WO2013144780A1 - Pompe à chaleur pour un appareil de traitement de vêtements et appareil de traitement de vêtements comprenant une telle pompe à chaleur - Google Patents

Pompe à chaleur pour un appareil de traitement de vêtements et appareil de traitement de vêtements comprenant une telle pompe à chaleur Download PDF

Info

Publication number
WO2013144780A1
WO2013144780A1 PCT/IB2013/052198 IB2013052198W WO2013144780A1 WO 2013144780 A1 WO2013144780 A1 WO 2013144780A1 IB 2013052198 W IB2013052198 W IB 2013052198W WO 2013144780 A1 WO2013144780 A1 WO 2013144780A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat pump
refrigerant line
condenser
evaporator
Prior art date
Application number
PCT/IB2013/052198
Other languages
English (en)
Inventor
Jose Gonzalvez Macia
Iñaki OTERO GARCIA
Roberto San Martin Sancho
Original Assignee
BSH Bosch und Siemens Hausgeräte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP12382127.4A external-priority patent/EP2644768A1/fr
Application filed by BSH Bosch und Siemens Hausgeräte GmbH filed Critical BSH Bosch und Siemens Hausgeräte GmbH
Priority to CN201380017865.2A priority Critical patent/CN104204335B/zh
Priority to EP13720601.7A priority patent/EP2831330B1/fr
Publication of WO2013144780A1 publication Critical patent/WO2013144780A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/206Heat pump arrangements

Definitions

  • the invention relates to a heat pump for a clothes treatment appliance, comprising a compressor, a condenser, a restrictor, and an evaporator, and further comprising a liquid- suction heat interchanger, wherein the liquid-suction heat interchanger comprises a first refrigerant line and a second refrigerant line that are thermally coupled to each other; an inlet of the first refrigerant line of the heat interchanger is coupled to an outlet of the evaporator and an outlet of the first refrigerant line is coupled to an inlet of the compres- sor; and an inlet of the second refrigerant line is coupled to an outlet of the condenser and an outlet of the second refrigerant line is coupled to an inlet of the restrictor.
  • the invention also relates to a clothes treatment appliance comprising such heat pump.
  • a heat pump and a clothes treatment appliance comprising such heat pump are disclosed in EP 2 385 169 A1.
  • an additional heat exchanger for exchanging heat between a flow of ambient air and refrigerant exiting from the condenser, and for exchanging heat between refrigerant exiting from the condenser and refrigerant exiting from the evaporator is provided.
  • That heat exchanger includes an additional interaction between the heat pump and its ambient into the operation of the heat pump which makes operation of the heat pump considerably more difficult to handle. Variations of ambient temperature result in variations of the operating condition of the heat pump.
  • a laundry dryer comprising a heat pump has improved efficiency (in terms of kWh/kg) as compared to a conventional laundry dryer only employing an electrical heater.
  • a related operational carbon dioxide emission of the laundry dryer comprising the heat pump is lower than that of the conventional dryer due to its lower electric consumption.
  • a refrigerant used in the heat pump must be taken into account with its GWP ('Global Warming Potential').
  • typical refrigerants used in a heat pump are fluorinated hydrocarbon compounds (HFC) whose GWP is higher than 1500.
  • process air flows from a drum to the evaporator.
  • the air is at a medium temperature and relatively wet.
  • the air is cooled and dehumidified and then flows to the condenser where it is heated. Hot and dry air is then introduced again in the drum where it can absorb moisture from laundry contained in the drum.
  • the evaporator and the condenser are typically of a tube-and-fins type.
  • the tubes of the evaporator and the condenser may be separate entities as described in prior art documents WO 2008/004802 A3, EP 2 261 416 A1 , and EP 1 593 770 B1 , or may be joined in the same core, as described in prior art document WO 2008/004802 A3.
  • alumin- ium single-tube type (no-frost type) in which an aluminium tube is bended and fins are placed along it without tube expansion.
  • An outer diameter of the tubes of the evaporator and the condenser used at present in heat pump dryers are as follows: 3/8" (9.525mm) and 7 mm for a tube-and-fins type evaporator and condenser and 8 mm for an aluminium single-tube type evaporator and condenser.
  • TEWI Total Equivalent Warming Impact', that includes direct and indirect emission
  • hydrocarbon refrigerants that have a low GWP like R-290 (propane) or R-1270 (propylene).
  • R-290 propane
  • R-1270 propylene
  • IEC 60335-2-1 1 standard limits the maximum charge (150g) in a laundry dryer. It is generally known that an optimum refrigerant charge can be found for a specific system, but the refrigerant limit of 150 g imposed by the IEC 60335-2-1 1 standard is typically lower than the optimum charge of refrigerant for a heat pump of a laundry dryer.
  • a clothes drying appliance having a heat pump typically comprises a refrigerant circuit and an air path.
  • the refrigerant flows through the compressor, the condenser, the restrictor and the evaporator, in this order. These elements are connected by refrigerant lines, in particular pipes.
  • the refrigerant releases heat to the process air flowing through the air path by means of the condenser and absorbs heat and humidity from the process air flowing through the air path by means of the evaporator.
  • the compressor absorbs power and compresses the refrigerant in the refrigerant circuit.
  • a liquid-suction heat interchanger (also called a liquid-to-suction heat exchanger or regenerator) is mainly known in low temperature refrigeration systems using a vapour compression system where there is a long distance between the evaporator and the compressor.
  • the liquid-suction heat interchanger typically comprises two refrigerant lines or channels (e.g. pipes), wherein in one of the refrigerant lines (the 'liquid' line) flows liquid refrigerant and in the other refrigerant line (the 'suction' line) flows refrigerant in its vaporous form.
  • the lines are thermally connected to each other to allow a heat transfer between them and are typically thermally isolated against the environment.
  • the liquid- suction heat interchanger may increase cooling capacity and reduce power input in vapour compression systems for some refrigerants.
  • the liquid- suction heat interchanger may work with evaporation temperatures below zero degrees centigrade (corresponding to an evaporator outlet temperature of around -20°C). Therefore, an external superheating (between the refrigerant and an ambient air) is created in the suction line due to a high temperature difference. This external superheating degrades the heat pump's COP (coefficient of performance; cooling capacity divided by power input) because the compressor power consumption is increased with no effect on the cooling capacity.
  • COP coefficient of performance; cooling capacity divided by power input
  • a heat pump for a clothes treatment appliance comprising a compressor, a condenser, a restrictor, and an evaporator, and further comprising a liquid- suction heat interchanger
  • the liquid-suction heat interchanger comprises a first refrigerant line and a second refrigerant line that are thermally coupled to each other; an inlet of the first refrigerant line of the heat interchanger is coupled to an outlet of the evaporator and an outlet of the first refrigerant line is coupled to an inlet of the compres- sor; and an inlet of the second refrigerant line is coupled to an outlet of the condenser and an outlet of the second refrigerant line is coupled to an inlet of the restrictor.
  • the first refrigerant line and the second refrigerant line are thermally isolated against an environment of the liquid-suction heat interchanger.
  • a clothes treatment appliance comprising a heat pump, wherein the heat pump is a heat pump as described above.
  • a further advantage is that the refrigerant mass flow may be decreased. Therefore a temperature of the refrigerant at the compressor inlet is increased due to extra superheating in the liquid-suction heat interchanger. Thus, a density of the refrigerant at the compressor inlet is lowered which leads to a decrease of a power consumption of the compressor.
  • the heat pump comprising the liquid-suction heat interchanger is working in its optimum operation point (showing superheating in the evaporator)
  • the cooling capacity in the evaporator is increased (since the effect of an enthalpy increase is bigger than that of a mass flow decrease) and the power consumption is reduced to achieve the same com- pression ratio.
  • a dehumidification rate is increased with a reduction of the power consumption. This means that a drying time and an energy consumption of the drying cycle are reduced. Also, an increase in cooling capacity in the evaporator improves the COP, especially for hydrocarbon refrigerants.
  • one side of the first refrigerant line (suction line) of the heat interchanger is coupled to an outlet of the evaporator and the other side of the first refrigerant line is coupled to an inlet of the compressor; and further one side of the second refrigerant line (liquid line) is coupled to an outlet of the condenser and the other side of the second refrigerant line is coupled to an inlet of the restrictor.
  • this kind of connection allows the heat interchanger to cool down refrigerant from the condenser outlet (giving more subcooling) and to heat up the evaporator outlet (giving more superheat).
  • the heat pump of the heat interchanger may use a flammable or non-flammable refriger- ant.
  • the heat interchanger can be of different configurations (e.g. as a double pipe, as a plate heat exchanger and so on). It is a preferred embodiment of the invention that the second (liquid) refrigerant line is thermally more isolated against the ambient than the first (suction) refrigerant line. This preserves the temperature increase at the compressor inlet.
  • this design may be implemented by using the first pipe as the first (suction) refrigerant line and using the second pipe as the second (liquid) refrigerant pipe.
  • the vaporous refrigerant flowing in the first pipe experiences a lower temperature difference to the environment while the liquid refrigerant flowing in the second pipe experiences a higher temperature difference since it is thermally shielded against the environment by the first pipe.
  • the compressor exhibits a displacement of 12 cc/rev (cubic centimeters per revolution) or less, in particular 10.5 cc/rev or less. This embodiment reflects the surprising finding that if the compressor displacement is bigger (in particular for typical household appliances), it might be required to increase a heating capacity at the condenser in order to enable a dissipation of energy coming from the compressor.
  • an outer diameter of the condenser pipes i.e. pipes used with a condenser
  • an outer diameter of the evaporator pipes i.e. pipes used with n evaporator
  • the use of the outer diameter being smaller than 7 mm is preferred in order to enable the condensation of the refrigerant in the condenser (using a smaller refrigerant charge in the condenser).
  • an outer diameter of the con- denser pipes measures less than 7 mm while an outer diameter of the evaporator pipes measures 7 mm or more, e.g. 3/8" (9.525mm) or 7 mm for a tube-and-fins type evaporator and 8 mm for an aluminium single-tube type evaporator.
  • This embodiment makes use of the fact that the refrigerant line of the condenser (also called condenser coil) is the part of the refrigerant circuit which has the highest inner volume and consequently the highest amount of refrigerant (i.e. a higher volume and a higher density of the refrigerant).
  • the inner volume is decreased, so for the same mass of refrigerant a higher density is obtained.
  • a larger percentage of liquid refrigerant in liquid-vapour phase is obtained which in turn allows a sooner condensation of the refrigerant in the condenser.
  • a higher subcooling is achieved with the consequent benefit for the cooling capacity.
  • an outer diameter of the condenser pipes and/or an outer diameter of the evaporator pipes is about 6 mm or less, in particular 5 mm or less.
  • An outer diameter of about 5 mm has been found to be a particularly good compromise between a small charge of the refrigerant and a high efficiency.
  • the combination of a 5 mm condenser and a 5 mm evaporator may bring an additional improvement as compared to the reference case of a 7 mm condenser (and 7 mm evaporator).
  • the use of the 5 mm condenser and the 5 mm evaporator brings a dry- ing time reduction of 16% and an energy consumption reduction of 14%.
  • a refrigerant of the heat pump is a flammable refrigerant.
  • This embodiment is made practical by enabling a charge of the refrigerant of 150g or less.
  • Flammable refrigerant often has a lower GWP than non- flammable refrigerant.
  • the refrigerant comprises a hydrocarbon refrigerant or a plurality of hydrocarbon refrigerants.
  • Hydrocarbon refrigerants show a low to negligible GWP. Hydrocarbon refrigerants are particularly useful to be used in the liquid-suction heat interchanger to improve system COP.
  • the refrigerant is or comprises propane (R290).
  • propane has the advantage to have a relatively low GWP (of 3.3 times the GWP of carbon dioxide), does not destroy the ozone layer, may be used as an alternative to R-12, R-22, R-134a and other chlorinated and/or fluorinated hydrocarbons, and is readily available.
  • the refrigerant is or comprises propylene (R1270).
  • the refrigerant is or comprises HFO-1234yf or 2,3,3,3-Tetra- fluoropropene.
  • HFO-1234yf has almost no environmental impact, acquiring a GWP rating 335 times less than that of the conventional R-134a and an atmospheric lifetime of about 400 times shorter. Furthermore, HFO-1234yf is only mildly flammable.
  • the clothes treatment appliance is a clothes drying appliance, e.g. a stand-alone clothes dryer or a washer-dryer. It is another preferred embodiment of the invention that the clothes treatment appliance is a household appliance.
  • Fig.1 shows a schematic drawing of a household tumble dryer using a heat pump
  • Fig.2 shows a schematic drawing of a heat pump of the tumble dryer
  • Fig.3 shows a sectional side view of a liquid-suction heat interchanger of the heat pump.
  • Fig.1 shows a clothes treatment appliance in form of a household tumble dryer H.
  • the tumble dryer H comprises a heat pump P having at least a compressor 1 , a condenser 2 of a tube-and-fins type, a restrictor 3, and an evaporator 4 of a tube-and-fins type as elements.
  • the elements 1 to 4 are serially connected in the shown order by refrigerant pipes 5 to form a refrigerant circuit or path.
  • the tumble dryer H also comprises a process air circuit or path 6 wherein process air A flows.
  • the air circuit 6 comprises a rotatable drum 7 for holding to be processed clothes.
  • the air A leaves the drum 7 at a medium temperature and wet.
  • the air A then flows to the evaporator 4 that is placed in the air circuit A downstream the drum 7 and works as a heat exchanger.
  • the air A is cooled down and condenses.
  • the resultant condensate is collected in a water tank W.
  • the air A also cools down and transfers part of its thermal energy upon the evaporator 4 and thus onto the refrigerant R within the evaporator 4.
  • the evaporator 4 to transform the refrigerant R from a liquid state into a vaporous state.
  • the now dry and cool air A passes through the condenser 2 where a heat transfer from the condenser 2 and the refrigerant R within to the air A is effected to heat up the air A and cool down the refrigerant R to its liquid state.
  • the then warm and dehumidified / dry air A is subsequently reintroduced into the drum 7 to warm up the clothes and to pick up moisture.
  • the refrigerant R is moved within the refrigerant circuit 1 to 5 by the compressor 1.
  • the working of such a tumble dryer H with its heat pump P (comprising the refrigerant circuit 1 to 5) and its air circuit 6 is well known and does not need to be explained in greater detail.
  • Fig.2 shows a schematic drawing of a heat pump P'.
  • the heat pump P' may be used in the tumble dryer H instead of the heat pump P.
  • the heat pump P' differs from heat pump P in that it comprises a liquid-suction heat interchanger 8.
  • the heat interchanger 8 is of a double pipe design and comprises a first refrigerant line 9 in form of a tubular (suction) pipe 9 having a suction pipe inlet 9i for inputting low pressure refrigerant R and a suction pipe outlet 9o for outputting the vaporous refrigerant R.
  • a second refrigerant line 10 in form of a tubular (liquid) pipe 10 having a liquid pipe inlet 10i for inputting high pressure refrigerant R and a liquid pipe outlet 10o for outputting the liquid refrigerant R at a respective end.
  • the suction pipe 9 and the liquid pipe 10 are highly thermally con- nected, e.g.
  • the suction pipe 9 may be thermally less isolated against its environment than the liquid pipe 10.
  • the suction pipe inlet 9i is coupled to an outlet 4o of the evaporator 4 via a refrigerant pipe 5
  • the suction pipe outlet 9o is coupled to an inlet 1 i of the compressor 1 via another refrigerant pipe 5.
  • the liquid pipe inlet 10i of the liquid pipe 10 is coupled to an outlet 2o of the condenser 2 and the liquid pipe outlet 10o is coupled to an inlet 3i of the restrictor 3.
  • This kind of connection allows the heat interchanger 8 to cool down refrig- erant R from the condenser outlet 2o (giving a stronger subcooling) and to heat up the evaporator outlet 4o (giving a stronger superheating).
  • the compressor 1 of the heat pump P' exhibits a displacement lower than 10.5 cc/rev.
  • the outer diameter of the tube or pipe of the tube-and-fins type condenser 2 is 5 mm.
  • the outer diameter of the tube or pipe of the evaporator 4 may also be 5 mm.
  • the refrigerant R is or comprises propane, propylene and/or HFO-1234yf.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

L'invention concerne une pompe à chaleur (P') pour un appareil de traitement de vêtements (H). La pompe à chaleur (P') comprend un compresseur (1), un condenseur (2), un restricteur (3) et un évaporateur (4), et comprend en outre un échangeur de chaleur à aspiration de liquide (8). L'échangeur de chaleur à aspiration de liquide (8) comprend une première ligne de réfrigérant (9) et une deuxième ligne de réfrigérant (10) qui sont thermiquement couplées l'une à l'autre. Une entrée (9i) de la première ligne de réfrigérant (9) de l'échangeur de chaleur (8) est couplée à une sortie (4o) de l'évaporateur (4), et une sortie (9o) de la première ligne de réfrigérant (9) est couplée à une entrée (1i) du compresseur (1). Une entrée (10i) de la deuxième ligne de réfrigérant (10) est couplée à une sortie (2o) du condenseur (2) et une sortie (10ο) de la deuxième ligne de réfrigérant (10) est couplée à une entrée (3i) du restricteur (3). La première ligne de réfrigérant (9) et la deuxième ligne de réfrigérant (10) sont thermiquement isolées contre un environnement de l'échangeur de chaleur à aspiration de liquide (8). Un appareil de traitement de vêtements (H) selon la présente invention comprend une telle pompe à chaleur (P').
PCT/IB2013/052198 2012-03-30 2013-03-20 Pompe à chaleur pour un appareil de traitement de vêtements et appareil de traitement de vêtements comprenant une telle pompe à chaleur WO2013144780A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380017865.2A CN104204335B (zh) 2012-03-30 2013-03-20 用于衣物处理器具的热泵和包括这种热泵的衣物处理器具
EP13720601.7A EP2831330B1 (fr) 2012-03-30 2013-03-20 Pompe à chaleur pour appareil de traitement de linge

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP12382127.4 2012-03-30
EP12382127.4A EP2644768A1 (fr) 2012-03-30 2012-03-30 Pompe à chaleur pour appareil de traitement de linge
ESP201230640 2012-04-27
ES201230640 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013144780A1 true WO2013144780A1 (fr) 2013-10-03

Family

ID=48289565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/052198 WO2013144780A1 (fr) 2012-03-30 2013-03-20 Pompe à chaleur pour un appareil de traitement de vêtements et appareil de traitement de vêtements comprenant une telle pompe à chaleur

Country Status (4)

Country Link
EP (1) EP2831330B1 (fr)
CN (1) CN104204335B (fr)
PL (1) PL2831330T3 (fr)
WO (1) WO2013144780A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2871432A1 (fr) * 2013-11-06 2015-05-13 BSH Hausgeräte GmbH Pompe à chaleur pour un appareil ménager
WO2015172840A1 (fr) * 2014-05-16 2015-11-19 Electrolux Appliances Aktiebolag Seche-linge a pompe a chaleur
WO2015172839A1 (fr) * 2014-05-16 2015-11-19 Electrolux Appliances Aktiebolag Sèche-linge à pompe à chaleur
EP3241524A4 (fr) * 2014-12-29 2018-01-10 Dongguan Dianfu Product Design Co., Ltd. Endoprothèse neuronale à noyau solide renfermant des fils métalliques dégradables
WO2020235071A1 (fr) * 2019-05-23 2020-11-26 三菱電機株式会社 Appareil à cycle de réfrigération, système de commande de cycle de réfrigération et procédé de commande de cycle de réfrigération

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3617392T3 (pl) * 2018-08-30 2022-09-26 Electrolux Appliances Aktiebolag Suszarka do prania zawierająca system pompy ciepła

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004802A2 (fr) 2006-07-04 2008-01-10 Lg Electronics Inc. Appareil de blanchissage
EP2189568A1 (fr) * 2008-11-21 2010-05-26 Electrolux Home Products Corporation N.V. Machine à laver et sécher le linge
EP2261416A1 (fr) 2009-06-09 2010-12-15 Electrolux Home Products Corporation N.V. Échangeur thermique pour séchoir, spécialement pour un séchoir domestique
EP1593770B1 (fr) 2004-05-06 2011-03-16 Panasonic Corporation Sèche-linge
EP2341180A1 (fr) * 2009-12-29 2011-07-06 Electrolux Home Products Corporation N.V. Système de pompe à chaleur pour sèche-linge
EP2385169A1 (fr) 2010-05-03 2011-11-09 Electrolux Home Products Corporation N.V. Machine à laver avec système de pompe à chaleur et procédé de fonctionnement de la machine à laver

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006061737B3 (de) * 2006-12-28 2008-04-24 BSH Bosch und Siemens Hausgeräte GmbH Kondensationstrockner mit einer Wärmepumpe sowie Verfahren zu seinem Betrieb
EP2058427A1 (fr) * 2007-11-06 2009-05-13 BSH Electrodomésticos España, S.A. Appareil ménager ayant une unité de pompe à chaleur et moyen de refroidissement d'un composant associé
CN201202044Y (zh) * 2008-05-06 2009-03-04 上海理工大学 一种热泵式干衣机
DE102008043920A1 (de) * 2008-11-20 2010-05-27 BSH Bosch und Siemens Hausgeräte GmbH Kondensationstrockner mit einer Wärmepumpe sowie Verfahren zu seinem Betrieb

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1593770B1 (fr) 2004-05-06 2011-03-16 Panasonic Corporation Sèche-linge
WO2008004802A2 (fr) 2006-07-04 2008-01-10 Lg Electronics Inc. Appareil de blanchissage
EP2189568A1 (fr) * 2008-11-21 2010-05-26 Electrolux Home Products Corporation N.V. Machine à laver et sécher le linge
EP2261416A1 (fr) 2009-06-09 2010-12-15 Electrolux Home Products Corporation N.V. Échangeur thermique pour séchoir, spécialement pour un séchoir domestique
EP2341180A1 (fr) * 2009-12-29 2011-07-06 Electrolux Home Products Corporation N.V. Système de pompe à chaleur pour sèche-linge
EP2385169A1 (fr) 2010-05-03 2011-11-09 Electrolux Home Products Corporation N.V. Machine à laver avec système de pompe à chaleur et procédé de fonctionnement de la machine à laver

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2871432A1 (fr) * 2013-11-06 2015-05-13 BSH Hausgeräte GmbH Pompe à chaleur pour un appareil ménager
WO2015172840A1 (fr) * 2014-05-16 2015-11-19 Electrolux Appliances Aktiebolag Seche-linge a pompe a chaleur
WO2015172839A1 (fr) * 2014-05-16 2015-11-19 Electrolux Appliances Aktiebolag Sèche-linge à pompe à chaleur
CN106471180A (zh) * 2014-05-16 2017-03-01 伊莱克斯家用电器股份公司 热泵式干衣机
CN106661809A (zh) * 2014-05-16 2017-05-10 伊莱克斯家用电器股份公司 热泵式干衣机
CN106471180B (zh) * 2014-05-16 2019-09-03 伊莱克斯家用电器股份公司 热泵式干衣机
CN106661809B (zh) * 2014-05-16 2019-11-08 伊莱克斯家用电器股份公司 热泵式干衣机
EP3241524A4 (fr) * 2014-12-29 2018-01-10 Dongguan Dianfu Product Design Co., Ltd. Endoprothèse neuronale à noyau solide renfermant des fils métalliques dégradables
WO2020235071A1 (fr) * 2019-05-23 2020-11-26 三菱電機株式会社 Appareil à cycle de réfrigération, système de commande de cycle de réfrigération et procédé de commande de cycle de réfrigération
JPWO2020235071A1 (ja) * 2019-05-23 2021-10-21 三菱電機株式会社 冷凍サイクル装置、冷凍サイクル制御システム、および冷凍サイクル制御方法
US11906187B2 (en) 2019-05-23 2024-02-20 Mitsubishi Electric Corporation Refrigerating cycle apparatus, refrigerating cycle control system, and refrigerating cycle control method

Also Published As

Publication number Publication date
EP2831330B1 (fr) 2016-03-16
CN104204335A (zh) 2014-12-10
PL2831330T3 (pl) 2016-09-30
EP2831330A1 (fr) 2015-02-04
CN104204335B (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
EP2831330B1 (fr) Pompe à chaleur pour appareil de traitement de linge
EP3066406B1 (fr) Pompe à chaleur pour un appareil ménager
Mancini et al. Thermodynamic analysis and experimental investigation of a CO2 household heat pump dryer
US20140109428A1 (en) Dryer
CN201245785Y (zh) 具有热泵的家用电器
US20140033563A1 (en) Heat pump laundry dryer
JP5409715B2 (ja) 空気調和装置
EA016181B1 (ru) Бытовой прибор с жидким теплоносителем
US20140041400A1 (en) Heat pump system for a laundry dryer and a method for operating a heat pump laundry dryer
EP2468948B1 (fr) Appareil de chauffage/déshumidification et sèche-linge l'utilisant
EP2735819B1 (fr) Appareil à cycle de réfrigération et appareil de production d'eau chaude disposant d'un appareil à cycle de réfrigération
Gatarić et al. Evaluating R450A as a drop-in replacement for R134a in household heat pump tumble dryers
JP5625883B2 (ja) 除湿加温装置および同装置を備えた衣類乾燥機
EP2519686A1 (fr) Sèche-linge à pompe à chaleur
EP2644768A1 (fr) Pompe à chaleur pour appareil de traitement de linge
JP2011250849A (ja) 衣類乾燥装置
JP2014064741A (ja) 衣類処理装置
EP2690213A1 (fr) Appareil pour traiter des articles
JP5617602B2 (ja) 除湿加温装置および同装置を備えた衣類乾燥機
JP6675083B2 (ja) 二元ヒートポンプ装置
US20150300710A1 (en) Phase separator for a sealed system
EP2639538A1 (fr) Couvercle échangeur de chaleur
JP2016123770A (ja) 洗濯乾燥機
EP2412868A1 (fr) Machine et procédé pour le séchage d'articles humide par surchauffe d'un réfrigérant
CN110872775B (zh) 包括热泵系统的衣物烘干机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13720601

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013720601

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE