more preferably 20 to 40%. Here, the moisture content is the amount of water contained in the paper layer when the dry mass of the paper layer 23 is 100%.
 紙層23の水分率が10%よりも小さいと、紙層23の繊維間の水素結合力が強くなり、後述の高圧水蒸気によって紙層23の繊維をほぐすために必要なエネルギーが非常に高くなる場合がある。また、紙層23の水分率が10%よりも小さいと、円筒状ドライヤの表面への紙層23の付着力が弱くなり、後述のクレープを形成する工程によってクレープが紙層23に形成できない場合がある。 When the moisture content of the paper layer 23 is smaller than 10%, the hydrogen bonding force between the fibers of the paper layer 23 becomes strong, and the energy required to loosen the fibers of the paper layer 23 by high-pressure steam described later becomes very high. There is a case. Further, when the moisture content of the paper layer 23 is less than 10%, the adhesion of the paper layer 23 to the surface of the cylindrical dryer is weakened, and the crepe cannot be formed on the paper layer 23 by the process of forming a crepe described later. There is.
 一方、紙層23の水分率が45%よりも大きくなると、後述の高圧水蒸気によって紙層23を所定の水分率以下に乾燥させるために必要なエネルギーが非常に高くなる場合がある。また、紙層23の水分率が45%よりも大きくなると、紙層中の繊維間の水素結合力が弱くなる。これにより、後述のクレープを形成する工程によって紙層23に形成したクレープが紙層23にかかっている張力によって変形し、なくなったり、クレープ形成時に紙層23の強度が大きく低下し、紙層23が破れたりする場合がある。 On the other hand, when the moisture content of the paper layer 23 is greater than 45%, the energy required for drying the paper layer 23 to a predetermined moisture content or less by high-pressure steam described below may become very high. Moreover, when the moisture content of the paper layer 23 is larger than 45%, the hydrogen bonding force between fibers in the paper layer becomes weak. As a result, the crepe formed on the paper layer 23 in the step of forming the crepe described later is deformed by the tension applied to the paper layer 23, or the strength of the paper layer 23 is greatly reduced during the crepe formation. May be torn.
 図1に示すように、乾燥ドライヤ20における回転する円筒状ドライヤの表面に付着した紙層23は、ドクター刃26を介して円筒状ドライヤの表面から引き離される。このとき、幅方向(CD)方向に延在し、機械方向(MD)に並ぶクレープが紙層23に形成される。円筒状ドライヤの表面に付着している紙層23は、円筒状ドライヤの表面に当接しているドクター刃26の端面に衝突した後に円筒状ドライヤの表面から引き離される。この衝突によって紙層23は機械方向(MD)の断面の形状が波状になるように曲げられ、紙層23にクレープが形成される。 As shown in FIG. 1, the paper layer 23 adhering to the surface of the rotating cylindrical dryer in the drying dryer 20 is separated from the surface of the cylindrical dryer via the doctor blade 26. At this time, a crepe extending in the width direction (CD) direction and arranged in the machine direction (MD) is formed on the paper layer 23. The paper layer 23 adhering to the surface of the cylindrical dryer is separated from the surface of the cylindrical dryer after colliding with the end surface of the doctor blade 26 in contact with the surface of the cylindrical dryer. By this collision, the paper layer 23 is bent so that the cross-sectional shape in the machine direction (MD) becomes wavy, and a crepe is formed in the paper layer 23.
 紙層23に形成されるクレープのクレープ率は、好ましくは5~50%である。紙層23に形成されるクレープのクレープ率が5%よりも小さいと、不織布の機械方向(MD)の拭き取り性があまり改善されない場合がある。紙層23に形成されるクレープのクレープ率が50%よりも大きいと、クレープを形成した紙層に溝部を均一に形成することが難しい場合があったり、生産速度が半分以下となり生産性が悪くなったりする場合がある。 The crepe rate of the crepe formed on the paper layer 23 is preferably 5 to 50%. If the crepe rate of the crepe formed on the paper layer 23 is less than 5%, the wiping property in the machine direction (MD) of the nonwoven fabric may not be improved so much. If the crepe rate of the crepe formed on the paper layer 23 is greater than 50%, it may be difficult to form the groove portion uniformly in the paper layer on which the crepe is formed, and the production rate is less than half, resulting in poor productivity. It may become.
 紙層23のクレープ率は、たとえば、以下のようにして測定することができる。
(1)機械方向(MD)の長さが150mmであり幅方向(CD)の長さが50mmである測定用試料を、クレープを形成した紙層から切り出す。
(2)切り出した測定用試料の幅方向(CD)中央の表面に、機械方向(MD)に延びる長さ100mmの直線を、油性ボールペンなどを使用して描く。この直線を描くとき、紙層が破れないように注意する。
(3)測定用試料を水の中に10秒間浸す。
(4)測定用試料を水の中から取りだし、ガラス板の上に載せる。そして、紙層のクレープが消失するまで、測定用試料を機械方向(MD)に伸ばす。
(5)伸ばした測定用試料に描かれた直線の機械方向(MD)の長さA(mm)を測定する。
(6)以下の式からクレープ率を算出する。
    クレープ率(%)=(A-100)/A×100
(7)同じ測定用試料について上記(3)~(6)をさらに2回繰り返す。
(8)算出した3つのクレープ率の平均値をその紙層のクレープ率とする。
The crepe rate of the paper layer 23 can be measured, for example, as follows.
(1) A measurement sample having a machine direction (MD) length of 150 mm and a width direction (CD) length of 50 mm is cut out from the paper layer on which the crepe is formed.
(2) A straight line having a length of 100 mm extending in the machine direction (MD) is drawn on the surface of the cut out measurement sample in the width direction (CD) center using an oil-based ballpoint pen or the like. When drawing this straight line, be careful not to tear the paper layer.
(3) The measurement sample is immersed in water for 10 seconds.
(4) A measurement sample is taken out of water and placed on a glass plate. Then, the measurement sample is stretched in the machine direction (MD) until the crepe of the paper layer disappears.
(5) The length A (mm) in the machine direction (MD) of the straight line drawn on the stretched measurement sample is measured.
(6) The crepe rate is calculated from the following equation.
Crepe rate (%) = (A-100) / A × 100
(7) Repeat (3) to (6) two more times for the same measurement sample.
(8) The average value of the calculated three crepe rates is defined as the crepe rate of the paper layer.
 次に、図1に示すように、クレープを形成した紙層23は、円筒状のサクションドラム13のメッシュ状の外周面上に移動する。このとき、サクションドラム13の外周面の上方に配置された1台の蒸気ノズル14から高圧水蒸気が紙層23に噴射される。サクションドラム13は吸引装置を内蔵しており、蒸気ノズル14から噴射された水蒸気は吸引装置によって吸引される。蒸気ノズル14から噴射された高圧水蒸気によって、紙層23の表面に、高圧水流によって形成された凹部よりも幅が大きい溝部が形成される。 Next, as shown in FIG. 1, the paper layer 23 on which the crepe is formed moves onto the mesh-shaped outer peripheral surface of the cylindrical suction drum 13. At this time, high-pressure steam is jetted onto the paper layer 23 from one steam nozzle 14 disposed above the outer peripheral surface of the suction drum 13. The suction drum 13 has a built-in suction device, and water vapor ejected from the steam nozzle 14 is sucked by the suction device. Due to the high-pressure steam jetted from the steam nozzle 14, a groove portion having a width larger than the concave portion formed by the high-pressure water flow is formed on the surface of the paper layer 23.
 高圧水蒸気を噴射する紙層23の面は、高圧水流を噴射した面の反対側の面であることが好ましい。高圧水流を噴射した面の反対側の面における紙層23の繊維に比べて、高圧水流を噴射した面における紙層23の繊維は強く交絡しており、高圧水蒸気によって紙層中の繊維をほぐすのに、よりエネルギーを要するからである。 The surface of the paper layer 23 that ejects high-pressure water vapor is preferably the surface opposite to the surface that ejected high-pressure water flow. Compared with the fibers of the paper layer 23 on the surface opposite to the surface on which the high-pressure water flow is injected, the fibers of the paper layer 23 on the surface on which the high-pressure water flow is injected are strongly entangled, and the fibers in the paper layer are loosened by the high-pressure steam. This is because more energy is required.
 蒸気ノズル14から噴射される高圧水蒸気は、100%の水からなる水蒸気でもよいし、空気などの他の気体を含んだ水蒸気でもよい。しかし、蒸気ノズル14から噴射される高圧水蒸気は、100%の水からなる水蒸気であることが好ましい。 The high-pressure steam sprayed from the steam nozzle 14 may be steam composed of 100% water, or steam containing other gas such as air. However, the high-pressure steam sprayed from the steam nozzle 14 is preferably steam composed of 100% water.
 高圧水蒸気の温度は、好ましくは105~220℃である。これにより、高圧水蒸気を紙層23に噴射しているときも紙層23の乾燥は進み、紙層23は嵩が高くなるのと同時に乾燥する。紙層23が乾燥すると紙層23の繊維同士の水素結合が強くなるので、紙層23の強度は高くなり、紙層23の高くなった嵩はつぶれにくくなり、紙層23に形成されたクレープは消えにくくなる。また、紙層23の強度は高くなることによって、高圧水蒸気の噴射により紙層23に穴が開いたり、切れたりすることを防止できる。 The temperature of the high-pressure steam is preferably 105 to 220 ° C. As a result, the drying of the paper layer 23 proceeds even when high-pressure steam is sprayed onto the paper layer 23, and the paper layer 23 dries at the same time as the bulk increases. When the paper layer 23 is dried, the hydrogen bonds between the fibers of the paper layer 23 are strengthened, so that the strength of the paper layer 23 is increased and the increased bulk of the paper layer 23 is less likely to be crushed, and the crepe formed in the paper layer 23 Becomes difficult to disappear. Further, since the strength of the paper layer 23 is increased, it is possible to prevent the paper layer 23 from being pierced or cut due to the jet of high-pressure steam.
 サクションドラム13の上方に配置された蒸気ノズル14の一例を図6に示す。蒸気ノズル14は、機械方向(MD)および紙層23の幅方向(CD)に並んだ複数の高圧水蒸気51を、クレープ52が形成された紙層23に向けて噴射する。その結果、紙層23の上面には、紙層23の幅方向にならび、機械方向(MD)に延びる複数の溝部53が形成される。上述したようにこの溝部53の幅は、高圧水流31によって形成された凹部32(図2参照)の幅よりも大きい。 An example of the steam nozzle 14 arranged above the suction drum 13 is shown in FIG. The steam nozzle 14 injects a plurality of high-pressure steams 51 arranged in the machine direction (MD) and the width direction (CD) of the paper layer 23 toward the paper layer 23 on which the crepe 52 is formed. As a result, a plurality of grooves 53 extending in the machine direction (MD) along the width direction of the paper layer 23 are formed on the upper surface of the paper layer 23. As described above, the width of the groove 53 is larger than the width of the recess 32 (see FIG. 2) formed by the high-pressure water flow 31.
 図7は、高圧水蒸気ノズル14のノズル穴141の一例を示す図である。図7に示す蒸気ノズル14のように、幅方向(CD)に並んだ複数のノズル穴141Aのノズル穴列が、機械方向(MD)に3列に並ぶ。したがって、図6に示すように、幅方向(CD)に並んだ複数の高圧水蒸気51は、機械方向(MD)に3列に並ぶ。なお、幅方向(CD)に並んだ複数のノズル穴のノズル穴列が、機械方向(MD)に並ぶ列の数は、3に限定されず、1、2および4以上であってもよい。また、複数の高圧水蒸気ノズルを、機械方向(MD)に並べることによって、幅方向(CD)に並んだ複数のノズル穴のノズル穴列を機械方向(MD)に並ぶようにしてもよい。なお、幅方向(CD)に並んだ複数のノズル穴のノズル穴列が、機械方向(MD)に複数並ぶように、ノズル穴を配置することによって、溝部を紙層に確実に形成することができ、これにより、紙層の嵩を確実に高めることができる。 FIG. 7 is a view showing an example of the nozzle hole 141 of the high-pressure steam nozzle 14. Like the steam nozzle 14 shown in FIG. 7, the nozzle hole rows of the plurality of nozzle holes 141A arranged in the width direction (CD) are arranged in three rows in the machine direction (MD). Therefore, as shown in FIG. 6, the plurality of high-pressure steams 51 arranged in the width direction (CD) are arranged in three rows in the machine direction (MD). The number of nozzle hole rows of the plurality of nozzle holes arranged in the width direction (CD) is not limited to 3, but may be 1, 2 and 4 or more. Further, by arranging a plurality of high-pressure steam nozzles in the machine direction (MD), a nozzle hole row of a plurality of nozzle holes arranged in the width direction (CD) may be arranged in the machine direction (MD). In addition, by arranging the nozzle holes so that a plurality of nozzle hole rows of the plurality of nozzle holes arranged in the width direction (CD) are arranged in the machine direction (MD), the groove portion can be reliably formed in the paper layer. This makes it possible to reliably increase the bulk of the paper layer.
 蒸気ノズル14のノズル穴の穴径は、好ましくは150~500μmである。ノズル穴の穴径が150μmよりも小さいと、エネルギーが不足し、十分に繊維を掻き分けられない場合がある。また、蒸気ノズル14の穴径が500μmよりも大きいと、エネルギーが大き過ぎ基材ダメージが大きくなり過ぎる場合がある。 The diameter of the nozzle hole of the steam nozzle 14 is preferably 150 to 500 μm. When the hole diameter of the nozzle hole is smaller than 150 μm, energy may be insufficient and the fibers may not be sufficiently scraped. On the other hand, if the hole diameter of the vapor nozzle 14 is larger than 500 μm, the energy may be too large and the substrate damage may become too large.
 ノズル穴の穴ピッチ(幅方向(CD)に隣接するノズル穴の中心間の距離)は、好ましくは3.0~7.0mmである。ノズル穴の穴ピッチが3.0mmよりも小さいと、隣接する高圧水蒸気の幅方向(CD)の間隔が小さくなり過ぎてしまい、相互の間隔が小さい高圧水蒸気によって紙層23に形成されたクレープの大部分がかき消されてしまう場合がある。また、ノズル穴の穴ピッチが7.0mmよりも大きいと、紙層23の嵩があまり高くならず、高圧水蒸気による紙層23の柔軟性改善効果が低下する場合がある。 The nozzle hole hole pitch (distance between the centers of nozzle holes adjacent in the width direction (CD)) is preferably 3.0 to 7.0 mm. When the hole pitch of the nozzle holes is smaller than 3.0 mm, the interval in the width direction (CD) of the adjacent high-pressure steam becomes too small, and the crepe formed in the paper layer 23 by the high-pressure steam having a small mutual interval is used. Most of them may be drowned out. On the other hand, when the hole pitch of the nozzle holes is larger than 7.0 mm, the bulk of the paper layer 23 is not so high, and the effect of improving the flexibility of the paper layer 23 by high-pressure steam may be reduced.
 蒸気ノズル14から噴射される高圧水蒸気の蒸気圧力は、好ましくは0.2~1.5MPaである。高圧水蒸気の蒸気圧力が0.2MPaよりも小さいと、紙層23の嵩が、高圧水蒸気によってあまり高くならない場合がある。また、高圧水蒸気の蒸気圧力が1.5MPaよりも大きいと、紙層23に穴が開いたり、紙層23が破れたり、および吹き飛んだりする場合がある。なお、紙層23にクレープを形成するときに紙層23の繊維はほぐれるので、クレープを形成しない場合に比べて、低い蒸気圧力の高圧水蒸気によって紙層23の嵩を高くすることができる。 The vapor pressure of the high-pressure steam injected from the steam nozzle 14 is preferably 0.2 to 1.5 MPa. If the vapor pressure of the high-pressure steam is smaller than 0.2 MPa, the bulk of the paper layer 23 may not be so high due to the high-pressure steam. Further, when the vapor pressure of the high-pressure steam is higher than 1.5 MPa, a hole may be formed in the paper layer 23, or the paper layer 23 may be torn or blown off. In addition, since the fiber of the paper layer 23 is loosened when the crepe is formed on the paper layer 23, the bulk of the paper layer 23 can be increased by the high-pressure steam having a low vapor pressure as compared with the case where the crepe is not formed.
 紙層23に高圧水蒸気が噴射されると、紙層23の繊維はほぐれ、そして紙層23の嵩は高くなる。これにより、紙層23の柔軟性が高まり、紙層23の触感が改善される。紙層23が高圧水蒸気を受けると、紙層23の繊維がほぐれ、紙層23の嵩が高くなる原理を、図8を参照して説明する。しかし、この原理は本発明を限定するものではない。 When high-pressure steam is jetted onto the paper layer 23, the fibers of the paper layer 23 are loosened and the bulk of the paper layer 23 is increased. Thereby, the softness | flexibility of the paper layer 23 increases and the tactile sense of the paper layer 23 is improved. When the paper layer 23 receives high-pressure water vapor, the principle of loosening the fibers of the paper layer 23 and increasing the bulk of the paper layer 23 will be described with reference to FIG. However, this principle does not limit the present invention.
 図8に示すように、蒸気ノズル14が高圧水蒸気51を噴射すると、高圧水蒸気51はサクションドラム13にあたる。高圧水蒸気51は、大部分はサクションドラム13にはね返される。これにより紙層23の繊維は、巻き上がり、そしてほぐされる。そして、ほぐされた紙層23の繊維は、高圧水蒸気51によってかき分けられ、紙層23に溝部が形成される。かき分けられた繊維は、高圧水蒸気51が紙層23にあたる部分54の幅方向側に移動して集まり、紙層23の嵩が高くなる。また、紙層23に含まれる水分は、高圧水蒸気51の熱により蒸発し、紙層23から除去される。これにより、紙層23の乾燥が進む。 As shown in FIG. 8, when the steam nozzle 14 ejects the high-pressure steam 51, the high-pressure steam 51 hits the suction drum 13. Most of the high-pressure steam 51 is returned to the suction drum 13. As a result, the fibers of the paper layer 23 are rolled up and loosened. Then, the loosened fibers of the paper layer 23 are scraped by the high-pressure steam 51, and a groove is formed in the paper layer 23. The separated fibers gather as the high-pressure water vapor 51 moves to the width direction side of the portion 54 corresponding to the paper layer 23 and the bulk of the paper layer 23 increases. Further, the moisture contained in the paper layer 23 is evaporated by the heat of the high-pressure steam 51 and is removed from the paper layer 23. Thereby, the drying of the paper layer 23 proceeds.
 本発明の一実施形態の不織布の製造方法では、紙層の嵩を高くするために、高圧水蒸気によって紙層に溝部を形成する。したがって、高圧水蒸気によってかき分けられる繊維の量を多くするために、高圧水蒸気によって形成された溝部の幅は、高圧水流によって形成された凹部の幅よりも大きくなる。 In the method for producing a nonwoven fabric according to an embodiment of the present invention, a groove is formed in the paper layer with high-pressure steam in order to increase the bulk of the paper layer. Therefore, in order to increase the amount of fibers scraped by the high pressure steam, the width of the groove formed by the high pressure steam is larger than the width of the recess formed by the high pressure water flow.
 高圧水蒸気が噴射された部分では紙層の繊維はほぐされるため、溝部の内部の表面において、クレープは小さくなるかまたはなくなる。これにより、溝部の表面の部分では、クレープが残っている他の部分に比べて紙層が機械方向(MD)に伸びにくくなる。したがって、紙層の溝部は、紙層のクレープが伸びて消滅することを抑制し、クレープの形状を保持するための固定部分になる。これにより、製造された不織布が湿潤状態になっても、不織布はクレープを保持することができる。また、上述したように、10~45%以下の水分率になるように乾燥した紙層23にクレープを形成したので、クレープが紙層23に強固に形成され、上述の高圧水蒸気によって紙層23の繊維がほぐされても、溝部の表面の部分以外では、紙層23に形成されたクレープは保持される。 Since the fibers in the paper layer are loosened at the portion where the high-pressure steam is injected, the crepe is reduced or eliminated on the inner surface of the groove. Thereby, in the part of the surface of a groove part, a paper layer becomes difficult to extend in a machine direction (MD) compared with the other part in which a crepe remains. Therefore, the groove portion of the paper layer suppresses the crepe of the paper layer from extending and disappearing, and becomes a fixed portion for maintaining the shape of the crepe. Thereby, even if the manufactured nonwoven fabric becomes a wet state, the nonwoven fabric can hold a crepe. Further, as described above, since the crepe was formed on the dried paper layer 23 so as to have a moisture content of 10 to 45% or less, the crepe was firmly formed on the paper layer 23, and the paper layer 23 was formed by the high-pressure steam described above. Even if the fibers are loosened, the crepe formed in the paper layer 23 is held except for the portion on the surface of the groove.
 図9は、高圧水蒸気が噴射された紙層23(図1の符号25の位置)の一部を切り出したものの概略斜視図である。紙層23は、縦方向と、縦方向に交差する横方向と、縦方向および横方向に対して垂直をなす厚さ方向と、厚さ方向に対して垂直をなす一方の面と、一方の面に対して厚さ方向に対向する他方の面とを有し、一方の面に、縦方向に延在し、横方向に並ぶ溝部53と、一方の面および他方の面に、横方向に延在し、縦方向に並ぶクレープ52とを有する。ここで、縦方向は機械方向(MD)に対応し、横方向は幅方向(CD)に対応する。一方の面では、クレープ52は隣接する溝部53の間に設けられている。 FIG. 9 is a schematic perspective view of a part of the paper layer 23 (position 25 in FIG. 1) on which high-pressure steam has been jetted. The paper layer 23 includes a longitudinal direction, a transverse direction intersecting the longitudinal direction, a thickness direction perpendicular to the longitudinal direction and the transverse direction, one surface perpendicular to the thickness direction, The other surface facing the surface in the thickness direction, extending in the longitudinal direction on one surface, and arranged in the lateral direction, and in the lateral direction on one surface and the other surface. And a crepe 52 extending in the vertical direction. Here, the vertical direction corresponds to the machine direction (MD), and the horizontal direction corresponds to the width direction (CD). On one side, the crepe 52 is provided between adjacent grooves 53.
 紙層23のうち、高圧水流によって形成された凹部32が複数存在する面側の領域55は、紙層23の強度が強い領域であり、高圧水蒸気によって溝部53が形成されている面側の領域56は、高圧水蒸気によって紙層23の強度が上記領域55に比べて若干弱くなっているものの紙層23の嵩が高くなっている領域である。このように、紙層23に強度の強い領域55と強度は弱いが嵩は高い領域56とを形成すことによって、紙層23における強度と嵩高とのバランスをとることができる。すなわち、これにより、嵩高であり、強度が高い紙層23を形成することができる。 In the paper layer 23, a region 55 on the surface side where a plurality of concave portions 32 formed by high-pressure water flow exists is a region where the strength of the paper layer 23 is high, and a region on the surface side where the groove 53 is formed by high-pressure steam. Reference numeral 56 denotes a region where the paper layer 23 has a high bulk although the strength of the paper layer 23 is slightly weaker than the region 55 due to the high-pressure steam. As described above, by forming the strong region 55 and the weakly strong region 56 in the paper layer 23, the strength and bulkiness of the paper layer 23 can be balanced. That is, this makes it possible to form a paper layer 23 that is bulky and has high strength.
 図9に示すように、溝部53の内部の表面には、クレープ52がほとんど見えないが、隣接する溝部53の間にはクレープが残っている。また、高圧水流によって凹部32が形成された面にもクレープ52(不図示)は残る。 As shown in FIG. 9, the crepe 52 is hardly visible on the inner surface of the groove 53, but the crepe remains between the adjacent grooves 53. Further, the crepe 52 (not shown) remains on the surface where the recess 32 is formed by the high-pressure water flow.
 不織布を幅方向(CD)に移動させて汚れを拭き取る場合、溝部53によって汚れをかき取ることができる。したがって、不織布に形成した溝部53は、不織布の幅方向(CD)に不織布を動かして汚れを拭き取るときに、不織布における汚れを拭き取る能力を向上させる。 When the nonwoven fabric is moved in the width direction (CD) and the dirt is wiped off, the grooves 53 can wipe off the dirt. Therefore, the groove part 53 formed in the nonwoven fabric improves the ability to wipe off the dirt in the nonwoven fabric when the nonwoven fabric is moved in the width direction (CD) of the nonwoven fabric to wipe off the dirt.
 不織布を機械方向(MD)に移動させて汚れを拭き取るとき、不織布のクレープ52によって汚れをかき取ることができる。したがって、不織布のクレープ52は、不織布の機械方向(MD)に不織布を動かして汚れを拭き取るときに、不織布における汚れを拭く取る能力を向上させる。 When the nonwoven fabric is moved in the machine direction (MD) and the dirt is wiped off, the dirt can be scraped off by the crepe 52 of the nonwoven fabric. Therefore, the nonwoven fabric crepe 52 improves the ability to wipe off dirt in the nonwoven fabric when the nonwoven fabric is moved in the machine direction (MD) of the nonwoven fabric to wipe away the dirt.
 平面状態の紙層23を高圧水蒸気によってほぐす場合に比べて、コルゲート状(蛇腹状)の紙層23を高圧水蒸気によってほぐす方が紙層23は起毛しやすい。紙層23にクレープを形成することにより、紙層23をコルゲート状(蛇腹状)にした状態で、高圧水蒸気により紙層23をほぐすことができるので、紙層23に起毛が生じやすくなる。また、上述したように、紙層23には、繊維長20mm以下の短繊維が用いられるため、紙層23に起毛がさらに生じやすくなる。このため、図9に示すように、高圧水蒸気を噴射した紙層23における繊維の一方の端が紙層23の表面から突出し、紙層23に起毛57が生じる。この起毛57は汚れをよく付着させるので、この起毛57により、不織布は汚れをさらによく落とすことができる。 Compared with the case where the paper layer 23 in a flat state is loosened with high-pressure steam, the paper layer 23 is easily raised when the corrugated (bellows-like) paper layer 23 is loosened with high-pressure steam. By forming a crepe on the paper layer 23, the paper layer 23 can be loosened by high-pressure steam in a state where the paper layer 23 is in a corrugated shape (bellows shape), so that the paper layer 23 is likely to be raised. Further, as described above, since short fibers having a fiber length of 20 mm or less are used for the paper layer 23, the paper layer 23 is more likely to be raised. For this reason, as shown in FIG. 9, one end of the fiber in the paper layer 23 ejected with high-pressure steam protrudes from the surface of the paper layer 23, and raised paper 57 is generated in the paper layer 23. Since this raising 57 adheres dirt well, the nonwoven fabric can further remove dirt by this raising 57.
 水蒸気ノズル14のノズル穴141のノズルピッチ、高圧水蒸気の水蒸気圧などを調整することによって、不織布を幅方向(CD)に移動させて汚れを拭き取るときの不織布の拭き取り性能と、不織布を機械方向(MD)に移動させて汚れを拭き取るときの不織布の拭き取り性能との間のバランスを制御することができる。たとえば、水蒸気ノズル14のノズル穴141のノズルピッチを小さくすると、不織布の幅方向(CD)に不織布を動かして汚れを拭き取るときに、不織布における汚れを拭き取る能力をさらに向上させることができ、水蒸気ノズル14のノズル穴141のノズルピッチを大きくすると、不織布のクレープが残っている部分の割合が大きくなるので、不織布の機械方向(MD)に不織布を動かして汚れを拭き取るときに、不織布における汚れを拭く取る能力をさらに向上させることができる。 By adjusting the nozzle pitch of the nozzle holes 141 of the water vapor nozzle 14, the water vapor pressure of high-pressure water vapor, etc., the non-woven fabric is wiped in the machine direction ( MD) and the balance between the wiping performance of the nonwoven fabric when wiping dirt can be controlled. For example, when the nozzle pitch of the nozzle holes 141 of the water vapor nozzle 14 is reduced, when the nonwoven fabric is moved in the width direction (CD) of the nonwoven fabric to wipe off the dirt, the ability to wipe off the dirt in the nonwoven fabric can be further improved. When the nozzle pitch of the 14 nozzle holes 141 is increased, the ratio of the remaining portion of the crepe of the nonwoven fabric increases, so when the nonwoven fabric is moved in the machine direction (MD) of the nonwoven fabric and the stain is wiped off, the stain on the nonwoven fabric is wiped off. The ability to take can be further improved.
 蒸気ノズル14から噴射された蒸気を吸引する、サクションドラム13に内蔵された吸引装置により、サクションドラム13が紙層23を吸引する吸引力は、好ましくは-1~-12kPaである。サクションドラム13の吸引力が-1kPaよりも小さいと蒸気を吸いきれず吹き上がりが生ずる場合がある。また、サクションドラム13の吸引力が-12kPaよりも大きいとサクション内への繊維脱落が多くなる場合がある。 The suction force by which the suction drum 13 sucks the paper layer 23 by the suction device built in the suction drum 13 that sucks the steam ejected from the steam nozzle 14 is preferably −1 to −12 kPa. If the suction force of the suction drum 13 is less than −1 kPa, steam may not be sucked and blowing up may occur. Further, when the suction force of the suction drum 13 is larger than −12 kPa, there are cases where the fiber drops into the suction increase.
 蒸気ノズル14の先端と紙層23の上面との間の距離は、好ましくは1.0~10mmである。蒸気ノズル14の先端と紙層23の上面との間の距離が1.0mmよりも小さいと、紙層23に穴が開いたり、紙層23が破れたり、吹き飛んだりする場合がある。また、蒸気ノズル14の先端と紙層23の上面との間の距離が10mmよりも大きいと、高圧水蒸気における紙層23の表面に溝部を形成するための力が分散してしまい、紙層23の表面に溝部を形成する能率が悪くなる場合がある。 The distance between the tip of the steam nozzle 14 and the upper surface of the paper layer 23 is preferably 1.0 to 10 mm. If the distance between the tip of the steam nozzle 14 and the upper surface of the paper layer 23 is smaller than 1.0 mm, a hole may be formed in the paper layer 23, or the paper layer 23 may be torn or blown off. Further, if the distance between the tip of the steam nozzle 14 and the upper surface of the paper layer 23 is greater than 10 mm, the force for forming grooves on the surface of the paper layer 23 in high-pressure steam is dispersed, and the paper layer 23. In some cases, the efficiency of forming the groove on the surface of the film deteriorates.
 高圧水蒸気を噴射した後の紙層23の水分率は、好ましくは35%以下であり、さらに好ましくは30%以下である。高圧水蒸気を噴射した後の紙層23の水分率が35%よりも大きいと、後述の乾燥ドライヤによる乾燥によって紙層23の水分率を5%以下にすることが難しい場合がある。この場合、さらに追加の乾燥が必要であり、不織布の製造効率が悪くなる。 The moisture content of the paper layer 23 after jetting high-pressure steam is preferably 35% or less, and more preferably 30% or less. If the moisture content of the paper layer 23 after jetting high-pressure steam is greater than 35%, it may be difficult to reduce the moisture content of the paper layer 23 to 5% or less by drying with a drying dryer described later. In this case, additional drying is required, and the production efficiency of the nonwoven fabric is deteriorated.
 その後、図1に示すように、乾燥ドライヤ20とは別の乾燥ドライヤ22に転写される。乾燥ドライヤ22は、高圧水蒸気を噴射した紙層23を、最終製造物である不織布になるまで乾燥する。乾燥ドライヤ22には、たとえば、ヤンキードライヤが用いられる。乾燥ドライヤ22は、蒸気により約150℃に加熱された円筒状ドライヤの表面に紙層23を付着させて、紙層23を乾燥させる。 Thereafter, as shown in FIG. 1, the image is transferred to a dry dryer 22 different from the dry dryer 20. The drying dryer 22 dries the paper layer 23 sprayed with high-pressure steam until it becomes a nonwoven fabric as a final product. As the drying dryer 22, for example, a Yankee dryer is used. The drying dryer 22 attaches the paper layer 23 to the surface of the cylindrical dryer heated to about 150 ° C. by steam, and dries the paper layer 23.
 乾燥ドライヤ22を通過した後の紙層23は十分に乾燥していることが必要である。具体的には、乾燥ドライヤ22を通過した後の紙層23の水分率は、好ましくは5%以下である。なお、高圧水蒸気を噴射した直後の紙層23の水分率が5%以下である場合、高圧水蒸気を噴射した紙層23を、乾燥ドライヤ22などを使用して乾燥しなくてもよい。 The paper layer 23 after passing through the dry dryer 22 needs to be sufficiently dry. Specifically, the moisture content of the paper layer 23 after passing through the dry dryer 22 is preferably 5% or less. In addition, when the moisture content of the paper layer 23 immediately after jetting high-pressure steam is 5% or less, the paper layer 23 jetted with high-pressure steam does not have to be dried using the drying dryer 22 or the like.
 乾燥した紙層23(不織布)は、巻き取り機21に巻き取られる。 The dried paper layer 23 (nonwoven fabric) is taken up by the winder 21.
 以上のようにして製造した不織布の表面の顕微鏡写真を図10に示す。この表面は、高圧水蒸気を噴射した面である。図10から、製造した不織布は、機械方向(MD)に延在し、幅方向(CD)に並ぶ溝部と幅方向(CD)に延在し、機械方向(MD)に並ぶクレープとを有することがわかる。 A micrograph of the surface of the nonwoven fabric produced as described above is shown in FIG. This surface is a surface on which high-pressure steam is jetted. From FIG. 10, the manufactured nonwoven fabric has a groove part arranged in the machine direction (MD) and aligned in the width direction (CD) and a crepe extended in the width direction (CD) and arranged in the machine direction (MD). I understand.
 なお、高圧水蒸気を噴射する前ではなく、高圧水蒸気を噴射した後に、クレープを形成する工程を実施すると、水蒸気を紙層に噴射することによって形成した溝部がクレープを形成する工程で破壊されたり、繊維がほぐされて繊維抜け、シート破れなどのトラブルが発生したりする場合がある。 In addition, when the step of forming the crepe is performed after jetting the high-pressure steam rather than before jetting the high-pressure steam, the groove formed by spraying the steam on the paper layer is destroyed in the step of forming the crepe, In some cases, the fibers may be loosened, causing troubles such as fiber loss and sheet tearing.
 以上のように作製した不織布を所定寸法に裁断することによって、この不織布を乾燥ワイプスとして使用することができる。また、以上のように作製した不織布を所定寸法に裁断し、所定量の薬液を裁断した不織布に含浸させることによって、この不織布を湿潤ワイプスとして使用することができる。 By cutting the nonwoven fabric produced as described above into a predetermined size, this nonwoven fabric can be used as a dry wipe. Moreover, this nonwoven fabric can be used as a wet wipe by cutting the nonwoven fabric produced as described above into a predetermined dimension and impregnating the nonwoven fabric with a predetermined amount of chemical solution into the fabric.
 上述したように、クレープ52を紙層23に形成した後に、高圧水蒸気によって溝部53を紙層23に形成したので、不織布からワイプスを作製する工程、たとえば、不織布を裁断する工程、薬液を不織布に含浸させる工程などで、不織布のクレープがなくなることはない。したがって、本発明の一実施形態の不織布から作製されたワイプスは、ワイプスの拭き取る方向に関係なく汚れをよく落とすことができる。 As described above, after the crepe 52 is formed on the paper layer 23, the groove 53 is formed on the paper layer 23 by high-pressure steam. Therefore, a process for producing a wipe from a nonwoven fabric, for example, a process for cutting the nonwoven fabric, The crepe of the nonwoven fabric is not lost in the impregnation step or the like. Therefore, the wipes produced from the nonwoven fabric according to one embodiment of the present invention can remove stains well regardless of the direction in which the wipes are wiped off.
 以上の説明はあくまで一例であり、発明は、上記の実施形態に何ら限定されるものではない。 The above description is merely an example, and the invention is not limited to the above embodiment.
 以下に、実施例に基づいて本発明をより詳細に説明する。しかし、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to these examples.
 実施例および比較例において、蒸気吹付け前紙層水分率、クレープ前紙層目付、クレープ後紙層目付、乾燥厚さ、密度、乾燥引張強度、乾燥引張伸度、湿潤引張強度、湿潤引張伸度、高圧水蒸気噴射面における汚れ除去率および高圧水流噴射面における汚れ除去率を、以下のようにして測定した。 In Examples and Comparative Examples, moisture content of paper layer before steam spraying, basis weight of paper layer before crepe, basis weight of paper layer after crepe, dry thickness, density, dry tensile strength, dry tensile elongation, wet tensile strength, wet tensile elongation The soil removal rate on the high-pressure steam jet surface and the soil removal rate on the high-pressure water jet surface were measured as follows.
(蒸気吹付け前紙層水分率)
 乾燥ドライヤ20で乾燥した紙層から30cm×30cmのサイズのサンプル片をサンプリングし、そのサンプル片の重量(W1)を測定した。その後、サンプル片を105℃の恒温槽に1時間静置し乾燥させたのち、重量(D1)を測定した。蒸気吹付け前紙層水分率は、N=10での測定値の平均値である。
  蒸気吹付け前紙層水分率=(W1-D1)/W1×100(%)
(Water content of paper layer before steam spraying)
A sample piece having a size of 30 cm × 30 cm was sampled from the paper layer dried by the dry dryer 20, and the weight (W1) of the sample piece was measured. Then, after leaving the sample piece to stand in a 105 degreeC thermostat for 1 hour and drying, the weight (D1) was measured. The moisture content of the paper layer before steam spraying is an average value of the measured values at N = 10.
Water content of paper layer before steam spraying = (W1-D1) / W1 × 100 (%)
(クレープ前紙層目付)
 紙層の目付は、乾燥ドライヤ20で乾燥したクレープを形成する前の紙層から30cm×30cmのサイズの測定用試料をサンプリングし、サンプリングした測定用試料の重量を測定することにより算出した。紙層目付は、N=10での測定値の平均値である。
(Crepe paper weight per crepe)
The basis weight of the paper layer was calculated by sampling a measurement sample having a size of 30 cm × 30 cm from the paper layer before forming the crepe dried by the dry dryer 20 and measuring the weight of the sampled measurement sample. The paper layer basis weight is an average value of measured values at N = 10.
(クレープ後紙層目付)
 紙層の目付は、クレープを形成した高圧水蒸気を噴射する前の紙層から30cm×30cmのサイズの測定用試料をサンプリングし、サンプリングした測定用試料の重量を測定することにより算出した。紙層目付は、N=10での測定値の平均値である。
(Weight per sheet after crepe)
The basis weight of the paper layer was calculated by sampling a measurement sample having a size of 30 cm × 30 cm from the paper layer before jetting the high-pressure water vapor that formed the crepe, and measuring the weight of the sampled measurement sample. The paper layer basis weight is an average value of measured values at N = 10.
(乾燥厚さ)
 製造した不織布から10cm×10cmのサイズの測定用試料をサンプリングした。15cm2の測定子を備えた厚み計((株)大栄化学精器製作所製 型式FS-60DS)を使用して、3gf/cm2の測定荷重の測定条件で、測定用試料の厚さを測定した。1つの測定用試料について3ヶ所の厚さを測定し、3ヶ所の厚さの平均値を乾燥厚さとした。
(Dry thickness)
A sample for measurement having a size of 10 cm × 10 cm was sampled from the manufactured nonwoven fabric. Using a thickness gauge (model FS-60DS manufactured by Daiei Chemical Seiki Seisakusho Co., Ltd.) equipped with a 15 cm 2 probe, measure the thickness of the sample for measurement under the measurement conditions of 3 gf / cm 2 did. Three thicknesses were measured for one measurement sample, and the average value of the three thicknesses was defined as the dry thickness.
(密度)
 製造した不織布から10cm×10cmのサイズの測定用試料をサンプリングした。測定用試料の重量を測定し、上記乾燥厚さから不織布の密度を算出した。
(density)
A sample for measurement having a size of 10 cm × 10 cm was sampled from the manufactured nonwoven fabric. The weight of the measurement sample was measured, and the density of the nonwoven fabric was calculated from the dry thickness.
(乾燥引張強度)
 製造した不織布から、長手方向が紙層の機械方向である25mm幅の短冊状の試験片と、長手方向が紙層の幅方向である25mm幅の短冊状の試験片とを切り取って、測定用試料を作製した。機械方向および幅方向の測定用試料を、最大荷重容量が50Nであるロードセルを備えた引張試験機(島津製作所(株)製、オートグラフ 型式AGS-1kNG)を使用して、それぞれ3つの測定用試料について、100mmのつかみ間距離、100mm/分の引張速度の条件で引張強度を測定した。機械方向および幅方向の測定用試料のそれぞれ3つの測定用試料の引張強度の平均値を機械方向および幅方向の乾燥引張強度とした。
(Dry tensile strength)
For measurement, a strip-shaped test piece with a width of 25 mm whose longitudinal direction is the machine direction of the paper layer and a strip-shaped test piece with a width of 25 mm whose longitudinal direction is the width direction of the paper layer are cut from the manufactured nonwoven fabric. A sample was prepared. Samples for measurement in the machine direction and width direction were each for three measurements using a tensile tester (manufactured by Shimadzu Corporation, Autograph Model AGS-1kNG) equipped with a load cell with a maximum load capacity of 50N. For the sample, the tensile strength was measured under the conditions of a distance between grips of 100 mm and a tensile speed of 100 mm / min. The average value of the tensile strengths of the three measurement samples of the measurement sample in the machine direction and the width direction was taken as the dry tensile strength in the machine direction and the width direction.
(乾燥引張伸度)
 製造した不織布から、長手方向が紙層の機械方向である25mm幅の短冊状の試験片と、長手方向が紙層の幅方向である25mm幅の短冊状の試験片とを切り取って、測定用試料を作製した。機械方向および幅方向の測定用試料を、最大荷重容量が50Nであるロードセルを備えた引張試験機(島津製作所(株)製、オートグラフ 型式AGS-1kNG)を使用して、それぞれ3つの測定用試料について、100mmのつかみ間距離、100mm/分の引張速度の条件で引張伸度を測定した。ここで、引張伸度とは、引張試験機で測定用試料を引っ張ったときの最大の伸び(mm)をつかみ間距離(100mm)で割り算した値である。機械方向および幅方向の測定用試料のそれぞれ3つの測定用試料の引張伸度の平均値を機械方向および幅方向の乾燥引張伸度とした。
(Dry tensile elongation)
For measurement, a strip-shaped test piece with a width of 25 mm whose longitudinal direction is the machine direction of the paper layer and a strip-shaped test piece with a width of 25 mm whose longitudinal direction is the width direction of the paper layer are cut from the manufactured nonwoven fabric. A sample was prepared. Samples for measurement in the machine direction and width direction were each for three measurements using a tensile tester (manufactured by Shimadzu Corporation, Autograph Model AGS-1kNG) equipped with a load cell with a maximum load capacity of 50N. The sample was measured for tensile elongation under the conditions of a distance between grips of 100 mm and a tensile speed of 100 mm / min. Here, the tensile elongation is a value obtained by dividing the maximum elongation (mm) when the measurement sample is pulled by a tensile tester by the distance between grips (100 mm). The average value of the tensile elongation of each of the three measurement samples of the measurement sample in the machine direction and the width direction was defined as the dry tensile elongation in the machine direction and the width direction.
(湿潤引張強度)
 製造した不織布から長手方向が紙層の機械方向である25mm幅の短冊状の試験片と、長手方向が紙層の幅方向である25mm幅の短冊状の試験片とを切り取って、測定用試料を作製し、測定用試料の質量の2.5倍の水を測定用試料に含浸させた(含水倍率、250%)。そして、機械方向および幅方向の測定用試料を、最大荷重容量が50Nであるロードセルを備えた引張試験機(島津製作所(株)製、オートグラフ 型式AGS-1kNG)を使用して、それぞれ3つの測定用試料について、100mmのつかみ間距離、100mm/分の引張速度の条件で引張強度を測定した。機械方向および幅方向の測定用試料のそれぞれ3つの測定用試料の引張強度の平均値を機械方向および幅方向の湿潤引張強度とした。
(Wet tensile strength)
A 25 mm wide strip-shaped test piece whose longitudinal direction is the machine direction of the paper layer and a 25 mm wide strip-shaped test piece whose longitudinal direction is the width direction of the paper layer are cut out from the manufactured nonwoven fabric, and a measurement sample Was prepared, and the measurement sample was impregnated with water 2.5 times the mass of the measurement sample (water content magnification: 250%). Then, using the tensile tester (manufactured by Shimadzu Corp., Autograph Model AGS-1kNG), each of three samples for measurement in the machine direction and the width direction were equipped with a load cell with a maximum load capacity of 50N. For the measurement sample, the tensile strength was measured under the conditions of a distance between grips of 100 mm and a tensile speed of 100 mm / min. The average value of the tensile strength of each of the three measurement samples of the measurement sample in the machine direction and the width direction was defined as the wet tensile strength in the machine direction and the width direction.
(湿潤引張伸度)
 製造した不織布から長手方向が紙層の機械方向である25mm幅の短冊状の試験片と、長手方向が紙層の幅方向である25mm幅の短冊状の試験片とを切り取って、測定用試料を作製し、測定用試料の質量の2.5倍の水を測定用試料に含浸させた(含水倍率、250%)。そして、機械方向および幅方向の測定用試料を、最大荷重容量が50Nであるロードセルを備えた引張試験機(島津製作所(株)製、オートグラフ 型式AGS-1kNG)を使用して、それぞれ3つの測定用試料について、100mmのつかみ間距離、100mm/分の引張速度の条件で引張伸度を測定した。機械方向および幅方向の測定用試料のそれぞれ3つの測定用試料の引張伸度の平均値を機械方向および幅方向の湿潤引張伸度とした。
(Wet tensile elongation)
A 25 mm wide strip-shaped test piece whose longitudinal direction is the machine direction of the paper layer and a 25 mm wide strip-shaped test piece whose longitudinal direction is the width direction of the paper layer are cut out from the manufactured nonwoven fabric, and a measurement sample Was prepared, and the measurement sample was impregnated with water 2.5 times the mass of the measurement sample (water content magnification: 250%). And, using the tensile tester (manufactured by Shimadzu Corp., Autograph model AGS-1kNG), each of the three samples for measurement in the machine direction and width direction was equipped with a load cell with a maximum load capacity of 50N. For the measurement sample, the tensile elongation was measured under the conditions of a distance between grips of 100 mm and a tensile speed of 100 mm / min. The average value of the tensile elongation of each of the three measurement samples of the measurement sample in the machine direction and the width direction was defined as the wet tensile elongation in the machine direction and the width direction.
(高圧水蒸気噴射面における汚れ除去率)
 以下の手順で不織布の高圧水蒸気を噴射した面(高圧水蒸気噴射面)における汚れ除去率を測定した。
(1)12.6重量%のカーボンブラック(Carbon Black、米山薬品工業(株)製)、20.8重量%の牛脂極度硬化油(日本油脂(株)製)および66.6重量%の流動パラフィン(ナカライテスク(株)製)を含む模擬汚れペーストを作製した。汚れペースト:ヘキサン(ナカライテスク(株)製)が重量比で85:15になるように、模擬汚れペーストをヘキサンで希釈し、模擬汚れ剤を作製した。
(2)プレパラート上に模擬汚れ剤を0.05ml滴下し、20℃の温度および60%の湿度の条件の雰囲気中で、模擬汚れ剤を滴下したプレパラートを24時間乾燥した。
(3)乾燥後、スキャナー(Calario GT-750、Epson社製)を使用して、原稿種:フィルム、タイプ:ポジフィルム、イメージ:16bitグレー、品質:画質優先、解像度:1200dpi、原稿サイズ:68.6×237mm、出力:等倍の条件でプレパラートの画像を取り込み、取り込んだ画像の画像データから、プレパラートの模擬汚れ剤が付着している部分のうちの16.9mm×16.9mmの範囲の色味を算出した。ここで、色味を以下のように算出した。所定のしきい値を設定して調補正で取り込んだ画像を2階調化した。汚れが付着している部分の階調が0(黒)、汚れが付着していない部分の階調が255(白)になるように、2階調化するためのしきい値を設定した。そして、エクセル2007(Microsoft社製)を使用して横軸が階調、縦軸が頻度のヒストグラムを作成した。0の階調の頻度を色味とした。
(4)不織布によるプレパラートに付着した模擬汚れ剤の拭き取りは、プラスチックフィルム-およびシート-摩擦係数試験方法(JIS-K-7125:1999)を応用して実施した。製造した不織布から140×190mmのサイズの測定用試料をサンプリングし、摩擦係数測定装置(テスター産業株式会社製)のテーブルに、高圧水蒸気噴射面が上になるように測定用試料を取り付けた。このとき、滑り片の移動方向が、測定用試料が拭き取る方向(機械方向(MD)または幅方向(CD))なるように測定用試料を配置した。模擬汚れ剤が付着した面が測定用試料と接触するように、模擬汚れ剤が付着したプレパラートを、測定用試料の上に載せた後、プレパラートの模擬汚れ剤が付着した面の反対側の面に滑り片およびロードセルを取り付けた。そして、150mm/分の送り速度および60g荷重の条件で摩擦係数測定を1回行うことによって、プレパラートに付着した模擬汚れ剤を測定用試料で拭き取った。
(5)プレパラートに付着した模擬汚れ剤を拭き取った後、上述のスキャナーを使用して同一の条件でプレパラートの画像を取り込み、取り込んだ画像の画像データから、模擬汚れ剤を拭き取る前のプレパラートにおいて色味を算出した範囲と同じ範囲の色味を算出した。
(6)プレパラートに付着した模擬汚れ剤を拭き取る前の色味からプレパラートに付着した模擬汚れ剤を拭き取った後の色味を引き算し、プレパラートに付着した模擬汚れ剤を拭き取る前の色味でその値を割り算することによって色味の変化率を算出した。この値を測定用試料の汚れ除去率とした。測定用試料の拭き取り性がよいと、プレパラートに付着した模擬汚れ剤は測定用試料によってきれいに拭き取られるので、色味の変化率、すなわち汚れ除去率は大きくなる。一方、測定用試料の拭き取り性が悪いと、測定用試料によって模擬汚れ剤を拭き取ったプレパラートには模擬汚れ剤が多く残っているので、色味の変化率、すなわち汚れ除去率は小さくなる。このように汚れ除去率の値によって、測定用試料の汚れを拭く取る能力を評価することができる。3つの測定用試料について、汚れ除去率を測定し、その平均値をその測定用試料の汚れ除去率とした。
(Dirt removal rate on the high-pressure steam injection surface)
The soil removal rate on the surface of the nonwoven fabric on which high-pressure water vapor was jetted (high-pressure water vapor jet surface) was measured by the following procedure.
(1) 12.6% by weight of carbon black (Carbon Black, manufactured by Yoneyama Pharmaceutical Co., Ltd.), 20.8% by weight of beef tallow extremely hardened oil (manufactured by Nippon Oil & Fats Co., Ltd.) and 66.6% by weight of fluid A simulated soil paste containing paraffin (manufactured by Nacalai Tesque) was prepared. The simulated soil paste was diluted with hexane so that the soil paste: hexane (manufactured by Nacalai Tesque Co., Ltd.) was in a weight ratio of 85:15 to prepare a simulated soil agent.
(2) 0.05 ml of the simulated soiling agent was dropped on the prepared slide, and the prepared slide where the simulated soiling agent was dropped was dried in an atmosphere of a temperature of 20 ° C. and a humidity of 60% for 24 hours.
(3) After drying, using a scanner (Calario GT-750, manufactured by Epson), document type: film, type: positive film, image: 16-bit gray, quality: image quality priority, resolution: 1200 dpi, document size: 68 .6 × 237 mm, output: The image of the slide is captured under the same magnification condition. From the image data of the captured image, the range of 16.9 mm × 16.9 mm in the portion where the simulated stain of the slide is attached The color was calculated. Here, the color was calculated as follows. An image captured by tone correction with a predetermined threshold value set was converted to two gradations. The threshold value for making two gradations was set so that the gradation of the part where the dirt was attached was 0 (black) and the gradation of the part where the dirt was not attached was 255 (white). Then, using Excel 2007 (manufactured by Microsoft), a histogram in which the horizontal axis is gradation and the vertical axis is frequency is created. The frequency of 0 gradation was used as the color.
(4) Wiping of the simulated soiling agent adhering to the preparation with the nonwoven fabric was performed by applying a plastic film- and sheet-friction coefficient test method (JIS-K-7125: 1999). A sample for measurement having a size of 140 × 190 mm was sampled from the manufactured nonwoven fabric, and the sample for measurement was attached to the table of a friction coefficient measuring device (manufactured by Tester Sangyo Co., Ltd.) so that the high-pressure steam spraying surface was on top. At this time, the measurement sample was arranged so that the moving direction of the sliding piece was the direction in which the measurement sample was wiped off (machine direction (MD) or width direction (CD)). After placing the preparation with the simulated soiling agent on the measurement sample so that the surface with the simulated soiling agent contacts the measurement sample, the surface opposite to the surface of the preparation with the simulated soiling material attached Sliding pieces and load cells were attached to the. Then, the coefficient of friction measurement was performed once under the conditions of a feed rate of 150 mm / min and a load of 60 g, thereby wiping the simulated stain adhering to the preparation with the measurement sample.
(5) After wiping off the simulated stain adhering to the slide, the image of the slide is captured under the same conditions using the scanner described above, and the color in the slide before the simulated stain is wiped from the image data of the captured image. The same range of color as the range in which the taste was calculated was calculated.
(6) Subtract the color after wiping off the simulated stain adhering to the slide from the color before wiping off the simulated stain adhering to the slide, and the color before wiping off the simulated stain attached to the slide. The color change rate was calculated by dividing the value. This value was defined as the dirt removal rate of the measurement sample. If the measurement sample has good wiping properties, the simulated stain adhering to the preparation is wiped clean by the measurement sample, so that the color change rate, that is, the stain removal rate increases. On the other hand, if the wiping property of the measurement sample is poor, a lot of the simulated stain remains in the slide where the simulated stain is wiped off by the measurement sample, so that the color change rate, that is, the stain removal rate becomes small. Thus, the ability to wipe off the dirt of the measurement sample can be evaluated by the value of the dirt removal rate. The soil removal rate was measured for three measurement samples, and the average value was taken as the soil removal rate of the measurement sample.
(高圧水流噴射面における汚れ除去率)
 摩擦係数測定装置のテーブルに、高圧水流噴射面(高圧水流を噴射した面)が上になるように測定用試料を取り付けた以外、高圧水蒸気噴射面における汚れ除去率と同じ方法で高圧水流噴射面における汚れ除去率を測定した。
(Dirt removal rate on high-pressure water jet surface)
The high pressure water jet surface is the same as the dirt removal rate on the high pressure steam jet surface, except that the measurement sample is mounted on the friction coefficient measuring device table so that the high pressure water jet surface (the surface on which the high pressure water flow is jetted) is up. The soil removal rate was measured.
 以下、実施例および比較例の作製方法について説明する。 Hereinafter, production methods of Examples and Comparative Examples will be described.
(実施例1)
 本発明の一実施形態における不織布製造装置1を使用して実施例1を作製した。70重量%の針葉樹晒クラフトパルプ(NBKP)と、繊度が1.1dtexであり、繊維長が7mmである30重量%のレーヨン(ダイワボウレーヨン(株)製、コロナ)とを含む抄紙原料を作製した。そして、原料ヘッドを使用して紙層形成ベルト(日本フィルコン(株)製 OS80)上に抄紙原料を供給し、吸引ボックスを使用して抄紙原料を脱水して紙層を形成した。このときの紙層の紙層水分率は80%であった。その後、2台の高圧水流ノズルを使用して高圧水流を紙層に噴射した。2台の高圧水流ノズルを使用して紙層に噴射した高圧水流の高圧水流エネルギーは0.2846kW/m2であった。ここで、高圧水流エネルギーは下記の式から算出される。
高圧水流エネルギー(kW/m2)=1.63×噴射圧力(kg/cm2)×噴射流量(m3/分)/処理速度(M/分)/60
ここで、噴射流量(立方M/分)=750×オリフィス開孔総面積(m2)×噴射圧力(kg/cm2)0.495
Example 1
Example 1 was produced using the nonwoven fabric manufacturing apparatus 1 in one embodiment of the present invention. A papermaking raw material containing 70% by weight of softwood bleached kraft pulp (NBKP) and 30% by weight of rayon (Corona, manufactured by Daiwabo Rayon Co., Ltd.) having a fineness of 1.1 dtex and a fiber length of 7 mm was prepared. . And the papermaking raw material was supplied on the paper layer formation belt (Nippon Filcon Co., Ltd. OS80) using the raw material head, and the papermaking raw material was spin-dry | dehydrated using the suction box, and the paper layer was formed. The paper layer moisture content of the paper layer at this time was 80%. Thereafter, a high pressure water stream was jetted onto the paper layer using two high pressure water stream nozzles. The high-pressure water energy of the high-pressure water jet sprayed onto the paper layer using two high-pressure water nozzles was 0.2846 kW / m 2 . Here, the high-pressure water flow energy is calculated from the following equation.
High-pressure water flow energy (kW / m 2 ) = 1.63 x injection pressure (kg / cm 2 ) x injection flow rate (m 3 / min) / treatment speed (M / min) / 60
Here, injection flow rate (cubic M / min) = 750 × total orifice opening area (m 2 ) × injection pressure (kg / cm 2 ) 0.495
 また、高圧水流ノズルの先端と紙層の上面との間の距離は10mmであった。さらに、高圧水流ノズルのノズル穴の穴径は92μmであり、ノズル穴の穴ピッチは0.5mmであった。 The distance between the tip of the high-pressure water flow nozzle and the top surface of the paper layer was 10 mm. Furthermore, the hole diameter of the nozzle holes of the high-pressure water flow nozzle was 92 μm, and the hole pitch of the nozzle holes was 0.5 mm.
 紙層は、2台の紙層搬送コンベアに転写された後、160℃に加熱されたヤンキードライヤに転写され、乾燥された。このヤンキードライヤにおけるライン速度は80m/分であった。そして、ヤンキードライヤの表面に付着させた紙層を、ドクター刃を介してその表面から引き離すことによってクレープ加工が実施され、紙層にクレープが形成された。後述の高圧水蒸気を噴射した紙層を乾燥するヤンキードライヤのライン速度は68m/分であった。この2つのヤンキードライヤのライン速度の速度差により、形成したクレープのクレープ率を14%にすることができた。 The paper layer was transferred to two paper layer conveyors, and then transferred to a Yankee dryer heated to 160 ° C. and dried. The line speed in this Yankee dryer was 80 m / min. And the crepe process was implemented by separating the paper layer adhering to the surface of a Yankee dryer from the surface through a doctor blade, and the crepe was formed in the paper layer. The line speed of the Yankee dryer that dries the paper layer sprayed with high-pressure steam described later was 68 m / min. Due to the difference in line speed between the two Yankee dryers, the crepe rate of the formed crepe could be 14%.
 次に、1台の蒸気ノズルを使用して高圧水蒸気を紙層の高圧水流が噴射された面の反対の面(高圧水流噴射面の反対面)に噴射した。このときの高圧水蒸気の蒸気圧力は0.7MPaであり、蒸気温度は210℃であった。また、蒸気ノズルの先端と紙層の上面との間の距離は2.0mmであった。蒸気ノズルのノズル穴は、機械方向(MD)に3列に並べた。さらに、蒸気ノズルのノズル穴の穴径は500μmであり、穴ピッチは4.0mmであった。また、サクションドラムが紙層を吸引する吸引力は、-5kPaであった。サクションドラムの外周にはステンレス製の18メッシュ開孔スリーブを使用した。 Next, using one steam nozzle, high-pressure steam was jetted onto the surface of the paper layer opposite to the surface on which the high-pressure water flow was jetted (the side opposite to the high-pressure water jet surface). The vapor pressure of the high-pressure steam at this time was 0.7 MPa, and the vapor temperature was 210 ° C. The distance between the tip of the steam nozzle and the upper surface of the paper layer was 2.0 mm. The nozzle holes of the steam nozzles were arranged in three rows in the machine direction (MD). Furthermore, the hole diameter of the nozzle hole of the steam nozzle was 500 μm, and the hole pitch was 4.0 mm. Further, the suction force with which the suction drum sucked the paper layer was −5 kPa. A stainless steel 18 mesh perforated sleeve was used on the outer periphery of the suction drum.
 そして、紙層は、150℃に加熱したヤンキードライヤに転写され、乾燥した。乾燥した紙層が実施例1となる。 The paper layer was transferred to a Yankee dryer heated to 150 ° C. and dried. The dried paper layer is Example 1.
(比較例1)
 比較例1は、高圧水流を紙層に噴射しなかった点を除いて、実施例1の製造方法と同様な方法によって製造された。
(Comparative Example 1)
Comparative Example 1 was produced by a method similar to that of Example 1 except that the high-pressure water stream was not jetted onto the paper layer.
(比較例2)
 比較例2は、クレープを形成する工程を実施しなかった点を除いて、実施例1の製造方法と同様な方法によって製造された。
(Comparative Example 2)
The comparative example 2 was manufactured by the method similar to the manufacturing method of Example 1 except the point which did not implement the process which forms a crepe.
(比較例3)
 実施例3は、高圧水蒸気を噴射しなかった点を除いて、実施例1の製造方法と同様な方法によって製造された。
(Comparative Example 3)
Example 3 was produced by a method similar to that of Example 1 except that high-pressure steam was not jetted.
 以上の実施例および比較例の製造条件を表1に示す。 Table 1 shows the production conditions of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上の実施例および比較例の、蒸気吹付け前紙層水分率、クレープ前紙層目付、クレープ後紙層目付、乾燥厚さ、密度、乾燥引張強度、乾燥引張伸度、湿潤引張強度および湿潤引張伸度を表2に示す。 Water content of paper layer before steam spraying, basis weight of paper layer before crepe, basis weight of paper layer after crepe, dry thickness, density, dry tensile strength, dry tensile elongation, wet tensile strength and wet in the above examples and comparative examples Table 2 shows the tensile elongation.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の実施例および比較例の、高圧水蒸気噴射面における汚れ除去率および高圧水流噴射面における汚れ除去率を表3に示す。 Table 3 shows the dirt removal rate on the high-pressure steam jet surface and the dirt removal rate on the high-pressure water jet surface in the above Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(1)実施例1と比較例1との比較
 比較例1の強度が弱かったため、比較例1では高圧水蒸気噴射面における汚れ除去率の測定および高圧水流噴射面における汚れ除去率の測定が実施できなかった。また、比較例1では、乾燥引張強度および湿潤引張強度が非常に低かった。一方、実施例1では、乾燥引張強度および湿潤引張強度は高く、高圧水蒸気噴射面における汚れ除去率の測定および高圧水流噴射面における汚れ除去率の測定を実施することができた。これらから、高圧水流を紙層に噴射する工程を実施することによって、不織布の強度を高められることがわかった。
(1) Comparison between Example 1 and Comparative Example 1 Since the strength of Comparative Example 1 was weak, in Comparative Example 1, it was possible to measure the dirt removal rate on the high-pressure steam injection surface and the dirt removal rate on the high-pressure water jet surface. There wasn't. In Comparative Example 1, the dry tensile strength and the wet tensile strength were very low. On the other hand, in Example 1, the dry tensile strength and the wet tensile strength were high, and it was possible to measure the soil removal rate on the high-pressure steam jet surface and the soil removal rate on the high-pressure water jet surface. From these, it was found that the strength of the nonwoven fabric can be increased by carrying out the step of jetting a high-pressure water stream onto the paper layer.
(2)実施例1と比較例2との比較
 比較例2では、乾燥厚さが小さく、密度が高かった。また、比較例2では、不織布の幅方向(CD)における汚れ除去率が大きかったが、不織布の機械方向(MD)における汚れ除去率が小さかった。一方、実施例1および2では、乾燥厚さは大きく、密度が低かった。また、比較例1では、幅方向(CD)のみならず機械方向(MD)においても汚れ除去率が大きかった。これらから、クレープを形成する工程を実施することによって、不織布の嵩を高くできること、および不織布の幅方向(CD)のみならず機械方向(MD)においても汚れの拭き取り性を向上させることができることがわかった。
(2) Comparison between Example 1 and Comparative Example 2 In Comparative Example 2, the dry thickness was small and the density was high. In Comparative Example 2, the stain removal rate in the width direction (CD) of the nonwoven fabric was large, but the stain removal rate in the machine direction (MD) of the nonwoven fabric was small. On the other hand, in Examples 1 and 2, the dry thickness was large and the density was low. In Comparative Example 1, the dirt removal rate was large not only in the width direction (CD) but also in the machine direction (MD). From these, by carrying out the step of forming a crepe, the bulk of the nonwoven fabric can be increased, and the wiping property of dirt can be improved not only in the width direction (CD) but also in the machine direction (MD) of the nonwoven fabric. all right.
(3)実施例1と比較例3との比較
 比較例3では、乾燥厚さが小さく、密度が高かった。また、比較例3では、不織布の幅方向(CD)および機械方向(MD)において汚れ除去率が小さかった。一方、実施例1では、乾燥厚さは大きく、密度が低かった。また、実施例1および2では、幅方向(CD)および機械方向(MD)において汚れ除去率が大きかった。これらから、クレープを紙層に形成する工程を実施しても、高圧水蒸気を紙層に噴射する工程を実施しなければ、不織布の機械方向(MD)の汚れ拭き取り性を向上させることはできないことがわかった。また、高圧水蒸気を紙層に噴射する工程を実施することによって、不織布の嵩を高くし、不織布の幅方向(CD)の汚れ拭き取り性を向上させることができることがわかった。
(3) Comparison between Example 1 and Comparative Example 3 In Comparative Example 3, the dry thickness was small and the density was high. Moreover, in the comparative example 3, the stain | pollution | contamination removal rate was small in the width direction (CD) and machine direction (MD) of a nonwoven fabric. On the other hand, in Example 1, the dry thickness was large and the density was low. In Examples 1 and 2, the dirt removal rate was large in the width direction (CD) and the machine direction (MD). Even if it implements the process of forming a crepe in a paper layer from these, unless it carries out the process of injecting high-pressure water vapor to a paper layer, it cannot improve the dirt wiping property of the machine direction (MD) of a nonwoven fabric. I understood. Further, it was found that by carrying out the step of injecting high-pressure steam onto the paper layer, the bulk of the nonwoven fabric can be increased and the wipeability of the nonwoven fabric in the width direction (CD) can be improved.
 1  不織布製造装置
 11  原料供給ヘッド
 12  高圧水流ノズル
 13  サクションドラム
 14  蒸気ノズル
 15  吸引ボックス
 16  紙層形成コンベア
 17  吸引ピックアップ
 18,19  紙層搬送コンベア
 20,22  乾燥ドライヤ
 21  巻き取り機
 23  紙層
 26  ドクター刃
 31  高圧水流
 32  凹部
 41  紙層形成ベルト
 51  高圧水蒸気
 52  クレープ
 53  溝部
 57  起毛
DESCRIPTION OF SYMBOLS 1 Nonwoven fabric manufacturing apparatus 11 Raw material supply head 12 High-pressure water flow nozzle 13 Suction drum 14 Steam nozzle 15 Suction box 16 Paper layer forming conveyor 17 Suction pickup 18, 19 Paper layer conveying conveyor 20, 22 Drying dryer 21 Winder 23 Paper layer 26 Doctor Blade 31 High-pressure water flow 32 Recess 41 Paper layer forming belt 51 High-pressure steam 52 Crepe 53 Groove 57 Raised

Claims (6)

  1.  水分を含んだ抄紙原料を、一方向に移動するベルト上に供給して、該ベルト上に紙層を形成する工程と、
     前記紙層に高圧水流を噴射し、機械方向に延在し、幅方向に間欠的に並ぶ凹部を表面に形成する工程と、
     前記高圧水流を噴射した紙層を、回転する円筒状ドライヤの表面に付着させることによって、前記高圧水流を噴射した紙層を、10~45%以下の水分率になるように乾燥する工程と、
     前記円筒状ドライヤの表面に付着させた前記紙層を、ドクター刃を介して該表面から引き離すことによって、前記紙層にクレープを形成する工程と、
     蒸気ノズルから、前記クレープを形成した紙層に高圧水蒸気を噴射することによって、前記凹部の幅よりも大きな幅を有し機械方向に延びる溝部を、前記紙層に形成したクレープを残しながら前記紙層の表面に形成する工程とを含む不織布の製造方法。
    Supplying a papermaking raw material containing moisture onto a belt moving in one direction, and forming a paper layer on the belt;
    Injecting a high-pressure water stream onto the paper layer, extending in the machine direction, and forming recesses on the surface intermittently aligned in the width direction;
    Drying the paper layer sprayed with the high-pressure water stream to a moisture content of 10 to 45% by attaching the paper layer sprayed with the high-pressure water stream to the surface of a rotating cylindrical dryer;
    Forming a crepe on the paper layer by pulling the paper layer attached to the surface of the cylindrical dryer away from the surface via a doctor blade;
    By injecting high-pressure steam from the steam nozzle onto the paper layer on which the crepe is formed, a groove portion having a width larger than the width of the recess and extending in the machine direction is left while leaving the crepe formed in the paper layer. Forming a nonwoven fabric on the surface of the layer.
  2.  前記蒸気ノズルのノズル穴のノズルピッチは3.0~7.0mmである、請求項1に記載の不織布の製造方法。 The method for producing a nonwoven fabric according to claim 1, wherein the nozzle pitch of the nozzle holes of the steam nozzle is 3.0 to 7.0 mm.
  3.  前記蒸気ノズルは、幅方向に並んでいるノズル穴のノズル穴列を機械方向に複数列備える、請求項1または2に記載の不織布の製造方法。 The said steam nozzle is a manufacturing method of the nonwoven fabric of Claim 1 or 2 provided with two or more nozzle hole rows of the nozzle hole located in a line in the machine direction.
  4.  縦方向と、該縦方向に交差する横方向と、該縦方向および該横方向に対して垂直をなす厚さ方向と、該厚さ方向に対して垂直をなす一方の面と、該一方の面に対して該厚さ方向に対向する他方の面とを有し、
     前記一方の面に、前記縦方向に延在し、前記横方向に並ぶ溝部と、
     前記一方の面および前記他方の面に、前記横方向に延在し、縦方向に並ぶクレープとを有する不織布。
    A longitudinal direction, a transverse direction intersecting the longitudinal direction, a thickness direction perpendicular to the longitudinal direction and the transverse direction, one surface perpendicular to the thickness direction, and the one side The other surface facing the surface in the thickness direction,
    A groove extending in the longitudinal direction and arranged in the lateral direction on the one surface;
    A nonwoven fabric having crepes extending in the lateral direction and arranged in the longitudinal direction on the one surface and the other surface.
  5.  前記クレープは、隣接する前記溝部の間に設けられている、請求項4に記載の不織布。 The nonwoven fabric according to claim 4, wherein the crepe is provided between the adjacent groove portions.
  6.  前記不織布に含まれる繊維の繊維長は20mm以下であり、前記不織布は起毛している、請求項4または5に記載の不織布。 The fiber length of the fiber contained in the said nonwoven fabric is 20 mm or less, The said nonwoven fabric is raising, The nonwoven fabric of Claim 4 or 5.
PCT/JP2013/052054 2012-03-30 2013-01-30 Nonwoven fabric and production method for nonwoven fabric WO2013145841A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-079842 2012-03-30
JP2012079842A JP5755173B2 (en) 2012-03-30 2012-03-30 Nonwoven fabric and method for producing nonwoven fabric

Publications (1)

Publication Number Publication Date
WO2013145841A1 true WO2013145841A1 (en) 2013-10-03

Family

ID=49259127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052054 WO2013145841A1 (en) 2012-03-30 2013-01-30 Nonwoven fabric and production method for nonwoven fabric

Country Status (3)

Country Link
JP (1) JP5755173B2 (en)
TW (1) TWI597400B (en)
WO (1) WO2013145841A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5901129B2 (en) * 2011-03-28 2016-04-06 ユニ・チャーム株式会社 Nonwoven manufacturing method
JP5752078B2 (en) * 2012-03-30 2015-07-22 ユニ・チャーム株式会社 Nonwoven fabric and method for producing nonwoven fabric

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181764A (en) * 2004-12-27 2006-07-13 Kao Corp Hydrolyzable cleaning article
JP2006307384A (en) * 2005-04-28 2006-11-09 Kao Corp Method for producing water-disintegrable paper
WO2012132966A1 (en) * 2011-03-25 2012-10-04 ユニ・チャーム株式会社 Manufacturing method for nonwoven fabric
WO2012132549A1 (en) * 2011-03-28 2012-10-04 ユニ・チャーム株式会社 Manufacturing method for nonwoven fabric

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181764A (en) * 2004-12-27 2006-07-13 Kao Corp Hydrolyzable cleaning article
JP2006307384A (en) * 2005-04-28 2006-11-09 Kao Corp Method for producing water-disintegrable paper
WO2012132966A1 (en) * 2011-03-25 2012-10-04 ユニ・チャーム株式会社 Manufacturing method for nonwoven fabric
WO2012132549A1 (en) * 2011-03-28 2012-10-04 ユニ・チャーム株式会社 Manufacturing method for nonwoven fabric

Also Published As

Publication number Publication date
JP5755173B2 (en) 2015-07-29
JP2013209765A (en) 2013-10-10
TWI597400B (en) 2017-09-01
TW201400661A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5901129B2 (en) Nonwoven manufacturing method
JP6399998B2 (en) Water-decomposable nonwoven fabric and method for producing the same
JP5683346B2 (en) Nonwoven manufacturing method
JP5777474B2 (en) Wet wipes and manufacturing method thereof
JP6104550B2 (en) Method for producing non-woven fabric
JP5752077B2 (en) Nonwoven fabric and method for producing nonwoven fabric
JP5787700B2 (en) Nonwoven manufacturing method
JP5836835B2 (en) Nonwoven fabric and method for producing nonwoven fabric
JP5755173B2 (en) Nonwoven fabric and method for producing nonwoven fabric
JP5738144B2 (en) Nonwoven fabric for wet tissue
JP6091134B2 (en) Method for producing non-woven fabric
JP6128788B2 (en) Method for producing non-woven fabric

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767462

Country of ref document: EP

Kind code of ref document: A1