WO2013145283A1 - Cell culture device, control device, and method - Google Patents

Cell culture device, control device, and method Download PDF

Info

Publication number
WO2013145283A1
WO2013145283A1 PCT/JP2012/058653 JP2012058653W WO2013145283A1 WO 2013145283 A1 WO2013145283 A1 WO 2013145283A1 JP 2012058653 W JP2012058653 W JP 2012058653W WO 2013145283 A1 WO2013145283 A1 WO 2013145283A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
software
cell
control
schedule
Prior art date
Application number
PCT/JP2012/058653
Other languages
French (fr)
Japanese (ja)
Inventor
豊茂 小林
亮太 中嶌
貴之 野崎
志津 松岡
直子 千田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/058653 priority Critical patent/WO2013145283A1/en
Priority to JP2014507244A priority patent/JP5905078B2/en
Publication of WO2013145283A1 publication Critical patent/WO2013145283A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control

Definitions

  • the present invention relates to a cell culture apparatus for culturing cells, and more particularly to a technique for optimizing the operation of the cell culture apparatus by selecting an efficient culture method from the state of the cells.
  • regenerative tissues that have been reconstructed into biological tissues having a partial function of internal organs by culturing cells outside the body have been actively developed.
  • regenerative medicine treats a diseased or deficient organ with a regenerative tissue.
  • skin, cartilage, cornea, etc. are used for treatment all over the world and are becoming common medical care.
  • the regenerated tissue since the regenerated tissue has some or all functions of internal organs, it may be used in tests for evaluating the effects of drugs and the like. For example, cultured skin epithelium has already been put to practical use in drug effect tests such as cosmetics and transdermal drugs.
  • the operator needs to easily create, modify, and select an automatic culture schedule before the start of the automatic culture process depending on the state of the cells.
  • the processing time is usually fixed in the culture process, and in order to change the medium exchange processing time according to the state of the cell, it is easy to create or change an automatic culture schedule. is required.
  • Patent Document 1 presents a program configuration capable of obtaining an automatic culture schedule and its culture history. Further, for example, Patent Document 2 presents means for performing subsequent growth prediction from the cell growth process.
  • the present invention has been made in view of such a situation, and allows a worker to easily input information related to a culture schedule, and further includes a cell culture equipped with a graphical user interface that makes it easy to change the culture schedule from cell information.
  • An object is to provide a device, a control device, and a method thereof.
  • a cell culturing apparatus a control mechanism for executing processing of a culture mechanism for culturing cells and culture software for culturing cells in the culture mechanism
  • the control processing unit is separated into a culture schedule software that determines a culture schedule of the culture mechanism unit and a culture control software that controls the culture mechanism unit according to the determined culture schedule when executing the culture software.
  • a cell culture device configured to be executed.
  • a control device for a cell culture device a control processing unit that executes and processes culture software for culturing cells in the culture mechanism unit, and cell culture And an interface unit capable of displaying the status of the control unit, the control processing unit is configured to display the culture software according to the culture schedule software for determining the culture schedule of the culture mechanism unit and the culture schedule determined by the culture schedule software.
  • a control device configured to be executed separately from control culture control software is provided.
  • a control method for a cell culture device including a control processing unit, and the control processing unit cultivates cells in the culture mechanism unit.
  • a control method for separately executing a culture schedule software for determining a culture schedule and a culture control software for controlling a culture mechanism unit according to the culture schedule determined by the culture schedule software is provided.
  • the culture mechanism unit for culturing cells may be referred to as hardware in order to distinguish them from control processing units and control devices that perform control for culturing cells.
  • the system of the automatic culture apparatus and the Graphical User Interface (GUI) according to the first embodiment are configured to separate the culture schedule software (software) and the automatic culture apparatus control software (software) and communicate necessary information therebetween. Is provided.
  • Preferred embodiments of the culture schedule software of the present embodiment include command list creation software for creating a culture processing method such as cell seeding and medium exchange, which is called from the main screen of the software for executing the culture schedule in an integrated manner, and these culture processing methods.
  • Sequence creation software to create a timeline, temperature data, etc., stored data processing software to display operation history, microscope positioning software that can focus, time to anticipate cell growth curves Consists of cell growth prediction software that adds an offset to the line.
  • the automatic culture control software normally does not display the main screen but displays a representative sensor value on the sub screen.
  • an error dialog for each of the culture schedule software is displayed when an error on the culture schedule occurs, and an automatic culture control software is displayed when an error on the hardware occurs.
  • Communication is performed between the culture schedule software and the automatic culture control software. For example, when a command for moving the motor is input on the culture schedule software, the command is transmitted to the automatic culture control software by communication, and based on the command. The motor is controlled on the automatic culture control software, and the result information is returned to the culture schedule software.
  • a communication record (log) of this series of operations it is possible to take a history of the operation of the devices during automatic culture.
  • safe evacuation processing can be executed by the automatic culture control software alone, and safety is improved.
  • the input work for creating the culture schedule can be minimized, the input error is eliminated from the GUI, the operation is facilitated, and the culture schedule is optimized from the cell culture prediction. Enable and manage.
  • the automatic culture software 10 of this embodiment is roughly divided into a culture schedule software 15 and an automatic culture control software 12.
  • the hardware 33 which is a culture mechanism part of the automatic culture apparatus is controlled by the automatic culture control software 12.
  • an automatic culture apparatus 99 includes a control processing unit 102 that executes automatic culture software 10 including automatic culture control software 12 and culture schedule software 15, and an operator performs control processing.
  • Interface units 100 and 101 including at least a display unit and an input unit for instructing the unit 102, and hardware 33 that is a culture mechanism unit of the automatic culture apparatus 99 controlled by the control processing unit 102.
  • the hardware 33 of the automatic culture apparatus depends on the type of the automatic culture apparatus. For example, a motor for driving a manipulator that handles a culture vessel, a pump for supplying a culture medium or a cell solution, and an opening / closing mechanism for a transfer tube
  • refrigerator control units or environmental maintenance facilities such as humidity, it is not limited to these.
  • control processing unit 102 in FIG. 2 for example, a central processing unit (Central Processing Unit: CPU), a memory that is a storage unit, an input unit, a display unit, etc., as will be described later in the system configuration of the automatic culture apparatus 99.
  • CPU Central Processing Unit
  • PC personal computer
  • the above-mentioned automatic culture software 10 memorized by storage parts, such as memory, is suitably run by CPU of PC.
  • control processing unit means only this CPU, or at least including a storage unit such as a memory for storing various software executed by the CPU.
  • the configuration of the automatic culture apparatus shown in FIG. 2 is referred to as a software built-in type (autonomous type).
  • the control processing unit 102 of the automatic culture apparatus 99 executes the automatic culture control software 12 and the culture schedule software 15 of this embodiment, and various hardware is controlled by the control of the automatic culture control software 12.
  • the configuration of the automatic culture apparatus shown in FIG. 2 is referred to as a software built-in type (autonomous type).
  • the automatic culture control software 12 includes an automatic culture control main screen display 13, a sub screen display 14, a command process 22, a device control process 23, a monitoring process 24, a real-time control process 25, a recording process 26, an emergency
  • the function program includes a stop process 27, an error process 28, an option setting process 29, and an opening / startup checklist 30.
  • the culture schedule software 15 includes functional programs for main screen 16 display, command list creation 17, sequence creation 18, saved data processing 19, microscope position adjustment 20, and cell growth prediction 21.
  • the automatic culture control software 12 and the culture schedule software 15 of the automatic culture software 10 perform communication 31 of necessary information such as commands, command lists, sequences, and the like by the predetermined communication means described with reference to FIGS. 13A and 13B. .
  • the control of the hardware 33 cannot be performed by the culture schedule software 15, and is performed only by communication 32 from the automatic culture control software 12.
  • FIG. 3A and FIG. 3B show an example of the main routine and subroutine of the automatic culture software 10 of the present embodiment, respectively.
  • the automatic culture control software 12 is activated (S301). After confirming whether or not all initial items are checked in S302, the automatic culture control software 12, It starts in order of the culture schedule software 15 (S303). And after confirmation of S304 and S305, an automatic culture
  • AUTO automatic culture
  • FIG. 3B shows an automatic culture process (AUTO) which is a subroutine of the process flow of FIG. 3A.
  • the AUTO S310 confirms whether or not the cells are seeded (S311), executes a predetermined sequence (S312 to S314), and determines whether or not a predetermined time has passed in S315.
  • a predetermined time After executing a plurality of sequences (S316 to S318), in S319, it is confirmed whether all the processes have been completed, and a process of returning to the main routine is performed.
  • the screen display of the present embodiment when the above automatic culture software 10 is executed will be described with reference to FIGS.
  • Various display screens in the present embodiment are displayed on the display unit of the above-described PC or a display screen that can be observed by other operators.
  • the automatic culture control software 12 starts up.
  • the processing of the opening / startup checklist 30 from the start screen shown in FIG. The automatic culture control sub-screen 14 in FIG. 5B and the culture schedule main screen 16 in FIG. 6 are displayed on the display unit of the display, and the automatic culture process starts.
  • Each screen display in the above series of flows will be described below.
  • FIG. 4 the processing of the opening / startup checklist 30 on the start screen 11 after the start of the automatic culture software 10 by the control processing unit 102 will be described.
  • the automatic culture software 10 is activated, an activation screen 11 of FIG. 4 is displayed.
  • important predetermined items related to automatic culture processing such as preparation of consumables, etc. in the hardware as a culture mechanism section are described in the checklist 30, and all dialogs 34 are checked.
  • the start button 35 can be pushed. If any of the items in the checklist 30 does not apply, the cancel button 36 is pressed, and the automatic culture software 10 by the control processing unit 102 is terminated.
  • FIGS. 5A, 5B, 5C, and 6 the operation of the automatic culture control software 12, the automatic culture control software main screen 13 and the sub screen 14, and the main screen 16 of the culture schedule software 15 are used. Will be described.
  • FIG. 5A shows an automatic culture control main screen 13 of the automatic culture control software 12. This main screen 13 is not normally displayed on the display screen, and is used when detailed setting is necessary or during maintenance.
  • the automatic culture control main screen 13 of FIG. 5A displays the communication status and history between the culture schedule software 15 and the hardware 33, displays sensor values indicating the status from the hardware 33, and controls the details thereof.
  • a button 40 and a control button 41 for controlling the drive system of the hardware 33 are displayed.
  • FIG. 5B shows an automatic culture control sub-screen 14 of the automatic culture control software 12.
  • This sub-screen 14 is normally displayed, and a status display 37 and a drive system state display 38 are displayed.
  • some functions of the automatic culture control main screen 13 are displayed.
  • the sensor value display 37 indicating the status related to the culture environment such as the temperature and carbon dioxide concentration
  • the hardware 33 related to the automatic culture process, particularly the state 38 of the drive system are automatically cultured. This is displayed on the screen 14.
  • a switching button 42 for switching between the automatic culture control sub-screen 14 and the automatic culture control main screen 13 can be displayed, electronic authentication such as a password can be provided at the time of switching from the viewpoint of security.
  • FIG. 5C shows a display of culture device error information as an example of the display shown in the drive system status display 38 of the sub-screen 14.
  • the error name, error details, error occurrence time, and the like are displayed, and the display screen displays the continuation, OK, termination, and cancellation for the operator to select a process corresponding to the error.
  • a button is displayed.
  • FIG. 6 shows a culture schedule main screen, and automatic culture processing is performed on this main screen 16.
  • a method for performing the automatic culture process will be described below.
  • the automatic culture process starts.
  • the display of the execution time 48, the next operation time 49, the estimated end time 50, and the calendar 46 is updated when the start button 47 is pressed.
  • the current status display 51 is changed from being stopped to being automatically cultured.
  • the command being executed and the command list are highlighted in the command list dialog 44 and the sequence dialog 45, respectively.
  • the sequence dialog 45 has a timeline display 52, which allows a visual judgment on the execution time of the command list being executed.
  • the pause button 53 is pressed again, the automatic culture process can be resumed from the paused operation. Since the stop button 54 stops all operations, the automatic culture process cannot be resumed from the same operation.
  • the culture schedule main screen 16 includes software for cell growth prediction 21, microscope position adjustment 20, stored data processing 19, sequence creation 18, and command list creation 17. This has an important role in the operation of the culture schedule main screen 16 for executing the sequence file. Next, the configuration of each software will be described.
  • the GUI that is an interface unit for facilitating the creation of the command list in this embodiment is the command list creation screen 17 shown in FIG.
  • the command selection dialog 55 has a display such as motor operation, for example. When this is selected, the rotational speed and the rotational speed are input in the command content selection 56 and added to the command list 57, and the command is input after translation.
  • the command list 57 created by such operations can be saved 58 with any name (eg, cell seeding, medium exchange, etc.) as data such as text, and the command list name can be designated and output 59 if necessary. can do.
  • the command list 57 can be corrected by adding 60, deleting 61, and updating 62, and further enabling an operation check 63 for moving the hardware 33.
  • a GUI for facilitating creation of a sequence for executing the command list 57 created here at a specified time is the sequence creation screen 18 shown in FIG.
  • a medium exchange display is displayed in the command list selection dialog 64, and when this is selected, the time can be input at the command list execution time input 65 and added to the sequence list 66.
  • the sequence list 66 created by such operations can be saved 67 as an arbitrary name (for example, a sequence for corneal cell culture) as data such as text, and the sequence name is designated and output 68 if necessary. be able to.
  • the sequence list 66 has a days specification tab tab 73, and the command list 57 can be input every automatic culture processing day.
  • the sequence list 66 can be modified by adding 69, deleting 70, and updating 71, and further enabling an operation check 72 for moving the hardware 33.
  • sensor values relating to the culture environment such as temperature and carbon dioxide concentration are generally stored in a text format.
  • the operator searches 74 past culture environment data to check whether the cells are cultured in a normal environment within the automatic culture process.
  • this screen makes it easy for the operator to determine the current or past culture status by graphing the stored data under the necessary conditions.
  • Data to be graphed is selected from the graph display sensor value selection dialog 75. At this time, the maximum and minimum values on the vertical axis of the graph can be determined.
  • the search dialog 74 the requested graph is displayed on the sensor value graph dialog 76.
  • This graph can be saved in the graph save dialog 77, and past graph data can be outputted in the save data file selection dialog 78.
  • the saved data can be saved in JPEG (Joint Photographic Experts Group), BMP (Bit Map), TIFF (Tagged Image File Format), PNG (Portable Network Graphics), etc. It is also possible to put a sign indicating an error occurrence in the graph displayed in the sensor value graph dialog 76.
  • the microscope position adjustment screen 20 that enables the position adjustment of the microscope that captures the cell image will be described with reference to FIG.
  • the microscope is moved by inputting a numerical value in the jog dial dialog 79 or a joystick on the screen in the dialog box.
  • the current microscope position is displayed on the X, Y, Z value screen 80 as X, Y, Z values.
  • the operation button 81 has ON / OFF such as illumination and camera power supply, and the cell image is displayed on the microscope image 82 by these operations.
  • the cell image displayed on the microscope image 82 can be changed in color tone and sharpness by RGB adjustment 83.
  • the cell image is focused by changing the Z-axis by the jog dial 79 or by the autofocus 84. For example, when the focus changes in a floating state, an adhesive state, or a layered state, the position of the microscope can be changed by the automatic focus correction offset 84.
  • the cell image displayed on the microscope image 82 can be saved in an image format such as JPEG, BMP, TIFF, and PNG by the capture button 85. Storage of cell images by automatic photographing within the culture sequence can be carried out by operation using the command list 44. By displaying this screen 20 during the execution process, the cell image taken from the microscope image 82 can be confirmed in real time.
  • a cell growth prediction screen 21 for changing the schedule for medium exchange and microscopic observation from the cell growth state will be described.
  • the number of cells obtained from a cell image, a medium component, or the like is plotted on the cell growth graph 86 in the cell growth prediction screen 21, a cell number change 87 until the middle is displayed. Further, the medium replacement date 88 on the culture schedule is displayed as the number of culture days. Therefore, when the cell growth prediction button 90 is pressed, the cell number prediction 91 and the recommended medium replacement date 89 can be predicted from the cell number change 87 so far by a known method.
  • an optimal prediction method can be selected from the types of cells.
  • the medium replacement date 88 is offset.
  • the setting is made from the offset setting dialog 92 and the sequence 45 is changed by the change button 93.
  • the cancel button 94 is pressed.
  • the expected end date of culture and the time until the end of culture are displayed 95, and at the end, they are displayed, for example, at the end of culture.
  • FIG. 12 is a block diagram showing a configuration of a control system for controlling internal devices in the automatic culture apparatus 99 which is the hardware 33 to be controlled by the automatic culture software 10.
  • the control system of the automatic culture device 99 includes an interface unit including a display unit 100 that indicates a control state to a user, and an input unit (touch panel, keyboard, mouse, etc.) 101 for inputting data and instructions, and an automatic culture device.
  • a control processing unit 102 configured by a central processing unit (CPU) that controls each operation of 99, a memory 103 for performing operations such as a cache, a communication unit 104 functioning as a network interface, A ROM 105 that stores programs including the automatic culture software 10, parameters, and the like, and a RAM 106 that temporarily stores data and processing results are provided.
  • the communication unit 104 may also be an interface unit.
  • a medium supply system 109 includes a heater, carbon dioxide supply, and the like, and an environmental holding device 107, a manipulator 110, a refrigerator control 108 for controlling the environment in the refrigerator, and a pump 111.
  • the display unit 100 to RAM 106 connected via a bus or a communication path and surrounded by a dotted line correspond to the computer such as the PC described above, and the environment holding device 107 to the pump 111 are automatic culture apparatuses.
  • the hardware 33 as the culture mechanism section.
  • the control processing unit 102 When the user instructs a culture process to be processed from the input unit 101 or the communication unit 104, the control processing unit 102 performs the real-time control 25 in accordance with a command from the automatic culture software 10 stored in the ROM 105, particularly the automatic culture control software 12. Proceed with temperature 37 ° C, 5% carbon dioxide concentration, humidity 100%, clean environment field. The refrigerator control 108 is performed after the medium supply system 109 is installed. Then, the control processing unit 102 performs cell culture processing in the culture vessel by the manipulator 110 and the pump 111 of the medium supply system 109 according to the program of the automatic culture software 10 stored in the ROM 105. The processing status can be shown to the user at any time by the display unit 100 and the communication unit 104.
  • the display unit 100 and the communication unit 104 indicate the completion to the user, sense that the culture container has been removed or the incubator door has been opened, and the control processing unit 102 has automatic culture software stored in the ROM 105
  • the termination process is performed according to the termination program of No. 10. As described above, a series of cell culture processes by the automatic culture apparatus 99 can be realized.
  • a normal LAN Local Area Network
  • UDP User Datagram Protocol
  • IP Internet Protocol
  • TCP Transmission Control Protocol
  • FIGS. 13A and 13B show an example of a packet format when UDP / IP is used as the communication protocol of the communication 31 in the automatic culture apparatus of the present embodiment.
  • commands and responses are realized with the packet format 120 shown in FIG. 13A.
  • STX indicates the beginning of the packet
  • the command indicates the communication content body
  • ETX indicates the end of the command
  • CR indicates the end of the packet.
  • the table 121 shown in FIG. 13B shows an example of the command and response contents of the communication 31. Corresponding to each item number, a command and a response are set, and an identifier shown in the figure is assigned.
  • an external communication type (remote operation type) automatic culture in which only the automatic culture control software 12 in the automatic culture software 10 of the first embodiment described above is held in the automatic culture apparatus 99.
  • An embodiment of the apparatus will be described. In the following description, only the difference from the first embodiment will be described, but the remaining part can be configured in the same manner as the configuration of the first embodiment. For convenience, the interface units 100 and 101 are not shown.
  • control processing unit 102 having only the automatic culture control software 12 and hardware 33 connected to the control processing unit 102 via the communication 32, and the culture schedule
  • the software 15 is held inside an external control processing unit 112 connected to a communication 31 that is a communication path to an external network.
  • the automatic culture control software 12 in the control processing unit 102 operates by the control from the culture schedule software 15 operating in the external control processing unit 112 via the communication 31.
  • UDP / IP or TCP / IP can also be used.
  • functions such as the opening / startup checklist 30 that are a part of the automatic culture control software 12 in this embodiment can also be transferred to the external control processing unit 112 side.
  • the control processing unit is a generic name including the control processing unit 102 and the external control processing unit 112.
  • remote operation is possible away from the automatic culture apparatus 99 and the amount of software executed in the control processing unit 102 of the automatic culture apparatus 99 is reduced. It is possible to reduce the burden on the processing unit 99.
  • an embodiment of an external communication type (remote operation, centralized control type) automatic culture apparatus according to the third embodiment will be described.
  • the following description only describes the differences from the first embodiment and the second embodiment, but the remaining portions can be configured in the same manner as in the first and second embodiments.
  • the interface units 100 and 101 are not shown for convenience.
  • the configuration of this example has a configuration in which a plurality of automatic culture apparatuses 99 are controlled by an external control processing unit 112 installed remotely. Inside each of the plurality of automatic culture apparatuses 99, similarly to the automatic culture apparatus shown in the second embodiment, the hardware 33 and the control processing unit 102 incorporating the automatic culture control software 12 are installed.
  • the culture control software 12 has a configuration controlled by the corresponding culture schedule software 15 in the external control processing unit 112 via the communication 31. It should be noted that functions such as the opening / startup checklist 30 that are a part of the automatic culture control software 12 in this embodiment can also be transferred to the external control processing unit 112 side.
  • the control processing unit is a generic name including the control processing unit 102 and the external control processing unit 112.
  • a plurality of automatic culture apparatuses can be collectively controlled and managed by an operator of the external control processing unit 112 installed remotely.
  • the culture schedule software is separated from the automatic culture control software and communicates between the two, and the culture schedule software uses the GUI to input the operator's input work and cells for creating the culture schedule. Minimize the process of changing the schedule from the expected culture and eliminate input errors to facilitate operation.
  • Culture schedule management is performed with the culture schedule software.
  • the automatic culture control software operates in the background and controls the hardware by communicating with the culture schedule software. When the culture schedule software goes down, it is possible to stabilize the quality of the biological tissue to be manufactured by managing it with the automatic culture control software.
  • the culture schedule software there are command list creation software for creating the processing method, sequence creation software for creating the processing method for each time, operation history display software, microscope position adjustment software, culture prediction software,
  • the automatic culture control software can control each element device, store sensor values, and manage hardware errors.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • the automatic culture apparatus has been described as an example. However, in the present invention, it is not necessary that the control of the culture apparatus is entirely automated, and part of the control of cell culture in the cell culture apparatus is a control process. It can also be applied to a cell culture apparatus controlled by some automatic culture control software.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • each configuration, function, and the like have been described by exemplifying a case where they are realized by software by executing a program that realizes each function.
  • information on programs, tables, files, and the like that realize each function It can be stored not only in memory but also in recording devices such as hard disks and SSDs (Solid State Drives), or recording media such as IC cards, SD cards, and DVDs, and can be downloaded and installed via a network or the like as necessary. It is also possible to do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Computer Hardware Design (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Screens which must needs be operated in inputting, selecting, and changing a culture schedule increase, a demand of an operator grows, and processes such as approving changes become complicated. In the present invention, a separation is made between a culture scheduling software (15) for culture scheduling management, and an auto-culture control software (12), and a communication (31) is carried out therebetween. The culture scheduling software (15) minimizes scheduling change processes from an operator's input work or cellular culture prediction for culture schedule creation by a GUI, eliminating input errors and making a console operation easy. The auto-culture control software (12) runs in the background, and controls, by the communication with the culture scheduling software (15), hardware (33) for culturing of a vital tissue. If the culture scheduling software (15) fails, administrating on the auto-culture control software (12) side allows stabilizing the quality of the produced vital tissue.

Description

細胞培養装置、制御装置、及び方法Cell culture device, control device, and method
 本発明は、細胞を培養する細胞培養装置、特に、細胞の状態から効率のよい培養方法を選択して細胞培養装置の動作を最適化する技術に関する。 The present invention relates to a cell culture apparatus for culturing cells, and more particularly to a technique for optimizing the operation of the cell culture apparatus by selecting an efficient culture method from the state of the cells.
 近年、体外で細胞を培養することで、体内の臓器の一部機能を有した生体組織へ再構築した再生組織の開発が盛んである。その中で再生医療は、再生組織により、病気もしくは機能が欠損した臓器を治療するものである。特に、皮膚、軟骨、角膜などは世界中で治療に使用され、一般的な医療となりつつある。また、再生組織は体内の臓器の一部もしくはすべての機能を有することから、薬剤等の効果を評価する試験に使用されることもある。例えば、化粧品や経皮薬などの薬剤効果試験では、既に培養皮膚上皮が実用化されている。 In recent years, regenerative tissues that have been reconstructed into biological tissues having a partial function of internal organs by culturing cells outside the body have been actively developed. Among them, regenerative medicine treats a diseased or deficient organ with a regenerative tissue. In particular, skin, cartilage, cornea, etc. are used for treatment all over the world and are becoming common medical care. In addition, since the regenerated tissue has some or all functions of internal organs, it may be used in tests for evaluating the effects of drugs and the like. For example, cultured skin epithelium has already been put to practical use in drug effect tests such as cosmetics and transdermal drugs.
 このように再生組織が広まりつつあるが、その製造は厳格な工程の下で熟練された作業者の手作業により行われている。そのため、再生組織を製造する場合には、品質安定のための作業者への教育・育成に必要な時間とコスト、人為的なミス、さらに菌などを保有するヒトによる生物学的汚染(コンタミネーション)等を防止する対策に多くのコストを要する。そのため、機器により一連の培養作業を自動化することで、それら問題点を解決させることが期待されている。 Although the regenerative organization is spreading in this way, its production is carried out manually by skilled workers under strict processes. For this reason, when producing regenerated tissue, the time and cost required to educate and train workers for quality stability, human error, and biological contamination by humans with bacteria etc. (contamination) ) Is costly. Therefore, it is expected that these problems can be solved by automating a series of culture operations using an instrument.
 現在、手作業の培養では、標準手順書等で定められた培養工程に沿って、培地交換等の細胞培養処理をおこなっている。しかし、細胞は同一の培養処理をおこなって、その増殖や変化が同じでないことが多く、不確定な要因によって容易に変化することから、細胞の状態に合わせた培養処理をおこなわなければならない。そこで、その培養処理を進めていく中で、培養している細胞の状態を位相差顕微鏡などで観察し、その形状や増殖具合から、作業者の経験を基に培養工程の変更がなされることがある。現在、自動培養では、手作業用に定められた培養工程を基に、自動培養スケジュールを組み、それを自動培養装置へ組み込んで自動培養処理がなされる。そのため、作業者は細胞の状態によって、自動培養処理の開始前に容易に自動培養スケジュールを作成、修正、選択することが必要である。さらに、例えば培地交換において、通常その培養工程内で処理時間は固定されており、細胞の状態に応じて培地交換の処理時間を変更するためには自動培養スケジュールの作成や変更を容易にすることが必要である。 Currently, in manual culture, cell culture processing such as medium exchange is performed in accordance with the culture process defined in the standard procedure manual. However, cells undergo the same culture treatment, and their proliferation and change are often not the same and easily change due to uncertain factors. Therefore, culture treatment according to the state of the cell must be performed. Therefore, as the culture process proceeds, the state of the cultured cells is observed with a phase-contrast microscope, etc., and the culture process is changed based on the experience of the operator due to its shape and growth condition. There is. Currently, in automatic culture, an automatic culture schedule is set based on a culture process defined for manual work, and the automatic culture process is performed by incorporating the schedule into an automatic culture apparatus. Therefore, the operator needs to easily create, modify, and select an automatic culture schedule before the start of the automatic culture process depending on the state of the cells. Furthermore, for example, in medium exchange, the processing time is usually fixed in the culture process, and in order to change the medium exchange processing time according to the state of the cell, it is easy to create or change an automatic culture schedule. is required.
 これら課題を解決するために、例えば特許文献1は自動培養スケジュールとその培養履歴を入手することが可能なプログラム構成を提示している。また、例えば特許文献2は細胞の増殖過程からその後の増殖予測を行う手段を提示している。 In order to solve these problems, for example, Patent Document 1 presents a program configuration capable of obtaining an automatic culture schedule and its culture history. Further, for example, Patent Document 2 presents means for performing subsequent growth prediction from the cell growth process.
特開2002-269180号公報JP 2002-269180 A 特開2001-224366号公報JP 2001-224366 A
 特許文献1に記載のような培養管理プログラムにおいては、各要素機器の制御方法を示し、それを指定する画面の提示があるものの、培養スケジュールの入力・選定・変更を一元的に行うことができず、操作するべき画面が多くなってしまい、作業者の入力負担が多くなってしまう課題がある。 In the culture management program as described in Patent Document 1, although the control method of each element device is shown and a screen for designating it is presented, the culture schedule can be input / selected / changed centrally. Therefore, there are problems that the number of screens to be operated increases and the burden on the operator increases.
 特許文献2に記載のような細胞培養予測システムにおいては、細胞の状態を把握し、それから培地交換等の処理時間をシミュレーションにより推定することが可能になる。しかし、その推定した培地交換等の処理時間に対して、培養スケジュールへの変更処理方法や、変更の承認等といった管理者への情報伝達手段を容易にする課題がある。 In the cell culture prediction system as described in Patent Document 2, it is possible to grasp the state of the cells and then estimate the processing time such as medium replacement by simulation. However, with respect to the estimated processing time such as medium exchange, there is a problem of facilitating information transmission means to the administrator such as a change processing method to the culture schedule and approval of the change.
 本発明はこのような状況に鑑みてなされたものであり、作業者が培養スケジュールに関する情報を容易に入力可能とし、更に細胞情報から培養スケジュールの変更を容易にするグラフィカルユーザインタフェースを備えた細胞培養装置、制御装置、及びその方法を提供することを目的とする。 The present invention has been made in view of such a situation, and allows a worker to easily input information related to a culture schedule, and further includes a cell culture equipped with a graphical user interface that makes it easy to change the culture schedule from cell information. An object is to provide a device, a control device, and a method thereof.
 上記の目的を達成するため、本発明おいては、細胞培養装置であって、細胞の培養を行う培養機構部と、培養機構部で細胞の培養を行うための培養ソフトウェアを実行処理する制御処理部とを備え、制御処理部は、培養ソフトウェアを実行処理する際に、培養機構部の培養スケジュールを決定する培養スケジュールソフトウェアと、決定した培養スケジュールに従い、培養機構部を制御する培養制御ソフトウェアに分離して実行する構成の細胞培養装置を提供する。 In order to achieve the above object, in the present invention, a cell culturing apparatus, a control mechanism for executing processing of a culture mechanism for culturing cells and culture software for culturing cells in the culture mechanism The control processing unit is separated into a culture schedule software that determines a culture schedule of the culture mechanism unit and a culture control software that controls the culture mechanism unit according to the determined culture schedule when executing the culture software. And a cell culture device configured to be executed.
 また、上記の目的を達成するため、本発明においては、細胞培養装置の制御装置であって、培養機構部で細胞の培養を行うための培養ソフトウェアを実行処理する制御処理部と、細胞の培養の状況を表示可能なインタフェース部とを備え、制御処理部は、培養ソフトウェアを、培養機構部の培養スケジュールを決定する培養スケジュールソフトウェアと、培養スケジュールソフトウェアで決定された培養スケジュールに従い、培養機構部を制御する培養制御ソフトウェアとに分離して実行する構成の制御装置を提供する。 In order to achieve the above object, in the present invention, a control device for a cell culture device, a control processing unit that executes and processes culture software for culturing cells in the culture mechanism unit, and cell culture And an interface unit capable of displaying the status of the control unit, the control processing unit is configured to display the culture software according to the culture schedule software for determining the culture schedule of the culture mechanism unit and the culture schedule determined by the culture schedule software. A control device configured to be executed separately from control culture control software is provided.
 さらに、上記の目的を達成するため、本発明おいては、制御処理部を備える細胞培養装置の制御方法であって、制御処理部は、培養機構部で細胞を培養するため、培養機構部の培養スケジュールを決定する培養スケジュールソフトウェアと、培養スケジュールソフトウェアで決定された培養スケジュールに従い、培養機構部を制御する培養制御ソフトウェアとを、分離して実行する制御方法を提供する。 Furthermore, in order to achieve the above object, in the present invention, there is provided a control method for a cell culture device including a control processing unit, and the control processing unit cultivates cells in the culture mechanism unit. There is provided a control method for separately executing a culture schedule software for determining a culture schedule and a culture control software for controlling a culture mechanism unit according to the culture schedule determined by the culture schedule software.
 これらにより、作業者の培養スケジュール作成のための入力作業を最小とし、入力ミスをなくして操作を容易にし、細胞培養予想から培養スケジュールの最適化とその管理が可能になり、培養・製造する生体組織の品質の安定化を可能にする。 This minimizes the input work for the operator to create a culture schedule, eliminates input errors, facilitates the operation, optimizes the culture schedule based on cell culture predictions, and enables management thereof. Enables stabilization of organizational quality.
第1の実施例の細胞培養装置の培養ソフトウェア全体の機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the whole culture | cultivation software of the cell culture apparatus of a 1st Example. 第1の実施例に係る、細胞培養装置の全体装置構成の一例を示す図である。It is a figure which shows an example of the whole apparatus structure of the cell culture apparatus based on a 1st Example. 第1の実施例に係る、細胞培養装置の細胞培養ソフトウェアのメインルーチンの一例を示す図である。It is a figure which shows an example of the main routine of the cell culture software of the cell culture apparatus based on a 1st Example. 第1の実施例に係る、細胞培養装置の細胞培養ソフトウェアのサブルーチンの一例を示す図である。It is a figure which shows an example of the subroutine of the cell culture software of the cell culture apparatus based on a 1st Example. 第1の実施例に係る、細胞培養ソフトウェア起動時の画面の一例を示す図である。It is a figure which shows an example of the screen at the time of cell culture software starting based on a 1st Example. 第1の実施例に係る、細胞培養制御ソフトウェアのメイン画面の一例を示す図である。It is a figure which shows an example of the main screen of the cell culture control software based on a 1st Example. 第1の実施例に係る、細胞培養制御ソフトウェアのサブ画面の一例を示す図である。It is a figure which shows an example of the sub screen of the cell culture control software based on 1st Example. 第1の実施例に係る、細胞培養制御ソフトウェアのサブ画面の駆動系状態表示の一例を示す図である。It is a figure which shows an example of the drive system state display of the sub screen of the cell culture control software based on a 1st Example. 第1の実施例に係る、培養スケジュールソフトウェアのメイン画面の一例を示す図である。It is a figure which shows an example of the main screen of the culture schedule software based on a 1st Example. 第1の実施例の、培養スケジュールソフトウェアに関するコマンドリスト作成ソフトウェアの画面の一例を示す図である。It is a figure which shows an example of the screen of the command list creation software regarding the culture schedule software of a 1st Example. 第1の実施例に係る、培養スケジュールソフトウェアに関するシーケンス作成ソフトウェアの画面の一例を示す図である。It is a figure which shows an example of the screen of the sequence creation software regarding the culture schedule software based on a 1st Example. 第1の実施例に係る、培養スケジュールソフトウェアに関する保存データ処理ソフトウェアの画面の一例を示す図である。It is a figure which shows an example of the screen of the preservation | save data processing software regarding the culture schedule software based on a 1st Example. 第1の実施例に係る、培養スケジュールソフトウェアに関する顕微鏡位置調整ソフトウェアの画面の一例を示す図である。It is a figure which shows an example of the screen of the microscope position adjustment software regarding the culture schedule software based on 1st Example. 第1の実施例に係る、培養スケジュールソフトウェアに関する細胞増殖予測ソフトウェアの画面の一例を示す図である。It is a figure which shows an example of the screen of the cell growth prediction software regarding the culture schedule software based on 1st Example. 第1の実施例に係る、細胞培養装置のシステム構成の一例を示す図である。It is a figure which shows an example of the system configuration | structure of the cell culture apparatus based on a 1st Example. 第1の本実施例に係る、細胞培養装置の通信プロトコルのパケットフォーマットの一例を示す図である。It is a figure which shows an example of the packet format of the communication protocol of the cell culture apparatus based on a 1st Example. 第1の本実施例に係る、細胞培養装置の通信プロトコルのコマンドの一例を示す図である。It is a figure which shows an example of the command of the communication protocol of the cell culture apparatus based on a 1st present Example. 第2の実施例に係る、外部通信型(遠隔操作型)細胞培養装置の構成例を示す図である。It is a figure which shows the structural example of the external communication type (remote control type) cell culture apparatus based on a 2nd Example. 第3の実施例に係る、外部通信型(遠隔操作、集中制御型)細胞培養装置の構成例を示す図である。It is a figure which shows the structural example of the external communication type (remote operation, centralized control type) cell culture apparatus based on a 3rd Example.
 以下、添付図面を参照して本発明の実施形態について説明する。ただし、本実施形態は本発明を実現するための一例に過ぎず、本発明の技術的範囲を限定するものではないことに注意すべきである。また、各図において共通の構成については同一の参照番号が付されている。本明細書の細胞培養装置において、細胞を培養する培養機構部を、細胞を培養するための制御を行う制御処理部や制御装置と区別するため、ハードウェアと呼ぶ場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, it should be noted that this embodiment is merely an example for realizing the present invention, and does not limit the technical scope of the present invention. In each drawing, the same reference numerals are assigned to common components. In the cell culture device of the present specification, the culture mechanism unit for culturing cells may be referred to as hardware in order to distinguish them from control processing units and control devices that perform control for culturing cells.
 第1の実施例に係る自動培養装置のシステム、及びGraphical User Interface(GUI)は、培養スケジュールソフトウェア(ソフト)と自動培養装置制御ソフトウェア(ソフト)を分離し、その間で必要な情報を通信する構成を備える。 The system of the automatic culture apparatus and the Graphical User Interface (GUI) according to the first embodiment are configured to separate the culture schedule software (software) and the automatic culture apparatus control software (software) and communicate necessary information therebetween. Is provided.
 本実施例の培養スケジュールソフトウェアの好適な態様は、培養スケジュールを一元的に実行するソフトウェアのメイン画面からコールする、細胞播種、培地交換といった培養処理方法を作成するコマンドリスト作成ソフトウェア、それら培養処理方法のタイムラインを作成するシーケンス作成ソフトウェア、温度等の履歴や情報を表示する動作履歴を表示する保存データ処理ソフトウェア、ピント(焦点)合わせが可能な顕微鏡位置調整ソフトウェア、細胞増殖曲線を予想してタイムラインにオフセットを入れる細胞増殖予測ソフトウェアから構成する。 Preferred embodiments of the culture schedule software of the present embodiment include command list creation software for creating a culture processing method such as cell seeding and medium exchange, which is called from the main screen of the software for executing the culture schedule in an integrated manner, and these culture processing methods. Sequence creation software to create a timeline, temperature data, etc., stored data processing software to display operation history, microscope positioning software that can focus, time to anticipate cell growth curves Consists of cell growth prediction software that adds an offset to the line.
 一方、本実施例の自動培養制御ソフトウェアの好適な態様にあっては、モータ・バルブや環境保持装置等の制御や、センサ値と動作記録の保管、培養機構部であるハードウェアのエラーを管理する。そして、自動培養制御ソフトウェアは通常メイン画面を表示せず、代表的なセンサ値をサブ画面で表示する構成とした。 On the other hand, in the preferred mode of the automatic culture control software of the present embodiment, control of motors and valves, environmental preservation devices, etc., storage of sensor values and operation records, and management of hardware errors of the culture mechanism section are managed. To do. The automatic culture control software normally does not display the main screen but displays a representative sensor value on the sub screen.
 また、本実施例の好適な態様にあっては、培養スケジュール上のエラー発生時は培養スケジュールソフトウェア、ハードウェア上のエラー発生時は自動培養制御ソフトウェアそれぞれのエラーダイアログを表示する。培養スケジュールソフトウェアと自動培養制御ソフトウェア間で通信をしており、例えば、培養スケジュールソフト上でモータを動かすコマンドが入力された場合、通信により、コマンドを自動培養制御ソフトウェアに伝達し、当該コマンドに基づき自動培養制御ソフト上でモータの制御を実施し、その結果の情報を培養スケジュールソフトに返す。この一連の動作の通信記録(ログ)を採ることで自動培養時の機器類の動作の履歴を取ることを可能にする。また、培養スケジュール上でエラーが発生した場合、自動培養制御ソフト単独で安全な退避処理を実行することができ、安全性が向上する。また、自動培養制御に関わる入力を考慮しなくてもよいため、培養スケジュール作成のための入力作業を最小にでき、GUIから入力ミスをなくして操作を容易にし、細胞培養予想から培養スケジュールの最適化とその管理を可能にする。 In a preferred embodiment of the present embodiment, an error dialog for each of the culture schedule software is displayed when an error on the culture schedule occurs, and an automatic culture control software is displayed when an error on the hardware occurs. Communication is performed between the culture schedule software and the automatic culture control software. For example, when a command for moving the motor is input on the culture schedule software, the command is transmitted to the automatic culture control software by communication, and based on the command. The motor is controlled on the automatic culture control software, and the result information is returned to the culture schedule software. By taking a communication record (log) of this series of operations, it is possible to take a history of the operation of the devices during automatic culture. In addition, when an error occurs on the culture schedule, safe evacuation processing can be executed by the automatic culture control software alone, and safety is improved. In addition, since it is not necessary to consider the input related to automatic culture control, the input work for creating the culture schedule can be minimized, the input error is eliminated from the GUI, the operation is facilitated, and the culture schedule is optimized from the cell culture prediction. Enable and manage.
 以下、第1の実施例に係る自動培養装置の一例を、自動培養ソフトウェア全体構成、培養スケジュールソフトウェアの構成、自動培養装置のシステム構成の順に説明する。 Hereinafter, an example of the automatic culture apparatus according to the first embodiment will be described in the order of the entire automatic culture software configuration, the culture schedule software configuration, and the automatic culture system configuration.
 <自動培養ソフトウェア全体構成>
  図1、図2、図3A、及び図3Bを用いて、自動培養装置と、その自動培養ソフトウェア10の全体構成と、その各ソフトウェア、プログラムの役割について説明する。
<Overall configuration of automatic culture software>
The automatic culture apparatus, the overall configuration of the automatic culture software 10, and the role of each software and program will be described with reference to FIGS. 1, 2, 3A, and 3B.
 まず、図1にて自動培養ソフトウェア10の全体構成について説明する。同図に示す様に、本実施例の自動培養ソフトウェア10は大きく分けて、培養スケジュールソフトウェア15、自動培養制御ソフトウェア12からなる。自動培養装置の培養機構部であるハードウェア33は、自動培養制御ソフトウェア12によって制御される。 First, the overall configuration of the automatic culture software 10 will be described with reference to FIG. As shown in the figure, the automatic culture software 10 of this embodiment is roughly divided into a culture schedule software 15 and an automatic culture control software 12. The hardware 33 which is a culture mechanism part of the automatic culture apparatus is controlled by the automatic culture control software 12.
 図2にその一例を示す様に、本実施例の自動培養装置99は、自動培養制御ソフトウェア12と培養スケジュールソフトウェア15からなる自動培養ソフトウェア10を実行する制御処理部102と、操作者が制御処理部102に指示を行うための少なくとも表示部・入力部からなるインタフェース部100、101、制御処理部102によって制御される自動培養装置99の培養機構部であるハードウェア33とで構成される。自動培養装置のハードウェア33としては、自動培養装置のタイプにもよるが、例えば、培養容器を取り扱うマニュピュレータの駆動用モータや、培地や細胞液を供給するためのポンプ、搬送チューブの開閉機構、更には冷蔵庫制御部、或いは湿度等の環境保持設備があるが、なんらこれらに限定されるものではない。 As shown in FIG. 2, an automatic culture apparatus 99 according to the present embodiment includes a control processing unit 102 that executes automatic culture software 10 including automatic culture control software 12 and culture schedule software 15, and an operator performs control processing. Interface units 100 and 101 including at least a display unit and an input unit for instructing the unit 102, and hardware 33 that is a culture mechanism unit of the automatic culture apparatus 99 controlled by the control processing unit 102. The hardware 33 of the automatic culture apparatus depends on the type of the automatic culture apparatus. For example, a motor for driving a manipulator that handles a culture vessel, a pump for supplying a culture medium or a cell solution, and an opening / closing mechanism for a transfer tube Furthermore, although there are refrigerator control units or environmental maintenance facilities such as humidity, it is not limited to these.
 図2の制御処理部102としては、後に自動培養装置99のシステム構成で説明するように、例えば、中央処理部(Central Processing Unit:CPU)、記憶部であるメモリ、入力部、表示部等を有する、通常のパーソナルコンピュータ(PC)のCPUを用いることができる。そして、メモリ等の記憶部に記憶された上述の自動培養ソフトウェア10を、適宜PCのCPUで実行する。本明細書において、制御処理部という場合、このCPUのみ、あるいは少なくともCPUで実行される各種のソフトウェアを記憶するメモリ等の記憶部を含めたものを意味することとする。なお、図2に示した自動培養装置の構成を、ソフト内蔵型(自律型)と呼ぶ。同図において、自動培養装置99の制御処理部102で、本実施例の自動培養制御ソフトウェア12と、培養スケジュールソフトウェア15が実行され、自動培養制御ソフトウェア12の制御により、各種のハードウェアが制御される。 As the control processing unit 102 in FIG. 2, for example, a central processing unit (Central Processing Unit: CPU), a memory that is a storage unit, an input unit, a display unit, etc., as will be described later in the system configuration of the automatic culture apparatus 99. An ordinary personal computer (PC) CPU can be used. And the above-mentioned automatic culture software 10 memorized by storage parts, such as memory, is suitably run by CPU of PC. In this specification, the term “control processing unit” means only this CPU, or at least including a storage unit such as a memory for storing various software executed by the CPU. The configuration of the automatic culture apparatus shown in FIG. 2 is referred to as a software built-in type (autonomous type). In the figure, the control processing unit 102 of the automatic culture apparatus 99 executes the automatic culture control software 12 and the culture schedule software 15 of this embodiment, and various hardware is controlled by the control of the automatic culture control software 12. The
 図1に示す様に、自動培養制御ソフトウェア12は、自動培養制御メイン画面表示13、サブ画面表示14、コマンド処理22、デバイス制御処理23、モニタリング処理24、リアルタイム制御処理25、記録処理26、非常停止処理27、エラー処理28、オプション設定処理29、及びオープニング・起動時チェックリスト30の各機能プログラムからなる。一方、培養スケジュールソフトウェア15は、メイン画面16表示、コマンドリスト作成17、シーケンス作成18、保存データ処理19、顕微鏡位置調整20、及び細胞増殖予測21の各機能プログラムからなる。 As shown in FIG. 1, the automatic culture control software 12 includes an automatic culture control main screen display 13, a sub screen display 14, a command process 22, a device control process 23, a monitoring process 24, a real-time control process 25, a recording process 26, an emergency The function program includes a stop process 27, an error process 28, an option setting process 29, and an opening / startup checklist 30. On the other hand, the culture schedule software 15 includes functional programs for main screen 16 display, command list creation 17, sequence creation 18, saved data processing 19, microscope position adjustment 20, and cell growth prediction 21.
 自動培養ソフトウェア10の自動培養制御ソフトウェア12と培養スケジュールソフトウェア15はお互いに、図13A、図13Bで説明する所定の通信手段によりコマンド、コマンドリストやシーケンス等の必要な情報の通信31を行っている。ハードウェア33の制御については、培養スケジュールソフトウェア15が行うことはできず、自動培養制御ソフトウェア12からの通信32のみによってなされる。 The automatic culture control software 12 and the culture schedule software 15 of the automatic culture software 10 perform communication 31 of necessary information such as commands, command lists, sequences, and the like by the predetermined communication means described with reference to FIGS. 13A and 13B. . The control of the hardware 33 cannot be performed by the culture schedule software 15, and is performed only by communication 32 from the automatic culture control software 12.
 図3A、図3Bにそれぞれ、本実施例の自動培養ソフトウェア10のメインルーチンとサブルーチンの一例を示す。
  図3Aに示すように、自動培養ソフトウェアが起動されると、自動培養制御ソフトウェア12が起動し(S301)、S302において、初期項目を全てチュックしたか否かを確認後、自動培養制御ソフトウェア12、培養スケジュールソフトウェア15の順に立ち上がる(S303)。
  そして、S304、S305の確認後、自動培養処理(AUTO)が実行される(S306)。その後、自動培養処理が終了したか否かを定期的に確認し(S307)、終了した場合、終了プログラムを実行し、終了表示を表示部に示して(S308)、終了する(S309)。
FIG. 3A and FIG. 3B show an example of the main routine and subroutine of the automatic culture software 10 of the present embodiment, respectively.
As shown in FIG. 3A, when the automatic culture software is activated, the automatic culture control software 12 is activated (S301). After confirming whether or not all initial items are checked in S302, the automatic culture control software 12, It starts in order of the culture schedule software 15 (S303).
And after confirmation of S304 and S305, an automatic culture | cultivation process (AUTO) is performed (S306). Thereafter, it is periodically checked whether or not the automatic culture process has been completed (S307), and if completed, an end program is executed, an end display is shown on the display unit (S308), and the process ends (S309).
 図3Bには、図3Aの処理フローのサブルーチンである自動培養処理(AUTO)を示した。同図から明らかなように、AUTO(S310)は、細胞を播種したか否かの確認を行い(S311)、所定の複数のシーケンス(S312~S314)を実行し、S315において所定の時間経過かを確認し、所定の時間経過を確認した場合、複数のシーケンス(S316~S318)を実行後、S319において、全ての処理を終えたかを確認し、メインルーチンに戻る処理を行う。 FIG. 3B shows an automatic culture process (AUTO) which is a subroutine of the process flow of FIG. 3A. As is clear from the figure, the AUTO (S310) confirms whether or not the cells are seeded (S311), executes a predetermined sequence (S312 to S314), and determines whether or not a predetermined time has passed in S315. When a predetermined time has elapsed, after executing a plurality of sequences (S316 to S318), in S319, it is confirmed whether all the processes have been completed, and a process of returning to the main routine is performed.
 図4~図6を用いて、以上の自動培養ソフトウェア10の実行の際における、本実施例の画面表示について説明する。なお、本実施例における各種の表示画面は、上述したPCの表示部や、その他の操作者が観察できるディスプレイ画面上に表示されるものである。制御処理部102における自動培養ソフトウェア10の起動後、自動培養制御ソフトウェア12が立ち上がり、図4に示す起動画面からオープニング・起動時チェックリスト30の処理後、培養スケジュールソフトウェア15が立ち上がり、標準的には、図5Bの自動培養制御サブ画面14と、図6の培養スケジュールメイン画面16がディスプレイの表示部に表示され、自動培養処理が始まる。以上の一連の流れにおける各画面表示について、以下に説明する。 The screen display of the present embodiment when the above automatic culture software 10 is executed will be described with reference to FIGS. Various display screens in the present embodiment are displayed on the display unit of the above-described PC or a display screen that can be observed by other operators. After the start of the automatic culture software 10 in the control processing unit 102, the automatic culture control software 12 starts up. After the processing of the opening / startup checklist 30 from the start screen shown in FIG. The automatic culture control sub-screen 14 in FIG. 5B and the culture schedule main screen 16 in FIG. 6 are displayed on the display unit of the display, and the automatic culture process starts. Each screen display in the above series of flows will be described below.
 図4を用いて、制御処理部102による自動培養ソフトウェア10の起動後の起動画面11でオープニング・起動時チェックリスト30の処理について説明する。自動培養ソフトウェア10を起動すると、図4の起動画面11が表示される。ここには、例えば消耗品を準備した等の自動培養処理に関わる、培養機構部であるハードウェア内などの重要な所定項目がチェックリスト30内に記載されており、全てのダイアログ34にチェック入れることで、スタートボタン35を押すことが可能になる。チェックリスト30内の項目で当てはまらないものがあった場合には、キャンセルボタン36を押して、制御処理部102による自動培養ソフトウェア10を終了する。 Referring to FIG. 4, the processing of the opening / startup checklist 30 on the start screen 11 after the start of the automatic culture software 10 by the control processing unit 102 will be described. When the automatic culture software 10 is activated, an activation screen 11 of FIG. 4 is displayed. Here, for example, important predetermined items related to automatic culture processing such as preparation of consumables, etc. in the hardware as a culture mechanism section are described in the checklist 30, and all dialogs 34 are checked. Thus, the start button 35 can be pushed. If any of the items in the checklist 30 does not apply, the cancel button 36 is pressed, and the automatic culture software 10 by the control processing unit 102 is terminated.
 次に、図5A、図5B、図5C、及び図6を用いて、自動培養制御ソフトウェア12の動作と、自動培養制御ソフトウェアメイン画面13及び同サブ画面14と、培養スケジュールソフトウェア15のメイン画面16について説明する。図4の起動画面11のスタートボタン35を押した後、図5Bに示す自動培養制御ソフトウェア12のサブ画面14と、図6に示す培養スケジュールソフトウェア15のメイン画面16がそれぞれ、ディスプレイの表示画面上に表示される。 Next, referring to FIGS. 5A, 5B, 5C, and 6, the operation of the automatic culture control software 12, the automatic culture control software main screen 13 and the sub screen 14, and the main screen 16 of the culture schedule software 15 are used. Will be described. After pressing the start button 35 on the startup screen 11 in FIG. 4, the sub screen 14 of the automatic culture control software 12 shown in FIG. 5B and the main screen 16 of the culture schedule software 15 shown in FIG. Is displayed.
 図5Aは、自動培養制御ソフトウェア12の自動培養制御メイン画面13を示すが、このメイン画面13は通常は表示画面上に表示せず、詳細設定が必要な場合やメンテナンス時に使用する。図5Aの自動培養制御メイン画面13には、培養スケジュールソフトウェア15とハードウェア33との通信状態や履歴を表示39し、またハードウェア33からのステータスを示すセンサ値等の表示とその詳細の制御ボタン40、ハードウェア33の駆動系をコントロールするための制御ボタン41が表示されている。 FIG. 5A shows an automatic culture control main screen 13 of the automatic culture control software 12. This main screen 13 is not normally displayed on the display screen, and is used when detailed setting is necessary or during maintenance. The automatic culture control main screen 13 of FIG. 5A displays the communication status and history between the culture schedule software 15 and the hardware 33, displays sensor values indicating the status from the hardware 33, and controls the details thereof. A button 40 and a control button 41 for controlling the drive system of the hardware 33 are displayed.
 この自動培養制御メイン画面13から、自動培養制御ソフトウェア12のコマンド処理22、デバイス制御処理23、モニタリング処理24、リアルタイム制御処理25、記録処理26、非常停止処理27、エラー処理28及びオプション設定処理29の全てにアクセスし、状態の確認やその設定値の変更を可能にする。 From this automatic culture control main screen 13, command process 22, device control process 23, monitoring process 24, real-time control process 25, recording process 26, emergency stop process 27, error process 28 and option setting process 29 of the automatic culture control software 12 It is possible to check all statuses and change their settings.
 図5Bは自動培養制御ソフトウェア12の自動培養制御サブ画面14で、通常はこのサブ画面14を表示し、ステータスの表示37や駆動系状態表示38をする。図5Bの自動培養制御サブ画面14には、その自動培養制御メイン画面13の一部の機能を表示している。培養する環境によって変更可能であるが、温度や二酸化炭素濃度等の培養環境に関するステータスを示すセンサ値の表示37や、自動培養処理に関わるハードウェア33、とりわけ駆動系の状態38を自動培養制御サブ画面14では表示する。自動培養制御サブ画面14と自動培養制御メイン画面13を切替えるための切替ボタン42を表示することが可能であるが、セキュリティの観点から、切替時にはパスワード等の電子認証を設けることが可能である。 FIG. 5B shows an automatic culture control sub-screen 14 of the automatic culture control software 12. This sub-screen 14 is normally displayed, and a status display 37 and a drive system state display 38 are displayed. In the automatic culture control sub-screen 14 of FIG. 5B, some functions of the automatic culture control main screen 13 are displayed. Although it can be changed depending on the culture environment, the sensor value display 37 indicating the status related to the culture environment such as the temperature and carbon dioxide concentration, and the hardware 33 related to the automatic culture process, particularly the state 38 of the drive system, are automatically cultured. This is displayed on the screen 14. Although a switching button 42 for switching between the automatic culture control sub-screen 14 and the automatic culture control main screen 13 can be displayed, electronic authentication such as a password can be provided at the time of switching from the viewpoint of security.
 図5Cに、このサブ画面14の駆動系状態表示38に示される表示の一例として、培養装置エラー情報の表示を示している。図5Cに明らかなように、エラー名称、エラー詳細内容、エラー発生時間等が表示されると共に、表示画面には、エラーに対応する処理を操作者が選択する、継続、OK、終了、中止のボタンが表示される。 FIG. 5C shows a display of culture device error information as an example of the display shown in the drive system status display 38 of the sub-screen 14. As is clear from FIG. 5C, the error name, error details, error occurrence time, and the like are displayed, and the display screen displays the continuation, OK, termination, and cancellation for the operator to select a process corresponding to the error. A button is displayed.
 図6は培養スケジュールメイン画面を示す、自動培養処理はこのメイン画面16でなされる。自動培養処理の実行方法について、以下に説明する。まず、後述のシーケンス作成ソフトウェア18で作成した自動培養シーケンスファイルを選択43すると、コマンドリストダイアログ44とシーケンスダイアログ45内に実行内容が表示され、カレンダー46に培養処理日程が表示される。内容をチェックして、スタートボタン47を押すと、自動培養処理が開始する。この際、実行時間48、次回動作時間49、終了予測時間50、カレンダー46の表示がスタートボタン47押下時に更新する。また現状表示51が停止から自動培養中へ変更する。自動培養処理がおこなわれている場合、実行中のコマンドとコマンドリストがそれぞれ、コマンドリストダイアログ44とシーケンスダイアログ45内で強調して表示される。 FIG. 6 shows a culture schedule main screen, and automatic culture processing is performed on this main screen 16. A method for performing the automatic culture process will be described below. First, when an automatic culture sequence file created by the sequence creation software 18 to be described later is selected 43, the execution contents are displayed in the command list dialog 44 and the sequence dialog 45, and the culture processing schedule is displayed in the calendar 46. When the contents are checked and the start button 47 is pressed, the automatic culture process starts. At this time, the display of the execution time 48, the next operation time 49, the estimated end time 50, and the calendar 46 is updated when the start button 47 is pressed. In addition, the current status display 51 is changed from being stopped to being automatically cultured. When the automatic culture process is performed, the command being executed and the command list are highlighted in the command list dialog 44 and the sequence dialog 45, respectively.
 また、シーケンスダイアログ45にはタイムライン表示52があり、実行中のコマンドリストの実行時間において視覚的な判断を可能にする。自動培養処理中でやむを得ず、停止するため一時停止ボタン53と停止ボタン54がある。一時停止ボタン53は再度押すと、一時停止した動作から自動培養処理を再開することができる。停止ボタン54は動作を全て止めてしまうため、同じ動作から自動培養処理を再開することができない。培養スケジュールメイン画面16には細胞増殖予測21、顕微鏡位置調整20、保存データ処理19、シーケンス作成18、コマンドリスト作成17の各ソフトウェアがある。これはシーケンスファイルを実行する培養スケジュールメイン画面16の操作において重要な役割がある。
  次に、各ソフトウェアの構成について説明する。
In addition, the sequence dialog 45 has a timeline display 52, which allows a visual judgment on the execution time of the command list being executed. There is a suspend button 53 and a stop button 54 to stop during the automatic culture process. When the pause button 53 is pressed again, the automatic culture process can be resumed from the paused operation. Since the stop button 54 stops all operations, the automatic culture process cannot be resumed from the same operation. The culture schedule main screen 16 includes software for cell growth prediction 21, microscope position adjustment 20, stored data processing 19, sequence creation 18, and command list creation 17. This has an important role in the operation of the culture schedule main screen 16 for executing the sequence file.
Next, the configuration of each software will be described.
 <培養スケジュールソフトウェアの構成>
  図7及び図8を用いて、本実施例における、シーケンスファイルを作成するためのインタフェース部としてのコマンドリスト作成画面と、シーケンス作成画面について説明する。自動培養処理において、細胞播種、培地交換、細胞顕微鏡観察等をハードウェア33が行うため、それぞれのコマンドリストが必要になる。コマンドは一般的に装置設計者が定めた文字列からなるため、作業者がコマンドリストを書くことは困難である。
<Composition of culture schedule software>
A command list creation screen and a sequence creation screen as an interface unit for creating a sequence file in this embodiment will be described with reference to FIGS. In the automatic culture process, since the hardware 33 performs cell seeding, medium exchange, cell microscope observation, and the like, each command list is required. Since a command is generally composed of a character string determined by a device designer, it is difficult for an operator to write a command list.
 そこで、本実施例における、コマンドリストの作成を容易にするためのインタフェース部であるGUIが、図7に示したコマンドリスト作成画面17である。コマンド選択ダイアログ55に例えばモータ動作という表示があり、それを選択すると、コマンド内容選択56内で回転速度や回転数を入力して、コマンドリスト57に追加すると、翻訳してコマンドが入力される。このような作業により作成したコマンドリスト57はテキストなどのデータで任意の名前(例えば、細胞播種、培地交換等)で保存58することができ、必要に応じてコマンドリスト名を指定して出力59することができる。コマンドリスト57の修正には、追加60、削除61、更新62が可能でさらに、ハードウェア33を動かす動作チェック63も可能とする。 Therefore, the GUI that is an interface unit for facilitating the creation of the command list in this embodiment is the command list creation screen 17 shown in FIG. The command selection dialog 55 has a display such as motor operation, for example. When this is selected, the rotational speed and the rotational speed are input in the command content selection 56 and added to the command list 57, and the command is input after translation. The command list 57 created by such operations can be saved 58 with any name (eg, cell seeding, medium exchange, etc.) as data such as text, and the command list name can be designated and output 59 if necessary. can do. The command list 57 can be corrected by adding 60, deleting 61, and updating 62, and further enabling an operation check 63 for moving the hardware 33.
 ここで作成したコマンドリスト57を指定の時間で実行するシーケンスの作成を容易にするためのGUIが、図8に示したシーケンス作成画面18である。コマンドリスト選択ダイアログ64に例えば培地交換の表示があり、それを選択すると、コマンドリスト実行時間入力65で、時間を入力して、シーケンスリスト66へ追加することができる。このような作業により作成したシーケンスリスト66はテキストなどのデータで任意の名前(例えば、角膜細胞培養用シーケンス)で保存67することができ、また必要に応じてシーケンス名を指定して出力68することができる。シーケンスリスト66は日数指定タブタブ73があり、自動培養処理日ごとにコマンドリスト57を入力することが可能である。シーケンスリスト66の修正には追加69、削除70、更新71が可能で、さらにハードウェア33を動かす動作チェック72も可能とする。 A GUI for facilitating creation of a sequence for executing the command list 57 created here at a specified time is the sequence creation screen 18 shown in FIG. For example, a medium exchange display is displayed in the command list selection dialog 64, and when this is selected, the time can be input at the command list execution time input 65 and added to the sequence list 66. The sequence list 66 created by such operations can be saved 67 as an arbitrary name (for example, a sequence for corneal cell culture) as data such as text, and the sequence name is designated and output 68 if necessary. be able to. The sequence list 66 has a days specification tab tab 73, and the command list 57 can be input every automatic culture processing day. The sequence list 66 can be modified by adding 69, deleting 70, and updating 71, and further enabling an operation check 72 for moving the hardware 33.
 次に、図9を用いて、保存データからセンサ値をグラフ化するための保存データ処理画面19の一例について説明する。自動培養制御ソフトウェア12内の記録処理で、常に温度、二酸化炭素濃度等の培養環境に関するセンサ値を、一般的にはテキスト形式で保存している。自動培養実施中、もしくは終了後に作業者は過去の培養環境データを検索74して、自動培養処理内で正常な環境下で細胞が培養されたかを調べる。 Next, an example of the saved data processing screen 19 for graphing sensor values from the saved data will be described with reference to FIG. In the recording process in the automatic culture control software 12, sensor values relating to the culture environment such as temperature and carbon dioxide concentration are generally stored in a text format. During or after the completion of the automatic culture, the operator searches 74 past culture environment data to check whether the cells are cultured in a normal environment within the automatic culture process.
 そこで、本画面により作業者が必要な条件で保存データをグラフ化することで、作業者が現在もしくは過去の培養状況に関する判断を容易にする。グラフ化したいデータをグラフ表示センサ値選択ダイアログ75から選択する。この際、グラフの縦軸の最大値、最小値を決定できる。そして、グラフに表示したい期間を検索ダイアログ74で選択すると、センサ値グラフダイアログ76に要求するグラフが表示される。このグラフはグラフ保存ダイアログ77で保存でき、保存データファイル選択ダイアログ78で、過去のグラフデータを出力できる。保存したデータは、JPEG(Joint Photographic Experts Group)、BMP(Bit Map)、TIFF(Tagged Image File Format)、及びPNG(Portable Network Graphics)等の画像形式でも保存可能である。また、センサ値グラフダイアログ76で表示されるグラフ内にエラー発生を示すサインを入れることも可能である。 Therefore, this screen makes it easy for the operator to determine the current or past culture status by graphing the stored data under the necessary conditions. Data to be graphed is selected from the graph display sensor value selection dialog 75. At this time, the maximum and minimum values on the vertical axis of the graph can be determined. When a period to be displayed on the graph is selected in the search dialog 74, the requested graph is displayed on the sensor value graph dialog 76. This graph can be saved in the graph save dialog 77, and past graph data can be outputted in the save data file selection dialog 78. The saved data can be saved in JPEG (Joint Photographic Experts Group), BMP (Bit Map), TIFF (Tagged Image File Format), PNG (Portable Network Graphics), etc. It is also possible to put a sign indicating an error occurrence in the graph displayed in the sensor value graph dialog 76.
 図10を用いて、細胞画像を撮影する顕微鏡の位置調整を可能とする顕微鏡位置調整画面20の一例について説明する。ジョグダイアルダイアログ79で数値入力またはその中の画面上のジョイスティック等により顕微鏡を移動する。また、その中で現在の位置の保存や、過去に保存した移動先の位置を呼び出して、移動することも可能である。現在の顕微鏡位置はX、Y、Z値画面80にX、Y、Z値が表示される。操作ボタン81には照明やカメラ電源等のON、OFFがあり、それらの操作により細胞画像が顕微鏡画像82に表示される。顕微鏡画像82に表示される細胞画像はRGB調整83により色合い等の変更やシャープネス等の変更を可能にする。 An example of the microscope position adjustment screen 20 that enables the position adjustment of the microscope that captures the cell image will be described with reference to FIG. The microscope is moved by inputting a numerical value in the jog dial dialog 79 or a joystick on the screen in the dialog box. In addition, it is possible to move by calling the current position stored in the list or the destination position stored in the past. The current microscope position is displayed on the X, Y, Z value screen 80 as X, Y, Z values. The operation button 81 has ON / OFF such as illumination and camera power supply, and the cell image is displayed on the microscope image 82 by these operations. The cell image displayed on the microscope image 82 can be changed in color tone and sharpness by RGB adjustment 83.
 細胞画像のピントはジョグダイアル79によるZ軸の変更もしくはオートフォーカス84によりなされる。そして、例えば細胞が浮遊状態、接着状態、重層化状態でピントが変化する場合、自動ピント修正用オフセット84により、顕微鏡の位置を変更することが可能になる。手動で細胞画像を撮影する場合は、撮影ボタン85により顕微鏡画像82に表示されている細胞画像をJPEG、BMP、TIFF及びPNG等の画像形式で保存することができる。培養シーケンス内で自動撮影による細胞画像の保存はコマンドリスト44による操作で実施することができる。その実行処理中に本画面20を表示することで、顕微鏡画像82から撮影している細胞画像をリアルタイムに確認できる。 The cell image is focused by changing the Z-axis by the jog dial 79 or by the autofocus 84. For example, when the focus changes in a floating state, an adhesive state, or a layered state, the position of the microscope can be changed by the automatic focus correction offset 84. When a cell image is manually captured, the cell image displayed on the microscope image 82 can be saved in an image format such as JPEG, BMP, TIFF, and PNG by the capture button 85. Storage of cell images by automatic photographing within the culture sequence can be carried out by operation using the command list 44. By displaying this screen 20 during the execution process, the cell image taken from the microscope image 82 can be confirmed in real time.
 図11を用いて、細胞の増殖状態から培地交換や顕微鏡観察のスケジュールを変更する細胞増殖予想画面21の一例について説明する。細胞画像や培地成分等から得た細胞数を細胞増殖予測画面21内の細胞増殖グラフ86にプロットしていくと、途中までの細胞数変化87が表示される。また、培養スケジュール上の培地交換日88が培養日数に表示される。そこで、細胞増殖予測ボタン90押すと、公知の手法により、それまでの細胞数変化87から細胞数予測91と、培地交換推奨日89を予想することができる。また、細胞増殖予想ボタン90を、公知の細胞数予想手法やパラメーター処理方法を選択可能に構成しておくことにより、細胞の種類から最適な予想方法を選択することができる。 Referring to FIG. 11, an example of a cell growth prediction screen 21 for changing the schedule for medium exchange and microscopic observation from the cell growth state will be described. When the number of cells obtained from a cell image, a medium component, or the like is plotted on the cell growth graph 86 in the cell growth prediction screen 21, a cell number change 87 until the middle is displayed. Further, the medium replacement date 88 on the culture schedule is displayed as the number of culture days. Therefore, when the cell growth prediction button 90 is pressed, the cell number prediction 91 and the recommended medium replacement date 89 can be predicted from the cell number change 87 so far by a known method. In addition, by configuring the cell growth prediction button 90 so that a known cell number prediction method or parameter processing method can be selected, an optimal prediction method can be selected from the types of cells.
 培地交換日88を予想された培地交換推奨日89に変更するため、培地交換日88にオフセットかける。オフセット設定ダイアログ92から設定し、変更ボタン93によりシーケンス45の変更がなされる。変更したシーケンス45を中止して、初期の培地交換日88に修正する場合には中止ボタン94を押す。培養終了予想日や培養終了までの時間は表示95され、終了時にはそれらが例えば、培養終了等で表示される。 To offset the medium replacement date 88 to the expected medium replacement recommended date 89, the medium replacement date 88 is offset. The setting is made from the offset setting dialog 92 and the sequence 45 is changed by the change button 93. When the changed sequence 45 is canceled and corrected to the initial medium replacement date 88, the cancel button 94 is pressed. The expected end date of culture and the time until the end of culture are displayed 95, and at the end, they are displayed, for example, at the end of culture.
 <自動培養装置のシステム構成>
  図12は、自動培養ソフトウェア10が制御対象とするハードウェア33である自動培養装置99における内部機器を制御するための制御システムの構成を示すブロック図である。
<System configuration of automatic culture equipment>
FIG. 12 is a block diagram showing a configuration of a control system for controlling internal devices in the automatic culture apparatus 99 which is the hardware 33 to be controlled by the automatic culture software 10.
 自動培養装置99の制御システムは、制御の状況をユーザーに示す表示部100と、データや指示を入力するための入力部(タッチパネル、キーボード、マウス等)101とからなるインタフェース部と、自動培養装置99の各動作を制御する、中央処理部(Central Processing Unit:CPU)で構成される制御処理部102と、キャッシュ等の動作を行うためのメモリ103と、ネットワークインタフェースとして機能する通信部104と、自動培養ソフトウェア10を含むプログラムやパラメーター等を格納するROM105と、一時的にデータや処理結果を格納するRAM106を備えている。なお、通信部104もインタフェース部としても良い。 The control system of the automatic culture device 99 includes an interface unit including a display unit 100 that indicates a control state to a user, and an input unit (touch panel, keyboard, mouse, etc.) 101 for inputting data and instructions, and an automatic culture device. A control processing unit 102 configured by a central processing unit (CPU) that controls each operation of 99, a memory 103 for performing operations such as a cache, a communication unit 104 functioning as a network interface, A ROM 105 that stores programs including the automatic culture software 10, parameters, and the like, and a RAM 106 that temporarily stores data and processing results are provided. Note that the communication unit 104 may also be an interface unit.
 更に、ヒーター、二酸化炭素供給等の処理をおこない、それらのセンサによる環境保持装置107、マニュプレータ110、冷蔵庫内の環境を制御する冷蔵庫制御108とポンプ111トからなる培地供給システム109を備えている。このうち、バス、或いは通信路を介して接続され、点線で囲った、表示部100~RAM106が、先に説明したPC等のコンピュータに対応し、環境保持装置107~ポンプ111が、自動培養装置の培養機構部としてのハードウェア33に対応している。 Furthermore, a medium supply system 109 is provided that includes a heater, carbon dioxide supply, and the like, and an environmental holding device 107, a manipulator 110, a refrigerator control 108 for controlling the environment in the refrigerator, and a pump 111. Among these, the display unit 100 to RAM 106 connected via a bus or a communication path and surrounded by a dotted line correspond to the computer such as the PC described above, and the environment holding device 107 to the pump 111 are automatic culture apparatuses. Corresponds to the hardware 33 as the culture mechanism section.
 ユーザーが入力部101や通信部104から処理するべき培養工程を指示すると、制御処理部102は、ROM105に格納された自動培養ソフトウェア10、特に自動培養制御ソフトウェア12からの命令に従って、リアルタイム制御25を進め、温度37℃、5%二酸化炭素濃度、湿度100%、清潔環境野とする。培地供給システム109設置後に冷蔵庫制御108をおこなう。そして、制御処理部102は、ROM105に格納された自動培養ソフトウェア10のプログラムに従って、マニピュレーター110や培地供給システム109のポンプ111により、培養容器での細胞培養処理を実施する。随時、表示部100と通信部104でその処理状況をユーザーに示すことができる。細胞培養処理が終了したら、表示部100と通信部104で終了をユーザーに示し、培養容器の脱着もしくはインキュベーター扉が開いたことを感知し、制御処理部102は、ROM105に格納された自動培養ソフトウェア10の終了プログラムに従い、終了処理をおこなう。以上により、自動培養装置99による一連の細胞培養処理を実現することが可能となる。 When the user instructs a culture process to be processed from the input unit 101 or the communication unit 104, the control processing unit 102 performs the real-time control 25 in accordance with a command from the automatic culture software 10 stored in the ROM 105, particularly the automatic culture control software 12. Proceed with temperature 37 ° C, 5% carbon dioxide concentration, humidity 100%, clean environment field. The refrigerator control 108 is performed after the medium supply system 109 is installed. Then, the control processing unit 102 performs cell culture processing in the culture vessel by the manipulator 110 and the pump 111 of the medium supply system 109 according to the program of the automatic culture software 10 stored in the ROM 105. The processing status can be shown to the user at any time by the display unit 100 and the communication unit 104. When the cell culture processing is completed, the display unit 100 and the communication unit 104 indicate the completion to the user, sense that the culture container has been removed or the incubator door has been opened, and the control processing unit 102 has automatic culture software stored in the ROM 105 The termination process is performed according to the termination program of No. 10. As described above, a series of cell culture processes by the automatic culture apparatus 99 can be realized.
 本実施例における自動培養装置内のコマンド、シーケンス等の情報の伝達路である通信31としては、通常のLAN(Local Area Network)を用い、既存の通信プロトコルである、UDP(User Datagram Protocol)/IP(Internet Protocol)や,TCP(Tranmission Control Protocol)/IPを用いて情報のやり取りを行うことができる。通信32も同様に構成することもできる。 As communication 31 which is a transmission path of information such as commands and sequences in the automatic culture apparatus in the present embodiment, a normal LAN (Local Area Network) is used, and UDP (User Datagram Protocol) / existing communication protocol is used. Information can be exchanged using IP (Internet Protocol) or TCP (Transmission Control Protocol) / IP. The communication 32 can be configured similarly.
 図13A、13Bに本実施例の自動培養装置内の通信31の通信プロトコルとして、UDP/IPを用いた場合のパケットフォーマットの一例を図示した。
  通信31においては、図13Aに示すパケットフォーマット120でコマンド及びレスポンスを実現する。パケットフォーマット120中、STXはパケットの先頭を、コマンドは通信内容本体を、ETXはコマンドの終端を、CRはパケットの終端を示す。
FIGS. 13A and 13B show an example of a packet format when UDP / IP is used as the communication protocol of the communication 31 in the automatic culture apparatus of the present embodiment.
In the communication 31, commands and responses are realized with the packet format 120 shown in FIG. 13A. In the packet format 120, STX indicates the beginning of the packet, the command indicates the communication content body, ETX indicates the end of the command, and CR indicates the end of the packet.
 図13Bに示すテーブル121は、通信31のコマンド及びレスポンス内容の一例を示す。各項番に対応し、コマンドとレスポンスが設定され、図示する識別子が割り振られている。 The table 121 shown in FIG. 13B shows an example of the command and response contents of the communication 31. Corresponding to each item number, a command and a response are set, and an identifier shown in the figure is assigned.
 次に、第2の実施例として、上述した第1の実施例の自動培養ソフトウェア10中の自動培養制御ソフトウェア12のみを自動培養装置99内に保有する、外部通信型(遠隔操作型)自動培養装置の実施例を説明する。なお、以下の説明は実施例1との差分のみを説明するが、その余の部分が実施例1の構成と同様に構成することができる。また、便宜上、インタフェース部100、101の図示を省略した。 Next, as a second embodiment, an external communication type (remote operation type) automatic culture in which only the automatic culture control software 12 in the automatic culture software 10 of the first embodiment described above is held in the automatic culture apparatus 99. An embodiment of the apparatus will be described. In the following description, only the difference from the first embodiment will be described, but the remaining part can be configured in the same manner as the configuration of the first embodiment. For convenience, the interface units 100 and 101 are not shown.
 図14Aにおいて、自動培養装置99の内部には、自動培養制御ソフトウェア12のみを保有する制御処理部102と、制御処理部102と通信32を介して接続されるハードウェア33が存在し、培養スケジュールソフトウェア15は、外部ネットワークへの通信路である通信31に接続された外部制御処理部112の内部に保有されている。そして、通信31を介した、外部制御処理部112内で動作する培養スケジュールソフトウェア15からの制御により、制御処理部102内の自動培養制御ソフトウェア12が動作する。本実施例における通信プロトコルも、UDP/IPや、TCP/IPを用いることができる。なお、本実施例における自動培養制御ソフトウェア12中の一部分である、オープニング・起動時チェックリスト30等の機能も、外部制御処理部112側に移行することもできる。何れにしても、本実施例の構成おいては、制御処理部は、制御処理部102と外部制御処理部112を含む総称となる。 14A, in the automatic culture apparatus 99, there are a control processing unit 102 having only the automatic culture control software 12 and hardware 33 connected to the control processing unit 102 via the communication 32, and the culture schedule The software 15 is held inside an external control processing unit 112 connected to a communication 31 that is a communication path to an external network. Then, the automatic culture control software 12 in the control processing unit 102 operates by the control from the culture schedule software 15 operating in the external control processing unit 112 via the communication 31. As a communication protocol in this embodiment, UDP / IP or TCP / IP can also be used. It should be noted that functions such as the opening / startup checklist 30 that are a part of the automatic culture control software 12 in this embodiment can also be transferred to the external control processing unit 112 side. In any case, in the configuration of this embodiment, the control processing unit is a generic name including the control processing unit 102 and the external control processing unit 112.
 本実施例の構成によれば、自動培養装置99から離れて、遠隔操作が可能となると共に、自動培養装置99の制御処理部102内で実行されるソフトウェア量が軽減されるため、自動培養装置99内の処理部の負担を軽くすることが可能である。 According to the configuration of the present embodiment, remote operation is possible away from the automatic culture apparatus 99 and the amount of software executed in the control processing unit 102 of the automatic culture apparatus 99 is reduced. It is possible to reduce the burden on the processing unit 99.
 次に、図14Bを用い、第3の実施例である外部通信型(遠隔操作、集中制御型)自動培養装置の実施例を説明する。実施例2同様、以下の説明は実施例1や実施例2との差分のみを説明するが、その余の部分が実施例1や実施例2の構成と同様に構成することができる。同様に、便宜上、インタフェース部100、101の図示を省略した。 Next, with reference to FIG. 14B, an embodiment of an external communication type (remote operation, centralized control type) automatic culture apparatus according to the third embodiment will be described. As in the second embodiment, the following description only describes the differences from the first embodiment and the second embodiment, but the remaining portions can be configured in the same manner as in the first and second embodiments. Similarly, the interface units 100 and 101 are not shown for convenience.
 図14Bに示すように、本実施例の構成にあっては、複数の自動培養装置99が、遠隔に設置される外部制御処理部112によって制御される構成を有する。複数の自動培養装置99各々の内部には、実施例2に示した自動培養装置と同様、ハードウェア33と、自動培養制御ソフトウェア12を内蔵する制御処理部102とが設置され、これら複数の自動培養制御ソフトウェア12は、通信31を介して、外部制御処理部112内の、それぞれ対応する培養スケジュールソフトウェア15によって制御される構成を有する。なお、本実施例における自動培養制御ソフトウェア12中の一部分である、オープニング・起動時チェックリスト30等の機能も、外部制御処理部112側に移行することもできる。何れにしても、本実施例の構成おいては、制御処理部とは、制御処理部102と外部制御処理部112を含む総称となる。 As shown in FIG. 14B, the configuration of this example has a configuration in which a plurality of automatic culture apparatuses 99 are controlled by an external control processing unit 112 installed remotely. Inside each of the plurality of automatic culture apparatuses 99, similarly to the automatic culture apparatus shown in the second embodiment, the hardware 33 and the control processing unit 102 incorporating the automatic culture control software 12 are installed. The culture control software 12 has a configuration controlled by the corresponding culture schedule software 15 in the external control processing unit 112 via the communication 31. It should be noted that functions such as the opening / startup checklist 30 that are a part of the automatic culture control software 12 in this embodiment can also be transferred to the external control processing unit 112 side. In any case, in the configuration of the present embodiment, the control processing unit is a generic name including the control processing unit 102 and the external control processing unit 112.
 本実施例の構成によれば、複数の自動培養装置を、遠隔に設置された外部制御処理部112の操作者により、纏めて制御管理することができる。 According to the configuration of the present embodiment, a plurality of automatic culture apparatuses can be collectively controlled and managed by an operator of the external control processing unit 112 installed remotely.
 以上説明したように、本発明においては、培養スケジュールソフトウェアを自動培養制御ソフトウェアと分離し、両者間で通信する構成とし、培養スケジュールソフトウェアはGUIにより培養スケジュール作成のための作業者の入力作業や細胞培養予想からのスケジュール変更プロセスを最小とし、入力ミスをなくして操作を容易にする。培養スケジュール管理は培養スケジュールソフトウェアでおこなう。自動培養制御ソフトウェアはバックグラウンドで動作し、培養スケジュールソフトとの通信によりハードウェアを制御する。培養スケジュールソフトがダウンした場合、自動培養制御ソフトウェアで管理することで、製造する生体組織の品質の安定化を可能にする。さらに、培養スケジュールソフトウェアには、その処理方法を作成するコマンドリスト作成ソフトウェア、時間ごとの処理方法を作成するシーケンス作成ソフトウェア、動作履歴表示ソフトウェア、顕微鏡位置調整ソフトウェア、培養予測ソフトウェアが存在し、また、自動培養制御ソフトウェアは各要素機器の制御やセンサ値の保管、ハードウェアエラーを管理することができる。 As described above, in the present invention, the culture schedule software is separated from the automatic culture control software and communicates between the two, and the culture schedule software uses the GUI to input the operator's input work and cells for creating the culture schedule. Minimize the process of changing the schedule from the expected culture and eliminate input errors to facilitate operation. Culture schedule management is performed with the culture schedule software. The automatic culture control software operates in the background and controls the hardware by communicating with the culture schedule software. When the culture schedule software goes down, it is possible to stabilize the quality of the biological tissue to be manufactured by managing it with the automatic culture control software. Furthermore, in the culture schedule software, there are command list creation software for creating the processing method, sequence creation software for creating the processing method for each time, operation history display software, microscope position adjustment software, culture prediction software, The automatic culture control software can control each element device, store sensor values, and manage hardware errors.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。上記した実施例は本発明を分かりやすく説明するために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されものではない。上記の実施例においては、自動培養装置を例示して説明したが、本発明は、培養装置の制御が全て自動化されている必要はなく、細胞培養装置の細胞の培養の制御の一部分が制御処理部の自動培養制御ソフトウェアによって制御される細胞培養装置にも適用可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. The above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. In the above embodiment, the automatic culture apparatus has been described as an example. However, in the present invention, it is not necessary that the control of the culture apparatus is entirely automated, and part of the control of cell culture in the cell culture apparatus is a control process. It can also be applied to a cell culture apparatus controlled by some automatic culture control software.
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、それぞれの機能を実現するプログラムを実行することによりソフトウェアで実現する場合を例示して説明したが、各機能を実現するプログラム、テーブル、ファイル等の情報はメモリのみならず、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体におくことができるし、必要に応じてネットワーク等を介してダウンロード、インストールすることも可能である。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. In addition, each configuration, function, and the like have been described by exemplifying a case where they are realized by software by executing a program that realizes each function. However, information on programs, tables, files, and the like that realize each function It can be stored not only in memory but also in recording devices such as hard disks and SSDs (Solid State Drives), or recording media such as IC cards, SD cards, and DVDs, and can be downloaded and installed via a network or the like as necessary. It is also possible to do.
10  自動培養ソフトウェア
11  起動画面
12  自動培養制御ソフトウェア
13  メイン画面
14  サブ画面
15  培養スケジュールソフトウェア
16  メイン画面
17  コマンドリスト作成(画面含む)
18  シーケンス作成(画面含む)
19  保存データ処理(画面含む)
20  顕微鏡位置調整(画面含む)
21  細胞増殖予測(画面含む)
22  コマンド処理
23  デバイス制御処理
24  モニタリング処理
25  リアルタイム制御処理
26  記録処理
27  非常停止処理
28  エラー処理
29  オプション設定処理
30  オープニング・起動時チェックリスト30
31  通信
32  通信
33  ハードウェア
34  ダイアログ
35  スタートボタン
36  キャンセルボタン
37  ステータス表示(サブ)
38  駆動系状態表示(サブ)
39  通信状態表示
40  ステータス表示・制御ボタン
41  駆動系コントロール・制御ボタン
42  切替ボタン
43  シーケンスファイル選択
44  コマンドリストダイアログ
45  シーケンスダイアログ
46  カレンダー
47  スタートボタン
48  実行時間
49  次回動作時間
50  終了予測時間
51  現状表示
52  タイムライン表示
53  一時停止ボタン
54  停止ボタン
55  コマンド選択
56  コマンド内容選択
57  コマンドリスト
58  保存
59  出力
60  追加
61  削除
62  更新
63  動作チェック
64  コマンドリスト選択
65  コマンドリスト実行時間入力
66  シーケンスリスト
67  保存
68  出力
69  追加
70  削除
71  更新
72  動作チェック
73  タブ
74  検索
75  グラフ表示センサ値選択
76  センサ値グラフ
77  グラフ保存
78  保存データファイル選択
79  ジョグダイアル
80  XYZ値
81  操作ボタン
82  顕微鏡画像
83  RGB調整
84  オートフォーカス・オフセット
85  撮影ボタン
86  細胞増殖グラフ
87  細胞数変化
88  培地交換日
89  培地交換推奨日
90  細胞増殖予測ボタン
91  細胞数予測
92  オフセット設定
93  変更ボタン
94  中止ボタン
95  培養終了ダイアログ
99  自動培養装置
100、101 インタフェース部
102 制御処理部
103 メモリ
104 通信部
105 ROM
106 RAM
107 環境保持装置
108 冷蔵庫制御
109 培地供給システム
110 マニピュレーター
111 ポンプ
112 通信フォーマット
113 コマンドリスト
114 外部制御処理部
10 Automatic culture software 11 Startup screen 12 Automatic culture control software 13 Main screen 14 Sub screen 15 Culture schedule software 16 Main screen 17 Command list creation (including screen)
18 Sequence creation (including screen)
19 Saved data processing (including screen)
20 Microscope position adjustment (including screen)
21 Cell growth prediction (including screen)
22 Command processing 23 Device control processing 24 Monitoring processing 25 Real-time control processing 26 Recording processing 27 Emergency stop processing 28 Error processing 29 Option setting processing 30 Opening / startup checklist 30
31 Communication 32 Communication 33 Hardware 34 Dialog 35 Start button 36 Cancel button 37 Status display (sub)
38 Drive system status display (sub)
39 Communication Status Display 40 Status Display / Control Button 41 Drive System Control / Control Button 42 Switch Button 43 Sequence File Selection 44 Command List Dialog 45 Sequence Dialog 46 Calendar 47 Start Button 48 Execution Time 49 Next Operation Time 50 End Expected Time 51 Current Status Display 52 Timeline display 53 Pause button 54 Stop button 55 Command selection 56 Command content selection 57 Command list 58 Save 59 Output 60 Add 61 Delete 62 Update 63 Operation check 64 Command list selection 65 Command list execution time input 66 Sequence list 67 Save 68 Output 69 Add 70 Delete 71 Update 72 Operation check 73 Tab 74 Search 75 Graph display sensor value selection 76 Sensor value graph 77 Save rough 78 Saved data file selection 79 Jog dial 80 XYZ value 81 Operation button 82 Microscope image 83 RGB adjustment 84 Auto focus / offset 85 Shooting button 86 Cell growth graph 87 Cell number change 88 Medium replacement date 89 Medium replacement recommended date 90 Cell growth prediction Button 91 Cell number prediction 92 Offset setting 93 Change button 94 Stop button 95 Culture end dialog 99 Automatic culture apparatus 100, 101 Interface unit 102 Control processing unit 103 Memory 104 Communication unit 105 ROM
106 RAM
107 environmental maintenance device 108 refrigerator control 109 medium supply system 110 manipulator 111 pump 112 communication format 113 command list 114 external control processing unit

Claims (15)

  1. 細胞培養装置であって、
    細胞の培養を行う培養機構部と、
    前記培養機構部で細胞の培養を行うための培養ソフトウェアを実行処理する制御処理部とを備え、
    前記制御処理部は、
    前記培養ソフトウェアを実行処理する際に、前記培養機構部の培養スケジュールを決定する培養スケジュールソフトウェアと、決定した前記培養スケジュールに従い、前記培養機構部を制御する培養制御ソフトウェアに分離して実行する、
    ことを特徴とする細胞培養装置。
    A cell culture device,
    A culture mechanism for culturing cells;
    A control processing unit that executes and executes culture software for culturing cells in the culture mechanism unit,
    The control processing unit
    When the culture software is executed, the culture schedule software for determining the culture schedule of the culture mechanism unit and the culture control software for controlling the culture mechanism unit according to the determined culture schedule are executed separately.
    A cell culture device.
  2. 請求項1に記載の細胞培養装置であって、
    前記制御処理部は、前記培養スケジュールソフトウェアで決定した前記培養スケジュールを、通信により前記培養制御ソフトウェアに伝達する、
    ことを特徴とする細胞培養装置。
    The cell culture device according to claim 1,
    The control processing unit transmits the culture schedule determined by the culture schedule software to the culture control software by communication.
    A cell culture device.
  3. 請求項2に記載の細胞培養装置であって、
    インタフェース部を更に備え、
    前記制御処理部は、
    前記培養ソフトウェアを実行し、前記インタフェース部に前記培養機構部に関する項目チェックリストを表示する、
    ことを特徴とする細胞培養装置。
    The cell culture device according to claim 2,
    An interface unit;
    The control processing unit
    Execute the culture software, and display an item checklist for the culture mechanism unit on the interface unit,
    A cell culture device.
  4. 請求項2に記載の細胞培養装置であって、
    インタフェース部を更に備え、
    前記制御処理部は、
    前記培養制御ソフトウェアを実行し、前記インタフェース部に前記培養機構部の状態を示す画面を表示する、
    ことを特徴とする細胞培養装置。
    The cell culture device according to claim 2,
    An interface unit;
    The control processing unit
    Execute the culture control software, and display a screen showing the state of the culture mechanism unit on the interface unit,
    A cell culture device.
  5. 請求項4に記載の細胞培養装置であって、
    前記制御処理部は、
    前記インタフェース部の前記培養機構部の状態を表示する画面に、エラー表示を行う、
    ことを特徴とする細胞培養装置。
    The cell culture device according to claim 4,
    The control processing unit
    On the screen displaying the state of the culture mechanism part of the interface part, an error is displayed.
    A cell culture device.
  6. 請求項2に記載の細胞培養装置であって、
    インタフェース部を更に備え、
    前記制御処理部は、
    前記培養スケジュールソフトウェアを実行し、前記インタフェース部に複数のコマンドのシーケンスを作成するための画面を表示する、
    ことを特徴とする細胞培養装置。
    The cell culture device according to claim 2,
    An interface unit;
    The control processing unit
    Execute the culture schedule software, and display a screen for creating a sequence of a plurality of commands on the interface unit,
    A cell culture device.
  7. 請求項6に記載の細胞培養装置であって、
    前記培養機構部は、前記細胞の細胞画像を撮像する撮像部を含み、
    前記制御処理部は、
    前記培養スケジュールソフトウェアを実行し、撮影した前記細胞画像に基づき、前記撮像部の焦点調整を行う、
    ことを特徴とする細胞培養装置。
    The cell culture device according to claim 6,
    The culture mechanism unit includes an imaging unit that captures a cell image of the cell,
    The control processing unit
    Execute the culture schedule software, and based on the captured cell image, adjust the focus of the imaging unit,
    A cell culture device.
  8. 請求項6に記載の細胞培養装置であって、
    前記培養機構部は、少なくとも一種のセンサを備え、
    前記制御処理部は、
    前記培養スケジュールソフトウェアを実行し、前記センサの出力を前記インタフェース部に表示する、
    ことを特徴とする細胞培養装置。
    The cell culture device according to claim 6,
    The culture mechanism unit includes at least one type of sensor,
    The control processing unit
    Execute the culture schedule software, and display the output of the sensor on the interface unit,
    A cell culture device.
  9. 請求項6に記載の細胞培養装置であって、
    前記培養機構部は、培養中の前記細胞の細胞画像を撮像する撮像部を含み、
    前記制御処理部は、
    前記培養スケジュールソフトウェアを実行し、前記細胞画像に基づき、培養中の前記細胞の増殖予想を行う、当該増殖予想を前記インタフェース部に表示する、
    ことを特徴とする細胞培養装置。
    The cell culture device according to claim 6,
    The culture mechanism unit includes an imaging unit that captures a cell image of the cell in culture,
    The control processing unit
    Execute the culture schedule software, and based on the cell image, predict the growth of the cells in culture, display the growth prediction on the interface unit,
    A cell culture device.
  10. 請求項9に記載の細胞培養装置であって、
    前記制御処理部は、
    前記培養スケジュールソフトウェアを実行し、前記増殖予想に基づき、前記シーケンスの変更を可能とする、
    ことを特徴とする細胞培養装置。
    The cell culture device according to claim 9,
    The control processing unit
    Execute the culture schedule software, based on the growth prediction, enabling the change of the sequence,
    A cell culture device.
  11. 細胞培養装置の制御装置であって、
    培養機構部で細胞の培養を行うための培養ソフトウェアを実行処理する制御処理部と、前記細胞の培養の状況を表示可能なインタフェース部とを備え、
    前記制御処理部は、
    前記培養ソフトウェアを、前記培養機構部の培養スケジュールを決定する培養スケジュールソフトウェアと、前記培養スケジュールソフトウェアで決定された前記培養スケジュールに従い、前記培養機構部を制御する培養制御ソフトウェアとに分離して実行する、
    ことを特徴とする制御装置。
    A control device for a cell culture device,
    A control processing unit that executes and processes culture software for culturing cells in the culture mechanism unit, and an interface unit that can display the status of the cell culture,
    The control processing unit
    The culture software is separated into a culture schedule software for determining a culture schedule of the culture mechanism unit and a culture control software for controlling the culture mechanism unit according to the culture schedule determined by the culture schedule software. ,
    A control device characterized by that.
  12. 請求項11に記載の制御装置であって、
    前記制御処理部は、
    前記培養スケジュールソフトウェアで決定した前記培養スケジュールに基づくコマンドを前記培養制御ソフトウェアに伝達する、
    ことを特徴とする制御装置。
    The control device according to claim 11,
    The control processing unit
    A command based on the culture schedule determined by the culture schedule software is transmitted to the culture control software.
    A control device characterized by that.
  13. 請求項12に記載の制御装置であって、
    前記培養機構部は、
    前記細胞の画像を撮像する撮像部を含み、
    前記制御処理部は、
    前記培養スケジュールソフトウェアにより、前記細胞の画像に基づき、培養中の前記細胞の増殖予想を行い、当該増殖予想を前記インタフェース部に表示し、前記細胞の増殖予想に基づき、前記培養スケジュールの変更を可能とする、
    ことを特徴とする制御装置。
    The control device according to claim 12,
    The culture mechanism is
    An imaging unit that captures an image of the cell;
    The control processing unit
    The culture schedule software predicts the growth of the cell during culture based on the image of the cell, displays the growth prediction on the interface unit, and can change the culture schedule based on the cell growth prediction And
    A control device characterized by that.
  14. 制御処理部を備える細胞培養装置の制御方法であって、
    前記制御処理部は、
    培養機構部で細胞を培養するため、
    前記培養機構部の培養スケジュールを決定する培養スケジュールソフトウェアと、
    前記培養スケジュールソフトウェアで決定された前記培養スケジュールに従い、前記培養機構部を制御する培養制御ソフトウェアとを、分離して実行する、
    ことを特徴とする制御方法。
    A method for controlling a cell culture device comprising a control processing unit,
    The control processing unit
    In order to culture cells in the culture mechanism,
    Culture schedule software for determining a culture schedule of the culture mechanism unit;
    In accordance with the culture schedule determined by the culture schedule software, the culture control software for controlling the culture mechanism unit is executed separately.
    A control method characterized by that.
  15. 請求項14に記載の制御方法であって、
    前記制御処理部は、
    前記培養スケジュールソフトウェアで決定した前記培養スケジュールに基づくコマンドを、通信により前記培養制御ソフトウェアに伝達する、
    ことを特徴とする制御方法。
    The control method according to claim 14, comprising:
    The control processing unit
    A command based on the culture schedule determined by the culture schedule software is transmitted to the culture control software by communication.
    A control method characterized by that.
PCT/JP2012/058653 2012-03-30 2012-03-30 Cell culture device, control device, and method WO2013145283A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/058653 WO2013145283A1 (en) 2012-03-30 2012-03-30 Cell culture device, control device, and method
JP2014507244A JP5905078B2 (en) 2012-03-30 2012-03-30 Cell culture device, control device, and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/058653 WO2013145283A1 (en) 2012-03-30 2012-03-30 Cell culture device, control device, and method

Publications (1)

Publication Number Publication Date
WO2013145283A1 true WO2013145283A1 (en) 2013-10-03

Family

ID=49258646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058653 WO2013145283A1 (en) 2012-03-30 2012-03-30 Cell culture device, control device, and method

Country Status (2)

Country Link
JP (1) JP5905078B2 (en)
WO (1) WO2013145283A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203780A1 (en) * 2016-05-27 2017-11-30 株式会社 日立ハイテクノロジーズ Device and method for fabricating three-dimensional structure from cells
JP2019041602A (en) * 2017-08-30 2019-03-22 オリンパス株式会社 Cell cultivation monitoring system
JP2019041656A (en) * 2017-08-31 2019-03-22 株式会社Ihi Cultivation support device
CN109923588A (en) * 2016-11-10 2019-06-21 伯克顿迪金森公司 For monitoring the timeline system of culture medium scheme
WO2023189281A1 (en) * 2022-03-31 2023-10-05 ソニーグループ株式会社 Information processing apparatus, information processing method, cell culturing system, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002269180A (en) * 2001-03-07 2002-09-20 Japan Tissue Engineering:Kk Culture managing device and program therefor
JP2007110932A (en) * 2005-10-19 2007-05-10 Hitachi Medical Corp Automatic method for culturing and cell culture apparatus
JP2010152829A (en) * 2008-12-26 2010-07-08 Nikon Corp Cell culture management system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002269180A (en) * 2001-03-07 2002-09-20 Japan Tissue Engineering:Kk Culture managing device and program therefor
JP2007110932A (en) * 2005-10-19 2007-05-10 Hitachi Medical Corp Automatic method for culturing and cell culture apparatus
JP2010152829A (en) * 2008-12-26 2010-07-08 Nikon Corp Cell culture management system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203780A1 (en) * 2016-05-27 2017-11-30 株式会社 日立ハイテクノロジーズ Device and method for fabricating three-dimensional structure from cells
JPWO2017203780A1 (en) * 2016-05-27 2019-03-07 株式会社日立ハイテクノロジーズ Apparatus and method for manufacturing a three-dimensional structure of a cell
CN109923588A (en) * 2016-11-10 2019-06-21 伯克顿迪金森公司 For monitoring the timeline system of culture medium scheme
US11694378B2 (en) 2016-11-10 2023-07-04 Becton, Dickinson And Company Timeline system for monitoring a culture media protocol
JP2019041602A (en) * 2017-08-30 2019-03-22 オリンパス株式会社 Cell cultivation monitoring system
JP2019041656A (en) * 2017-08-31 2019-03-22 株式会社Ihi Cultivation support device
WO2023189281A1 (en) * 2022-03-31 2023-10-05 ソニーグループ株式会社 Information processing apparatus, information processing method, cell culturing system, and program

Also Published As

Publication number Publication date
JPWO2013145283A1 (en) 2015-08-03
JP5905078B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP5905078B2 (en) Cell culture device, control device, and method
Hazlehurst et al. Distributed cognition in the heart room: how situation awareness arises from coordinated communications during cardiac surgery
US20140204190A1 (en) Systems and methods for providing guidance for a procedure with a device
KR102512693B1 (en) Teleoperated surgical system with surgical instrument wear tracking
Hughes et al. Plans as situated action: An activity theory approach to workflow systems
JP5672700B2 (en) Cell observation apparatus and program
JP7375886B2 (en) Culture support equipment, observation equipment, and programs
AU2014318564B2 (en) Computer-based operating room support system
US20200311922A1 (en) Cell observation system and inference model generating method
WO2013113760A1 (en) Microscope with wireless radio interface and microscope system
US9319483B2 (en) Asynchronous open task for operating room control system
CN107798733A (en) Display system, mobile information apparatus, wearable type terminal and method for information display
US20200143941A1 (en) Method for web-based data transfer for a dental or dental-surgical treatment or diagnosis system and such a treatment or diagnosis system
JP2017138707A (en) Display control device, display control method, and display control program
US20200005666A1 (en) Remote mentoring station
Healey et al. Teamwork enables remote surgical control and a new model for a surgical system emerges
WO2023061551A1 (en) System for controlling design and manufacturing process for user specific devices
US20230298482A1 (en) Determination of surgical performance level
KR101967988B1 (en) Schedule control apparatus, facility management system, and schedule control method
Meyer et al. The transformative role of telemedicine on coordination: a practice approach
JP2007010891A (en) Display device, control program, and recording medium having the program recorded therein
WO2021033552A1 (en) Information processing device, information processing method, and program
JP2023131846A (en) Automatic cell culture apparatus
JP2017205150A (en) Medical image recording device
Behzadi et al. MECHATRONIC PLACEMENT AND POSITIONING OF PROSTHETIC ACETABULAR CUP

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507244

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872786

Country of ref document: EP

Kind code of ref document: A1