WO2013143585A1 - Procédé et dispositif d'aide à la constitution d'une séquence de commande à bon rendement énergétique - Google Patents

Procédé et dispositif d'aide à la constitution d'une séquence de commande à bon rendement énergétique Download PDF

Info

Publication number
WO2013143585A1
WO2013143585A1 PCT/EP2012/055492 EP2012055492W WO2013143585A1 WO 2013143585 A1 WO2013143585 A1 WO 2013143585A1 EP 2012055492 W EP2012055492 W EP 2012055492W WO 2013143585 A1 WO2013143585 A1 WO 2013143585A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
components
power consumption
energy
plant
Prior art date
Application number
PCT/EP2012/055492
Other languages
German (de)
English (en)
Inventor
Rainer FÖRTSCH
Rene Graf
Frank Konopka
Jörn PESCHKE
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2012/055492 priority Critical patent/WO2013143585A1/fr
Publication of WO2013143585A1 publication Critical patent/WO2013143585A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25289Energy saving, brown out, standby, sleep, powerdown modus for microcomputer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25387Control sequences so as to optimize energy use by controlled machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32021Energy management, balance and limit power to tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • Industrial plants also called automation systems, are used for the automated production of products and for the automated execution of processes. Depending on the requirements of the system, they are composed of many small and large system components. In these components, a variety of functionalities, such as measuring, controlling, controlling, the operation of the components via interfaces and the communication between the components and the interfaces are realized.
  • the components can be individual Ma ⁇ machines, conveyor units or entire production cells act with internal structure. There are also dependencies between these components, which, for example, dictate that a particular component can not be turned on or off until one or more other components are in a defined state.
  • an attachment contains implicit dependencies that a person can hardly overlook.
  • machines use more energy in startup phases than during operation. If several components are switched on in parallel, these load peaks can add up unfavorably and overload the energy grid. As a result of these circumstances, the individual components do not produce anything during downtimes of this plant, but they are still in working order, so that a considerable amount of energy is still consumed.
  • Investigations with automobile manufacturers have shown that the energy consumption of a non-producing plant is up to 60% compared to a plant in the producing plant. There is a huge savings potential here.
  • the method of assisting in the creation of an energy efficient control sequence of an industrial plant or part of an industrial plant consisting of plant components, in which plant components may have logical dependencies on one or more other plant components, is used in each of plant component of the system or of the part of the plant ⁇ infor mation on a component-specific power consumption ⁇ extending during a pre-defined sequence of operation of the component, each defined by a unique start and stop event in the operation of the component.
  • Vi ⁇ sualmaschine of the power consumption waveform in the time axis of each relevant component with the start time of the respective operation sequence within a predetermined time period is individually selectable and in which a determination of a high level of information to the overall shoveetznähme all selected system components in the given time period in real time, by accumulation of the available component-specific information about the power consumption course.
  • the component specific power consumption history information for each component is either previously known, for example, by information provided by the manufacturer. Alternatively, and for example, if one expects changes in energy intake at various times (approximately over the life of the equipment component we ⁇ gen wear), the information on the komponentenspe ⁇ -specific power consumption course for each component are ermit ⁇ telt.
  • an initial measurement after installation a measurement at the time of performing the method or repeated measurements and formation of an average value.
  • the total power consumption thus obtained is compared with an allowable maximum load (energy consumption), and exceeding the comparison value is visually appropriately highlighted (for example, in color).
  • the permissible maximum load may also be a dynamic value, which is time-dependent.
  • An orientation on the current electricity price is conceivable, with constant adjustment here results a fluctuation in the amount of energy.
  • the operating sequence of the component is a switch-on process.
  • the switch-on process is characterized, inter alia, by the fact that peak loads can arise here for a short time, which have a negative effect on the total energy consumption . If several components are switched on at the same time, it may quickly exceed the permissible limits Maximum load come. Alternatively, an indication of the currently accrued costs of energy consumption can be displayed over the observed period in the visualization ⁇ tion. Conversely, it is interesting to present components with a positive energy balance, as a generator of electricity.
  • the visualization can be used for an offline order to turn on or turn off certain components or lead to plan on the basis of known profiles and power consumptions a sequence for a classic usage scenario beispielswei ⁇ se of a production cycle and verifizie ⁇ ren. On the other hand can thus The current power consumption can also be displayed in order to monitor the plant more efficiently.
  • the profiles can be determined by the supplier of a component or must be measured in the system itself.
  • the power consumption of the entire system or parts of the system is represented by the sum of all components.
  • FIG. 1 shows a visualization with sequential processing
  • FIG. 2 shows a superimposition of processing operations
  • FIG. 4 maximum load for different sequences
  • FIG. 5 shows the depiction of the dependencies of the components with each other
  • FIG. 6 shows the representation of an optimized sequence.
  • Figure 1 shows the visualization of three components, all of which must be turned on.
  • Each component has its own profile K1, K2, K3, which describes the power consumption (for example, during switch-on). Furthermore, it can be seen that the three components are "driven” in strict sequential succession. First, starting from time t1, the component 1, as soon as it has completed its sequence at time t2 component 2 and at time t3 then component 3. At time t4 then component 3 is finished and the Ab ⁇ running sequence can be repeated if necessary.
  • FIG. 2 shows the experimental advancing of the sequence of sequences of the various components 2 and 3 in the time axis so that components 2 and 3 run at least partially parallel on the time axis.
  • the advantage of this modeling and representation is a temporally optimized sequence to turn on or off a plant or even a part of it, for example.
  • a higher-level energy management system can monitor idle times of the plant, i. H. There is currently no production in the corresponding part of the plant, decide whether the shutdown of the plant or parts of it is possible to have at the end of time again a fully operational system.
  • the visualization can also display dynamic maximum loads resulting, for example, from specifications of the energy supply company (RU). Just an excess of power available, system parts can be simultaneously harnessge ⁇ go.
  • RU energy supply company
  • FIG. 3 shows by way of example the visualization of the power consumption of three components K1, K2, K3 and the resulting sum Kges. These curves may represent both the ak ⁇ tual course as well be based on values measured in the preceding steps at defined operational phases production were recorded. In addition to switch-on and switch-off scenarios, it is also possible to plan repetitive operating scenarios.
  • the curve shows an overall decreasing trend, with the minimum value corresponding to the highest power consumption that a single component has, because the longest time t corresponds to the complete sequencing of all processes, analogous to the scenario illustrated in FIG.
  • Each shorter time implies parallel processing. Nevertheless, a shorter time theoretically can also lead to a lower maximum load, since peak loads present in the components add up favorably to one another and do not occur at the same time.
  • FIG. 5 shows six components 1,... 6 with their respective profiles of the power consumptions K1,... K6 when switching on and the dependencies 51, ... 55th Thereby attach the component 2 and 3 of 1 from the Kom ⁇ components 4, 5 and 6, however, only component. 3
  • the logical dependencies 51, 52 mean that the components 2 and 3 can begin their course only when the component 1 has completed its operating scenario. This means that parallelization is not possible here. Since components 2 and 3 are not interdependent, they can be parallelized. For this purpose, the component 3 is pushed by the optimization program on the time axis t under the component 2, so that they parallel run ⁇ fen. As seen in Figure 6, while the maximum he ⁇ laubte energy value Emax is not exceeded.
  • the display of the automatically generated optimized sequences also allows a post-treatment, can be used in the criteria that can not relate ⁇ or only with unjustified high effort in an optimization software.
  • the experience of a plant driver can be incorporated into the sequence again.
  • the visualization takes into account the modeled dependencies of the components 4, 5 and 6.
  • a system may also contain energy storage or generator.
  • the degree of filling of the storage tanks or the still retrievable output of the generators can be included in the dynamic maximum load and visualized accordingly.
  • the manufacturer of a machine or plant supplies for his product also prepared sequences for switching on and off ⁇ as well as the operation that comply with certain energetic Vorga ⁇ ben. These predefined sequences make the Integration into a larger plant and its energy management ⁇ ment greatly facilitated.
  • the visualization helps to create the sequences, as no simulation or optimization tool can be used economically for smaller machines or plants.
  • the visualization enables a flexible reaction to external requirements, as they can be projected into the future. Will soon be, for example, more energy when utilities are available, which can be very energy intensive to ⁇ heat of the curing oven are preferred. In the phase with less energy, the furnace is kept only at operating temperature and is therefore ready in time for production, but at the expense of energy costs.
  • This information is transmitted by the RU, for example
  • SmartGrid applications available can thus serve as a network stabilizer. Visualize the corresponding rates in addition to the availability of energy, energy-intensive tasks are preferred such as Kings ⁇ nen particular against the production planning.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

La présente invention concerne un procédé d'aide à la constitution d'une séquence de commande à bon rendement énergétique d'une installation industrielle ou d'une partie d'une installation industrielle se composant d'éléments d'installation, les éléments de l'installation pouvant présenter des relations logiques avec un ou plusieurs autres éléments de l'installation. Sont utilisées pour chacun des éléments de l'installation ou de la partie de l'installation, des informations relatives à une variation de consommation d'énergie spécifique de l'élément au cours d'une séquence de fonctionnement prédéfinie de l'élément, définie par un événement de début et un événement de fin respectivement univoques au cours du fonctionnement de l'élément. Il se déroule une visualisation de la variation de consommation d'énergie au cours du temps de chaque élément individuel concerné, l'instant de début de la séquence de fonctionnement respective pouvant tout d'abord être sélectionné librement au cours d'un intervalle de temps prédéterminé, et une détermination d'informations d'ensemble relatives à la consommation d'énergie globale de tous les éléments sélectionnés de l'installation au cours de l'intervalle de temps est faite en temps réel, par cumul des informations spécifiques des éléments, disponibles relatives à la variation de consommation d'énergie.
PCT/EP2012/055492 2012-03-28 2012-03-28 Procédé et dispositif d'aide à la constitution d'une séquence de commande à bon rendement énergétique WO2013143585A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/055492 WO2013143585A1 (fr) 2012-03-28 2012-03-28 Procédé et dispositif d'aide à la constitution d'une séquence de commande à bon rendement énergétique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/055492 WO2013143585A1 (fr) 2012-03-28 2012-03-28 Procédé et dispositif d'aide à la constitution d'une séquence de commande à bon rendement énergétique

Publications (1)

Publication Number Publication Date
WO2013143585A1 true WO2013143585A1 (fr) 2013-10-03

Family

ID=46001153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/055492 WO2013143585A1 (fr) 2012-03-28 2012-03-28 Procédé et dispositif d'aide à la constitution d'une séquence de commande à bon rendement énergétique

Country Status (1)

Country Link
WO (1) WO2013143585A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8935900B2 (en) 2013-01-04 2015-01-20 Robin Holthusen Reinforcement retainer
WO2015172034A3 (fr) * 2014-05-08 2015-12-23 Beet, Llc Système de commande et de gestion d'automatisation
WO2016050599A1 (fr) * 2014-09-30 2016-04-07 Siemens Aktiengesellschaft Procédé de détermination des besoins énergétiques d'une machine de production ou d'un système de production constitué de plusieurs machines de production et appareil adapté à la mise en œuvre du procédé
WO2016034167A3 (fr) * 2014-09-02 2016-04-28 Cavos Bagatelle Verwaltungs Gmbh & Co. Kg Système de création d'enregistrements de données de commande pour des robots
WO2016206886A1 (fr) * 2015-06-26 2016-12-29 Zf Friedrichshafen Ag Procédé et dispositif permettant de déterminer un point de fonctionnement efficace sur le plan énergétique
EP3696632A1 (fr) * 2019-02-15 2020-08-19 Siemens Aktiengesellschaft Procédé de fonctionnement d'une machine de fabrication à commande numérique ainsi que commande numérique correspondante
WO2022204739A1 (fr) * 2021-04-02 2022-10-06 Wittmann Technology Gmbh Procédé pour éviter un parallélisme de pointes de charge d'une machine de transformation de matières plastiques, en particulier d'une machine de moulage par injection ou d'une machine de formage, et installation de transformation de matières plastiques

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356814A (ja) * 2000-06-13 2001-12-26 Toyota Industries Corp エネルギー管理システム及びエネルギー消費管理方法
WO2008039759A2 (fr) * 2006-09-25 2008-04-03 Intelligent Management Systems Corporation Système et procédé pour une gestion des ressources
DE102008001777A1 (de) * 2008-05-14 2009-11-26 Robert Bosch Gmbh Verfahren und Anordnung zur Steuerung einer Fertigungslinie
DE102008040440A1 (de) * 2008-07-15 2010-01-21 Robert Bosch Gmbh Verfahren und Anordnung zur Unterstützung der Konstruktion einer Fertigungslinie
EP2244216A1 (fr) * 2009-04-24 2010-10-27 Rockwell Automation Technologies, Inc. Analyse et rapport de consommation énergétique temps-réel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356814A (ja) * 2000-06-13 2001-12-26 Toyota Industries Corp エネルギー管理システム及びエネルギー消費管理方法
WO2008039759A2 (fr) * 2006-09-25 2008-04-03 Intelligent Management Systems Corporation Système et procédé pour une gestion des ressources
DE102008001777A1 (de) * 2008-05-14 2009-11-26 Robert Bosch Gmbh Verfahren und Anordnung zur Steuerung einer Fertigungslinie
DE102008040440A1 (de) * 2008-07-15 2010-01-21 Robert Bosch Gmbh Verfahren und Anordnung zur Unterstützung der Konstruktion einer Fertigungslinie
EP2244216A1 (fr) * 2009-04-24 2010-10-27 Rockwell Automation Technologies, Inc. Analyse et rapport de consommation énergétique temps-réel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8935900B2 (en) 2013-01-04 2015-01-20 Robin Holthusen Reinforcement retainer
WO2015172034A3 (fr) * 2014-05-08 2015-12-23 Beet, Llc Système de commande et de gestion d'automatisation
EP3223092A1 (fr) * 2014-05-08 2017-09-27 Beet, LLC Système de gestion et d'exploitation d'automatisation
US10048670B2 (en) 2014-05-08 2018-08-14 Beet, Llc Automation operating and management system
WO2016034167A3 (fr) * 2014-09-02 2016-04-28 Cavos Bagatelle Verwaltungs Gmbh & Co. Kg Système de création d'enregistrements de données de commande pour des robots
US10493625B2 (en) 2014-09-02 2019-12-03 Cavos Bagatelle Verwaltungs Gmbh & Co. Kg System for generating sets of control data for robots
WO2016050599A1 (fr) * 2014-09-30 2016-04-07 Siemens Aktiengesellschaft Procédé de détermination des besoins énergétiques d'une machine de production ou d'un système de production constitué de plusieurs machines de production et appareil adapté à la mise en œuvre du procédé
WO2016206886A1 (fr) * 2015-06-26 2016-12-29 Zf Friedrichshafen Ag Procédé et dispositif permettant de déterminer un point de fonctionnement efficace sur le plan énergétique
EP3696632A1 (fr) * 2019-02-15 2020-08-19 Siemens Aktiengesellschaft Procédé de fonctionnement d'une machine de fabrication à commande numérique ainsi que commande numérique correspondante
WO2020165016A1 (fr) * 2019-02-15 2020-08-20 Siemens Aktiengesellschaft Procédé servant à faire fonctionner une machine de fabrication à commande numérique, et commande numérique correspondante
WO2022204739A1 (fr) * 2021-04-02 2022-10-06 Wittmann Technology Gmbh Procédé pour éviter un parallélisme de pointes de charge d'une machine de transformation de matières plastiques, en particulier d'une machine de moulage par injection ou d'une machine de formage, et installation de transformation de matières plastiques

Similar Documents

Publication Publication Date Title
WO2013143585A1 (fr) Procédé et dispositif d'aide à la constitution d'une séquence de commande à bon rendement énergétique
DE102005029818A1 (de) Verfahren und Vorrichtung zur Bereitstellung einer ökonomischen Analyse von Stromerzeugung und -verteilung
DE112011105886T5 (de) Management einer Anlage
EP2650739A1 (fr) Procédé et dispositif destinés à lýoptimisation d'un processus de production
DE102010048409A1 (de) Verfahren und Vorrichtung zur Optimierung eines Produktionsprozesses
DE102012106829B4 (de) Verfahren und Vorrichtung zur kosteneffizienten Steuerung von Energie-Verbrauchern
EP2574997B1 (fr) Procédé de réglage d'un état de fonctionnement
DE102007030492A1 (de) Gebäudemodellbasiertes prädiktives Regelverfahren zum Heizen eines begrenzten Systems
DE102014116313A1 (de) Energiemanagement für Druckmaschinen
EP3255513A1 (fr) Procede de surveillance en temps reel de la courbe de puissance et/ou du flux d'energie d'un dispositif d'entrainement et dispositif d'entrainement et programme informatique associe
EP2577829B1 (fr) Procédé et dispositif pour adapter un plan de déroulement de production pour un processus de production
EP2802947A1 (fr) Procédé et dispositif de commande économisant l'énergie d'un équipement
EP3623890A1 (fr) Procédé de surveillance d'une pluralité d'installations techniques
DE102011102776A1 (de) Produktionsmaschine und Verfahren zum Betrieb der Produktionsmaschine
EP2798418B1 (fr) Dispositif et procédé de constitution automatique de séquences de mise en fonctionnement dans une installation
EP3073678A1 (fr) Procede de communication de la charge de consommation dans des reseaux electriques
DE19932833A1 (de) Verfahren zum Regeln der Gesamtleistung mindestens einer energietechnischen Anlage, umfassend eine Gruppe Verbraucher, insbesondere elektrischer Verbraucher
EP2574996B1 (fr) Procédé de détermination de l'état de la charge partielle d'un système
EP3719737A1 (fr) Processus de gestion de l'énergie assisté par ordinateur et système de gestion de l'énergie
DE102011122516A1 (de) Verfahren zum Reduzieren des Ressourcenverbrauchs von Automatisierungsanlagen
EP3311460B1 (fr) Système distribué de conversion d'énergie
EP3000004B1 (fr) Dispositif et procédé pour faire fonctionner un système technique et procédé de fabrication d'un système technique
WO2016050599A1 (fr) Procédé de détermination des besoins énergétiques d'une machine de production ou d'un système de production constitué de plusieurs machines de production et appareil adapté à la mise en œuvre du procédé
WO2006037732A1 (fr) Procede pour pronostiquer la consommation d'energie d'une installation de production industrielle, dispositif pour mettre ledit procede en oeuvre et progiciel correspondant et support pouvant etre lu par ordinateur
DE102012025194A1 (de) Energiemodus mit maximaler Reaktivierungszeit für Automationsarchitektur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12716282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12716282

Country of ref document: EP

Kind code of ref document: A1