WO2013141451A1 - 나노클레이를 이용한 오일 함유 미생물 수확 및 바이오 오일 제조 방법 - Google Patents

나노클레이를 이용한 오일 함유 미생물 수확 및 바이오 오일 제조 방법 Download PDF

Info

Publication number
WO2013141451A1
WO2013141451A1 PCT/KR2012/007630 KR2012007630W WO2013141451A1 WO 2013141451 A1 WO2013141451 A1 WO 2013141451A1 KR 2012007630 W KR2012007630 W KR 2012007630W WO 2013141451 A1 WO2013141451 A1 WO 2013141451A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
aptes
biodiesel
nanoclay
microorganisms
Prior art date
Application number
PCT/KR2012/007630
Other languages
English (en)
French (fr)
Inventor
오유관
박지연
신현재
이영철
이진석
김덕근
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120028525A external-priority patent/KR101471243B1/ko
Priority claimed from KR1020120028523A external-priority patent/KR101375385B1/ko
Priority claimed from KR1020120035355A external-priority patent/KR101413368B1/ko
Priority claimed from KR1020120042958A external-priority patent/KR101448344B1/ko
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2013141451A1 publication Critical patent/WO2013141451A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/02Pretreatment
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a manufacturing method for extracting oil and biodiesel by efficiently agglomerating oil-containing microorganisms having an excellent oil production compared to soybean oil, rapeseed oil, palm oil, etc., which are raw materials of biodiesel. More specifically, microorganisms using Al-APTES, Ca-APTES, Mg-APTES, Fe-APTES, Mn-APTES Cu-APTES, etc. as nanoclays are cultured microorganisms to efficiently aggregate oil-containing microorganisms.
  • the present invention relates to a method for harvesting oil-containing microorganisms and preparing bio-oil using the same, by identifying the flocculation, precipitation efficiency, and the appropriate amount of use and concentration.
  • Biodiesel a clean alternative fuel that can be produced from renewable copper and vegetable oils
  • Biodiesel is defined as a methyl or ethyl ester compound of fatty acids produced from vegetable oils or animal fats and oils.
  • Biodiesel is suitable as an eco-friendly automobile fuel because it can significantly reduce air pollutant emissions such as carbon monoxide, fine dust, hydrocarbons, and toxic substances, compared to conventional diesel.
  • the carbon dioxide from the combustion of biodiesel is fixed absorbed by the photosynthetic mechanism of plants back so the net emission of carbon dioxide is almost lost, worldwide, has received a lot of attention to carbon dioxide neutral fuels (CO 2 -neutral fuel).
  • Soybean oil and palm oil which are the raw materials of biodiesel, are currently dependent on imports, and have a problem of high price and instability due to food-related resources. In response to this, attempts are being made worldwide to produce biodiesel using non-food crops, not food resources, and to produce biodiesel using low-cost waste oil.
  • Biodiesel is mostly produced from soybean oil or palm oil, and some domestic companies produce biodiesel using domestic cooking oil, but more raw material oil is needed to meet increasing biodiesel targets each year. do.
  • Biodiesel is not only used as a fuel, but also as an intermediate for chemicals that already replace a large number of pollution-based petroleum products. Biodiesel is used as a raw material for the production of biodegradable surfactants, synthetic lubricants and low-toxic solvents, which are eco-friendly products.
  • the biodiesel plant industry is characterized as a combined knowledge industry, venture industry, next-generation strategic industry, and international industry, and is regarded as a technology-intensive high-tech business and a promising industry with strong government policy will.
  • biodiesel in the first generation of biofuel technology is mainly produced from vegetable oils extracted from edible crops such as soybeans and rapeseeds, which raise grain prices, causing food shortages in poor countries such as Africa and low income groups. It has been criticized for adding weight. It is also pointed out that a wide range of tropical rainforests or forests are being developed for the production of raw materials such as palm oil to meet the growing demand for biodiesel, which accelerates global warming. Moreover, Korea imports most of biodiesel's raw materials (soybean oil) from overseas, so it is highly likely that supply and demand will rely heavily on external changes, similar to oil resources.
  • microalgae can be grown using water, carbon dioxide and sunlight, and can be cultured anywhere in the wilderness, on the coast, and in the sea, and thus do not compete with existing land crops in terms of land or space.
  • microalgae accumulate a large amount of lipids (up to 70%) in vivo according to the culture conditions, and the production of oil (lipid) per unit area is more than 50-100 times higher than that of conventional edible crops such as soybeans, and thus is a potential alternative bio-crude. Is very high (Table 1). From this, there is a growing interest in biodiesel production technology based on microalgae, where oil production per unit area is much higher than that of land plants.
  • Table 1 Oil production from microalgae and existing energy crops Energy crops Oil yield (L / ha) corn 172 Big head 446 Canola 1,190 Jatropha 1,892 coconut 2,689 Palm 5,950 Microalgae 58,700
  • Microalgae are single-celled photosynthetic organisms that live in freshwater or seawater at a size of 3 to 30 ⁇ m. It absorbs carbon dioxide and releases oxygen, and contains oils and useful substances. Microalgae has the advantage of very fast growth rate, high concentration cultivation, and growth in extreme environments compared to land plants. Microalgae have a higher fuel productivity than conventional crops because the available oil content amounts to 30-70% of the biomass. Since microalgae do not compete with other crops in terms of land or space, they currently do not cause secondary environmental problems such as rising prices of food resources and deforestation. Therefore, biodiesel production technology using microalgae shows high productivity per unit area, so it is easy to secure resources and there is no competition with food resources.
  • Microalgae biodiesel production technology has several advantages, such as carbon dioxide reduction, eco-friendly fuel development, and new green industry creation, but it is still relatively less economical than existing first-generation biofuel technology.
  • the cost of producing biodiesel using soybean oil, rapeseed oil and palm oil is estimated to be $ 0.5-1.0 per liter, while the production cost of microalgal biodiesel is estimated to be at least $ 2 per liter. Therefore, there is a need for technology development that can improve the economics of microalgal biodiesel.
  • microalgal biodiesel production technology consists of four processes: 1) microalgal culture, 2) harvesting, 3) oil extraction, and 4) biodiesel conversion.
  • the Arizona State University research team (2009) reported that the cost of each process in the production cost of biodiesel is 42%, 22%, 20% and 16%, respectively. This is very costly not only for microalgae cultivation but also for harvesting, indicating that the development of economical harvesting technology is very important in terms of economics of microalgae biodiesel production technology.
  • oil-containing microbial harvesting technology using flocculation and precipitation due to the addition of cationic chemicals is very fast and can be easily applied to large-scale microbial cultures.
  • only a simple stirring device is required, which results in lower installation and operating costs compared to filtration and centrifugation techniques.
  • the most commonly used method for efficiently extracting oil as a raw material that can be used for biodiesel production is solvent extraction (solving oil from microorganisms using an extraction solvent capable of dissolving oil well among various components of microorganisms).
  • Phase separation method microwave method (microwave breaks the cell wall of the microorganisms, and the cell contents are discharged out of it, oil component is separated from it), hydrothermal treatment method (the temperature of the aqueous solution sprayed with microorganisms is above the boiling point of water) To raise the temperature and high pressure to break the cell wall and the cell contents to come out to separate oil components), enzymatic treatment (method of obtaining oil by decomposing the cell wall of microorganism using enzyme), compression method (compression of microorganism) How to squeeze oil) You can use the method.
  • the strains were cultured using N8 medium of nitrate concentration of 3 mM, Al 2 (SO 4 ) 3 18 H 2 O (Aldrich, 227617) (hereinafter referred to as Alum) as a chemical coagulant and Al-APTES, Ca-APTES as nanoclay.
  • the present invention is a bio-oil manufacturing method capable of extracting oil efficiently in the presence of water, d) by crushing the separated microorganisms to discharge the oil out of the cell by adding a peroxide to the coagulated precipitated microorganisms cell wall
  • a method comprising the step of disassembling.
  • the oil-containing microorganism of the present invention may be any one or more selected from microalgae, bacteria, yeasts or fungi.
  • organic solvent polar organic solvents such as methanol and chloroform and non-polar organic solvents such as hexane may be used alone or in combination, and phase separation may be performed by gravity sedimentation or centrifugation.
  • Inorganic clays such as kaolin or aminopropyl functionalized aluminum phyllosilicate clay (Al-APTES), aminopropyl functionalized calcium phyllosilicate clay (Ca-APTES) for microbial harvesting and oil extraction , Aminopropyl functionalized magnesium phyllosilicate clay (Mg-APTES), aminopropyl functionalized iron phyllosilicate clay (Fe-APTES), aminopropyl functionalized manganese phyllosilicate clay (aminopropyl functionalized manganese clay) organic clays such as phyllosilicate clay (Mn-APTES) and aminopropyl functionalized copper phyllosilicate clay (Cu-APTES).
  • Al-APTES aminopropyl functionalized aluminum phyllosilicate clay
  • Ca-APTES aminopropyl functionalized calcium phyllosilicate clay
  • the peroxide added to the microorganisms precipitated to extract the oil in the presence of water is characterized in that the hydrogen peroxide, the culture medium can be stirred in the step of decomposing the cell wall, the oil layer is extracted and recovered with an organic solvent Or it may be to recover the phase separated by gravity sedimentation or centrifugation, the method of producing a bio-oil comprising the step of converting the recovered oil into biodiesel by alcohol under an acid or base catalyst as a raw material.
  • biodiesel may be produced from microorganisms according to a method of preparing biodiesel, including esterifying and transesterifying an alcohol with an acid or a base catalyst from various kinds of oils extracted by a nanoclay-based oil manufacturing method. .
  • bio-oil production method of the present invention that can extract oil in the presence of water, it is possible not only to extract the bio-oil which is a raw material of biodiesel from oil-containing microorganisms with high efficiency, but also docosa hexaenoic acid (DHA), eicosapentaenoic Useful fatty acid production processes, such as omega-3 fatty acids containing acid (EPA), can also be used in the food industry.
  • DHA docosa hexaenoic acid
  • EPA eicosapentaenoic
  • Useful fatty acid production processes such as omega-3 fatty acids containing acid (EPA)
  • FIG. 1 shows a schematic of the synthesis of organic nanoclays in a library.
  • Figure 2 shows the structural formula (N1) of APTES used in the synthesis of Ca-APTES, Mg-APTES, Al-APTES clay, and shows the structural formula of N3 used in Mg-N3 synthesis.
  • Figure 3 shows a photograph after 30 minutes of reaction according to the Alum concentration, the far left shows the control without the addition of Alum, the far right shows the case where 1.9 g / L Alum was added.
  • Figure 6 shows the change in precipitation efficiency according to the concentration of Al-APTES.
  • Figure 7 is a photograph after 30 minutes of the reaction according to the Ca-APTES concentration, the left side shows the control without adding Ca-APTES, the right side shows the case where 1 g / L Ca-APTES is added.
  • 11 is a photograph after 30 minutes of the reaction according to the concentration of Mg-APTES, the left is the control without the addition of Mg-APTES, the right is the case of adding 1 g / L Mg-APTES.
  • Figure 13 shows the precipitation efficiency according to the concentration of the coagulant after 30 minutes of reaction.
  • Figure 14 shows the distribution of the number (A) and volume (B) of sediment per flocculant.
  • Figure 15 shows the distribution of the number (A) and volume (B) of precipitates by concentration of Al-APTES.
  • Figure 16 shows the appearance of precipitated cells per coagulant ( ⁇ 1000) control (a), Alum (b), Al-APTES (c), Ca-APTES (d), Mg-APTES (e), Mg-N3 (f ) The case where a coagulant is added at 1.0 g / L is shown.
  • control 19 shows precipitation efficiency according to pH change at 0.2 g / L of Al-APTES
  • control 1 shows no addition of Al-APTES and NaOH
  • control 2 shows no addition of NaOH to 0.2 g / L of Al-APTES.
  • 20 is a schematic diagram showing a bio diesel production path from the oil-containing microorganisms.
  • Chlorella sp Oil extraction efficiency according to the type of nanoclay of KR-1.
  • Figure 31 shows the fatty acid content of the extracted oil according to the type of nanoclay.
  • N8 medium with nitrate concentration 3 mM was used, and the composition of N8 medium was KNO 3 (0.3033 g / L), KH 2 PO 4 (0.7400 g / L), Na 2 HPO 4 (0.2598 g / L), MgSO 4 .
  • the KR-1 strain was sequentially incubated in a constant temperature room equipped with a fluorescent lamp using a solid medium, a 250mL flask, and a 1L cylindrical glass photobioreactor, followed by inoculation at a level of 10% of a 7L cylindrical glass photobioreactor (main culture). It was.
  • the concentration of CO 2 in the feed gas was 10% (v / v), and the gas feed rates were 0.3 L / min and 0.75 L / min, respectively.
  • the temperature of the indoor constant temperature culture room was 27-32 ° C., and the light intensity was 135-197 ⁇ mol / m 2 / s.
  • the cells were incubated for about 170 hours and used in the experiments, and the cell concentration was 1.5 to 1.7 g / L.
  • Nanoclay used four kinds of Al-APTES, Ca-APTES, Mg-APTES and Mg-N3.
  • a method for synthesizing Mg-APTES clay is known from Korean Patent Publication No. 10-2011-0035324.
  • organoclay synthesis can be synthesized by the following method.
  • Figure 1 shows a schematic of the synthesis of the organic nanoclay in the library.
  • Figure 2 shows the structural formula (N1) of APTES used in the synthesis of Ca-APTES, Mg-APTES, Al-APTES clay of the present invention, the structural formula of N3 used in Mg-N3 synthesis.
  • the metal hydrate form (1.68 g) in 40 mL of organic solvents (typically less toxic ethanol such as BTEX, DMF, pyridine, DMSO, hexane, methanol, etc.). After complete mixing, about 2.6 mL of silane is added to the precursor (the metal cation molar ratio> silane molar ratio). Aminoclay (when using APTES) does not add a catalyst and reaches equilibrium after 6 hours. When using silane precursors of different columns in the clay library, the sol-gel reaction proceeds by adding NaOH as a basic catalyst.
  • organic solvents typically less toxic ethanol such as BTEX, DMF, pyridine, DMSO, hexane, methanol, etc.
  • the reaction media can be obtained by proportionally increasing the reaction media of ethanol and metal cation silane precursors, and drying them in an oven at 50 degrees for one day and then making them into powder with a mortar and pestle.
  • Mg-APTES 3-aminopropyltriethoxysilane
  • APTES 99%
  • Ethanol with a purity of at least 99.9% was purchased from Merck KGaA (Darmstadt, Germany).
  • Magnesium chloride hexahydrate (98.0%) was purchased from Junsei Chemical Co., Ltd.
  • Aminopropyl functionalized magnesium phyllosilicate clay (Mg-APTES) was prepared by sol-gel synthesis. Dissolve 1.68 g of magnesium chloride hexahydrate completely by stirring in 40 mL of ethanol.
  • APTES 3-aminopropyltriethoxysilane
  • Coulter counters (model multisizer 4, Beckman Coulter, USA) were used to investigate the change of cell size. Coulter counter was used for 20 ⁇ m of aperture tube, and 50 ⁇ L of the initial culture solution was added to 20 mL of electrolyte and mixed without bubbles. In the case of the precipitate, the concentration was very high, and the amount of 1-5 ⁇ L of the sample was measured.
  • Alum flocculation experiment was carried out in 11 concentrations up to 1.9 g / L by increasing the coagulant by 200 mg from the control without adding coagulant.
  • Figure 3 shows a photograph after 30 minutes of reaction according to the Alum concentration, the far left shows the control without the addition of Alum, the far right shows the case where 1.9 g / L Alum was added. The experiment showed a sharp difference in precipitation within the initial 5 minutes after the reaction, and the change in precipitation efficiency was not large from 30 minutes to 2 hours after the reaction.
  • Nanoclay experiments were conducted by increasing the coagulant from the control without adding coagulant to 1.0 g / L, which is the highest precipitation efficiency concentration of Alum, as the maximum concentration range.
  • Figure 5 shows the appearance after 30 minutes of the aggregation reaction according to the concentration of Al-APTES.
  • the left side of FIG. 5 shows a control without adding Al-APTES, and the right side shows a case where 1 g / L Al-APTES is added.
  • the higher the Al-APTES concentration the higher the precipitation efficiency, and from 0.5 g / L, the supernatant is transparent, indicating that the precipitation efficiency is very high.
  • Figure 6 shows the change in precipitation efficiency according to the concentration of Al-APTES.
  • the precipitation efficiency was 0.24 g / L for 44.4%, 0.3 g / L for 80.6%, and 0.4 g / L for 94.1%.
  • the concentration of 0.5 g / L or more showed more than 99% of precipitation efficiency (FIG. 6). ).
  • Figure 7 shows the appearance after 30 minutes of reaction according to the Ca-APTES concentration, the far left shows the control without the addition of Ca-APTES, the far right shows the case where 1 g / L Ca-APTES is added. In the case of Ca-APTES also, the precipitation efficiency increased with increasing concentration.
  • Figure 9 shows the appearance after 30 minutes of the reaction according to the concentration of Mg-N3, the far left shows the control without the addition of Mg-N3, the far right shows the case where 1 g / L Mg-N3 is added
  • Figure 10 It shows the change of precipitation efficiency according to N3 concentration.
  • Mg-N3 was experimented with only the control and four concentrations of 0.1, 0.5, 1.0 g / L. After 30 minutes, the precipitation efficiency increased in the order of control ⁇ 0.1 g / L ⁇ 0.5 g / L ⁇ 1.0 g / L. In the case of 1.0 g / L having the highest precipitation efficiency, the precipitation efficiency after 4 minutes was 45.1%.
  • 11 is a view after 30 minutes of the reaction according to the concentration of Mg-APTES, the left side shows the control without the addition of Mg-APTES, the right side shows the case where 1 g / L Mg-APTES is added.
  • 12 shows the change in precipitation efficiency according to the concentration of Mg-APTES.
  • the precipitation efficiency of Mg-APTES after 30 minutes was 37.8% at 0.5 g / L and increased to 96% at 0.6 g / L. However, when the concentration was increased by 0.1 g / L at the concentration of 0.6 g / L or more, the precipitation efficiency decreased by 2 to 4%.
  • Figure 13 shows the precipitation efficiency by concentration of each flocculant after the reaction 30 minutes.
  • Al-APTES showed good aggregation efficiency of more than 90% at 0.4 g / L. It can be seen that about 250 mg / g cell is required to precipitate 1 g of microalgae.
  • Mg-APTES showed a high efficiency of 96% at 0.6 g / L, but then decreased with increasing concentration. Alum did not show precipitation from 0 to 0.8 g / L.
  • Alum was not significantly different from control size distribution.
  • Ca-APTES, Mg-N3 and Mg-APTES were added, the distribution range of 4-10 ⁇ m was slightly higher than that of control.
  • Al-APTES the distribution of 4-10 ⁇ m was very large. The percentage of volume is higher than that of the 4-10 ⁇ m number, suggesting that the cells are sized together. This is presumed to be due to the fact that the precipitated cells in the electrolyte are not released well when measuring the coulter counter, and it is assumed that the cohesion force using Al-APTES is very strong.
  • Figure 16 shows the appearance of precipitated cells per coagulant ( ⁇ 1000) control (a), Alum (b), Al-APTES (c), Ca-APTES (d), Mg-APTES (e), Mg-N3 (f ) The case where a coagulant is added at 1.0 g / L is shown. Microscopic observation showed that cells containing Alum and nanoclay were aggregated with each other than control.
  • Figure 17 shows the pH change according to the concentration of the flocculant, respectively.
  • the pH decreased with increasing concentration up to 1.0 g / L.
  • the pH of Mg-N3 increased with increasing concentration, and the concentration of 1.0 g / L was 8.6.
  • the pH was maintained at 6 to 7 without change in concentration. Considering the problem of medium reuse during mass cultivation, Al-APTES, Ca-APTES and Mg-APTES without pH change are considered appropriate.
  • the pH of the microalgal culture may vary depending on the type of nitrogen source and the strength of the buffer solution.
  • a high concentration of nitrate can be used as a nitrogen source, and the pH at which the strength of the buffer solution is not sufficient may be increased up to 9.5.
  • Figure 18 shows a photograph of the change in precipitation efficiency after 30 minutes of the reaction according to the pH change in Al-APTES 0.2 g / L.
  • pH adjustment 60-700 ⁇ L of 2N NaOH was used.
  • pH 6.2-8.0 the precipitation efficiency was about 40% when Al-APTES was added, but the precipitation rate tended to decrease with increasing pH.
  • control 19 shows precipitation efficiency according to pH change at 0.2 g / L of Al-APTES
  • control 1 shows no addition of Al-APTES and NaOH
  • control 2 shows no addition of NaOH to 0.2 g / L of Al-APTES.
  • Al 2 (SO 4 ) 3 .18H 2 O (Aldrich, 227617) was used as the chemical coagulant (hereinafter referred to as Alum).
  • Alum chemical coagulant
  • oil-containing microorganisms included bacteria, yeast, fungi, etc. Since microorganisms also contain oil, it is also possible to use oil extracted from these microorganisms as a biodiesel production raw material.
  • microorganisms containing oils capable of flocculation and precipitation of microorganisms using the nanoclay of the present invention and their respective oil contents are shown in Table 2.
  • Oil content of oil-containing microorganisms microbe Oil content (wt%, dry)
  • Tetraselmis suecica Thalassiostra pseudomona , Anabaena sp., Calothrix sp., Camae Chiffon (Chaemisiphon sp.), Nose Lokomotiv CD option system (Chroococcidiopsis sp.), Bolzano dese (Cyanothece sp.), Spanish stopped by the cylinder (Cylindrospermum sp.), Demonstration Capella (Dermocarpella sp.), Fisher Pasteurella (Fischerella sp.
  • Gloeocapsa sp. Myxosarcina sp., Nostoc sp., Oscillatoria sp., Phormidium corium , Plurocapsa ( Pleurocapsa sp.), Prochlorococcus sp., Pseudanabaena sp., Synechococcus , Synechocystis sp., Tolypothrix sp., Geno Microorganism species such as cocos ( Xenococcus sp.) Can be cultured in bulk, and oil-containing microorganisms can be harvested through the process of the present invention in which an organic nanoclay is added.
  • Arthrobacter sp. Acinetobacter calcoaceticus, Rhodococcus opacus, Bacillus alcalophilus , E. coli , Rhodocista centenaria , Rhodospira trueperi ), Rhodospirillum fulvum , Rhodospirillum molischianum , Rhodospirillum photometricum , Rhodospirillum rubrum , Rhodospirillum rubrum Rhodospirillum salexigens , Rhodospirillum salinarutn , Rhodospirillum sodomense , Rhodospirillum mediosalinum , Rhodospirillum mediosalinum , Rhodopseudomonas , Rhodopseudomonas .
  • Rhodopseudomonas acidophila Rhodopseudomonas capsulatus Rhodopseudomonas palustris , Rhodopseudomonas sphaeroides , Rhodobacter capsulatus , and Rhodobacter sphaeroides species from Rhodobacter sphaeroides
  • Rhodopseudomonas acidophila Rhodopseudomonas capsulatus Rhodopseudomonas palustris , Rhodopseudomonas sphaeroides , Rhodobacter capsulatus , and Rhodobacter sphaeroides species from Rhodobacter sphaeroides
  • yeast is Candida Kurume Bata (Candida curvata), Cryptosporidium caucus know bideoseu ah Made a and the like (Cryptococcus albidus), lipoic Mrs. Star K (Lipomyces starkeyi), also MOTTE LA posts Ruti Nice (Rhodotorula glutinis), fungi Microorganism aggregation and precipitation using nanoclays in species such as Aspergillus oryzae , Mortierella isabellina , Humicola lanuginosa , and Mortierella vinacea It is possible to harvest microalgae.
  • FIG. 20 is a schematic diagram showing a biodiesel production route from an oil-containing microorganism.
  • the process of producing biodiesel from the oil-containing microorganism according to the present invention is to produce the biodiesel after mass-producing the oil-containing microorganisms, harvesting the microorganisms partially or completely dehydrated, and extracting the oil.
  • the most commonly used method for efficiently extracting oil as a raw material that can be used for biodiesel production is solvent extraction (solving oil from microorganisms using an extraction solvent capable of dissolving oil well among various components of microorganisms).
  • Phase separation method microwave method (microwave breaks the cell wall of the microorganisms, and the cell contents are discharged out of it, oil component is separated from it), hydrothermal treatment method (the temperature of the aqueous solution sprayed with microorganisms is above the boiling point of water) To raise the temperature and high pressure to break the cell wall and the cell contents to come out to separate oil components), enzymatic treatment (method of obtaining oil by decomposing the cell wall of microorganism using enzyme), compression method (compression of microorganism) How to squeeze oil) You can use the method.
  • Organic solvents are divided into polar and non-polar organic solvents, and when the polar organic solvent and the non-polar organic solvent are used in combination, they have advantages over the use of the polar solvent or the non-polar solvent alone.
  • non-polar solvents such as hexane
  • oil extraction efficiency is very low due to the low cell wall penetration rate of organic solvents. Too much oil is extracted when only polar organic solvents such as methanol are used, but oil is not converted to biodiesel. It also contains a lot of impurities.
  • Methanol is the most representative polar organic solvent
  • hexane is the most typical nonpolar organic solvent.
  • chloroform which is a polar organic solvent
  • an organic solvent layer including an oil may be present in the lower layer depending on the specific gravity of chloroform. Since the organic solvent layer and the microbial debris layer are separated by the density difference between the two layers, the phase separation may be performed by gravity settling, or centrifugation may be performed to reduce the time.
  • the oil extraction efficiency is significantly lower than when the solvent extraction method is carried out in the state where the microorganism is dried and almost no moisture.
  • the removal of water from microorganisms increases the cost of producing biodiesel due to the additional process costs. Therefore, in order to efficiently extract oil from the microorganisms in the water state by using a solvent extraction method, the microorganisms aggregated and precipitated with nanoclays may be stirred on an organic solvent to disrupt cells. After stirring for a certain period of time, it is divided into a layer containing microbial debris and a solvent layer containing oil, and the oil-containing layer can be recovered to remove the organic solvent and obtain an oil.
  • Nanoclay is characterized in that a positive charge on the surface in the state dispersed in water, in the case of inorganic nanoclays such as kaolin has a negative charge on the surface in an aqueous solution.
  • inorganic nanoclays such as kaolin
  • Al 3+ metal ions due to the presence of Al 3+ metal ions in these natural nanoclays, they may cause aggregation with microorganisms.
  • Inorganic nanoclay or aminopropyl functionalized magnesium phyllosilicate clay (Mg-APTES), aminopropyl functionalized calcium phyllosilicate clay (Ca-APTES) ), Aminopropyl functionalized iron phyllosilicate clay (Fe-APTES), aminopropyl functionalized manganese phyllosilicate clay (Mn-APTES), aminopropyl functionalized copper phyllosilicate clay (aminopropyl functionalized clay)
  • Organic clays such as copper phyllosilicate clay (Cu-APTES) can be used.
  • the organic clay contains metals such as magnesium, aluminum, calcium, iron, manganese and copper.
  • the Fenton-like reaction can be applied as described above. The following shows a Fenton-like scheme.
  • the Fenton-like reaction is a reaction that induces decomposition of a target substance by strong oxidation of radicals generated by the reaction of metal ions with hydrogen peroxide.
  • Fe 2+ / Fe 3+ may be replaced with Mn 2+ , Cu 2+ .
  • Hydrogen peroxide can be used as the peroxide for the Fenton reaction or Fenton-like reaction.
  • the pH of the microbial culture usually requires about 6 organic clays that can react at this pH.
  • the organic clay mentioned above has the advantage that the Fenton reaction occurs well even at neutral or higher pH conditions.
  • aminopropyl functionalized titanium phyllosilicate clay Ti-APTES
  • aminopropyl functionalized aluminum phyllosilicate clay Al-APTES
  • aminopropyl functionalized cerium phyllosilicate clay aminopropyl functionalized clay (aminopropyl functionalized clay) cerium phyllosilicate clay (Ce-APTES)
  • aminopropyl functionalized nickel phyllosilicate clay Ni-APTES
  • aminopropyl functionalized cobalt phyllosilicate clay Co-APTES
  • aminopropyl Aminopropyl functionalized zinc phyllosilicate clay Zn-APTES
  • aminopropyl functionalized tin phyllosilicate clay Sn-APTES
  • the main mineral composition of clay is phyllosilicate as shown in FIG.
  • the basic building block consisting of phyllosilicates, consists of a silica (SiO 2 ) face and an aluminum (Al) or magnesium (Mg) oxide octahedral face.
  • the Tetrahedral layer consists of coordination bonds of several silica tetrahydrons (SiO 4 ).
  • an octahedral plane derived from an edge sharing an octahedral with OH groups or oxygen atoms exists at each octahydra corner.
  • the octahedral surface contains a divalent cation such as Mg 2+
  • the charge balance of the surfaces occurs when all sites occupy, which is called the trioctahedral surface or brucite [Mg (OH) 2 ] surface.
  • trivalent cations such as Al 3+ ions are present, only two-thirds of the possible positions are filled to balance the structure and the corresponding layer is called the gibbsite [Al 2 (OH) 6 ] or dioctahedral plane.
  • the entire clay structure is formed from different stack combinations of tetrahedral and octahedral faces, with one side connected to the other (Fig. 21 (c)).
  • Layered silicates are classified in such a way that these basic building blocks are stacked relative to each side.
  • the general classification of phyllosilicates consists mainly of layered silicate minerals of 1: 1, 2: 1, and 2: 1: 1.
  • 1: 1 layered silicates each layer consists of one tetrahedral face and an octahedral face.
  • 2: 1 layered silicates each layer consists of a sandwich between two tetrahedral faces, with an octahedral face in the middle.
  • the 2: 1: 1 type of mineral has an additional octahedral face in the form of a sandwich between each tetrahedral-octahedral-tetrahedral layer and each structure can be observed as a chlorite group mineral.
  • the spacing between each layer is called 011 or basal spacing, which represents the distance between two consecutive layers. It has been shown that phyllosilicate clay having a 1: 1 structure is more advantageous in extracting oil from microorganisms than phyllosilicate clay having a 2: 1 structure.
  • 3-aminopropyltriethoxysilane (APTES) of organic clay has a 1: 1 phyllosilicate structure, and the structure of aminopropyltriethoxysilane (APTES) is (3-aminopropyl) triethoxysilane (N1), [3- (2 One or more selected from organic clays having three structures of -aminoethylamino) propyl] trimethoxysilane (N2) and 3- [2- (2-aminoethylamino) ethylamino] propyltrimethoxysilane (N3) can be used.
  • Oil extracted from microorganisms using an organic solvent containing nanoclay is in the form of triglyceride, diglyceride, monoglyceride, and free fatty acid. These oil components can be converted to biodiesel through esterification and transesterification reactions using alcohols (typically methanol) under acid or base catalysts, which is a conventional biodiesel conversion process.
  • alcohols typically methanol
  • base catalysts which is a conventional biodiesel conversion process.
  • the oil is converted into biodiesel through the reaction of the oil with the alcohol under an acid catalyst or a base catalyst according to the free fatty acid content contained in the extracted oil.
  • Triglyceride the main component of oil, reacts with alcohol under base catalyst to produce biodiesel and glycerol.
  • free fatty acid present in the oil it is reacted with alcohol under the acid catalyst to produce biodiesel and water (Fig. 22).
  • a basic catalyst reaction In the case of biodiesel conversion of oil, a basic catalyst reaction is usually used. However, when a large amount of free fatty acid is present, an acid catalyst reaction is used to prevent a saponification reaction.
  • the acid catalyst reaction has a longer reaction time than the base catalyst reaction, but even when the oil contains a large amount of impurities, the biodiesel conversion is possible, and the acid catalyst reaction is advantageous in the case of including some impurities such as oil extracted from microorganisms.
  • Aminopropyl functionalized magnesium phyllosilicate clay (Mg-APTES) was prepared by sol-gel synthesis. Dissolve 1.68 g of magnesium chloride hexahydrate completely by stirring in 40 mL of ethanol. To the ethanol-magnesium chloride solution, 2.6 mL of 3-aminopropyltriethoxysilane (APTES) was added, stirred at room temperature for 12 hours, and the precipitate was separated by centrifugation. After washing with 50 mL ethanol, dried at 40 ° C. and powdered using a mortar. Mass production is possible by increasing the amount of each reaction in the same multiple.
  • APTES 3-aminopropyltriethoxysilane
  • Chlorella sp Aminopropyl functionalized iron phyllosilicate clay (Fe-APTES), aminopropyl functional manganese phyllosilicate clay (aminopropyl functionalized) to precipitate / recover microalgae from KR-1 culture (cell concentration 1.6 g / L) manganese phyllosilicate clay (Mn-APTES), aminopropyl functionalized copper phyllosilicate clay (Cu-APTES), aminopropyl functionalized aluminum phyllosilicate clay (Al-APTES) and Al 2 (SO 4 ) The microalgae sedimentation efficiencies of 3 ⁇ 18H 2 O (Alum) were compared. Chlorella sp.
  • Chlorella sp. Chlorella sp. was precipitated by adding each clay to the culture medium containing KR-1. Hydrogen peroxide was added and stirred in KR-1 such that the concentration of hydrogen peroxide was 0, 0.1, 0.5, 1, 3, 5%, and the oil layer present in the upper layer was recovered to measure the oil extraction efficiency.
  • the oil extraction rate when the clay and hydrogen peroxide were not added in the presence of moisture was 3.3% of the dry weight of the microalgae, and the oil extraction rate when the clay and hydrogen peroxide was not added when the water was removed by lyophilization was compared to the dry weight of the microalgae. 32.0%.
  • the oil extraction efficiency was about 10% regardless of the hydrogen peroxide concentration, and when the hydrogen peroxide concentration was 0.5% or more, the oil extraction efficiency was high in the order of Fe-APTES ⁇ Cu-APTES ⁇ Mn-APTES (FIG. 23). .
  • Ferric chloride showed lower oil extraction efficiency than organoclay.
  • the optimum condition of the Fenton reaction was pH 3, whereas the pH of the culture medium was about 6, so the kaolin, which is an inorganic clay, did not react properly, but the organic clay showed high reaction efficiency regardless of the pH. Therefore, oil extraction efficiency was similar to or higher than that of lyophilized microalgae in the presence of water, and oil extraction from microorganisms was possible without the drying process.
  • Chlorella sp. KR-1 represents a fatty acid content of a total of 330.1 mg / g cells by dry weight, and contains 33.0% fatty acid (Table 3).
  • the freeze-dried microalgae (Dry) showed the highest oil extraction efficiency, and the addition of clay showed better oil extraction efficiency than clay (Wet) (FIG. 24).
  • the clay concentration increased from 1 to 20 wt%, the oil extraction efficiency gradually increased.
  • each extracted oil may contain not only fatty acids convertible to biodiesel components but also some other oils
  • the fatty acid content of the extracted oil was measured.
  • To 10 mg of extracted oil add 2 mL of chloroform-methanol (2: 1, v / v), 1 mL of heptadecanoic acid solution, 1 mL of methanol, and 0.3 mL of sulfuric acid. After reacting this mixed solution at 100 degreeC for 10 minutes, 1 mL of distilled water is added.
  • the fatty acid content is converted to fatty acid methyl ester (FAME) by centrifugation and analysis of the lower layer in the layered solution by gas chromatography.
  • the addition of 1 wt% clay with low oil extraction efficiency and the absence of clay (Wet) were excluded from the fatty acid content measurement.
  • the fatty acid methyl ester productivity of the microalgae was calculated as the product of the oil extraction efficiency from the microalgae and the fatty acid content of the extracted oil, indicating the maximum fatty acid methyl ester content that can be produced from the microalgae.
  • the freeze-dried microalgae showed the highest fatty acid methyl ester productivity in (Dry) and when the clay concentration increased to 5-20 wt%, the fatty acid methyl ester productivity also increased, but the fatty acid for the three cases of clay addition Methyl ester productivity was similarly observed (FIG. 26).
  • Chlorella vulgaris sp. Shows a total fatty acid content of 87.6 mg / g cells by dry weight and contains 8.76% of fatty acids (Table 4).
  • the freeze-dried microalgae (Dry) showed the highest oil extraction efficiency, and the addition of clay improved the oil extraction except that only 1wt% of clay was added than that of (Wet) without clay. Efficiency is shown (FIG. 27). When the clay concentration increased from 1 to 20 wt%, the oil extraction efficiency gradually increased.
  • each extracted oil may contain not only fatty acids convertible to biodiesel components but also some other oils
  • the fatty acid content of the extracted oil was measured.
  • To 10 mg of extracted oil add 2 mL of chloroform-methanol (2: 1, v / v), 1 mL of heptadecanoic acid solution, 1 mL of methanol, and 0.3 mL of sulfuric acid. After reacting this mixed solution at 100 degreeC for 10 minutes, 1 mL of distilled water is added.
  • the fatty acid content is converted to fatty acid methyl ester (FAME) by centrifugation and analysis of the lower layer in the layered solution by gas chromatography.
  • the addition of 1 wt% clay with low oil extraction efficiency and the absence of clay (Wet) were excluded from the fatty acid content measurement.
  • the lyophilized microalgae showed the highest oil extraction efficiency, while the fatty acid content contained in the extracted oil showed 700 mg / g lipid (Fig. 28).
  • the fatty acid content is found to decrease when the concentration of added clay is increased. That is, as the concentration of clay increased, the oil extraction efficiency increased, and the fatty acid content contained in the extracted oil decreased.
  • the fatty acid methyl ester productivity of the microalgae was calculated as the product of the oil extraction efficiency from the microalgae and the fatty acid content of the extracted oil, indicating the maximum fatty acid methyl ester content that can be produced from the microalgae.
  • the lyophilized microalgae showed the same level of fatty acid methyl ester productivity when (Dry) and clay concentrations were 20 wt% and 10 wt%, and low productivity when the clay concentration was 5 wt% (FIG. 29).
  • Chlorella sp. KR-1 represents a total fatty acid content of 330.1 mg / g cells by dry weight, and contains 33.0% of fatty acids (Table 5).
  • the mixture was centrifuged and separated into an upper layer (hexane-oil layer) and a lower layer (methanol-water-microalgae residue layer).
  • the upper layer was recovered, the hexane was evaporated and the oil was weighed to calculate the oil extraction efficiency.
  • Al-APTES showed the highest oil extraction efficiency among the four clays, and the oil extraction efficiency was high in the order of Al-APTES> Mg-APTES> Kaolin> Ca-APTES (FIG. 30). Since each extracted oil may contain not only fatty acids convertible to biodiesel components but also some other oils, the fatty acid content of the extracted oil was measured. To 10 mg of extracted oil, add 2 mL of chloroform-methanol (2: 1, v / v), 1 mL of heptadecanoic acid solution, 1 mL of methanol, and 0.3 mL of sulfuric acid. After reacting this mixed solution at 100 degreeC for 10 minutes, 1 mL of distilled water is added. The fatty acid content was converted to fatty acid methyl ester (FAME) by centrifugation and analysis of the lower layer of the layered solution by gas chromatography.
  • FAME fatty acid methyl ester
  • the fatty acid methyl ester productivity of the microalgae was calculated as the product of the oil extraction efficiency from the microalgae and the fatty acid content of the extracted oil, indicating the maximum fatty acid methyl ester that can be produced from the microalgae.
  • fatty acid methyl ester productivity was high in the order of Al-APTES> Mg-APTES> Kaolin> Ca-APTES ( Figure 32).
  • Oil extracted from microorganisms using an organic solvent containing clay is in the form of triglyceride, diglyceride, monoglyceride, and free fatty acid. These oil components can be converted to biodiesel through esterification and transesterification reactions using alcohols (typically methanol) under acid or base catalysts, which is a conventional biodiesel conversion process. That is, the oil is converted into biodiesel through the reaction of the oil with the alcohol under an acid catalyst or a base catalyst according to the free fatty acid content contained in the extracted oil. Triglyceride, the main component of oil, reacts with alcohol under base catalyst to produce biodiesel and glycerol. In the case of free fatty acid present in the oil it is reacted with alcohol under the acid catalyst to produce biodiesel and water (Fig. 22).
  • alcohols typically methanol
  • base catalysts which is a conventional biodiesel conversion process. That is, the oil is converted into biodiesel through the reaction of the oil with the alcohol under an
  • a basic catalyst reaction is usually used.
  • an acid catalyst reaction is used to prevent a saponification reaction.
  • the acid catalyst reaction has a longer reaction time than the base catalyst reaction, but even when the oil contains a large amount of impurities, the biodiesel conversion is possible, and the acid catalyst reaction is advantageous in the case of including some impurities such as oil extracted from microorganisms.
  • Amberlyst-15, Amberlyst BD20, or sulfuric acid may be used as the acid catalyst, and NaOH, KOH, NaOCH 3 , or KOCH 3 may be used as the base catalyst.
  • 33 shows biodiesel produced from oil extracted from microalga Chlorella vulgaris sp.
  • Chlorella sp After stirring for 12 hours from KR-1 using a hexane-methanol mixed solvent, the extracted oil was added with methanol and sulfuric acid as an acid catalyst, and then transesterified and esterified at 100 ° C. for 6 hours to produce biodiesel. After washing with biodiesel, purified microalgal biodiesel was produced through a vacuum distillation process (150-250 ° C.).
  • the oil is economically improved by improving the process cost required to extract the oil from the existing oil-containing microorganism through the process of oil separation from the microorganism using the nanoclay of the present invention and biodieselization of the extracted oil. Biodiesel production is possible.
  • Oil and biodiesel from microorganisms according to a method for producing biodiesel, comprising the step of esterifying and transesterifying an alcohol with an acid or a base catalyst from various kinds of oils extracted by an oil manufacturing method using nanoclays such as APTES It is also possible to produce oil and biodiesel by economically improving the process cost required to extract oil from oil-containing microorganisms.
  • the invention is an invention that is expected to be greatly used in the industry.

Abstract

오일 함유 미생물로부터 Al-APTES, Ca-APTES, Mg-APTES, Fe-APTES, Mn-APTES, Cu-APTES 등의 나노클레이를 이용한 미생물 수확 및 오일 제조방법, 그리고 추출된 미생물 유래 오일로부터 산 또는 염기 촉매 하에서 알콜과 에스테르화 및 전이에스테르화 반응시키는 바이오 디젤 제조방법에 따른 오일 함유 미생물로부터 오일 및 바이오 디젤의 생산방법을 제공한다. 미생물의 효율적인 응집은 nanoclay로써 Al-APTES, Ca-APTES, Mg-APTES, Fe-APTES, Mn-APTES, Cu-APTES 등을 이용하며 수분이 있는 상태의 미생물로부터 오일 추출이 가능하다. 나노클레이를 함유한 미생물로부터 추출된 오일은 산 또는 염기 촉매 하에서 알콜을 사용하여 에스테르화 및 전이에스테르화 반응을 통하여 바이오 디젤로 전환이 가능하며, 미세조류 수확 및 오일 추출 단계에서 공정비용 상승 문제를 개선함으로써 경제성 있는 오일 및 바이오 디젤의 생산이 가능하여 바이오 디젤의 대중화를 이룰 수 있다.

Description

나노클레이를 이용한 오일 함유 미생물 수확 및 바이오 오일 제조 방법
본 발명은 바이오 디젤의 원료가 되는 대두유, 유채유, 팜유 등에 비해 오일 생산량이 월등한 오일 함유 미생물을 효율적으로 응집하여 오일 및 바이오 디젤을 추출하기 위한 제조 방법에 관한 것이다. 더욱 상세하게는 오일 함유 미생물을 효율적으로 응집하기 위해 배양된 미생물에 나노클레이(nanoclay)로써 Al-APTES, Ca-APTES, Mg-APTES, Fe-APTES, Mn-APTES Cu-APTES 등을 사용하여 미생물의 응집, 침전효율과 적정 사용량 및 농도조건을 규명함으로써 이를 이용한 오일 함유 미생물의 수확 및 바이오 오일을 제조하기 위한 방법에 관한 것이다.
우리나라는 석유 부존자원이 없으며 대부분 수입에 의존하고 있다. 따라서 국제유가, 기후변화, 정치 환경변화 등에 의한 수급 상황에 따라 경제가 크게 영향을 받고 있으며, 국내 기술 및 자본을 이용한 대체에너지 기술개발 및 자원 확보가 절실한 상황이다. 현재 고유가 및 기후변화협약에 대비하기 위하여 에너지효율화 기술 및 태양, 풍력 등 재생에너지 기술에 대한 투자가 확대되고 있으나, 수송용 부문에서 석유 대체가 어렵다는 한계가 있다. 수송부분에서 사용되는 에너지는 전체 에너지 소비량의 21% 수준이며, 이중 98%는 석유에 의하여 공급되고 있다(2006년 기준). 또한, 석유자원의 과다 사용으로 의한 환경오염이 심각해지고 자원의 고갈 가능성이 제기됨에 따라 재생성을 갖는 동, 식물성 기름으로부터 생산 가능한 청정 대체 연료인 바이오 디젤이 석유 대체 연료로써 관심이 높아지고 있는 실정이다. 바이오 디젤은 식물성 기름 또는 동물성 유지로부터 생산된 지방산의 메틸 또는 에틸 에스테르 화합물로 정의된다. 바이오 디젤은 기존 경유에 비해 일산화탄소, 미세먼지, 탄화수소, 독성물질 등 대기 오염물질 배출을 크게 줄일 수 있어 친환경 자동차 연료로 적합하다. 또한 바이오 디젤의 연소에서 나오는 이산화탄소는 다시 식물의 광합성 기작에 의해 흡수, 고정되므로 이산화탄소의 순배출이 거의 없어, 전세계적으로 이산화탄소 중립 연료(CO2-neutral fuel)로 큰 주목을 받고 있다.
바이오 디젤의 원료인 대두유나 팜유는 현재 수입에 의존하고 있는 실정이며 식량과 연계된 자원으로 국제적인 환경변화에 크게 영향을 받아 가격이 높고, 불안정하다는 문제점이 존재한다. 이에 대한 대응방안으로 식량자원이 아닌 비식용 작물을 이용하여 바이오 디젤을 생산하려는 시도와 저가의 폐유지를 이용하여 바이오 디젤을 생산하려는 시도가 전 세계적으로 이루어지고 있다.
이러한 상황에서 국내의 에너지 안보는 석유뿐만 아니라 석유대체연료에서도 위협을 받고 있는 실정으로 저가의 원료 또는 국내 자원을 이용할 수 있는 방안을 마련하는 것이 절실하다. 바이오 디젤은 대부분 대두유나 팜유로부터 생산되고 있고, 일부 국내 업체에서는 국내에서 생산되는 폐식용유를 이용하여 바이오 디젤을 생산하고 있으나, 해마다 증가하는 바이오 디젤 목표량을 채우기 위해서는 더 많은 양의 원료유를 필요로 한다.
국내에서도 바이오 디젤의 보급 확대가 국제사회에서 도입하려는 이산화탄소 배출 규제에 대한 가장 현실적 대응 방안이라는 판단하에 2002년부터 2006년까지 수도권과 전라북도 등에서 바이오 디젤 시범 보급 사업을 시행한 후 2006년 7월부터 바이오 디젤 보급을 전국으로 확대하였다. 또한 정유사가 구입하는 바이오 디젤의 물량을 매년 높여 바이오 디젤이 널리 보급되도록 하였다. 2010년부터 바이오 디젤 2%를 경유에 혼합한 BD5 (바이오 디젤 5% 이하 혼합 경유)가 연간 40만kL 규모로 기존 인프라와 주유소를 통해 보급되고 있다. 이러한 국내 바이오 디젤 시장규모를 금액으로 평가하면 2010년 현재 6,000억원 규모이고, 2014년에는 약 8,000억원 시장으로 성장할 것으로 전망된다.
바이오 디젤은 연료로서 뿐만 아니라 공해성 석유제품을 이미 상당수 대체하는 화학물질의 중간체로 사용하고 있어 응용성이 급격하게 확장되고 있는 산업이다. 바이오 디젤은 친환경 제품인 생분해성 계면활성제, 합성 윤활유 및 저독성 용제의 제조 원료로 사용되고 있어 EU 등 선진국에서 법적/제도적으로 장려 정책을 강도 높게 시행하고 있어 성장성이 기대된다. 또한 바이오 디젤 플랜트 산업은 결합형 지식산업이자 벤처기업형 산업, 차세대 전략산업 및 국제산업이라는 산업적 특징이 있으며, 기술집약적 첨단사업이자 정부의 정책적 의지가 강하게 작용하는 유망 산업으로 평가 받고 있다.
그러나 현재 1세대 바이오 연료 기술의 바이오 디젤은 앞서 언급한 바와 같이 주로 콩, 유채 등의 식용작물에서 추출한 식물성 기름을 이용해 생산하고 있으며, 이는 곡물가격 상승을 유발해 아프리카와 같은 빈곤 국가와 저소득층의 식량난을 가중시킨다는 비판을 받고 있다. 또한 늘어나는 바이오 디젤의 수요에 맞추어 팜유와 같은 원료생산을 위해 광범위한 열대 우림 또는 산림이 개발되고 있으며, 이는 오히려 지구온난화를 가속시킨다는 지적도 있다. 더욱이 우리나라는 바이오 디젤의 원료(대두유) 대부분을 해외에서 수입하고 있어 수급 및 가격이 석유자원과 유사하게 대외적인 상황변화에 크게 의존할 가능성이 높다.
이와 같은 문제점을 해결하기 위해 기존 대두유 또는 팜유 대신에 미세조류(microalgae)를 원료로 활용하는 기술이 ‘차세대 바이오 디젤 기술’ 로 많은 관심을 받고 있다. 미세조류는 물, 이산화탄소와 햇빛을 이용하여 성장이 가능하며, 황무지, 해안가, 바다 등 어디서든 배양할 수 있어 기존 육상작물과 토지나 공간 측면에서 상호 경쟁하지 않는다. 또한 미세조류는 배양조건에 따라 생체 내에 많은 양의 지질(최대 70%)을 축적하며, 단위 면적당 오일(지질) 생산량이 콩과 같은 기존 식용작물에 비해 50-100배 이상 높아 대체 생물원유로서의 가능성이 매우 높다(표 1). 이로부터 단위면적 당 오일 생산량이 육상식물에 비해 매우 우수한 미세조류에 기반한 바이오 디젤 생산기술에 대한 관심이 높아지고 있다.
표 1 미세조류 및 기존 에너지 작물의 오일 생산량
에너지 작물 오일 생산량 (L/ha)
옥수수 172
대두 446
카놀라 1,190
자트로파 1,892
코코넛 2,689
5,950
미세조류 58,700
미세조류는 단일세포의 광합성 생물로 3~30μm의 크기에 담수나 해수에서 서식한다. 이산화탄소를 흡수하고 산소를 배출하며, 오일 및 유용물질을 함유하고 있다. 미세조류는 육상식물에 비해 성장률이 매우 빠르고, 대량으로 고농도 배양이 가능하며, 극한 환경에서도 성장이 가능하다는 장점을 가진다. 미세조류는 사용 가능한 오일 성분이 바이오 매스의 30~70%에 달하므로, 기존 작물에 비해 높은 연료 생산성을 나타낸다. 미세조류는 다른 작물과 토지나 공간 측면에서 상호 경쟁하지 않으므로, 현재 식량 자원의 가격 상승 및 산림 파괴 등 2차적인 환경 문제를 일으키지 않는다. 따라서 미세조류 이용 바이오 디젤 생산기술은 단위면적당 높은 생산성을 나타내어 자원 확보가 용이하고 식량 자원과의 경쟁이 없으므로 국내 실정에 적합하다고 할 수 있다.
미세조류 바이오 디젤 생산기술은 이산화탄소 저감, 친환경 연료 개발, 새로운 녹색산업 창출 등 여러 장점을 지니고 있지만 기존 1세대 바이오 연료 기술보다 아직 상대적으로 경제성이 떨어진다. 대두유, 유채유, 팜유 등을 이용한 바이오 디젤의 생산비용은 리터당 0.5-1.0 달러 수준인 반면 미세조류 바이오 디젤의 생산단가는 최소 리터당 2달러 이상으로 추정되고 있다. 따라서 미세조류 바이오 디젤의 경제성을 향상시킬 수 있는 기술개발이 필요하다.
미세조류 바이오 디젤 생산기술은 크게 1) 미세조류 배양, 2) 수확, 3) 오일 추출, 4) 바이오 디젤 전환 등 4개 공정으로 구성된다. 미국 아리조나 주립대 연구팀(2009)은 바이오 디젤의 생산단가 중 각 공정이 차지하는 비용이 각각 42%, 22%, 20%, 16%로 발표한 바 있다. 이는 미세조류 배양뿐만 아니라 수확에도 많은 비용이 소용되며, 경제적인 수확기술의 개발이 미세조류 바이오 디젤 생산기술의 경제성 측면에서 매우 중요하다는 것을 나타낸다.
기존의 바이오 디젤 원료들이 대부분 수입에 의존하고 있는 바, 국내 생산이 가능한 오일 함유 미생물을 활용하여 배양, 수확, 추출, 전환 공정을 거쳐 바이오 디젤을 생산하고자 한다. 오일 함유 미생물 수확 기술로 원심분리(centrifugation), 여과(filtration), 응집(flocculation) 기술 등이 활발히 연구되고 있다. 원심분리 기술은 미생물 수확기술로 많이 활용되고 있으나 대용량을 처리하기에는 시간이 많이 소요되며 에너지 비용이 높고, 기기가 비싼 단점이 있다. 여과기술의 경우 크기가 마이크로미터(μm) 단위로 매우 작은 미생물에 의해 쉽게 막혀 연속적인 운전이 매우 어려우며 대용량에 적용하기가 쉽지 않다. 반면 양이온성 화학물질 첨가에 따른 응집 및 침전을 이용한 오일 함유 미생물 수확기술은 반응속도가 매우 빠르며 대용량의 미생물 배양액에 쉽게 적용할 수 있다. 또한 간단한 교반장치만이 필요하여 여과 및 원심분리 기술에 비해 설치비 및 운전비가 저렴하다.
바이오 디젤 생산에 이용할 수 있는 원료로서의 오일을 효율적으로 추출하기 위해서 가장 일반적으로 사용되는 방법으로는 용매추출법 (미생물의 여러 가지 성분 중에서 오일을 잘 용해할 수 있는 추출 용매를 사용하여 미생물로부터 오일을 용매상으로 분리하는 방법), 마이크로파 이용법 (마이크로파가 미생물의 세포벽을 파괴함으로써 세포 내용물을 밖으로 배출시키면, 이 중에서 오일 성분을 분리하는 방법), 열수처리법 (미생물이 분사되어 있는 수용액의 온도를 물의 끓는점 이상으로 올리면 고온, 고압 상태가 되어 세포벽이 깨지고 세포 내용물이 밖으로 나오게 함으로써 오일 성분을 분리하는 방법), 효소처리법 (효소를 사용하여 미생물의 세포벽을 분해함으로써 오일을 얻는 방법), 압착법 (미생물을 압착하여 오일을 짜내는 방법) 등의 다양한 방법을 이용할 수 있다.
이들 오일 추출법의 대부분이 미생물의 세포벽을 일부 붕괴시킴으로써 세포벽 내부에 있는 오일을 밖으로 내보내는 기작을 포함한다. 세포벽 밖으로 빠져나온 오일의 회수를 위해서는 유기용매를 추가적으로 사용하여야 한다. 마이크로파나 열수를 이용하기 위해서는 추가적인 장치를 필요로 하며, 고가의 효소를 사용하기에는 공정비용이 상승하는 문제점이 있다. 또한 용매추출법의 경우 수분이 적을수록 오일 추출 효율이 증가하지만, 오일 함유 미생물로부터 수분을 제거하기 위해서는 추가적인 공정비용이 소요된다.
따라서 수분이 있는 상태에서 적용 가능하면서 세포벽 붕괴와 유기용매를 이용한 오일 회수를 동시에 할 수 있으면서 공정비용을 최대한 낮추고 오일 추출 효율이 높은 새로운 오일 추출 방법을 개발할 필요가 있다.
본 발명에서는 오일 함유 미생물에 효율적인 응집제를 개발하기 위해 nanoclay로써 Al-APTES, Ca-APTES, Mg-APTES, Fe-APTES, Mn-APTES, Cu-APTES 등을 사용하여 배양된 미생물에 대한 응집, 침전효율과 적정 사용량 및 농도조건을 규명함으로써 기존의 바이오 디젤의 원료가 되는 대두유, 유채유, 팜유 등에 비해 오일 생산량이 10배, 많게는 100배 이상인 오일 함유 미생물로부터 미생물을 효율적으로 응집하고 오일을 추출하여 바이오 디젤을 생산하는 방법을 제공하고자 한다.
상기와 같은 과제를 해결하기 위하여 본 발명에서는 Chlorella sp. KR-1(KCTC0426BP) 및 Chlorella vulgaris sp. 균주를 질산염 농도 3 mM의 N8 배지를 사용하여 배양하고, 화학응집제로 Al2(SO4)3·18H2O (Aldrich, 227617)(이하 Alum으로 명칭)과 nanoclay로 Al-APTES, Ca-APTES, Mg-APTES, Mg-N3를 사용하여 배양된 미세조류를 응집 침전시키기 위한 나노클레이의 농도별 침전 효율을 조사하고 이 결과를 토대로 한 a) 오일 함유 미생물을 배양액 중에서 배양하는 단계; b) 배양된 오일 함유 미생물의 배양액에 나노클레이를 첨가하는 단계; c) 나노클레이로 응집 침전된 미생물을 배양액으로부터 분리하는 단계; d) 분리된 미생물을 파쇄하여 오일을 세포 밖으로 배출시키는 단계; e) 배출된 오일을 미생물 잔해로부터 분리 및 회수하는 단계를 포함하는 것을 특징으로 하는 나노클레이를 이용한 바이오 오일 제조 방법을 제공한다.
또한, 본 발명은 수분이 있는 상태에서 효율적으로 오일추출이 가능한 바이오 오일 제조방법으로, 상기 d) 분리된 미생물을 파쇄하여 오일을 세포 밖으로 배출시키는 단계에서 응집 침전된 미생물에 과산화물을 첨가하여 세포벽을 분해하는 단계를 포함하는 것을 특징으로 하는 방법이 제공된다.
본 발명의 오일 함유 미생물로는 미세조류, 박테리아, 효모 또는 진균 중에서 선택되는 어느 하나 이상이 될 수 있다. 유기용매로는 메탄올, 클로로포름 등의 극성 유기용매 및 헥산 등의 비극성 유기용매가 단독으로 또는 혼합하여 사용될 수 있고, 상분리는 중력침강 또는 원심분리로 수행되는 것을 특징으로 한다.
미생물 수확 및 오일 추출을 위하여 카올린과 같은 무기 클레이 또는 아미노프로필성 알루미늄 필로실리케이트 클레이 (aminopropyl functionalized aluminum phyllosilicate clay, Al-APTES), 아미노프로필성 칼슘 필로실리케이트 클레이 (aminopropyl functionalized calcium phyllosilicate clay, Ca-APTES), 아미노프로필성 마그네슘 필로실리케이트 클레이 (aminopropyl functionalized magnesium phyllosilicate clay, Mg-APTES), 아미노프로필성 철 필로실리케이트 클레이 (aminopropyl functionalized iron phyllosilicate clay, Fe-APTES), 아미노프로필성 망간 필로실리케이트 클레이 (aminopropyl functionalized manganese phyllosilicate clay, Mn-APTES), 아미노프로필성 구리 필로실리케이트 클레이 (aminopropyl functionalized copper phyllosilicate clay, Cu-APTES)와 같은 유기 클레이를 이용하는 것을 특징으로 한다.
한편 수분이 있는 상태에서 오일을 추출하기 위해 침전된 미생물에 첨가되는 과산화물은 과산화수소인 것을 특징으로 하며, 세포벽을 분해하는 단계에서 배양액을 교반할 수 있고, 오일층은 유기용매로 추출하여 회수하는 것 또는 중력침강 또는 원심분리에 의해 상분리되어 회수하는 것일 수 있으며, 회수된 오일을 원료로 산 또는 염기 촉매 하에서 알콜과 반응시켜 바이오 디젤로 전환하는 단계를 포함하는 바이오 오일의 제조 방법이 제공된다.
화학응집제로 Alum과 nanoclay로 Al-APTES, Ca-APTES, Mg-APTES, Mg-N3 등을 사용하여 배양된 미세조류를 효율적으로 응집 침전시키기 위한 농도와 투여조건을 명확히 함으로써 미세조류의 효율적인 수확 탈수가 가능할 뿐만 아니라 나노클레이를 이용하여 응집된 미생물로부터 오일의 추출이 가능하다. 또한 나노클레이 이용 오일 제조방법으로 추출된 다양한 종류의 오일로부터 산 또는 염기 촉매 하에서 알콜과 에스테르화 및 전이에스테르화 반응시키는 단계를 포함하는 바이오 디젤의 제조방법에 따라 미생물로부터 바이오 디젤의 생산이 가능하다. 이로부터 오일 함유 미생물의 수확 및 오일을 추출하기 위하여 필요로 하는 공정비용 상승 문제를 개선함으로써 미세조류 바이오 오일 생산기술의 생산단가가 낮아져 경제성 있는 바이오 오일의 생산이 가능하여 바이오 오일의 대중화를 이룰 수 있는 효과를 가진다.
또한, 수분이 있는 상태에서 오일추출이 가능한 본 발명의 바이오 오일 제조방법에 의하면, 오일 함유 미생물로부터 바이오 디젤의 원료가 되는 바이오 오일을 고효율로 추출이 가능할 뿐만 아니라, docosa hexaenoic acid (DHA), eicosapentaenoic acid (EPA)를 포함하는 오메가-3 지방산과 같은 유용 지방산 생산 공정, 즉 식품 산업에도 활용이 가능하다.
도 1은 라이브러리에 있는 유기 나노클레이의 합성 모식도를 나타낸다.
도 2는 Ca-APTES, Mg-APTES, Al-APTES clay 합성에서 사용한 APTES의 구조식(N1)을 나타내며, Mg-N3합성에서 사용한 N3의 구조식을 나타낸다.
도 3은 Alum 농도에 따른 반응 30분 경과 후 사진을 나타내며, 맨 왼쪽은 Alum을 첨가하지 않은 control, 맨 오른쪽은 1.9 g/L Alum 첨가한 경우를 나타낸다.
도 4는 Alum 농도에 따른 침전효율의 변화를 나타낸다.
도 5는 Al-APTES 농도에 따른 반응 30분 경과 후 사진을 나타내며, 맨 왼쪽은 Al-APTES을 첨가하지 않은 control, 맨 오른쪽은 1 g/L Al-APTES 첨가한 경우를 나타낸다.
도 6은 Al-APTES 농도에 따른 침전효율의 변화를 나타낸다.
도 7은 Ca-APTES 농도에 따른 반응 30분 경과 후 사진으로, 맨 왼쪽은 Ca-APTES을 첨가하지 않은 control, 맨 오른쪽은 1 g/L Ca-APTES 첨가한 경우를 나타낸다.
도 8은 Ca-APTES 농도에 따른 침전효율의 변화를 나타낸다.
도 9는 Mg-N3 농도에 따른 반응 30분 경과 후 사진을 나타내며, 맨 왼쪽은 Mg-N3을 첨가하지 않은 control, 맨 오른쪽은 1 g/L Mg-N3 첨가한 경우를 나타낸다.
도 10은 Mg-N3 농도에 따른 침전효율의 변화를 나타낸다.
도 11은 Mg-APTES 농도에 따른 반응 30분 경과 후 사진으로, 맨 왼쪽은 Mg-APTES을 첨가하지 않은 control, 맨 오른쪽은 1 g/L Mg-APTES 첨가한 경우를 나타낸다.
도 12는 Mg-APTES 농도에 따른 침전효율의 변화를 나타낸다.
도 13은 반응 30분 경과 후 응집제별 농도에 따른 침전효율을 나타낸다.
도 14는 응집제별 침전물의 개수(A) 및 부피(B) 분포를 나타낸다.
도 15는 Al-APTES 농도별 침전물의 개수(A) 및 부피(B) 분포를 나타낸다.
도 16은 응집제별 침전세포의 모습 (×1000)으로 control(a), Alum(b), Al-APTES(c), Ca-APTES(d), Mg-APTES(e), Mg-N3(f) 응집제를 1.0 g/L로 첨가한 경우를 나타낸다.
도 17은 응집제 농도에 따른 pH 변화를 나타낸다.
도 18은 Al-APTES 0.2 g/L에서의 pH 변화시 반응 30분 경과 후 사진을 나타낸다.
도 19는 Al-APTES 0.2 g/L에서 pH 변화에 따른 침전효율을 나타내며, control 1은 Al-APTES 및 NaOH 첨가 안한 상태, control 2는 Al-APTES 0.2 g/L에 NaOH 첨가 안한 상태를 나타낸다.
도 20은 오일함유 미생물로부터 바이오 디젤 생산경로를 나타낸 모식도이다.
도 21은 필로실리케이트의 구조를 나타낸다.
도 22는 추출 오일의 바이오 디젤 전환 반응을 나타낸다.
도 23은 Chlorella sp. KR-1의 나노클레이 종류에 따른 오일 추출 효율을 나타낸다.
도 24는 Chlorella sp. KR-1에 대한 미세조류의 오일 추출 효율 결과를 나타낸다.
도 25는 Chlorella sp. KR-1에 대한 추출된 오일의 지방산 함량 결과를 나타낸다.
도 26은 Chlorella sp. KR-1에 대한 미세조류의 오일 생산성 결과를 나타낸다.
도 27은 Chlorella vulgaris sp.에 대한 미세조류의 오일 추출 효율 결과를 나타낸다.
도 28은 Chlorella vulgaris sp.에 대한 추출된 오일의 지방산 함량 결과를 나타낸다.
도 29는 Chlorella vulgaris sp.에 대한 미세조류의 오일 생산성 결과를 나타낸다.
도 30은 나노클레이의 종류에 따른 미세조류의 오일 추출 효율 결과를 나타낸다.
도 31은 나노클레이의 종류에 따른 추출된 오일의 지방산 함량 결과를 나타낸다.
도 32는 나노클레이의 종류에 따른 미세조류의 오일 생산성 결과를 나타낸다.
도 33은 미세조류 Chlorella vulgaris sp.로부터 추출된 오일로부터 생산된 바이오 디젤을 나타낸다.
I. 미세조류배양 및 응집제 제조
1) 미세조류 및 배양조건
미세조류로서 Chlorella sp. KR-1(KCTC0426BP) 및 Chlorella vulgaris sp. 균주를 사용하였으며, 사용된 균주는 잘 알려진 미세조류로서 한국생명공학연구원 등의 미생물 분양기관 등에서 분양, 입수 가능하다. 질산염 농도 3 mM의 N8 배지를 사용하였으며, N8 배지의 조성은 KNO3 (0.3033g/L), KH2PO4 (0.7400g/L), Na2HPO4 (0.2598g/L), MgSO4.7H2O (0.0500g/L), CaCl2 (0.0132g/L), FeNaEDTA (0.0100g/L), ZnSO4.7H2O (0.0032g/L), MnCl2.4H2O (0.0130g/L), CuSO4 (0.0117g/L), Al2(SO4)3.18H2O (0.0070g/L)이었다.
KR-1 균주를 형광등이 설치된 항온실에서 고체배지, 250mL 플라스크, 1L 원통형 유리 광생물반응기를 이용하여 순차적으로 예비 배양한 후 7L 원통형 유리 광생물반응기(본 배양)의 10% 수준으로 접종하여 진행하였다. 1L와 7L 원통형 유리 광생물반응기에서 배양시 공급가스의 CO2 농도는 10%(v/v)이었으며, 가스 공급속도는 각각 0.3L/min 및 0.75L/min이었다. 실내 항온 배양실의 온도는 27~32℃, 빛의 세기는 135∼197 μmol/m2/s였다. 약 170시간 동안 배양하여 실험에 사용하였고, 이 때 균체농도는 1.5∼1.7 g/L였다.
2) 응집제 및 나노클레이 제조
화학응집제로 Al2(SO4)3·18H2O (Aldrich, 227617)를 사용하였다(이하 Alum으로 명칭). Nanoclay는 Al-APTES, Ca-APTES, Mg-APTES, Mg-N3의 총 4종류를 사용하였다. 나노클레이의 합성방법으로는 국내 공개특허공보 제10-2011-0035324호에 Mg-APTES클레이의 합성 방법이 공지되어 있다. 또한, 유기클레이 합성은 다음과 같은 방법으로 합성가능하다. 도 1에는 라이브러리에 있는 유기나노클레이의 합성 모식도를 나타낸다. 도 2에는 본 발명의 Ca-APTES, Mg-APTES, Al-APTES clay 합성에서 사용한 APTES의 구조식(N1)을 나타내며, Mg-N3합성에서 사용한 N3의 구조식을 나타낸다.
유기용매 (BTEX, DMF, pyridine, DMSO, hexane, 메탄올 등, 대표적으로 독성이 덜한 에탄올) 40 mL에 메탈 하이드레이트 형태(1.68g)를 녹인다. 완전히 혼합을 통해 녹인 후, 2.6 mL가량의 silane를 전구체를 넣는다 (이때 메탈 양이온 몰비 > silane 몰비). Aminoclay(APTES 사용시)의 경우는 촉매를 따로 넣지 않으며 6시간 이상이 되면 평형상태에 도달을 하게 된다. 클레이 라이브러리에서 다른 칼럼의 silane 전구체를 사용할 시에는 염기성 촉매인 NaOH을 넣어주어야 sol-gel 반응이 진행된다.
따라서 aminosilane 칼럼을 제외한 유기나노클레이의 경우에는 수용액에서도 합성이 용이하다. Aminosilane을 수용액 base에서 합성할 경우, 입자가 만들어지자마자 물에 녹아버리는 특성을 보이므로 입자회수가 용이하지 않은 점이 있다. 유기나노클레이의 대량 생산시에는 반응 미디어인 에탄올과 메탈 양이온 silane 전구체를 비례적으로 늘려서 반응을 시키면 간단히 얻을 수 있으며 50도의 오븐에서 하루정도 건조시킨 후 막자사발로 가루로 만들어 사용하면 된다.
본 발명에서 사용된 나노클레이 중 이하 Mg-APTES의 합성방법에 대해 설명하면 다음과 같다. 3-아미노프로필트리에톡시실란(APTES, 99%)을 Sigma-Aldrich (St. Louis, USA)로부터 구입하였다. 99.9% 이상 순도인 에탄올은 Merck KGaA(Darmstadt, Germany)로 부터 구입하였다. 마그네슘 클로라이드 헥사하이드레이트(Magnesium chloride hexahydrate, 98.0%)를 Junsei Chemical Co., Ltd.로부터 구입하였다. 아미노프로필성 마그네슘 필로실리케이트 클레이(aminopropyl functionalized magnesium phyllosilicate clay, Mg-APTES)는 졸-겔 합성법에 의하여 제조되었다. 에탄올 40mL에 교반을 통하여 염화마그네슘 6수하물(magnesium chloride hexahydrate) 1.68g을 완전히 녹인다. 에탄올-염화마그네슘 용액에 2.6mL의 3-아미노프로필트리에톡시실란(3-aminopropyltriethoxysilane, APTES)을 첨가하고, 12시간 동안 상온에서 교반한 뒤 침전물을 원심분리로 분리한다. 50mL 에탄올로 세정한 후, 40℃에서 건조시키고 막사사발을 이용하여 가루로 만든다.
3) 침전효율 측정
50 mL test tube에 무게를 측정한 응집제를 넣고 2 mL의 증류수에 녹인 후, 28 mL의 Chlorella sp. KR-1 배양액을 넣어 총 부피 30 mL로 실험하였다. 마그네틱 바를 이용하여 800 rpm에서 1분 동안 교반하였다. 이후 실온에 방치한 뒤 일정한 시간 간격으로 샘플을 200 μL씩 채취하여 660 nm에서 흡광도를 측정하였다. 샘플은 반응액의 높이 2/3지점인 20 mL 부근에서 채취하였다. 침전효율은 다음 식으로 계산하였다.
침전효율(%)=(1-(ODsample/OD0)) x 100
4) 세포 변화 관찰
응집제를 이용한 침전반응 후 침전물의 상태를 알아보기 위해 광학현미경으로 1000배율 하에서 관찰하였다. 또한 Coulter counter(model multisizer 4, Beckman Coulter, USA)를 이용하여 세포의 크기상태의 변화를 조사하였다. Coulter counter는 aperture tube 20 μm를 사용하였고, 전해질 20 mL에 초기 배양액 50 μL를 넣어 기포가 생기지 않게 섞어준 후 측정하였다. 침전물의 경우 농도가 매우 높아 샘플의 양 1∼5 μL을 넣어 측정하였다.
II. 응집제에 따른 침전효율
1) 응집제별 침전효율
본 발명에서는 Al2(SO4)3·18H2O(이하 Alum 명칭) 대비 나노클레이의 침전효율을 조사하였다. Alum 응집실험은 응집제를 첨가하지 않은 Control부터 응집제를 약 200 mg씩 증가시켜 1.9 g/L까지 총 11단계의 농도로 진행하였다. 도 3은 Alum 농도에 따른 반응 30분 경과 후 사진을 나타내며, 맨 왼쪽은 Alum을 첨가하지 않은 control, 맨 오른쪽은 1.9 g/L Alum 첨가한 경우를 나타낸다. 실험은 반응 후 초기 5분 내에 급격한 침전 정도의 차이를 나타내었고, 반응 30분 이후부터 2시간까지 침전효율 변화는 크지 않았다. Al2(SO4)3·18H2O 농도 1.0 g/L의 경우가 64.1%로 가장 높았고, 다음으로 1.2 g/L가 58.2%로 높게 나타났다. 1.4 g/L의 경우 23.4%로 1.0, 1.2 g/L의 침전효율의 절반수준이었다. 나머지 0.2∼0.8, 1.6∼1.9 g/L는 침전효율이 약 3%로 control의 침전효율 변화와 별다른 차이를 나타내지 않았다. 도 4는 Alum 농도에 따른 침전효율의 변화를 나타낸다.
나노클레이(nanoclay) 실험은 Alum의 가장 높은 침전효율 농도인 1.0 g/L를 최대 농도범위로 하여 응집제를 첨가하지 않은 control부터 응집제를 증가시켜 조사하였다. 도 5는 Al-APTES 농도에 따른 응집반응 30분 경과 후 모습을 나타낸다. 도 5의 왼쪽은 Al-APTES을 첨가하지 않은 control, 오른쪽은 1 g/L Al-APTES 첨가한 경우를 나타낸다. Al-APTES 농도가 높을수록 침전효율이 높아지고, 0.5 g/L부터는 상등액이 투명하여 침전효율이 매우 높음을 알 수 있다. 도 6은 Al-APTES 농도에 따른 침전효율의 변화를 나타낸다. 반응 30분 후의 침전효율은 0.2 g/L가 44.4%, 0.3 g/L가 80.6%, 0.4 g/L가 94.1%이었고, 농도 0.5 g/L 이상은 99%이상의 침전효율을 나타내었다(도 6).
도 7은 Ca-APTES 농도에 따른 반응 30분 경과 후 모습으로, 맨 왼쪽은 Ca-APTES을 첨가하지 않은 control, 맨 오른쪽은 1 g/L Ca-APTES 첨가한 경우를 나타낸다. Ca-APTES의 경우 또한 농도가 증가할수록 침전효율이 증가하는 경향을 나타내었다.
도 8은 Ca-APTES 농도에 따른 침전효율의 변화를 나타낸다. 농도 0.1∼1.0 g/L의 범위에서 농도가 0.1 g/L 높아질수록 침전효율의 증가량은 평균 7% 정도로 Al-APTES에 비해 차이가 크지 않았다. 반응 30분 후의 가장 높은 효율은 64.4%(1.0 g/L)이었다.
도 9는 Mg-N3 농도에 따른 반응 30분 경과 후 모습을 나타내며, 맨 왼쪽은 Mg-N3을 첨가하지 않은 control, 맨 오른쪽은 1 g/L Mg-N3 첨가한 경우를 나타내고 도 10은 Mg-N3 농도에 따른 침전효율의 변화를 나타낸다. Mg-N3는 control 및 0.1, 0.5, 1.0 g/L의 4가지의 농도만으로 실험을 진행하였다. 침전반응 30분 후의 결과는 control < 0.1 g/L < 0.5 g/L < 1.0 g/L의 순서로 침전효율은 증가하였다. 침전효율이 가장 높은 1.0 g/L의 경우 반응 30분 후의 침전효율은 45.1%이었다.
도 11은 Mg-APTES 농도에 따른 반응 30분 경과 후 모습으로, 맨 왼쪽은 Mg-APTES을 첨가하지 않은 control, 맨 오른쪽은 1 g/L Mg-APTES 첨가한 경우를 나타낸다. 도 12는 Mg-APTES 농도에 따른 침전효율의 변화를 나타낸다. Mg-APTES는 30분 후의 침전효율이 0.5 g/L에서 효율이 37.8%였으며, 0.6 g/L에서 96%로 증가하였다. 그러나 0.6 g/L 농도 이상에서는 0.1 g/L씩 농도가 높아질수록 오히려 2∼4%정도 침전효율이 감소하는 경향이 관찰되었다.
도 13은 반응 30분 후 각 응집제의 농도별 침전효율을 나타내고 있다. Al-APTES는 0.4 g/L에서 90% 이상의 우수한 응집효율을 나타내었다. 1 g의 미세조류를 침전시키기 위해서는 약 250 mg/g cell이 필요함을 알 수 있다. Mg-APTES의 경우 0.6 g/L에서 96%의 높은 효율을 나타내었으나 이후 농도증가에 따라 오히려 감소하는 경향이 관찰되었다. Alum의 경우 0∼0.8 g/L 까지 침전을 나타내지 않았다.
본 결과는 Chlorella sp. KR-1의 응집반응을 이용한 수확에는 Al-APTES가 가장 효과적임을 나타낸다.
2) 응집제 종류에 따른 침전물 크기 분포 및 사진
Coulter counter를 이용하여 각 응집제 1.0 g/L 일 때의 응집반응 침전물의 크기를 측정한 결과를 도 14에 나타내었다. Coulter counter 사용시 침전세포의 농도가 매우 높아, 샘플의 양으로 1∼10 μL의 소량을 사용하였고, 크기별 분포도를 조사하였다. Chlorella sp. KR-1의 세포크기 대부분 2∼4 μm 범위였다.
Alum을 첨가한 경우 control의 크기분포와 큰 차이가 없었다. Ca-APTES와 Mg-N3, Mg-APTES를 첨가한 경우 control의 세포크기 분포에 비해 4∼10 μm 범위 분포 정도가 약간 높게 나타났다. 반면 Al-APTES의 경우 4∼10 μm의 크기가 분포가 매우 크게 측정되었다. 4∼10 μm 개수의 퍼센트보다 부피의 퍼센트가 높은 것으로 보아 세포가 서로 붙은 상태로 크기가 측정된 것으로 보인다. 이는 coulter counter 측정시 전해질에 넣은 침전세포가 잘 풀어지지 않는 이유로 사료되어, Al-APTES를 이용한 응집력이 매우 강하기 때문이라 추측된다.
Al-APTES의 농도 변화(0.2∼1.0 g/L)에 따른 개수 및 부피의 분포도를 조사하였다(도 15). 0.2 - 0.5 g/L의 범위에서는 첨가량이 증가할수록 4∼10 μm 구간의 분포범위가 점점 높아지는 경향이 관찰되었으나, 0.5 g/L와 1.0 g/L는 큰 차이를 나타내지 않았다.
도 16은 응집제별 침전세포의 모습 (×1000)으로 control(a), Alum(b), Al-APTES(c), Ca-APTES(d), Mg-APTES(e), Mg-N3(f) 응집제를 1.0 g/L로 첨가한 경우를 나타낸다. 현미경 관찰 결과 Alum 및 nanoclay를 넣은 세포는 control에 비하여 서로 응집된 상태를 보였다.
3) 응집제 이용시 pH의 변화
도 17은 각각 응집제의 농도별 pH 변화를 나타내고 있다. Alum의 경우 1.0 g/L까지 농도가 증가할수록 pH가 감소하였다. 반대로 Mg-N3는 농도가 증가할수록 pH가 증가하였고, 농도 1.0 g/L는 pH가 8.6이었다. Al-APTES와 Ca-APTES, Mg-APTES의 경우 pH는 농도에 따른 변화 없이 6∼7을 유지하였다. 대량배양시 배지 재사용 문제를 고려한다면 pH 변화가 없는 Al-APTES 및 Ca-APTES, Mg-APTES가 적합하다고 판단된다.
4) Al-APTES에 대한 pH 변화 효과
미세조류 배양액의 pH는 질소원의 종류 및 완충용액의 세기에 따라 달라질 수 있다. 예를 들면 고농도의 질산염을 질소원으로 쓰고 완충용액의 세기가 충분하지 않을 pH는 최대 9.5까지 증가할 수도 있다.
본 발명에서는 미세조류 배양액의 pH 증가에 따른 Al-APTES의 침전효율을 조사하였다. 도 18은 Al-APTES 0.2 g/L에서의 pH 변화에 따른 반응 30분 경과 후 침전효율의 변화 사진을 나타낸다. pH 조절은 2N NaOH 60∼700 μL를 사용하였다. pH 6.2 - 8.0의 경우 Al-APTES를 첨가하였을 때 약 40%의 침전효율을 나타내었으나, 이후 pH 증가에 따라 침전율은 감소하는 경향을 나타내었다. 이들 결과는 Al-APTES를 이용할 경우 적절한 pH 조절이 필요함을 나타낸다.
도 19는 Al-APTES 0.2 g/L에서 pH 변화에 따른 침전효율을 나타내며, control 1은 Al-APTES 및 NaOH 첨가 안한 상태, control 2는 Al-APTES 0.2 g/L에 NaOH 첨가 안한 상태를 나타낸다.
5) 오일함유 미생물의 종류에 따른 나노클레이에 대한 응집효과
본 발명에서는 화학응집제로 Al2(SO4)3·18H2O (Aldrich, 227617)를 사용하였다(이하 Alum으로 명칭). Nanoclay로서 Al-APTES, Ca-APTES, Mg-APTES, Mg-N3의 총 4종류를 사용하여, Chlorella 종을 대상으로 응집 침전실험을 하였으나 오일 함유 미생물로는 미세조류 외에도 박테리아, 효모, 진균 등의 미생물도 오일을 함유하고 있으므로, 이들 미생물로부터 추출한 오일을 바이오 디젤 생산 원료로 이용하는 것도 가능하다.
본 발명의 나노클레이를 이용한 미생물 응집, 침전이 가능한 오일을 함유하는 대표적인 미생물과 각각의 오일 함량을 표 2에 나타내었다.
표 2 오일 함유 미생물의 오일 함량
미생물 오일 함량 (wt%, dry)
Microalgae(미세조류) Botryococcus braunii Cylindrotheca sp.Nitzschia sp.Schizochytrium sp.Chlorella sp. 25-7216-3745-4750-7730-50
Bacteria(박테리아) Arthrobacter sp.Acinetobacter calcoaceticusRhodococcus opacusBacillus alcalophilus >4027-3824-2518-24
Yeast(효모) Candida curvata Cryptococcus albidus Lipomyces starkeyi Rhodotorula glutinis 58656472
Fungi(진균) Aspergillus oryzae Mortierella isabellina Humicola lanuginosa Mortierella vinacea 57867566
상기 표 2에 나타낸 오일 함유 미생물 이외에도 미세조류로서 아나시스티스 니둘란스(Anacystis nidulans), 안키스트로데스무스(Ankistrodesmus sp.), 비둘리파아 우리타(Biddulpha aurita), 체토세로스(Chaetoceros sp.), 치라미도모나스 애플라나타(Chlamydomonas applanata), 클라미도모나스 레인하드티(Chlamydomonas reinhardtii), 크로렐라(Chlorella sp.), 크로렐라 엘립소디아(Chlorella ellipsoidea), 크로렐라 에멀소니(Chlorella emersonii), 크로렐라 프로토더코이데스(Chlorella protothecoides), 크로렐라 프레노이도사(Chlorella pyrenoidosa), 크로렐라 소로키니아나(Chlorella sorokiniana), 크로렐라 뷸가리스(Chlorella vulgaris), 크로렐라 미누티시마(Chlorella minutissima), 클로로코쿠 리토레일(Chlorococcu littorale), 클로텔라 크립티카(Cyclotella cryptica), 두날리엘라 바르다윌(Dunaliella bardawil), 두날리엘라 살리나(Dunaliella salina), 두날리엘라 테르티오렉타(Dunaliella tertiolecta), 두날리엘라 프리모렉타(Dunaliella primolecta), 짐노디움(Gymnodinum sp.), 헤머노모나스 카테라에(Hymenomonas carterae), 이소크리시스 갈베나(Isochrysis galbana), 이소크리시스(Isochrysis sp.), 마이크로시스티스 아에루기노사(Microcystis aeruginosa), 마이크로모나스 푸실라(Micromonas pusilla), 모노두스 서브테라네우스(Monodus subterraneous), 나노클로리스(Nannochloris sp.), 나노클로롭시스(Nannochloropsis sp.), 나노클로롭시스 아토무스(Nannochloropsis atomus), 나노클로롭시스 살리나(Nannochloropsis salina), 나비쿨라 필리쿨로사(Navicula pelliculosa), 니츠시아(Nitzschia sp.), 니츠시아 클로스테리움(Nitzscia closterium), 니츠시아 팔레아(Nitzscia palea), 오시스티스 폴리모피아(Oocystis polymorpha), 아우로코커스(Ourococcus sp.), 오실라토리아 루베스켄스(Oscillatoria rubescens), 파브로바 루테리(Pavlova lutheri), 패오닥트리움 트리코누툼(Phaeodactylum tricornutum), 피크노코커스 프로바솔리(Pycnococcus provasolii), 피라미노나스 코르다타(Pyramimonas cordata), 스피눌라 플라텐시스(Spirulina platensis), 스테파노디스커스 미누투루스(Stephanodiscus minutulus), 스티코커스(Stichococcus sp.), 시네드라우르나(Synedra ulna), 스케네데스무스 오브리쿼스(Scenedesmus obliquus), 스켈레나스트럼 그라시레(Selenastrum gracile), 스켈레토노마 코스타럼(Skeletonoma costalum), 테트라셀미스 출리(Tetraselmis chui), 테트라셀미스 마쿠라타(Tetraselmis maculata), 테트라셀미스(Tetraselmis sp.), 테트라셀미스 수에시카(Tetraselmis suecica), 탈라시오스트라 프세우도모나(Thalassiostra pseudomona), 아나배나(Anabaena sp.), 칼로드릭스(Calothrix sp.), 카마에시폰(Chaemisiphon sp.), 코로코시디옵시스(Chroococcidiopsis sp.), 차노데세(Cyanothece sp.),실린더로스페멈(Cylindrospermum sp.), 데모카펠라(Dermocarpella sp.), 피셔렐라(Fischerella sp.), 글로에오캅사(Gloeocapsa sp.), 믹소사시나(Myxosarcina sp.), 노스톡(Nostoc sp.), 오스실라토리아(Oscillatoria sp.), 포르미디움 코리움(Phormidium corium), 플레우로캅사(Pleurocapsa sp.), 프로콜로코코스(Prochlorococcus sp.), 페세우다나바에나(Pseudanabaena sp.), 시네코코스(Synechococcus), 시네코시스티스(Synechocystis sp.), 톨리포트릭스(Tolypothrix sp.), 제노코코스(Xenococcus sp.) 등의 미세조류 종을 대량 배양하여 유기나노클레이를 첨가하는 본 발명의 과정을 통하여 오일함유 미생물을 수확할 수 있다.
또한 박테리아 종으로는 상기 표 2에 나타낸 것 이외에도Arthrobacter sp., Acinetobacter calcoaceticus, Rhodococcus opacus, Bacillus alcalophilus,대장균(E. coli), 로도시스타센테나리아(Rhodocista centenaria), 로도스피라 트루페리(Rhodospira trueperi), 로도스피리럼 프루붐(Rhodospirillum fulvum), 로도스피리럼 모리스키라넘(Rhodospirillum molischianum), 로도스피리럼 포토메트리쿰(Rhodospirillum photometricum), 로도스피리럼 러브럼(Rhodospirillum rubrum), 로도스피리럼 살렉시젠(Rhodospirillum salexigens), 로도스피리럼 살리나루튼(Rhodospirillum salinarutn), 로도스피리럼 소도멘세(Rhodospirillum sodomense), 로도스피리럼 메디오살리넘(Rhodospirillum mediosalinum), 로돕세우도모나스(Rhodopseudomonas sp.), 로돕세우도모나스 아시도피라(Rhodopseudomonas acidophila), 로돕세우도모나스 캅술라투스(Rhodopseudomonas capsulatus), 로돕세우도모나스 파루스트리스(Rhodopseudomonas palustris), 로돕세우도모나스 스페로이데스(Rhodopseudomonas sphaeroides), 로도박터 캅술라투스(Rhodobacter capsulatus), 로도박터 세페로이데스(Rhodobacter sphaeroides) 등의 종으로부터도 본 발명의 과정을 통하여 오일함유 미생물을 수확할 수 있다.
또한, 효모로는 칸디다 쿠루바타(Candida curvata), 크립토코커스 알비더스(Cryptococcus albidus), 리포미세스 스타케이(Lipomyces starkeyi), 로도토루라 글루티니스(Rhodotorula glutinis) 등이 있고, 진균으로는 아스페질러스 오르자에(Aspergillus oryzae), 모르티에레라 이사벨리나(Mortierella isabellina), 후미콜라 라누지노사(Humicola lanuginosa), 모르티에레라 비나세아(Mortierella vinacea) 등의 종에서도 나노클레이를 이용한 미생물 응집, 침전시켜 미세조류의 수확이 가능하다.
III. 오일 함유 미생물로부터 바이오 디젤 생산
도 20은 오일 함유 미생물로부터 바이오 디젤 생산 경로를 나타낸 모식도이다. 도시된 바와 같이 본 발명에 따른 오일 함유 미생물로부터 바이오 디젤을 생산하는 과정은, 오일 함유 미생물을 대량생산하고 수분을 일부 또는 완전히 제거한 미생물을 수확하고 오일을 추출한 후에 바이오 디젤을 생산하는 것이다.
바이오 디젤 생산에 이용할 수 있는 원료로서의 오일을 효율적으로 추출하기 위해서 가장 일반적으로 사용되는 방법으로는 용매추출법 (미생물의 여러 가지 성분 중에서 오일을 잘 용해할 수 있는 추출 용매를 사용하여 미생물로부터 오일을 용매상으로 분리하는 방법), 마이크로파 이용법 (마이크로파가 미생물의 세포벽을 파괴함으로써 세포 내용물을 밖으로 배출시키면, 이 중에서 오일 성분을 분리하는 방법), 열수처리법 (미생물이 분사되어 있는 수용액의 온도를 물의 끓는점 이상으로 올리면 고온, 고압 상태가 되어 세포벽이 깨지고 세포 내용물이 밖으로 나오게 함으로써 오일 성분을 분리하는 방법), 효소처리법 (효소를 사용하여 미생물의 세포벽을 분해함으로써 오일을 얻는 방법), 압착법 (미생물을 압착하여 오일을 짜내는 방법) 등의 다양한 방법을 이용할 수 있다.
이들 오일 추출법의 대부분이 미생물의 세포벽을 일부 붕괴시킴으로써 세포벽 내부에 있는 오일을 밖으로 내보내는 기작을 포함한다. 세포벽 밖으로 빠져나온 오일의 회수를 위해서는 유기용매를 추가적으로 사용하여야 한다. 마이크로파나 열수를 이용하기 위해서는 추가적인 장치를 필요로 하며, 고가의 효소를 사용하기에는 공정비용이 상승하는 문제점이 있다. 또한 용매추출법의 경우 수분이 적을수록 오일 추출 효율이 증가하지만, 오일 함유 미생물로부터 수분을 제거하기 위해서는 추가적인 공정비용이 소요된다. 따라서 수분이 있는 상태에서 적용 가능하면서 세포벽 붕괴와 유기용매를 이용한 오일 회수를 동시에 할 수 있으면서 공정비용을 최대한 낮추고 오일 추출 효율이 높은 새로운 오일 추출 방법을 개발할 필요가 있다. 유기용매는 극성과 비극성 유기용매로 나뉘는데, 극성 유기용매와 비극성 유기용매를 혼합하여 사용할 경우, 극성 용매나 비극성 용매만 사용할 경우보다 장점을 지닌다. 헥산과 같은 비극성 용매만 사용할 경우에는 유기용매의 세포벽 침투율이 낮아 오일 추출 효율이 매우 낮으며, 메탄올과 같은 극성 유기용매만 사용할 경우에는 너무 많은 양의 오일이 추출되면서 오일 성분이지만 바이오 디젤로 전환되지 않는 불순물도 많이 포함되어 있다.
따라서 바이오 디젤 전환에 적합한 오일의 효율적인 추출을 위해서는 극성과 비극성 용매의 혼합이 바람직하다. 극성 유기용매로는 메탄올이 가장 대표적이고, 비극성 유기용매로는 헥산이 가장 대표적이다. 헥산-메탄올 혼합용매로 오일을 추출하였을 경우 오일을 포함한 유기용매 층은 헥산의 비중에 따라 상층에 존재하는 특징을 가진다. 또한, 극성 유기용매인 클로로포름을 용매로 사용할 수 있으며, 클로로포름-메탄올 혼합용매로 오일을 추출하는 경우는 클로로포름의 비중에 따라 오일을 포함한 유기용매 층이 하층에 존재하는 특징을 가진다. 유기용매 층과 미생물 잔해층은 두 층간의 밀도차에 의하여 분리되는 특성이 있으므로, 중력침강에 의해 상분리하거나, 시간을 줄이기 위해서는 원심분리를 수행할 수 있다.
한편, 미생물을 건조하지 않고 수분이 있는 상태에서 용매추출법을 이용하여 미생물로부터 오일을 추출하는 경우, 미생물을 건조하여 수분이 거의 없는 상태에서 용매추출법을 시행하는 경우보다 오일 추출 효율이 현저히 떨어진다. 그러나 미생물로부터 수분을 제거하기 위해서는 추가적인 공정비용으로 인하여 바이오 디젤 생산비용을 증가시킨다. 따라서 수분이 있는 상태의 미생물로부터 용매추출법을 이용하여 효율적으로 오일을 추출하기 위하여, 나노클레이로 응집 침전된 미생물을 유기용매 상에서 교반하여 세포를 파쇄할 수 있다. 일정시간 교반 후 정치시키면 미생물 잔해가 포함된 층과 오일이 포함된 용매층으로 나뉘며, 오일이 포함된 층을 회수하여 유기용매를 제거하고 오일을 얻을 수 있다.
나노클레이는 물에 분산된 상태에서 표면에 양의 전하를 띠고 있는 것을 특징으로 하며, 카올린과 같은 무기나노클레이의 경우 수용액 상에서 표면에 음전하를 띠고 있다. 하지만 이러한 천연나노클레이에도 Al3+금속 이온들이 존재하기 때문에 미생물과 응집 현상을 일으킬 수 있다.
또한 아미노프로필성 마그네슘 필로실리케이트 클레이 (aminopropyl functionalized magnesium phyllosilicate clay, Mg-APTES)와 같은 유기클레이의 경우에는 클레이의 -NH2기가 수용액 상에서 -NH3 +로 되면서 나노클레이 표면에 양전하를 띠며 pH는 9 이상으로 상승한다. 음전하를 띠고 있는 미생물의 세포벽이 양이온성의 나노클레이에 의해 불안정해지면서 세포벽의 붕괴가 일어나고, 유기용매의 세포벽 내로의 침투를 용이하게 하는 것으로 예측된다. 미생물로부터 오일을 추출하기 위하여 카올린과 같은 무기나노클레이 또는 아미노프로필성 마그네슘 필로실리케이트 클레이 (aminopropyl functionalized magnesium phyllosilicate clay, Mg-APTES), 아미노프로필성 칼슘 필로실리케이트 클레이 (aminopropyl functionalized calcium phyllosilicate clay, Ca-APTES), 아미노프로필성 철 필로실리케이트 클레이 (aminopropyl functionalized iron phyllosilicate clay, Fe-APTES), 아미노프로필성 망간 필로실리케이트 클레이 (aminopropyl functionalized manganese phyllosilicate clay, Mn-APTES), 아미노프로필성 구리 필로실리케이트 클레이 (aminopropyl functionalized copper phyllosilicate clay, Cu-APTES)와 같은 유기클레이를 이용할 수 있다. 유기 클레이에는 마그네슘, 알루미늄, 칼슘, 철, 망간, 구리 등의 금속이 함유되어 있다.
음전하를 띠고 있는 미생물의 세포벽이 양이온성의 클레이에 의해 불안정해지면서 세포벽의 붕괴가 일어나게 한다. 이와 더불어 유기 클레이 내의 금속 이온은 과산화물과 반응하여 강력한 산화제인 수산화 라디칼을 발생시켜 세포벽을 분해시키는 역할을 한다. 이러한 반응을 펜톤 반응 또는 펜턴유사 반응이라 하는데, 일반적으로 pH3이 최적의 반응조건이다.
즉, 오일을 효율적으로 추출하기 위해서는 미생물의 세포벽을 분해하여 오일을 세포 밖으로 배출하는 것이 바람직하다. 세포벽을 분해할 수 있는 방법 중의 하나로, 상기와 같이 펜톤유사 반응을 적용할 수 있다. 다음은 펜톤유사 반응식을 나타낸다.
Fe2+ + H2O2 → Fe3+ + OH- + ㆍOH
Fe3+ + H2O2 ↔ Fe-OOH2+ + H+ → ㆍHO2- + Fe2+ + H+
펜톤유사 반응은 금속이온과 과산화수소가 반응함으로써 생성된 라디칼의 강력한 산화작용에 의해 목표로 하는 물질의 분해를 유도하는 반응이다. 여기서 Fe2+/Fe3+의 경우 Mn2+, Cu2+ 등으로 대체할 수 있다. 이 반응을 미생물의 세포벽 분해에 적용함으로써 오일을 쉽게 추출할 수 있다. 펜톤 반응이나 펜톤 유사반응을 위한 과산화물로 과산화수소를 사용할 수 있다. 침전된 미생물에 과산화물을 첨가하여 세포벽을 분해하는 단계에서 배양액을 교반해 줌으로써 펜톤반응의 효율을 높일 수 있다.
그러나 미생물 배양액의 pH는 보통 6 정도로 이러한 pH에서 반응이 가능한 유기 클레이를 필요로 한다. 위에서 언급한 유기 클레이는 중성이나 그 이상의 pH 조건에서도 펜톤반응이 잘 일어나는 장점을 지니고 있다. 이 외에도 아미노프로필성 티타늄 필로실리케이트 클레이 (aminopropyl functionalized titanium phyllosilicate clay, Ti-APTES), 아미노프로필성 알루미늄 필로실리케이트 클레이 (aminopropyl functionalized aluminium phyllosilicate clay, Al-APTES), 아미노프로필성 세륨 필로실리케이트 클레이 (aminopropyl functionalized cerium phyllosilicate clay, Ce-APTES), 아미노프로필성 니켈 필로실리케이트 클레이 (aminopropyl functionalized nickel phyllosilicate clay, Ni-APTES), 아미노프로필성 코발트 필로실리케이트 클레이 (aminopropyl functionalized cobalt phyllosilicate clay, Co-APTES), 아미노프로필성 아연 필로실리케이트 클레이 (aminopropyl functionalized zinc phyllosilicate clay, Zn-APTES), 아미노프로필성 주석 필로실리케이트 클레이 (aminopropyl functionalized tin phyllosilicate clay, Sn-APTES)도 오일 추출을 위한 유기클레이로 이용될 수 있다.
클레이의 주요 미네랄 조성은 도 21과 같은 필로실리케이트 (phyllosilicate)이다. 필로실리케이트로 구성되는 기본 빌딩 블락은 실리카(SiO2) 면과 알루미늄(Al) 또는 마그네슘(Mg) 옥사이드 octahedral 면으로 이루어진다. Tetrahedral 층은 몇몇의 실리카 테트라히드론 (SiO4)의 배위결합으로 구성된다.
이러한 테트라히드론은 3개의 코너로 연속적인 면을 형성하면서 같은 방향으로 결합되지 않은 각 테느라히드론 점의 4개의 산소(O) 원자를 공유한다 (도 21(a)). 이러한 축들이 tetrahedral 면에서 octahedral 면으로 연결되어 있으며, 여기서 tetrahedral 면의 수직방향으로 위치한 산소들은 octahedral 면에 의해 공유되어 있다. Octahedral 면에서 알루미늄 또는 마그네슘 원자들은 6개의 산소 원자 또는 OH 그룹으로 배위되어 있는데 이는 중심 알루미늄 또는 마그네슘 원자 주위에 놓여져 있다.
도 21(b)에서 보여주듯, OH 그룹 또는 산소 원자들로 octahedral를 공유하는 가장자리로부터 유래하는 octahedral 면을 각 옥타히드라 코너들에서 존재한다. Octahedral 면은 Mg2+ 같은 2가 양이온을 포함할 때, 면들의 전하를 균형은 모든 site가 차지하고 있을 때 이루어지며 이 면을 trioctahedral 면 또는 brucite [Mg(OH)2] 면이라고 한다. 만약에 Al3+ 이온과 같은 3가 양이온이 존재하면 가능한 위치의 단지 2/3가 구조의 균형을 위해 채워져 있으며 이에 상응하는 층은 gibbsite [Al2(OH)6] 또는 dioctahedral 면이라고 한다. 전체 클레이 구조는 tetrahedral과 octahedral 면의 다른 적층 조합으로부터 형성되어 있으며 하나의 면이 다른 면에 연결되어 있다 (도 21(c)).
층상 실리케이트는 이러한 기본 빌딩 블락들이 각각의 면에 상대적으로 적층되어 있는 방식으로 분류된다. 필로실리케이트의 일반적인 분류는 주로 1:1, 2:1, 그리고 2:1:1의 층상 실리케이트 미네랄로 되어있다. 1:1 층상 실리케이트에서, 각 층은 하나의 tetrahedral 면과 octahedral 면으로 이루어져 있다. 반면에, 2:1 층상 실리케이트에서 각 층은 두 개의 tetrahedral 면 사이에 octahedral 면이 샌드위치 형태로 가운데 있는 형태로 구성되어 있다.
이러한 층은 만약 중성이라면 약한 반데르발스 힘으로 붙잡혀 있거나 전하 균형을 위해 층간 사이에 양이온이 있는 형태이다. 2:1:1 형태의 미네랄은 각 tetrahedral-octahedral-tetrahedral 층 사이에 샌드위치 형태로 추가적으로 octahedral 면이 있으며 각 구조들은 chlorite 그룹 미네랄로 관찰될 수 있다. 각 층간의 spacing은 011 또는 basal spacing이라고 불리며 이는 두 연속 층 사이의 거리를 나타낸다. 2:1 구조를 가지는 필로실리케이트 클레이보다 1:1 구조를 가지는 필로실리케이트 클레이가 미생물로부터 오일을 추출하는 공정에서 유리한 것으로 나타났다.
또한 유기 클레이의 3-아미노프로필트리에톡시실란 (3-aminopropyltriethoxysilane, APTES)은 1:1 필로실리케이트 구조로써, aminopropyltriethoxysilane (APTES)의 구조가 (3-aminopropyl) triethoxysilane (N1), [3-(2-aminoethylamino) propyl] trimethoxysilane (N2), 3-[2-(2-aminoethylamino) ethylamino]propyltrimethoxysilane (N3)의 세 가지 구조를 갖는 유기 클레이 중에서 선택되는 하나 이상이 사용 가능하다.
나노클레이를 함유한 유기용매를 이용하여 미생물로부터 추출된 오일은 트리글리세리드 (triglyceride), 디글리세리드 (diglyceride), 모노글리세리드 (monoglyceride), 유리지방산 (free fatty acid)의 형태를 하고 있다. 이러한 오일 성분은 통상적인 바이오 디젤 전환 방법인 산 또는 염기촉매 하에서 알콜 (일반적으로 메탄올)을 사용하여 에스테르화 및 전이에스테르화 반응을 통하여 바이오 디젤로 전환이 가능하다.
즉 추출된 오일에 포함된 유리지방산 함량에 따라 산촉매 또는 염기촉매 하에서 오일과 알콜의 반응을 통해 오일이 바이오 디젤로 전환된다. 오일의 주성분인 트리글리세리드 (triglyceride)는 알콜과 염기촉매 하에서 반응하여 바이오 디젤과 글리세롤을 생성한다. 오일에 존재하는 유리지방산 (free fatty acid)의 경우는 산촉매 하에서 알콜과 반응하여 바이오 디젤과 물을 생성하게 된다 (도 22).
오일의 바이오 디젤 전환시 보통 염기촉매 반응을 이용하지만, 유리지방산이 다량으로 존재할 경우에는 비누화 반응이 일어나지 않도록 산촉매 반응을 이용한다. 산촉매 반응은 염기촉매 반응에 비하여 반응시간이 길지만, 오일에 불순물이 많은 경우에도 바이오 디젤 전환이 가능한 장점이 있어, 미생물로부터 추출된 오일처럼 일부 불순물을 포함한 경우에는 산촉매 반응이 유리하다.
이하, 본 발명에 의한 나노클레이를 이용한 미생물로부터 오일 추출 및 바이오 디젤 생산방법을 실시예와 함께 상세히 설명하면 다음과 같다.
[실시예 1]
- 나노클레이의 제조
아미노프로필성 마그네슘 필로실리케이트 클레이 (aminopropyl functionalized magnesium phyllosilicate clay, Mg-APTES)는 졸-겔 합성법에 의하여 제조되었다. 에탄올 40mL에 교반을 통하여 염화마그네슘 6수하물 (magnesium chloride hexahydrate) 1.68g을 완전히 녹인다. 에탄올-염화마그네슘 용액에 2.6mL의 3-아미노프로필트리에톡시실란 (3-aminopropyltriethoxysilane, APTES)을 첨가하고, 12시간 동안 상온에서 교반한 뒤 침전물을 원심분리로 분리한다. 50mL 에탄올로 세정한 후, 40℃에서 건조시키고 막사사발을 이용하여 가루로 만든다. 동일한 배수로 각각의 양을 증가시켜 반응시키면 대량생산도 가능하다.
- 나노클레이를 이용한 Chlorella sp. KR-1 배양액의 미세조류 침전
Chlorella sp. KR-1 배양액 (균체농도 1.6g/L)으로부터 미세조류를 침전/회수하기 위하여 아미노프로필성 철 필로실리케이트 클레이 (aminopropyl functionalized iron phyllosilicate clay, Fe-APTES), 아미노프로필성 망간 필로실리케이트 클레이 (aminopropyl functionalized manganese phyllosilicate clay, Mn-APTES), 아미노프로필성 구리 필로실리케이트 클레이 (aminopropyl functionalized copper phyllosilicate clay, Cu-APTES), 아미노프로필 알루미늄 필로실리케이트 클레이 (aminopropyl functionalized aluminum phyllosilicate clay, Al-APTES) 및 Al2(SO4)3·18H2O (Alum)에 대하여 각각의 미세조류 침전효율을 비교하였다. Chlorella sp. KR-1 배양액에 0.2g/L 농도가 되도록 4가지 클레이 및 Alum을 첨가하고, 30분 후에 상층의 투명도를 육안으로 검토한 결과, Fe-APTES > Al-APTES > Mn-APTES > Cu-APTES, Alum 순으로 Chlorella sp. KR-1 배양액에 대한 침전효율이 높은 것으로 나타났다.
[실시예 2]
- 과산화수소의 농도에 따른 Chlorella sp. KR-1으로부터 펜톤유사반응을 이용한 오일 제조
Chlorella sp. KR-1에 대하여, 나노클레이와 과산화수소의 펜톤반응을 이용한 오일 추출시 나노클레이의 종류에 따른 영향에 대하여 살펴보았다. 도 23는 Chlorella sp. KR-1의 나노클레이 종류에 따른 오일 추출 효율을 나타낸다. 무기클레이인 카올린, 그리고 유기클레이인 아미노프로필성 철 필로실리케이트 클레이 (aminopropyl functionalized iron phyllosilicate clay, Fe-APTES), 아미노프로필성 망간 필로실리케이트 클레이 (aminopropyl functionalized manganese phyllosilicate clay, Mn-APTES), 아미노프로필성 구리 필로실리케이트 클레이 (aminopropyl functionalized copper phyllosilicate clay, Cu-APTES), 그리고 염화제이철 (FeCl3·6H2O)의 Chlorella sp. KR-1에 대한 오일 추출율을 비교하였다. Chlorella sp. KR-1은 건조중량 기준 총 43.6%의 높은 지방산 함량을 나타낸다.
Chlorella sp. KR-1을 포함한 배양액에 각각의 클레이를 첨가하여 침전시킨 Chlorella sp. KR-1에 과산화수소 농도가 0, 0.1, 0.5, 1, 3, 5%가 되도록 과산화수소를 첨가하고 교반시킨 후, 상층에 존재하는 오일층을 회수하여 오일 추출 효율을 측정하였다.
수분이 존재하는 상태에서 클레이 및 과산화수소를 넣지 않은 경우의 오일 추출율은 미세조류 건조중량 대비 3.3%였으며, 동결건조하여 수분을 제거한 상태에서 클레이 및 과산화수소를 넣지 않은 경우의 오일 추출율은 미세조류 건조중량 대비 32.0%였다. 카올린의 경우 과산화수소 농도에 관계없이 10% 내외의 오일 추출 효율을 나타내었으며, 과산화수소 농도 0.5% 이상에서는 Fe-APTES < Cu-APTES < Mn-APTES의 순으로 높은 오일 추출 효율을 나타내었다 (도 23).
염화제이철은 유기클레이보다 낮은 오일 추출 효율을 나타내었다. 펜톤반응의 최적조건이 pH3인데 반해, 배양액의 pH는 6 정도여서 무기클레이인 카올린은 제대로 반응이 일어나지 않았으나, 유기클레이인 경우에는 pH에 상관없이 높은 반응효율을 나타내었다. 따라서 수분이 있는 상태에서 동결건조된 미세조류와 비슷하거나 더 높은 오일 추출 효율을 보여, 건조 공정 없이도 효율적으로 미생물로부터 오일 추출이 가능하였다.
[실시예 3]
- 나노클레이의 농도에 따른 Chlorella sp. KR-1으로부터 오일 추출
미세조류 Chlorella sp. KR-1에 대하여, 클레이를 이용한 오일 추출시 클레이의 영향에 대하여 살펴보았다. Chlorella sp. KR-1은 건조중량 기준 총 330.1 mg/g cell의 지방산 함량을 나타내며, 33.0%의 지방산을 함유하고 있다 (표 3).
표 3 미세조류의 지방산 분포
Fatty acid Fatty acid content
(mg/g cell) (%)
Myristic acid C14:0 0.9 0.3
Palmitic acid C16:0 92.4 28.0
Stearic acid C18:0 23.9 7.2
Oleic acid C18:1 67.7 20.5
Linoleic acid C18:2 85.8 26.0
Linolenic acid C18:3 26.3 8.0
Others 33.2 10.0
Total 330.1 100.0
10g/L 농도의 미세조류 용액 100g에 대하여 헥산:메탄올=7:3(v/v) 60mL를 넣고, 아미노프로필성 마그네슘 필로실리케이트 클레이 (aminopropyl functionalized magnesium phyllosilicate clay, Mg-APTES)를 미세조류 건조중량 대비 20, 10, 5, 1wt%의 농도로 첨가한다. 상온에서 6시간 동안 교반한 후, 원심분리하여 상층 (헥산-오일층)과 하층 (메탄올-물-미세조류 잔해층)으로 분리한다. 상층을 회수하여 헥산을 증발시키고 오일의 무게를 측정하여 오일 추출 효율을 계산한다. 이때 대조구로 수분이 없는 동결건조된 미세조류를 사용하고 클레이를 첨가하지 않은 경우 (Dry)와 10g/L 농도의 미세조류 용액에 클레이를 첨가하지 않은 경우 (Wet)의 오일 추출 효율을 비교하였다.
동결 건조된 미세조류의 경우 (Dry) 가장 높은 오일 추출 효율을 나타내었으며, 클레이를 첨가하였을 경우는 클레이를 첨가하지 않은 경우 (Wet) 보다 향상된 오일 추출 효율을 나타내었다 (도 24). 1~20wt%로 클레이의 농도가 증가했을 때, 오일 추출 효율도 점차 증가하였다.
각각 추출된 오일은 바이오 디젤 성분으로 전환가능한 지방산 뿐만 아니라 다른 오일도 일부 포함될 수 있으므로, 추출된 오일의 지방산 함량을 측정하였다. 추출된 오일 10mg에 클로로포름-메탄올 (2:1, v/v) 2mL, 내부 표준물질인 헵타데칸산(heptadecanoic acid) 용액 1mL, 메탄올 1mL, 황산 0.3mL을 차례로 넣어준다. 이 혼합용액을 100℃에서 10분간 반응시킨 후 증류수 1mL을 첨가한다. 원심분리하고 층분리된 용액 중 아래층을 가스 크로마토그래피로 분석하여 지방산 메틸 에스테르(fatty acid methyl ester, FAME)로 전환되는 지방산 함량을 측정한다. 오일 추출 효율이 낮은 1wt% 클레이를 첨가한 경우와 클레이를 첨가하지 않은 경우 (Wet)는 지방산 함량 측정에서 제외되었다.
지방산 함량을 비교해보면, 동결건조된 미세조류의 경우 (Dry) 가장 높은 오일 추출 효율을 나타낸 반면, 추출된 오일에 포함되어 있는 지방산 함량은 800 mg/g lipid를 나타내었다 (도 25). 반면 클레이가 5~20wt% 포함된 경우에는 세 경우 모두 높은 지방산 함량을 나타내었다.
미세조류의 지방산 메틸 에스테르 생산성을 미세조류로부터의 오일 추출 효율과 추출된 오일의 지방산 함량의 곱으로써 계산하였으며, 미세조류로부터 생산 가능한 최대 지방산 메틸 에스테르 함량을 나타낸다.
동결 건조된 미세조류의 경우 (Dry)에 가장 높은 지방산 메틸 에스테르 생산성을 나타냈으며, 클레이 농도가 5~20wt%로 증가했을 때, 지방산 메틸 에스테르 생산성도 증가했지만, 클레이를 첨가한 세 경우에 대해서 지방산 메틸 에스테르 생산성은 비슷하게 관찰되었다 (도 26).
- 나노클레이의 농도에 따른 Chlorella vulgaris sp.로부터 오일 추출
미세조류 Chlorella vulgaris sp.에 대하여, 나노클레이를 이용한 오일 추출시 나노클레이의 영향에 대하여 살펴보았다. Chlorella vulgaris sp.는 건조중량 기준 총 87.6 mg/g cell의 지방산 함량을 나타내며, 8.76%의 지방산을 함유하고 있다 (표 4).
표 4 미세조류의 지방산 분포
Fatty acids Fatty acids content
(mg/g cell) (%)
Myristic acid C14:0 1.8 2.0
Palmitic acid C16:0 19.4 22.2
Stearic acid C18:0 1.4 1.6
Oleic acid C18:1 2.0 2.2
Linoleic acid C18:2 29.8 34.0
Linolenic acid C18:3 3.2 3.7
Docosahexaenoic acid C22:6 7.2 8.2
Others 22.8 26.1
Total 87.6 100
10g/L 농도의 미세조류 용액 100g에 대하여 헥산:메탄올=7:3(v/v) 60mL를 넣고, 아미노프로필성 마그네슘 필로실리케이트 클레이 (aminopropyl functionalized magnesium phyllosilicate clay, Mg-APTES)를 미세조류 건조중량 대비 20, 10, 5, 1wt%의 농도로 첨가한다. 상온에서 6시간 동안 교반한 후, 원심분리하여 상층 (헥산-오일층)과 하층 (메탄올-물-미세조류 잔해층)으로 분리한다. 상층을 회수하여 헥산을 증발시키고 오일의 무게를 측정하여 오일 추출 효율을 계산한다. 이때 대조구로 수분이 없는 동결 건조된 미세조류를 사용하고 클레이를 첨가하지 않은 경우 (Dry)와 10g/L 농도의 미세조류 용액에 클레이를 첨가하지 않은 경우 (Wet)의 오일 추출 효율을 비교하였다.
동결 건조된 미세조류의 경우 (Dry) 가장 높은 오일 추출 효율을 나타내었으며, 클레이를 첨가하였을 경우는 클레이를 첨가하지 않은 경우 (Wet)보다 클레이가 1wt%만 첨가되었을 경우를 제외하고는 향상된 오일 추출 효율을 나타내었다 (도 27). 1~20wt%로 클레이의 농도가 증가했을 때, 오일 추출 효율도 점차 증가하였다.
각각 추출된 오일은 바이오 디젤 성분으로 전환 가능한 지방산뿐만 아니라 다른 오일도 일부 함유할 수 있으므로, 추출된 오일의 지방산 함량을 측정하였다. 추출된 오일 10mg에 클로로포름-메탄올 (2:1, v/v) 2mL, 내부 표준물질인 헵타데칸산(heptadecanoic acid) 용액 1mL, 메탄올 1mL, 황산 0.3mL을 차례로 넣어준다. 이 혼합용액을 100℃에서 10분간 반응시킨 후 증류수 1mL을 첨가한다. 원심분리하고 층분리된 용액 중 아래층을 가스 크로마토그래피로 분석하여 지방산 메틸 에스테르(fatty acid methyl ester, FAME)로 전환되는 지방산 함량을 측정한다. 오일 추출 효율이 낮은 1wt% 클레이를 첨가한 경우와 클레이를 첨가하지 않은 경우 (Wet)는 지방산 함량 측정에서 제외되었다.
지방산 함량을 비교해보면, 동결건조된 미세조류의 경우 (Dry) 가장 높은 오일 추출 효율을 나타낸 반면, 추출된 오일에 포함되어 있는 지방산 함량은 700 mg/g lipid를 나타내었다 (도 28). 반면 클레이가 5~20wt% 포함된 경우는 첨가된 클레이의 농도가 증가했을 때, 지방산 함량은 감소하는 것으로 나타났다. 즉 클레이의 농도가 증가할수록, 오일 추출 효율은 증가하고, 추출된 오일에 포함된 지방산 함량은 낮아졌다.
미세조류의 지방산 메틸 에스테르 생산성을 미세조류로부터의 오일 추출 효율과 추출된 오일의 지방산 함량의 곱으로써 계산하였으며, 미세조류로부터 생산 가능한 최대 지방산 메틸 에스테르 함량을 나타낸다.
동결건조된 미세조류의 경우 (Dry)와 클레이 농도가 20wt% 및 10wt%일 때 동일한 수준의 지방산 메틸 에스테르 생산성을 나타내었으며, 클레이 농도가 5wt%일 경우에는 낮은 생산성을 나타내었다 (도 29).
[실시예 4]
- 클레이의 종류에 따른 Chlorella sp. KR-1으로부터 오일 추출
미세조류 Chlorella sp. KR-1에 대하여, 클레이의 종류에 따른 오일 추출시 클레이의 영향에 대하여 살펴보았다. Chlorella sp. KR-1은 건조중량 기준 총330.1 mg/g cell의 지방산 함량을 나타내며, 33.0%의 지방산을 함유하고 있다(표 5).
10g/L 농도의 미세조류 용액 100g에 대하여 헥산:메탄올=7:3(v/v) 60mL를 넣고, 클레이로 카올린, 아미노프로필성 마그네슘 필로실리케이트 클레이 (aminopropyl functionalized magnesium phyllosilicate clay, Mg-APTES), 아미노프로필성 알루미늄 필로실리케이트 클레이 (aminopropyl functionalized aluminum phyllosilicate clay, Al-APTES), 아미노프로필성 칼슘 필로실리케이트 클레이 (aminopropyl functionalized calcium phyllosilicate clay, Ca-APTES)를 미세조류 건조중량 대비 20wt%의 농도로 첨가하였다. 상온에서 6시간 동안 교반한 후, 원심분리하여 상층 (헥산-오일층)과 하층 (메탄올-물-미세조류 잔해층)으로 분리한다. 상층을 회수하여 헥산을 증발시키고 오일의 무게를 측정하여 오일 추출 효율을 계산하였다.
표 5 미세조류의 지방산 분포
Fatty acid Fatty acid content
(mg/g cell) (%)
Myristic acid C14:0 0.9 0.3
Palmitic acid C16:0 92.4 28.0
Stearic acid C18:0 23.9 7.2
Oleic acid C18:1 67.7 20.5
Linoleic acid C18:2 85.8 26.0
Linolenic acid C18:3 26.3 8.0
Others 33.2 10.0
Total 330.1 100.0
4가지 클레이 중에서 Al-APTES가 가장 높은 오일 추출 효율을 나타내었으며, Al-APTES>Mg-APTES>카올린>Ca-APTES 순으로 오일 추출 효율이 높게 나타났다 (도 30). 각각 추출된 오일은 바이오 디젤 성분으로 전환가능한 지방산 뿐만 아니라 다른 오일도 일부 포함될 수 있으므로, 추출된 오일의 지방산 함량을 측정하였다. 추출된 오일 10mg에 클로로포름-메탄올 (2:1, v/v) 2mL, 내부 표준물질인 헵타데칸산(heptadecanoic acid) 용액 1mL, 메탄올 1mL, 황산 0.3mL을 차례로 넣어준다. 이 혼합용액을 100℃에서 10분간 반응시킨 후 증류수 1mL을 첨가한다. 원심분리하고 층분리된 용액 중 아래층을 가스 크로마토그래피로 분석하여 지방산 메틸 에스테르(fatty acid methyl ester, FAME)로 전환되는 지방산 함량을 측정하였다.
지방산 함량을 비교해보면, 4가지 모든 경우에서 매우 높은 지방산 함량을 나타내었다 (도 31). 미세조류의 지방산 메틸 에스테르 생산성을 미세조류로부터의 오일 추출 효율과 추출된 오일의 지방산 함량의 곱으로써 계산하였으며, 미세조류로부터 생산 가능한 최대 지방산 메틸 에스테르를 나타낸다. 4가지 클레이에 대하여 Al-APTES > Mg-APTES > 카올린 > Ca-APTES 순으로 지방산 메틸 에스테르 생산성이 높은 것으로 나타났다 (도 32).
[실시예 5]
- 클레이를 이용하여 추출된 오일로부터 바이오 디젤의 생산
클레이를 함유한 유기용매를 이용하여 미생물로부터 추출된 오일은 트리글리세리드 (triglyceride), 디글리세리드 (diglyceride), 모노글리세리드 (monoglyceride), 유리지방산 (free fatty acid)의 형태를 하고 있다. 이러한 오일 성분은 통상적인 바이오 디젤 전환 방법인 산 또는 염기촉매 하에서 알콜 (일반적으로 메탄올)을 사용하여 에스테르화 및 전이에스테르화 반응을 통하여 바이오 디젤로 전환이 가능하다. 즉 추출된 오일에 포함된 유리지방산 함량에 따라 산촉매 또는 염기촉매 하에서 오일과 알콜의 반응을 통해 오일이 바이오 디젤로 전환된다. 오일의 주성분인 트리글리세리드 (triglyceride)는 알콜과 염기촉매 하에서 반응하여 바이오 디젤과 글리세롤을 생성한다. 오일에 존재하는 유리지방산 (free fatty acid)의 경우는 산촉매 하에서 알콜과 반응하여 바이오 디젤과 물을 생성하게 된다 (도 22).
오일의 바이오 디젤 전환시 보통 염기촉매 반응을 이용하지만, 유리지방산이 다량으로 존재할 경우에는 비누화 반응이 일어나지 않도록 산촉매 반응을 이용한다. 산촉매 반응은 염기촉매 반응에 비하여 반응시간이 길지만, 오일에 불순물이 많은 경우에도 바이오 디젤 전환이 가능한 장점이 있어, 미생물로부터 추출된 오일처럼 일부 불순물을 포함한 경우에는 산촉매 반응이 유리하다. 산 또는 염기촉매 반응에서, 산촉매로는 Amberlyst-15, Amberlyst BD20, 또는 황산이 사용될 수 있으며, 염기촉매로는 NaOH, KOH, NaOCH3, 또는 KOCH3 등이 사용될 수 있다. 도 33은 미세조류 Chlorella vulgaris sp.로부터 추출된 오일로부터 생산된 바이오 디젤을 나타낸다.
또한 Chlorella sp. KR-1로부터 헥산-메탄올 혼합용매를 이용해 12시간 동안 교반 후 추출된 오일에 대하여, 메탄올과 산촉매인 황산을 넣고 100도에서 6시간 동안 전이에스테르화 및 에스테르화 반응시켜 바이오 디젤을 생산하였다. 바이오 디젤의 수세 후, 감압 증류공정 (150-250℃)을 통하여 정제된 미세조류 바이오 디젤을 생산하였다.
이와 같이 본 발명의 나노클레이를 이용한 미생물로부터의 오일분리 및 추출된 오일의 바이오 디젤화 과정을 통해 기존의 오일 함유 미생물로부터 오일을 추출하기 위하여 필요로 하는 공정비용 상승 문제를 개선함으로서 경제성 있는 오일 및 바이오 디젤의 생산이 가능하다.
기존 바이오 디젤의 원료가 되는 대두유, 유채유, 팜유 등에 비해 오일 생산량이 10배, 많게는 100배 이상인 오일 함유 미생물로부터 Al-APTES, Ca-APTES, Mg-APTES, Fe-APTES, Mn-APTES, Cu-APTES 등의 나노클레이를 이용한 오일 제조방법으로 추출된 다양한 종류의 오일로부터 산 또는 염기 촉매 하에서 알콜과 에스테르화 및 전이에스테르화 반응시키는 단계를 포함하는 바이오 디젤의 제조방법에 따라 미생물로부터 오일 및 바이오 디젤의 생산이 가능하고 또한, 오일 함유 미생물로부터 오일을 추출하기 위하여 필요로 하는 공정비용 상승문제를 개선함으로써 경제성 있는 오일 및 바이오 디젤의 생산이 가능하여 바이오 디젤의 대중화를 빨리 이룰 수 있다는 장점을 가진 유용한 발명으로 산업상 그 이용이 크게 기대되는 발명이다.

Claims (16)

  1. a) 오일 함유 미생물을 배양액 중에서 배양하는 단계; b) 배양된 오일 함유 미생물의 배양액에 나노클레이를 첨가하는 단계; c) 나노클레이로 응집 침전된 미생물을 배양액으로부터 분리하는 단계; d) 분리된 미생물을 파쇄하여 오일을 세포 밖으로 배출시키는 단계; e) 배출된 오일을 미생물 잔해로부터 분리 및 회수하는 단계를 포함하는 것을 특징으로 하는 나노클레이를 이용한 바이오 오일 제조방법.
  2. 제1항에 있어서, 오일 함유 미생물은 미세조류, 박테리아, 효모 및 진균 중에서 선택되는 하나 이상인 것을 특징으로 하는 나노클레이를 이용한 바이오 오일 제조방법.
  3. 제2항에 있어서, 상기 미세조류는 Chlorella sp., Botryococcus braunii, Nitzschia sp., Chlamydomonas applanata, Chlamydomonas reinhardtii, Chlorella ellipsoidea, Dunaliella salina, Isochrysis galbana, Microcystis aeruginosa, Nannochloris sp., Synechococcus, Synechocystis sp., Aurantiochytrium sp. 중에서 선택되는 하나 이상인 것을 특징으로 하는 나노클레이를 이용한 바이오 오일 제조방법.
  4. 제2항에 있어서, 상기 박테리아는 Bacillus alcalophilus, E. coli, Rhodospirillum rubrum, Rhodopseudomonas capsulatus, Rhodopseudomonas palustris, Rhodopseudomonas sphaeroides, Rhodobacter capsulatus, Rhodobacter sphaeroides 중에서 선택되는 하나 이상인 것을 특징으로 하는 나노클레이를 이용한 바이오 오일 제조방법.
  5. 제2항에 있어서, 상기 효모는Candida curvata, Cryptococcus albidus, Lipomyces starkeyi, Rhodotorula glutinis 중에서 선택되는 하나 이상인 것을 특징으로 하는 나노클레이를 이용한 바이오 오일 제조방법.
  6. 제2항에 있어서, 상기 진균은 Aspergillus oryzae, Mortierella isabellina, Humicola lanuginosa, Mortierella vinacea 중에서 선택되는 하나 이상인 것을 특징으로 하는 나노클레이를 이용한 바이오 오일 제조방법.
  7. 제1항에 있어서, 나노클레이는 Al-APTES, Ca-APTES, Mg-APTES, Fe-APTES, Mn-APTES, Cu-APTES, Ti-APTES, Ce-APTES, Ni-APTES, Co-APTES, Zn-APTES, 또는 Sn-APTES 중에서 하나 이상을 선택하는 것을 특징으로 하는 나노클레이를 이용한 바이오 오일 제조방법.
  8. 제1항에 있어서, b)단계의 나노클레이 첨가농도는 0.1 - 1.0 g/L이고, c)단계에서 응집 침전에 필요한 시간은 5분 이상인 것을 특징으로 하는 나노클레이를 이용한 바이오 오일 제조방법.
  9. 제1항에 있어서, d)단계는 분리된 미생물을 교반하여 세포를 파쇄하는 것을 특징으로 하는 나노클레이를 이용한 바이오 오일 제조방법.
  10. 제9항에 있어서, 상기 교반시 과산화물을 첨가하는 것을 특징으로 하는 나노클레이를 이용한 바이오 오일 제조방법.
  11. 제10항에 있어서, 상기 과산화물은 과산화수소인 것을 특징으로 하는 나노클레이를 이용한 바이오 오일 제조방법.
  12. 제1항에 있어서, e)단계는 중력침강 또는 원심분리 방식으로 오일을 포함하는 층과 미생물 잔해를 포함하는 층으로 분리하는 것을 특징으로 하는 나노클레이를 이용한 바이오 오일 제조방법.
  13. 제1항에 있어서, e)단계는 유기용매를 첨가하여 오일을 포함하는 층과 미생물 잔해를 포함하는 층으로 분리하는 것을 특징으로 하는 나노클레이를 이용한 바이오 오일 제조방법.
  14. a) 오일 함유 미생물을 배양액 중에서 배양하는 단계;b) 배양된 오일 함유 미생물의 배양액에 나노클레이를 첨가하는 단계;c) 나노클레이로 응집 침전된 미생물을 배양액으로부터 분리하는 단계;d) 분리된 미생물을 파쇄하여 오일을 세포 밖으로 배출시키는 단계;e) 배출된 오일을 미생물 잔해로부터 분리 및 회수하는 단계;f) 회수된 오일을 원료로 산 또는 염기 촉매 하에서 알콜과 반응시키는 단계를 포함하는 것을 특징으로 하는 나노클레이를 이용한 바이오연료 제조방법.
  15. 제14항에 있어서, 산 촉매는 Amberlyst 15, Amberlyst BD20, 또는 황산 중에서 선택되는 어느 하나인 것을 특징으로 하는 나노클레이를 이용한 바이오연료 제조방법.
  16. 제14항에 있어서, 염기 촉매는 NaOH, KOH, NaOCH3, 또는 KOCH3 중에서 선택되는 어느 하나인 것을 특징으로 하는 나노클레이를 이용한 바이오연료 제조방법.
PCT/KR2012/007630 2012-03-20 2012-09-24 나노클레이를 이용한 오일 함유 미생물 수확 및 바이오 오일 제조 방법 WO2013141451A1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020120028525A KR101471243B1 (ko) 2012-03-20 2012-03-20 나노클레이를 이용한 오일함유 미생물 수확방법
KR1020120028523A KR101375385B1 (ko) 2012-03-20 2012-03-20 점토를 이용한 미생물로부터 오일 추출 및 오일 생산방법
KR10-2012-0028523 2012-03-20
KR10-2012-0028525 2012-03-20
KR1020120035355A KR101413368B1 (ko) 2012-04-05 2012-04-05 점토를 이용한 미생물로부터 오일 추출 및 바이오디젤 생산 방법
KR10-2012-0035355 2012-04-05
KR10-2012-0042958 2012-04-25
KR1020120042958A KR101448344B1 (ko) 2012-04-25 2012-04-25 미생물로부터 펜톤유사반응을 이용한 바이오오일 제조 방법

Publications (1)

Publication Number Publication Date
WO2013141451A1 true WO2013141451A1 (ko) 2013-09-26

Family

ID=49222881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007630 WO2013141451A1 (ko) 2012-03-20 2012-09-24 나노클레이를 이용한 오일 함유 미생물 수확 및 바이오 오일 제조 방법

Country Status (1)

Country Link
WO (1) WO2013141451A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101743866B1 (ko) * 2016-01-19 2017-06-08 가천대학교 산학협력단 아미노점토를 이용한 미세조류 배양방법, 이의 배양방법 따른 미세조류 및 미세조류 배양액 재활용방법
CN111054358A (zh) * 2019-12-06 2020-04-24 西南石油大学 一种铜镍锡水滑石催化剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510627A (ja) * 2008-01-25 2011-04-07 アクアテック エネジー エルエルシー 藻類培養生産、収穫、および加工
KR20110096377A (ko) * 2010-02-22 2011-08-30 한국에너지기술연구원 미세조류로부터 오일 추출 및 바이오디젤 전환 방법
KR20110102914A (ko) * 2009-01-14 2011-09-19 올텍 법인회사 점토 혼입된 효모 조성물 및 이의 사용방법
US20110312063A1 (en) * 2010-06-17 2011-12-22 Neste Oil Oyj Method for Harvesting Algae
KR20120025252A (ko) * 2010-09-07 2012-03-15 조선대학교산학협력단 수용성 유기점토를 이용한 유해조류 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510627A (ja) * 2008-01-25 2011-04-07 アクアテック エネジー エルエルシー 藻類培養生産、収穫、および加工
KR20110102914A (ko) * 2009-01-14 2011-09-19 올텍 법인회사 점토 혼입된 효모 조성물 및 이의 사용방법
KR20110096377A (ko) * 2010-02-22 2011-08-30 한국에너지기술연구원 미세조류로부터 오일 추출 및 바이오디젤 전환 방법
US20110312063A1 (en) * 2010-06-17 2011-12-22 Neste Oil Oyj Method for Harvesting Algae
KR20120025252A (ko) * 2010-09-07 2012-03-15 조선대학교산학협력단 수용성 유기점토를 이용한 유해조류 제어방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101743866B1 (ko) * 2016-01-19 2017-06-08 가천대학교 산학협력단 아미노점토를 이용한 미세조류 배양방법, 이의 배양방법 따른 미세조류 및 미세조류 배양액 재활용방법
CN106978383A (zh) * 2016-01-19 2017-07-25 嘉泉大学校产学协力团 利用氨基粘土的微藻类培养方法、基于该培养方法的微藻类及微藻类培养液的再利用方法
CN106978383B (zh) * 2016-01-19 2021-08-20 嘉泉大学校产学协力团 利用氨基粘土的微藻类培养方法、基于该培养方法的微藻类及微藻类培养液的再利用方法
CN111054358A (zh) * 2019-12-06 2020-04-24 西南石油大学 一种铜镍锡水滑石催化剂及其制备方法
CN111054358B (zh) * 2019-12-06 2022-02-01 西南石油大学 一种铜镍锡水滑石催化剂及其制备方法

Similar Documents

Publication Publication Date Title
Ma et al. Biodiesels from microbial oils: opportunity and challenges
Piasecka et al. Physical methods of microalgal biomass pretreatment
Goswami et al. Scenedesmus dimorphus and Scenedesmus quadricauda: two potent indigenous microalgae strains for biomass production and CO2 mitigation—A study on their growth behavior and lipid productivity under different concentration of urea as nitrogen source
Surendhiran et al. Microalgal biodiesel-a comprehensive review on the potential and alternative biofuel
US20100267122A1 (en) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications
EP2546352A1 (en) Process for producing lipids from palm oil production residues
EP3071680B1 (en) Process for the extraction of lipids and sugars from algal biomass
KR20130014091A (ko) 미세조류로부터 바이오디젤용 원료유를 추출하는 방법 및 이를 이용한 바이오디젤 생산방법
US11401540B2 (en) Production of algae-derived polyunsaturated fatty acids
Hong et al. Biodiesel production from Vietnam heterotrophic marine microalga Schizochytrium mangrovei PQ6
Chatsungnoen et al. Optimization of oil extraction from Nannochloropsis salina biomass paste
Bhattacharya et al. Solar driven mass cultivation and the extraction of lipids from Chlorella variabilis: a case study
KR101743866B1 (ko) 아미노점토를 이용한 미세조류 배양방법, 이의 배양방법 따른 미세조류 및 미세조류 배양액 재활용방법
KR20120058583A (ko) 자트로파 메틸 에스테르 및 부산물 제조를 위한 통합 방법
WO2013141451A1 (ko) 나노클레이를 이용한 오일 함유 미생물 수확 및 바이오 오일 제조 방법
WO2022119062A1 (ko) 바이오디젤 제조용 고체 산 촉매, 바이오디젤 제조용 고체 염기 촉매, 이들의 제조 방법, 및 이들을 이용한 바이오디젤의 제조 방법
Anerao et al. Algal-based biofuel production: Opportunities, challenges, and prospects
KR101448344B1 (ko) 미생물로부터 펜톤유사반응을 이용한 바이오오일 제조 방법
Kamyab et al. A review on microalgae as potential lipid container with wastewater treating functions
JP2014519325A (ja) 副生成物に付加価値を有し、天然の海生微細藻類マット及び開放塩田で培養された海生微細藻類からのエンジンに値する脂肪酸メチルエステル(バイオディーゼル)
EP2505636A1 (en) A method for recovering a specific cellular component from a microorganism
Zhou et al. Bio-flocculation of microalgae: status and prospects
KR101413368B1 (ko) 점토를 이용한 미생물로부터 오일 추출 및 바이오디젤 생산 방법
Sarma et al. Statistical optimization of microalgal biodiesel production and protein extraction from Chlorella sorokiniana cultivated in dairy effluent
KR101567474B1 (ko) 아미노클레이-부식산 응집제를 이용한 유지성 미세조류 수확방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872275

Country of ref document: EP

Kind code of ref document: A1