WO2013141283A1 - Vacuum-deposition apparatus - Google Patents

Vacuum-deposition apparatus Download PDF

Info

Publication number
WO2013141283A1
WO2013141283A1 PCT/JP2013/058017 JP2013058017W WO2013141283A1 WO 2013141283 A1 WO2013141283 A1 WO 2013141283A1 JP 2013058017 W JP2013058017 W JP 2013058017W WO 2013141283 A1 WO2013141283 A1 WO 2013141283A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
partition
film
vacuum
partition portion
Prior art date
Application number
PCT/JP2013/058017
Other languages
French (fr)
Japanese (ja)
Inventor
清司 伊関
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2013141283A1 publication Critical patent/WO2013141283A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Definitions

  • the present invention relates to a vacuum deposition apparatus, and more particularly to a vacuum deposition apparatus for forming a mixed film made of different elements on a film.
  • Patent Document 1 discloses a plurality of crucibles 8 containing a plurality of deposition materials 10 in FIG. As shown, an apparatus is described that is arranged so as to be mixed on substantially the same line in the direction intersecting the traveling direction of the traveling film.
  • This apparatus has an advantage that a uniform mixed film can be formed in the thickness direction of the vapor deposition film because a time difference hardly occurs until each material evaporated from a plurality of vapor deposition materials (mainly metal) adheres to the traveling film.
  • Patent Document 2 in a vacuum vapor deposition apparatus capable of forming a mixed film made of different elements on a film running in a vacuum chamber, these types of vapor deposition materials are held in order to hold these kinds of materials.
  • An apparatus provided with a partition for sorting vapor deposition materials is described.
  • a plurality of different vapor deposition materials are divided not by the thick crucible side wall but by a thin partition plate, so that an unevaporated region between different vapor deposition materials can be reduced.
  • an electron gun is used as a heating means.
  • the electron beam can be irradiated to the vicinity of the boundary between the adjacent vapor deposition materials, there is an advantage that the vapor deposition rate in the vicinity of the upper part of the partition plate is difficult to decrease.
  • the object of the present invention is to eliminate the above-mentioned problems of the prior art, and to provide a continuous film at a high level for a long time with a mixed film having a predetermined composition and film thickness on the long film surface.
  • Another object of the present invention is to provide a vacuum deposition apparatus that can be stably formed.
  • the “film” is a generic term for materials having a thin shape with respect to width and length, and is used as a concept including not only the original film but also a sheet-like material.
  • the apparatus includes a material holding means that holds at least two kinds of different vapor deposition materials in a vacuum chamber and includes a partition unit that sorts these vapor deposition materials, and a heating means that heats and vaporizes the vapor deposition materials.
  • the thermal conductivity in the direction perpendicular to the partition direction of the partition portion is more than twice the thermal conductivity in the partition direction. It is characterized by this.
  • the thermal conductivity in the partition direction of the partition portion is 10 W / m ⁇ K or less.
  • the bending strength of the partition portion is 100 MPa or more.
  • the partition part is a long fiber woven carbon fiber reinforced carbon material.
  • the partition portion is composed of two or more plate materials, and a space is provided between at least two plate materials.
  • the material holding means has a mechanism for horizontally moving in the film running direction.
  • the partition part is installed so that the longitudinal direction of the partition part is parallel to the film running direction.
  • a plurality of different vapor deposition materials are divided not by the side wall of the thick crucible but by a thin partition, so that an unevaporated region between the different vapor deposition materials can be reduced.
  • an electron gun can be used as a heating means. When used, it is possible to irradiate the electron beam up to the vicinity of the boundary between adjacent vapor deposition materials. Therefore, the fall of the vapor deposition rate in the upper vicinity of a partition part is suppressed. And since the heat insulation of a partition part is enough, it is possible to control the temperature of the different vapor deposition material which separated the partition part to each optimal temperature.
  • the composition in the width direction and the uniformity of the film thickness of the mixed film formed on the film are improved, and are composed of at least two kinds of materials over the width direction and the length direction of the long film surface, It is possible to provide a vacuum deposition apparatus capable of continuously and uniformly forming a mixed film having a composition and a film thickness at a high level required today.
  • the film to which the vacuum deposition apparatus of the present invention can be applied for example, a polymer film, is not particularly limited, but polyester, polypropylene, polyethylene, polyamide 6, polyamide 66, polyamide 12, polyamide 4, polyvinyl chloride, polyvinylidene chloride The film which consists of these is mentioned.
  • the partitioning portion refers to a portion having a function of separating at least two kinds of vapor deposition materials so that the individual vapor deposition materials are not mixed.
  • the partition direction used in the present invention is a direction from a certain vapor deposition material to an adjacent material, and when partitioned by a plate, it is the thickness direction of the plate.
  • the direction perpendicular to the partition direction is the direction along the surface of the plate when partitioned by a plate.
  • the vapor deposition material is filled adjacent to the partition portion.
  • the material evaporates from the upper surface, and in the vertical direction, the direction parallel to the depth direction of the vapor deposition material is the depth direction, and the direction perpendicular to the depth direction is the length direction.
  • FIG. 1 shows a schematic overall structure of a vacuum deposition apparatus in the present embodiment.
  • the film 11 set on the unwinding roll 1 in the vacuum chamber 6 runs on the cooling roll 3, passes through the tension roll 5, and is wound on the winding roll 2.
  • the degree of vacuum in the vacuum chamber 6 is maintained at a predetermined degree of vacuum by an exhaust device 9 including an oil diffusion pump (not shown).
  • a crucible 8, which is an example of a material holding means arranged at the bottom of the vacuum chamber 6, moves horizontally at a low speed while maintaining parallel to the vapor deposition surface of the film 11 in the axial direction of the electron gun 4 which is an example of a heating means. .
  • the electron gun 4 irradiates the electron beam 12 onto the vapor deposition material 10 stored in the crucible 8. A part of the material heated and evaporated by the electron beam 12 is deposited on the surface of the film 11 running on the cooling roll 3.
  • Reference numeral 7 denotes a shielding plate for forming a uniform and good vapor deposition film on the film 11, and reference numeral 15 denotes a cooling pipe through which cold water or the like is circulated in order to cool the crucible 8.
  • the heating position by the electron gun 4 is not changed, and the material holding means moves horizontally to cause evaporation.
  • the reduced deposition material 10 is supplied.
  • the irradiation conditions of the electron beam 12 for irradiating the vapor deposition material 10 accommodated in the material holding means for example, the distance between the electron gun 4 and the vapor deposition material 10 can be made as constant as possible. Evaporation can be performed uniformly and for a long time in the width direction of the material.
  • the partition portion 13 is arranged in the crucible 8. It is preferable that the partition portion 13 is disposed to be inclined at substantially the same angle as the incident angle of the electron beam 12 irradiated from the electron gun 4.
  • Reference numeral 16 in FIG. 2 denotes a holding portion that adjusts and holds the angle and interval of each partition portion 13.
  • a pair of parallel holding portions 16 and 16 and a plurality of partition portions 13 form a lattice. Is placed inside.
  • the box 17 which accommodates the vapor deposition material 10 by the adjacent partition part 13 is formed.
  • the partition 13 on the center side faces the vertical direction, and the angle formed by the partition 13 and the vertical line increases toward the end, and the electron beam 12 irradiated from the electron gun 4 passes through the partition 13.
  • the vapor deposition material 10 in each box 17 can be heated by preventing the shielding as much as possible.
  • the vapor deposition material for example, A
  • the vapor deposition material for example, B
  • the vapor deposition material for example, B
  • the ratio of the thermal conductivity in the vertical direction of the partition portion 13 to the thermal conductivity in the partition direction needs to be 2 or more, preferably 3 or more, and more preferably 4 or more.
  • the thermal conductivity in the partition direction of the partition portion 13 is preferably 10 W / m ⁇ K or less, and more preferably 0.5 to 10 W / m ⁇ K. If the thermal conductivity in the partition direction is 10 W / m ⁇ K or less, good heat insulating properties of the partition portion 13 can be obtained. Therefore, the temperatures of the different vapor deposition materials 10 across the partition portion 13 are controlled to respective optimum temperatures. It becomes possible.
  • the thermal conductivity in the direction perpendicular to the partition direction of the partition portion 13 is preferably 20 W / m ⁇ K or more, and more preferably 20 to 50 W / m ⁇ K.
  • the thermal conductivity is larger in the length direction than in the partition direction, the heat escapes in the length direction or depth direction, and finally the heat is released to the crucible 8 which is water-cooled. Damage can be prevented. If the thermal conductivity in the vertical direction becomes too large, the temperature of the partition portion 13 will be extremely lowered to prevent evaporation.
  • the partition part may have an aspect that penetrates the holding part 16 as shown by reference numeral 13 in FIG. 2, or another aspect that fits into a groove provided in the holding part 16.
  • the undeposited regions between the different vapor deposition materials 10 can be reduced.
  • the thickness of the partition 13 is preferably 2 to 10 mm, and more preferably around 5 mm. The thinner the partition portion 13 is, the better. However, if the thickness is less than 2 mm, it is not preferable because the usable time is shortened due to the consumption by heating from the heating means, and the cost is increased.
  • the partition portion 13 has a certain degree of mechanical strength, and preferably has a bending strength of 100 MPa or more, which makes it possible to reduce the thickness of the partition portion 13, and prevent evaporation between different vapor deposition materials 10. Since the area can be reduced, it can further contribute to stabilization of vapor deposition and improvement of uniformity.
  • the thermal expansion coefficient in the direction perpendicular to the partition direction at 0 to 800 ° C. of the partition section 13 is preferably 0.1 ⁇ 10 ⁇ 6 to 1.0 ⁇ 10 ⁇ 6 / ° C. If the thermal expansion coefficient of the partition part 13 is in this range, the partition part 13 will not be cracked or chipped by contact with the crucible 8 in the heat vapor deposition, and it will be highly durable. Moreover, even if the process of high temperature to evaporate the material in the crucible 8 and cooling after completion is repeated, damage such as cracking and chipping is unlikely to occur, so that the deposition can be repeated several tens of times. Will be cheaper.
  • the interval between the adjacent partition portions 13 is preferably 10 to 120 mm. This is convenient because the composition ratio of the deposited film can be made uniform in the width direction.
  • the interval between the partitioning portions 13 is less than 10 mm, the volume of the partitioning portions 13 is relatively larger than the volume of the box 17 in which the deposition material 10 is loaded, and the replenishment frequency of the deposition material 10 is increased. The efficiency is lowered, which is not preferable.
  • interval of the partition parts 13 exceeds 120 mm, it becomes difficult to evaporate the different vapor deposition material 10 uniformly in the width direction of a vapor deposition material, and is unpreferable.
  • the carbon material is more preferably a carbon-based composite material such as a carbon fiber reinforced carbon material. This is because the carbon fiber reinforced carbon material is not easily damaged by irradiation with an electron beam and has a high heat resistance, so that cooling of this portion is not necessarily required.
  • the long fiber webs stacked in the thickness direction are hardened and carbonized. It is preferable to use a long-fiber woven carbon fiber-reinforced carbon material that is made into a plate shape. For example, after a prepreg obtained by impregnating a polyacrylonitrile-based carbon long fiber fabric with a phenol resin is laminated, hot pressing is performed to produce a phenol resin molded product (CFRP) using a plate-like carbon fiber as a reinforcing material, and vacuum In this, it is fired at 1000 to 2300 ° C. to carbonize the phenol resin portion. By repeating the impregnation of the phenol resin and the calcination carbonization, a long fiber woven carbon fiber reinforced carbon material in which the carbon fiber is surrounded by carbon can be obtained.
  • CFRP phenol resin molded product
  • the partition portion 13 may be composed of only one long fiber woven carbon fiber reinforced carbon material plate (FIG. 3A), and the two carbon plates are parallel to each other at intervals of several mm. You may comprise what was installed in 1 by the one partition part 13 (FIG.3 (b)).
  • the characteristics of the partition part 13 were evaluated using the following method. (1) Thermal conductivity A value measured at 100 ° C. according to JIS-A-1412. (2) Bending strength A value measured according to JIS-R-7212.
  • PET polyethylene terephthalate
  • Toyobo Ester registered trademark
  • particulate aluminum oxide (Al 2 O 3 , purity 99.5%) having a size of about 3 to 5 mm and silicon oxide (SiO 2 , purity 99.9%) were used, as shown in FIG.
  • Vapor deposition was performed with an apparatus.
  • the outer frame of the crucible 8 holding the vapor deposition material 10 was made of copper, and the partition portion 13 was placed in the crucible 8.
  • a cooling water cooling tube 15 having an outer diameter of 20 mm ⁇ was provided at the bottom of the crucible 8.
  • the flow rate of the cooling water is approximately 4 m 3 .
  • the partition portion 13 is disposed so as to be inclined at an angle substantially equal to the angle at which the electron beam 12 irradiated from the electron gun 4 is incident on each vapor deposition material 10. This is because the electron beam 12 can be irradiated to the very vicinity between the adjacent vapor deposition materials 10 without disturbing the incidence of the electron beam 12.
  • a long-fiber woven carbon fiber reinforced carbon material having a thickness of 10 mm was used as the partition portion 13.
  • the thermal conductivity of the partition part was 5.7 W / m ⁇ K in the partition direction, and 27 W / m ⁇ K in the direction perpendicular to the partition part.
  • the bending strength in the direction perpendicular to the partition was 160 MPa.
  • the two types of vapor deposition materials 10 were alternately and uniformly accommodated in each box 17 secured by the partition portion 13.
  • FIG. 2 the schematic structure of the crucible 8 used for the present Example is shown.
  • the thickness of the partition part 13 was 5 mm, and the pitch of the partition part 13 was about 100 mm pitch.
  • the inclination angle of the partition portion 13 was adjusted to the incident angle of the electron beam, and the crucible 8 was moved at a speed of about 2 mm / min in a direction approaching the incident side of the electron beam 12.
  • Polymer films deposited with aluminum oxide and silicon oxide can be widely used as packaging materials and gas barrier materials that require airtightness such as foods, medical products, and electronic parts.
  • the electron gun 4 having an output of 250 kW was arranged so as to face the crucible 8 arranged in parallel to the film width direction.
  • the electron gun 4 is configured to deposit the vapor deposition material 10 in a total of 9 boxes of 4 boxes of silicon oxide and 5 boxes of aluminum oxide alternately arranged in the crucible 8.
  • one electron gun 4 is used.
  • a plurality of electron guns 4 are used.
  • the method of dividing the vapor deposition region may be employed, and the number of electron guns installed is not particularly limited. In this case, this can be dealt with by increasing the crucible width and increasing the number of partitions 13. Moreover, it is preferable to install the partition part 13 corresponding to the incident angle of the electron beam from a plurality of electron guns.
  • the pressure in the vacuum chamber 6 during vapor deposition was an exhaust system that could always maintain 4 ⁇ 10 ⁇ 2 Pa or less.
  • the oil diffusion pump of 50,000 L / sec was directly connected to the bottom of the vacuum chamber.
  • an on-line thickness measuring device (not shown) arranged almost directly above the tension roll 5 and in the center in the width direction of the polymer film 11 is used. It is preferable that continuous measurement is performed because continuous data is obtained and convenience is increased.
  • the distribution of the gas evaporated from the vapor deposition material 10 divided by each partitioning portion 13 is the strongest directly above, and the intensity decreases as it spreads laterally.
  • the intensity distribution and shape mainly depend on the intensity of the electron beam 12, the angle at which the electron beam 12 is incident, the distance between the electron gun 4 and the crucible 8, the evaporation area, and the like. Therefore, in order to form a film having the same composition ratio in the width direction and the running direction of the film forming the thin film and having a uniform total thickness, the arrangement of the vapor deposition material 10 is the most important. The arrangement method of the vapor deposition material 10 implemented this time is shown in FIGS.
  • FIG. 6 shows individual materials placed side by side in a crucible as in the prior art.
  • FIG. 4 shows the measurement results of the evaporation characteristics and film thickness distribution according to the example
  • FIG. 5 shows the measurement results of the evaporation characteristics and film thickness distribution according to the comparative example
  • a is the film thickness distribution of aluminum oxide
  • b is the film thickness distribution of silicon oxide
  • c is the thickness distribution of the mixed film in the width direction.
  • the vertical axis represents the film thickness of the mixed vapor deposition film (the film thickness at each position divided by the maximum film thickness, which is x100), and the horizontal axis represents the film position.
  • the vacuum deposition apparatus according to the present embodiment is uniformly deposited in the film width direction.
  • the crucible 8 made of copper is shown as the container for the vapor deposition material holding means.
  • the invention is not limited to this, and the material is not easily damaged by the heating means such as the electron beam 12.
  • Other materials may be used.
  • the container may have a basket-like shape as long as it can hold the vapor deposition material 10.
  • the vacuum chamber is set to a vacuum state in which a chamber for traveling a deposition material such as a film and a chamber for heating the deposition material 10 are differently reduced.
  • the present invention can also be applied to a so-called two-chamber apparatus that performs vapor deposition.
  • a polymer film is taken as an example of the film-form deposition material.
  • the deposition material may be paper, cloth, or the like.
  • various elements and compounds can be used as the vapor deposition material 10, and a mixture composed of two or more elements or components using two or more vapor deposition materials 10.
  • a film may be formed.
  • the present invention is not limited by the above-described embodiments, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. Is included.
  • the vacuum deposition apparatus of the present invention is a mixed film having a predetermined composition and film thickness, in which the thermal conductivity in the direction perpendicular to the partition direction of the partition portion in the crucible is at least twice the thermal conductivity in the partition direction, It is preferable as an apparatus for forming a high level continuously and stably for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Provided is a vacuum-deposition apparatus making it possible for a blended film having a predetermined composition and thickness and comprising different elements to be formed on an elongated film surface stably and continuously over a long period of time at a high level. A vacuum-deposition apparatus in which an inorganic thin film is capable of being formed on a film running inside a vacuum tank, the apparatus being provided with a material-holding means for holding at least two different types of deposition materials inside the vacuum tank, and a heating means for heating the deposition materials to cause heat-induced evaporation, the material-holding means being provided with a partition part for separating the two deposition materials. The apparatus is characterized in that the heat-transmission rate in the direction perpendicular to the partitioning direction of the partition part is at least twice the heat-transmission rate in the partitioning direction.

Description

真空蒸着装置Vacuum deposition equipment
 本発明は真空蒸着装置に関し、詳しくは、フィルム上に異なる元素からなる混合膜を形成するための真空蒸着装置に関する。 The present invention relates to a vacuum deposition apparatus, and more particularly to a vacuum deposition apparatus for forming a mixed film made of different elements on a film.
 従来、真空槽中を走行するフィルムに複数の材料を同時に蒸着させて混合膜を形成する装置として、例えば特許文献1には、複数の蒸着材料10を収納した複数の坩堝8を、図6に示すように、走行するフィルムの走行方向と交差する方向にほぼ同一線上に、混在するように配置された装置が記載されている。この装置は、複数の蒸着材料(主として金属)から蒸発した各々の材料が走行フィルムに付着するまでに時間差が生じ難いために、蒸着膜の厚み方向に均一な混合膜を形成できる利点がある。 Conventionally, as a device for forming a mixed film by simultaneously depositing a plurality of materials on a film traveling in a vacuum chamber, for example, Patent Document 1 discloses a plurality of crucibles 8 containing a plurality of deposition materials 10 in FIG. As shown, an apparatus is described that is arranged so as to be mixed on substantially the same line in the direction intersecting the traveling direction of the traveling film. This apparatus has an advantage that a uniform mixed film can be formed in the thickness direction of the vapor deposition film because a time difference hardly occurs until each material evaporated from a plurality of vapor deposition materials (mainly metal) adheres to the traveling film.
 しかしながら、この装置では、隣り合う異なる蒸着材料の間にある坩堝の側壁部の幅が未蒸発領域となるため、走行フィルムの幅方向に形成される実際の蒸着膜の総厚みは、上記側壁部の略上方では蒸着速度が低下することにより、不均一になるという問題があった。 However, in this apparatus, since the width of the side wall portion of the crucible between the adjacent different vapor deposition materials becomes an unevaporated region, the total thickness of the actual vapor deposition film formed in the width direction of the running film is equal to the side wall portion. There is a problem in that the vapor deposition rate is reduced in a substantially upper portion of the film, resulting in non-uniformity.
 この問題を改善する装置として、例えば特許文献2には、真空槽内で走行するフィルムに異なる元素からなる混合膜を形成可能な真空蒸着装置において、異なる種類の蒸着材料を保持するため、これらの蒸着材料を仕分ける仕切り部を備えた装置が記載されている。この装置は、異なる複数の蒸着材料間は厚みが厚い坩堝の側壁ではなく、薄い仕切り板で区分けされるため、異なる蒸着材料間の未蒸発領域を小さくでき、例えば加熱手段として電子銃を用いた場合には、隣接する各蒸着材料の境界近傍部分にまで電子線を照射できるため、仕切り板の上方近傍での蒸着速度が低下しにくいという利点がある。 As an apparatus for improving this problem, for example, in Patent Document 2, in a vacuum vapor deposition apparatus capable of forming a mixed film made of different elements on a film running in a vacuum chamber, these types of vapor deposition materials are held in order to hold these kinds of materials. An apparatus provided with a partition for sorting vapor deposition materials is described. In this apparatus, a plurality of different vapor deposition materials are divided not by the thick crucible side wall but by a thin partition plate, so that an unevaporated region between different vapor deposition materials can be reduced. For example, an electron gun is used as a heating means. In this case, since the electron beam can be irradiated to the vicinity of the boundary between the adjacent vapor deposition materials, there is an advantage that the vapor deposition rate in the vicinity of the upper part of the partition plate is difficult to decrease.
 しかしながら、この装置では仕切り板の断熱性が十分でないため、各々に設定する温度が異なると、仕切り部を通して熱の移動が発生しやすいため、温度が安定しにくいという問題があった。したがって、仕切り板を隔てた異なる蒸着材料の温度をそれぞれの最適温度に制御する上でまだ改善が必要であり、各々の蒸着材料の蒸発速度を制御するためには不十分な装置であった。 However, in this apparatus, since the heat insulating property of the partition plate is not sufficient, if the temperature set for each is different, heat is likely to move through the partition portion, so that there is a problem that the temperature is difficult to stabilize. Therefore, improvement is still necessary to control the temperature of the different vapor deposition materials across the partition plate to the optimum temperature, and the apparatus is insufficient to control the evaporation rate of each vapor deposition material.
特開平6-235061号公報Japanese Patent Laid-Open No. 6-235061 特開2000-239832号公報JP 2000-239832 A
 上述したように、従来の技術では、フィルムの幅方向および走行方向に所定の組成および膜厚を有する混合膜を、長時間連続的に、かつ、安定的に形成するには制御が難しかった。 As described above, in the conventional technique, it is difficult to control a mixed film having a predetermined composition and film thickness in the width direction and the running direction of the film continuously and stably for a long time.
 そこで、本発明の目的は、上記従来技術が有する問題点を解消し、長尺フィルム表面に、異なる元素からなり、所定の組成および膜厚を有する混合膜を、高度なレベルで長時間連続的に、かつ、安定的に形成できる真空蒸着装置を提供することにある。なお、本発明において「フィルム」とは、幅および長さに対して厚みの薄い形状の材料を総称するものとし、本来のフィルムのみならずシート状材料を含む概念として用いる。 Therefore, the object of the present invention is to eliminate the above-mentioned problems of the prior art, and to provide a continuous film at a high level for a long time with a mixed film having a predetermined composition and film thickness on the long film surface. Another object of the present invention is to provide a vacuum deposition apparatus that can be stably formed. In the present invention, the “film” is a generic term for materials having a thin shape with respect to width and length, and is used as a concept including not only the original film but also a sheet-like material.
 上記目的は、請求項記載の発明により達成される。すなわち、真空槽内に少なくとも2種類以上の異なる蒸着材料を保持し、かつこれらの蒸着材料を仕分ける仕切り部を備えた材料保持手段と、前記蒸着材料を加熱して加熱蒸発させる加熱手段とを備え、前記真空槽内で走行するフィルム上に無機薄膜を形成可能な真空蒸着装置において、前記仕切り部の仕切方向に垂直方向の熱伝導率が仕切方向の熱伝導率に対して2倍以上であることを特徴とするものである。 The above object is achieved by the invention described in the claims. That is, the apparatus includes a material holding means that holds at least two kinds of different vapor deposition materials in a vacuum chamber and includes a partition unit that sorts these vapor deposition materials, and a heating means that heats and vaporizes the vapor deposition materials. In the vacuum evaporation apparatus capable of forming an inorganic thin film on the film running in the vacuum chamber, the thermal conductivity in the direction perpendicular to the partition direction of the partition portion is more than twice the thermal conductivity in the partition direction. It is characterized by this.
 この場合において、前記仕切り部の仕切方向の熱伝導率が10W/m・K以下であることが好ましい。 In this case, it is preferable that the thermal conductivity in the partition direction of the partition portion is 10 W / m · K or less.
 また、前記仕切り部の曲げ強さが100MPa以上であることが好ましい。 Further, it is preferable that the bending strength of the partition portion is 100 MPa or more.
 そして、前記仕切り部が長繊維織物型炭素繊維強化炭素材であることが好ましい。 And it is preferable that the partition part is a long fiber woven carbon fiber reinforced carbon material.
 さらにまた、前記仕切り部が2枚以上の板材料で構成され、少なくとも2枚の板材料の間に空間をあけた構造であることが好ましい。 Furthermore, it is preferable that the partition portion is composed of two or more plate materials, and a space is provided between at least two plate materials.
 さらに、前記材料保持手段がフィルム走行方向に水平移動する機構を有することが好ましい。 Furthermore, it is preferable that the material holding means has a mechanism for horizontally moving in the film running direction.
 また、前記仕切り部の長尺方向がフィルム走行方向と平行となるように仕切り部が設置されていることが好ましい。 Moreover, it is preferable that the partition part is installed so that the longitudinal direction of the partition part is parallel to the film running direction.
 この構成によれば、異なる複数の蒸着材料間は厚みが厚い坩堝の側壁ではなく、薄い仕切り部で区分けされるため、異なる蒸着材料間の未蒸発領域を小さくでき、例えば加熱手段として電子銃を用いた場合には、隣接する各蒸着材料の境界近傍部分にまで電子線を照射できる。したがって、仕切り部の上方近傍での蒸着速度の低下が抑えられる。しかも、仕切り部の断熱性が十分なため、仕切り部を隔てた異なる蒸着材料の温度をそれぞれの最適温度に制御することが可能である。 According to this configuration, a plurality of different vapor deposition materials are divided not by the side wall of the thick crucible but by a thin partition, so that an unevaporated region between the different vapor deposition materials can be reduced. For example, an electron gun can be used as a heating means. When used, it is possible to irradiate the electron beam up to the vicinity of the boundary between adjacent vapor deposition materials. Therefore, the fall of the vapor deposition rate in the upper vicinity of a partition part is suppressed. And since the heat insulation of a partition part is enough, it is possible to control the temperature of the different vapor deposition material which separated the partition part to each optimal temperature.
 その結果、フィルム上に形成される混合膜の幅方向の組成および膜厚の均一性が向上し、長尺フィルム表面の幅方向および長さ方向にわたって、少なくとも2種類以上の材料からなり、所定の組成および膜厚を有する混合膜を、今日求められている高度なレベルで連続的、かつ均一に形成できる真空蒸着装置を提供できる。 As a result, the composition in the width direction and the uniformity of the film thickness of the mixed film formed on the film are improved, and are composed of at least two kinds of materials over the width direction and the length direction of the long film surface, It is possible to provide a vacuum deposition apparatus capable of continuously and uniformly forming a mixed film having a composition and a film thickness at a high level required today.
本発明の一実施形態に係る真空蒸着装置の概略全体構造を説明する図である。It is a figure explaining the schematic whole structure of the vacuum evaporation system which concerns on one Embodiment of this invention. 本発明の真空蒸着装置に用いる坩堝の構成を説明する図である。It is a figure explaining the structure of the crucible used for the vacuum evaporation system of this invention. 本発明の仕切り部の構成を説明する図である。It is a figure explaining the structure of the partition part of this invention. 本実施形態の坩堝を用いた場合の蒸発特性と厚み分布を説明するグラフである。It is a graph explaining the evaporation characteristic and thickness distribution at the time of using the crucible of this embodiment. 従来の坩堝を用いた場合の蒸発特性と厚み分布を説明するグラフである。It is a graph explaining the evaporation characteristic at the time of using the conventional crucible and thickness distribution. 従来の真空蒸着装置に用いられている坩堝とその配置を示す図である。It is a figure which shows the crucible used for the conventional vacuum evaporation system, and its arrangement | positioning.
 本発明の真空蒸着装置を適用できるフィルム、例えば高分子フィルムは、特に限定するものではないが、ポリエステル、ポリプロピレン、ポリエチレン、ポリアミド6、ポリアミド66、ポリアミド12、ポリアミド4、ポリ塩化ビニル、ポリ塩化ビニリデンなどからなるフィルムが挙げられる。 The film to which the vacuum deposition apparatus of the present invention can be applied, for example, a polymer film, is not particularly limited, but polyester, polypropylene, polyethylene, polyamide 6, polyamide 66, polyamide 12, polyamide 4, polyvinyl chloride, polyvinylidene chloride The film which consists of these is mentioned.
 本発明でいう仕切り部とは少なくとも2種類の蒸着材料を保持する手段において、個々の蒸着材料が混ざらないように区分する機能を持つ部分をいう。 In the present invention, the partitioning portion refers to a portion having a function of separating at least two kinds of vapor deposition materials so that the individual vapor deposition materials are not mixed.
 また、本発明で使用している仕切方向とは、ある蒸着材料から隣り合う材料に向う方向であり、板で仕切った場合には板の厚み方向となる。 Further, the partition direction used in the present invention is a direction from a certain vapor deposition material to an adjacent material, and when partitioned by a plate, it is the thickness direction of the plate.
 また、仕切方向に垂直方向とは、板で仕切った場合は板の面に沿った方向となる。 Also, the direction perpendicular to the partition direction is the direction along the surface of the plate when partitioned by a plate.
 本発明では、仕切り部に隣接して蒸着材料が充填されている。材料は上面より蒸発していくが、垂直方向のうち、蒸着材料の深さ方向に平行な方向を深さ方向、それに直交する方向を長さ方向とする。 In the present invention, the vapor deposition material is filled adjacent to the partition portion. The material evaporates from the upper surface, and in the vertical direction, the direction parallel to the depth direction of the vapor deposition material is the depth direction, and the direction perpendicular to the depth direction is the length direction.
 以下に本発明の実施形態を、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本実施形態における真空蒸着装置の概略全体構造を示す。この真空蒸着装置では、真空槽6内の巻き出しロール1にセットされたフィルム11が冷却ロール3上を走行し、テンションロール5を通り、巻き取りロール2で巻き取られる。真空槽6内の真空度は、油拡散ポンプ(図示略)等からなる排気装置9により所定の真空度に維持される。真空槽6の底部に配置された材料保持手段の一例である坩堝8は、加熱手段の一例である電子銃4の軸方向に向かってフィルム11の蒸着面と平行を保ちながら低速で水平移動する。電子銃4は、坩堝8に収納された蒸着材料10に対して電子線12を照射する。電子線12により加熱され蒸発した材料の一部は、冷却ロール3上を走行するフィルム11の表面に蒸着される。なお、符号7はフィルム11上に均一で良好な蒸着膜を形成するための遮蔽板であり、符号15は坩堝8を冷却するために冷水などを流通させる冷却管である。 FIG. 1 shows a schematic overall structure of a vacuum deposition apparatus in the present embodiment. In this vacuum vapor deposition apparatus, the film 11 set on the unwinding roll 1 in the vacuum chamber 6 runs on the cooling roll 3, passes through the tension roll 5, and is wound on the winding roll 2. The degree of vacuum in the vacuum chamber 6 is maintained at a predetermined degree of vacuum by an exhaust device 9 including an oil diffusion pump (not shown). A crucible 8, which is an example of a material holding means arranged at the bottom of the vacuum chamber 6, moves horizontally at a low speed while maintaining parallel to the vapor deposition surface of the film 11 in the axial direction of the electron gun 4 which is an example of a heating means. . The electron gun 4 irradiates the electron beam 12 onto the vapor deposition material 10 stored in the crucible 8. A part of the material heated and evaporated by the electron beam 12 is deposited on the surface of the film 11 running on the cooling roll 3. Reference numeral 7 denotes a shielding plate for forming a uniform and good vapor deposition film on the film 11, and reference numeral 15 denotes a cooling pipe through which cold water or the like is circulated in order to cool the crucible 8.
 前記材料保持手段が前記電子銃4から照射される電子線12に対して遠近移動可能になっていると、電子銃4による加熱位置は変化させないで前記材料保持手段が水平移動することにより蒸発により減少した蒸着材料10が補給されることになる。このため材料保持手段内に収納されている蒸着材料10を照射する電子線12の照射条件、例えば電子銃4と蒸着材料10との距離などを可能な限り一定にでき、蒸着材料10を被蒸着材の幅方向に均一かつ長時間安定的に蒸着できる。 When the material holding means is movable relative to the electron beam 12 irradiated from the electron gun 4, the heating position by the electron gun 4 is not changed, and the material holding means moves horizontally to cause evaporation. The reduced deposition material 10 is supplied. For this reason, the irradiation conditions of the electron beam 12 for irradiating the vapor deposition material 10 accommodated in the material holding means, for example, the distance between the electron gun 4 and the vapor deposition material 10 can be made as constant as possible. Evaporation can be performed uniformly and for a long time in the width direction of the material.
 図2に示すように、前記坩堝8内には、前記仕切り部13が配置されている。この仕切り部13は、前記電子銃4から照射される電子線12の入射角度と略同じ角度に傾斜して配置されることが好ましい。 As shown in FIG. 2, the partition portion 13 is arranged in the crucible 8. It is preferable that the partition portion 13 is disposed to be inclined at substantially the same angle as the incident angle of the electron beam 12 irradiated from the electron gun 4.
 このように構成されていると、長時間の連続使用に耐えられるだけでなく、電子線12の入射を妨げることなく、隣り合う各蒸着材料10の極近傍部にまで電子線12を照射でき、蒸着材料10の使用に伴い蒸発消耗して材料面の高さが低くなっていく際にも、仕切り部13の影響を少なくでき、長時間連続蒸着しても、フィルム11の幅方向および走行方向の蒸着膜の厚みを一層均一に安定させることができて都合がよい。 When configured in this way, not only can it withstand continuous use for a long time, but it can irradiate the electron beam 12 to the very vicinity of each adjacent vapor deposition material 10 without disturbing the incidence of the electron beam 12, Even when the vapor deposition material 10 is used to evaporate and the height of the material surface is lowered, the influence of the partition portion 13 can be reduced. It is convenient that the thickness of the deposited film can be more uniformly stabilized.
 図2の符号16は各仕切り部13の角度および間隔を調整して保持する保持部であり、一対の平行な保持部16、16と複数の仕切り部13とで格子が形成され、坩堝8の中に配置されている。そして隣り合う仕切り部13によって蒸着材料10を収容するボックス17が形成されている。中央側の仕切り部13は鉛直方向を向いており、端部側へ行くにつれて仕切り部13と鉛直線とのなす角度が増しており、電子銃4から照射された電子線12が仕切り部13で遮蔽されるのを極力防いで各ボックス17内の蒸着材料10を加熱できるようになっている。なお、蒸着材料10が2種類の場合には、蒸着材料(例えばA)と蒸着材料(例えばB)とを交互に、すなわちA、B、A、B・・・となるようにボックス17に装填する。 Reference numeral 16 in FIG. 2 denotes a holding portion that adjusts and holds the angle and interval of each partition portion 13. A pair of parallel holding portions 16 and 16 and a plurality of partition portions 13 form a lattice. Is placed inside. And the box 17 which accommodates the vapor deposition material 10 by the adjacent partition part 13 is formed. The partition 13 on the center side faces the vertical direction, and the angle formed by the partition 13 and the vertical line increases toward the end, and the electron beam 12 irradiated from the electron gun 4 passes through the partition 13. The vapor deposition material 10 in each box 17 can be heated by preventing the shielding as much as possible. In addition, when there are two kinds of vapor deposition materials 10, the vapor deposition material (for example, A) and the vapor deposition material (for example, B) are alternately loaded into the box 17 so as to be A, B, A, B. To do.
 また、本発明では、仕切り部13の垂直方向の熱伝導率と仕切方向の熱伝導率との比率は2以上であることが必要であり、好ましくは3以上、さらに好ましくは4以上である。仕切り部13の仕切方向の熱伝導率は、10W/m・K以下であることが好ましく、0.5~10W/m・Kであることがより好ましい。仕切方向の熱伝導率が10W/m・K以下であれば、仕切り部13の良好な断熱性が得られるため、仕切り部13を隔てた異なる蒸着材料10の温度をそれぞれの最適温度に制御することが可能となる。 In the present invention, the ratio of the thermal conductivity in the vertical direction of the partition portion 13 to the thermal conductivity in the partition direction needs to be 2 or more, preferably 3 or more, and more preferably 4 or more. The thermal conductivity in the partition direction of the partition portion 13 is preferably 10 W / m · K or less, and more preferably 0.5 to 10 W / m · K. If the thermal conductivity in the partition direction is 10 W / m · K or less, good heat insulating properties of the partition portion 13 can be obtained. Therefore, the temperatures of the different vapor deposition materials 10 across the partition portion 13 are controlled to respective optimum temperatures. It becomes possible.
 一方、仕切り部13の仕切方向に垂直方向の熱伝導率は、20W/m・K以上であることが好ましく、20~50W/m・Kであることがより好ましい。熱伝導率が仕切方向に比べて長さ方向に大きいと熱が長さ方向に、あるいは深さ方向に逃げていき最終的に水冷している坩堝8に熱を逃がすことで仕切り部13自身の損傷を防止することができる。垂直方向の熱伝導率が大きくなりすぎると仕切り部13の温度が極端に下がり蒸発を妨げることになる。 On the other hand, the thermal conductivity in the direction perpendicular to the partition direction of the partition portion 13 is preferably 20 W / m · K or more, and more preferably 20 to 50 W / m · K. When the thermal conductivity is larger in the length direction than in the partition direction, the heat escapes in the length direction or depth direction, and finally the heat is released to the crucible 8 which is water-cooled. Damage can be prevented. If the thermal conductivity in the vertical direction becomes too large, the temperature of the partition portion 13 will be extremely lowered to prevent evaporation.
 仕切り部は、図2の符号13に示すように保持部16を貫通する態様でもよいし、保持部16に設けた溝にはめ込む別の態様でも良い。 The partition part may have an aspect that penetrates the holding part 16 as shown by reference numeral 13 in FIG. 2, or another aspect that fits into a groove provided in the holding part 16.
 本発明の構成によれば、異なる複数の蒸着材料10間は厚みが厚い坩堝の側壁ではなく、薄い仕切り部13で区分けされるため、異なる蒸着材料10間の未蒸着領域を小さくできる。仕切り部13の厚みは、2~10mmが好ましく、5mm前後であることが一層好ましい。仕切り部13の厚みは薄い程好ましいが、2mm未満にまで薄くすると、加熱手段からの加熱による消耗のため使用可能時間が短くなり、かえってコスト高になるので好ましくない。 According to the configuration of the present invention, since the plurality of different vapor deposition materials 10 are divided not by the thick crucible side walls but by the thin partition portion 13, the undeposited regions between the different vapor deposition materials 10 can be reduced. The thickness of the partition 13 is preferably 2 to 10 mm, and more preferably around 5 mm. The thinner the partition portion 13 is, the better. However, if the thickness is less than 2 mm, it is not preferable because the usable time is shortened due to the consumption by heating from the heating means, and the cost is increased.
 仕切り部13はある程度の機械的強度を有し、曲げ強さが100MPa以上であることが好ましく、そうすることで仕切り部13の薄肉化を図ることが可能となり、異なる蒸着材料10間の未蒸発領域を小さくできるため、蒸着の安定化、均一性の向上に一層貢献することができる。 The partition portion 13 has a certain degree of mechanical strength, and preferably has a bending strength of 100 MPa or more, which makes it possible to reduce the thickness of the partition portion 13, and prevent evaporation between different vapor deposition materials 10. Since the area can be reduced, it can further contribute to stabilization of vapor deposition and improvement of uniformity.
 仕切り部13の0~800℃における仕切方向に垂直方向の熱膨張係数は、0.1×10-6 ~1.0×10-6 /℃であることが好ましい。仕切り部13の熱膨張係数がこの範囲にあれば、加熱蒸着において仕切り部13が坩堝8との接触により割れたり欠けたりすることなく、耐久性に富むものとなる。また、坩堝8内の材料を蒸発させるために高温、そして終了後に冷却という過程が繰り返されても、割れや欠けなどの損傷が発生し難いため、蒸着を数十回繰り返すことができ、蒸着コストが低廉なものとなる。 The thermal expansion coefficient in the direction perpendicular to the partition direction at 0 to 800 ° C. of the partition section 13 is preferably 0.1 × 10 −6 to 1.0 × 10 −6 / ° C. If the thermal expansion coefficient of the partition part 13 is in this range, the partition part 13 will not be cracked or chipped by contact with the crucible 8 in the heat vapor deposition, and it will be highly durable. Moreover, even if the process of high temperature to evaporate the material in the crucible 8 and cooling after completion is repeated, damage such as cracking and chipping is unlikely to occur, so that the deposition can be repeated several tens of times. Will be cheaper.
 さらに、隣り合う仕切り部13同士の間隔は10~120mmとすることが好ましい。このようになっていると、蒸着膜の組成比を幅方向に均一にできて都合がよい。仕切り部13同士の間隔を10mm未満とすると、蒸着材料10を装填するボックス17の容積に比べて仕切り部13同士の容積が相対的に大きくなって蒸着材料10の補充頻度が多くなるなど、蒸着効率が低くなって好ましくない。また、仕切り部13同士の間隔が120mmを超えると、異なる蒸着材料10を被蒸着材の幅方向に均一に蒸発させ難くなって好ましくない。 Furthermore, the interval between the adjacent partition portions 13 is preferably 10 to 120 mm. This is convenient because the composition ratio of the deposited film can be made uniform in the width direction. When the interval between the partitioning portions 13 is less than 10 mm, the volume of the partitioning portions 13 is relatively larger than the volume of the box 17 in which the deposition material 10 is loaded, and the replenishment frequency of the deposition material 10 is increased. The efficiency is lowered, which is not preferable. Moreover, when the space | interval of the partition parts 13 exceeds 120 mm, it becomes difficult to evaporate the different vapor deposition material 10 uniformly in the width direction of a vapor deposition material, and is unpreferable.
 前記仕切り部13には炭素を主たる成分とする材料を使用することが好ましい。真空中では、炭素材料は最も高温に耐え、かつ寸法安定性に優れているからである。炭素材料としては、炭素繊維強化炭素材のような炭素系複合材料であることがより好ましい。炭素繊維強化炭素材は、電子線の照射に対して一層破損し難く、耐熱強度が高いので、この部分の冷却を必ずしも要しないからである。 It is preferable to use a material whose main component is carbon for the partition portion 13. This is because, in vacuum, the carbon material can withstand the highest temperature and has excellent dimensional stability. The carbon material is more preferably a carbon-based composite material such as a carbon fiber reinforced carbon material. This is because the carbon fiber reinforced carbon material is not easily damaged by irradiation with an electron beam and has a high heat resistance, so that cooling of this portion is not necessarily required.
 本発明において、仕切り部13の仕切方向に垂直方向の熱伝導率と仕切方向の熱伝導率との比率を2倍以上にするには、長繊維ウェブを厚み方向に積み重ねたものを固め、炭化させて板状にした長繊維織物型炭素繊維強化炭素材を使用することが好ましい。例えば、ポリアクリロニトリル系炭素長繊維織物にフェノール樹脂を含浸させて得たプリプレクを積層した後、ホットプレスを行い、板状の炭素繊維を強化材にしたフェノール樹脂成形物(CFRP)を作り、真空中で1000~2300℃で焼成して、フェノール樹脂の部分を炭化させる。フェノール樹脂の含浸と焼成炭化を繰り返し行うことにより、炭素繊維の回りがカーボンで囲まれた長繊維織物型炭素繊維強化炭素材を得ることができる。 In the present invention, in order to make the ratio of the thermal conductivity in the direction perpendicular to the partition direction of the partition portion 13 and the thermal conductivity in the partition direction more than double, the long fiber webs stacked in the thickness direction are hardened and carbonized. It is preferable to use a long-fiber woven carbon fiber-reinforced carbon material that is made into a plate shape. For example, after a prepreg obtained by impregnating a polyacrylonitrile-based carbon long fiber fabric with a phenol resin is laminated, hot pressing is performed to produce a phenol resin molded product (CFRP) using a plate-like carbon fiber as a reinforcing material, and vacuum In this, it is fired at 1000 to 2300 ° C. to carbonize the phenol resin portion. By repeating the impregnation of the phenol resin and the calcination carbonization, a long fiber woven carbon fiber reinforced carbon material in which the carbon fiber is surrounded by carbon can be obtained.
 本発明では、1枚の長繊維織物型炭素繊維強化炭素材の板のみで仕切り部13を構成してもよいし(図3(a))、2枚のカーボン板を数mmの間隔で平行に設置したものを1つの仕切り部13で構成してもよい(図3(b))。 In the present invention, the partition portion 13 may be composed of only one long fiber woven carbon fiber reinforced carbon material plate (FIG. 3A), and the two carbon plates are parallel to each other at intervals of several mm. You may comprise what was installed in 1 by the one partition part 13 (FIG.3 (b)).
 以下の方法を用いて、仕切り部13の特性を評価した。
(1)熱伝導率
 JIS-A-1412に準じて100℃で測定した値をいう。
(2)曲げ強さ
 JIS-R-7212に準じて測定した値をいう。
The characteristics of the partition part 13 were evaluated using the following method.
(1) Thermal conductivity A value measured at 100 ° C. according to JIS-A-1412.
(2) Bending strength A value measured according to JIS-R-7212.
 フィルム11として、ポリエチレンテレフタレート(PET)フィルムロール(東洋紡(株)製の東洋紡エステル(登録商標)フィルム、E5102、厚み12μm)を用いた。 As the film 11, a polyethylene terephthalate (PET) film roll (Toyobo Ester (registered trademark) film manufactured by Toyobo Co., Ltd., E5102, thickness 12 μm) was used.
 蒸着源として、3~5mm程度の大きさの粒子状の酸化アルミニウム(Al、純度99.5%)と酸化珪素(SiO、純度99.9%)を用い、図1に示した装置で蒸着を行った。これら蒸着材料10を保持する坩堝8の外枠を銅で製作すると共に、仕切り部13を坩堝8内に配置した。坩堝8の底部に外径20mmφの冷却用水冷管15を設けた構造とした。冷却水の流量は略4mである。この仕切り部13は、後述するように、電子銃4から照射される電子線12が各蒸着材料10に入射される角度とほぼ等しい角度に傾けて配置してある。これは、電子線12の入射を妨げることなく隣接する各蒸着材料10間の極近くにまで電子線12を照射できるようにするためである。仕切り部13として10mm厚みの長繊維織物型炭素繊維強化炭素材を使用した。なお、仕切り部の熱伝導率は、仕切方向が5.7W/m・Kであり、仕切り部に垂直方向が27W/m・Kであった。また、仕切り部に垂直方向の曲げ強さは160MPaであった。仕切り部13で確保された各ボックス17には、前記2種類の蒸着材料10を交互に均一に収容した。図2には、本実施例に用いた坩堝8の概略構造を示す。仕切り部13の厚みは5mm、仕切り部13のピッチは、約100mmピッチとした。仕切り部13の傾斜角度は電子線の入射角に合わせ、また坩堝8は電子線12の入射側に近づく方向で、約2mm/minの速度で移動させた。酸化アルミニウムおよび酸化珪素を蒸着した高分子フィルムは、食品、医療品、電子部品など気密性を要求される包装材料やガス遮断材料として広く利用され得る。 As the vapor deposition source, particulate aluminum oxide (Al 2 O 3 , purity 99.5%) having a size of about 3 to 5 mm and silicon oxide (SiO 2 , purity 99.9%) were used, as shown in FIG. Vapor deposition was performed with an apparatus. The outer frame of the crucible 8 holding the vapor deposition material 10 was made of copper, and the partition portion 13 was placed in the crucible 8. A cooling water cooling tube 15 having an outer diameter of 20 mmφ was provided at the bottom of the crucible 8. The flow rate of the cooling water is approximately 4 m 3 . As will be described later, the partition portion 13 is disposed so as to be inclined at an angle substantially equal to the angle at which the electron beam 12 irradiated from the electron gun 4 is incident on each vapor deposition material 10. This is because the electron beam 12 can be irradiated to the very vicinity between the adjacent vapor deposition materials 10 without disturbing the incidence of the electron beam 12. A long-fiber woven carbon fiber reinforced carbon material having a thickness of 10 mm was used as the partition portion 13. In addition, the thermal conductivity of the partition part was 5.7 W / m · K in the partition direction, and 27 W / m · K in the direction perpendicular to the partition part. Moreover, the bending strength in the direction perpendicular to the partition was 160 MPa. The two types of vapor deposition materials 10 were alternately and uniformly accommodated in each box 17 secured by the partition portion 13. In FIG. 2, the schematic structure of the crucible 8 used for the present Example is shown. The thickness of the partition part 13 was 5 mm, and the pitch of the partition part 13 was about 100 mm pitch. The inclination angle of the partition portion 13 was adjusted to the incident angle of the electron beam, and the crucible 8 was moved at a speed of about 2 mm / min in a direction approaching the incident side of the electron beam 12. Polymer films deposited with aluminum oxide and silicon oxide can be widely used as packaging materials and gas barrier materials that require airtightness such as foods, medical products, and electronic parts.
 電子銃4として、出力250kWのものを、フィルム幅方向に平行に配置した坩堝8に対面するように配置した。この電子銃4により、坩堝8内に交互配置された酸化珪素が4ボックス、酸化アルミニウムが5ボックスの計9ボックスの蒸着材料10を蒸着させる仕様とした。この実施例では1台の電子銃4を使用したが、坩堝8に投入する総エネルギー量が1台で確保できない場合や、広幅の高分子フィルムを蒸着する場合などでは、複数の電子銃4を用いて、蒸着領域を分割する方法を採用してもよく、電子銃の設置台数は特に限定されない。この場合、坩堝幅を広くして仕切り部13の数を増すことで対応できる。また、複数台の電子銃からの電子ビームの入射角に対応して仕切り部13を設置することが好ましい。 The electron gun 4 having an output of 250 kW was arranged so as to face the crucible 8 arranged in parallel to the film width direction. The electron gun 4 is configured to deposit the vapor deposition material 10 in a total of 9 boxes of 4 boxes of silicon oxide and 5 boxes of aluminum oxide alternately arranged in the crucible 8. In this embodiment, one electron gun 4 is used. However, when the total amount of energy to be charged into the crucible 8 cannot be secured by one unit, or when a wide polymer film is deposited, a plurality of electron guns 4 are used. The method of dividing the vapor deposition region may be employed, and the number of electron guns installed is not particularly limited. In this case, this can be dealt with by increasing the crucible width and increasing the number of partitions 13. Moreover, it is preferable to install the partition part 13 corresponding to the incident angle of the electron beam from a plurality of electron guns.
 蒸着中の真空槽6内の圧力は、4×10-2 Pa以下を常時維持できるような排気系とした。具体的には、50,000L/秒の油拡散ポンプを真空槽底部に直接接続する構造にした。なお、蒸着した混合膜層の厚みの測定方法は特に限定されないが、テンションロール5の略真上で、かつ高分子フィルム11の幅方向の中央に配置されたオンライン厚み測定装置(図示略)にて連続的に測定すると、連続したデータが得られ利便性が高まって好ましい。 The pressure in the vacuum chamber 6 during vapor deposition was an exhaust system that could always maintain 4 × 10 −2 Pa or less. Specifically, the oil diffusion pump of 50,000 L / sec was directly connected to the bottom of the vacuum chamber. In addition, although the measuring method of the thickness of the vapor-deposited mixed film layer is not particularly limited, an on-line thickness measuring device (not shown) arranged almost directly above the tension roll 5 and in the center in the width direction of the polymer film 11 is used. It is preferable that continuous measurement is performed because continuous data is obtained and convenience is increased.
 各仕切り部13によって区分けされた蒸着材料10から蒸発するガスの分布は、図4のa,bに示すように、真上が最も強く、横に広がるほど強度が低下する分布を示す。この強度分布および形状は、電子線12の強度、電子線12が入射される角度、電子銃4と坩堝8までの距離、蒸発面積などに主に依存する。したがって、薄膜を形成するフィルムの幅方向および走行方向に組成比が同じで、かつ総厚みが均一な膜を形成させるためには、蒸着材料10の配置が最も重要である。今回、実施した蒸着材料10の配置法を図1および2に示す。 As shown in FIGS. 4A and 4B, the distribution of the gas evaporated from the vapor deposition material 10 divided by each partitioning portion 13 is the strongest directly above, and the intensity decreases as it spreads laterally. The intensity distribution and shape mainly depend on the intensity of the electron beam 12, the angle at which the electron beam 12 is incident, the distance between the electron gun 4 and the crucible 8, the evaporation area, and the like. Therefore, in order to form a film having the same composition ratio in the width direction and the running direction of the film forming the thin film and having a uniform total thickness, the arrangement of the vapor deposition material 10 is the most important. The arrangement method of the vapor deposition material 10 implemented this time is shown in FIGS.
 比較例を図6に示す。図6は、従来のように個々の材料を坩堝に入れて横に並べたものである。 A comparative example is shown in FIG. FIG. 6 shows individual materials placed side by side in a crucible as in the prior art.
 図4に、実施例による蒸発特性と膜厚分布の測定結果を示し、図5に、比較例による蒸発特性と膜厚分布の測定結果を示す。図4および5で、aは酸化アルミニウムの膜厚分布、bは酸化珪素の膜厚分布、cは幅方向の混合膜の厚み分布を示す。図4および5では、縦軸に混合蒸着膜の膜厚(各位置での膜厚を最大膜厚で除して、×100したもの)、横軸にフィルム位置を表す。 FIG. 4 shows the measurement results of the evaporation characteristics and film thickness distribution according to the example, and FIG. 5 shows the measurement results of the evaporation characteristics and film thickness distribution according to the comparative example. 4 and 5, a is the film thickness distribution of aluminum oxide, b is the film thickness distribution of silicon oxide, and c is the thickness distribution of the mixed film in the width direction. 4 and 5, the vertical axis represents the film thickness of the mixed vapor deposition film (the film thickness at each position divided by the maximum film thickness, which is x100), and the horizontal axis represents the film position.
 本実施形態による真空蒸着装置ではフィルム幅方向に均一に蒸着されていることが判る。 It can be seen that the vacuum deposition apparatus according to the present embodiment is uniformly deposited in the film width direction.
〔別の実施形態〕
(1)上記実施形態では、蒸着材料保持手段の容器として銅製の坩堝8を示したが、これに限定されず、電子線12などの加熱手段に対して損傷し難い材質のものであれば、他の材料でもよい。そして、容器は蒸着材料10を保持できれば、バスケットのような形状でもよい。
[Another embodiment]
(1) In the above embodiment, the crucible 8 made of copper is shown as the container for the vapor deposition material holding means. However, the invention is not limited to this, and the material is not easily damaged by the heating means such as the electron beam 12. Other materials may be used. The container may have a basket-like shape as long as it can hold the vapor deposition material 10.
(2)上記実施形態では、真空槽としていわゆる1チャンバー式を用いた例を示したが、フィルム等の被蒸着材料を走行する室と蒸着材料10を加熱する室とを異なる減圧状態にして真空蒸着を行う、いわゆる2チャンバー式の装置にも、本発明を適用できる。 (2) In the above embodiment, an example in which a so-called one-chamber system is used as a vacuum tank has been shown. However, the vacuum chamber is set to a vacuum state in which a chamber for traveling a deposition material such as a film and a chamber for heating the deposition material 10 are differently reduced. The present invention can also be applied to a so-called two-chamber apparatus that performs vapor deposition.
(3)上記実施形態では、被蒸着材料の巻き出しロール1および巻き取りロール2を真空槽内に配置した例を示したが、巻き出しロール1および巻き取りロール2を蒸着する真空槽外に配置し、蒸着を高真空槽内で行う連続方式の装置にも適用できる。 (3) In the said embodiment, although the example which has arrange | positioned the unwinding roll 1 and the winding roll 2 of a to-be-deposited material in the vacuum tank was shown, it was outside the vacuum tank which vapor-deposits the unwinding roll 1 and the winding roll 2 It can also be applied to a continuous system in which the vapor deposition is performed in a high vacuum chamber.
(4)上記実施形態では、フィルム状の被蒸着材料として高分子フィルムを例に挙げたが、被蒸着材料としては紙、布などでもよい。また、蒸着材料10として、上記した酸化アルミニウムと酸化珪素以外に、種々の元素、化合物を使用することができ、さらに2種以上の蒸着材料10を用いて2種以上の元素または成分からなる混合膜を形成するようにしてもよい。 (4) In the above embodiment, a polymer film is taken as an example of the film-form deposition material. However, the deposition material may be paper, cloth, or the like. In addition to the above-described aluminum oxide and silicon oxide, various elements and compounds can be used as the vapor deposition material 10, and a mixture composed of two or more elements or components using two or more vapor deposition materials 10. A film may be formed.
 本発明はもとより上記実施形態によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 The present invention is not limited by the above-described embodiments, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. Is included.
 本願は、2012年3月23日に出願された日本国特許出願第2012-068252号に基づく優先権の利益を主張するものである。2012年3月23日に出願された日本国特許出願第2012-068252号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2012-068252 filed on March 23, 2012. The entire contents of Japanese Patent Application No. 2012-068252 filed on March 23, 2012 are incorporated herein by reference.
 本発明の真空蒸着装置は、坩堝内の仕切り部の仕切方向に垂直方向の熱伝導率が仕切方向の熱伝導率に対して2倍以上で、所定の組成および膜厚を有する混合膜を、高度なレベルで長時間連続的に、かつ、安定的に形成させる装置として好ましい。 The vacuum deposition apparatus of the present invention is a mixed film having a predetermined composition and film thickness, in which the thermal conductivity in the direction perpendicular to the partition direction of the partition portion in the crucible is at least twice the thermal conductivity in the partition direction, It is preferable as an apparatus for forming a high level continuously and stably for a long time.
 1 巻き出しロール
 2 巻き取りロール
 3 冷却ロール
 4 電子銃
 5 テンションロール
 6 真空槽
 7 遮蔽板
 8 坩堝
 9 排気装置
 10 蒸着材料
 11 フィルム
 12 電子線
 13 仕切り部
 14 坩堝の側壁部
 15 冷却管
 16 保持部
 17 ボックス
DESCRIPTION OF SYMBOLS 1 Unwinding roll 2 Winding roll 3 Cooling roll 4 Electron gun 5 Tension roll 6 Vacuum tank 7 Shielding plate 8 Crucible 9 Exhaust device 10 Deposition material 11 Film 12 Electron beam 13 Partition part 14 Crucible side wall part 15 Cooling pipe 16 Holding part 17 boxes

Claims (7)

  1.  真空槽内に少なくとも2種類以上の異なる蒸着材料を保持し、かつこれらの蒸着材料を仕分ける仕切り部を備えた材料保持手段と、前記蒸着材料を加熱して加熱蒸発させる加熱手段とを備え、前記真空槽内で走行するフィルム上に無機薄膜を形成可能な真空蒸着装置において、前記仕切り部の仕切方向に垂直方向の熱伝導率が仕切方向の熱伝導率に対して2倍以上であることを特徴とする真空蒸着装置。 A material holding means for holding at least two kinds of different vapor deposition materials in a vacuum chamber and having a partition part for sorting these vapor deposition materials; and a heating means for heating and evaporating the vapor deposition materials, In a vacuum vapor deposition apparatus capable of forming an inorganic thin film on a film traveling in a vacuum chamber, the thermal conductivity in the direction perpendicular to the partition direction of the partition portion is at least twice the thermal conductivity in the partition direction. A vacuum deposition device characterized.
  2.  前記仕切り部の仕切方向の熱伝導率が10W/m・K以下である請求項1に記載の真空蒸着装置。 The vacuum vapor deposition apparatus according to claim 1, wherein the thermal conductivity in the partition direction of the partition portion is 10 W / m · K or less.
  3.  前記仕切り部の曲げ強さが100MPa以上である請求項1または2に記載の真空蒸着装置。 The vacuum vapor deposition apparatus according to claim 1 or 2, wherein the partition portion has a bending strength of 100 MPa or more.
  4.  前記仕切り部が長繊維織物型炭素繊維強化炭素材である請求項1~3のいずれか1項に記載の真空蒸着装置。 The vacuum vapor deposition apparatus according to any one of claims 1 to 3, wherein the partition portion is a long fiber woven carbon fiber reinforced carbon material.
  5.  前記仕切り部が2枚以上の板材料で構成され、少なくとも2枚の板材料の間に空間をあけた構造である請求項1に記載の真空蒸着装置。 The vacuum vapor deposition apparatus according to claim 1, wherein the partition portion is composed of two or more plate materials, and a space is provided between at least two plate materials.
  6.  前記材料保持手段がフィルム走行方向に水平移動する機構を有する請求項1~5のいずれか1項に記載の真空蒸着装置。 The vacuum evaporation apparatus according to any one of claims 1 to 5, wherein the material holding means has a mechanism for moving horizontally in the film running direction.
  7.  前記仕切り部の長尺方向がフィルム走行方向と平行となるように仕切り部が設置されている請求項1~6のいずれか1項に記載の真空蒸着装置。 The vacuum deposition apparatus according to any one of claims 1 to 6, wherein the partition portion is installed so that a longitudinal direction of the partition portion is parallel to a film running direction.
PCT/JP2013/058017 2012-03-23 2013-03-21 Vacuum-deposition apparatus WO2013141283A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012068252A JP5853804B2 (en) 2012-03-23 2012-03-23 Vacuum deposition equipment
JP2012-068252 2012-03-23

Publications (1)

Publication Number Publication Date
WO2013141283A1 true WO2013141283A1 (en) 2013-09-26

Family

ID=49222740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058017 WO2013141283A1 (en) 2012-03-23 2013-03-21 Vacuum-deposition apparatus

Country Status (2)

Country Link
JP (1) JP5853804B2 (en)
WO (1) WO2013141283A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084254A (en) * 2018-11-22 2020-06-04 長州産業株式会社 Vapor deposition device and vapor deposition method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101020945B1 (en) * 2009-12-21 2011-03-09 엘지이노텍 주식회사 Light emitting device, light emitting device package and method for manufacturing the light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096232A (en) * 1998-09-18 2000-04-04 Toyobo Co Ltd Vacuum deposition system
JP2002348659A (en) * 2001-05-23 2002-12-04 Junji Kido Continuous vapor deposition apparatus, vapor deposition apparatus and vapor deposition method
JP2006001232A (en) * 2004-06-21 2006-01-05 Hitachi Metals Ltd Composite having high heat conduction/low heat expansion and manufacturing process of the same
JP2009249201A (en) * 2008-04-02 2009-10-29 Fujikura Ltd Apparatus for producing aluminum nitride single crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096232A (en) * 1998-09-18 2000-04-04 Toyobo Co Ltd Vacuum deposition system
JP2002348659A (en) * 2001-05-23 2002-12-04 Junji Kido Continuous vapor deposition apparatus, vapor deposition apparatus and vapor deposition method
JP2006001232A (en) * 2004-06-21 2006-01-05 Hitachi Metals Ltd Composite having high heat conduction/low heat expansion and manufacturing process of the same
JP2009249201A (en) * 2008-04-02 2009-10-29 Fujikura Ltd Apparatus for producing aluminum nitride single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084254A (en) * 2018-11-22 2020-06-04 長州産業株式会社 Vapor deposition device and vapor deposition method

Also Published As

Publication number Publication date
JP2013199676A (en) 2013-10-03
JP5853804B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
JP4767000B2 (en) Vacuum deposition equipment
US7339139B2 (en) Multi-layered radiant thermal evaporator and method of use
EP2270251B1 (en) Vacuum vapor deposition apparatus
US20130019805A1 (en) Deposition source and deposition apparatus including the same
JP5853804B2 (en) Vacuum deposition equipment
JP6020704B2 (en) Method for producing vapor deposition film using vacuum vapor deposition apparatus
KR20180047087A (en) Inductive Heating Evaporation Deposition Apparatus
KR101239575B1 (en) Apparatus for forming gas barrier and method for forming thereof
JP7298154B6 (en) Manufacturing method of gas barrier film
KR101974005B1 (en) Inductive Heating Evaporation Deposition Apparatus
JP3608415B2 (en) Vapor deposition material holding means and vacuum vapor deposition apparatus
KR20140131916A (en) Method for depositing a lipon layer on a substrate
KR0160067B1 (en) Vapor source heated by resistance for vacuum deposited steel sheet
WO2013146601A1 (en) Vacuum-deposition apparatus
JP5423288B2 (en) Electron absorber and electron beam heating vapor deposition apparatus using the same
JP2000239832A (en) Vacuum deposition device
JP5050650B2 (en) Vacuum deposition method
JP6771887B2 (en) Evaporation source and retractable vacuum deposition equipment
JP2010138469A (en) Vacuum film deposition method and vacuum film deposition apparatus
JP2010037589A (en) Vapor deposition apparatus and vapor deposition method
JP2019178370A (en) Vapor deposition apparatus
JP2016166424A (en) Method of manufacturing vapor-deposited film
JP5311026B2 (en) Winding type electron beam evaporation system
JP3239385B2 (en) Manufacturing method of vapor-deposited film
WO2019150674A1 (en) Production device for magnesium diboride superconductive thin film wire material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764453

Country of ref document: EP

Kind code of ref document: A1