WO2013145647A1 - Wireless charging device - Google Patents

Wireless charging device Download PDF

Info

Publication number
WO2013145647A1
WO2013145647A1 PCT/JP2013/001892 JP2013001892W WO2013145647A1 WO 2013145647 A1 WO2013145647 A1 WO 2013145647A1 JP 2013001892 W JP2013001892 W JP 2013001892W WO 2013145647 A1 WO2013145647 A1 WO 2013145647A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated
side pad
power
core
power transmission
Prior art date
Application number
PCT/JP2013/001892
Other languages
French (fr)
Japanese (ja)
Inventor
英介 高橋
耕司 間崎
大林 和良
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2013145647A1 publication Critical patent/WO2013145647A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • B60M7/003Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway for vehicles using stored power (e.g. charging stations)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to a non-contact power feeding device that performs non-contact power transmission from a power transmission side pad to a power reception side pad.
  • Patent Document 1 Conventionally, as a non-contact power supply device, for example, there is a non-contact power supply system disclosed in Patent Document 1.
  • This non-contact power supply system includes a power supply line and a power receiving device.
  • the power receiving device includes an E-type iron core, a ferrite member, and a power receiving coil.
  • the E-type iron core is configured by laminating plate-shaped magnetic materials cut into an E shape in the thickness direction.
  • the ferrite member is joined to both end faces of the E-type iron core in the plate thickness direction.
  • the power receiving coil is wound around a central leg portion of an E-type iron core to which a ferrite member is bonded.
  • the power receiving coil When the magnetic flux generated by the feeder line is linked via the E-type core, the power receiving coil generates an induced electromotive force. When a current flows through the power receiving coil, a magnetic flux in the direction opposite to the magnetic flux generated by the feeder line is generated. As a result, the flow of magnetic flux is disturbed, and leakage magnetic flux is generated around both ends of the E-type core in the thickness direction.
  • ferrite members are joined to both end faces of the E-type iron core in the plate thickness direction. Therefore, it is possible to reduce eddy currents around both ends of the E-type core in the thickness direction. Therefore, eddy current loss due to leakage magnetic flux can be suppressed.
  • non-contact power feeding device that performs non-contact power transmission from the power transmission side pad to the power reception side pad in a state where the power transmission side pad and the power reception side pad face each other.
  • the same configuration as that of the power receiving device described above can be applied to the power transmitting side pad and the power receiving side pad.
  • the laminated end faces of the leg portions of the E-type iron core configured with the end faces of the magnetic materials being laminated are arranged in a state of facing each other.
  • an object of the present disclosure is to provide a non-contact power feeding device that can suppress eddy current loss even when the magnetic flux flows in and out obliquely with respect to the original flow in and out direction.
  • the non-contact power feeding device includes a power transmission side pad and a power reception side pad.
  • Each of the power transmission side pad and the power reception side pad has a laminated core and a winding disposed along the laminated core.
  • the laminated core includes a plurality of magnetic plate-like portions.
  • the plate-like portions are laminated in the plate thickness direction to constitute a laminated core.
  • the magnetic flux flows in and out of the laminated end surface of the laminated core configured with the end faces of the plate-like portions being laminated, so that power is transmitted in a non-contact manner from the power transmitting side pad to the power receiving side pad.
  • a powder core made of a powdered magnetic material is provided on the laminated end face of the laminated core of the power transmitting side pad and the power receiving side pad.
  • the magnetic flux spreads in the lateral direction in the gap with respect to the direction in which it originally flows. Therefore, in the vicinity of the laminated end face of the laminated core where the magnetic flux flows in and out, the magnetic flux flows in and out obliquely with respect to the direction in which the magnetic flux originally flows in and out.
  • the magnetic flux flows in and out obliquely with respect to the direction in which the magnetic flux originally flows in and out in the vicinity of the laminated end surface of the laminated core through which the magnetic flux flows in and out.
  • an eddy current flows in the vicinity of the laminated end face of the laminated core through which the magnetic flux flows in and out, and the eddy current loss increases.
  • the powder core formed by molding the powdered magnetic material is formed on the laminated end surface of the laminated core of the power transmission side pad and the power reception side pad. Therefore, eddy current loss can be suppressed even when the magnetic flux flows in and out obliquely with respect to the original flow direction.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 2. It is sectional drawing in the state in which the power transmission side pad and the receiving side pad opposed. It is sectional drawing seen from the other direction in the state which the power transmission side pad and the receiving side pad opposed.
  • FIG. 18 is a cross-sectional view taken along line XIX-XIX in FIG. It is a top view of the power transmission side pad in the modification of 5th Embodiment.
  • FIG. 21 is a cross-sectional view taken along line XXI-XXI in FIG. 20.
  • FIG. 21 is a cross-sectional view taken along line XXII-XXII in FIG. It is sectional drawing of the power transmission side pad in 6th Embodiment. It is sectional drawing of the power transmission side pad in 7th Embodiment. It is sectional drawing of the power transmission side pad in the modification of 7th Embodiment. It is a top view of the power transmission side pad in an 8th embodiment.
  • FIG. 27 is a cross-sectional view taken along line XXVII-XXVII in FIG. 26.
  • FIG. 27 is a sectional view taken along line XXVIII-XXVIII in FIG. 26. It is a top view of the power transmission side pad in the modification of 8th Embodiment.
  • FIG. 27 is a cross-sectional view taken along line XXVII-XXVII in FIG. 26.
  • FIG. 27 is a sectional view taken along line XXVIII-XXVIII in FIG. 26. It is a top view
  • FIG. 30 is a cross-sectional view taken along line XXX-XXX in FIG. 29.
  • FIG. 30 is a cross-sectional view taken along line XXXI-XXXI in FIG. 29. It is a top view of the power transmission side pad in 9th Embodiment. It is a left view of the power transmission side pad in 9th Embodiment. It is a lower surface of the power transmission side pad in 9th Embodiment.
  • FIG. 33 is a cross-sectional view taken along line XXXV-XXXV in FIG. 32.
  • the present disclosure will be described in more detail with reference to embodiments.
  • an example in which the non-contact power feeding device according to the present disclosure is applied to a non-contact power feeding device that transmits power in a non-contact manner to a main battery mounted on an electric vehicle or a hybrid vehicle will be described.
  • FIG. 5 is a cross-sectional view corresponding to a cross section taken along line III-III in FIG. 6 is a cross-sectional view corresponding to a cross section taken along line IV-IV in FIG.
  • an electric vehicle or a hybrid vehicle includes a motor generator MG, a main battery B1, an inverter circuit INV, an auxiliary machine S, an auxiliary battery B2, a DC / DC converter circuit CNV, and a controller.
  • CNT a DC / DC converter circuit
  • the motor generator MG is a device that operates as a motor by supplying a three-phase AC voltage and generates a driving force for driving the vehicle.
  • it is a device that operates as a generator by rotating with an external driving force and generates a three-phase AC voltage.
  • the main battery B1 is a chargeable / dischargeable power source that outputs a DC high voltage.
  • the inverter circuit INV is a circuit that converts the DC high voltage output from the main battery B1 into a three-phase AC voltage and supplies it to the motor generator MG when the motor generator MG operates as a motor. Further, when the motor generator MG operates as a generator, it is also a circuit that converts the three-phase AC voltage output from the motor generator MG into a DC high voltage and supplies it to the main battery B1.
  • the auxiliary machine S is a peripheral device such as an air conditioner or an electric power steering device that operates by supplying a DC low voltage.
  • the auxiliary battery B2 is a chargeable / dischargeable power source that outputs a DC low voltage.
  • the DC / DC converter circuit CNV is a circuit that converts the DC high voltage output from the main battery B1 into a DC low voltage and supplies it to the auxiliary battery B2 and the auxiliary machine S.
  • the controller CNT is a device that controls the inverter circuit INV, the DC / DC converter circuit CNV, and the auxiliary machine S based on information on the main battery B1, the auxiliary battery B2, and the motor generator MG.
  • the non-contact power supply device 1 is a device that transmits power from an external power source PS installed outside the vehicle to the main battery B1 mounted on the vehicle in a non-contact manner and charges the main battery B1.
  • the non-contact power feeding device 1 includes a power transmission circuit 10, a power transmission side pad 11, a power reception side pad 12, and a power reception circuit 13.
  • the power transmission circuit 10 is a circuit that transmits and receives information to and from the power reception circuit 13 by wireless communication, converts a voltage output from the external power source PS into a high-frequency AC voltage based on the received information, and applies the high-frequency AC voltage to the power transmission side pad 11 It is.
  • the power transmission circuit 10 is installed outside the vehicle.
  • the power transmission side pad 11 is installed at a predetermined position on the ground surface in the parking space facing the power receiving side pad 13 installed at the bottom of the vehicle when the vehicle is parked in the parking space, and the magnetic flux is generated by the current flowing. It is a device that generates. As shown in FIGS. 2 to 4, the power transmission side pad 11 includes a laminated core 110, a powder core 111, and windings 112 and 113.
  • the laminated core 110 is a member constituting a magnetic path.
  • the laminated core 110 is composed of a plurality of plate-like magnetic materials 110a.
  • the magnetic material 110a is, for example, a silicon steel plate, an electromagnetic stainless steel plate, a plate-like amorphous or plate-like nanocrystalline soft magnetic material, or the like.
  • the laminated core 110 is configured by laminating a plate-like magnetic material 110a cut into a concave shape in the left-right direction which is the thickness direction.
  • Protruding portions 110 b and 110 c that protrude upward are formed on the front side and the rear side of the laminated core 110.
  • a groove 110d is formed between the protrusions 110b and 110c.
  • the powder core 111 is a member constituting a magnetic path.
  • the powder core 111 is formed by molding a powdered magnetic material.
  • the magnetic material is, for example, powdered ferrite, sendust, amorphous, or nanocrystalline magnetic material.
  • the powder core 111 is formed in a plate shape on the laminated end surface of the laminated core 110 configured in a state where the end surfaces of the magnetic material 110a are laminated. Specifically, it is formed in a plate shape on the upper surfaces of the projecting portions 110b and 110c, the bottom surface and front and rear wall surfaces of the groove portion 110d, and the lower surface and front and rear surfaces of the laminated core 110, respectively.
  • the powder core 111 is configured by sintering, compression molding, or resin molding of a powdered magnetic material integrally with the laminated core 110.
  • the windings 112 and 113 are members that generate magnetic flux when current flows.
  • the windings 112 and 113 include first winding portions 112a and 113a and second winding portions 112b and 113b, and are configured in a rectangular shape.
  • the first winding portion 112a is disposed along the bottom surface and the front wall surface of the groove portion 110d.
  • the second wiring part 112b is disposed along the left side, front side, and right side of the protruding part 110b.
  • the first winding portion 113a is disposed along the bottom surface and the rear wall surface of the groove portion 110d.
  • the second winding portion 113b is disposed along the left side surface, the rear surface, and the right side surface of the protruding portion 110c.
  • the windings 112 and 113 are set so that the upper surfaces thereof coincide with the upper surfaces of the powder cores 111 formed on the upper surfaces of the protrusions 110b and 110c.
  • the power receiving side pad 12 is installed at the bottom of the vehicle, and when the vehicle is parked in the parking space, the power receiving side pad 12 faces the power transmitting side pad with a predetermined interval in the vertical direction. It is a device that generates an induced electromotive force by electromagnetic induction when the generated magnetic flux interlinks.
  • the power receiving side pad 12 includes a laminated core 120, a powder core 121, and windings 122 and 123.
  • the power receiving side pad 12 has the same configuration as the power transmitting side pad 11.
  • the power receiving side pad 12 is installed on the bottom of the vehicle in a state where the power receiving side pad 11 is turned upside down with respect to the power transmitting side pad 11.
  • the power receiving circuit 13 is a circuit that transmits and receives information to and from the power transmitting circuit 10 by wireless communication, converts the AC voltage output from the power receiving side pad 12 to a DC voltage based on the received information, and charges the main battery B1. is there.
  • the power transmission side pad 11 and the power reception side pad 13 face each other with a predetermined interval in the vertical direction.
  • the laminated end surface of the laminated core 110 of the power transmission side pad 11 and the laminated end surface of the laminated core 120 of the power receiving side pad 12 face each other with a predetermined interval in the vertical direction.
  • the stacked end faces on the upper surfaces of the projecting portions 110b and 110c and the stacked end surfaces on the lower surfaces of the projecting portions 120b and 120c face each other at a predetermined interval in the vertical direction.
  • the power transmission circuit 10 shown in FIG. 1 converts the voltage output from the external power source PS into a high-frequency AC voltage based on the received information, and applies it to the power transmission side pad 11.
  • the power transmission side pad 11 When an AC voltage is applied and an AC current flows through the windings 112 and 113, the power transmission side pad 11 generates a magnetic flux.
  • the magnetic flux generated by the power transmission side pad 11 flows out from the laminated end surface on the upper surface of the protruding portion 110b through the powder core 111, and passes through the powder core 121 to the laminated end surface on the lower surface of the protruding portion 120b. Inflow. And it flows out from the lamination
  • the magnetic flux generated by the power transmission side pad 11 flows out from the laminated end surface on the upper surface of the projecting portion 110c through the powder core 111, and flows into the laminated end surface on the lower surface of the projecting portion 120c through the powder core 121. And it flows out from the lamination
  • the power receiving side pad 12 shown in FIG. 1 generates an induced electromotive force in the windings 122 and 123 by electromagnetic induction when the magnetic flux generated by the power transmitting side pad 11 is linked.
  • the power receiving circuit 13 converts the AC voltage output from the power receiving side pad 13 into a DC high voltage based on the received information, and charges the main battery B1.
  • FIG. 7 and FIG. 7 and 8 are cross-sectional views corresponding to a cross section taken along line IV-IV in FIG.
  • the power transmission side pad 11 is installed on the ground surface in the parking space.
  • the power receiving side pad 12 is installed at the bottom of the vehicle.
  • the distance between the power transmission side pad 11 and the power reception side pad 12 is large, and the magnetic flux spreads in the front-rear direction and the left-right direction with respect to the vertical direction in which it originally flows in and out. Therefore, as shown in part in FIG. 7, the magnetic flux is inclined obliquely with respect to the vertical direction in which the magnetic flux originally flows in and out near the upper surface of the protruding portions 110 b and 110 c and the stacked end surfaces of the lower surfaces of the protruding portions 120 b and 120 c. It comes in and out.
  • the powder core formed by molding the powdered magnetic material is formed on the laminated end surface of the laminated core of the power transmitting side pad and the power receiving side pad. Therefore, in a non-contact power feeding device that includes a power transmission side pad installed outside the vehicle and a power reception side pad mounted on the vehicle and transmits power from the outside of the vehicle to the vehicle in a contactless manner, Even if it flows in and out with respect to the direction, eddy current can be reduced and eddy current loss can be suppressed.
  • the non-contact power feeding device of the second embodiment is obtained by changing the laminated end surfaces that form the powder cores of the power transmission side pad and the power receiving side pad with respect to the non-contact power feeding device of the first embodiment.
  • FIG. 9 is a cross-sectional view corresponding to a cross section taken along line III-III in FIG.
  • the power transmission side pad 21 includes a laminated core 210, a powder core 211, and windings 212 and 213.
  • the laminated core 210 has the same configuration as that of the laminated core 110 of the first embodiment, except for the difference in dimensions associated with the change in the location where the powder core 211 is formed.
  • the powder core 211 is formed in a plate shape on the laminated end face of the laminated core 210 that faces the laminated end face of the laminated core of the power receiving side pad. Specifically, it is formed in a plate shape on the top surfaces of the protruding portions 210b and 210c and the bottom surface of the groove portion 210d. However, they are not formed on the front and rear wall surfaces of the groove portion 210d, the lower surface and the front and rear surfaces of the laminated core 210.
  • the windings 212 and 213 have the same configuration as the windings 112 and 113 of the first embodiment.
  • the powder core is formed on the stacked end faces of the stacked cores of the power transmission side pad and the power reception side pad that face each other.
  • the magnetic flux mainly flows in and out of the laminated end faces of the laminated core of the power transmission side pad and the power receiving side pad that face each other. For this reason, eddy current loss can be suppressed, and the number of powder cores formed can be reduced as compared with the case where powder cores are formed on all laminated end faces of the laminated cores of the power transmission side pad and the power reception side pad.
  • the non-contact power feeding device of the third embodiment is obtained by changing the laminated end surfaces that form the powder cores of the power transmission side pad and the power receiving side pad with respect to the non-contact power feeding device of the second embodiment.
  • FIG. 10 is a cross-sectional view corresponding to a cross section taken along line III-III in FIG.
  • the power transmission side pad 31 includes a laminated core 310, a powder core 311, and windings 312 and 313.
  • the laminated core 310 has the same configuration as that of the laminated core 210 of the second embodiment, except for the difference in dimensions associated with the change in the location where the powder core 311 is formed.
  • the powder core 311 is a laminated end face that faces the laminated end face of the laminated core of the power receiving pad among the laminated end faces of the laminated core 310, and is placed on the laminated end face other than the laminated end face on which the windings 312 and 313 are arranged. It is formed in a shape. Specifically, each of the protrusions 310b and 310c is formed in a plate shape on the upper surface. However, it is not formed on the bottom surface of the groove 310d.
  • the windings 312 and 313 have the same configuration as the windings 212 and 213 of the second embodiment.
  • the powder core is formed in lamination
  • the magnetic flux mainly flows in and out of the laminated end faces of the laminated cores of the power transmission side pad and the power receiving side pad facing each other.
  • even the laminated end surfaces of the laminated cores of the power transmission side pad and the power receiving side pad that face each other hardly flow into and out of the laminated end surface on which the winding is disposed. Therefore, it is possible to suppress eddy current loss and reduce the number of powder cores formed as compared with the case where powder cores are formed on all the laminated end faces of the laminated cores of the power transmission side pad and the power reception side pad. .
  • the powder core 311 is formed in a thin plate shape on the upper surfaces of the protrusions 310b and 310c.
  • the present invention is not limited to this.
  • the protrusions 310b and 310c may be formed by the powder core 311 instead of being configured by laminating plate-like magnetic materials.
  • the contactless power supply device according to the fourth embodiment is obtained by changing the areas where the powder cores of the power transmission side pad and the power reception side pad are formed with respect to the contactless power supply device according to the third embodiment.
  • FIG. 11 is a cross-sectional view corresponding to a cross section taken along line III-III in FIG. 12 is a cross-sectional view corresponding to a cross section taken along line IV-IV in FIG.
  • the power transmission side pad 41 includes a laminated core 410, a powder core 411, and windings 412, 413.
  • the laminated core 410 has the same configuration as the laminated core 310 of the third embodiment.
  • the laminated core 410 is configured by laminating plate-like magnetic materials 410a cut into a concave shape.
  • the powder core 411 is a laminated end face of the laminated core 410 that faces the laminated end face of the laminated core of the power receiving side pad, and is disposed on a laminated end face other than the laminated end face on which the windings 412 and 413 are disposed. It is formed in a plate shape so as to occupy a region wider than the laminated end face when viewed from the up-down direction which is the facing direction. Specifically, it is formed on the upper surface of the protruding portion 410b and is formed in a plate shape so as to extend forward and in the left-right direction from the upper surface of the protruding portion 410b. Moreover, it is formed in the upper surface of the protrusion part 410c, and is formed in plate shape so that it may extend back and the left-right direction from the upper surface of the protrusion part 410c.
  • the windings 412 and 413 include first winding portions 412a and 413a and second winding portions 412b and 413b, and are configured in a rectangular shape.
  • the first winding portion 412a is disposed along the bottom surface and the front wall surface of the groove portion 410d.
  • the second wiring portion 412b is disposed along the left side surface, front surface, and right side surface of the powder core 411.
  • the first winding portion 413a is disposed along the bottom surface and the rear wall surface of the groove portion 410d.
  • the second winding portion 413b is disposed along the left side surface, the rear surface, and the right side surface of the powder core 111.
  • the windings 412 and 413 are set so that the upper surface coincides with the upper surface of the powder core 411.
  • the powder core is formed so as to occupy a wider area than the laminated end face. Therefore, even if the magnetic flux flowing in and out obliquely with respect to the vertical direction is formed over a wide range, eddy current loss can be suppressed.
  • the second winding portion 412b. 413b is disposed along the front and rear surfaces and the left and right side surfaces of the powder core 411, and the upper surfaces of the windings 412 and 413 are set to coincide with the upper surface of the powder core 411.
  • the second winding portion 412b is along the left side of the protruding portion 410b, the front surface and the front and back surfaces of the right side
  • the second winding portion 413b is the left side of the protruding portion 410c, the rear surface. And may be arranged along the right side surface.
  • the upper surfaces of the windings 412 and 413 may be set so as to coincide with the upper surfaces of the protrusions 410b and 410c, respectively.
  • the non-contact electric power feeder of 5th Embodiment is demonstrated.
  • the non-contact power supply device of the fifth embodiment is formed by dispersing the powder cores of the power transmission side pad and the power reception side pad with respect to the non-contact power supply device of the third embodiment.
  • the configuration of the power transmission side pad will be described with reference to FIGS.
  • the front-back direction, the left-right direction, and the up-down direction in a figure show the direction in a vehicle.
  • the power transmission side pad 51 includes a laminated core 510, a powder core 511, and windings 512 and 513.
  • the laminated core 510 has the same configuration as the laminated core 310 of the third embodiment.
  • the laminated core 510 is configured by laminating plate-like magnetic materials 510a cut into concave shapes.
  • the powder core 511 is a laminated end face that faces the laminated end face of the laminated core of the power receiving side pad among the laminated end faces of the laminated core 510, and is disposed on a laminated end face other than the laminated end face on which the windings 512 and 513 are disposed. It is formed in a rectangular plate shape with a gap therebetween. Specifically, the upper surfaces of the protrusions 510b and 510c are formed in a rectangular plate shape with predetermined intervals in the front-rear direction and the left-right direction, and dispersed in six places. The distance D1 between the dispersed powder cores 511 is set to be not more than twice the thickness D2 of the powder core 511.
  • the powder cores are formed in a dispersed manner at intervals. Therefore, the formation location of a powder core can be reduced.
  • the interval between the powder cores is set to be not more than twice the thickness of the powder core. If the distance D1 between the powder cores is equal to or less than twice the thickness D2 of the powder core, the magnetic flux flows into the powder core instead of the laminated end surface where the powder core is not formed. Therefore, it is possible to reduce the number of locations where the powder core is formed while suppressing eddy current loss.
  • the powder cores 511 are dispersed and arranged at predetermined intervals in the front-rear direction and the left-right direction.
  • the present invention is not limited to this.
  • the powder cores 511 may be arranged in a dispersed manner with a predetermined interval only in the front-rear direction.
  • a continuous powder core is formed on all the laminated magnetic materials. Therefore, the magnetic core can be evenly dispersed in all the laminated magnetic materials by the powder core. Therefore, magnetic saturation of the laminated core can be reliably suppressed.
  • the contactless power supply device of the sixth embodiment is obtained by changing the method of forming the powder cores of the power transmission side pad and the power reception side pad with respect to the contactless power supply device of the third embodiment.
  • FIG. 23 is a cross-sectional view corresponding to a cross section taken along line III-III in FIG.
  • the power transmission side pad 61 includes a laminated core 610, a powder core 611, and windings 612 and 613.
  • the laminated core 610 has the same configuration as the laminated core 310 of the third embodiment.
  • the laminated core 610 is configured by laminating a plate-like magnetic material 610a cut into a concave shape.
  • the powder core 611 is a laminated end face that faces the laminated end face of the laminated core of the power receiving side pad among the laminated end faces of the laminated core 610, and is disposed on the laminated end face other than the laminated end face on which the windings 612 and 613 are disposed. It is formed in a shape. Specifically, the powdery magnetic material is sintered, compression-molded, or resin-molded into a shape that fits the upper surfaces of the protrusions 610b and 610c. The powdered magnetic material is mixed and fixed to the upper surfaces of the protruding portions 610b and 610c by an adhesive 611a softer than the laminated core 610 and the powder core 611 before curing.
  • the magnetic material mixed with the adhesive 611a is, for example, powdered ferrite, sendust, amorphous, or nanocrystalline magnetic material.
  • the windings 612 and 613 have the same configuration as the windings 312 and 313 of the third embodiment.
  • the laminated end face of the laminated core configured with the end faces of the magnetic material being laminated has irregularities due to variations in the dimensions of the magnetic material.
  • a gap is generated and the magnetic resistance is increased.
  • the powder core is fixed by an adhesive.
  • the powder core is fixed by the adhesive mixed with the powdery magnetic material. Therefore, an increase in magnetic resistance can be suppressed.
  • stacking end surface is given.
  • It may be a rubber mixed with a powdery magnetic material. Any member that is softer than the laminated core 610 and the powder core 611 may be used. If it is softer than the laminated core 610 and the powder core 611 when disposed between the powder core 611 and the laminated end face, it may be cured thereafter. (Seventh embodiment) Next, the non-contact electric power feeder of 7th Embodiment is demonstrated.
  • FIG. 24 is a cross-sectional view corresponding to a cross section taken along line III-III in FIG.
  • the power transmission side pad 71 includes a laminated core 710, a powder core 711, and windings 712 and 713.
  • the laminated core 710 is configured by laminating a plate-like magnetic material 710a cut into a rectangular shape in the vertical direction, which is the thickness direction.
  • the powder core 711 is formed in a rectangular parallelepiped shape on the laminated end surface of the laminated core 710. Specifically, it is formed in a rectangular parallelepiped shape on the front and rear surfaces of the laminated core 710, respectively.
  • the powder core 711 has projecting portions 711 a and 711 b that project upward from the upper surface of the laminated core 710.
  • the windings 712 and 713 include first winding portions 712a and 713a and second winding portions 712b and 713b, and are configured in a rectangular shape.
  • the first winding portion 712a is disposed along the upper surface of the laminated core 710.
  • the second wiring part 712b is disposed along the left side, front side, and right side of the protruding part 711a.
  • the first winding portion 713a is disposed along the upper surface of the laminated core 710 on the rear side of the first winding portion 712a.
  • the second winding portion 713b is disposed along the left side surface, the rear surface, and the right side surface of the protruding portion 711b.
  • the windings 712 and 713 are set so that the upper surfaces thereof coincide with the upper surfaces of the protruding portions 711a and 711b.
  • the same effects as those of the first to third embodiments can be obtained. Further, when the horizontal dimension (not shown) of the laminated core 710 is larger than the vertical dimension, as compared with the case of laminating magnetic materials in the horizontal direction as in the first to fifth embodiments, the laminated core The number of magnetic materials 710a constituting 701 can be suppressed. Therefore, the productivity of the laminated core 710 can be improved.
  • the front and rear surfaces of the laminated core 710 are formed perpendicular to the vertical direction, but the present invention is not limited to this.
  • the front and rear surfaces of the laminated core 710 may be formed to be inclined obliquely. In this case, a sufficient bonding area between the laminated core 710 and the powder core 711 can be secured. Therefore, it is possible to suppress the influence of the gap generated at the joint portion.
  • the configuration of the power transmission side pad will be described with reference to FIGS.
  • the front-back direction, the left-right direction, and the up-down direction in a figure show the direction in a vehicle.
  • the power transmission side pad 81 includes a laminated core 810, a powder core 811 and a winding 812.
  • the laminated core 810 is configured by laminating a plate-shaped magnetic material 810a cut into a rectangular shape in the left-right direction, which is the plate thickness direction.
  • the powder core 811 is formed in a plate shape on the laminated end surface of the laminated core 810.
  • the laminated core 810 is formed in a plate shape on each of the front and rear surfaces and the upper and lower surfaces.
  • the winding 812 is configured by winding along the upper and lower surfaces and the left and right side surfaces of the laminated core 810.
  • the laminated core 810 is configured by laminating plate-like magnetic materials 810a cut into a rectangular shape in the left-right direction, which is the plate thickness direction. It is not limited to. As shown in FIGS. 29 to 31, the laminated core 810 may be configured by winding a plate-like magnetic material 810a cut into a strip shape so as to be laminated in the plate thickness direction.
  • the configuration of the power transmission side pad will be described with reference to FIGS.
  • the front-back direction and the up-down direction in a figure show the direction in a vehicle.
  • the power transmission side pad 91 includes a plurality of laminated cores 910, a powder core 911, and a winding 912.
  • the laminated core 910 is configured by laminating a plate-shaped magnetic material 910a cut into a rectangular shape in the thickness direction.
  • the laminated cores 910 are arranged radially with the laminated end faces directed upward and downward.
  • the powder core 911 is a laminated end face of the laminated end face of the laminated core 910 that is opposed to the laminated end face of the laminated core of the power receiving side pad, and has a plate shape on the laminated end face other than the laminated end face on which the winding 912 is disposed. Is formed. Specifically, it is formed in a double concentric disk shape on the upper surface of the laminated core 910 arranged on the radiation.
  • the windings 912 are arranged in a circular shape along the upper surface of the laminated cores 910 arranged in a radial pattern in which the powder cores 911 are not formed.
  • the receiving side pad has the same configuration as the transmitting side pad.
  • the receiving side pad may not have the same configuration as the transmitting side pad.
  • a power receiving side pad having the same configuration as the power transmitting side pads of the second to ninth embodiments may be used for the transmitting side pads of the first embodiment.
  • the reception side pads having the same configuration as the power transmission side pads of the first to ninth embodiments can be used in combination with the transmission side pads of the first to ninth embodiments.
  • the power transmission side pad is installed on the ground surface of the parking space and the power reception side pad is installed on the bottom of the vehicle, but this is not restrictive.
  • the power transmission side pad may be installed on the road surface of the road, the floor surface of the building, and the ground. Moreover, you may install in the wall surface and ceiling of a building. In that case, if the power receiving side pad is installed on the side surface or ceiling surface of the vehicle, power can be transmitted in the same manner.

Abstract

The wireless charging device is provided with power transmission-side pads (11, 21, 31, 41, 51, 61, 71, 81, 91) and a power reception-side pad (12). The power transmission-side pads and power reception-side pad each have a laminated core (110, 210, 310, 410, 510, 610, 710, 810, 910, 120), a powder core (111, 211, 311, 411, 511, 611, 711, 811, 911, 121), and windings (112, 113, 212, 213, 312, 313, 412, 413, 512, 513, 612, 613, 712, 713, 812, 912, 122, 123). The laminated cores are provided with a plurality of tabular parts (110a, 410a, 510a, 610a, 710a, 810a, 910a) having magnetic properties. The tabular parts are laminated in the thickness direction to constitute the laminated core. The powder core is formed on a laminated end surface of the laminated core, constituted by the laminated end surfaces of the tabular parts.

Description

非接触給電装置Non-contact power feeding device 関連出願の相互参照Cross-reference of related applications
 本開示は、2012年3月30日に出願された日本出願番号2012-81874号に基づくもので、ここにその記載内容を援用する。 This disclosure is based on Japanese Patent Application No. 2012-81874 filed on March 30, 2012, the contents of which are incorporated herein.
 本開示は、送電側パッドから受電側パッドに非接触で送電する非接触給電装置に関する。 The present disclosure relates to a non-contact power feeding device that performs non-contact power transmission from a power transmission side pad to a power reception side pad.
 従来、非接触給電装置として、例えば特許文献1に開示されている非接触給電システムがある。 Conventionally, as a non-contact power supply device, for example, there is a non-contact power supply system disclosed in Patent Document 1.
 この非接触給電システムは、給電線と、受電装置とを備えている。受電装置は、E型鉄心と、フェライト部材と、受電用コイルとを備えている。E型鉄心は、E字状に切断された板状の磁性材を板厚方向に積層して構成されている。フェライト部材は、E型鉄心の板厚方向の両端面に接合されている。受電用コイルは、フェライト部材の接合されたE型鉄心の中央脚部に巻回されている。 This non-contact power supply system includes a power supply line and a power receiving device. The power receiving device includes an E-type iron core, a ferrite member, and a power receiving coil. The E-type iron core is configured by laminating plate-shaped magnetic materials cut into an E shape in the thickness direction. The ferrite member is joined to both end faces of the E-type iron core in the plate thickness direction. The power receiving coil is wound around a central leg portion of an E-type iron core to which a ferrite member is bonded.
 給電線の発生する磁束がE型鉄心を介して鎖交することで、受電用コイルは、誘導起電力を発生する。受電用コイルに電流が流れると、給電線の発生する磁束と逆向きの磁束が発生する。その結果、磁束の流れが乱れ、E型鉄心の板厚方向の両端部周辺に漏れ磁束が発生する。しかし、E型鉄心の板厚方向の両端面には、フェライト部材が接合されている。そのため、E型鉄心の板厚方向の両端部周辺における渦電流を低減することができる。従って、漏れ磁束に伴う渦電流損を抑えることができる。 When the magnetic flux generated by the feeder line is linked via the E-type core, the power receiving coil generates an induced electromotive force. When a current flows through the power receiving coil, a magnetic flux in the direction opposite to the magnetic flux generated by the feeder line is generated. As a result, the flow of magnetic flux is disturbed, and leakage magnetic flux is generated around both ends of the E-type core in the thickness direction. However, ferrite members are joined to both end faces of the E-type iron core in the plate thickness direction. Therefore, it is possible to reduce eddy currents around both ends of the E-type core in the thickness direction. Therefore, eddy current loss due to leakage magnetic flux can be suppressed.
 ところで、送電側パッドと受電側パッドを互いに対向させた状態で、送電側パッドから受電側パッドに非接触で送電する非接触給電装置がある。この送電側パッド及び受電側パッドに、前述した受電装置と同一構成を適用することができる。この場合、磁性材の端面が積層された状態で構成されるE型鉄心の脚部の積層端面が、互いに対向した状態で配置される。 By the way, there is a non-contact power feeding device that performs non-contact power transmission from the power transmission side pad to the power reception side pad in a state where the power transmission side pad and the power reception side pad face each other. The same configuration as that of the power receiving device described above can be applied to the power transmitting side pad and the power receiving side pad. In this case, the laminated end faces of the leg portions of the E-type iron core configured with the end faces of the magnetic materials being laminated are arranged in a state of facing each other.
 送電側パッドと受電側パッドの間隔が大きいと、ギャップ内において、磁束が、本来流入出する方向に対して横方向に広がってしまう。そのため、磁束が流入出する脚部の積層端面付近において、磁束が、本来流入出する方向に対して斜めに流入出するようになる。互いに対向するE型鉄心の位置がずれた場合も同様に、磁束が流入出する脚部の積層端面付近において、磁束が、本来流入出する方向に対して斜めに流入出するようになる。その結果、磁束が流入出する脚部の積層端面付近において、渦電流が流れてしまう。この渦電流は、E型鉄心の板厚方向の両端部に接合されたフェライト部材では低減できない。従って、渦電流損が増加してしまうという問題があった。 When the distance between the power transmission side pad and the power reception side pad is large, the magnetic flux spreads in the lateral direction in the gap with respect to the direction in which it originally flows. Therefore, in the vicinity of the laminated end surface of the leg portion where the magnetic flux flows in and out, the magnetic flux flows in and out obliquely with respect to the original flow direction. Similarly, when the positions of the E-type iron cores facing each other shift, the magnetic flux flows in and out obliquely with respect to the direction in which the magnetic flux originally flows in and out in the vicinity of the laminated end surface of the leg portion through which the magnetic flux flows in and out. As a result, an eddy current flows in the vicinity of the laminated end face of the leg portion where the magnetic flux flows in and out. This eddy current cannot be reduced by a ferrite member joined to both ends of the E-type core in the plate thickness direction. Therefore, there is a problem that eddy current loss increases.
特開平10-094104号公報Japanese Patent Laid-Open No. 10-094104
 そこで、本開示は、磁束が本来流入出する方向に対して斜めに流入出しても、渦電流損を抑えることができる非接触給電装置を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a non-contact power feeding device that can suppress eddy current loss even when the magnetic flux flows in and out obliquely with respect to the original flow in and out direction.
 本開示の第1の態様では、非接触給電装置は、送電側パッドと、受電側パッドとを備える。送電側パッドと受電側パッドはそれぞれ、積層コアと、積層コアに沿って配置される巻線とを有する。積層コアは、磁性を有する複数の板状部を備える。板状部は板厚方向に積層されて積層コアを構成する。板状部の端面が積層された状態で構成される積層コアの積層端面に、磁束が流入出することで、送電側パッドから受電側パッドに非接触で送電がなされる。送電側パッドと受電側パッドの積層コアの積層端面に、粉末状の磁性材からなる粉体コアを有する。 In the first aspect of the present disclosure, the non-contact power feeding device includes a power transmission side pad and a power reception side pad. Each of the power transmission side pad and the power reception side pad has a laminated core and a winding disposed along the laminated core. The laminated core includes a plurality of magnetic plate-like portions. The plate-like portions are laminated in the plate thickness direction to constitute a laminated core. The magnetic flux flows in and out of the laminated end surface of the laminated core configured with the end faces of the plate-like portions being laminated, so that power is transmitted in a non-contact manner from the power transmitting side pad to the power receiving side pad. A powder core made of a powdered magnetic material is provided on the laminated end face of the laminated core of the power transmitting side pad and the power receiving side pad.
 送電側パッドと受電側パッドの間隔が大きい場合、ギャップ内において、磁束が、本来流入出する方向に対して横方向に広がってしまう。そのため、磁束が流入出する積層コアの積層端面付近において、磁束が、本来流入出する方向に対して斜めに流入出するようになる。送電側パッドと受電側パッドの位置がずれた場合も同様に、磁束が流入出する積層コアの積層端面付近において、磁束が、本来流入出する方向に対して斜めに流入出するようになる。その結果、磁束が流入出する積層コアの積層端面付近において、渦電流が流れてしまい、渦電流損が増加してしまう。 When the distance between the power transmission side pad and the power reception side pad is large, the magnetic flux spreads in the lateral direction in the gap with respect to the direction in which it originally flows. Therefore, in the vicinity of the laminated end face of the laminated core where the magnetic flux flows in and out, the magnetic flux flows in and out obliquely with respect to the direction in which the magnetic flux originally flows in and out. Similarly, when the positions of the power transmission side pad and the power reception side pad are shifted, the magnetic flux flows in and out obliquely with respect to the direction in which the magnetic flux originally flows in and out in the vicinity of the laminated end surface of the laminated core through which the magnetic flux flows in and out. As a result, an eddy current flows in the vicinity of the laminated end face of the laminated core through which the magnetic flux flows in and out, and the eddy current loss increases.
 しかし、本開示の第1の態様によれば、送電側パッドと受電側パッドの積層コアの積層端面に、粉末状の磁性材を成形して構成される粉体コアが形成されている。そのため、磁束が本来流入出する方向に対して斜めに流入出しても、渦電流損を抑えることができる。 However, according to the first aspect of the present disclosure, the powder core formed by molding the powdered magnetic material is formed on the laminated end surface of the laminated core of the power transmission side pad and the power reception side pad. Therefore, eddy current loss can be suppressed even when the magnetic flux flows in and out obliquely with respect to the original flow direction.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
第1実施形態における非接触給電装置の回路図である。 第1実施形態における送電側パッドの上面図である。 図2におけるIII-III線に沿った断面図である。 図2におけるIV-IV線に沿った断面図である。 送電側パッドと受信側パッドが対向した状態における断面図である。 送電側パッドと受信側パッドが対向した状態における別方向から見た断面図である。 第1実施形態における送電側パッドと受電側パッドの磁束の流れを説明するための説明図である。 従来の構成における送電側パッドと受電側パッドの磁束の流れを説明するための説明図である。 第2実施形態における送電側パッドの断面図である。 第3実施形態における送電側パッドの断面図である。 第4実施形態における送電側パッドの断面図である。 第4実施形態における送電側パッドの別方向から見た断面図である。 第4実施形態の変形形態における送電側パッドの断面図である。 第4実施形態の変形形態における送電側パッドの別方向から見た断面図である。 第4実施形態の別の変形形態における送電側パッドの断面図である。 第4実施形態の別の変形形態における送電側パッドの別方向から見た断面図である。 第5実施形態における送電側パッドの上面図である。 図17におけるXVIII-XVIII線に沿った断面図である。 図17におけるXIX-XIX線に沿った断面図である。 第5実施形態の変形形態における送電側パッドの上面図である。 図20におけるXXI-XXI線に沿った断面図である。 図20におけるXXII-XXII線に沿った断面図である。 第6実施形態における送電側パッドの断面図である。 第7実施形態における送電側パッドの断面図である。 第7実施形態の変形形態における送電側パッドの断面図である。 第8実施形態における送電側パッドの上面図である。 図26におけるXXVII-XXVII線に沿った断面図である。 図26におけるXXVIII-XXVIII線に沿った断面図である。 第8実施形態の変形形態における送電側パッドの上面図である。 図29におけるXXX-XXX線に沿った断面図である。 図29におけるXXXI-XXXI線に沿った断面図である。 第9実施形態における送電側パッドの上面図である。 第9実施形態における送電側パッドの左側面図である。 第9実施形態における送電側パッドの下面である。 図32におけるXXXV-XXXV線に沿った断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
It is a circuit diagram of the non-contact electric power feeder in 1st Embodiment. It is a top view of the power transmission side pad in a 1st embodiment. FIG. 3 is a cross-sectional view taken along line III-III in FIG. FIG. 4 is a sectional view taken along line IV-IV in FIG. 2. It is sectional drawing in the state in which the power transmission side pad and the receiving side pad opposed. It is sectional drawing seen from the other direction in the state which the power transmission side pad and the receiving side pad opposed. It is explanatory drawing for demonstrating the flow of the magnetic flux of the power transmission side pad and power receiving side pad in 1st Embodiment. It is explanatory drawing for demonstrating the flow of the magnetic flux of the power transmission side pad and power receiving side pad in the conventional structure. It is sectional drawing of the power transmission side pad in 2nd Embodiment. It is sectional drawing of the power transmission side pad in 3rd Embodiment. It is sectional drawing of the power transmission side pad in 4th Embodiment. It is sectional drawing seen from the other direction of the power transmission side pad in 4th Embodiment. It is sectional drawing of the power transmission side pad in the modification of 4th Embodiment. It is sectional drawing seen from the other direction of the power transmission side pad in the modification of 4th Embodiment. It is sectional drawing of the power transmission side pad in another modification of 4th Embodiment. It is sectional drawing seen from the other direction of the power transmission side pad in another modification of 4th Embodiment. It is a top view of the power transmission side pad in a 5th embodiment. It is sectional drawing along the XVIII-XVIII line in FIG. FIG. 18 is a cross-sectional view taken along line XIX-XIX in FIG. It is a top view of the power transmission side pad in the modification of 5th Embodiment. FIG. 21 is a cross-sectional view taken along line XXI-XXI in FIG. 20. FIG. 21 is a cross-sectional view taken along line XXII-XXII in FIG. It is sectional drawing of the power transmission side pad in 6th Embodiment. It is sectional drawing of the power transmission side pad in 7th Embodiment. It is sectional drawing of the power transmission side pad in the modification of 7th Embodiment. It is a top view of the power transmission side pad in an 8th embodiment. FIG. 27 is a cross-sectional view taken along line XXVII-XXVII in FIG. 26. FIG. 27 is a sectional view taken along line XXVIII-XXVIII in FIG. 26. It is a top view of the power transmission side pad in the modification of 8th Embodiment. FIG. 30 is a cross-sectional view taken along line XXX-XXX in FIG. 29. FIG. 30 is a cross-sectional view taken along line XXXI-XXXI in FIG. 29. It is a top view of the power transmission side pad in 9th Embodiment. It is a left view of the power transmission side pad in 9th Embodiment. It is a lower surface of the power transmission side pad in 9th Embodiment. FIG. 33 is a cross-sectional view taken along line XXXV-XXXV in FIG. 32.
 次に、実施形態を挙げ、本開示をより詳しく説明する。本実施形態では、本開示に係る非接触給電装置を、電気自動車やハイブリッド車に搭載されたメインバッテリに非接触で送電する非接触給電装置に適用した例を示す。 Next, the present disclosure will be described in more detail with reference to embodiments. In the present embodiment, an example in which the non-contact power feeding device according to the present disclosure is applied to a non-contact power feeding device that transmits power in a non-contact manner to a main battery mounted on an electric vehicle or a hybrid vehicle will be described.
 (第1実施形態)
 まず、図1~図6を参照して第1実施形態の非接触給電装置の構成について説明する。なお、図中における前後方向、左右方向及び上下方向は、車両における方向を示すものである。図5は、図2におけるIII-III線に沿った断面に相当する断面図である。図6は、図2におけるIV-IV線に沿った断面に相当する断面図である。
(First embodiment)
First, the configuration of the non-contact power feeding device according to the first embodiment will be described with reference to FIGS. In addition, the front-back direction, the left-right direction, and the up-down direction in a figure show the direction in a vehicle. FIG. 5 is a cross-sectional view corresponding to a cross section taken along line III-III in FIG. 6 is a cross-sectional view corresponding to a cross section taken along line IV-IV in FIG.
 図1に示すように、電気自動車やハイブリッド車は、モータジェネレータMGと、メインバッテリB1と、インバータ回路INVと、補機Sと、補機バッテリB2と、DC/DCコンバータ回路CNVと、制御器CNTとを備えている。 As shown in FIG. 1, an electric vehicle or a hybrid vehicle includes a motor generator MG, a main battery B1, an inverter circuit INV, an auxiliary machine S, an auxiliary battery B2, a DC / DC converter circuit CNV, and a controller. CNT.
 モータジェネレータMGは、3相交流電圧を供給することでモータとして動作し、車両の走行のための駆動力を発生する機器である。また、車両の減速時において、外部からの駆動力によって回転することでジェネレータとして動作し、3相交流電圧を発生する機器でもある。 The motor generator MG is a device that operates as a motor by supplying a three-phase AC voltage and generates a driving force for driving the vehicle. In addition, when the vehicle is decelerated, it is a device that operates as a generator by rotating with an external driving force and generates a three-phase AC voltage.
 メインバッテリB1は、直流高電圧を出力する充放電可能な電源である。 The main battery B1 is a chargeable / dischargeable power source that outputs a DC high voltage.
 インバータ回路INVは、モータジェネレータMGがモータとして動作するとき、メインバッテリB1の出力する直流高電圧を3相交流電圧に変換してモータジェネレータMGに供給する回路である。また、モータジェネレータMGがジェネレータとして動作するとき、モータジェネレータMGの出力する3相交流電圧を直流高電圧に変換してメインバッテリB1に供給する回路でもある。 The inverter circuit INV is a circuit that converts the DC high voltage output from the main battery B1 into a three-phase AC voltage and supplies it to the motor generator MG when the motor generator MG operates as a motor. Further, when the motor generator MG operates as a generator, it is also a circuit that converts the three-phase AC voltage output from the motor generator MG into a DC high voltage and supplies it to the main battery B1.
 補機Sは、直流低電圧を供給することで動作する空調装置や電動パワーステアリング装置等の周辺装置である。 The auxiliary machine S is a peripheral device such as an air conditioner or an electric power steering device that operates by supplying a DC low voltage.
 補機バッテリB2は、直流低電圧を出力する充放電可能な電源である。 The auxiliary battery B2 is a chargeable / dischargeable power source that outputs a DC low voltage.
 DC/DCコンバータ回路CNVは、メインバッテリB1の出力する直流高電圧を直流低電圧に変換して補機バッテリB2及び補機Sに供給する回路である。 The DC / DC converter circuit CNV is a circuit that converts the DC high voltage output from the main battery B1 into a DC low voltage and supplies it to the auxiliary battery B2 and the auxiliary machine S.
 制御器CNTは、メインバッテリB1、補機バッテリB2及びモータジェネレータMGに関する情報に基づいて、インバータ回路INV、DC/DCコンバータ回路CNV及び補機Sを制御する装置である。 The controller CNT is a device that controls the inverter circuit INV, the DC / DC converter circuit CNV, and the auxiliary machine S based on information on the main battery B1, the auxiliary battery B2, and the motor generator MG.
 非接触給電装置1は、車両の外部に設置された外部電源PSから車両に搭載されたメインバッテリB1に非接触で送電し、メインバッテリB1を充電する装置である。非接触給電装置1は、送電回路10と、送電側パッド11と、受電側パッド12と、受電回路13とを備えている。 The non-contact power supply device 1 is a device that transmits power from an external power source PS installed outside the vehicle to the main battery B1 mounted on the vehicle in a non-contact manner and charges the main battery B1. The non-contact power feeding device 1 includes a power transmission circuit 10, a power transmission side pad 11, a power reception side pad 12, and a power reception circuit 13.
 送電回路10は、受電回路13との間で無線通信によって情報を送受信し、受信した情報に基づいて外部電源PSの出力する電圧を高周波の交流電圧に変換し、送電側パッド11に印加する回路である。送電回路10は、車両の外部に設置されている。 The power transmission circuit 10 is a circuit that transmits and receives information to and from the power reception circuit 13 by wireless communication, converts a voltage output from the external power source PS into a high-frequency AC voltage based on the received information, and applies the high-frequency AC voltage to the power transmission side pad 11 It is. The power transmission circuit 10 is installed outside the vehicle.
 送電側パッド11は、駐車スペース内に車両を駐車したときに車両の底部に設置された受電側パッド13と対向する駐車スペース内の地表面の所定位置に設置され、電流が流れることで磁束を発生する装置である。図2~図4に示すように、送電側パッド11は、積層コア110と、粉体コア111と、巻線112、113とを備えている。 The power transmission side pad 11 is installed at a predetermined position on the ground surface in the parking space facing the power receiving side pad 13 installed at the bottom of the vehicle when the vehicle is parked in the parking space, and the magnetic flux is generated by the current flowing. It is a device that generates. As shown in FIGS. 2 to 4, the power transmission side pad 11 includes a laminated core 110, a powder core 111, and windings 112 and 113.
 積層コア110は、磁路を構成する部材である。積層コア110は、複数の板状の磁性材110aによって構成されている。磁性材110aは、例えば、珪素鋼板、電磁ステンレス板、板状のアモルファス又は板状のナノ結晶軟磁性材等である。積層コア110は、凹状に切断された板状の磁性材110aを、板厚方向である左右方向に積層して構成されている。積層コア110の前側及び後側には、上方に突出する突出部110b、110cが形成されている。また、突出部110b、110cの間には、溝部110dが形成されている。 The laminated core 110 is a member constituting a magnetic path. The laminated core 110 is composed of a plurality of plate-like magnetic materials 110a. The magnetic material 110a is, for example, a silicon steel plate, an electromagnetic stainless steel plate, a plate-like amorphous or plate-like nanocrystalline soft magnetic material, or the like. The laminated core 110 is configured by laminating a plate-like magnetic material 110a cut into a concave shape in the left-right direction which is the thickness direction. Protruding portions 110 b and 110 c that protrude upward are formed on the front side and the rear side of the laminated core 110. A groove 110d is formed between the protrusions 110b and 110c.
 粉体コア111は、磁路を構成する部材である。粉体コア111は、粉末状の磁性材を成形して構成されている。磁性材は、例えば、粉末状のフェライト、センダスト、アモルファス又はナノ結晶磁性材等である。粉体コア111は、磁性材110aの端面が積層された状態で構成される積層コア110の積層端面に板状に形成されている。具体的には、突出部110b、110cの上面、溝部110dの底面及び前後壁面、積層コア110の下面及び前後面にそれぞれ板状に形成されている。粉体コア111は、粉末状の磁性材を、積層コア110と一体的に焼結、圧縮成形又は樹脂成形して構成されている。 The powder core 111 is a member constituting a magnetic path. The powder core 111 is formed by molding a powdered magnetic material. The magnetic material is, for example, powdered ferrite, sendust, amorphous, or nanocrystalline magnetic material. The powder core 111 is formed in a plate shape on the laminated end surface of the laminated core 110 configured in a state where the end surfaces of the magnetic material 110a are laminated. Specifically, it is formed in a plate shape on the upper surfaces of the projecting portions 110b and 110c, the bottom surface and front and rear wall surfaces of the groove portion 110d, and the lower surface and front and rear surfaces of the laminated core 110, respectively. The powder core 111 is configured by sintering, compression molding, or resin molding of a powdered magnetic material integrally with the laminated core 110.
 巻線112、113は、電流が流れることで磁束を発生する部材である。例えば、電気抵抗の低いリッツ線からなる部材である。巻線112、113は、第1巻線部112a、113aと、第2巻線部112b、113bとを備え、矩形状に構成されている。 The windings 112 and 113 are members that generate magnetic flux when current flows. For example, a member made of a litz wire having a low electrical resistance. The windings 112 and 113 include first winding portions 112a and 113a and second winding portions 112b and 113b, and are configured in a rectangular shape.
 第1巻線部112aは、溝部110dの底面及び前壁面に沿って配置されている。第2配線部112bは、突出部110bの左側面、前面及び右側面に沿って配置されている。第1巻線部113aは、溝部110dの底面及び後壁面に沿って配置されている。第2巻線部113bは、突出部110cの左側面、後面及び右側面に沿って配置されている。巻線112、113は、上面が突出部110b、110cの上面に形成された粉体コア111の上面と一致するように設定されている。 The first winding portion 112a is disposed along the bottom surface and the front wall surface of the groove portion 110d. The second wiring part 112b is disposed along the left side, front side, and right side of the protruding part 110b. The first winding portion 113a is disposed along the bottom surface and the rear wall surface of the groove portion 110d. The second winding portion 113b is disposed along the left side surface, the rear surface, and the right side surface of the protruding portion 110c. The windings 112 and 113 are set so that the upper surfaces thereof coincide with the upper surfaces of the powder cores 111 formed on the upper surfaces of the protrusions 110b and 110c.
 図1に示すように、受電側パッド12は、車両の底部に設置され、駐車スペースに車両を駐車したときに上下方向に所定の間隔をあけて送電側パッドと対向し、送電側パッド11の発生した磁束が鎖交することで電磁誘導によって誘導起電力を生じる装置である。図5及び図6に示すように、受電側パッド12は、積層コア120と、粉体コア121と、巻線122、123とを備えている。受電側パッド12は、送電側パッド11と同一構成である。受電側パッド12は、送電側パッド11とは上下逆向きにした状態で車両の底部に設置されている。 As shown in FIG. 1, the power receiving side pad 12 is installed at the bottom of the vehicle, and when the vehicle is parked in the parking space, the power receiving side pad 12 faces the power transmitting side pad with a predetermined interval in the vertical direction. It is a device that generates an induced electromotive force by electromagnetic induction when the generated magnetic flux interlinks. As shown in FIGS. 5 and 6, the power receiving side pad 12 includes a laminated core 120, a powder core 121, and windings 122 and 123. The power receiving side pad 12 has the same configuration as the power transmitting side pad 11. The power receiving side pad 12 is installed on the bottom of the vehicle in a state where the power receiving side pad 11 is turned upside down with respect to the power transmitting side pad 11.
 受電回路13は、送電回路10との間で無線通信によって情報を送受信し、受信した情報に基づいて受電側パッド12の出力する交流電圧を直流電圧に変換し、メインバッテリB1を充電する回路である。 The power receiving circuit 13 is a circuit that transmits and receives information to and from the power transmitting circuit 10 by wireless communication, converts the AC voltage output from the power receiving side pad 12 to a DC voltage based on the received information, and charges the main battery B1. is there.
 次に、図1、図5及び図6を参照して非接触給電装置の動作について説明する。 Next, the operation of the non-contact power feeding device will be described with reference to FIG. 1, FIG. 5, and FIG.
 図1に示すように、駐車スペースに車両を駐車すると、送電側パッド11と受電側パッド13が上下方向に所定の間隔をあけて対向する。図5及び図6に示すように、送電側パッド11の積層コア110の積層端面と、受電側パッド12の積層コア120の積層端面が、上下方向に所定の間隔をあけて対向する。具体的には、突出部110b、110cの上面の積層端面と、突出部120b、120cの下面の積層端面が、上下方向に所定の間隔をあけて対向する。この状態で充電開始ボタン(図略)が押され、充電の開始が指示されると、送電回路10と受電回路13は、無線通信によって情報を送受信する。 As shown in FIG. 1, when a vehicle is parked in the parking space, the power transmission side pad 11 and the power reception side pad 13 face each other with a predetermined interval in the vertical direction. As shown in FIGS. 5 and 6, the laminated end surface of the laminated core 110 of the power transmission side pad 11 and the laminated end surface of the laminated core 120 of the power receiving side pad 12 face each other with a predetermined interval in the vertical direction. Specifically, the stacked end faces on the upper surfaces of the projecting portions 110b and 110c and the stacked end surfaces on the lower surfaces of the projecting portions 120b and 120c face each other at a predetermined interval in the vertical direction. In this state, when a charge start button (not shown) is pressed and the start of charging is instructed, the power transmission circuit 10 and the power reception circuit 13 transmit and receive information by wireless communication.
 図1に示す送電回路10は、受信した情報に基づいて外部電源PSの出力する電圧を高周波の交流電圧に変換して送電側パッド11に印加する。交流電圧が印加され、巻線112、113に交流電流が流れると、送電側パッド11は磁束を発生する。 The power transmission circuit 10 shown in FIG. 1 converts the voltage output from the external power source PS into a high-frequency AC voltage based on the received information, and applies it to the power transmission side pad 11. When an AC voltage is applied and an AC current flows through the windings 112 and 113, the power transmission side pad 11 generates a magnetic flux.
 図5及び図6において、送電側パッド11の発生した磁束は、突出部110bの上面の積層端面から粉体コア111を経て流出し、粉体コア121を経て突出部120bの下面の積層端面に流入する。そして、突出部120cの下面の積層端面から粉体コア121を経て流出し、粉体コア111を経て突出部110cの上面の積層端面に流入する。その後、磁束の流れが反転する。送電側パッド11の発生した磁束は、突出部110cの上面の積層端面から粉体コア111を経て流出し、粉体コア121を経て突出部120cの下面の積層端面に流入する。そして、突出部120bの下面の積層端面から粉体コア121を経て流出し、粉体コア111を経て突出部110bの上面の積層端面に流入する。 5 and 6, the magnetic flux generated by the power transmission side pad 11 flows out from the laminated end surface on the upper surface of the protruding portion 110b through the powder core 111, and passes through the powder core 121 to the laminated end surface on the lower surface of the protruding portion 120b. Inflow. And it flows out from the lamination | stacking end surface of the lower surface of the protrusion part 120c through the powder core 121, and flows in into the lamination | stacking end surface of the upper surface of the protrusion part 110c through the powder core 111. Thereafter, the flow of magnetic flux is reversed. The magnetic flux generated by the power transmission side pad 11 flows out from the laminated end surface on the upper surface of the projecting portion 110c through the powder core 111, and flows into the laminated end surface on the lower surface of the projecting portion 120c through the powder core 121. And it flows out from the lamination | stacking end surface of the lower surface of the protrusion part 120b through the powder core 121, and flows in into the lamination | stacking end surface of the upper surface of the protrusion part 110b through the powder core 111.
 図1に示す受電側パッド12は、送電側パッド11の発生した磁束が鎖交することで、電磁誘導によって巻線122、123に誘導起電力を生じる。受電回路13は、受信した情報に基づいて受電側パッド13の出力する交流電圧を直流高電圧に変換してメインバッテリB1を充電する。 The power receiving side pad 12 shown in FIG. 1 generates an induced electromotive force in the windings 122 and 123 by electromagnetic induction when the magnetic flux generated by the power transmitting side pad 11 is linked. The power receiving circuit 13 converts the AC voltage output from the power receiving side pad 13 into a DC high voltage based on the received information, and charges the main battery B1.
 次に、図1、図7及び図8を参照して効果について説明する。なお、図7及び図8は、図2におけるIV-IV線に沿った断面に相当する断面図である。 Next, the effect will be described with reference to FIG. 1, FIG. 7 and FIG. 7 and 8 are cross-sectional views corresponding to a cross section taken along line IV-IV in FIG.
 図1に示すように、送電側パッド11は、駐車スペース内の地表面に設置されている。一方、受電側パッド12は、車両の底部に設置されている。そのため、送電側パッド11と受電側パッド12の間隔が大きく、ギャップ内において、磁束が、本来流入出する上下方向に対して前後方向及び左右方向に広がってしまう。そのため、図7にその一部を示すように、突出部110b、110cの上面、及び、突出部120b、120cの下面の積層端面付近において、磁束が、本来流入出する上下方向に対して斜めに流入出するようになる。送電側パッド11と受電側パッド12の位置がずれた場合も同様に、突出部110b、110cの上面、及び、突出部120b、120cの下面の積層端面付近において、磁束が、本来流入出する上下方向に対して斜めに流入出するようになる。その結果、積層端面付近において渦電流が流れてしまい、渦電流損が増加してしまう。 As shown in FIG. 1, the power transmission side pad 11 is installed on the ground surface in the parking space. On the other hand, the power receiving side pad 12 is installed at the bottom of the vehicle. For this reason, the distance between the power transmission side pad 11 and the power reception side pad 12 is large, and the magnetic flux spreads in the front-rear direction and the left-right direction with respect to the vertical direction in which it originally flows in and out. Therefore, as shown in part in FIG. 7, the magnetic flux is inclined obliquely with respect to the vertical direction in which the magnetic flux originally flows in and out near the upper surface of the protruding portions 110 b and 110 c and the stacked end surfaces of the lower surfaces of the protruding portions 120 b and 120 c. It comes in and out. Similarly, when the positions of the power transmission side pad 11 and the power reception side pad 12 are shifted, the upper and lower sides where the magnetic flux originally flows in and out in the vicinity of the upper surface of the protrusions 110b and 110c and the stacked end surfaces of the lower surfaces of the protrusions 120b and 120c It flows in and out at an angle to the direction. As a result, an eddy current flows in the vicinity of the laminated end face, and the eddy current loss increases.
 しかし、第1実施形態によれば、送電側パッドと受電側パッドの積層コアの積層端面に、粉末状の磁性材を成形して構成される粉体コアが形成されている。そのため、車両の外部に設置される送電側パッドと、車両に搭載される受電側パッドとを備え、車両の外部から車両に非接触で送電する非接触給電装置において、磁束が本来流入出する上下方向に対して斜めに流入出しても、渦電流を低減でき、渦電流損を抑えることができる。 However, according to the first embodiment, the powder core formed by molding the powdered magnetic material is formed on the laminated end surface of the laminated core of the power transmitting side pad and the power receiving side pad. Therefore, in a non-contact power feeding device that includes a power transmission side pad installed outside the vehicle and a power reception side pad mounted on the vehicle and transmits power from the outside of the vehicle to the vehicle in a contactless manner, Even if it flows in and out with respect to the direction, eddy current can be reduced and eddy current loss can be suppressed.
 また、粉体コアがない場合、磁束が、本来流入出する上下方向に対して前後方向及び左右方向に広がってしまうと、図8に示すように、磁束の集中する箇所が生じ、積層コアが磁気飽和しやすくなってしまう。しかし、第1実施形態によれば、粉体コアによって磁束を均等に分散させることができる。そのため、積層コアの磁気飽和を抑えることもできる。 In addition, when there is no powder core, when the magnetic flux spreads in the front-rear direction and the left-right direction with respect to the vertical direction in which it originally flows in and out, as shown in FIG. Magnetic saturation is likely to occur. However, according to the first embodiment, the magnetic flux can be evenly dispersed by the powder core. Therefore, magnetic saturation of the laminated core can be suppressed.
 (第2実施形態)
 次に、第2実施形態の非接触給電装置について説明する。第2実施形態の非接触給電装置は、第1実施形態の非接触給電装置に対して、送電側パッド及び受電側パッドの粉体コアを形成する積層端面を変更したものである。
(Second Embodiment)
Next, the non-contact power feeding device of the second embodiment will be described. The non-contact power feeding device of the second embodiment is obtained by changing the laminated end surfaces that form the powder cores of the power transmission side pad and the power receiving side pad with respect to the non-contact power feeding device of the first embodiment.
 送電側パッド及び受電側パッド以外は、第1実施形態の非接触給電装置と同一構成であるので説明を省略する。また、送電側パッドと同一構成であり、上下逆向きに設置される受電側パッドについても説明を省略する。 Since the configuration other than the power transmission side pad and the power reception side pad is the same as that of the non-contact power feeding device of the first embodiment, the description thereof is omitted. Moreover, description is abbreviate | omitted also about the power receiving side pad installed in the same direction as the power transmission side pad and upside down.
 図9を参照して送電側パッドの構成について説明する。なお、図中における前後方向及び上下方向は、車両における方向を示すものである。図9は、図2におけるIII-III線に沿った断面に相当する断面図である。 The configuration of the power transmission side pad will be described with reference to FIG. In addition, the front-back direction and the up-down direction in a figure show the direction in a vehicle. 9 is a cross-sectional view corresponding to a cross section taken along line III-III in FIG.
 図9に示すように、送電側パッド21は、積層コア210と、粉体コア211と、巻線212、213とを備えている。 As shown in FIG. 9, the power transmission side pad 21 includes a laminated core 210, a powder core 211, and windings 212 and 213.
 積層コア210は、粉体コア211の形成箇所の変更に伴う寸法の違いを除いて、第1実施形態の積層コア110と同一構成である。 The laminated core 210 has the same configuration as that of the laminated core 110 of the first embodiment, except for the difference in dimensions associated with the change in the location where the powder core 211 is formed.
 粉体コア211は、積層コア210の積層端面のうち、受電側パッドの積層コアの積層端面と対向する積層端面に板状に形成されている。具体的には、突出部210b、210cの上面、及び、溝部210dの底面にそれぞれ板状に形成されている。しかし、溝部210dの前後壁面、積層コア210の下面及び前後面には形成されていない。 The powder core 211 is formed in a plate shape on the laminated end face of the laminated core 210 that faces the laminated end face of the laminated core of the power receiving side pad. Specifically, it is formed in a plate shape on the top surfaces of the protruding portions 210b and 210c and the bottom surface of the groove portion 210d. However, they are not formed on the front and rear wall surfaces of the groove portion 210d, the lower surface and the front and rear surfaces of the laminated core 210.
 巻線212、213は、第1実施形態の巻線112、113と同一構成である。 The windings 212 and 213 have the same configuration as the windings 112 and 113 of the first embodiment.
 動作については、第1実施形態と同一であるため説明を省略する。 Since the operation is the same as that of the first embodiment, description thereof is omitted.
 次に、効果について説明する。第2実施形態によれば、粉体コアは、送電側パッドと受電側パッドの積層コアの互いに対向する積層端面に形成されている。磁束は、主に、送電側パッドと受電側パッドの積層コアの互いに対向する積層端面に流入出する。そのため、渦電流損を抑えるとともに、送電側パッドと受電側パッドの積層コアの全ての積層端面に粉体コアを形成する場合に比べ、粉体コアの形成箇所を低減することができる。 Next, the effect will be described. According to the second embodiment, the powder core is formed on the stacked end faces of the stacked cores of the power transmission side pad and the power reception side pad that face each other. The magnetic flux mainly flows in and out of the laminated end faces of the laminated core of the power transmission side pad and the power receiving side pad that face each other. For this reason, eddy current loss can be suppressed, and the number of powder cores formed can be reduced as compared with the case where powder cores are formed on all laminated end faces of the laminated cores of the power transmission side pad and the power reception side pad.
 (第3実施形態)
 次に、第3実施形態の非接触給電装置について説明する。第3実施形態の非接触給電装置は、第2実施形態の非接触給電装置に対して、送電側パッド及び受電側パッドの粉体コアを形成する積層端面を変更したものである。
(Third embodiment)
Next, the non-contact electric power feeder of 3rd Embodiment is demonstrated. The non-contact power feeding device of the third embodiment is obtained by changing the laminated end surfaces that form the powder cores of the power transmission side pad and the power receiving side pad with respect to the non-contact power feeding device of the second embodiment.
 送電側パッド及び受電側パッド以外は、第2実施形態の非接触給電装置と同一構成であるので説明を省略する。また、送電側パッドと同一構成であり、上下逆向きに設置される受電側パッドについても説明を省略する。 Since the configuration other than the power transmission side pad and the power reception side pad is the same as that of the non-contact power feeding device of the second embodiment, the description thereof is omitted. Moreover, description is abbreviate | omitted also about the power receiving side pad installed in the same direction as the power transmission side pad and upside down.
 図10を参照して送電側パッドの構成について説明する。なお、図中における前後方向及び上下方向は、車両における方向を示すものである。図10は、図2におけるIII-III線に沿った断面に相当する断面図である。 The configuration of the power transmission side pad will be described with reference to FIG. In addition, the front-back direction and the up-down direction in a figure show the direction in a vehicle. 10 is a cross-sectional view corresponding to a cross section taken along line III-III in FIG.
 図10に示すように、送電側パッド31は、積層コア310と、粉体コア311と、巻線312、313とを備えている。 As shown in FIG. 10, the power transmission side pad 31 includes a laminated core 310, a powder core 311, and windings 312 and 313.
 積層コア310は、粉体コア311の形成箇所の変更に伴う寸法の違いを除いて、第2実施形態の積層コア210と同一構成である。 The laminated core 310 has the same configuration as that of the laminated core 210 of the second embodiment, except for the difference in dimensions associated with the change in the location where the powder core 311 is formed.
 粉体コア311は、積層コア310の積層端面のうち、受電側パッドの積層コアの積層端面と対向する積層端面であって、巻線312、313が配置される積層端面以外の積層端面に板状に形成されている。具体的には、突出部310b、310cの上面にそれぞれ板状に形成されている。しかし、溝部310dの底面には形成されていない。 The powder core 311 is a laminated end face that faces the laminated end face of the laminated core of the power receiving pad among the laminated end faces of the laminated core 310, and is placed on the laminated end face other than the laminated end face on which the windings 312 and 313 are arranged. It is formed in a shape. Specifically, each of the protrusions 310b and 310c is formed in a plate shape on the upper surface. However, it is not formed on the bottom surface of the groove 310d.
 巻線312、313は、第2実施形態の巻線212、213と同一構成である。 The windings 312 and 313 have the same configuration as the windings 212 and 213 of the second embodiment.
 動作については、第1実施形態と同一であるため説明を省略する。 Since the operation is the same as that of the first embodiment, description thereof is omitted.
 次に、効果について説明する。第3実施形態によれば、粉体コアは、送電側パッドと受電側パッドの積層コアの互いに対向する積層端面のうち、巻線が配置される積層端面以外の積層端面に形成されている。前述したように、磁束は、主に、送電側パッドと受電側パッドの積層コアの互いに対向する積層端面に流入出する。しかし、送電側パッドと受電側パッドの積層コアの互いに対向する積層端面であっても、巻線が配置される積層端面に流入出することはほとんどない。そのため、渦電流損を抑えるとともに、送電側パッドと受電側パッドの積層コアの互いに対向する全ての積層端面に粉体コアを形成する場合に比べ、粉体コアの形成箇所を低減することができる。 Next, the effect will be described. According to 3rd Embodiment, the powder core is formed in lamination | stacking end surfaces other than the lamination | stacking end surface in which a coil | winding is arrange | positioned among the lamination | stacking end surfaces of the lamination | stacking core of a power transmission side pad and a receiving side pad which mutually oppose. As described above, the magnetic flux mainly flows in and out of the laminated end faces of the laminated cores of the power transmission side pad and the power receiving side pad facing each other. However, even the laminated end surfaces of the laminated cores of the power transmission side pad and the power receiving side pad that face each other hardly flow into and out of the laminated end surface on which the winding is disposed. Therefore, it is possible to suppress eddy current loss and reduce the number of powder cores formed as compared with the case where powder cores are formed on all the laminated end faces of the laminated cores of the power transmission side pad and the power reception side pad. .
 なお、第3実施形態では、粉体コア311が、突出部310b、310cの上面に薄い板状に形成されている例を挙げているが、これに限られるものではない。突出部310b、310cを、板状の磁性材を積層して構成するのではなく、粉体コア311で形成するようにしてもよい。 In the third embodiment, an example is given in which the powder core 311 is formed in a thin plate shape on the upper surfaces of the protrusions 310b and 310c. However, the present invention is not limited to this. The protrusions 310b and 310c may be formed by the powder core 311 instead of being configured by laminating plate-like magnetic materials.
 (第4実施形態)
 次に、第4実施形態の非接触給電装置について説明する。第4実施形態の非接触給電装置は、第3実施形態の非接触給電装置に対して、送電側パッド及び受電側パッドの粉体コアを形成する領域を変更したものである。
(Fourth embodiment)
Next, the non-contact electric power feeder of 4th Embodiment is demonstrated. The contactless power supply device according to the fourth embodiment is obtained by changing the areas where the powder cores of the power transmission side pad and the power reception side pad are formed with respect to the contactless power supply device according to the third embodiment.
 送電側パッド及び受電側パッド以外は、第3実施形態の非接触給電装置と同一構成であるので説明を省略する。また、送電側パッドと同一構成であり、上下逆向きに設置される受電側パッドについても説明を省略する。 Since the configuration other than the power transmission side pad and the power reception side pad is the same as that of the non-contact power feeding device of the third embodiment, the description thereof is omitted. Moreover, description is abbreviate | omitted also about the power receiving side pad installed in the same direction as the power transmission side pad and upside down.
 図11及び図12を参照して送電側パッドの構成について説明する。なお、図中における前後方向、左右方向及び上下方向は、車両における方向を示すものである。図11は、図2におけるIII-III線に沿った断面に相当する断面図である。図12は、図2におけるIV-IV線に沿った断面に相当する断面図である。 The configuration of the power transmission side pad will be described with reference to FIG. 11 and FIG. In addition, the front-back direction, the left-right direction, and the up-down direction in a figure show the direction in a vehicle. FIG. 11 is a cross-sectional view corresponding to a cross section taken along line III-III in FIG. 12 is a cross-sectional view corresponding to a cross section taken along line IV-IV in FIG.
 図11及び図12に示すように、送電側パッド41は、積層コア410と、粉体コア411と、巻線412、413とを備えている。 11 and 12, the power transmission side pad 41 includes a laminated core 410, a powder core 411, and windings 412, 413.
 積層コア410は、第3実施形態の積層コア310と同一構成である。積層コア410は、凹状に切断された板状の磁性材410aを積層して構成されている。 The laminated core 410 has the same configuration as the laminated core 310 of the third embodiment. The laminated core 410 is configured by laminating plate-like magnetic materials 410a cut into a concave shape.
 粉体コア411は、積層コア410の積層端面のうち、受電側パッドの積層コアの積層端面と対向する積層端面であって、巻線412、413が配置される積層端面以外の積層端面に、対向方向である上下方向から見たときに、その積層端面より広い領域を占めるように板状に形成されている。具体的には、突出部410bの上面に形成されるとともに、突出部410bの上面から前方及び左右方向に延在するように板状に形成されている。また、突出部410cの上面に形成されるとともに、突出部410cの上面から後方及び左右方向に延在するように板状に形成されている。 The powder core 411 is a laminated end face of the laminated core 410 that faces the laminated end face of the laminated core of the power receiving side pad, and is disposed on a laminated end face other than the laminated end face on which the windings 412 and 413 are disposed. It is formed in a plate shape so as to occupy a region wider than the laminated end face when viewed from the up-down direction which is the facing direction. Specifically, it is formed on the upper surface of the protruding portion 410b and is formed in a plate shape so as to extend forward and in the left-right direction from the upper surface of the protruding portion 410b. Moreover, it is formed in the upper surface of the protrusion part 410c, and is formed in plate shape so that it may extend back and the left-right direction from the upper surface of the protrusion part 410c.
 巻線412、413は、第1巻線部412a、413aと、第2巻線部412b、413bとを備え、矩形状に構成されている。 The windings 412 and 413 include first winding portions 412a and 413a and second winding portions 412b and 413b, and are configured in a rectangular shape.
 第1巻線部412aは、溝部410dの底面及び前壁面に沿って配置されている。第2配線部412bは、粉体コア411の左側面、前面及び右側面に沿って配置されている。第1巻線部413aは、溝部410dの底面及び後壁面に沿って配置されている。第2巻線部413bは、粉体コア111の左側面、後面及び右側面に沿って配置されている。巻線412、413は、上面が粉体コア411の上面と一致するように設定されている。 The first winding portion 412a is disposed along the bottom surface and the front wall surface of the groove portion 410d. The second wiring portion 412b is disposed along the left side surface, front surface, and right side surface of the powder core 411. The first winding portion 413a is disposed along the bottom surface and the rear wall surface of the groove portion 410d. The second winding portion 413b is disposed along the left side surface, the rear surface, and the right side surface of the powder core 111. The windings 412 and 413 are set so that the upper surface coincides with the upper surface of the powder core 411.
 動作については、第1実施形態と同一であるため説明を省略する。 Since the operation is the same as that of the first embodiment, description thereof is omitted.
 次に、効果について説明する。第4実施形態によれば、粉体コアは、積層端面よりも広い領域を占めるように形成されている。そのため、上下方向に対して斜めに流入出する磁束が広範囲に渡って形成されても、渦電流損を抑えることができる。 Next, the effect will be described. According to the fourth embodiment, the powder core is formed so as to occupy a wider area than the laminated end face. Therefore, even if the magnetic flux flowing in and out obliquely with respect to the vertical direction is formed over a wide range, eddy current loss can be suppressed.
 なお、第4実施形態では、第2巻線部412b。413bが、粉体コア411の前後面及び左右側面に沿って配置されるとともに、巻線412、413の上面が、粉体コア411の上面と一致するように設定されている例を挙げているが、これに限られるものではない。図13及び図14に示すように、第2巻線部412bが突出部410bの左側面、前面及び右側面の前後面に沿って、第2巻線部413bが突出部410cの左側面、後面及び右側面に沿ってそれぞれ配置されるようにしてもよい。さらに、図15及び図16に示すように、巻線412、413の上面が、突出部410b、410cの上面とそれぞれ一致するように設定されていてもよい。 In the fourth embodiment, the second winding portion 412b. 413b is disposed along the front and rear surfaces and the left and right side surfaces of the powder core 411, and the upper surfaces of the windings 412 and 413 are set to coincide with the upper surface of the powder core 411. However, it is not limited to this. As shown in FIGS. 13 and 14, the second winding portion 412b is along the left side of the protruding portion 410b, the front surface and the front and back surfaces of the right side, and the second winding portion 413b is the left side of the protruding portion 410c, the rear surface. And may be arranged along the right side surface. Further, as shown in FIGS. 15 and 16, the upper surfaces of the windings 412 and 413 may be set so as to coincide with the upper surfaces of the protrusions 410b and 410c, respectively.
 (第5実施形態)
 次に、第5実施形態の非接触給電装置について説明する。第5実施形態の非接触給電装置は、第3実施形態の非接触給電装置に対して、送電側パッド及び受電側パッドの粉体コアを分散して形成するようにしたものである。
(Fifth embodiment)
Next, the non-contact electric power feeder of 5th Embodiment is demonstrated. The non-contact power supply device of the fifth embodiment is formed by dispersing the powder cores of the power transmission side pad and the power reception side pad with respect to the non-contact power supply device of the third embodiment.
 送電側パッド及び受電側パッド以外は、第3実施形態の非接触給電装置と同一構成であるので説明を省略する。また、送電側パッドと同一構成であり、上下逆向きに設置される受電側パッドについても説明を省略する。 Since the configuration other than the power transmission side pad and the power reception side pad is the same as that of the non-contact power feeding device of the third embodiment, the description thereof is omitted. Moreover, description is abbreviate | omitted also about the power receiving side pad installed in the same direction as the power transmission side pad and upside down.
 図17~図19を参照して送電側パッドの構成について説明する。なお、図中における前後方向、左右方向及び上下方向は、車両における方向を示すものである。 The configuration of the power transmission side pad will be described with reference to FIGS. In addition, the front-back direction, the left-right direction, and the up-down direction in a figure show the direction in a vehicle.
 図17~図19に示すように、送電側パッド51は、積層コア510と、粉体コア511と、巻線512、513とを備えている。 17 to 19, the power transmission side pad 51 includes a laminated core 510, a powder core 511, and windings 512 and 513.
 積層コア510は、第3実施形態の積層コア310と同一構成である。積層コア510は、凹状に切断された板状の磁性材510aを積層して構成されている。 The laminated core 510 has the same configuration as the laminated core 310 of the third embodiment. The laminated core 510 is configured by laminating plate-like magnetic materials 510a cut into concave shapes.
 粉体コア511は、積層コア510の積層端面のうち、受電側パッドの積層コアの積層端面と対向する積層端面であって、巻線512、513が配置される積層端面以外の積層端面に、間隔をあけて分散して矩形板状に形成されている。具体的には、突出部510b、510cの上面に、前後方向及び左右方向に所定の間隔をあけ、6箇所に分散してそれぞれ矩形板状に形成されている。分散した粉体コア511の間隔D1は、粉体コア511の厚さD2の2倍以下となるように設定されている。 The powder core 511 is a laminated end face that faces the laminated end face of the laminated core of the power receiving side pad among the laminated end faces of the laminated core 510, and is disposed on a laminated end face other than the laminated end face on which the windings 512 and 513 are disposed. It is formed in a rectangular plate shape with a gap therebetween. Specifically, the upper surfaces of the protrusions 510b and 510c are formed in a rectangular plate shape with predetermined intervals in the front-rear direction and the left-right direction, and dispersed in six places. The distance D1 between the dispersed powder cores 511 is set to be not more than twice the thickness D2 of the powder core 511.
 動作については、第1実施形態と同一であるため説明を省略する。 Since the operation is the same as that of the first embodiment, description thereof is omitted.
 次に、効果について説明する。第5実施形態によれば、粉体コアは、間隔をあけて分散して形成されている。そのため、粉体コアの形成箇所を低減することができる。 Next, the effect will be described. According to the fifth embodiment, the powder cores are formed in a dispersed manner at intervals. Therefore, the formation location of a powder core can be reduced.
 また、第5実施形態によれば、粉体コアの間隔が、粉体コアの厚さの2倍以下に設定されている。粉体コアの間隔D1が、粉体コアの厚さD2の2倍以下であれば、磁束は、粉体コアの形成されていない積層端面でなく、粉体コアに流入する。そのため、渦電流損を抑えつつ、粉体コアの形成箇所を低減することができる。 Further, according to the fifth embodiment, the interval between the powder cores is set to be not more than twice the thickness of the powder core. If the distance D1 between the powder cores is equal to or less than twice the thickness D2 of the powder core, the magnetic flux flows into the powder core instead of the laminated end surface where the powder core is not formed. Therefore, it is possible to reduce the number of locations where the powder core is formed while suppressing eddy current loss.
 なお、第5実施形態では、粉体コア511が、前後方向及び左右方向に所定の間隔をあけて分散して配置されている例を挙げているが、これに限られるものではない。図20~図22に示すように、粉体コア511が、前後方向だけに所定の間隔をあけて分散して配置されるようにしてもよい。この場合、積層された全ての磁性材に連続した粉体コアが形成されることになる。そのため、粉体コアによって、積層された全ての磁性材に磁束を均等に分散させることができる。従って、積層コアの磁気飽和を確実に抑えることができる。 In the fifth embodiment, an example is given in which the powder cores 511 are dispersed and arranged at predetermined intervals in the front-rear direction and the left-right direction. However, the present invention is not limited to this. As shown in FIGS. 20 to 22, the powder cores 511 may be arranged in a dispersed manner with a predetermined interval only in the front-rear direction. In this case, a continuous powder core is formed on all the laminated magnetic materials. Therefore, the magnetic core can be evenly dispersed in all the laminated magnetic materials by the powder core. Therefore, magnetic saturation of the laminated core can be reliably suppressed.
 (第6実施形態)
 次に、第6実施形態の非接触給電装置について説明する。第6実施形態の非接触給電装置は、第3実施形態の非接触給電装置に対して、送電側パッド及び受電側パッドの粉体コアの形成の仕方を変更したものである。
(Sixth embodiment)
Next, the non-contact electric power feeder of 6th Embodiment is demonstrated. The contactless power supply device of the sixth embodiment is obtained by changing the method of forming the powder cores of the power transmission side pad and the power reception side pad with respect to the contactless power supply device of the third embodiment.
 送電側パッド及び受電側パッド以外は、第3実施形態の非接触給電装置と同一構成であるので説明を省略する。また、送電側パッドと同一構成であり、上下逆向きに設置される受電側パッドについても説明を省略する。 Since the configuration other than the power transmission side pad and the power reception side pad is the same as that of the non-contact power feeding device of the third embodiment, the description thereof is omitted. Moreover, description is abbreviate | omitted also about the power receiving side pad installed in the same direction as the power transmission side pad and upside down.
 図23を参照して送電側パッドの構成について説明する。なお、図中における前後方向及び上下方向は、車両における方向を示すものである。図23は、図2におけるIII-III線に沿った断面に相当する断面図である。 The configuration of the power transmission side pad will be described with reference to FIG. In addition, the front-back direction and the up-down direction in a figure show the direction in a vehicle. 23 is a cross-sectional view corresponding to a cross section taken along line III-III in FIG.
 図23に示すように、送電側パッド61は、積層コア610と、粉体コア611と、巻線612、613とを備えている。 23, the power transmission side pad 61 includes a laminated core 610, a powder core 611, and windings 612 and 613.
 積層コア610は、第3実施形態の積層コア310と同一構成である。積層コア610は、凹状に切断された板状の磁性材610aを積層して構成されている。 The laminated core 610 has the same configuration as the laminated core 310 of the third embodiment. The laminated core 610 is configured by laminating a plate-like magnetic material 610a cut into a concave shape.
 粉体コア611は、積層コア610の積層端面のうち、受電側パッドの積層コアの積層端面と対向する積層端面であって、巻線612、613が配置される積層端面以外の積層端面に板状に形成されている。具体的には、突出部610b、610cの上面に適合するような形状に、粉末状の磁性材を焼結、圧縮成形又は樹脂成形して構成されている。そして、粉末状の磁性材を混合した、硬化前には積層コア610及び粉体コア611より柔らかい接着材611aによって突出部610b、610cの上面に固定されている。接着材611aに混合する磁性材は、例えば、粉末状のフェライト、センダスト、アモルファス又はナノ結晶磁性材等である。 The powder core 611 is a laminated end face that faces the laminated end face of the laminated core of the power receiving side pad among the laminated end faces of the laminated core 610, and is disposed on the laminated end face other than the laminated end face on which the windings 612 and 613 are disposed. It is formed in a shape. Specifically, the powdery magnetic material is sintered, compression-molded, or resin-molded into a shape that fits the upper surfaces of the protrusions 610b and 610c. The powdered magnetic material is mixed and fixed to the upper surfaces of the protruding portions 610b and 610c by an adhesive 611a softer than the laminated core 610 and the powder core 611 before curing. The magnetic material mixed with the adhesive 611a is, for example, powdered ferrite, sendust, amorphous, or nanocrystalline magnetic material.
 巻線612、613は、第3実施形態の巻線312、313と同一構成である。 The windings 612 and 613 have the same configuration as the windings 312 and 313 of the third embodiment.
 動作については、第1実施形態と同一であるため説明を省略する。 Since the operation is the same as that of the first embodiment, description thereof is omitted.
 次に、効果について説明する。磁性材の端面が積層された状態で構成される積層コアの積層端面は、磁性材の寸法のばらつきによって凹凸がある。この積層端面に、粉体コアを固定すると、ギャップを生じて磁気抵抗が高くなってしまう。また、接着材によって粉体コアを固定しても同様である。しかし、第6実施形態によれば、粉体コアは、粉末状の磁性材を混合した接着材によって固定されている。そのため、磁気抵抗の増加を抑えることができる。 Next, the effect will be described. The laminated end face of the laminated core configured with the end faces of the magnetic material being laminated has irregularities due to variations in the dimensions of the magnetic material. When the powder core is fixed to the laminated end face, a gap is generated and the magnetic resistance is increased. The same is true even if the powder core is fixed by an adhesive. However, according to the sixth embodiment, the powder core is fixed by the adhesive mixed with the powdery magnetic material. Therefore, an increase in magnetic resistance can be suppressed.
 なお、第6実施形態では、粉体コア611と積層端面の間に、粉末状の磁性材を混合した、硬化前には積層コア610及び粉体コア611より柔らかい接着材611aを有する例を挙げているが、これに限られるものではない。粉末状の磁性材を混合したゴムであってもよい。積層コア610及び粉体コア611より柔らかい部材であればよい。粉体コア611と積層端面の間に配設する際に積層コア610及び粉体コア611より柔らかければ、その後に硬化してもよい、
 (第7実施形態)
 次に、第7実施形態の非接触給電装置について説明する。送電側パッド及び受電側パッド以外は、第1実施形態の非接触給電装置と同一構成であるので説明を省略する。また、送電側パッドと同一構成であり、上下逆向きに設置される受電側パッドについても説明を省略する。
In addition, in 6th Embodiment, the example which has the adhesive material 611a softer than the lamination | stacking core 610 and the powder core 611 before hardening which mixed the powdery magnetic material between the powder core 611 and the lamination | stacking end surface is given. However, it is not limited to this. It may be a rubber mixed with a powdery magnetic material. Any member that is softer than the laminated core 610 and the powder core 611 may be used. If it is softer than the laminated core 610 and the powder core 611 when disposed between the powder core 611 and the laminated end face, it may be cured thereafter.
(Seventh embodiment)
Next, the non-contact electric power feeder of 7th Embodiment is demonstrated. Since the configuration other than the power transmission side pad and the power reception side pad is the same as that of the non-contact power feeding device of the first embodiment, the description thereof is omitted. Moreover, description is abbreviate | omitted also about the power receiving side pad installed in the same direction as the power transmission side pad and upside down.
 図24を参照して送電側パッドの構成について説明する。なお、図中における前後方向及び上下方向は、車両における方向を示すものである。図24は、図2におけるIII-III線に沿った断面に相当する断面図である。 The configuration of the power transmission side pad will be described with reference to FIG. In addition, the front-back direction and the up-down direction in a figure show the direction in a vehicle. 24 is a cross-sectional view corresponding to a cross section taken along line III-III in FIG.
 図24に示すように、送電側パッド71は、積層コア710と、粉体コア711と、巻線712、713とを備えている。 24, the power transmission side pad 71 includes a laminated core 710, a powder core 711, and windings 712 and 713.
 積層コア710は、矩形状に切断された板状の磁性材710aを、板厚方向である上下方向に積層して構成されている。 The laminated core 710 is configured by laminating a plate-like magnetic material 710a cut into a rectangular shape in the vertical direction, which is the thickness direction.
 粉体コア711は、積層コア710の積層端面に直方体状に形成されている。具体的には、積層コア710前後面にそれぞれ直方体状に形成されている。粉体コア711は、積層コア710の上面より上方に突出する突出部711a、711bを有している。 The powder core 711 is formed in a rectangular parallelepiped shape on the laminated end surface of the laminated core 710. Specifically, it is formed in a rectangular parallelepiped shape on the front and rear surfaces of the laminated core 710, respectively. The powder core 711 has projecting portions 711 a and 711 b that project upward from the upper surface of the laminated core 710.
 巻線712、713は、第1巻線部712a、713aと、第2巻線部712b、713bとを備え、矩形状に構成されている。 The windings 712 and 713 include first winding portions 712a and 713a and second winding portions 712b and 713b, and are configured in a rectangular shape.
 第1巻線部712aは、積層コア710の上面に沿って配置されている。第2配線部712bは、突出部711aの左側面、前面及び右側面に沿って配置されている。第1巻線部713aは、第1巻線部712aの後側の積層コア710の上面に沿って配置されている。第2巻線部713bは、突出部711bの左側面、後面及び右側面に沿って配置されている。巻線712、713は、上面が突出部711a、711bの上面と一致するように設定されている。 The first winding portion 712a is disposed along the upper surface of the laminated core 710. The second wiring part 712b is disposed along the left side, front side, and right side of the protruding part 711a. The first winding portion 713a is disposed along the upper surface of the laminated core 710 on the rear side of the first winding portion 712a. The second winding portion 713b is disposed along the left side surface, the rear surface, and the right side surface of the protruding portion 711b. The windings 712 and 713 are set so that the upper surfaces thereof coincide with the upper surfaces of the protruding portions 711a and 711b.
 動作については、第1実施形態と同一であるため説明を省略する。 Since the operation is the same as that of the first embodiment, description thereof is omitted.
 次に、効果について説明する。第7実施形態によれば、第1~第3実施形態と同様の効果を得ることができる。また、積層コア710の左右方向の寸法(図略)が上下方向の寸法より大きい場合には、第1~第5実施形態のように、磁性材を左右方向に積層する場合に比べ、積層コア701を構成する磁性材710aの枚数を抑えることができる。そのため、積層コア710の生産性を向上させることができる。 Next, the effect will be described. According to the seventh embodiment, the same effects as those of the first to third embodiments can be obtained. Further, when the horizontal dimension (not shown) of the laminated core 710 is larger than the vertical dimension, as compared with the case of laminating magnetic materials in the horizontal direction as in the first to fifth embodiments, the laminated core The number of magnetic materials 710a constituting 701 can be suppressed. Therefore, the productivity of the laminated core 710 can be improved.
 なお、第7実施形態では、積層コア710の前後面が、上下方向に垂直に形成されている例を挙げているが、これに限られるものではない。図25に示すように、積層コア710の前後面が、斜めに傾斜するように形成されていてもよい。この場合、積層コア710と粉体コア711の接合面積を充分に確保することができる。そのため、接合部分に生じるギャップの影響を抑えることができる。 In the seventh embodiment, an example in which the front and rear surfaces of the laminated core 710 are formed perpendicular to the vertical direction is described, but the present invention is not limited to this. As shown in FIG. 25, the front and rear surfaces of the laminated core 710 may be formed to be inclined obliquely. In this case, a sufficient bonding area between the laminated core 710 and the powder core 711 can be secured. Therefore, it is possible to suppress the influence of the gap generated at the joint portion.
 (第8実施形態)
 次に、第8実施形態の非接触給電装置について説明する。送電側パッド及び受電側パッド以外は、第1実施形態の非接触給電装置と同一構成であるので説明を省略する。また、送電側パッドと同一構成であり、上下逆向きに設置される受電側パッドについても説明を省略する。
(Eighth embodiment)
Next, the non-contact electric power feeder of 8th Embodiment is demonstrated. Since the configuration other than the power transmission side pad and the power reception side pad is the same as that of the non-contact power feeding device of the first embodiment, the description thereof is omitted. Moreover, description is abbreviate | omitted also about the power receiving side pad installed in the same direction as the power transmission side pad and upside down.
 図26~図28を参照して送電側パッドの構成について説明する。なお、図中における前後方向、左右方向及び上下方向は、車両における方向を示すものである。 The configuration of the power transmission side pad will be described with reference to FIGS. In addition, the front-back direction, the left-right direction, and the up-down direction in a figure show the direction in a vehicle.
 図26~図28に示すように、送電側パッド81は、積層コア810と、粉体コア811と、巻線812とを備えている。 As shown in FIGS. 26 to 28, the power transmission side pad 81 includes a laminated core 810, a powder core 811 and a winding 812.
 積層コア810は、矩形状に切断された板状の磁性材810aを、板厚方向である左右方向に積層して構成されている。 The laminated core 810 is configured by laminating a plate-shaped magnetic material 810a cut into a rectangular shape in the left-right direction, which is the plate thickness direction.
 粉体コア811は、積層コア810の積層端面に板状に形成されている。具体的には、積層コア810前後面及び上下面にそれぞれ板状に形成されている。 The powder core 811 is formed in a plate shape on the laminated end surface of the laminated core 810. Specifically, the laminated core 810 is formed in a plate shape on each of the front and rear surfaces and the upper and lower surfaces.
 巻線812は、積層コア810の上下面及び左右側面に沿って巻回して構成されている。 The winding 812 is configured by winding along the upper and lower surfaces and the left and right side surfaces of the laminated core 810.
 動作については、第1実施形態と同一であるため説明を省略する。 Since the operation is the same as that of the first embodiment, description thereof is omitted.
 次に、効果について説明する。第8実施形態によれば、第1実施形態と同様の効果を得ることができる。 Next, the effect will be described. According to the eighth embodiment, the same effect as that of the first embodiment can be obtained.
 なお、第8実施形態では、積層コア810が、矩形状に切断された板状の磁性材810aを、板厚方向である左右方向に積層して構成されている例を挙げているが、これに限られるものではない。図29~図31に示すように、積層コア810は、帯状に切断された板状の磁性材810aを板厚方向に積層されるように巻回して構成してもよい。 In the eighth embodiment, an example is given in which the laminated core 810 is configured by laminating plate-like magnetic materials 810a cut into a rectangular shape in the left-right direction, which is the plate thickness direction. It is not limited to. As shown in FIGS. 29 to 31, the laminated core 810 may be configured by winding a plate-like magnetic material 810a cut into a strip shape so as to be laminated in the plate thickness direction.
 (第9実施形態)
 次に、第9実施形態の非接触給電装置について説明する。送電側パッド及び受電側パッド以外は、第1実施形態の非接触給電装置と同一構成であるので説明を省略する。また、送電側パッドと同一構成であり、上下逆向きに設置される受電側パッドについても説明を省略する。
(Ninth embodiment)
Next, the non-contact electric power feeder of 9th Embodiment is demonstrated. Since the configuration other than the power transmission side pad and the power reception side pad is the same as that of the non-contact power feeding device of the first embodiment, the description thereof is omitted. Moreover, description is abbreviate | omitted also about the power receiving side pad installed in the same direction as the power transmission side pad and upside down.
 図32~図35を参照して送電側パッドの構成について説明する。なお、図中における前後方向及び上下方向は、車両における方向を示すものである。 The configuration of the power transmission side pad will be described with reference to FIGS. In addition, the front-back direction and the up-down direction in a figure show the direction in a vehicle.
 図32~図35に示すように、送電側パッド91は、複数の積層コア910と、粉体コア911と、巻線912とを備えている。 As shown in FIGS. 32 to 35, the power transmission side pad 91 includes a plurality of laminated cores 910, a powder core 911, and a winding 912.
 積層コア910は、矩形状に切断された板状の磁性材910aを、板厚方向に積層して構成されている。積層コア910は、積層端面を上方及び下方に向けた状態で放射状に配置されている。 The laminated core 910 is configured by laminating a plate-shaped magnetic material 910a cut into a rectangular shape in the thickness direction. The laminated cores 910 are arranged radially with the laminated end faces directed upward and downward.
 粉体コア911は、積層コア910の積層端面のうち、受電側パッドの積層コアの積層端面と対向する積層端面であって、巻線912が配置される積層端面以外の積層端面に板状に形成されている。具体的には、放射上に配置された積層コア910上面に2重の同心円板状に形成されている。 The powder core 911 is a laminated end face of the laminated end face of the laminated core 910 that is opposed to the laminated end face of the laminated core of the power receiving side pad, and has a plate shape on the laminated end face other than the laminated end face on which the winding 912 is disposed. Is formed. Specifically, it is formed in a double concentric disk shape on the upper surface of the laminated core 910 arranged on the radiation.
 巻線912は、粉体コア911が形成されていない放射状に配置された積層コア910の上面に沿って円形状に配置されている。 The windings 912 are arranged in a circular shape along the upper surface of the laminated cores 910 arranged in a radial pattern in which the powder cores 911 are not formed.
 動作については、第1実施形態と同一であるため説明を省略する。 Since the operation is the same as that of the first embodiment, description thereof is omitted.
 次に、効果について説明する。第9実施形態によれば、第1~第3実施形態と同様の効果を得ることができる。
(変形例)
 本開示は、実施形態に準拠して記述されたが、当該実施形態や構造に限定されるものではない。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Next, the effect will be described. According to the ninth embodiment, the same effects as those of the first to third embodiments can be obtained.
(Modification)
Although this indication was described based on an embodiment, it is not limited to the embodiment or structure concerned. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
 第1~第9実施形態では、それぞれ、受信側パッドが、送信側パッドと同一構成である例を挙げているが、これに限られるものではない。受信側パッドは、送信側パッドと同一構成でなくてもよい。例えば、第1実施形態の送信側パッドに対して、第2~第9実施形態の送電側パッドと同一構成の受電側パッドを用いてもよい。このように、第1~第9実施形態の送信側パッドに対して、第1~第9実施形態の送電側パッドと同一構成の受信側パッドを相互に組合せて用いることができる。 In each of the first to ninth embodiments, the receiving side pad has the same configuration as the transmitting side pad. However, the present invention is not limited to this. The receiving side pad may not have the same configuration as the transmitting side pad. For example, a power receiving side pad having the same configuration as the power transmitting side pads of the second to ninth embodiments may be used for the transmitting side pads of the first embodiment. As described above, the reception side pads having the same configuration as the power transmission side pads of the first to ninth embodiments can be used in combination with the transmission side pads of the first to ninth embodiments.
 さらに、第1~第9実施形態では、送電側パッドが駐車スペースの地表面に、受電側パッドが車両の底部にそれぞれ設置されている例を挙げているが、これに限られるものではない。送電側パッドは、道路の路面、建物の床面、及び、地中に設置されていてもよい。また、建物の壁面や天井に設置されていてもよい。その場合、受電側パッドが、車両の側面や天井面に設置されていれば同様に送電することができる。 Furthermore, in the first to ninth embodiments, an example is given in which the power transmission side pad is installed on the ground surface of the parking space and the power reception side pad is installed on the bottom of the vehicle, but this is not restrictive. The power transmission side pad may be installed on the road surface of the road, the floor surface of the building, and the ground. Moreover, you may install in the wall surface and ceiling of a building. In that case, if the power receiving side pad is installed on the side surface or ceiling surface of the vehicle, power can be transmitted in the same manner.

Claims (8)

  1.  送電側パッド(11、21、31、41、51、61、71、81、91)と、
     受電側パッド(12)と、を備える非接触給電装置において、
     前記送電側パッドと前記受電側パッドはそれぞれ、積層コア(110、210、310、410、510、610、710、810、910、120)と、前記積層コアに沿って配置される巻線(112、113、212、213、312、313、412、413、512、513、612、613、712、713、812、912、122、123)とを有し、
     前記積層コアは、磁性を有する複数の板状部(110a、410a、510a、610a、710a、810a、910a)を備え、
     前記複数の板状部は、板厚方向に積層されて前記積層コアを構成し、
     前記複数の板状部の端面が積層された状態で構成される前記積層コアの積層端面に、磁束が流入出することで、前記送電側パッドから前記受電側パッドに非接触で送電し、
     前記送電側パッドと前記受電側パッドの前記積層コアの前記積層端面に、粉末状の磁性材からなる粉体コア(111、211、311、411、511、611、711、811、911、121)を有することを特徴とする非接触給電装置。
    Power transmission side pads (11, 21, 31, 41, 51, 61, 71, 81, 91);
    In a non-contact power feeding device comprising a power receiving side pad (12),
    The power transmitting side pad and the power receiving side pad are respectively laminated cores (110, 210, 310, 410, 510, 610, 710, 810, 910, 120) and windings (112) arranged along the laminated core. 113, 212, 213, 312, 313, 412, 413, 512, 513, 612, 613, 712, 713, 812, 912, 122, 123),
    The laminated core includes a plurality of magnetic plate-like portions (110a, 410a, 510a, 610a, 710a, 810a, 910a),
    The plurality of plate-like portions are laminated in the plate thickness direction to constitute the laminated core,
    The magnetic flux flows into and out of the laminated end surface of the laminated core configured in a state where the end faces of the plurality of plate-like portions are laminated, so that power is transmitted in a non-contact manner from the power transmitting side pad to the power receiving side pad,
    Powder cores (111, 211, 311, 411, 511, 611, 711, 811, 911, 121) made of a powdered magnetic material are formed on the laminated end faces of the laminated cores of the power transmitting side pad and the power receiving side pad. The non-contact electric power feeder characterized by having.
  2.  前記粉体コア(211)は、前記送電側パッドと前記受電側パッドの前記積層コア(210)の互いに対向する前記積層端面に形成されていることを特徴とする請求項1に記載の非接触給電装置。 The non-contact according to claim 1, wherein the powder core (211) is formed on the laminated end faces of the laminated core (210) of the power transmitting side pad and the power receiving side pad facing each other. Power supply device.
  3.  前記粉体コア(311)は、前記巻線(312、313)が配置される前記積層端面以外の前記積層端面に形成されていることを特徴とする請求項2に記載の非接触給電装置。 The non-contact power feeding device according to claim 2, wherein the powder core (311) is formed on the laminated end face other than the laminated end face on which the windings (312, 313) are arranged.
  4.  前記粉体コア(411)は、対向する方向から見たときに、前記積層端面よりも広い領域を占めるように形成されていることを特徴とする請求項3に記載の非接触給電装置。 The non-contact power feeding device according to claim 3, wherein the powder core (411) is formed so as to occupy a wider area than the laminated end face when viewed from the facing direction.
  5.  前記粉体コア(511)は、間隔をあけて分散して形成されていることを特徴とする請求項1~4のいずれか1項に記載の非接触給電装置。 The non-contact power feeding device according to any one of claims 1 to 4, wherein the powder core (511) is formed to be dispersed at intervals.
  6.  前記粉体コア(511)の間隔は、前記粉体コア(511)の厚さの2倍以下であることを特徴とする請求項5に記載の非接触給電装置。 The non-contact power feeding device according to claim 5, wherein an interval between the powder cores (511) is not more than twice a thickness of the powder core (511).
  7.  前記粉体コア(611)と前記積層端面の間に、粉末状の磁性材を混合した、前記積層コア及び前記粉体コアより柔らかい部材(611a)を有することを特徴とする請求項1~6のいずれか1項に記載の非接触給電装置。 A member softer than the laminated core and the powder core (611a), in which a powdered magnetic material is mixed, is provided between the powder core (611) and the laminated end face. The contactless power supply device according to any one of the above.
  8.  前記送電側パッドは、車両の外部に設置され、
     前記受電側パッドは、前記車両に搭載され、
     前記車両の外部から前記車両に非接触で送電することを特徴とする請求項1~7のいずれか1項に記載の非接触給電装置。
    The power transmission side pad is installed outside the vehicle,
    The power receiving pad is mounted on the vehicle,
    The contactless power feeding device according to any one of claims 1 to 7, wherein power is transmitted from the outside of the vehicle to the vehicle in a contactless manner.
PCT/JP2013/001892 2012-03-30 2013-03-20 Wireless charging device WO2013145647A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-081874 2012-03-30
JP2012081874A JP5896226B2 (en) 2012-03-30 2012-03-30 Contactless power supply

Publications (1)

Publication Number Publication Date
WO2013145647A1 true WO2013145647A1 (en) 2013-10-03

Family

ID=49258960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001892 WO2013145647A1 (en) 2012-03-30 2013-03-20 Wireless charging device

Country Status (2)

Country Link
JP (1) JP5896226B2 (en)
WO (1) WO2013145647A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015094964A1 (en) * 2013-12-17 2015-06-25 Qualcomm Incorporated Coil topologies for inductive power transfer
WO2015178206A1 (en) * 2014-05-22 2015-11-26 株式会社デンソー Power transmission pad and contactless power transmission system
CN106230084A (en) * 2016-09-13 2016-12-14 成都创慧科达科技有限公司 A kind of portable power generation power supply

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162948A (en) * 2014-02-27 2015-09-07 Ihi運搬機械株式会社 Non-contact power supply system and vehicle power supply apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041876A (en) * 2006-08-04 2008-02-21 Sumitomo Electric Ind Ltd Reactor
JP2010022183A (en) * 2008-02-08 2010-01-28 Suri-Ai:Kk Electric vehicle and inductive power-transmission device suitable therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1094104A (en) * 1996-09-16 1998-04-10 Toyota Autom Loom Works Ltd Non-contact feeder iron core in moving body, power receiving device and moving body
JP5836598B2 (en) * 2011-01-19 2015-12-24 株式会社テクノバ Non-contact power supply core

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041876A (en) * 2006-08-04 2008-02-21 Sumitomo Electric Ind Ltd Reactor
JP2010022183A (en) * 2008-02-08 2010-01-28 Suri-Ai:Kk Electric vehicle and inductive power-transmission device suitable therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015094964A1 (en) * 2013-12-17 2015-06-25 Qualcomm Incorporated Coil topologies for inductive power transfer
US9837204B2 (en) 2013-12-17 2017-12-05 Qualcomm Incorporated Coil topologies for inductive power transfer
EP3402030A1 (en) * 2013-12-17 2018-11-14 Qualcomm Incorporated Coil topologies for inductive power transfer
US10340078B2 (en) 2013-12-17 2019-07-02 Witricity Corporation Coil topologies for inductive power transfer
WO2015178206A1 (en) * 2014-05-22 2015-11-26 株式会社デンソー Power transmission pad and contactless power transmission system
JP2016001983A (en) * 2014-05-22 2016-01-07 株式会社デンソー Power transmission pad and non-contact power transmission system
CN106230084A (en) * 2016-09-13 2016-12-14 成都创慧科达科技有限公司 A kind of portable power generation power supply

Also Published As

Publication number Publication date
JP5896226B2 (en) 2016-03-30
JP2013211466A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5605297B2 (en) Non-contact power feeding device
US10279691B2 (en) Contactless feeding pad and contactless feeding device
WO2012039245A1 (en) Coil module for contactless electric power transfer, and battery pack and charging device provided with same
JP6300107B2 (en) Non-contact power transmission device
JP6217518B2 (en) Wireless power supply system and wireless power transmission system
WO2013061610A1 (en) Power supplying apparatus, power receiving apparatus, and non-contact charging apparatus
WO2013099221A1 (en) Non-contact charging device
EP2927917A2 (en) Power receiving device, vehicle, and power transmission device
JP5915857B2 (en) antenna
WO2013145647A1 (en) Wireless charging device
US10230269B2 (en) Contactless power supply system supplying power using power supply pad in contact less manner
JP5988211B2 (en) Power transmission system
US10673276B2 (en) Coil device, wireless power transfer system, and auxiliary magnetic member
JP5991054B2 (en) Non-contact power feeding device
JP5903990B2 (en) Contactless power supply
JP2013215073A (en) Feeding apparatus and power reception apparatus for non-contact power transmission system
JP2013214613A (en) Coil unit and power transmission device having coil unit
JP5930182B2 (en) antenna
JP6164490B2 (en) Non-contact power feeding device
JP5888504B2 (en) antenna
JP2014093320A (en) Power transmission system
JP2013074683A (en) Antenna
WO2014076953A1 (en) Core to be used in coil of non-contact power transmission apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13770095

Country of ref document: EP

Kind code of ref document: A1