WO2013141430A1 - 배터리 셀 - Google Patents

배터리 셀 Download PDF

Info

Publication number
WO2013141430A1
WO2013141430A1 PCT/KR2012/002256 KR2012002256W WO2013141430A1 WO 2013141430 A1 WO2013141430 A1 WO 2013141430A1 KR 2012002256 W KR2012002256 W KR 2012002256W WO 2013141430 A1 WO2013141430 A1 WO 2013141430A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
rivet
negative electrode
positive electrode
grid
Prior art date
Application number
PCT/KR2012/002256
Other languages
English (en)
French (fr)
Inventor
고성태
김광현
Original Assignee
주식회사 코캄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120029462A external-priority patent/KR101327771B1/ko
Priority claimed from KR1020120029473A external-priority patent/KR101327765B1/ko
Priority claimed from KR1020120029465A external-priority patent/KR101327770B1/ko
Priority claimed from KR1020120029474A external-priority patent/KR101327761B1/ko
Application filed by 주식회사 코캄 filed Critical 주식회사 코캄
Publication of WO2013141430A1 publication Critical patent/WO2013141430A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery cell.
  • a battery pack for storing electricity is configured by connecting a plurality of battery cells in series / parallel, and battery packs are widely used in portable batteries such as laptops. It is also used as a main power source for driving.
  • the battery cell constituting the battery pack includes a positive electrode plate, a negative electrode plate and a separator interposed between the positive electrode plate and the negative electrode plate, and the positive electrode plate and the negative electrode plate are alternately disposed.
  • the positive terminal tabs and the negative terminal tabs are connected by electrical and physical coupling such as ultrasonic welding or riveting.
  • the alternating positive plate, negative plate and separator are packaged by an exterior material or the like.
  • Each terminal tab connected to the positive electrode plate and the negative electrode plate may protrude connection parts due to ultrasonic welding or riveting method, which may damage the packaging material such as aluminum pouch film, and the metal at the connection area is directly insulated from the packaging material and electrically insulated. It has a problem that can be vulnerable.
  • the present invention provides a battery cell having a grid cover which prevents or suppresses damage to an exterior material by a portion connecting the positive electrode tabs and the negative electrode tabs, and improves electrical insulation with the exterior material.
  • the battery cell may include a plurality of positive electrode plates in which a plurality of sheets are stacked and positive electrode tabs face each other; Negative plates interposed between the positive plates and disposed with the negative electrode tabs facing each other; A separator interposed between the positive electrode plate and the negative electrode plate; A rivet comprising a first rivet penetrating the positive electrode tabs and a second rivet penetrating the negative electrode tabs; An exterior material surrounding the positive electrode plates and the negative electrode plates; And surrounding the positive electrode tab and the first rivet, the negative electrode tab, and the second rivet to prevent damage of the exterior member by the first and second rivets, and to prevent electrical shorts of the first and second rivets and the exterior member. A grid cover to prevent.
  • the grid cover of a battery cell includes a first grid cover surrounding the side surfaces of the positive electrode tabs and the first rivet and a second grid cover surrounding the side surfaces of the negative electrode tabs and the second rivet.
  • the first grid cover of a battery cell includes a first cover surrounding a portion of the side of the positive electrode tabs and a second cover surrounding the remainder of the side of the positive electrode tabs, wherein the second grid cover has a side of the negative electrode tabs. And a third cover surrounding a portion of and a fourth cover surrounding the rest of the side of the negative electrode tabs.
  • Coupling protrusions are formed on the first and third grid covers of the battery cell, and coupling grooves are coupled to the coupling protrusions on the second and fourth grid covers.
  • the first cover and the second cover, the third cover and the fourth cover of the battery cell are bonded to each other by any one of ultrasonic welding and thermal welding.
  • the first grid cover and the second grid cover of the battery cell comprise a synthetic resin injection.
  • the battery cell further includes an external connection terminal including a first external connection terminal coupled to the positive electrode tab and a second external connection terminal coupled to the negative electrode tab.
  • the grid cover of the battery cell is formed with a rivet receiving portion for receiving end portions of the first and second rivets protruding from the positive and negative electrode tabs, respectively.
  • a thickness of a portion of the grid cover of the battery cell corresponding to the rivet receiving portion is formed to be thinner than a length of an end portion of the first and second rivets protruding from the positive and negative electrode tabs, and the rivet receiving portion is formed in the first and second rivet receiving portions. It is optionally formed in a portion corresponding to said end of the second rivets.
  • a thickness of a portion of the grid covers of the battery cell corresponding to the rivet receiving portion is formed to be thicker than a length of an end portion of the first and second rivets protruding from the positive and negative electrode tabs, and the rivet receiving portion is formed in the first portion. And a groove shape formed at a portion corresponding to the end of the second rivets.
  • the grid cover of the battery cell is coupled with the first cover portion and the first cover portion surrounding the positive electrode tabs and the portion of the negative electrode tabs and protrudes from the positive electrode tab and the negative electrode tabs of the first and second rivets. And a second cover portion surrounding the ends.
  • Coupling protrusions are formed on the first cover portion of the battery cell, and coupling grooves are coupled to the coupling protrusions on the second cover portion.
  • the coupling protrusion and the coupling groove of the battery cell are coupled by one of mutual thermal welding and ultrasonic welding.
  • the second cover portion of the battery cell is formed with a rivet receiving portion for receiving the ends of the first and second rivets.
  • the battery cell according to the present invention it is possible to wrap the rivets combining the positive electrode plate and the negative electrode plate using a grid cover to prevent damage to the exterior material by the rivets.
  • the grid cover to cover the rivet to prevent damage to the exterior material is made of a synthetic resin injection molding can be combined with the grid cover by an automated process has the effect of further improving the productivity.
  • FIG. 1 is an external perspective view of a battery cell according to an embodiment of the present invention.
  • FIGS. 2 to 4 are plan views illustrating a positive electrode plate, a negative electrode plate, and a separator of a battery cell according to an exemplary embodiment of the present invention.
  • FIG. 5 is an exploded perspective view illustrating an exploded view of a positive electrode plate, a negative electrode plate, a rivet, and a grid cover of a battery cell according to an exemplary embodiment of the present invention.
  • FIG. 6 is a cross-sectional view taken along the line II ′ of FIG. 5.
  • FIG. 7 is an enlarged view of a portion 'A' of FIG. 6.
  • FIG. 8 is a cross-sectional side view of the positive electrode tab, first rivet and grid cover.
  • FIG 9 is an exploded cross-sectional view of the positive electrode tab, the first rivet and the grid cover according to the second embodiment of the present invention.
  • FIG. 10 is an exploded perspective view illustrating an anode plate, a cathode plate, a rivet, and a grid cover of the battery cell according to the third embodiment of the present invention.
  • FIG. 11 is an exploded perspective view illustrating the grid cover of FIG. 10.
  • FIG. 12 is a cross-sectional view taken along line II-II 'of FIG. 11.
  • 13 is a cross sectional view of the positive electrode tab, first rivet and grid cover.
  • FIG. 14 is a cross-sectional view of the positive electrode tab, first rivet and grid cover according to another embodiment of FIG. 13.
  • FIG. 15 is a side cross-sectional view of the positive electrode tab, first rivet and grid cover according to another embodiment of FIG. 13.
  • FIG. 16 is an exploded perspective view illustrating an anode plate, a cathode plate, a rivet, and a grid cover of a battery cell according to a fourth embodiment of the present invention.
  • 17 is a cross-sectional view illustrating a coupling relationship between the grid cover, the positive electrode tab, and the negative electrode tab of FIG. 16.
  • FIG. 18 is a cross-sectional view of the combination of FIG.
  • FIG. 19 is a cross-sectional view illustrating a coupling relationship between a grid cover, a positive electrode tab, and a negative electrode tab according to another embodiment of the present invention.
  • FIG. 20 is a cross-sectional view of the combination of FIG.
  • FIG. 1 is an external perspective view of a battery cell according to a first exemplary embodiment of the present invention.
  • 2 to 4 are plan views illustrating a positive electrode plate, a negative electrode plate, and a separator of the battery cell of FIG. 1.
  • FIG. 5 is an exploded perspective view illustrating an anode plate, a cathode plate, a rivet, and a grid cover of the battery cell of FIG. 1.
  • 6 is a cross-sectional view taken along the line II ′ of FIG. 5.
  • FIG. 7 is an enlarged view of a portion 'A' of FIG. 6.
  • 8 is a cross-sectional side view of the positive electrode tab, first rivet and grid cover.
  • the battery cell 100 forming a battery pack includes a positive electrode plate 110, a negative electrode plate 120, a separator 130, an external connection terminal 140, a rivet 150, The grid cover 160 and the exterior material 170 are included.
  • the positive electrode plate 110 includes a metal plate having a thin thickness and a positive electrode active material formed on a surface thereof.
  • the positive electrode plate 110 may be formed in, for example, a rectangular parallelepiped plate shape.
  • a positive electrode tab 115 protrudes from one side edge of the positive electrode plate 110 to provide a positive power to the positive electrode plate 110.
  • the positive electrode tab 115 may have a through hole 117 through which the rivet 150 to be described later passes.
  • At least one through hole 117 may be formed in the positive electrode tab 115 of the positive electrode plate 110.
  • the negative electrode plate 120 includes a metal plate having a thin thickness and a negative electrode active material formed on a surface thereof.
  • the negative electrode plate 120 may be formed, for example, in a rectangular plate shape, and the negative electrode plate 120 may be formed in the same shape and the same size as the positive electrode plate 120.
  • a negative electrode tab 125 protrudes from one edge of the negative electrode plate 110 to provide a power having a second polarity to the negative electrode plate 120.
  • the negative electrode tab 125 may have a through hole 127 through which the rivet 150 to be described later passes.
  • the positive electrode plate 110 is disposed in a shape in which a plurality of sheets are stacked, and the positive electrode tabs 115 of the plurality of stacked positive electrode plates 110 are disposed to face each other.
  • the negative electrode plate 120 is interposed between the opposite positive electrode plates 110, and the negative electrode tabs 125 of the negative electrode plates 120 interposed between the positive electrode plates 110 are disposed to face each other. That is, the positive electrode plate 110 and the negative electrode plate 120 are alternately arranged.
  • the separator 130 is disposed between the anode plates 110 and the cathode plates 120 that are alternately arranged, and a solid electrolyte is coated on the surface of the separator 130.
  • the external connection terminal 140 includes a first external connection terminal 142 and a second external connection terminal 144.
  • the first external connection terminal 142 is connected to the outermost positive electrode tab 115 among the positive electrode tabs 115, and also corresponds to the through hole 117 of the positive electrode tab 115 in the first external connection terminal 142. Through holes (not shown) may be formed.
  • the second external connection terminal 144 is connected to the outermost negative electrode tab 125 among the negative electrode tabs 125, and the second external connection terminal 144 also corresponds to the through hole 127 of the negative electrode tab 125. Through holes (not shown) may be formed.
  • the external connection terminal 140 is electrically connected to the positive electrode tab 115 and the negative electrode tab 125, respectively, to electrically connect the plurality of battery cells 100 in parallel to form a battery pack.
  • the positive electrode plates 110 are spaced apart from each other, and thus the positive electrode tabs 115 of the positive electrode plates 110 are disposed. They are also spaced apart from each other.
  • the rivet 150 electrically connects the positive electrode tabs 115 of the positive electrode plates 110 spaced apart from each other.
  • a rivet 150 that electrically / mechanically connects the positive electrode tabs 115 is defined as a first rivet 152, and the first rivet 152 is a through hole of the positive electrode tabs 115 of the positive electrode plate 110.
  • the positive electrode tabs 115 are electrically / mechanically connected through the 117 sequentially.
  • the plurality of stacked positive plates 110 are all electrically connected by the first rivets 152.
  • at least one, preferably at least two, first rivets 152 may be coupled to the positive electrode tabs 115 of the positive electrode plate 110.
  • the negative electrode plates 120 are spaced apart from each other, and thus the negative electrode tabs 125 of the negative electrode plates 120 are separated from each other. They are also spaced apart from each other.
  • the rivet 150 electrically connects the negative electrode tabs 125 of the negative electrode plates 120 spaced apart from each other.
  • a rivet 150 that electrically / mechanically connects the negative electrode tabs 125 is defined as a second rivet 154, and the second rivet 154 is a through hole of the negative electrode tabs 125 of the negative electrode plate 120.
  • the negative electrode tabs 125 are electrically / mechanically connected while sequentially passing through 127.
  • the stacked plurality of negative electrode plates 120 are all electrically connected by the second rivets 154.
  • at least one, preferably at least two, second rivets 154 may be coupled to the negative electrode tabs 125 of the negative electrode plate 120.
  • the length of the first rivet 152 connecting the positive electrode tab 115 of the positive electrode plate 110 is formed longer than the total thickness of all the positive electrode tabs 115 facing each other.
  • the length of the second rivets 154 connecting the negative electrode tabs 125 of the negative electrode plate 120 is longer than the total thickness of all the negative electrode tabs 125 facing each other.
  • first and second rivets 152, 154 are shorter than the overall thickness of the positive electrode tabs 115 and the negative electrode tabs 125, some of the positive electrode tabs 115 and the negative electrode tabs 125 may be formed of the first and second rivets 152, 154. This is because they are not electrically / mechanically connected to the second rivets 152 and 154.
  • the ends of the first and second rivets 152 and 154 may be formed in the positive electrode tab 115.
  • the end portions of the protruding first and second rivets 152 and 154 that protrude outwardly of the negative electrode tabs 125 may penetrate the exterior member 170 having a thin thickness or damage the exterior member 170.
  • the grid cover 160 surrounds the positive electrode tab 115 and the first rivet 152, the negative electrode tab 125, and the second rivet 154 to cover the first and second rivets 152 and 154. Prevention of physical damage to the exterior member 170 and electrical short of the first and second rivets 152 and 154 and the exterior member 170 may be prevented.
  • the grid cover 160 not only prevents the exterior material 170 from being damaged, but also enables assembly by a manual process rather than a manual process.
  • the grid cover 160 is coupled to the positive electrode tab 115 and coupled to the first grid cover 165 and the negative electrode tab 125 surrounding the side of the positive electrode tab 115 and the first rivet 152, and the negative electrode tab 125. And a second grid cover 169 enclosing the sides and the second rivets 154.
  • the first grid cover 165 includes a first cover 161 and a second cover 162, the first cover 161 and the second cover 162 is an injection molded by injection molding using a synthetic resin It may include.
  • the first cover 161 has a bent strip shape surrounding some of the side surfaces of the positive electrode tabs 115, and the second cover 162 has a bent strip shape surrounding the remaining sides of the positive electrode tabs 115. Is formed.
  • the first cover 161 and the second cover 162 may be coupled to each other to surround all sides of the positive electrode tabs 115 and to clamp the sides of the positive electrode tabs 115 and surround the first rivet 152.
  • a coupling protrusion 163 is formed at a portion of the first cover 161 facing the second cover 162 to clamp side surfaces of the positive electrode tabs 115, and a second cover facing the coupling protrusion 163 ( The coupling groove 164 coupled to the coupling protrusion 163 is formed in the 162.
  • the coupling protrusion 163 of the first cover 161 and the coupling groove 164 of the second cover 162 is fitted to each other, the coupling protrusion 163 is the coupling groove 164 It is bonded in a thermal fusion manner.
  • the coupling protrusion 163 may be coupled to the coupling groove 164 by an ultrasonic fusion method.
  • the second grid cover 169 includes a third cover 166 and a fourth cover 167.
  • the third cover 166 and the fourth cover 167 may include an injection molded product formed by injection molding using a synthetic resin.
  • the third cover 166 has a bent strip shape surrounding some of the side surfaces of the negative electrode tabs 125
  • the fourth cover 167 has a bent strip shape surrounding the other side of the negative electrode tabs 125. Is formed.
  • the third cover 166 and the fourth cover 167 are coupled to each other to surround the sides of the negative electrode tabs 125 to form a shape to clamp the sides of the negative electrode tabs 125 and surround the second rivet 154.
  • a coupling protrusion 168a is formed at a portion of the third cover 166 facing the fourth cover 167 to clamp side surfaces of the negative electrode tabs 125, and a fourth cover facing the coupling protrusion 168a ( 167 is formed with a coupling groove 168b coupled with the coupling protrusion 168a.
  • the engaging projection 168a of the third cover 166 and the engaging groove 168b of the fourth cover 167 are fitted to each other, and the engaging projection 168a is the engaging groove 168b. It is bonded in a thermal fusion manner.
  • the coupling protrusion 168a may be coupled to the coupling groove 168b by ultrasonic welding.
  • the exterior member 170 surrounds the positive electrode plate 110, the negative electrode plate 120, the rivet 150, and the grid cover 160, and the external connection terminal 140 is external to the exterior material 170.
  • the external connection terminal 140 and the exterior member 170 are insulated from each other by an insulating member.
  • the exterior member 170 includes an aluminum thin film having a thin thickness, but because the end portion of the rivet 150 facing the exterior member 170 is wrapped by the grid cover 160, the exterior member 170. ) Is not damaged by the rivet 150.
  • FIG. 9 is an exploded cross-sectional view of the positive electrode tab, the first rivet and the grid cover according to the second embodiment of the present invention.
  • the battery cell according to the second embodiment of the present invention is substantially the same as the battery cell according to the first embodiment shown and described with reference to FIGS. 1 through 8 except for the method of coupling the grid cover. Therefore, duplicate description of the same configuration will be omitted, and the same name and the same reference numerals will be given for the same configuration.
  • the battery cell 100 forming the battery pack includes a positive electrode plate 110, a negative electrode plate 120, a separator 130, an external connection terminal 140, a rivet 150, The grid cover 160 and the exterior material 170 are included.
  • the grid cover 160 surrounds the positive electrode tab 115 and the first rivet 152, the negative electrode tab 125, and the second rivet 154 to physically cover the exterior material 170 by the first and second rivets 152 and 154. Prevents damage and prevents electrical shorts of the first and second rivets 152 and 154 and the enclosure 170.
  • the grid cover 160 wraps the side of the positive electrode tabs 115 and the first rivet 152, the side of the negative electrode tabs 125 and the second rivet 154.
  • the grid cover 160 has a side of the positive electrode tabs 115 and a side of at least two first and second covers 161, 162 and negative electrode tabs 125 surrounding the first rivet 152. And at least two third and fourth covers 166 and 167 surrounding the second rivet 154.
  • the first cover 161 to the fourth cover 167 may be manufactured by injection molding using a thermoplastic synthetic resin having an electrical insulation.
  • the first cover 161 is formed to surround a portion of the side of the positive electrode tab 115 or the first rivet 152
  • the second cover 162 is the remaining or first rivet of the side of the positive electrode tab 115 It is formed in a shape surrounding the 152.
  • first cover 161 and the second cover 162 which are injection moldings, are coupled to each other, and the first cover 161 and the second cover 162 are coupled to each other by thermal fusion or ultrasonic fusion.
  • the reason why the first cover 161 and the second cover 162 are bonded to each other by thermal fusion or ultrasonic fusion is because the first cover 161 and the second cover 162 may be replaced by hand. This is because they are easy to combine with each other in an automation facility.
  • Coupling protrusions 163 are formed on the first cover 161 and coupling protrusions 162 are formed on the first cover 161 in order to more easily combine the first cover 161 and the second cover 162 with each other.
  • Coupling grooves 164 into which the 163 is fitted may be formed.
  • the coupling protrusion 163 of the first cover 161 may be coupled to the coupling groove 164 of the second cover 162 in an interference fit manner, and the coupling protrusion 163 When the coupling groove 164 is coupled in an interference fit manner, the heat fusion or ultrasonic fusion process of the first cover 161 and the second cover 162 may be omitted.
  • the coupling protrusion 163 of the first cover 161 is coupled to the coupling groove 164 of the second cover 162 in order to improve the assembly characteristics and the bonding strength of the first cover 161 and the second cover 162.
  • the first cover 161 and the second cover 162 may be mutually coupled by thermal fusion or ultrasonic fusion.
  • the third cover 166 and the fourth cover 167 may be manufactured by injection molding using a thermoplastic synthetic resin.
  • the third cover 166 is formed to surround a part of the side of the negative electrode tab 125 or the second rivet 154, and the fourth cover 166 is the remaining or second rivet of the side of the negative electrode tab 125 It is formed in a shape surrounding the (154).
  • the side surface of the negative electrode tab 125 and the second rivet 154 are completely wrapped by the third cover 166 and the fourth cover 167.
  • the injection molding third cover 166 and the fourth cover 167 are coupled to each other, the third cover 166 and the fourth cover 167 are coupled to each other by thermal fusion or ultrasonic welding.
  • the reason why the third cover 166 and the fourth cover 167 are bonded to each other by thermal fusion or ultrasonic welding is that the third cover 166 and the fourth cover 167 may be replaced by hand. This is because they are easy to combine with each other in an automation facility.
  • Coupling protrusions 168a are formed on the third cover 166 to facilitate coupling of the third cover 166 and the fourth cover 167 and the coupling force, and the coupling protrusions 166 are provided on the fourth cover 167.
  • Coupling grooves 168b to which the 168a are fitted may be formed.
  • the engaging projection 168a of the third cover 166 may be coupled to the engaging groove 168b of the fourth cover 167 by an interference fit method, and the engaging projection 168a When the coupling groove 168b is coupled in an interference fit manner, the thermal fusion or ultrasonic fusion process of the third cover 166 and the fourth cover 167 may be omitted.
  • the engaging protrusion 168a of the third cover 166 is the engaging groove 168b of the fourth cover 167 to improve the assembly characteristics and the bonding strength of the third cover 166 and the fourth cover 168.
  • the third cover 166 and the fourth cover 167 may be mutually coupled by thermal fusion or ultrasonic fusion.
  • the exterior member 170 surrounds the positive electrode plate 110, the negative electrode plate 120, the rivet 150, and the grid cover 160, and the external connection terminal 140 protrudes to the outside of the exterior material 170 and the external connection terminal 140. ) And the exterior material 170 are insulated from each other.
  • the exterior member 170 includes an aluminum thin film having a thin thickness, but because the end portion of the rivet 150 facing the exterior member 170 is wrapped by the grid cover 160, the exterior member 170. ) Is damaged by the rivet 150 and the exterior and rivet 150 is not electrically shorted.
  • FIG. 10 is an exploded perspective view illustrating an anode plate, a cathode plate, a rivet, and a grid cover of the battery cell according to the third embodiment of the present invention.
  • FIG. 11 is an exploded perspective view illustrating the grid cover of FIG. 10.
  • FIG. 12 is a cross-sectional view taken along line II-II 'of FIG. 11.
  • 13 is a cross sectional view of the positive electrode tab, first rivet and grid cover.
  • FIG. 14 is a side cross-sectional view of the positive electrode tab, first rivet and grid cover according to another embodiment of FIG. 13.
  • FIG. 15 is a side cross-sectional view of the positive electrode tab, first rivet and grid cover according to another embodiment of FIG. 13.
  • the battery cell according to the third embodiment of the present invention is substantially the same as the battery cell according to the first embodiment shown and described with reference to FIGS. 1 to 8 except for the grid cover.
  • the battery cell 100 constituting the battery pack includes a positive electrode plate 110, a negative electrode plate 120, a separator 130, and an external connection terminal 140. , Rivet 150, grid cover 160 and exterior material 170.
  • the grid cover 160 surrounds the first rivet 152 of the positive electrode tab 115 and the second rivet 154 of the negative electrode tab 125 by the first rivet 152 and / or the second rivet 154.
  • the exterior material 170 is prevented from being damaged.
  • the grid cover 160 not only prevents the exterior material 170 from being damaged, but also enables assembly by a manual process rather than a manual process.
  • the grid cover 160 is coupled to the positive electrode tab 115 and coupled to the first grid cover 165 and the negative electrode tab 125 surrounding the side of the positive electrode tab 115 and the first rivet 152, and the negative electrode tab 125. And a second grid cover 169 enclosing the sides and the second rivets 154.
  • the first grid cover 165 includes a first cover 161 and a second cover 162, the first cover 161 and the second cover 162 is an injection molded by injection molding using a synthetic resin It may include.
  • the first cover 161 has a bent strip shape surrounding some of the side surfaces of the positive electrode tabs 115, and the second cover 162 has a bent strip shape surrounding the remaining sides of the positive electrode tabs 115. Is formed.
  • the first cover 161 and the second cover 162 may be coupled to each other to surround all sides of the positive electrode tabs 115 and to clamp the sides of the positive electrode tabs 115 and surround the first rivet 152.
  • a coupling protrusion 163 is formed at a portion of the first cover 161 facing the second cover 162 to clamp side surfaces of the positive electrode tabs 115, and a second cover facing the coupling protrusion 163 ( The coupling groove 164 coupled to the coupling protrusion 163 is formed in the 162.
  • the coupling protrusion 163 of the first cover 161 and the coupling groove 164 of the second cover 162 is fitted to each other, the coupling protrusion 163 is the coupling groove 164 It is bonded in a thermal fusion manner.
  • the coupling protrusion 163 may be coupled to the coupling groove 164 by an ultrasonic fusion method.
  • the second cover 162 of the first grid cover 165 is formed with a rivet receiving portion 162a for receiving the end of the first rivet 152 protruding from the anode tabs 115.
  • the rivet receiving portion 162a is formed by protruding a portion of the second cover 162 corresponding to the end of the first rivet 152 from the second cover 162, thereby the inner surface of the second cover 162 A recess is formed in the recess for receiving the end of the first rivet 152.
  • the thickness of the second cover 162 facing the end of the first rivet 152 is formed thinner than the length of the end of the first rivet 152 protruding from the positive electrode tab 115 Therefore, the rivet receiving portion 162a has a bent and protruding shape in a shape surrounding the end of the first rivet 152.
  • the inner surface of the second cover 162 is in contact with the outermost anode tab 115 and thereby the first The volume occupied by the grid cover 165 may be further reduced.
  • the second grid cover 169 includes a third cover 166 and a fourth cover 167.
  • the third cover 166 and the fourth cover 167 may include an injection molded product formed by injection molding using a synthetic resin.
  • the third cover 166 has a bent strip shape surrounding some of the side surfaces of the negative electrode tabs 125
  • the fourth cover 167 has a bent strip shape surrounding the other side of the negative electrode tabs 125. Is formed.
  • the third cover 166 and the fourth cover 167 are coupled to each other to surround the sides of the negative electrode tabs 125 to form a shape to clamp the sides of the negative electrode tabs 125 and surround the second rivet 154.
  • a coupling protrusion 168a is formed at a portion of the third cover 166 facing the fourth cover 167 to clamp side surfaces of the negative electrode tabs 125, and a fourth cover facing the coupling protrusion 168a ( 167 is formed with a coupling groove 168b coupled with the coupling protrusion 168a.
  • the engaging projection 168a of the third cover 166 and the engaging groove 168b of the fourth cover 167 are fitted to each other, and the engaging projection 168a is the engaging groove 168b. It is bonded in a thermal fusion manner.
  • the coupling protrusion 168a may be coupled to the coupling groove 168b by ultrasonic welding.
  • the fourth cover 167 of the second grid cover 169 also has a rivet receiving substantially the same shape and structure as the rivet receiving portion 162a formed in the second cover 162 of the first grid cover 165. Since the portion includes a portion, a detailed description of the rivet receiving portion formed in the fourth cover 167 of the second grid cover 169 will be omitted.
  • FIG. 16 is an exploded perspective view illustrating an anode plate, a cathode plate, a rivet, and a grid cover of a battery cell according to a fourth embodiment of the present invention.
  • 17 is a cross-sectional view illustrating a coupling relationship between the grid cover, the positive electrode tab, and the negative electrode tab of FIG. 16.
  • 18 is a cross-sectional view of the combination of FIG.
  • the battery cell according to the fourth embodiment of the present invention is substantially the same as the battery cell according to the first embodiment shown and described with reference to FIGS. 1 to 8 except for the grid cover.
  • the battery cell 100 forming the battery pack includes a positive electrode plate 110, a negative electrode plate 120, a separator 130, and an external connection terminal 140. , Rivet 150, grid cover 160 and exterior material 170.
  • the grid cover 160 surrounds the positive electrode tab 115 and the first rivet 152, the negative electrode tab 125, and the second rivet 154 to physically cover the exterior material 170 by the first and second rivets 152 and 154. Prevents damage and prevents electrical shorts of the first and second rivets 152 and 154 and the enclosure 170.
  • the grid cover 160 includes a first cover part 161 and a second cover part 166.
  • the first cover portion 161 and the second cover portion 166 may include a thermoplastic synthetic resin capable of fusion and shape deformation by heat and having electrical insulation.
  • the first cover part 161 and the second cover part 166 surround the positive electrode tab 115, the first rivet 152, the negative electrode tab 125, and the second rivet 154 to form the first and second rivets ( 152, 154 to prevent damage to the exterior material.
  • the first cover part 161 has a structure that simultaneously covers a part of the positive electrode tab 115 and a part of the negative electrode tab 125.
  • the first cover part 161 is formed in a plate shape in which a pair of concave bent portions surrounding the positive electrode tab 115 and the negative electrode tab 125 are formed.
  • Coupling protrusions 162 are formed at both ends of the first cover part 161, and the coupling protrusions 162 protrude from the inner side surface of the first cover part 161.
  • the coupling protrusion 162 may protrude from an inner side surface of the first cover part 161 corresponding to the center portion of the positive electrode tab 115 and the negative electrode tab 125.
  • the second cover part 166 has a structure covering an end portion of the first rivet 152 protruding from the positive electrode tab 115 and an end portion of the second rivet 154 protruding from the negative electrode tab 125.
  • the second cover portion 166 is, for example, a concave pair that respectively surrounds an end portion of the first rivet 152 protruding from the positive electrode tab 115 and the second rivet 154 protruding from the negative electrode tab 125.
  • the bent portions of the formed plate shape are, for example, a concave pair that respectively surrounds an end portion of the first rivet 152 protruding from the positive electrode tab 115 and the second rivet 154 protruding from the negative electrode tab 125.
  • Coupling grooves 167 may be formed at both ends of the second cover part 166, and the coupling grooves 167 may include, for example, a through hole penetrating the second cover part 166.
  • the coupling groove 167 to which the coupling protrusion 162 of the first cover portion 161 is coupled to an inner side surface of the second cover portion 166 corresponding to the center portion of the positive electrode tab 115 and the negative electrode tab 125. ) May be formed.
  • Coupling protrusions 162 of the first cover portion 161 may be fitted into the coupling grooves 167 of the second cover portion 166, and coupling protrusions 162 of the first cover portion 161 may be formed in the coupling grooves 167 of the second cover portion 166. 2 may be coupled to each other by heat fusion or ultrasonic fusion to the coupling groove 167 of the cover 166. Alternatively, the coupling protrusion 162 of the first cover portion 161 may be attached to the coupling groove 167 of the second cover portion 166 by an adhesive or the like.
  • the exterior member 170 surrounds the positive electrode plate 110, the negative electrode plate 120, the rivet 150, and the grid cover 160, and the external connection terminal 140 protrudes to the outside of the exterior material 170 and the external connection terminal 140. ) And the exterior member 170 are insulated from each other by an insulating member.
  • the exterior member 170 includes an aluminum thin film having a thin thickness, but because the end portion of the rivet 150 facing the exterior member 170 is wrapped by the grid cover 160, the exterior member 170. ) Is not damaged by the rivet 150.
  • the grid cover 160 not only covers the sides of the positive electrode tab 115 and the negative electrode tab 125 through the first cover portion 161 and the second cover portion 166 but also the positive electrode tab. Damage to the exterior material caused by the first and second rivets 152 and 154 is wrapped around the end of the first rivet 152 protruding from the 115 and the end of the second rivet 154 protruding from the negative electrode tab 125, respectively. In addition to preventing, assembling of the grid cover alone to the positive electrode tab 115 and the negative electrode tab 125 can significantly reduce the assembly process.
  • 19 is a cross-sectional view illustrating a coupling relationship between a grid cover, a positive electrode tab, and a negative electrode tab according to another embodiment of the present invention.
  • 20 is a cross-sectional view of the combination of FIG.
  • the grid cover 160 includes a first cover part 161 and a second cover part 166.
  • the first cover portion 161 and the second cover portion 166 includes a thermoplastic synthetic resin capable of fusion and shape deformation by heat.
  • the first cover part 161 and the second cover part 166 surround the positive electrode tab 115, the first rivet 152, the negative electrode tab 125, and the second rivet 154 to cover the first and second rivets ( 152, 154 to prevent damage to the exterior material.
  • the first cover part 161 has a structure that simultaneously covers a part of the positive electrode tab 115 and a part of the negative electrode tab 125.
  • the first cover part 161 is formed in a plate shape in which a pair of concave bent portions surrounding the positive electrode tab 115 and the negative electrode tab 125 are formed.
  • Coupling protrusions 162 are formed at both ends of the first cover part 161, and the coupling protrusions 162 protrude from the inner side surface of the first cover part 161.
  • the coupling protrusion 162 may protrude from an inner side surface of the first cover part 161 corresponding to the center portion of the positive electrode tab 115 and the negative electrode tab 125.
  • the second cover part 166 has a structure covering an end portion of the first rivet 152 protruding from the positive electrode tab 115 and an end portion of the second rivet 154 protruding from the negative electrode tab 125.
  • the second cover portion 166 is, for example, a concave pair that respectively surrounds an end portion of the first rivet 152 protruding from the positive electrode tab 115 and the second rivet 154 protruding from the negative electrode tab 125.
  • the bent portions of the formed plate shape are, for example, a concave pair that respectively surrounds an end portion of the first rivet 152 protruding from the positive electrode tab 115 and the second rivet 154 protruding from the negative electrode tab 125.
  • Coupling grooves 167 are formed at both ends of the second cover part 166, and the coupling grooves 167 may include, for example, a through hole penetrating the second cover part 166.
  • the coupling groove 167 to which the coupling protrusion 162 of the first cover portion 161 is coupled to an inner side surface of the second cover portion 166 corresponding to the center portion of the positive electrode tab 115 and the negative electrode tab 125. ) May be formed.
  • Coupling protrusions 162 of the first cover portion 161 may be fitted into the coupling grooves 167 of the second cover portion 166, and coupling protrusions 162 of the first cover portion 161 may be formed in the coupling grooves 167 of the second cover portion 166. 2 may be coupled to each other by heat fusion or ultrasonic fusion to the coupling groove 167 of the cover 166. Alternatively, the coupling protrusion 162 of the first cover portion 161 may be attached to the coupling groove 167 of the second cover portion 166 by an adhesive or the like.
  • First and second rivets are formed in the second cover portion 166 facing the ends of the first rivet 152 protruding from the positive electrode tab 115 and the second rivet 154 protruding from the negative electrode tab 125.
  • Rivet receptacles 168 may be formed to receive the ends of 152 and 154.
  • the first and second rivets 152 and 154 protruding from the positive electrode tab 115 and the negative electrode tab 125, respectively, are accommodated in the rivet receiving portion 168, so that the second cover portion 166 is connected to the positive electrode tab 115 and the negative electrode tab. Direct contact with 125 may result in a more compact formation of the overall size of grid cover 160.
  • the grid cover 160 not only covers the sides of the positive electrode tab 115 and the negative electrode tab 125 through the first cover portion 161 and the second cover portion 166 but also the positive electrode tab. Damage to the exterior material caused by the first and second rivets 152 and 154 is wrapped around the end of the first rivet 152 protruding from the 115 and the end of the second rivet 154 protruding from the negative electrode tab 125, respectively. In addition to preventing, assembling of the grid cover alone to the positive electrode tab 115 and the negative electrode tab 125 can significantly reduce the assembly process.
  • the rivet combining the positive electrode plate and the negative electrode plate may be wrapped using the grid cover to prevent damage to the exterior material caused by the rivet, and the battery cover may be more compactly formed by reducing the volume occupied by the grid cover.
  • the grid cover to cover the rivet to prevent damage to the exterior material is made of a synthetic resin injection molding can be combined with the grid cover by an automated process has the effect of further improving the productivity.
  • the present invention is applicable to battery cells of automotive battery packs or battery cells of various industrial battery packs.

Abstract

배터리 셀은 복수매가 적층 되며 양극 탭이 상호 마주하게 배치된 양극판들; 상기 양극판들 사이에 개재되며 음극 탭이 상호 마주하게 배치된 음극판들; 상기 양극판 및 음극판들 사이에 개재된 분리막; 상기 양극 탭들을 관통하는 제1 리벳 및 상기 음극 탭들을 관통하는 제2 리벳을 포함하는 리벳; 상기 양극판들 및 상기 음극판들을 감싸는 외장재; 및 상기 양극 탭 및 상기 제1 리벳, 상기 음극 탭 및 상기 제2 리벳을 감싸 상기 제1 및 제2 리벳에 의한 상기 외장재의 손상 방지 및 상기 제1 및 제2 리벳들 및 상기 외장재의 전기적 쇼트를 방지하는 그리드 커버를 포함한다.

Description

배터리 셀
본 발명은 배터리 셀에 관한 것이다.
일반적으로, 전기를 저장하는 배터리 팩(battery pack)은 복수개의 배터리 셀(battery cell)을 직/병렬 연결하여 구성되며, 배터리 팩은 노트북 등과 같은 휴대용 배터리에 널리 사용되고 있으나, 최근 전기 자동차의 모터를 구동하기 위한 주전원으로도 사용되고 있다.
배터리 팩을 이루는 배터리 셀은 양극판, 음극판 및 양극판과 음극판 사이에 개재된 분리막을 포함하며, 양극판 및 음극판은 상호 교대로 배치된다.
양극판과 음극판에서 각각 양극 단자 탭 및 각 음극 단자 탭들은 초음파 융착 또는 리벳팅과 같은 전기적, 물리적 결합에 의하여 연결된다.
또한, 교대로 배치된 양극판, 음극판 및 분리막은 외장재 등에 의하여 포장된다.
양극판 및 음극판에 연결되는 각각의 단자 탭은 초음파 융착 또는 리벳팅 방법으로 인해 연결부위가 돌출되어 알루미늄 파우치 필름 등 포장재를 손상시킬 우려가 있으며, 연결부위의 금속이 포장재와 직접적으로 접촉되어 전기적으로 절연이 취약할 수 있는 문제점을 갖는다.
본 발명은 양극 탭들 및 음극 탭들을 연결하는 부위에 의한 외장재의 손상을 방지 또는 억제하며, 외장재와의 전기적 절연성을 향상시킨 그리드 커버를 갖는 배터리 셀을 제공한다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
일실시예로서, 배터리 셀은 복수매가 적층 되며 양극 탭이 상호 마주하게 배치된 양극판들; 상기 양극판들 사이에 개재되며 음극 탭이 상호 마주하게 배치된 음극판들; 상기 양극판 및 음극판들 사이에 개재된 분리막; 상기 양극 탭들을 관통하는 제1 리벳 및 상기 음극 탭들을 관통하는 제2 리벳을 포함하는 리벳; 상기 양극판들 및 상기 음극판들을 감싸는 외장재; 및 상기 양극 탭 및 상기 제1 리벳, 상기 음극 탭 및 상기 제2 리벳을 감싸 상기 제1 및 제2 리벳에 의한 상기 외장재의 손상 방지 및 상기 제1 및 제2 리벳들 및 상기 외장재의 전기적 쇼트를 방지하는 그리드 커버를 포함한다.
배터리 셀의 상기 그리드 커버는 상기 양극 탭들의 측면 및 상기 제1 리벳을 감싸는 제1 그리드 커버 및 상기 음극 탭들의 측면 및 상기 제2 리벳을 감싸는 제2 그리드 커버를 포함한다.
배터리 셀의 상기 제1 그리드 커버는 상기 양극 탭들의 측면의 일부를 감싸는 제1 커버 및 상기 양극 탭들의 상기 측면의 나머지를 감싸는 제2 커버를 포함하며, 상기 제2 그리드 커버는 상기 음극 탭들의 측면의 일부를 감싸는 제3 커버 및 상기 음극 탭들의 상기 측면의 나머지를 감싸는 제4 커버를 포함한다.
배터리 셀의 상기 제1 및 제3 그리드 커버들에는 결합 돌기가 형성되고, 상기 제2 및 제4 그리드 커버들에는 상기 결합 돌기와 결합 되는 결합홈이 형성된다.
배터리 셀의 상기 제1 커버 및 상기 제2 커버, 상기 제3 커버 및 상기 제4 커버는 초음파 융착 및 열 융착 중 어느 하나에 의하여 상호 접합된다.
배터리 셀의 상기 제1 그리드 커버 및 상기 제2 그리드 커버는 합성수지 사출물을 포함한다.
배터리 셀은 상기 양극 탭에 결합 된 제1 외부 접속 단자 및 상기 음극 탭에 결합 된 제2 외부 접속 단자를 포함하는 외부 접속 단자를 더 포함한다.
배터리 셀의 상기 그리드 커버에는 상기 양극 및 음극 탭들로부터 각각 돌출된 상기 제1 및 제2 리벳들의 단부를 수용하는 리벳 수용부가 형성된다.
배터리 셀의 상기 그리드 커버 중 상기 리벳 수용부와 대응하는 부분의 두께는 상기 양극 및 음극 탭들로부터 돌출된 상기 제1 및 제2 리벳들의 단부의 길이보다 얇게 형성되며, 상기 리벳 수용부는 상기 제1 및 제2 리벳들의 상기 단부와 대응하는 부분에 선택적으로 형성된다.
배터리 셀의 상기 그리드 커버들 중 상기 리벳 수용부와 대응하는 부분의 두께는 상기 양극 및 음극 탭들로부터 돌출된 상기 제1 및 제2 리벳들의 단부의 길이보다 두껍게 형성되며, 상기 리벳 수용부는 상기 제1 및 제2 리벳들의 상기 단부와 대응하는 부분에 형성된 홈 형상을 갖는다.
배터리 셀의 상기 그리드 커버는 상기 양극 탭들 및 상기 음극 탭들의 일부를 감싸는 제1 커버부 및 상기 제1 커버부와 결합 되며 상기 제1 및 제2 리벳들 중 상기 양극 탭 및 상기 음극 탭들로부터 돌출된 단부들을 감싸는 제2 커버부를 포함한다.
배터리 셀의 상기 제1 커버부에는 결합 돌기가 형성되고, 상기 제2 커버부에는 상기 결합 돌기와 결합 되는 결합홈이 형성된다.
배터리 셀의 상기 결합 돌기 및 상기 결합 홈은 상호 열 융착 및 초음파 융착 중 어느 하나에 의하여 결합된다.
배터리 셀의 상기 제2 커버부에는 상기 제1 및 제2 리벳들의 상기 단부를 수용하는 리벳 수용부가 형성된다.
본 발명에 따른 배터리 셀에 의하면, 양극판 및 음극판을 결합하는 리벳을 그리드 커버를 이용하여 감싸 리벳에 의한 외장재의 손상을 방지할 수 있다.
또한, 리벳을 감싸 외장재의 손상을 방지하는 그리드 커버는 합성수지 사출물로 제작하여 자동화 공정에 의하여 그리드 커버를 상호 결합할 수 있기 때문에 생산성을 보다 향상시킬 수 있는 효과를 갖는다.
도 1은 본 발명의 일실시예에 따른 배터리 셀의 외관 사시도이다.
도 2 내지 도 4는 본 발명의 일실시예에 따른 배터리 셀의 양극판, 음극판 및 분리막을 도시한 평면도이다.
도 5은 본 발명의 일실시예에 따른 배터리 셀의 양극판, 음극판, 리벳 및 그리드 커버를 분해 도시한 분해 사시도이다.
도 6은 도 5의 I-I' 선을 따라 절단한 단면도이다.
도 7은 도 6의 'A' 부분 확대도이다.
도 8은 양극 탭, 제1 리벳 및 그리드 커버의 횡 단면도이다.
도 9는 본 발명의 제2 실시예에 따른 양극 탭, 제1 리벳 및 그리드 커버의 분해 단면도이다.
도 10은 본 발명의 제3 실시예에 따른 배터리 셀의 양극판, 음극판, 리벳 및 그리드 커버를 분해 도시한 분해 사시도이다.
도 11은 도 10의 그리드 커버를 도시한 분해 사시도이다.
도 12는 도 11의 II-II' 단면도이다.
도 13은 양극 탭, 제1 리벳 및 그리드 커버의 횡 단면도이다.
도 14는 도 13의 다른 실시예에 따른 양극 탭, 제1 리벳 및 그리드 커버의 횡 단면도이다.
도 15는 도 13의 또 다른 실시예에 따른 양극 탭, 제1 리벳 및 그리드 커버의 횡 단면도이다.
도 16은 본 발명의 제4 실시예에 따른 배터리 셀의 양극판, 음극판, 리벳 및 그리드 커버를 분해 도시한 분해 사시도이다.
도 17은 도 16의 그리드 커버, 양극 탭 및 음극 탭의 결합 관계를 도시한 단면도이다.
도 18은 도 17의 결합 단면도이다.
도 19는 본 발명의 다른 실시예에 따른 그리드 커버, 양극 탭 및 음극 탭의 결합 관계를 도시한 단면도이다.
도 20은 도 19의 결합 단면도이다.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 다양한 실시예들을 상세히 설명한다. 이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
실시예 1
도 1은 본 발명의 제1 실시예에 따른 배터리 셀의 외관 사시도이다. 도 2 내지 도 4는 도 1의 배터리 셀의 양극판, 음극판 및 분리막을 도시한 평면도이다. 도 5은 도 1의 배터리 셀의 양극판, 음극판, 리벳 및 그리드 커버를 분해 도시한 분해 사시도이다. 도 6은 도 5의 I-I' 선을 따라 절단한 단면도이다. 도 7은 도 6의 'A' 부분 확대도이다. 도 8은 양극 탭, 제1 리벳 및 그리드 커버의 횡 단면도이다.
도 1 내지 도 8들을 참조하면, 배터리 팩(battery pack)을 이루는 배터리 셀(100)은 양극판(110), 음극판(120), 분리막(130), 외부 접속 단자(140), 리벳(150), 그리드 커버(160) 및 외장재(170)를 포함한다.
도 2 및 도 5를 참조하면, 본 발명의 일실시예에서, 양극판(110)은 얇은 두께를 갖고 양극 활물질이 표면에 형성된 금속판을 포함한다. 양극판(110)은, 예를 들어, 직육면체 플레이트 형상으로 형성될 수 있다.
양극판(110)의 일측 테두리로부터는 양극판(110)에 양극성을 갖는 전원을 제공하기 위한 양극 탭(115)이 돌출된다. 양극 탭(115)에는 후술 될 리벳(150)이 관통하기 위한 관통홀(117)이 형성될 수 있다.
본 발명의 일실시예에서, 관통홀(117)은 적어도 하나가 양극판(110)의 양극 탭(115)에 형성될 수 있다.
도 3 및 도 5를 참조하면, 음극판(120)은 얇은 두께를 갖고 음극 활물질이 표면에 형성된 금속판을 포함한다. 음극판(120)은, 예를 들어, 직육면체 플레이트 형상으로 형성될 수 있고, 음극판(120)은 양극판(120)과 동일한 형상 및 동일한 사이즈로 형성될 수 있다.
음극판(110)의 일측 테두리로부터는 음극판(120)에 제2 극성을 갖는 전원을 제공하기 위한 음극 탭(125)가 돌출된다. 음극 탭(125)에는 후술 될 리벳(150)이 관통하기 위한 관통홀(127)이 형성될 수 있다.
도 5 내지 도 7을 참조하면, 양극판(110)은 복수매가 적층된 형상으로 배치되며, 복수매가 적층된 양극판(110)들의 각 양극 탭(115)들은 상호 마주하게 배치된다.
음극판(120)은 마주하는 양극판(110)들의 사이에 개재되며, 양극판(110)들의 사이에 개재된 음극판(120)들의 음극 탭(125)들은 상호 마주하게 배치된다. 즉, 양극판(110) 및 음극판(120)은 교대로 배치된다.
분리막(130)은 교대로 배치된 양극판(110) 및 음극판(120)의 사이에 배치되며, 분리막(130)의 표면에는 고체 전해질이 코팅되어 있다.
도 1 및 도 5를 참조하면, 외부 접속 단자(140)는 제1 외부 접속 단자(142) 및 제2 외부 접속 단자(144)를 포함한다.
제1 외부 접속 단자(142)는 양극 탭(115)들 중 가장 바깥쪽 양극 탭(115)에 접속되며 제1 외부 접속 단자(142)에도 양극 탭(115)의 관통홀(117)과 대응하는 관통홀(미도시)이 형성될 수 있다.
제2 외부 접속 단자(144)는 음극 탭(125)들 중 가장 바깥쪽 음극 탭(125)에 접속되며 제2 외부 접속 단자(144)에도 음극 탭(125)의 관통홀(127)과 대응하는 관통홀(미도시)이 형성될 수 있다.
외부 접속 단자(140)는 복수개의 배터리 셀(100)들을 전기적으로 병렬 방식으로 연결하여 배터리 팩을 형성하기 위해 양극 탭(115) 및 음극 탭(125)에 각각 전기적으로 접속된다.
도 5 및 도 6을 참조하면, 양극판(110)들의 사이에는 분리막(130) 및 음극판(120)이 개재되어 있기 때문에 양극판(110)들은 상호 이격 되고 이로 인해 양극판(110)들의 양극 탭(115)들 역시 상호 이격 되어 있다.
리벳(150)은 상호 이격 된 양극판(110)들의 양극 탭(115)들을 상호 전기적/기계적으로 연결한다.
아하, 양극 탭(115)들을 전기적/기계적으로 연결하는 리벳(150)은 제1 리벳(152)으로서 정의되며, 제1 리벳(152)은 양극판(110)의 양극 탭(115)들의 관통홀(117)을 순차적으로 관통하면서 양극 탭(115)들을 전기적/기계적으로 연결한다.
따라서, 적층된 복수개의 양극판(110)들은 제1 리벳(152)에 의하여 모두 전기적으로 연결된다. 본 발명의 일실시예에서, 제1 리벳(152)은 적어도 하나, 바람직하게 적어도 2 개가 양극판(110)의 양극 탭(115)들에 결합 될 수 있다.
도 5 및 도 6을 참조하면, 음극판(110)들의 사이에는 분리막(130) 및 양극판(110)이 개재되어 있기 때문에 음극판(120)들은 상호 이격 되고 이로 인해 음극판(120)들의 음극 탭(125)들 역시 상호 이격 되어 있다.
리벳(150)은 상호 이격 된 음극판(120)들의 음극 탭(125)들을 상호 전기적/기계적으로 연결한다.
아하, 음극 탭(125)들을 전기적/기계적으로 연결하는 리벳(150)은 제2 리벳(154)으로서 정의되며, 제2 리벳(154)은 음극판(120)의 음극 탭(125)들의 관통홀(127)을 순차적으로 관통하면서 음극 탭(125)들을 전기적/기계적으로 연결한다.
따라서, 적층된 복수개의 음극판(120)들은 제2 리벳(154)에 의하여 모두 전기적으로 연결된다. 본 발명의 일실시예에서, 제2 리벳(154)은 적어도 하나, 바람직하게 적어도 2 개가가 음극판(120)의 음극 탭(125)들에 결합 될 수 있다.
본 발명의 일실시예에서, 양극판(110)의 양극 탭(115)를 연결하는 제1 리벳(152)의 길이는 상호 마주하게 배치된 모든 양극 탭(115)들의 전체 두께보다 길게 형성된다.
또한, 음극판(120)의 음극 탭(125)들을 연결하는 제2 리벳(154)의 길이는 상호 마주하게 배치된 모든 음극 탭(125)들의 전체 두께보다 길게 형성된다.
이는 제1 및 제2 리벳(152,154)들의 길이가 양극 탭(115)들 및 음극 탭(125)들의 전체 두께보다 짧을 경우, 양극 탭(115) 및 음극 탭(125)들 중 일부가 제1 및 제2 리벳(152,154)들과 전기적/기계적으로 연결되지 않기 때문이다.
이와 같이 제1 및 제2 리벳(152,154)들의 길이가 양극 탭(115) 및 음극 탭(125)들의 전체 두께보다 길게 형성될 경우, 제1 및 제2 리벳(152,154)들의 단부는 양극 탭(115) 및 음극 탭(125)들의 바깥쪽으로 돌출되고, 돌출된 제1 및 제2 리벳(152,154)들의 단부는 얇은 두께를 갖는 외장재(170)를 관통하거나 외장재(170)를 손상시킬 수 있다.
도 5 및 도 8을 참조하면, 그리드 커버(160)는 양극 탭(115) 및 제1 리벳(152), 음극 탭(125) 및 제2 리벳(154)을 감싸 제1 및 제2 리벳(152,154)에 의한 외장재(170)의 물리적 손상 방지 및 제1 및 제2 리벳(152,154)들 및 외장재(170)의 전기적 쇼트를 방지한다.
또한, 그리드 커버(160)는 외장재(170)의 손상을 방지할 뿐만 아니라 수작업이 아닌 자동화 공정에 의하여 조립이 가능 하도록 한다.
그리드 커버(160)는 양극 탭(115)에 결합 되어 양극 탭(115)의 측면 및 제1 리벳(152)을 감싸는 제1 그리드 커버(165) 및 음극 탭(125)에 결합 되어 음극 탭(125)의 측면 및 제2 리벳(154)를 감싸는 제2 그리드 커버(169)를 포함한다.
제1 그리드 커버(165)는 제1 커버(161) 및 제2 커버(162)를 포함하며, 제1 커버(161) 및 제2 커버(162)는 합성 수지를 이용한 사출 성형에 의하여 형성된 사출물을 포함할 수 있다.
제1 커버(161)는 양극 탭(115)들의 측면들 중 일부를 감싸는 절곡 된 띠 형상으로 형성되며, 제2 커버(162)는 양극 탭(115)들의 측면들 중 나머지를 감싸는 절곡된 띠 형상으로 형성된다.
제1 커버(161) 및 제2 커버(162)는 상호 결합 되어 양극 탭(115)들의 측면들을 모두 감싸 양극 탭(115)들의 측면을 클램핑 및 제1 리벳(152)을 감싸는 형상으로 형성된다.
양극 탭(115)들의 측면을 클램핑 하기 위해 제1 커버(161) 중 제2 커버(162)와 마주하는 부분에는 결합 돌기(163)가 형성되며, 결합 돌기(163)와 마주하는 제2 커버(162)에는 결합 돌기(163)와 결합 되는 결합 홈(164)이 형성된다.
본 발명의 일실시예에서, 제1 커버(161)의 결합 돌기(163) 및 제2 커버(162)의 결합 홈(164)는 상호 끼워 맞춤 되고, 결합 돌기(163)는 결합 홈(164)에 열융착 방식으로 결합 된다. 이와 다르게, 결합 돌기(163)는 결합 홈(164)에 초음파 융착 방식으로 결합 되어도 무방하다.
제2 그리드 커버(169)는 제3 커버(166) 및 제4 커버(167)를 포함한다.
제3 커버(166) 및 제4 커버(167)는 합성 수지를 이용한 사출 성형에 의하여 형성된 사출물을 포함할 수 있다.
제3 커버(166)는 음극 탭(125)들의 측면들 중 일부를 감싸는 절곡 된 띠 형상으로 형성되며, 제4 커버(167)는 음극 탭(125)들의 측면들 중 나머지를 감싸는 절곡된 띠 형상으로 형성된다.
제3 커버(166) 및 제4 커버(167)는 상호 결합 되어 음극 탭(125)들의 측면들을 모두 감싸 음극 탭(125)들의 측면을 클램핑 및 제2 리벳(154)을 감싸는 형상으로 형성된다.
음극 탭(125)들의 측면을 클램핑 하기 위해 제3 커버(166) 중 제4 커버(167)와 마주하는 부분에는 결합 돌기(168a)가 형성되며, 결합 돌기(168a)와 마주하는 제4 커버(167)에는 결합 돌기(168a)와 결합 되는 결합 홈(168b)이 형성된다.
본 발명의 일실시예에서, 제3 커버(166)의 결합 돌기(168a) 및 제4 커버(167)의 결합 홈(168b)은 상호 끼워 맞춤 되고, 결합 돌기(168a)는 결합 홈(168b)에 열융착 방식으로 결합 된다. 이와 다르게, 결합 돌기(168a)는 결합 홈(168b)에 초음파 융착 방식으로 결합 되어도 무방하다.
도 1 및 도 8을 참조하면, 외장재(170)는 양극판(110), 음극판(120), 리벳(150) 및 그리드 커버(160)를 감싸며, 외부 접속 단자(140)는 외장재(170)의 외부로 돌출되며, 외부 접속 단자(140) 및 외장재(170)는 절연 부재에 의하여 상호 절연된다.
본 발명의 일실시예에서, 외장재(170)는 얇은 두께를 갖는 알루미늄 박막을 포함하지만, 외장재(170)와 마주하는 리벳(150)의 단부는 그리드 커버(160)에 의하여 감싸지기 때문에 외장재(170)는 리벳(150)에 의하여 손상되지 않는다.
실시예 2
도 9는 본 발명의 제2 실시예에 따른 양극 탭, 제1 리벳 및 그리드 커버의 분해 단면도이다. 본 발명의 제2 실시예에 따른 배터리 셀은 그리드 커버의 결합 방법을 제외하면 앞서 도 1 내지 도 8을 통해 도시 및 설명된 제1 실시예에 따른 배터리 셀과 실질적으로 동일하다. 따라서, 동일한 구성에 대한 중복된 설명은 생략하기로 하며, 동일한 구성에 대해서는 동일한 명칭 및 동일한 참조 부호를 부여하기로 한다.
도 1 내지 도 9를 참조하면, 배터리 팩(battery pack)을 이루는 배터리 셀(100)은 양극판(110), 음극판(120), 분리막(130), 외부 접속 단자(140), 리벳(150), 그리드 커버(160) 및 외장재(170)를 포함한다.
그리드 커버(160)는 양극 탭(115) 및 제1 리벳(152), 음극 탭(125) 및 제2 리벳(154)을 감싸 제1 및 제2 리벳(152,154)에 의한 외장재(170)의 물리적 손상 방지 및 제1 및 제2 리벳(152,154)들 및 외장재(170)의 전기적 쇼트를 방지한다.
이를 구현하기 위해, 그리드 커버(160)는 양극 탭(115)들의 측면 및 제1 리벳(152), 음극 탭(125)들의 측면 및 제2 리벳(154)을 감싼다.
본 발명의 일실시예에서, 그리드 커버(160)는 양극 탭(115)들의 측면 및 제1 리벳(152)을 감싸는 적어도 2 개의 제1 및 제2 커버(161,162) 및 음극 탭(125)들의 측면 및 제2 리벳(154)을 감싸는 적어도 2 개의 제3 및 제4 커버(166,167)들을 포함한다.
본 발명의 일실시예에서, 제1 커버(161) 내지 제4 커버(167)는 전기적으로 절연성을 갖는 열 가소성 합성수지를 이용한 사출 성형에 의하여 제조될 수 있다.
제1 커버(161)는 양극 탭(115)의 측면의 일부 또는 제1 리벳(152)을 감싸는 형상으로 형성되며, 제2 커버(162)는 양극 탭(115)의 측면의 나머지 또는 제1 리벳(152)을 감싸는 형상으로 형성된다.
제1 커버(161) 및 제2 커버(162)에 의하여 양극 탭(115)의 측면 및 제1 리벳(152)은 완전히 감싸 진다.
한편, 사출물인 제1 커버(161) 및 제2 커버(162)는 상호 결합 되는데, 제1 커버(161) 및 제2 커버(162)는 열 융착 또는 초음파 융착에 의하여 상호 결합 된다.
본 발명의 일실시예에서, 제1 커버(161) 및 제2 커버(162)를 열 융착 또는 초음파 융착에 의하여 상호 결합하는 이유는 제1 커버(161) 및 제2 커버(162)를 수작업 대신 자동화 설비에서 상호 결합하기 용이하기 때문이다.
제1 커버(161) 및 제2 커버(162)의 결합을 보다 용이하고 결합력을 향상시키기 위해 제1 커버(161)에는 결합 돌기(163)가 형성되고, 제2 커버(162)에는 결합 돌기(163)가 끼워 맞춤 되는 결합 홈(164)이 형성될 수 있다.
본 발명의 일실시예에서, 제1 커버(161)의 결합 돌기(163)는 제2 커버(162)의 결합 홈(164)에 억지 끼워 맞춤 방식으로 결합 될 수 있고, 결합 돌기(163)와 결합 홈(164)이 억지 끼워 맞춤 방식으로 결합 될 경우, 제1 커버(161) 및 제2 커버(162)의 열 융착 또는 초음파 융착 과정은 생략되어도 무방하다.
바람직하게, 제1 커버(161) 및 제2 커버(162)의 조립 특성 및 결합 강도를 향상시키기 위해 제1 커버(161)의 결합 돌기(163)가 제2 커버(162)의 결합 홈(164)에 억지 끼워 맞춤 방식으로 결합 된 후, 제1 커버(161) 및 제2 커버(162)는 열 융착 또는 초음파 융착에 의하여 상호 결합 될 수 있다.
본 발명의 일실시예에서, 제3 커버(166) 및 제4 커버(167)는 열 가소성 합성수지를 이용한 사출 성형에 의하여 제조될 수 있다.
제3 커버(166)는 음극 탭(125)의 측면의 일부 또는 제2 리벳(154)을 감싸는 형상으로 형성되며, 제4 커버(166)는 음극 탭(125)의 측면의 나머지 또는 제2 리벳(154)을 감싸는 형상으로 형성된다.
제3 커버(166) 및 제4 커버(167)에 의하여 음극 탭(125)의 측면 및 제2 리벳(154)은 완전히 감싸 진다.
한편, 사출물인 제3 커버(166) 및 제4 커버(167)는 상호 결합 되는데, 제3 커버(166) 및 제4 커버(167)는 열 융착 또는 초음파 융착에 의하여 상호 결합 된다.
본 발명의 일실시예에서, 제3 커버(166) 및 제4 커버(167)를 열 융착 또는 초음파 융착에 의하여 상호 결합하는 이유는 제3 커버(166) 및 제4 커버(167)를 수작업 대신 자동화 설비에서 상호 결합하기 용이하기 때문이다.
제3 커버(166) 및 제4 커버(167)의 결합을 보다 용이하고 결합력을 향상시키기 위해 제3 커버(166)에는 결합 돌기(168a)가 형성되고, 제4 커버(167)에는 결합 돌기(168a)가 끼워 맞춤 되는 결합 홈(168b)이 형성될 수 있다.
본 발명의 일실시예에서, 제3 커버(166)의 결합 돌기(168a)는 제4 커버(167)의 결합 홈(168b)에 억지 끼워 맞춤 방식으로 결합 될 수 있고, 결합 돌기(168a)와 결합 홈(168b)이 억지 끼워 맞춤 방식으로 결합 될 경우, 제3 커버(166) 및 제4 커버(167)의 열 융착 또는 초음파 융착 과정은 생략되어도 무방하다.
바람직하게, 제3 커버(166) 및 제4 커버(168)의 조립 특성 및 결합 강도를 향상시키기 위해 제3 커버(166)의 결합 돌기(168a)가 제4 커버(167)의 결합 홈(168b)에 억지 끼워 맞춤 방식으로 결합 된 후, 제3 커버(166) 및 제4 커버(167)는 열 융착 또는 초음파 융착에 의하여 상호 결합 될 수 있다.
외장재(170)는 양극판(110), 음극판(120), 리벳(150) 및 그리드 커버(160)를 감싸며, 외부 접속 단자(140)는 외장재(170)의 외부로 돌출되며, 외부 접속 단자(140) 및 외장재(170)는 상호 절연된다.
본 발명의 일실시예에서, 외장재(170)는 얇은 두께를 갖는 알루미늄 박막을 포함하지만, 외장재(170)와 마주하는 리벳(150)의 단부는 그리드 커버(160)에 의하여 감싸지기 때문에 외장재(170)는 리벳(150)에 의하여 손상 및 외장재 및 리벳(150)이 전기적으로 쇼트 되지 않는다.
실시예 3
도 10은 본 발명의 제3 실시예에 따른 배터리 셀의 양극판, 음극판, 리벳 및 그리드 커버를 분해 도시한 분해 사시도이다. 도 11은 도 10의 그리드 커버를 도시한 분해 사시도이다. 도 12는 도 11의 II-II' 단면도이다. 도 13은 양극 탭, 제1 리벳 및 그리드 커버의 횡 단면도이다. 도 14는 도 13의 다른 실시예에 따른 양극 탭, 제1 리벳 및 그리드 커버의 횡 단면도이다. 도 15는 도 13의 또 다른 실시예에 따른 양극 탭, 제1 리벳 및 그리드 커버의 횡 단면도이다. 본 발명의 제3 실시예에 따른 배터리 셀은 그리드 커버를 제외하면 앞서 도 1 내지 도 8을 통해 도시 및 설명된 제1 실시예에 따른 배터리 셀과 실질적으로 동일하다.
도 1 내지 도 4, 도 10 및 도 15를 참조하면, 배터리 팩(battery pack)을 이루는 배터리 셀(100)은 양극판(110), 음극판(120), 분리막(130), 외부 접속 단자(140), 리벳(150), 그리드 커버(160) 및 외장재(170)를 포함한다.
그리드 커버(160)는 양극 탭(115)의 제1 리벳(152) 및 음극 탭(125)의 제2 리벳(154)을 감싸 제1 리벳(152) 및/또는 제2 리벳(154)에 의하여 외장재(170)가 손상되는 것을 방지한다.
또한, 그리드 커버(160)는 외장재(170)의 손상을 방지할 뿐만 아니라 수작업이 아닌 자동화 공정에 의하여 조립이 가능 하도록 한다.
그리드 커버(160)는 양극 탭(115)에 결합 되어 양극 탭(115)의 측면 및 제1 리벳(152)을 감싸는 제1 그리드 커버(165) 및 음극 탭(125)에 결합 되어 음극 탭(125)의 측면 및 제2 리벳(154)를 감싸는 제2 그리드 커버(169)를 포함한다.
제1 그리드 커버(165)는 제1 커버(161) 및 제2 커버(162)를 포함하며, 제1 커버(161) 및 제2 커버(162)는 합성 수지를 이용한 사출 성형에 의하여 형성된 사출물을 포함할 수 있다.
제1 커버(161)는 양극 탭(115)들의 측면들 중 일부를 감싸는 절곡 된 띠 형상으로 형성되며, 제2 커버(162)는 양극 탭(115)들의 측면들 중 나머지를 감싸는 절곡된 띠 형상으로 형성된다.
제1 커버(161) 및 제2 커버(162)는 상호 결합 되어 양극 탭(115)들의 측면들을 모두 감싸 양극 탭(115)들의 측면을 클램핑 및 제1 리벳(152)을 감싸는 형상으로 형성된다.
양극 탭(115)들의 측면을 클램핑 하기 위해 제1 커버(161) 중 제2 커버(162)와 마주하는 부분에는 결합 돌기(163)가 형성되며, 결합 돌기(163)와 마주하는 제2 커버(162)에는 결합 돌기(163)와 결합 되는 결합 홈(164)이 형성된다.
본 발명의 일실시예에서, 제1 커버(161)의 결합 돌기(163) 및 제2 커버(162)의 결합 홈(164)는 상호 끼워 맞춤 되고, 결합 돌기(163)는 결합 홈(164)에 열융착 방식으로 결합 된다. 이와 다르게, 결합 돌기(163)는 결합 홈(164)에 초음파 융착 방식으로 결합 되어도 무방하다.
한편, 제1 그리드 커버(165)의 제2 커버(162)에는 양극 탭(115)들로부터 돌출된 제1 리벳(152)의 단부를 수용하는 리벳 수용부(162a)가 형성된다.
리벳 수용부(162a)는 제2 커버(162) 중 제1 리벳(152)의 단부와 대응하는 부분을 제2 커버(162)로부터 돌출시켜 형성되며, 이로 인해 제2 커버(162)의 내측면에는 제1 리벳(152)의 단부를 수용하는 오목한 홈이 형성된다.
본 발명의 일실시예에서, 제1 리벳(152)의 단부와 마주하는 제2 커버(162)의 두께는 양극 탭(115)으로부터 돌출된 제1 리벳(152)의 단부의 길이보다 얇게 형성되며, 따라서 리벳 수용부(162a)는 제1 리벳(152)의 단부를 감싸는 형상으로 절곡 및 돌출된 형상을 갖는다.
리벳 수용부(162a)가 제1 그리드 커버(165)의 제2 커버(162)에 형성됨에 따라 제2 커버(162)의 내측면은 가장 바깥쪽 양극 탭(115)과 접촉되고 이로 인해 제1 그리드 커버(165)가 차지하는 부피를 보다 감소시킬 수 있다.
제2 그리드 커버(169)는 제3 커버(166) 및 제4 커버(167)를 포함한다.
제3 커버(166) 및 제4 커버(167)는 합성 수지를 이용한 사출 성형에 의하여 형성된 사출물을 포함할 수 있다.
제3 커버(166)는 음극 탭(125)들의 측면들 중 일부를 감싸는 절곡 된 띠 형상으로 형성되며, 제4 커버(167)는 음극 탭(125)들의 측면들 중 나머지를 감싸는 절곡된 띠 형상으로 형성된다.
제3 커버(166) 및 제4 커버(167)는 상호 결합 되어 음극 탭(125)들의 측면들을 모두 감싸 음극 탭(125)들의 측면을 클램핑 및 제2 리벳(154)을 감싸는 형상으로 형성된다.
음극 탭(125)들의 측면을 클램핑 하기 위해 제3 커버(166) 중 제4 커버(167)와 마주하는 부분에는 결합 돌기(168a)가 형성되며, 결합 돌기(168a)와 마주하는 제4 커버(167)에는 결합 돌기(168a)와 결합 되는 결합 홈(168b)이 형성된다.
본 발명의 일실시예에서, 제3 커버(166)의 결합 돌기(168a) 및 제4 커버(167)의 결합 홈(168b)은 상호 끼워 맞춤 되고, 결합 돌기(168a)는 결합 홈(168b)에 열융착 방식으로 결합 된다. 이와 다르게, 결합 돌기(168a)는 결합 홈(168b)에 초음파 융착 방식으로 결합 되어도 무방하다.
한편, 제2 그리드 커버(169)의 제4 커버(167)에도 제1 그리드 커버(165)의 제2 커버(162)에 형성된 리벳 수용부(162a)와 실질적으로 동일한 형상 및 구조를 갖는 리벳 수용부를 포함하는 바, 제2 그리드 커버(169)의 제4 커버(167)에 형성된 리벳 수용부에 대한 상세한 설명은 생략하기로 한다.
실시예 4
도 16은 본 발명의 제4 실시예에 따른 배터리 셀의 양극판, 음극판, 리벳 및 그리드 커버를 분해 도시한 분해 사시도이다. 도 17은 도 16의 그리드 커버, 양극 탭 및 음극 탭의 결합 관계를 도시한 단면도이다. 도 18은 도 17의 결합 단면도이다. 본 발명의 제4 실시예에 따른 배터리 셀은 그리드 커버를 제외하면 앞서 도 1 내지 도 8을 통해 도시 및 설명된 제1 실시예에 따른 배터리 셀과 실질적으로 동일하다.
도 1 내지 도 4, 도 16 내지 도 18을 참조하면, 배터리 팩(battery pack)을 이루는 배터리 셀(100)은 양극판(110), 음극판(120), 분리막(130), 외부 접속 단자(140), 리벳(150), 그리드 커버(160) 및 외장재(170)를 포함한다.
그리드 커버(160)는 양극 탭(115) 및 제1 리벳(152), 음극 탭(125) 및 제2 리벳(154)을 감싸 제1 및 제2 리벳(152,154)에 의한 외장재(170)의 물리적 손상 방지 및 제1 및 제2 리벳(152,154)들 및 외장재(170)의 전기적 쇼트를 방지한다.
그리드 커버(160)는 제1 커버부(161) 및 제2 커버부(166)를 포함한다. 본 발명의 일실시예에서, 제1 커버부(161) 및 제2 커버부(166)는 열에 의한 융착 및 형상 변형이 가능하며 전기적 절연성을 갖는 열 가소성 합성 수지를 포함한다.
제1 커버부(161) 및 제2 커버부(166)는 양극탭(115), 제1 리벳(152), 음극 탭(125) 및 제2 리벳(154)를 감싸 제1 및 제2 리벳(152,154)들에 의하여 외장재가 손상되는 것을 방지한다.
제1 커버부(161)는 양극 탭(115)의 일부 및 음극 탭(125)의 일부를 동시에 덮는 구조를 갖는다. 제1 커버부(161)는, 예를 들어, 양극 탭(115) 및 음극 탭(125)을 각각 감싸는 오목한 한 쌍의 절곡부들이 형성된 플레이트 형상으로 형성된다.
제1 커버부(161)의 양단에는 각각 결합 돌기(162)들이 형성되며, 결합 돌기(162)들은 제1 커버부(161)의 내측면으로부터 돌출된다. 이에 더하여, 양극 탭(115) 및 음극 탭(125)의 중앙부에 대응하는 제1 커버부(161)의 내측면에도 결합 돌기(162)가 돌출될 수 있다.
제2 커버부(166)는 양극 탭(115)으로부터 돌출된 제1 리벳(152)의 단부 및 음극 탭(125)으로부터 돌출된 제2 리벳(154)의 단부를 덮는 구조를 갖는다.
제2 커버부(166)는, 예를 들어, 양극 탭(115)으로부터 돌출된 제1 리벳(152) 및 음극 탭(125)으로부터 돌출된 제2 리벳(154)의 단부를 각각 감싸는 오목한 한 쌍의 절곡부들이 형성된 플레이트 형상으로 형성된다.
제2 커버부(166)의 양단에는 각각 결합 홈(167)들이 형성되며, 결합 홈(167)들은, 예를 들어, 제2 커버부(166)를 관통하는 관통홀을 포함할 수 있다. 이에 더하여, 양극 탭(115) 및 음극 탭(125)의 중앙부에 대응하는 제2 커버부(166)의 내측면에는 제1 커버부(161)의 결합 돌기(162)가 결합 되는 결합 홈(167)이 형성될 수 있다.
제2 커버부(166)의 각 결합 홈(167)들에는 제1 커버부(161)의 결합 돌기(162)가 끼워질 수 있고, 제1 커버부(161)의 결합 돌기(162)는 제2 커버부(166)의 결합 홈(167)에 열융착 또는 초음파 융착에 의하여 상호 결합 될 수 있다. 이와 다르게, 제1 커버부(161)의 결합 돌기(162)는 제2 커버부(166)의 결합 홈(167)에 접착제 등에 의하여 접착되어도 무방하다.
외장재(170)는 양극판(110), 음극판(120), 리벳(150) 및 그리드 커버(160)를 감싸며, 외부 접속 단자(140)는 외장재(170)의 외부로 돌출되며, 외부 접속 단자(140) 및 외장재(170)는 절연 부재에 의하여 상호 절연된다.
본 발명의 일실시예에서, 외장재(170)는 얇은 두께를 갖는 알루미늄 박막을 포함하지만, 외장재(170)와 마주하는 리벳(150)의 단부는 그리드 커버(160)에 의하여 감싸지기 때문에 외장재(170)는 리벳(150)에 의하여 손상되지 않는다.
본 발명의 일실시예에서, 그리드 커버(160)는 제1 커버부(161) 및 제2 커버부(166)를 통해 양극 탭(115) 및 음극 탭(125)의 측면을 감쌀 뿐만 아니라 양극 탭(115)으로부터 돌출된 제1 리벳(152)의 단부 및 음극 탭(125)으로부터 돌출된 제2 리벳(154)의 단부를 각각 감싸 제1 및 제2 리벳(152,154)들에 의한 외장재의 손상을 방지할 뿐만 아니라 양극 탭(115) 및 음극 탭(125)에 각각 그리드 커버를 단독적으로 조립할 때에 비하여 조립 공정을 크게 감소 시킬 수 있다.
도 19는 본 발명의 다른 실시예에 따른 그리드 커버, 양극 탭 및 음극 탭의 결합 관계를 도시한 단면도이다. 도 20은 도 19의 결합 단면도이다.
도 19 및 도 20을 참조하면, 그리드 커버(160)는 제1 커버부(161) 및 제2 커버부(166)를 포함한다. 본 발명의 일실시예에서, 제1 커버부(161) 및 제2 커버부(166)는 열에 의한 융착 및 형상 변형이 가능한 열 가소성 합성 수지를 포함한다.
제1 커버부(161) 및 제2 커버부(166)는 양극탭(115), 제1 리벳(152), 음극 탭(125) 및 제2 리벳(154)를 감싸 제1 및 제2 리벳(152,154)들에 의하여 외장재가 손상되는 것을 방지한다.
제1 커버부(161)는 양극 탭(115)의 일부 및 음극 탭(125)의 일부를 동시에 덮는 구조를 갖는다. 제1 커버부(161)는, 예를 들어, 양극 탭(115) 및 음극 탭(125)을 각각 감싸는 오목한 한 쌍의 절곡부들이 형성된 플레이트 형상으로 형성된다.
제1 커버부(161)의 양단에는 각각 결합 돌기(162)들이 형성되며, 결합 돌기(162)들은 제1 커버부(161)의 내측면으로부터 돌출된다. 이에 더하여, 양극 탭(115) 및 음극 탭(125)의 중앙부에 대응하는 제1 커버부(161)의 내측면에도 결합 돌기(162)가 돌출될 수 있다.
제2 커버부(166)는 양극 탭(115)으로부터 돌출된 제1 리벳(152)의 단부 및 음극 탭(125)으로부터 돌출된 제2 리벳(154)의 단부를 덮는 구조를 갖는다.
제2 커버부(166)는, 예를 들어, 양극 탭(115)으로부터 돌출된 제1 리벳(152) 및 음극 탭(125)으로부터 돌출된 제2 리벳(154)의 단부를 각각 감싸는 오목한 한 쌍의 절곡부들이 형성된 플레이트 형상으로 형성된다.
제2 커버부(166)의 양단에는 각각 결합 홈(167)들이 형성되며, 결합 홈(167)들은, 예를 들어, 제2 커버부(166)를 관통하는 관통홀을 포함할 수 있다. 이에 더하여, 양극 탭(115) 및 음극 탭(125)의 중앙부에 대응하는 제2 커버부(166)의 내측면에는 제1 커버부(161)의 결합 돌기(162)가 결합 되는 결합 홈(167)이 형성될 수 있다.
제2 커버부(166)의 각 결합 홈(167)들에는 제1 커버부(161)의 결합 돌기(162)가 끼워질 수 있고, 제1 커버부(161)의 결합 돌기(162)는 제2 커버부(166)의 결합 홈(167)에 열융착 또는 초음파 융착에 의하여 상호 결합 될 수 있다. 이와 다르게, 제1 커버부(161)의 결합 돌기(162)는 제2 커버부(166)의 결합 홈(167)에 접착제 등에 의하여 접착되어도 무방하다.
제2 커버부(166) 중 양극 탭(115)으로부터 돌출된 제1 리벳(152) 및 음극 탭(125)으로부터 돌출된 제2 리벳(154)의 단부와 마주하는 부분에는 제1 및 제2 리벳(152,154)들의 상기 단부들을 수용하는 리벳 수용부(168)들이 형성될 수 있다.
리벳 수용부(168)에 양극 탭(115) 및 음극 탭(125)으로부터 각각 돌출된 제1 및 제2 리벳(152,154)들이 수용됨으로써 제2 커버부(166)는 양극 탭(115) 및 음극 탭(125)과 직접 접촉될 수 있고, 이로 인해 그리드 커버(160)의 전체 사이즈를 보다 콤팩트하게 형성할 수 있다.
본 발명의 일실시예에서, 그리드 커버(160)는 제1 커버부(161) 및 제2 커버부(166)를 통해 양극 탭(115) 및 음극 탭(125)의 측면을 감쌀 뿐만 아니라 양극 탭(115)으로부터 돌출된 제1 리벳(152)의 단부 및 음극 탭(125)으로부터 돌출된 제2 리벳(154)의 단부를 각각 감싸 제1 및 제2 리벳(152,154)들에 의한 외장재의 손상을 방지할 뿐만 아니라 양극 탭(115) 및 음극 탭(125)에 각각 그리드 커버를 단독적으로 조립할 때에 비하여 조립 공정을 크게 감소 시킬 수 있다.
이상에서 상세하게 설명한 바에 의하면, 양극판 및 음극판을 결합하는 리벳을 그리드 커버를 이용하여 감싸 리벳에 의한 금속 파우치와 같은 외장재의 손상을 방지할 수 있다.
또한, 양극판 및 음극판을 결합하는 리벳을 그리드 커버를 이용하여 감싸 리벳에 의한 외장재의 손상을 방지할 수 있을 뿐만 아니라 그리드 커버가 차지하는 부피를 감소시켜 배터리 셀을 보다 콤팩트하게 형성할 수 있다.
또한, 양극판 및 음극판을 동시에 결합하는 리벳을 그리드 커버를 이용하여 감싸 리벳에 의한 외장재의 손상을 방지할 수 있다.
또한, 리벳을 감싸 외장재의 손상을 방지하는 그리드 커버는 합성수지 사출물로 제작하여 자동화 공정에 의하여 그리드 커버를 상호 결합할 수 있기 때문에 생산성을 보다 향상시킬 수 있는 효과를 갖는다.
본 발명은 자동차용 배터리 팩의 배터리 셀 또는 다양한 산업용 배터리 팩의 배터리 셀에 이용가능하다.

Claims (14)

  1. 복수매가 적층 되며 양극 탭이 상호 마주하게 배치된 양극판들;
    상기 양극판들 사이에 개재되며 음극 탭이 상호 마주하게 배치된 음극판들;
    상기 양극판 및 음극판들 사이에 개재된 분리막;
    상기 양극 탭들을 관통하는 제1 리벳 및 상기 음극 탭들을 관통하는 제2 리벳을 포함하는 리벳;
    상기 양극판들 및 상기 음극판들을 감싸는 외장재; 및
    상기 양극 탭 및 상기 제1 리벳, 상기 음극 탭 및 상기 제2 리벳을 감싸 상기 제1 및 제2 리벳에 의한 상기 외장재의 손상 방지 및 상기 제1 및 제2 리벳들 및 상기 외장재의 전기적 쇼트를 방지하는 그리드 커버를 포함하는 배터리 셀.
  2. 제1항에 있어서,
    상기 그리드 커버는 상기 양극 탭들의 측면 및 상기 제1 리벳을 감싸는 제1 그리드 커버 및 상기 음극 탭들의 측면 및 상기 제2 리벳을 감싸는 제2 그리드 커버를 포함하는 배터리 셀.
  3. 제2항에 있어서,
    상기 제1 그리드 커버는 상기 양극 탭들의 측면의 일부를 감싸는 제1 커버 및 상기 양극 탭들의 상기 측면의 나머지를 감싸는 제2 커버를 포함하며,
    상기 제2 그리드 커버는 상기 음극 탭들의 측면의 일부를 감싸는 제3 커버 및 상기 음극 탭들의 상기 측면의 나머지를 감싸는 제4 커버를 포함하는 배터리 셀.
  4. 제3항에 있어서,
    상기 제1 및 제3 그리드 커버들에는 결합 돌기가 형성되고, 상기 제2 및 제4 그리드 커버들에는 상기 결합 돌기와 결합 되는 결합홈이 형성된 배터리 셀.
  5. 제3항에 있어서,
    상기 제1 커버 및 상기 제2 커버, 상기 제3 커버 및 상기 제4 커버는 초음파 융착 및 열 융착 중 어느 하나에 의하여 상호 접합된 배터리 셀.
  6. 제2항에 있어서,
    상기 제1 그리드 커버 및 상기 제2 그리드 커버는 합성수지 사출물을 포함하는 배터리 셀.
  7. 제1항에 있어서,
    상기 양극 탭에 결합 된 제1 외부 접속 단자 및 상기 음극 탭에 결합 된 제2 외부 접속 단자를 포함하는 외부 접속 단자를 더 포함하는 배터리 셀.
  8. 제1항에 있어서,
    상기 그리드 커버에는 상기 양극 및 음극 탭들로부터 각각 돌출된 상기 제1 및 제2 리벳들의 단부를 수용하는 리벳 수용부가 형성된 배터리 셀.
  9. 제8항에 있어서,
    상기 그리드 커버 중 상기 리벳 수용부와 대응하는 부분의 두께는 상기 양극 및 음극 탭들로부터 돌출된 상기 제1 및 제2 리벳들의 단부의 길이보다 얇게 형성되며, 상기 리벳 수용부는 상기 제1 및 제2 리벳들의 상기 단부와 대응하는 부분에 선택적으로 형성된 배터리 셀.
  10. 제8항에 있어서,
    상기 그리드 커버들 중 상기 리벳 수용부와 대응하는 부분의 두께는 상기 양극 및 음극 탭들로부터 돌출된 상기 제1 및 제2 리벳들의 단부의 길이보다 두껍게 형성되며, 상기 리벳 수용부는 상기 제1 및 제2 리벳들의 상기 단부와 대응하는 부분에 형성된 홈 형상을 갖는 배터리 셀.
  11. 제1항에 있어서,
    상기 그리드 커버는 상기 양극 탭들 및 상기 음극 탭들의 일부를 감싸는 제1 커버부 및 상기 제1 커버부와 결합 되며 상기 제1 및 제2 리벳들 중 상기 양극 탭 및 상기 음극 탭들로부터 돌출된 단부들을 감싸는 제2 커버부를 포함하는 배터리 셀.
  12. 제11항에 있어서,
    상기 제1 커버부에는 결합 돌기가 형성되고, 상기 제2 커버부에는 상기 결합 돌기와 결합 되는 결합홈이 형성된 배터리 셀.
  13. 제12항에 있어서,
    상기 결합 돌기 및 상기 결합 홈은 상호 열 융착 및 초음파 융착 중 어느 하나에 의하여 결합 되는 배터리 셀.
  14. 제11항에 있어서,
    상기 제2 커버부에는 상기 제1 및 제2 리벳들의 상기 단부를 수용하는 리벳 수용부가 형성된 배터리 셀.
PCT/KR2012/002256 2012-03-22 2012-03-28 배터리 셀 WO2013141430A1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2012-0029465 2012-03-22
KR10-2012-0029474 2012-03-22
KR1020120029462A KR101327771B1 (ko) 2012-03-22 2012-03-22 배터리 셀
KR1020120029473A KR101327765B1 (ko) 2012-03-22 2012-03-22 배터리 셀
KR10-2012-0029473 2012-03-22
KR1020120029465A KR101327770B1 (ko) 2012-03-22 2012-03-22 배터리 셀
KR10-2012-0029462 2012-03-22
KR1020120029474A KR101327761B1 (ko) 2012-03-22 2012-03-22 배터리 셀

Publications (1)

Publication Number Publication Date
WO2013141430A1 true WO2013141430A1 (ko) 2013-09-26

Family

ID=49222865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002256 WO2013141430A1 (ko) 2012-03-22 2012-03-28 배터리 셀

Country Status (1)

Country Link
WO (1) WO2013141430A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835935A (zh) * 2015-05-14 2015-08-12 四川长虹电源有限责任公司 蓄电池组

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060033643A (ko) * 2004-10-15 2006-04-19 주식회사 에너랜드 리벳에 의해 전극탭과 리드선이 접합되는 적층형리튬이차전지의 전극탭 처리방법
KR20110040662A (ko) * 2009-10-13 2011-04-20 삼성에스디아이 주식회사 이차 전지
KR20120006637A (ko) * 2010-07-13 2012-01-19 (주)열린기술 이차전지용 전극탭 조립체 및 그 조립방법
KR101107082B1 (ko) * 2009-11-24 2012-01-20 삼성에스디아이 주식회사 이차 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060033643A (ko) * 2004-10-15 2006-04-19 주식회사 에너랜드 리벳에 의해 전극탭과 리드선이 접합되는 적층형리튬이차전지의 전극탭 처리방법
KR20110040662A (ko) * 2009-10-13 2011-04-20 삼성에스디아이 주식회사 이차 전지
KR101107082B1 (ko) * 2009-11-24 2012-01-20 삼성에스디아이 주식회사 이차 전지
KR20120006637A (ko) * 2010-07-13 2012-01-19 (주)열린기술 이차전지용 전극탭 조립체 및 그 조립방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835935A (zh) * 2015-05-14 2015-08-12 四川长虹电源有限责任公司 蓄电池组

Similar Documents

Publication Publication Date Title
WO2019098588A1 (ko) 센싱 어셈블리 및 버스바 어셈블리를 포함하는 배터리 모듈
WO2014109481A1 (ko) 일체형 양극 리드 및 음극 리드를 포함하는 이차전지 및 그 제조방법
WO2018124751A1 (ko) 연성회로기판 및 이를 포함하는 프레임 조립체
WO2019088714A1 (ko) 버스바 어셈블리를 포함하는 배터리 모듈
WO2019107735A1 (ko) 버스바 어셈블리를 구비한 배터리 모듈
WO2021141345A1 (ko) 안전성이 향상된 배터리 팩
WO2020138849A1 (ko) 내측 커버를 포함하는 배터리 모듈
WO2021118160A1 (ko) 이차전지 제조방법 및 이차전지 제조용 프리 디개스 장치
WO2019066440A2 (ko) 전지팩용 전류차단 부재 벤딩 장치
WO2018221836A1 (ko) 배터리 팩 및 이의 제조방법
WO2013141430A1 (ko) 배터리 셀
WO2016129888A1 (ko) 전지모듈 및 상호연결 어셈블리의 전압센싱부재에 제 1 및 제 2 전지셀들의 제 1 및 제 2 전기 단자들을 연결하는 방법
WO2021141311A1 (ko) 이차전지 제조장치 및 이차전지 제조방법
WO2019017547A1 (ko) 배터리 팩
WO2021235724A1 (ko) 이차전지 및 그의 제조방법
WO2013141431A1 (ko) 배터리 셀
WO2018004185A1 (ko) 이차 전지용 스택 장치, 이를 이용한 스택 방법 및 이에 따른 이차 전지
WO2019160333A1 (ko) 이차 전지 상태 추정 기능이 개선된 단자 케이스
WO2024034899A1 (ko) 배터리 모듈 및 그 제조 방법, 배터리 팩
WO2023054915A1 (ko) 분리막 적층체 및 이를 포함하는 전극 조립체, 그리고 전극 조립체 제조 방법
WO2023080742A1 (ko) 배터리 모듈 및 이를 포함한 배터리 팩
WO2022050555A1 (ko) 전지 셀의 적층 방식이 개선된 전지 모듈 및 이를 포함하는 전지 팩
WO2023149694A1 (ko) 발화억제 구조의 리튬이차전지
WO2024034938A1 (ko) 파우치형 전지 케이스 및 그 포밍 장치
WO2024039192A1 (ko) 전지 모듈 및 이를 포함하는 전지팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 04-02-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12872003

Country of ref document: EP

Kind code of ref document: A1