WO2013141053A1 - Illumination device, vehicle headlight, and light-guiding member - Google Patents

Illumination device, vehicle headlight, and light-guiding member Download PDF

Info

Publication number
WO2013141053A1
WO2013141053A1 PCT/JP2013/056579 JP2013056579W WO2013141053A1 WO 2013141053 A1 WO2013141053 A1 WO 2013141053A1 JP 2013056579 W JP2013056579 W JP 2013056579W WO 2013141053 A1 WO2013141053 A1 WO 2013141053A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
guide member
light source
incident
Prior art date
Application number
PCT/JP2013/056579
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 幸司
ジェームス・サックリング
デビッド・モンゴメリー
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013141053A1 publication Critical patent/WO2013141053A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/16Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/236Light guides characterised by the shape of the light guide
    • F21S43/239Light guides characterised by the shape of the light guide plate-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/242Light guides characterised by the emission area
    • F21S43/245Light guides characterised by the emission area emitting light from one or more of its major surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/251Light guides the light guides being used to transmit light from remote light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper

Definitions

  • the present invention relates to a light guide member, a lighting device including the light guide member, and a vehicle headlamp.
  • a semiconductor light emitting device such as a light emitting diode (LED) or a semiconductor laser (LD) is used as an excitation source, and the phosphor is irradiated with excitation light generated from these excitation sources.
  • an illumination device that uses fluorescent light as illumination light.
  • Patent Document 1 discloses that a phosphor is arranged in the vicinity of the focal point of a reflector, and the light emitted from the phosphor excited by the laser light is incident on the projection lens by the reflector.
  • Patent Document 2 discloses a configuration in which a phosphor is arranged at substantially the focal point of a visible light reflecting mirror, and light emitted from the phosphor excited by laser light is projected by the visible light reflecting mirror.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2004-241142 (published on August 26, 2004)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-295319 (published on October 15, 2003)”
  • a light source In order to control light distribution with high accuracy by a light projecting means such as a reflecting mirror, it is preferable to arrange a light source at the focal point of the light projecting means. In particular, when the light projecting means is small, the influence of the deviation of the light source from the focal position on the accuracy of the light distribution control is large.
  • An object of the present invention is to provide a light guide member capable of realizing a lighting device having a high degree of freedom regarding the arrangement of light sources, and the lighting device.
  • an illumination device A first light source; A light guide member having an incident portion for entering the light emitted from the first light source, The light guide member emits the light to the outside in at least a part of the process of propagating the light incident from the incident portion in the inside, The light guide member has a thickness that decreases as the distance from the incident portion increases.
  • the light emitted from the first light source enters from the incident portion of the light guide member and is emitted to the outside at least in part of the propagation process. Since the thickness of the light guide member decreases as the distance from the incident portion increases, the light propagating through the light guide member propagates while being totally reflected while changing the reflection angle.
  • light that has not been totally reflected during the propagation process is emitted from the light guide member to the outside at that time.
  • the leaked light can be projected in a desired direction by adjusting the shape of the light guide member or using a reflective member.
  • the illumination device using the light guide member it is not necessary to strictly define the positional relationship between the incident portion of the light guide member and the first light source, and light from the first light source is incident on the incident portion. That's fine. Therefore, it is possible to realize an illuminating device having a higher degree of freedom than the conventional illuminating device regarding the arrangement of the light sources.
  • the thickness of the light guide member is a distance between the first surface and the second surface of the light guide member, and the first surface is from an incident portion as one end portion. It is a specific surface of the light guide member reaching the other end, and the second surface is a surface facing the first surface.
  • the first and second surfaces may be flat surfaces or curved surfaces.
  • the cross-sectional shape when the light guide member is cut along a plane perpendicular to the main traveling direction of the light emitted from the light guide member includes an annular shape or a partial shape thereof.
  • the shape of the light guide member when the light guide member is viewed from the front along the main light traveling direction includes an annular shape or a partial shape thereof.
  • light is emitted from the light guide member in an annular shape or a partial shape thereof, and an illumination light spot having the same shape as that of a conventional illumination device can be formed at a point away from the device by a predetermined distance.
  • the light guide member is curved.
  • the reflection angle of light propagating while totally reflecting the inside of the light guide member can be changed.
  • the reflection angle can be changed by reducing the thickness of the light guide member as the distance from the incident end increases, but in addition to the adjustment of the thickness, the reflection angle can be reduced by curving the light guide member. It can be changed more effectively.
  • the light guide member has a cup shape or a partial shape thereof,
  • the incident part is preferably formed on the bottom of the cup shape or its partial shape.
  • the light guide member since the light guide member has a cup shape (or a partial shape thereof), it is possible to use a cup-shaped internal space such as disposing another optical system in the cup-shaped internal space.
  • the light guide member has a partial shape of a spheroid as an outer shape.
  • the light guide member has a shape on one side of the spheroid cut by a plane including an intermediate point between the two focal points of the spheroid and perpendicular to the rotation axis of the spheroid. It is preferable to have the outer shape.
  • the light guide member has a shape facing the direction parallel to the rotation axis on the cut surface of the spheroid. Therefore, by selecting the above shape as the shape of the light guide member, light can be projected in a substantially parallel direction.
  • a part of the light guide member other than the incident part functions as a reflecting surface, or a reflecting part having a reflecting surface facing the part of the surface is disposed.
  • a gap is formed between the partial surface and the reflective surface of the reflective portion.
  • a part of the light propagating in the light guide member propagates while being totally reflected. This total reflection is caused by a large difference in refractive index between the inside of the light guide member and the outside of the light guide member.
  • total reflection does not occur at the contact portion, and a part of the light is absorbed by the metal or the like.
  • the lighting device can project stronger light.
  • the light guide member has a reflection surface that reflects light emitted from the second light source.
  • the 2nd light source different from a 1st light source is arrange
  • the light distribution from the second light source can be controlled by the reflecting surface of the light guide member. From the first optical system and the second light source that project the light from the first light source. It is possible to realize a compact illumination device in combination with the second optical system that projects the light.
  • a second light source different from the first light source disposed in a space defined by the light guide member;
  • the light guide member can transmit light emitted from the second light source, and is preferably disposed in a space defined by the reflecting mirror.
  • the 2nd light source different from a 1st light source is arrange
  • a gap is formed between the reflecting surface of the reflecting mirror and at least a part of the light guide member facing the reflecting surface.
  • a part of the light propagating in the light guide member propagates while being totally reflected. This total reflection is caused by a large difference in refractive index between the inside of the light guide member and the outside of the light guide member.
  • total reflection does not occur at the contact portion, and a part of the light is absorbed by the metal or the like.
  • the lighting device can project stronger light.
  • a plurality of the first light sources or light emitting portions guided from the plurality of first light sources are arranged along the incident portion.
  • the amount of light incident on the incident portion can be easily increased, and the amount of illumination light emitted from the emitting portion can be easily increased.
  • the first light source is preferably a light emitting diode or laser element, or a light emitter that emits fluorescence by excitation light.
  • a light emitting diode, a laser element, or a light emitting body that emits light when excited by excitation light can be used as the first light source.
  • a high-luminance illumination device can be realized by using the laser element itself as a first light source or an excitation source for exciting a light emitter.
  • the second light source is preferably a light emitting diode or laser element, or a light emitter that emits fluorescence by excitation light.
  • a high-luminance illumination device can be realized by using a light-emitting diode, a laser element, or the source itself as the second light source, or as an excitation source for exciting the light emitter.
  • a vehicle headlamp provided with the above-described illumination device is also included in the technical scope of the present invention.
  • a second light source which is disposed in a space defined by the light guide member, is different from the first light source, and the light emitted from the second light source is arranged in a passing headlamp. It is preferable to further include a light projecting member that projects light to the outside as light having optical characteristics.
  • the lighting device of the present invention can be realized as a passing headlamp.
  • the light projecting member includes a reflecting mirror, a light projecting lens, a light shielding plate, or a combination thereof.
  • the light projected from the light guide member preferably has the light distribution characteristics of a traveling headlamp.
  • the lighting device of the present invention can be realized as a traveling headlamp.
  • vehicle headlamp of the present invention may be realized as a daytime running light.
  • the light guide member according to the present invention is A light guide member that includes an incident portion that receives light emitted from a light source, and that emits the light to the outside in at least part of a process of propagating light incident from the incident portion in the interior;
  • the light guide member has a thickness that decreases as the distance from the incident portion increases.
  • light that has not been totally reflected during the propagation process is emitted from the light guide member to the outside at that time.
  • the leaked light can be projected in a desired direction by adjusting the shape of the light guide member.
  • the lighting device is as described above.
  • a first light source A light guide member having an incident portion for entering the light emitted from the first light source, The light guide member emits the light to the outside in at least a part of the process of propagating the light incident from the incident portion in the inside,
  • the light guide member has a thickness that decreases as the distance from the incident portion increases.
  • the light guide member according to the present invention is A light guide member that includes an incident portion that receives light emitted from a light source, and that emits the light to the outside in at least part of a process of propagating light incident from the incident portion in the interior;
  • the light guide member has a thickness that decreases as the distance from the incident portion increases.
  • FIG. 1 It is a figure which shows the structure of the illuminating device which is one Embodiment of this invention. It is a figure which shows the shape of the light guide with which the said illuminating device is provided, (a) is a side view, (b) is a perspective view. It is a figure for demonstrating the principle of light guide by the said light guide. It is a figure for demonstrating the principle of the light guide by the light guide which has a reflective film. It is a figure which shows a light projection pattern when light is projected on the screen installed 10m ahead using the said illuminating device, (a) is a front view, (b) is in the AA 'cross section of (a). It is a figure which shows intensity distribution of light.
  • FIG. 1 It is a figure which shows the structure which shields a part of light projection of an illuminating device using a light-shielding plate. It is a figure which shows the light projection pattern of the illuminating device of a structure shown in FIG. It is a figure which shows the modification of the form which irradiates a laser beam to a light emission part. It is sectional drawing which shows the structure of the headlight which is other embodiment of this invention. It is a figure which shows the application
  • FIG. 1 is a diagram showing a configuration of a lighting device 1 according to an embodiment of the present invention.
  • the illumination device 1 includes a laser unit 11, a light emitting unit (first light source) 12, a light guide (light guide member) 13, and a reflective film (reflective unit) 14.
  • the laser unit 11 is an excitation source that excites the light emitting unit 12, and includes a semiconductor laser element 111, a collimating lens 112, and an optical fiber 113, as shown in FIG. Laser light emitted from the semiconductor laser element 111 becomes parallel light by the collimator lens 112, propagates through the optical fiber 113, and is irradiated on the light emitting unit 12.
  • a heat sink 114 is connected to the semiconductor laser element 111 so that heat generated by the emission of the laser light is released through the heat sink 114. Further, the heat sink 114 is connected to the heat radiation fin 115. The heat sink 114 receives the heat generated in the semiconductor laser element 111 and releases it to the outside through the radiation fin 115.
  • thermo conductivity such as metal (for example, aluminum) for the heat sink 114 and the heat radiation fin 115.
  • LED light emitting diode
  • the light emitting unit 12 is a phosphor in which a phosphor is dispersed inside a sealing material, or a phosphor is solidified, and is a light emitter that emits fluorescence upon receiving excitation light from the laser unit 11.
  • the phosphor included in the light emitting unit 12 is, for example, an oxynitride phosphor (for example, sialon phosphor), a nitride phosphor (for example, CASN (CaAlSiN 3 ) phosphor), or a group III-V compound semiconductor nanoparticle fluorescence. It may be a body (for example, indium phosphorus: InP).
  • the fluorescent substance contained in the light emission part 12 is not limited to the above-mentioned thing, Other fluorescent substance may be sufficient.
  • the combination of the laser unit 11 and the light emitting unit 12 can be regarded as one light source device (referred to as illumination light source device).
  • the light emitting unit 12 is a light source in the light projecting system, and generates, for example, white light.
  • An LED for example, a white LED
  • the light guide 13 includes an incident portion 13a on which the light emitted from the light emitting portion 12 is incident and an emitting portion 13b that emits a part of the light incident from the incident portion 13a to the outside.
  • the light guide 13 includes an incident portion 13a on which the light emitted from the light emitting portion 12 is incident and an emitting portion 13b that emits a part of the light incident from the incident portion 13a to the outside.
  • the exit portion 13b is the other end portion with respect to the entrance portion 13a, and light is mainly emitted from the exit portion 13b and the vicinity thereof.
  • the light guide 13 emits the light to the outside in at least a part of the process of propagating the light incident from the incident portion 13a inside, and the light is not emitted only from the emitting portion 13b.
  • the other end with respect to the incident portion 13a is referred to as an emitting portion 13b.
  • the light emitting unit 12 is disposed in the incident unit 13a, and light (illumination light) emitted from the light emitting unit 12 enters the incident unit 13a.
  • Illumination light incident on the incident portion 13a propagates inside the light guide 13, and most of the illumination light travels from the light emitting portion 13b and the vicinity thereof to the outside of the light guide 13 ("light projection direction" shown by a broken line in FIG. ”).
  • the surface (the upper surface 13c and the lower surface 13d) of the light guide 13 located between the incident portion 13a and the emitting portion 13b has translucency. Therefore, a part of the illumination light incident from the incident portion 13a (light that has not been totally reflected) can be emitted to the outside from the side surface of the light guide 13 before reaching the emission portion 13b.
  • the light guide 13 has a length of 60 mm from the end of the incident portion 13a to the end of the exit portion 13b.
  • the light guide 13 has a width of 5 mm in the depth direction as shown in FIG.
  • the thickness of the light guide 13 decreases as it goes from the incident portion 13a to the emission portion 13b (that is, as it moves away from the incidence portion 13a), and the incident portion 13a has a thickness of 0.6 mm. It is almost zero at the tip of the portion 13b. That is, the light guide 13 is tapered. It can also be said that the light guide 13 has a wedge shape.
  • the thickness of the light guide 13 is a distance between the upper surface 13c and the lower surface 13d of the light guide 13.
  • the upper surface 13c is a specific surface of the light guide 13 extending from the incident portion 13a to the emitting portion 13b
  • the lower surface 13d is a surface facing the upper surface 13c.
  • the thickness of the light guide 13 is included in a figure appearing in an arbitrary cross section perpendicular to the main direction in which the illumination light is guided from the incident portion 13a toward the emitting portion 13b inside the light guide 13. The distance between any two opposing sides.
  • the material of the light guide 13 is a transparent material that can transmit and guide light as described above, and is, for example, glass or resin, but is not limited thereto.
  • the refractive index of the light guide 13 is 1.49, for example, it is not necessarily limited to this.
  • the light guide 13 includes a reflective film 14 on the lower surface 13d.
  • the reflection film 14 is a reflection film that reflects light leaking from the light guide 13, and is disposed on a part of the surface (the lower surface 13 d) of the light guide 13 or so as to face the part of the surface. It is arranged in.
  • the reflective film 14 may be an ESR (Enhanced Specular Reflection) film, but is not limited thereto.
  • the width of the gap is not limited to 0.3 mm and may be set as appropriate.
  • FIG. 3 is a diagram for explaining the principle of light guiding by the light guide 13. As shown in FIG. 3, the light emitted from the light emitting unit 12 is repeatedly reflected inside the light guide 13, and in a direction (rightward in FIG. 4) from the incident unit 13 a of the light guide 13 toward the emitting unit 13 b. Propagate.
  • the light guide 13 becomes thinner as it goes from the incident portion 13a to the emission portion 13b as described above, so that the light guided by the light guide 13 is inside the light guide 13. Propagate while changing the reflection angle.
  • Part of the light guided by the light guide 13 is emitted outside the light guide 13 without being reflected.
  • the light emitted to the outside of the light guide 13 is as shown in FIG. 3 with respect to the emission angle ⁇ 1. Refracts at a larger refraction angle ⁇ 2.
  • the light emitted to the outside of the light guide 13 is emitted to the outside of the light guide 13 along the direction from the incident portion 13a of the light guide 13 to the emitting portion 13b.
  • the light collected in the direction from the incident portion 13a to the emitting portion 13b of the light guide 13 and the light projected from the illumination device 1 has a certain directivity.
  • FIG. 4 is a diagram for explaining the principle of light guide by the light guide 13 when the reflective film 14 is present.
  • the light emitted from the light emitting unit 12 is repeatedly reflected inside the light guide 13 as shown in FIG. 3, and the direction of the light emitting unit 13b of the light guide 13 (in FIG. 3) Propagate to the right).
  • the reflective film 14 is provided on the lower surface 13 d of the light guide 13. Therefore, the light emitted from the lower surface 13d of the light guide 13 is reflected by the reflective film 14 toward the upper surface 13c. Thereby, most of the light can be extracted from one surface of the light guide 13.
  • Light from the light emitting unit 12 is confined and guided by total reflection in the light guide 13 due to a large refractive index difference between the material of the light guide 13 (for example, glass or resin) and external air. To do. If the light guide 13 is in contact with some metal or the like, the contacted portion is not totally reflected, and absorption loss occurs due to reflection on the metal surface.
  • the material of the light guide 13 for example, glass or resin
  • FIGS. 5A and 5B are diagrams showing a light projection pattern when light is projected onto the screen 20 installed 10 m ahead using the lighting device 1.
  • FIG. 5A is a front view
  • FIG. It is a figure which shows intensity distribution of the light in -A 'cross section.
  • the light projected from the illumination device 1 draws an approximately elliptical projection pattern 21 on the screen 20.
  • the light projection pattern 21 is projected with a full width at half maximum of about 2 m in the AA ′ cross section.
  • FIG. 6 is a diagram showing a configuration in which a part of the light projection of the illumination device 1 is shielded by using a light shielding plate (light projecting member) 15.
  • a light shielding plate light projecting member
  • FIG. 7 is a diagram showing a light projection pattern when light is projected onto the screen 20 as in the example shown in FIG. 5 by the illumination device 1 having the configuration shown in FIG. As shown in FIG. 7, it can be seen that the light projection pattern 21a has a shape suitable for the light distribution characteristics of the low beam.
  • the illumination device 1 can be realized as a low beam (passing headlight).
  • FIG. 8 is a view showing a modification of the laser unit 11.
  • the light guide 13 has a predetermined width in the depth direction as shown in FIG.
  • the light emitting unit 12 (not shown in FIG. 8) may have a predetermined width in accordance with the depth direction of the light guide 13.
  • the laser unit 11 has a configuration in which a plurality of optical fibers 113 are branched and arranged in the depth direction of the light guide 13, and the light emitting unit 12 having a width in the depth direction of the light guide 13 is irradiated with laser light. May be.
  • the laser light irradiation method using the width of the incident portion 13a of the light guide 13 is not limited to such a branch configuration, but the entire width of the light emitting portion 12 having a width in the depth direction of the light guide 13. Any configuration may be used as long as it can irradiate laser light.
  • the illumination device 1 performs the light distribution control of the illumination light using the light guide 13 (and the reflection film 14). Therefore, it is not necessary to strictly define the positional relationship between the incident portion 13 a of the light guide 13 and the light emitting portion 12, and light from the light emitting portion 12 may be incident on the light guide 13. Therefore, a lighting device having a high degree of freedom with respect to the arrangement of the light sources can be realized.
  • FIG. 9 is a cross-sectional view showing a configuration of a headlight (vehicle headlamp) 200 according to another embodiment of the present invention.
  • the headlight 200 includes a laser unit 11, a light emitting unit (first light source) 202, a light guide (light guide member) 203, and an elliptical mirror (reflecting unit) 204.
  • FIG. 10 is a diagram illustrating the application position of the light emitting unit 202 in the light guide 203.
  • FIG. 10A is a cross-sectional view when the light guide 203 is cut along a plane including its central axis (indicated by Y).
  • (B) is a view of the light guide 203 as seen from the y direction.
  • the light guide 203 has a cup shape, and has a bottom opening 203a having a radius of 5 mm and a depth of 10 mm at the bottom of the cup shape.
  • the light emitting unit 202 is applied to the inner wall of the bottom opening 203a.
  • coated it is not necessarily limited to the form in which the light emission part 202 is apply
  • the light emitting unit 202 includes a phosphor similarly to the light emitting unit 12, and emits fluorescence upon receiving excitation light from the laser unit 11.
  • the phosphor included in the light emitting unit 202 may be a phosphor that can be included in the light emitting unit 12 as described above.
  • FIG. 11 is a diagram illustrating an example of a form (referred to as a light emission form) in which illumination light is incident on the bottom opening 203a.
  • the light emitting unit 202 is caused to emit light by irradiating the light emitting unit 202 with laser light emitted from the laser unit 11, and this fluorescence is used as illumination light.
  • the laser light emitted from the laser unit 11 propagates through the plurality of optical fibers 113 and is irradiated to the light emitting unit 202.
  • the light emitted from the light emitting unit 202 enters the light guide 203 from the bottom opening 203 a and is guided by the light guide 203.
  • the method of irradiating the light emitting unit 202 with the laser light is not limited to the configuration using the optical fiber 113, and for example, an optical element such as an optical waveguide, a lens, or a prism may be used.
  • FIG. 12 is a diagram showing another light emission mode.
  • the LED 11 a is disposed on the light source table 210.
  • the light source base 210 on which the LEDs 11 a are disposed is disposed so as to face the light emitting unit 202 disposed on the bottom opening 203 a of the light guide 203. That is, the light emitted from the LED 11 a is configured to enter the light emitting unit 202.
  • the light emitting unit 202 is excited by the light emitted from the LED 11a and emits fluorescence.
  • FIG. 13 is a diagram showing another light emission mode. Unlike the configuration shown in FIG. 11, the light emitting unit 202 is not disposed in the bottom opening 203 a, and the laser light emitted from the optical fiber 113 is directly incident on the light guide 203.
  • the laser light emitted from the optical fiber 113 may be white light (RGB laser light) that is a mixture of red, green, and blue, but is not limited thereto.
  • FIG. 14 is a diagram showing another light emission mode.
  • the LED 11R is an LED that emits red light.
  • the LED 11G is an LED that emits green light.
  • the LED 11B is an LED that emits blue light.
  • the LED 11R, LED 11G, and LED 11B are arranged on the light source table 210.
  • the LEDs are preferably arranged alternately, but are not limited to the arrangement, and may be appropriately adjusted.
  • the light emitted from the LED 11R, LED 11G, and LED 11B becomes white light by being mixed in color.
  • the light emitting unit 202 is not provided, and light emitted from the LEDs 11 ⁇ / b> R, 11 ⁇ / b> G, and 11 ⁇ / b> B is directly incident on the light guide 203.
  • the colors emitted by the LEDs arranged in the bottom opening 203a are not limited to red, green and blue, but may be other colors. A plurality of colors may be mixed to generate a color other than white. Further, the light source disposed in the bottom opening 203a is not limited to the LED, and may be another type of light source.
  • the light guide 203 is disposed in a space defined by the elliptical mirror 204, and has a cup shape corresponding to the curved surface shape of the reflection surface of the elliptical mirror 204. More specifically, the light guide 203 includes at least a part of a curved surface formed by rotating the figure about the axis of symmetry of the figure (for example, a circle, an ellipse, or a parabola) and is closed. It has a circular opening. In the present embodiment, the light guide 203 has a spheroidal curved surface.
  • the light guide 203 has a shape on one side of the spheroid 220 shown in FIG. 15 cut by a cutting plane 221 as an outer shape.
  • the cutting plane 221 is a plane that is perpendicular to the rotation axis of the spheroid 220 and includes a midpoint between the two focal points of the spheroid 220.
  • the cross-sectional shape when the light guide 203 is cut along a plane perpendicular to the main traveling direction of the light emitted from the light guide 203 includes an annular shape or a partial shape thereof.
  • the light guide 203 has, for example, a depth and a radius of 40 mm.
  • the thickness of the light guide 203 decreases as the distance from the bottom opening 203a increases (as the light exit 203b approaches).
  • the thickness of the light guide 203 is a distance between the inner side surface 203c and the outer side surface 203d shown in FIG.
  • the inner side surface 203c is a cup-shaped inner surface of the light guide 203.
  • the outer side surface 203d is a surface facing the inner side surface 203c, and is a cup-shaped outer surface of the light guide 203.
  • the light guide 203 guides the light emitted from the light emitting unit 202 and projects it in the “light projecting direction” indicated by the broken line in FIG.
  • the light guide 203 have the above-mentioned spheroid surface, when the central axis Y (see FIG. 10A) is horizontal, the light projecting direction shown in FIG. 9 is approximately parallel to the horizontal direction. become.
  • An arbitrary shape can be selected as the shape of the light guide 203, but it is a part of the spheroid, particularly as described above, and includes the midpoint between the two focal points of the spheroid.
  • the light guide 203 has a shape facing the direction parallel to the rotation axis on the cut surface. Therefore, selecting a spheroid as the shape of the light guide 203 is a preferable configuration for projecting light in a substantially parallel direction.
  • the light guide 203 is the same as the light guide 13 in that the light guide 203 guides light while reflecting the light inside, but unlike the light guide 13, it has a curved shape. Thereby, the light emitted from the light emitting unit 202 repeatedly propagates reflection while changing the angle corresponding to the curved shape of the light guide 203 inside the light guide 203.
  • the bottom opening 203 a is an illumination light incident portion in the light guide 203.
  • the light incident from the bottom opening 203a is mainly emitted from the emission part 203b which is the other end part (that is, the termination part) of the light propagation path and its vicinity.
  • the emission part 203 b is a cup-shaped opening of the light guide 203.
  • the light guide 203 emits the light to the outside in at least a part of the process of propagating the light incident from the bottom opening 203a therein, and the light is not emitted only from the emission part 203b.
  • the cup-shaped opening is referred to as the emitting portion 203b.
  • the material of the light guide 203 may be the same as that of the light guide 13.
  • the elliptical mirror 204 is a reflecting mirror that reflects light that propagates inside the light guide 203 when the light leaks from the outer surface 203d of the light guide 203 during the propagation process.
  • a surface of the elliptical mirror 204 facing the outer surface 203d is a reflecting surface (for example, an aluminum film).
  • the material of the elliptical mirror 204 may be aluminum, for example, but is not limited thereto.
  • FIG. 15 is a diagram showing the shape of the elliptical mirror 204.
  • the elliptical mirror 204 has a cup shape. More specifically, similarly to the light guide 203, the elliptical mirror 204 has a shape on one side of the spheroid 220 cut by the cutting plane 221 as shown in FIG.
  • the shape of the elliptical mirror 204 corresponds to the shape of the light guide 203, and the shape of the reflector provided in the headlight 200 may be designed according to the shape of the light guide 203.
  • the reflecting mirror may also have a substantially similar parabolic curved surface.
  • this gap There is a gap between the light guide 203 and the elliptical mirror 204, and this gap has an interval of 0.3 mm, for example.
  • the reason why it is preferable to form such a gap is the same as the reason described in the first embodiment.
  • the outer surface 203d of the light guide 203 may be coated with a reflecting film having a reflecting function. In this configuration, it is possible to prevent light from leaking from the outer surface 203 d of the light guide 203. However, it is preferable not to provide the reflective film in the emitting portion 203b and the vicinity thereof.
  • FIG. 16 is a diagram showing the simulation result of the light projection intensity by the headlight 200, (a) is a diagram showing the light projection intensity when the light guide 203 is viewed from the front, and (b) is the headlight 200. It is a figure which shows angle distribution of the light projection intensity
  • the light projected from the headlight 200 is emitted from the emission portion 203b in an annular shape corresponding to the shape of the emission portion 203b (opening portion) of the light guide 203, as shown in FIG.
  • the light projected from the headlight 200 draws a concentric projection spot at a point 25 m away from the headlight 200 in the projection direction.
  • the angular distribution of the light projection intensity at this time is highest at 0 ° (that is, on the extension line of the rotation axis of the spheroid forming the light guide 203), and is about ⁇ 1-2. Nearly half the value at °, and the projection intensity becomes almost zero when it exceeds about ⁇ 10 °. That is, it can be said that the headlight 200 is a light projecting device with high directivity.
  • the headlight 200 having such a light projection intensity is suitable, for example, as a high beam (traveling headlamp) for a vehicle headlamp.
  • FIG. 17 is a diagram illustrating a configuration in which an emblem 230 is disposed in the opening (emission portion 203 b) of the light guide 203.
  • an emblem 230 slightly smaller than the opening is formed at or near the opening of the light guide 203. Even if there is such an object (lid), the illumination light projection is not affected.
  • the object placed in the opening of the light guide 203 is an emblem here, but the object is not limited to this.
  • it may be a cap for protecting the laser unit 11).
  • a design value not found in conventional headlights can be provided.
  • the headlight 200 performs light distribution control of illumination light using the light guide 203 (and the elliptical mirror 204). Therefore, it is not necessary to strictly define the positional relationship between the bottom opening 203a of the light guide 203 and the illumination light source device, and light from the illumination light source device may be incident on the light guide 203. Therefore, a headlight having a high degree of freedom regarding the arrangement of the light sources can be realized.
  • a light projection spot having the same shape as that of the conventional lighting device can be formed at a predetermined distance from the headlight 200.
  • the light guide 203 In addition to the light guide 203 becoming thinner as it goes from the bottom opening 203a to the emission portion 203b, the light guide 203 is curved so that light is totally reflected inside the light guide 203. When propagating, the reflection angle can be changed more effectively.
  • an unprecedented headlight that combines the function of the headlight 200 itself and the function of the object can be realized.
  • FIG. 18 is a diagram showing a configuration of a headlight (vehicle headlamp) 300 according to another embodiment of the present invention.
  • the headlight 300 includes a high beam LED (first light source) 301, a low beam LED (second light source) 302, a light guide (light guide unit) 303, and an elliptical mirror (reflection unit) 304.
  • the high-beam white LED 301 is a light source that emits high-beam illumination light, and guides the emitted illumination light by the light guide 303. Release.
  • the projection of the high beam projection 2 by the headlight 300 is the same as the projection by the headlight 200 shown in FIG.
  • the white LED 301 for high beam is arranged in a bottom opening 303 a formed near the top (bottom) of the light guide 303.
  • the bottom opening 303a is an opening formed by an end near the top of the light guide 303 and the surface of the metal base 307, and is, for example, a semicircle.
  • the low-beam white LED 302 is a light source that emits low-beam illumination light.
  • the emitted illumination light is reflected by the elliptical mirror 304 and refracted by the projection lens 305. As shown in FIG. The light is emitted from the projection lens 305 in a direction lower than the light projection 2.
  • the low-beam white LED 302 may be disposed at a focal point close to the high-beam white LED 301 (a focal point closer to the apex of the elliptical mirror 304 (referred to as a first focal point)). preferable.
  • the light emitted from the low-beam white LED 302 is reflected by the elliptical mirror 304 and condensed on the other focal point (referred to as a second focal point) of the elliptical mirror 304.
  • the light guide 303 is a light guide unit having the same function as the light guide 203 shown in FIG. 9, and the light is emitted to the outside in at least a part of the process of propagating the light emitted from the high-beam white LED 301 inside. discharge.
  • the light guide 303 has only the shape of the upper half of the light guide 203.
  • the light guide 303 has a curved surface (curved surface of a rotating body) formed by rotating the figure about the axis of symmetry of the figure (for example, a circle, an ellipse, or a parabola) as a rotation axis on a plane including the rotation axis. It has at least a part of a partial curved surface obtained by cutting. Moreover, it is preferable that the light guide 303 has the above-mentioned spheroid curved surface. With this configuration, when the metal base 307 is parallel to the horizontal direction, the direction of the high beam projection 2 is parallel to the horizontal direction. become.
  • the light guide 303 is disposed in a space defined by the elliptical mirror 304 and transmits light emitted from the low-beam white LED 302. Therefore, the light guide 303 does not significantly affect the light distribution control of the low beam illumination light by the elliptical mirror 304.
  • the material of the light guide 303 may be the same as the material of the light guide 203.
  • the high-beam white LED 301 is disposed in the bottom opening 303 a, and the bottom opening 303 a is an incident portion that causes illumination light to enter the light guide 303.
  • the light incident from the bottom opening 303a is mainly emitted from the emission part 303b which is the other end part (that is, the terminal part) of the light propagation path and its vicinity.
  • the emission part 303 b is a cup-shaped opening of the light guide 303.
  • the light incident from the bottom opening 303a is not emitted only from the emitting part 203b, but for convenience of explanation, the cup-shaped opening is referred to as the emitting part 303b.
  • the elliptical mirror 304 reflects the low-beam illumination light emitted from the low-beam white LED 302, guides the illumination light to the focal point of the projection lens 305, and reflects the high-beam illumination light leaked from the light guide 303.
  • the optical member projects light in a predetermined direction.
  • the surface of the elliptical mirror 304 facing the light guide 303 is a reflecting surface.
  • the material of the elliptical mirror 304 may be the same as that of the elliptical mirror 204.
  • the elliptical mirror 304 has only the shape of the upper half of the elliptical mirror 204. That is, the elliptical mirror 304 has at least a part of a partial curved surface obtained by cutting the curved surface of the rotating body along a plane including the rotation axis.
  • the shape of the reflecting mirror included in the headlight 300 may be designed in consideration of the shape of the light guide 303 and the light projection characteristics of the low-beam white LED 302, and the reflecting mirror is not limited to an elliptical mirror. Further, the shape of the light guide 303 may be designed so as to correspond to the shape of the reflecting mirror.
  • a reflection film having a reflection function may be coated on the outer surface 303d of the light guide 303. In this configuration, light can be prevented from leaking from the outer surface 303 d of the light guide 303. However, it is preferable not to provide the reflective film in the emission part 303b and the vicinity thereof.
  • the light distribution of the low-beam illumination light emitted from the low-beam white LED 302 can be controlled by the reflective film formed on the outer surface 303 d of the light guide 303.
  • the projection lens 305 is a light projecting member that projects illumination light for low beam in a predetermined direction, and is arranged so that the focal point of the projection lens 305 is located at the second focal point of the elliptical mirror 304.
  • the light emitted from the low-beam white LED 302 is reflected by the elliptical mirror 304, collected at the second focal point of the elliptical mirror 304, and then refracted and projected by the projection lens 305.
  • the emitting portion 303b of the light guide 303 is disposed outside the projection lens 305.
  • the radius of the projection lens 305 is designed to be smaller than the radius of the opening (the emission part 303b) of the light guide 303.
  • the projection lens 305 does not affect the projection of the high beam illumination light.
  • the light shielding plate 306 is a light shielding plate for realizing a light distribution characteristic (light projection pattern) suitable for the low beam by shielding a part of the illumination light for the low beam.
  • the light shielding plate 306 is disposed between the elliptical mirror 304 and the projection lens 305.
  • the metal base 307 is a substrate that supports the white LED 301 for high beam, the white LED 302 for low beam, the light guide 303, and the elliptical mirror 304, and the material thereof is a metal such as aluminum.
  • the metal base 307 By forming the metal base 307 with a material having high thermal conductivity, it is possible to dissipate heat from the low-beam white LED 302. If such an effect is not expected, the material of the metal base 307 is not particularly limited.
  • FIG. 19 is a diagram showing a light projection pattern when light is projected onto a screen installed 25 m ahead using the headlight 300, and (a) is a light projection when only the low-beam white LED 302 is turned on. It is a figure which shows a pattern, (b) is a figure which shows the light projection pattern at the time of lighting white LED301 for high beams, and white LED302 for low beams.
  • a light projection pattern 321L is a light projection pattern when only the low-beam white LED 302 is turned on.
  • the light projection pattern 321H is a light projection pattern when only the high-beam white LED 301 is turned on.
  • the optical system (particularly, the light guide 303, the elliptical mirror 304, and the projection lens 305) related to the projection of each projection pattern, both when the projection pattern 321L and the projection pattern 321H are projected. Can obtain desired light projecting characteristics without interfering with each other.
  • the headlight 300 is It can be used as DRL (Daytime Running Lamps).
  • the low-beam white LED 302 is disposed in the internal space of the light guide 303 that projects high-beam illumination light.
  • the light emitted from the low-beam white LED 302 is transmitted through the light guide 303, reflected by the elliptical mirror 304, and then projected to the outside by the projection lens 305.
  • the present invention can be used as various lighting devices such as a vehicle headlamp, a lighting device for a moving object other than a vehicle, a search light, and a projector.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Provided are: a light-guiding member capable of facilitating an illumination device having a highly flexible arrangement of a light source; and said illumination device. The illumination device (1) comprises: a laser unit (11) and a light-emitting unit (12); and a light guide (13) having an incident section (13a) to which the light emitted from the light-emitting unit (12) is incident. The light guide (13) emits the light incident from the incident section (13a) to the outside, during at least part of the process in which said light is propagated therein. The thickness of the light guide (13) decreases as the distance from the incident section (13a) increases.

Description

照明装置、車両用前照灯および導光部材Lighting device, vehicle headlamp and light guide member
 本発明は、導光部材、当該導光部材を備える照明装置および車両用前照灯に関する。 The present invention relates to a light guide member, a lighting device including the light guide member, and a vehicle headlamp.
 近年、励起源として発光ダイオード(LED;Light Emitting Diode)や半導体レーザ(LD;Laser Diode)等の半導体発光素子を用い、これらの励起源から生じた励起光を
、蛍光体に照射することによって発生する蛍光を照明光として用いる照明装置が提案されている。
In recent years, a semiconductor light emitting device such as a light emitting diode (LED) or a semiconductor laser (LD) is used as an excitation source, and the phosphor is irradiated with excitation light generated from these excitation sources. There has been proposed an illumination device that uses fluorescent light as illumination light.
 このような照明装置の一例として、特許文献1には、リフレクタの焦点の近傍に蛍光体を配置し、レーザ光により励起された蛍光体の発光を、リフレクタによって投影レンズに入射させ、投影レンズにより投光する構成が開示されている。また、特許文献2には、可視光反射鏡のほぼ焦点に蛍光体を配置し、レーザ光により励起された蛍光体の発光を、可視光反射鏡により投光する構成が開示されている。 As an example of such an illuminating device, Patent Document 1 discloses that a phosphor is arranged in the vicinity of the focal point of a reflector, and the light emitted from the phosphor excited by the laser light is incident on the projection lens by the reflector. A configuration for projecting light is disclosed. Patent Document 2 discloses a configuration in which a phosphor is arranged at substantially the focal point of a visible light reflecting mirror, and light emitted from the phosphor excited by laser light is projected by the visible light reflecting mirror.
日本国特許公報「特開2004-241142号公報(2004年8月26日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2004-241142 (published on August 26, 2004)” 日本国特許公報「特開2003-295319号公報(2003年10月15日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-295319 (published on October 15, 2003)”
 反射鏡といった投光手段により精度良く配光制御するためには、投光手段の焦点に光源を配置することが好ましい。特に、投光手段が小さい場合には、焦点位置からの光源のずれが配光制御の精度に与える影響が大きい。 In order to control light distribution with high accuracy by a light projecting means such as a reflecting mirror, it is preferable to arrange a light source at the focal point of the light projecting means. In particular, when the light projecting means is small, the influence of the deviation of the light source from the focal position on the accuracy of the light distribution control is large.
 本発明の目的は、光源の配置に関して自由度の高い照明装置を実現できる導光部材および当該照明装置を提供することにある。 An object of the present invention is to provide a light guide member capable of realizing a lighting device having a high degree of freedom regarding the arrangement of light sources, and the lighting device.
 本発明に係る照明装置は、上記の課題を解決するために、
 第1の光源と、
 上記第1の光源から出射された光を入射する入射部を有する導光部材とを備え、
 上記導光部材は、上記入射部から入射した光をその内部において伝搬する過程の少なくとも一部において当該光を外部へ放出するものであり、
 上記導光部材の厚さは、上記入射部から遠ざかるにつれて小さくなっていることを特徴としている。
In order to solve the above-described problem, an illumination device according to the present invention
A first light source;
A light guide member having an incident portion for entering the light emitted from the first light source,
The light guide member emits the light to the outside in at least a part of the process of propagating the light incident from the incident portion in the inside,
The light guide member has a thickness that decreases as the distance from the incident portion increases.
 上記の構成により、第1の光源から出射された光は、導光部材の入射部から入射し、伝搬過程の少なくとも一部において外部へ放出される。導光部材の厚さは、入射部から遠ざかるにつれて小さくなっているため、導光部材の内部を伝搬する光は、その内部で反射角度を変えながら全反射しつつ伝搬する。 With the above configuration, the light emitted from the first light source enters from the incident portion of the light guide member and is emitted to the outside at least in part of the propagation process. Since the thickness of the light guide member decreases as the distance from the incident portion increases, the light propagating through the light guide member propagates while being totally reflected while changing the reflection angle.
 一方、伝搬過程の途中で全反射しなかった光は、その時点で導光部材から外部へ出射する。このように漏れた光も、導光部材の形状を調整することや、反射部材を用いることなどによって、所望の方向へ投光することが可能である。 On the other hand, light that has not been totally reflected during the propagation process is emitted from the light guide member to the outside at that time. The leaked light can be projected in a desired direction by adjusting the shape of the light guide member or using a reflective member.
 また、上記導光部材を用いる上記照明装置では、導光部材の入射部と第1の光源との位置関係を厳密に規定する必要はなく、第1の光源からの光が入射部に入射すればよい。それゆえ、光源の配置に関して、従来の照明装置よりも自由度の高い照明装置を実現できる。 In the illumination device using the light guide member, it is not necessary to strictly define the positional relationship between the incident portion of the light guide member and the first light source, and light from the first light source is incident on the incident portion. That's fine. Therefore, it is possible to realize an illuminating device having a higher degree of freedom than the conventional illuminating device regarding the arrangement of the light sources.
 なお、上記導光部材の厚さとは、導光部材が有する第1の面と第2の面との間の距離であり、上記第1の面とは、一方の端部としての入射部から他方の端部へと至る導光部材の特定の面であり、上記第2の面とは、当該第1の面と対向する面である。上記第1および第2の面は、平面であってもよく、曲面であってもよい。 The thickness of the light guide member is a distance between the first surface and the second surface of the light guide member, and the first surface is from an incident portion as one end portion. It is a specific surface of the light guide member reaching the other end, and the second surface is a surface facing the first surface. The first and second surfaces may be flat surfaces or curved surfaces.
 また、上記導光部材を、当該導光部材から出射される光の主たる進行方向に対して垂直な平面で切断したときの断面形状は、環状またはその部分形状を含んでいることが好ましい。 Further, it is preferable that the cross-sectional shape when the light guide member is cut along a plane perpendicular to the main traveling direction of the light emitted from the light guide member includes an annular shape or a partial shape thereof.
 上記の構成によれば、光の主たる進行方向に沿って導光部材を真正面から見た場合の導光部材の形状には、環状またはその部分形状が含まれている。この構成により、導光部材から環状またはその部分形状で光が放出され、自装置から所定の距離離れた地点において、従来の照明装置と同様の形状の照明光スポットを形成できる。 According to the above configuration, the shape of the light guide member when the light guide member is viewed from the front along the main light traveling direction includes an annular shape or a partial shape thereof. With this configuration, light is emitted from the light guide member in an annular shape or a partial shape thereof, and an illumination light spot having the same shape as that of a conventional illumination device can be formed at a point away from the device by a predetermined distance.
 また、上記導光部材の少なくとも一部は、湾曲していることが好ましい。 Further, it is preferable that at least a part of the light guide member is curved.
 上記の構成によれば、上記導光部材の少なくとも一部が湾曲していることにより、導光部材の内部を全反射しつつ伝搬する光の反射角度を変えることができる。導光部材の厚さを、入射端部から遠ざかるにつれて小さくすることによって、上記反射角度を変えることができるが、上記厚さの調整に加えて導光部材を湾曲させることにより、上記反射角度をより効果的に変化させることができる。 According to the above configuration, since at least a part of the light guide member is curved, the reflection angle of light propagating while totally reflecting the inside of the light guide member can be changed. The reflection angle can be changed by reducing the thickness of the light guide member as the distance from the incident end increases, but in addition to the adjustment of the thickness, the reflection angle can be reduced by curving the light guide member. It can be changed more effectively.
 また、上記導光部材は、カップ形状またはその部分形状を有しており、
 上記入射部は、上記カップ形状またはその部分形状の底部に形成されていることが好ましい。
Further, the light guide member has a cup shape or a partial shape thereof,
The incident part is preferably formed on the bottom of the cup shape or its partial shape.
 上記の構成によれば、導光部材がカップ形状(またはその部分形状)であることにより、カップ形状の内部の空間に別の光学系を配置するなど、カップ形状の内部の空間を利用できる。 According to the above configuration, since the light guide member has a cup shape (or a partial shape thereof), it is possible to use a cup-shaped internal space such as disposing another optical system in the cup-shaped internal space.
 また、上記導光部材は、回転楕円体の一部の形状を外形として有していることが好ましい。 Moreover, it is preferable that the light guide member has a partial shape of a spheroid as an outer shape.
 また、上記導光部材は、上記回転楕円体の2つの焦点の中間点を含む平面であって上記回転楕円体の回転軸に垂直な平面で上記回転楕円体を切断したうちの片側の形状を外形として有していることが好ましい。 The light guide member has a shape on one side of the spheroid cut by a plane including an intermediate point between the two focal points of the spheroid and perpendicular to the rotation axis of the spheroid. It is preferable to have the outer shape.
 上記の構成によれば、回転楕円体の切断面において導光部材は、回転軸と平行な方向を向く形状となる。よって、導光部材の形状として、上記形状を選択することにより、おおよそ平行な方向へ投光できる。 According to the above configuration, the light guide member has a shape facing the direction parallel to the rotation axis on the cut surface of the spheroid. Therefore, by selecting the above shape as the shape of the light guide member, light can be projected in a substantially parallel direction.
 また、上記導光部材の、上記入射部以外の一部の面が反射面として機能するか、または、上記一部の面と対向する反射面を有する反射部が配されていることが好ましい。 Further, it is preferable that a part of the light guide member other than the incident part functions as a reflecting surface, or a reflecting part having a reflecting surface facing the part of the surface is disposed.
 上記の構成により、導光部材の内部を伝搬する過程の途中で当該導光部材から漏れた光を、反射面により反射させることができ、上記漏れた光の配光制御を行うことが可能となる。 With the above configuration, light leaked from the light guide member during the process of propagating through the light guide member can be reflected by the reflecting surface, and light distribution control of the leaked light can be performed. Become.
 また、上記一部の面と上記反射部の上記反射面との間には隙間が形成されていることが好ましい。 Further, it is preferable that a gap is formed between the partial surface and the reflective surface of the reflective portion.
 導光部材の内部を伝搬する光の一部は、全反射しつつ伝搬する。この全反射は、導光部材内部と導光部材外部との間の大きな屈折率の差により起きている。しかしここで、導光部材に金属等が接していると、その接触部分において、全反射が起こらず、金属等により光の一部が吸収される。 A part of the light propagating in the light guide member propagates while being totally reflected. This total reflection is caused by a large difference in refractive index between the inside of the light guide member and the outside of the light guide member. However, here, when a metal or the like is in contact with the light guide member, total reflection does not occur at the contact portion, and a part of the light is absorbed by the metal or the like.
 上記の構成によれば、導光部材に反射部の反射面が接していないため、当該反射面による吸収損失が生じ難くなり、光の伝搬効率が高くなる。よって、照明装置は、より強い光を投光することが可能となる。 According to the above configuration, since the reflecting surface of the reflecting portion is not in contact with the light guide member, absorption loss due to the reflecting surface is less likely to occur, and light propagation efficiency is increased. Therefore, the lighting device can project stronger light.
 また、上記導光部材によって規定される空間内に配置された、上記第1の光源とは異なる第2の光源をさらに備え、
 上記導光部材は、上記第2の光源から出射された光を反射する反射面を有していることが好ましい。
And a second light source different from the first light source disposed in the space defined by the light guide member,
It is preferable that the light guide member has a reflection surface that reflects light emitted from the second light source.
 上記の構成によれば、第1の光源とは異なる第2の光源が導光部材によって規定される空間内に配置されており、第2の光源から出射された光は、導光部材が有する反射面によって反射される。 According to said structure, the 2nd light source different from a 1st light source is arrange | positioned in the space prescribed | regulated by the light guide member, and the light guide member has the light radiate | emitted from the 2nd light source. Reflected by the reflecting surface.
 それゆえ、導光部材が有する反射面によって、第2の光源からの光を配光制御することができ、第1の光源からの光を投光する第1の光学系と第2の光源からの光を投光する第2の光学系とを組み合わせたコンパクトな照明装置を実現できる。 Therefore, the light distribution from the second light source can be controlled by the reflecting surface of the light guide member. From the first optical system and the second light source that project the light from the first light source. It is possible to realize a compact illumination device in combination with the second optical system that projects the light.
 また、上記導光部材によって規定される空間内に配置された、上記第1の光源とは異なる第2の光源と、
 上記第2の光源から出射された光を反射する反射鏡とをさらに備え、
 上記導光部材は、上記第2の光源から出射された光を透過させることができ、上記反射鏡によって規定される空間内に配置されていることが好ましい。
A second light source different from the first light source, disposed in a space defined by the light guide member;
A reflecting mirror that reflects the light emitted from the second light source;
The light guide member can transmit light emitted from the second light source, and is preferably disposed in a space defined by the reflecting mirror.
 上記の構成によれば、第1の光源とは異なる第2の光源が導光部材によって規定される空間内に配置されており、第2の光源から出射された光は、導光部材を透過した後、反射鏡によって反射される。 According to said structure, the 2nd light source different from a 1st light source is arrange | positioned in the space prescribed | regulated by the light guide member, and the light radiate | emitted from the 2nd light source permeate | transmits a light guide member. Then, it is reflected by the reflecting mirror.
 それゆえ、第1の光源からの光を投光する第1の光学系と第2の光源からの光を投光する第2の光学系とを組み合わせたコンパクトな照明装置を実現できる。 Therefore, it is possible to realize a compact illumination device in which the first optical system that projects light from the first light source and the second optical system that projects light from the second light source are combined.
 また、上記反射鏡が有する反射面と、当該反射面と対向する、上記導光部材の少なくとも一部の面との間には隙間が形成されていることが好ましい。 In addition, it is preferable that a gap is formed between the reflecting surface of the reflecting mirror and at least a part of the light guide member facing the reflecting surface.
 導光部材の内部を伝搬する光の一部は、全反射しつつ伝搬する。この全反射は、導光部材内部と導光部材外部との間の大きな屈折率の差により起きている。しかしここで、導光部材に金属等が接していると、その接触部分において、全反射が起こらず、金属等により光の一部が吸収される。 A part of the light propagating in the light guide member propagates while being totally reflected. This total reflection is caused by a large difference in refractive index between the inside of the light guide member and the outside of the light guide member. However, here, when a metal or the like is in contact with the light guide member, total reflection does not occur at the contact portion, and a part of the light is absorbed by the metal or the like.
 上記の構成によれば、導光部材に反射鏡の反射面が接していないため、当該反射面による吸収損失が生じ難くなり、光の伝搬効率が高くなる。よって、照明装置は、より強い光を投光することが可能となる。 According to the above configuration, since the reflecting surface of the reflecting mirror is not in contact with the light guide member, absorption loss due to the reflecting surface is less likely to occur, and the light propagation efficiency is increased. Therefore, the lighting device can project stronger light.
 また、上記入射部に沿って複数の上記第1の光源または当該複数の第1の光源から導光された光の出射部が配置されていることが好ましい。 Further, it is preferable that a plurality of the first light sources or light emitting portions guided from the plurality of first light sources are arranged along the incident portion.
 上記の構成によれば、入射部に入射させる光の量を容易に増加させることができ、出射部から放出される照明光の光量を容易に増加させることができる。 According to the above configuration, the amount of light incident on the incident portion can be easily increased, and the amount of illumination light emitted from the emitting portion can be easily increased.
 また、上記第1の光源は、発光ダイオードまたはレーザ素子、もしくは、励起光によって蛍光を発する発光体であることが好ましい。 The first light source is preferably a light emitting diode or laser element, or a light emitter that emits fluorescence by excitation light.
 上記の構成によれば、第1の光源として発光ダイオード、レーザ素子、もしくは、励起光によって励起されて発光する発光体を用いることができる。特に、レーザ素子そのものを第1の光源として用いるか、発光体を励起する励起源として用いることにより、高輝度の照明装置を実現できる。 According to the above configuration, a light emitting diode, a laser element, or a light emitting body that emits light when excited by excitation light can be used as the first light source. In particular, a high-luminance illumination device can be realized by using the laser element itself as a first light source or an excitation source for exciting a light emitter.
 また、上記第2の光源は、発光ダイオードまたはレーザ素子、もしくは、励起光によって蛍光を発する発光体であることが好ましい。 The second light source is preferably a light emitting diode or laser element, or a light emitter that emits fluorescence by excitation light.
 上記の構成によれば、第2の光源として発光ダイオード、レーザ素子、源そのものを第2の光源として用いるか、発光体を励起する励起源として用いることにより、高輝度の照明装置を実現できる。 According to the above configuration, a high-luminance illumination device can be realized by using a light-emitting diode, a laser element, or the source itself as the second light source, or as an excitation source for exciting the light emitter.
 また、上記照明装置を備える車両用前照灯も本発明の技術的範囲に含まれる。 Further, a vehicle headlamp provided with the above-described illumination device is also included in the technical scope of the present invention.
 また、上記導光部材によって規定される空間内に配置された、上記第1の光源とは異なる第2の光源と、上記第2の光源から出射された光を、すれ違い用前照灯の配光特性を有する光として外部へ投光する投光用部材とをさらに備えることが好ましい。 In addition, a second light source, which is disposed in a space defined by the light guide member, is different from the first light source, and the light emitted from the second light source is arranged in a passing headlamp. It is preferable to further include a light projecting member that projects light to the outside as light having optical characteristics.
 上記の構成により、すれ違い用前照灯として本発明の照明装置を実現できる。なお、上記投光用部材には、反射鏡、投光レンズ、遮光板またはこれらの組み合わせが含まれる。 With the above configuration, the lighting device of the present invention can be realized as a passing headlamp. The light projecting member includes a reflecting mirror, a light projecting lens, a light shielding plate, or a combination thereof.
 また、上記導光部材から投光される光は、走行用前照灯の配光特性を有していることが好ましい。 The light projected from the light guide member preferably has the light distribution characteristics of a traveling headlamp.
 上記の構成により、走行用前照灯として本発明の照明装置を実現できる。 With the above configuration, the lighting device of the present invention can be realized as a traveling headlamp.
 また、本発明の車両用前照灯は、日中走行用ライトとして実現されてもよい。 Further, the vehicle headlamp of the present invention may be realized as a daytime running light.
 また、本発明に係る導光部材は、
 光源から出射された光を入射する入射部を有し、当該入射部から入射した光をその内部において伝搬する過程の少なくとも一部において当該光を外部へ放出する導光部材であり、
 上記導光部材の厚さは、上記入射部から遠ざかるにつれて小さくなっていることを特徴としている。
The light guide member according to the present invention is
A light guide member that includes an incident portion that receives light emitted from a light source, and that emits the light to the outside in at least part of a process of propagating light incident from the incident portion in the interior;
The light guide member has a thickness that decreases as the distance from the incident portion increases.
 上記の構成により、光源から出射された光は、導光部材の入射部から入射し、伝搬過程において外部へ放出される。導光部材の厚さは、入射部から遠ざかるにつれて小さくなっているため、導光部材の内部を伝搬する光は、その内部で反射角度を変えながら全反射しつつ伝搬する。 With the above configuration, light emitted from the light source enters from the incident portion of the light guide member and is emitted to the outside in the propagation process. Since the thickness of the light guide member decreases as the distance from the incident portion increases, the light propagating through the light guide member propagates while being totally reflected while changing the reflection angle.
 一方、伝搬過程の途中で全反射しなかった光は、その時点で導光部材から外部へ出射する。このように漏れた光も、導光部材の形状を調整することなどによって、所望の方向へ投光することが可能である。 On the other hand, light that has not been totally reflected during the propagation process is emitted from the light guide member to the outside at that time. The leaked light can be projected in a desired direction by adjusting the shape of the light guide member.
 本発明に係る照明装置は、以上のように、
 第1の光源と、
 上記第1の光源から出射された光を入射する入射部を有する導光部材とを備え、
 上記導光部材は、上記入射部から入射した光をその内部において伝搬する過程の少なくとも一部において当該光を外部へ放出するものであり、
 上記導光部材の厚さは、上記入射部から遠ざかるにつれて小さくなっている構成である。
The lighting device according to the present invention is as described above.
A first light source;
A light guide member having an incident portion for entering the light emitted from the first light source,
The light guide member emits the light to the outside in at least a part of the process of propagating the light incident from the incident portion in the inside,
The light guide member has a thickness that decreases as the distance from the incident portion increases.
 また、本発明に係る導光部材は、
 光源から出射された光を入射する入射部を有し、当該入射部から入射した光をその内部において伝搬する過程の少なくとも一部において当該光を外部へ放出する導光部材であり、
 上記導光部材の厚さは、上記入射部から遠ざかるにつれて小さくなっている構成である。
The light guide member according to the present invention is
A light guide member that includes an incident portion that receives light emitted from a light source, and that emits the light to the outside in at least part of a process of propagating light incident from the incident portion in the interior;
The light guide member has a thickness that decreases as the distance from the incident portion increases.
 それゆえ、所望の方向へ投光することが可能であり、光源の配置に関して自由度の高い照明装置を実現できるという効果を奏する。 Therefore, it is possible to project light in a desired direction, and there is an effect that it is possible to realize a lighting device having a high degree of freedom regarding the arrangement of the light sources.
本発明の実施の一形態である照明装置の構成を示す図である。It is a figure which shows the structure of the illuminating device which is one Embodiment of this invention. 上記照明装置が備えるライトガイドの形状を示す図であり、(a)は側面図、(b)は斜視図である。It is a figure which shows the shape of the light guide with which the said illuminating device is provided, (a) is a side view, (b) is a perspective view. 上記ライトガイドによる光の導光の原理を説明するための図である。It is a figure for demonstrating the principle of light guide by the said light guide. 反射フィルムを有するライトガイドによる光の導光の原理を説明するための図である。It is a figure for demonstrating the principle of the light guide by the light guide which has a reflective film. 上記照明装置を用いて10m先に設置したスクリーンに光を投光したときの投光パターンを示す図であり、(a)は正面図、(b)は(a)のA-A´断面における光の強度分布を示す図である。It is a figure which shows a light projection pattern when light is projected on the screen installed 10m ahead using the said illuminating device, (a) is a front view, (b) is in the AA 'cross section of (a). It is a figure which shows intensity distribution of light. 遮光板を用いて照明装置の投光の一部を遮蔽する構成を示す図である。It is a figure which shows the structure which shields a part of light projection of an illuminating device using a light-shielding plate. 図6に示す構成の照明装置の投光パターンを示す図である。It is a figure which shows the light projection pattern of the illuminating device of a structure shown in FIG. 発光部へレーザ光を照射する形態の変形例を示す図である。It is a figure which shows the modification of the form which irradiates a laser beam to a light emission part. 本発明の他の実施の形態であるヘッドライトの構成を示す断面図である。It is sectional drawing which shows the structure of the headlight which is other embodiment of this invention. 上記ヘッドライトが備えるライトガイドにおける発光部の塗布位置を示す図であり、(a)はライトガイドをその中心軸を含む平面で切断したときの断面図であり、(b)はライトガイドの底部を示す図である。It is a figure which shows the application | coating position of the light emission part in the light guide with which the said headlight is equipped, (a) is sectional drawing when a light guide is cut | disconnected by the plane containing the central axis, (b) is the bottom part of a light guide FIG. 底部開口部へ照明光を入射させる形態の一例を示す図である。It is a figure which shows an example of the form which makes illumination light inject into a bottom part opening part. 底部開口部へ照明光を入射させる形態の別の例を示す図である。It is a figure which shows another example of the form which makes illumination light inject into a bottom part opening part. 底部開口部へ照明光を入射させる形態のさらに別の例を示す図である。It is a figure which shows another example of the form which makes illumination light inject into a bottom part opening part. 底部開口部へ照明光を入射させる形態のさらに別の例を示す図である。It is a figure which shows another example of the form which makes illumination light inject into a bottom part opening part. 上記ヘッドライトが備える楕円ミラーの形状を示す図である。It is a figure which shows the shape of the elliptical mirror with which the said headlight is provided. 上記ヘッドライトによる投光のシミュレーション結果を示す図であり、(a)はライトガイドを真正面から見たときの投光強度を示す図であり、(b)は上記ヘッドライトからその投光方向に25m離れた地点における投光強度の角度分布を示す図である。It is a figure which shows the simulation result of the light projection by the said headlight, (a) is a figure which shows the light projection intensity when the light guide is seen from the front, (b) is the light projection direction from the said headlight. It is a figure which shows angle distribution of the light projection intensity | strength in the point 25m away. ライトガイドの開口部にエンブレムを配置した構成を示す図である。It is a figure which shows the structure which has arrange | positioned the emblem to the opening part of a light guide. 本発明の他の実施の形態であるヘッドライトの構成を示す図である。It is a figure which shows the structure of the headlight which is other embodiment of this invention. 上記ヘッドライトを用いて、25m先に設置したスクリーンに光を投光したときの投光パターンを示す図であり、(a)はロービーム用LEDのみを点灯した場合の投光パターンを示す図であり、(b)はハイビーム用LEDおよびロービーム用LEDを点灯した場合の投光パターンを示す図である。It is a figure which shows the light projection pattern when light is projected on the screen installed 25m ahead using the said headlight, (a) is a figure which shows the light projection pattern at the time of lighting only LED for low beams. Yes, (b) is a diagram showing a light projection pattern when the high beam LED and the low beam LED are turned on.
 〔実施の形態1〕
 本発明の実施の一形態について図1~8に基づいて説明すれば、以下のとおりである。
[Embodiment 1]
An embodiment of the present invention will be described below with reference to FIGS.
 図1は、本発明の実施の一形態である照明装置1の構成を示す図である。照明装置1は、図1に示すように、レーザユニット11、発光部(第1の光源)12、ライトガイド(導光部材)13、反射フィルム(反射部)14を備えている。 FIG. 1 is a diagram showing a configuration of a lighting device 1 according to an embodiment of the present invention. As illustrated in FIG. 1, the illumination device 1 includes a laser unit 11, a light emitting unit (first light source) 12, a light guide (light guide member) 13, and a reflective film (reflective unit) 14.
 (レーザユニット11)
 レーザユニット11は、発光部12を励起する励起源であり、図1に示すように、半導体レーザ素子111、コリメートレンズ112、光ファイバー113を備えている。半導体レーザ素子111から出射したレーザ光は、コリメートレンズ112により平行光となり、光ファイバー113を伝搬し、発光部12に照射される。
(Laser unit 11)
The laser unit 11 is an excitation source that excites the light emitting unit 12, and includes a semiconductor laser element 111, a collimating lens 112, and an optical fiber 113, as shown in FIG. Laser light emitted from the semiconductor laser element 111 becomes parallel light by the collimator lens 112, propagates through the optical fiber 113, and is irradiated on the light emitting unit 12.
 また、半導体レーザ素子111には、ヒートシンク114が接続されており、レーザ光の出射によって生じた熱をヒートシンク114を介して逃がす構成となっている。さらに、ヒートシンク114は、放熱フィン115に接続されている。ヒートシンク114は、半導体レーザ素子111で発生した熱を受け取り、放熱フィン115を通して外部へ放出している。 Further, a heat sink 114 is connected to the semiconductor laser element 111 so that heat generated by the emission of the laser light is released through the heat sink 114. Further, the heat sink 114 is connected to the heat radiation fin 115. The heat sink 114 receives the heat generated in the semiconductor laser element 111 and releases it to the outside through the radiation fin 115.
 ヒートシンク114および放熱フィン115には、金属(例えば、アルミニウム)などの熱伝導性の高い材料を用いることが好ましい。 It is preferable to use a material having high thermal conductivity such as metal (for example, aluminum) for the heat sink 114 and the heat radiation fin 115.
 なお、励起源としてLED(発光ダイオード)を用いてもよい。 In addition, you may use LED (light emitting diode) as an excitation source.
 (発光部12)
 発光部12は、封止材の内部に蛍光体が分散されているもの、または蛍光体を固めたものであり、レーザユニット11からの励起光を受けて蛍光を出射する発光体である。発光部12に含まれる蛍光体は、例えば、酸窒化物蛍光体(例えば、サイアロン蛍光体)、窒化物蛍光体(例えば、CASN(CaAlSiN)蛍光体)またはIII-V族化合物半導体ナノ粒子蛍光体(例えば、インジュウムリン:InP)であってもよい。ただし、発光部12に含まれる蛍光体は、上述のものに限定されず、その他の蛍光体であってもよい。
(Light Emitting Unit 12)
The light emitting unit 12 is a phosphor in which a phosphor is dispersed inside a sealing material, or a phosphor is solidified, and is a light emitter that emits fluorescence upon receiving excitation light from the laser unit 11. The phosphor included in the light emitting unit 12 is, for example, an oxynitride phosphor (for example, sialon phosphor), a nitride phosphor (for example, CASN (CaAlSiN 3 ) phosphor), or a group III-V compound semiconductor nanoparticle fluorescence. It may be a body (for example, indium phosphorus: InP). However, the fluorescent substance contained in the light emission part 12 is not limited to the above-mentioned thing, Other fluorescent substance may be sufficient.
 レーザユニット11と発光部12との組み合わせを1つの光源デバイス(照明光源デバイスと称する)と見なすことができる。ここで、発光部12が、投光システムにおける光源であり、例えば白色光等を発生する。上記照明光源デバイスとしてLED(例えば、白色LED)を用いることもでき、その場合にはLEDが投光システムにおける光源として機能する。ライトガイド13と光学的に結合できる光源を含んでいれば、上記照明光源デバイスの種類は問わない。 The combination of the laser unit 11 and the light emitting unit 12 can be regarded as one light source device (referred to as illumination light source device). Here, the light emitting unit 12 is a light source in the light projecting system, and generates, for example, white light. An LED (for example, a white LED) can also be used as the illumination light source device, in which case the LED functions as a light source in the light projecting system. If the light source which can be optically combined with the light guide 13 is included, the kind of the said illumination light source device will not be ask | required.
 (ライトガイド13)
 図2は、ライトガイド13の形状を示す図であり、(a)は側面図、(b)は斜視図である。ライトガイド13は、図2(a)に示すように、発光部12から出射された光が入射する入射部13aおよび当該入射部13aから入射した光の一部を外部へ出射する出射部13bを有している。
(Light guide 13)
2A and 2B are views showing the shape of the light guide 13, wherein FIG. 2A is a side view and FIG. 2B is a perspective view. As shown in FIG. 2A, the light guide 13 includes an incident portion 13a on which the light emitted from the light emitting portion 12 is incident and an emitting portion 13b that emits a part of the light incident from the incident portion 13a to the outside. Have.
 出射部13bは、入射部13aに対する他方の端部であり、この出射部13bおよびその近傍から主に光が放出される。ライトガイド13は、入射部13aから入射した光をその内部において伝搬する過程の少なくとも一部において当該光を外部へ放出するものであり、出射部13bのみから光が出射されるわけではない。しかしながら、説明の便宜上、入射部13aに対する他方の端部を出射部13bと称する。 The exit portion 13b is the other end portion with respect to the entrance portion 13a, and light is mainly emitted from the exit portion 13b and the vicinity thereof. The light guide 13 emits the light to the outside in at least a part of the process of propagating the light incident from the incident portion 13a inside, and the light is not emitted only from the emitting portion 13b. However, for convenience of explanation, the other end with respect to the incident portion 13a is referred to as an emitting portion 13b.
 また、入射部13aには、発光部12が配されており、発光部12から出射された光(照明光)が、入射部13aに入射する。入射部13aに入射した照明光は、ライトガイド13の内部を伝搬し、その多くは、出射部13bおよびその近傍からライトガイド13の外部へ(図2(a)において破線で示す「投光方向」へ)投光される。 Further, the light emitting unit 12 is disposed in the incident unit 13a, and light (illumination light) emitted from the light emitting unit 12 enters the incident unit 13a. Illumination light incident on the incident portion 13a propagates inside the light guide 13, and most of the illumination light travels from the light emitting portion 13b and the vicinity thereof to the outside of the light guide 13 ("light projection direction" shown by a broken line in FIG. ”).
 ライトガイド13の上面13cを水平面に対して約10°の角度で固定することにより、略水平方向へ投光することができる。 It is possible to project light in a substantially horizontal direction by fixing the upper surface 13c of the light guide 13 at an angle of about 10 ° with respect to the horizontal plane.
 また、入射部13aと出射部13bとの間に位置するライトガイド13の面(上面13cおよび下面13d)の少なくとも一部は、透光性を有している。そのため、入射部13aから入射した照明光の一部(全反射しなかった光)は、出射部13bに到達する前に、ライトガイド13の側面から外部へ出射され得る。 Further, at least a part of the surface (the upper surface 13c and the lower surface 13d) of the light guide 13 located between the incident portion 13a and the emitting portion 13b has translucency. Therefore, a part of the illumination light incident from the incident portion 13a (light that has not been totally reflected) can be emitted to the outside from the side surface of the light guide 13 before reaching the emission portion 13b.
 ライトガイド13は、図2(a)に示すように、入射部13aの端部から出射部13bの端部まで60mmの長さを有している。また、ライトガイド13は、図2(b)に示すように、奥行き方向に5mmの幅を有している。ライトガイド13の厚さは、入射部13aから出射部13bへ向かうにつれて(すなわち、入射部13aから遠ざかるにつれて)小さくなっており、入射部13aでは0.6mmの厚さを有しており、出射部13bの先端部ではほぼ0となっている。つまり、ライトガイド13は、テーパ状になっている。また、ライトガイド13は、楔形であるとも言える。 As shown in FIG. 2A, the light guide 13 has a length of 60 mm from the end of the incident portion 13a to the end of the exit portion 13b. The light guide 13 has a width of 5 mm in the depth direction as shown in FIG. The thickness of the light guide 13 decreases as it goes from the incident portion 13a to the emission portion 13b (that is, as it moves away from the incidence portion 13a), and the incident portion 13a has a thickness of 0.6 mm. It is almost zero at the tip of the portion 13b. That is, the light guide 13 is tapered. It can also be said that the light guide 13 has a wedge shape.
 ライトガイド13の厚さとは、ライトガイド13が有する上面13cと下面13dとの間の距離である。上面13cとは、入射部13aから出射部13bへと至るライトガイド13の特定の面であり、下面13dとは、上面13cと対向する面である。また、換言すれば、ライトガイド13の厚さとは、ライトガイド13の内部において入射部13aから出射部13bへ向けて照明光が導波する主たる方向に垂直な任意の断面に現れる図形に含まれる任意の対向する2辺間の距離である。 The thickness of the light guide 13 is a distance between the upper surface 13c and the lower surface 13d of the light guide 13. The upper surface 13c is a specific surface of the light guide 13 extending from the incident portion 13a to the emitting portion 13b, and the lower surface 13d is a surface facing the upper surface 13c. In other words, the thickness of the light guide 13 is included in a figure appearing in an arbitrary cross section perpendicular to the main direction in which the illumination light is guided from the incident portion 13a toward the emitting portion 13b inside the light guide 13. The distance between any two opposing sides.
 また、ライトガイド13の材質は、上述のように光を透過して導光できる透明なものであって、例えば、ガラスまたは樹脂であるが、これに限定されるわけではない。また、ライトガイド13の屈折率は、例えば、1.49であるが、これに限定されるわけではない。 Further, the material of the light guide 13 is a transparent material that can transmit and guide light as described above, and is, for example, glass or resin, but is not limited thereto. Moreover, although the refractive index of the light guide 13 is 1.49, for example, it is not necessarily limited to this.
 (反射フィルム14)
 ライトガイド13は、図2(a)に示すように、下面13dに反射フィルム14を備えている。反射フィルム14は、ライトガイド13から漏れ出た光を反射する反射膜であり、ライトガイド13の一部の面(下面13d)に配されているか、または、当該一部の面と対向するように配されている。
(Reflection film 14)
As shown in FIG. 2A, the light guide 13 includes a reflective film 14 on the lower surface 13d. The reflection film 14 is a reflection film that reflects light leaking from the light guide 13, and is disposed on a part of the surface (the lower surface 13 d) of the light guide 13 or so as to face the part of the surface. It is arranged in.
 これにより、ライトガイド13の一方の面(上面13c)からのみ光を取り出すことができる。反射フィルム14は、ESR(Enhanced Specular Reflection)フィルムであってもよいが、これに限定されるわけではない。 Thereby, light can be extracted only from one surface (upper surface 13 c) of the light guide 13. The reflective film 14 may be an ESR (Enhanced Specular Reflection) film, but is not limited thereto.
 反射フィルム14の反射面と、当該反射面に対向する下面13dとの間には0.3mm程度の隙間があることが好ましい。この理由については後述する。 It is preferable that there is a gap of about 0.3 mm between the reflective surface of the reflective film 14 and the lower surface 13d facing the reflective surface. The reason for this will be described later.
 なお、上記隙間の幅は、0.3mmに限定されず、適宜設定されればよい。 Note that the width of the gap is not limited to 0.3 mm and may be set as appropriate.
 (反射部の変更例)
 ライトガイド13の、入射部13aから出射部13bへ至る途中の面(上面13cまたは下面13d)から出射した光を反射する反射部として、上記途中の面に反射機能を有する膜をコートしてもよい。
(Example of changing the reflection part)
Even if the light guide 13 is coated with a film having a reflection function on the intermediate surface as a reflection portion that reflects light emitted from the intermediate surface (upper surface 13c or lower surface 13d) from the incident portion 13a to the emission portion 13b. Good.
 (ライトガイド13の機能)
 図3は、ライトガイド13による光の導光の原理を説明するための図である。発光部12から出射された光は、図3に示すように、ライトガイド13の内部で反射を繰り返し、ライトガイド13の入射部13aから出射部13bへ向かう方向(図4においては右方向)へ伝搬していく。
(Function of light guide 13)
FIG. 3 is a diagram for explaining the principle of light guiding by the light guide 13. As shown in FIG. 3, the light emitted from the light emitting unit 12 is repeatedly reflected inside the light guide 13, and in a direction (rightward in FIG. 4) from the incident unit 13 a of the light guide 13 toward the emitting unit 13 b. Propagate.
 この伝搬の際、ライトガイド13は、上述のように、入射部13aから出射部13bへ向かうにつれて厚さが薄くなっているため、ライトガイド13により導光される光は、ライトガイド13の内部で反射角度を変えながら伝搬する。 At the time of this propagation, the light guide 13 becomes thinner as it goes from the incident portion 13a to the emission portion 13b as described above, so that the light guided by the light guide 13 is inside the light guide 13. Propagate while changing the reflection angle.
 ライトガイド13により導光される光の一部は、反射せずにライトガイド13の外部へ出射される。ライトガイド13の材質として、ライトガイド13の外部の媒質よりも屈折率が高い材質を用いることにより、ライトガイド13の外部へ出射する光は、図3に示すように、出射角度θ1に対して、より大きな屈折角度θ2で屈折する。 Part of the light guided by the light guide 13 is emitted outside the light guide 13 without being reflected. By using a material having a refractive index higher than that of the medium outside the light guide 13 as the material of the light guide 13, the light emitted to the outside of the light guide 13 is as shown in FIG. 3 with respect to the emission angle θ1. Refracts at a larger refraction angle θ2.
 つまり、ライトガイド13の外部へ出射する光は、ライトガイド13の入射部13aから出射部13bへ向かう方向に沿って、ライトガイド13の外部へ出射する。この結果、ライトガイド13の入射部13aから出射部13bへ向かう方向へ光が集光されて、照明装置1から投光される光は、一定の指向性を有することになる。 That is, the light emitted to the outside of the light guide 13 is emitted to the outside of the light guide 13 along the direction from the incident portion 13a of the light guide 13 to the emitting portion 13b. As a result, the light collected in the direction from the incident portion 13a to the emitting portion 13b of the light guide 13 and the light projected from the illumination device 1 has a certain directivity.
 図4は、反射フィルム14がある場合のライトガイド13による光の導光の原理を説明するための図である。発光部12から出射された光は、図4に示すように、図3に示す場合と同様に、ライトガイド13の内部で反射を繰り返し、ライトガイド13の出射部13bの方向(図3においては右方向)へ伝搬していく。図3に示す場合では、伝搬する光の一部は、反射せずにライトガイド13の外部へ出射されるが、図4に示す場合においては、ライトガイド13の下面13dに反射フィルム14があるため、ライトガイド13の下面13dから出射した光は、反射フィルム14によって上面13c側へ反射される。これにより、ライトガイド13の一方の面から大部分の光を取り出すことができる。 FIG. 4 is a diagram for explaining the principle of light guide by the light guide 13 when the reflective film 14 is present. As shown in FIG. 4, the light emitted from the light emitting unit 12 is repeatedly reflected inside the light guide 13 as shown in FIG. 3, and the direction of the light emitting unit 13b of the light guide 13 (in FIG. 3) Propagate to the right). In the case shown in FIG. 3, a part of the propagating light is emitted outside the light guide 13 without being reflected, but in the case shown in FIG. 4, the reflective film 14 is provided on the lower surface 13 d of the light guide 13. Therefore, the light emitted from the lower surface 13d of the light guide 13 is reflected by the reflective film 14 toward the upper surface 13c. Thereby, most of the light can be extracted from one surface of the light guide 13.
 ここで、下面13dと反射フィルム14との間に隙間があることが好ましい理由について説明する。 Here, the reason why it is preferable that there is a gap between the lower surface 13d and the reflective film 14 will be described.
 発光部12からの光は、ライトガイド13内にて、ライトガイド13の材質(例えば、ガラスまたは樹脂)と外部の空気との間の大きな屈折率差により、全反射にて閉じ込められて導波する。もしライトガイド13と何らかの金属等が接していると、その接している部分は全反射にはならず、金属面での反射による吸収損失が生じる。 Light from the light emitting unit 12 is confined and guided by total reflection in the light guide 13 due to a large refractive index difference between the material of the light guide 13 (for example, glass or resin) and external air. To do. If the light guide 13 is in contact with some metal or the like, the contacted portion is not totally reflected, and absorption loss occurs due to reflection on the metal surface.
 よって、ライトガイド13と反射フィルム14とは接していない方が光の損失が小さく、効率が高い結果となる。 Therefore, when the light guide 13 and the reflection film 14 are not in contact with each other, the light loss is small and the efficiency is high.
 (投光パターン)
 図5は、照明装置1を用いて10m先に設置したスクリーン20に光を投光したときの投光パターンを示す図であり、(a)は正面図、(b)は(a)のA-A´断面における光の強度分布を示す図である。照明装置1から投光される光は、スクリーン20におおよそ楕円形の投光パターン21を描く。投光パターン21は、図5(b)に示すように、A-A´断面において、約2mの半値全幅にて投光されている。
(Light emission pattern)
FIGS. 5A and 5B are diagrams showing a light projection pattern when light is projected onto the screen 20 installed 10 m ahead using the lighting device 1. FIG. 5A is a front view, and FIG. It is a figure which shows intensity distribution of the light in -A 'cross section. The light projected from the illumination device 1 draws an approximately elliptical projection pattern 21 on the screen 20. As shown in FIG. 5B, the light projection pattern 21 is projected with a full width at half maximum of about 2 m in the AA ′ cross section.
 図6は、遮光板(投光用部材)15を用いて照明装置1の投光の一部を遮蔽する構成を示す図である。図6に示す構成により、照明装置1が投光する投光パターンの一部に影を作り、任意の投光パターンを作ることができる。例えば、自動車におけるロービームに適した投光パターンを作ることができる。 FIG. 6 is a diagram showing a configuration in which a part of the light projection of the illumination device 1 is shielded by using a light shielding plate (light projecting member) 15. With the configuration shown in FIG. 6, it is possible to make a shadow on a part of the light projection pattern projected by the illumination device 1 and to create an arbitrary light projection pattern. For example, a light projection pattern suitable for a low beam in an automobile can be created.
 図7は、図6に示す構成の照明装置1により、図5に示す例のようにスクリーン20に光を投光したときの投光パターンを示す図である。投光パターン21aは、図7に示すように、ロービームの配光特性に適合した形状になっていることがわかる。このように遮光板15を設けることにより、照明装置1をロービーム(すれ違い用前照灯)として実現することができる。 FIG. 7 is a diagram showing a light projection pattern when light is projected onto the screen 20 as in the example shown in FIG. 5 by the illumination device 1 having the configuration shown in FIG. As shown in FIG. 7, it can be seen that the light projection pattern 21a has a shape suitable for the light distribution characteristics of the low beam. By providing the light shielding plate 15 in this way, the illumination device 1 can be realized as a low beam (passing headlight).
 (レーザユニット11の変形例)
 図8は、レーザユニット11の変形例を示す図である。ライトガイド13は、図2(b)に示すように、奥行き方向に所定の幅を有している。このとき、図8には図示しない発光部12もライトガイド13の奥行き方向に合わせて所定の幅を有していてもよい。レーザユニット11は、図8に示すように、光ファイバー113を複数本分岐させライトガイド13の奥行き方向に配置し、ライトガイド13の奥行き方向に幅を有する発光部12にレーザ光を照射する構成にしてもよい。
(Modification of laser unit 11)
FIG. 8 is a view showing a modification of the laser unit 11. The light guide 13 has a predetermined width in the depth direction as shown in FIG. At this time, the light emitting unit 12 (not shown in FIG. 8) may have a predetermined width in accordance with the depth direction of the light guide 13. As shown in FIG. 8, the laser unit 11 has a configuration in which a plurality of optical fibers 113 are branched and arranged in the depth direction of the light guide 13, and the light emitting unit 12 having a width in the depth direction of the light guide 13 is irradiated with laser light. May be.
 なお、ライトガイド13の入射部13aの幅を利用したレーザ光の照射方法は、このような分岐構成に限定されるわけではなく、ライトガイド13の奥行き方向に幅を有する発光部12の全幅にレーザ光を照射できる構成であれば、どのような構成であってもよい。 Note that the laser light irradiation method using the width of the incident portion 13a of the light guide 13 is not limited to such a branch configuration, but the entire width of the light emitting portion 12 having a width in the depth direction of the light guide 13. Any configuration may be used as long as it can irradiate laser light.
 (照明装置1の効果)
 以上のように、照明装置1では、ライトガイド13(および反射フィルム14)を用いて照明光の配光制御を行っている。そのため、ライトガイド13の入射部13aと発光部12との位置関係を厳密に規定する必要はなく、発光部12からの光がライトガイド13に入射すればよい。それゆえ、光源の配置に関して自由度の高い照明装置を実現できる。
(Effect of lighting device 1)
As described above, the illumination device 1 performs the light distribution control of the illumination light using the light guide 13 (and the reflection film 14). Therefore, it is not necessary to strictly define the positional relationship between the incident portion 13 a of the light guide 13 and the light emitting portion 12, and light from the light emitting portion 12 may be incident on the light guide 13. Therefore, a lighting device having a high degree of freedom with respect to the arrangement of the light sources can be realized.
 〔実施の形態2〕
 本発明の他の実施の形態について図9~17に基づいて説明すれば、以下のとおりである。なお、上述の実施の形態と同様の部材に関しては同じ符号を付し、その説明を省略する。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIGS. In addition, the same code | symbol is attached | subjected regarding the member similar to the above-mentioned embodiment, and the description is abbreviate | omitted.
 <ヘッドライト200の構成>
 図9は、本発明の他の実施の形態であるヘッドライト(車両用前照灯)200の構成を示す断面図である。ヘッドライト200は、図9に示すように、レーザユニット11、発光部(第1の光源)202、ライトガイド(導光部材)203、楕円ミラー(反射部)204を備えている。
<Configuration of headlight 200>
FIG. 9 is a cross-sectional view showing a configuration of a headlight (vehicle headlamp) 200 according to another embodiment of the present invention. As shown in FIG. 9, the headlight 200 includes a laser unit 11, a light emitting unit (first light source) 202, a light guide (light guide member) 203, and an elliptical mirror (reflecting unit) 204.
 (発光部202)
 図10は、ライトガイド203における発光部202の塗布位置を示す図であり、(a)は、ライトガイド203を、その中心軸(符号Yで示す)を含む平面で切断したときの断面図であり、(b)はライトガイド203を、y方向から見た図である。
(Light emitting unit 202)
FIG. 10 is a diagram illustrating the application position of the light emitting unit 202 in the light guide 203. FIG. 10A is a cross-sectional view when the light guide 203 is cut along a plane including its central axis (indicated by Y). (B) is a view of the light guide 203 as seen from the y direction.
 ライトガイド203は、図10(a)および(b)に示すように、カップ形状を有しており、カップ形状の底部に半径が5mmで深さが10mmである底部開口部203aを有している。ここで、発光部202は、底部開口部203aの内壁に塗布されている。なお、発光部202が塗布されている形態に限定されるわけではなく、発光部202が底部開口部203aに接着されていてもよいし、埋め込まれていてもよい。 As shown in FIGS. 10A and 10B, the light guide 203 has a cup shape, and has a bottom opening 203a having a radius of 5 mm and a depth of 10 mm at the bottom of the cup shape. Yes. Here, the light emitting unit 202 is applied to the inner wall of the bottom opening 203a. In addition, it is not necessarily limited to the form in which the light emission part 202 is apply | coated, The light emission part 202 may be adhere | attached on the bottom part opening part 203a, and may be embedded.
 発光部202は、発光部12と同様に、蛍光体を含んでおり、レーザユニット11からの励起光を受けて蛍光を出射する。発光部202に含まれる蛍光体は、上述したように、発光部12に含まれ得る蛍光体であってよい。 The light emitting unit 202 includes a phosphor similarly to the light emitting unit 12, and emits fluorescence upon receiving excitation light from the laser unit 11. The phosphor included in the light emitting unit 202 may be a phosphor that can be included in the light emitting unit 12 as described above.
 [発光形態]
 図11は、底部開口部203aへ照明光を入射させる形態(発光形態と称する)の一例を示す図である。この形態では、レーザユニット11から出射されたレーザ光を発光部202に照射することにより発光部202を発光させ、この蛍光を照明光として利用する。レーザユニット11から出射されたレーザ光は、図11に示すように、複数の光ファイバー113を伝搬し、発光部202へ照射される。発光部202から出射された光は、底部開口部203aからライトガイド203の内部へ入射し、ライトガイド203により導光される。
[Light emission form]
FIG. 11 is a diagram illustrating an example of a form (referred to as a light emission form) in which illumination light is incident on the bottom opening 203a. In this embodiment, the light emitting unit 202 is caused to emit light by irradiating the light emitting unit 202 with laser light emitted from the laser unit 11, and this fluorescence is used as illumination light. As shown in FIG. 11, the laser light emitted from the laser unit 11 propagates through the plurality of optical fibers 113 and is irradiated to the light emitting unit 202. The light emitted from the light emitting unit 202 enters the light guide 203 from the bottom opening 203 a and is guided by the light guide 203.
 なお、発光部202に対するレーザ光の照射方法は、光ファイバー113を用いる構成に限定されるわけではなく、例えば、光導波路や、レンズまたはプリズムなどの光学素子を用いてもよい。 Note that the method of irradiating the light emitting unit 202 with the laser light is not limited to the configuration using the optical fiber 113, and for example, an optical element such as an optical waveguide, a lens, or a prism may be used.
 [発光形態の変形例1]
 図12は、他の発光形態を示す図である。LED11aは、光源台210に配置されている。LED11aが配置された光源台210は、ライトガイド203の底部開口部203aに配された発光部202に対向するように配置されている。つまり、LED11aから出射された光が、発光部202に入射する構成になっている。発光部202は、図12に示すように、LED11aから出射された光により励起され蛍光を出射する。
[Variation 1 of Light Emitting Mode]
FIG. 12 is a diagram showing another light emission mode. The LED 11 a is disposed on the light source table 210. The light source base 210 on which the LEDs 11 a are disposed is disposed so as to face the light emitting unit 202 disposed on the bottom opening 203 a of the light guide 203. That is, the light emitted from the LED 11 a is configured to enter the light emitting unit 202. As shown in FIG. 12, the light emitting unit 202 is excited by the light emitted from the LED 11a and emits fluorescence.
 [発光形態の変形例2]
 図13は、他の発光形態を示す図である。図11に示す構成とは異なり、底部開口部203aには発光部202は配されておらず、光ファイバー113から出射されるレーザ光を、ライトガイド203に直接入射させている。なお、光ファイバー113から出射されるレーザ光は、赤色、緑色および青色を混色した白色光(RGBレーザ光)であってもよいが、これに限定されるわけではない。
[Modification 2 of Light Emitting Mode]
FIG. 13 is a diagram showing another light emission mode. Unlike the configuration shown in FIG. 11, the light emitting unit 202 is not disposed in the bottom opening 203 a, and the laser light emitted from the optical fiber 113 is directly incident on the light guide 203. The laser light emitted from the optical fiber 113 may be white light (RGB laser light) that is a mixture of red, green, and blue, but is not limited thereto.
 [発光形態の変形例3]
 図14は、他の発光形態を示す図である。LED11Rは、赤色の光を出射するLEDである。LED11Gは、緑色の光を出射するLEDである。LED11Bは、青い色の光を出射するLEDである。LED11R、LED11GおよびLED11Bは、光源台210に配置されている。当該LEDは、交互に配置されていることが好ましいが、その配置に限定されるわけではなく、適宜調整されればよい。
[Modification 3 of Light Emitting Mode]
FIG. 14 is a diagram showing another light emission mode. The LED 11R is an LED that emits red light. The LED 11G is an LED that emits green light. The LED 11B is an LED that emits blue light. The LED 11R, LED 11G, and LED 11B are arranged on the light source table 210. The LEDs are preferably arranged alternately, but are not limited to the arrangement, and may be appropriately adjusted.
 これらLED11R、LED11GおよびLED11Bから出射される光は、混色されることにより白色光となる。図14に示す構成では、図12に示す構成とは異なり、発光部202が配されておらず、LED11R、LED11GおよびLED11Bから出射される光を、それぞれライトガイド203に直接入射させている。 The light emitted from the LED 11R, LED 11G, and LED 11B becomes white light by being mixed in color. In the configuration illustrated in FIG. 14, unlike the configuration illustrated in FIG. 12, the light emitting unit 202 is not provided, and light emitted from the LEDs 11 </ b> R, 11 </ b> G, and 11 </ b> B is directly incident on the light guide 203.
 なお、底部開口部203aに配されるLEDが発する色は、赤色、緑色および青色に限定されず、その他の色であってもよい。また、複数の色を混色し、白色以外の色を生成してもよい。また、底部開口部203aに配される光源は、LEDに限定されず、その他の種類の光源であってもよい。 It should be noted that the colors emitted by the LEDs arranged in the bottom opening 203a are not limited to red, green and blue, but may be other colors. A plurality of colors may be mixed to generate a color other than white. Further, the light source disposed in the bottom opening 203a is not limited to the LED, and may be another type of light source.
 (ライトガイド203)
 ライトガイド203は、図9に示すように、楕円ミラー204によって規定される空間内に配置されており、楕円ミラー204の反射面の曲面形状に対応するカップ形状を有している。より具体的には、ライトガイド203は、図形(例えば、円、楕円または放物線)の対称軸を回転軸として当該図形を回転させることによって形成される曲面の少なくとも一部を含んでおり、閉じた円形の開口部を有している。本実施形態では、ライトガイド203は、回転楕円曲面を有しているものとする。
(Light guide 203)
As shown in FIG. 9, the light guide 203 is disposed in a space defined by the elliptical mirror 204, and has a cup shape corresponding to the curved surface shape of the reflection surface of the elliptical mirror 204. More specifically, the light guide 203 includes at least a part of a curved surface formed by rotating the figure about the axis of symmetry of the figure (for example, a circle, an ellipse, or a parabola) and is closed. It has a circular opening. In the present embodiment, the light guide 203 has a spheroidal curved surface.
 ライトガイド203は、図15に示す回転楕円体220を切断平面221によって切断したうちの片側の形状を外形として有している。切断平面221とは、回転楕円体220の回転軸に対して垂直な平面であり、かつ、回転楕円体220の2つの焦点の中間点を含む平面である。 The light guide 203 has a shape on one side of the spheroid 220 shown in FIG. 15 cut by a cutting plane 221 as an outer shape. The cutting plane 221 is a plane that is perpendicular to the rotation axis of the spheroid 220 and includes a midpoint between the two focal points of the spheroid 220.
 そのため、ライトガイド203を、当該ライトガイド203から出射される光の主たる進行方向に対して垂直な平面で切断したときの断面形状には、環状またはその部分形状が含まれている。 Therefore, the cross-sectional shape when the light guide 203 is cut along a plane perpendicular to the main traveling direction of the light emitted from the light guide 203 includes an annular shape or a partial shape thereof.
 ライトガイド203は、例えば、40mmの深さおよび半径を有するものである。ライトガイド203の厚さは、底部開口部203aから遠ざかるにつれて(出射部203bに近づくにつれて)小さくなっている。ライトガイド203の厚さとは、図10(a)に示す、内側面203cと外側面203dとの間の距離である。内側面203cとは、ライトガイド203が有するカップ形状の内側の面である。また、外側面203dとは、内側面203cと対向する面であり、ライトガイド203が有するカップ形状の外側の面である。 The light guide 203 has, for example, a depth and a radius of 40 mm. The thickness of the light guide 203 decreases as the distance from the bottom opening 203a increases (as the light exit 203b approaches). The thickness of the light guide 203 is a distance between the inner side surface 203c and the outer side surface 203d shown in FIG. The inner side surface 203c is a cup-shaped inner surface of the light guide 203. The outer side surface 203d is a surface facing the inner side surface 203c, and is a cup-shaped outer surface of the light guide 203.
 このライトガイド203は、図9に示すように、発光部202から出射する光を導光し、図9に破線で示す「投光方向」へ投光する。ライトガイド203を、上述の回転楕円曲面を有するものとすることにより、中心軸Y(図10(a)参照)が水平である場合に、図9に示す投光方向は、水平方向とおおよそ平行になる。 As shown in FIG. 9, the light guide 203 guides the light emitted from the light emitting unit 202 and projects it in the “light projecting direction” indicated by the broken line in FIG. By making the light guide 203 have the above-mentioned spheroid surface, when the central axis Y (see FIG. 10A) is horizontal, the light projecting direction shown in FIG. 9 is approximately parallel to the horizontal direction. become.
 ライトガイド203の形状は、任意の形状を選択することができるが、特に上述したような、回転楕円体の一部であり、回転楕円体の2つの焦点の中間点を含み、回転楕円体の回転軸に対して垂直な平面で切断した形状を選択した場合には、その切断面においてライトガイド203は、回転軸と平行な方向を向く形状となる。よって、ライトガイド203の形状として、回転楕円体を選択することは、おおよそ平行な方向へ投光を行うためには好ましい構成と言える。なお、回転楕円体の切断において、上記の平面で切断するのではなく、少しずれた位置の平面で切断することにより投光の光線の拡がりを、容易に制御することができる。 An arbitrary shape can be selected as the shape of the light guide 203, but it is a part of the spheroid, particularly as described above, and includes the midpoint between the two focal points of the spheroid. When a shape cut by a plane perpendicular to the rotation axis is selected, the light guide 203 has a shape facing the direction parallel to the rotation axis on the cut surface. Therefore, selecting a spheroid as the shape of the light guide 203 is a preferable configuration for projecting light in a substantially parallel direction. In addition, in the cutting of the spheroid, it is possible to easily control the spread of the projected light beam by cutting along the plane slightly shifted from the above plane.
 ライトガイド203は、内部で光を反射させながら導光する点ではライトガイド13と同様であるが、ライトガイド13とは異なり湾曲した形状を有している。これにより、発光部202から出射された光は、ライトガイド203の内部でライトガイド203の湾曲した形状に対応して角度を変えつつ、反射を繰り返し伝搬する。 The light guide 203 is the same as the light guide 13 in that the light guide 203 guides light while reflecting the light inside, but unlike the light guide 13, it has a curved shape. Thereby, the light emitted from the light emitting unit 202 repeatedly propagates reflection while changing the angle corresponding to the curved shape of the light guide 203 inside the light guide 203.
 上述したように、ライトガイド203の底部開口部203aに発光部202が配されるため、この底部開口部203aは、ライトガイド203における照明光の入射部である。 As described above, since the light emitting portion 202 is disposed in the bottom opening 203 a of the light guide 203, the bottom opening 203 a is an illumination light incident portion in the light guide 203.
 底部開口部203aから入射した光は、光の伝搬経路の他方の端部(すなわち、終端部)である出射部203bおよびその近傍から主に出射される。出射部203bは、ライトガイド203のカップ形状の開口部である。ライトガイド203は、底部開口部203aから入射した光をその内部において伝搬する過程の少なくとも一部において当該光を外部へ放出するものであり、出射部203bのみから光が出射されるわけではない。しかしながら、説明の便宜上、カップ形状の開口部を出射部203bと称する。 The light incident from the bottom opening 203a is mainly emitted from the emission part 203b which is the other end part (that is, the termination part) of the light propagation path and its vicinity. The emission part 203 b is a cup-shaped opening of the light guide 203. The light guide 203 emits the light to the outside in at least a part of the process of propagating the light incident from the bottom opening 203a therein, and the light is not emitted only from the emission part 203b. However, for convenience of explanation, the cup-shaped opening is referred to as the emitting portion 203b.
 また、ライトガイド203の材質は、ライトガイド13の材質と同様のものでよい。 The material of the light guide 203 may be the same as that of the light guide 13.
 (楕円ミラー204)
 楕円ミラー204は、ライトガイド203の内部を伝搬する光が、その伝搬過程において当該ライトガイド203の外側面203dから漏れた場合に、その光を反射する反射鏡である。この楕円ミラー204の、外側面203dと対向する面が反射面(例えば、アルミニウム膜)になっている。楕円ミラー204の材質は、例えば、アルミニウムであってもよいが、これに限定されるものではない。
(Elliptical mirror 204)
The elliptical mirror 204 is a reflecting mirror that reflects light that propagates inside the light guide 203 when the light leaks from the outer surface 203d of the light guide 203 during the propagation process. A surface of the elliptical mirror 204 facing the outer surface 203d is a reflecting surface (for example, an aluminum film). The material of the elliptical mirror 204 may be aluminum, for example, but is not limited thereto.
 図15は、楕円ミラー204の形状を示す図である。楕円ミラー204は、カップ形状を有している。より具体的には、楕円ミラー204は、ライトガイド203と同様に、図15に示すように、回転楕円体220を切断平面221によって切断したうちの片側の形状を有している。 FIG. 15 is a diagram showing the shape of the elliptical mirror 204. The elliptical mirror 204 has a cup shape. More specifically, similarly to the light guide 203, the elliptical mirror 204 has a shape on one side of the spheroid 220 cut by the cutting plane 221 as shown in FIG.
 楕円ミラー204の形状は、ライトガイド203の形状と対応しており、ヘッドライト200が備える反射鏡の形状は、ライトガイド203の形状に合わせて設計すればよい。例えば、ライトガイド203が放物曲面を有するものである場合には、上記反射鏡もほぼ同様の放物曲面を有するものとすればよい。 The shape of the elliptical mirror 204 corresponds to the shape of the light guide 203, and the shape of the reflector provided in the headlight 200 may be designed according to the shape of the light guide 203. For example, when the light guide 203 has a parabolic curved surface, the reflecting mirror may also have a substantially similar parabolic curved surface.
 ライトガイド203と楕円ミラー204との間には隙間があり、この隙間は、例えば、0.3mmの間隔を有している。このような隙間を形成することが好ましい理由は、実施の形態1において述べた理由と同じである。 There is a gap between the light guide 203 and the elliptical mirror 204, and this gap has an interval of 0.3 mm, for example. The reason why it is preferable to form such a gap is the same as the reason described in the first embodiment.
 すなわち、発光部202から出射された光の多くは、ライトガイド203の内部と外部との屈折率の差により内部において全反射する。仮に、上述の隙間がなく、ライトガイド203と楕円ミラー204とが接している構成においては、ライトガイド203の内部を伝搬する光がライトガイド203と楕円ミラー204との間で反射する際に楕円ミラー204の表面で吸収損失が生じてしまう。これに対して、上述の隙間がある構成においては、吸収損失が生じ難くなり、光の伝搬効率が高くなって、より強い光を投光できる。 That is, most of the light emitted from the light emitting section 202 is totally reflected inside due to the difference in refractive index between the inside and outside of the light guide 203. If the light guide 203 and the elliptical mirror 204 are in contact with each other without the gap, the light propagating through the light guide 203 is reflected when reflected between the light guide 203 and the elliptical mirror 204. Absorption loss occurs on the surface of the mirror 204. On the other hand, in the configuration having the above-described gap, absorption loss is less likely to occur, the light propagation efficiency is increased, and stronger light can be projected.
 (反射鏡の変更例)
 楕円ミラー204を設ける代わりに、ライトガイド203の外側面203dに反射機能を有する反射膜をコートしてもよい。この構成では、ライトガイド203の外側面203dからは、光が漏れないようにすることができる。ただし、出射部203bおよびその近傍には、上記反射膜を設けないことが好ましい。
(Example of changing the reflector)
Instead of providing the elliptical mirror 204, the outer surface 203d of the light guide 203 may be coated with a reflecting film having a reflecting function. In this configuration, it is possible to prevent light from leaking from the outer surface 203 d of the light guide 203. However, it is preferable not to provide the reflective film in the emitting portion 203b and the vicinity thereof.
 (投光強度のシミュレーション)
 図16は、ヘッドライト200による投光強度のシミュレーション結果を示す図であり、(a)はライトガイド203を真正面から見たときの投光強度を示す図であり、(b)はヘッドライト200からその投光方向に25m離れた地点における投光強度の角度分布を示す図である。
(Simulation of light intensity)
FIG. 16 is a diagram showing the simulation result of the light projection intensity by the headlight 200, (a) is a diagram showing the light projection intensity when the light guide 203 is viewed from the front, and (b) is the headlight 200. It is a figure which shows angle distribution of the light projection intensity | strength in the point 25m away in the light projection direction.
 ヘッドライト200から投光される光は、図16(a)に示すように、ライトガイド203の出射部203b(開口部)の形状に対応して、環状の形状にて出射部203bから出射される。ヘッドライト200から投光される光は、ヘッドライト200から投光方向へ25m離れた地点においては、同心円状の投光スポットを描く。 The light projected from the headlight 200 is emitted from the emission portion 203b in an annular shape corresponding to the shape of the emission portion 203b (opening portion) of the light guide 203, as shown in FIG. The The light projected from the headlight 200 draws a concentric projection spot at a point 25 m away from the headlight 200 in the projection direction.
 このときの投光強度の角度分布は、図16(b)に示すように、0°(つまりライトガイド203を構成する回転楕円面の回転軸の延長線上)において最高となり、約±1~2°においてほぼ半値になり、約±10°を越えると投光強度がほぼ0となる。つまり、ヘッドライト200は、指向性の高い投光装置であると言える。 As shown in FIG. 16B, the angular distribution of the light projection intensity at this time is highest at 0 ° (that is, on the extension line of the rotation axis of the spheroid forming the light guide 203), and is about ± 1-2. Nearly half the value at °, and the projection intensity becomes almost zero when it exceeds about ± 10 °. That is, it can be said that the headlight 200 is a light projecting device with high directivity.
 より具体的には、発光部202からの光の全光束が484ルーメンであるとき、25m先の投光パターンの中心照度は75ルクス、中心から1.125m離れた地点での照度は10ルクス、2.25m離れた地点での照度は4.4ルクスである。このような投光強度を有するヘッドライト200は、例えば、車両用前照灯のハイビーム(走行用前照灯)として好適である。 More specifically, when the total luminous flux of the light from the light emitting unit 202 is 484 lumens, the central illuminance of the projection pattern 25 m ahead is 75 lux, and the illuminance at a point 1.125 m away from the center is 10 lux, Illuminance at a point 2.25m away is 4.4 lux. The headlight 200 having such a light projection intensity is suitable, for example, as a high beam (traveling headlamp) for a vehicle headlamp.
 (ライトガイド203の内部空間の利用と投光)
 図17は、ライトガイド203の開口部(出射部203b)にエンブレム230を配置した構成を示す図である。ライトガイド203からは、図16(a)に示すように、環状の光が出射部203bから出射されるため、ライトガイド203の開口部またはその近傍に、当該開口部よりもやや小さなエンブレム230のような物体(蓋部)があっても、照明光の投光に影響が出ない。
(Use of light guide 203 internal space and floodlight)
FIG. 17 is a diagram illustrating a configuration in which an emblem 230 is disposed in the opening (emission portion 203 b) of the light guide 203. As shown in FIG. 16A, since the light guide 203 emits annular light from the emission portion 203 b, an emblem 230 slightly smaller than the opening is formed at or near the opening of the light guide 203. Even if there is such an object (lid), the illumination light projection is not affected.
 なお、ライトガイド203の開口部に配置する物体を、ここではエンブレムとしたが、上記物体はこれに限定されるわけではなく、例えば、ライトガイド203の内部空間に配置された装置等の物体(例えば、レーザユニット11)を保護するためのキャップであってもよい。これによって、例えば、従来までのヘッドライトにはないデザイン価値を提供できる。 Note that the object placed in the opening of the light guide 203 is an emblem here, but the object is not limited to this. For example, it may be a cap for protecting the laser unit 11). As a result, for example, a design value not found in conventional headlights can be provided.
 <ヘッドライト200の効果>
 以上のように、ヘッドライト200では、ライトガイド203(および楕円ミラー204)を用いて照明光の配光制御を行っている。そのため、ライトガイド203の底部開口部203aと照明光源デバイスとの位置関係を厳密に規定する必要はなく、照明光源デバイスからの光がライトガイド203に入射すればよい。それゆえ、光源の配置に関して自由度の高いヘッドライトを実現できる。
<Effect of headlight 200>
As described above, the headlight 200 performs light distribution control of illumination light using the light guide 203 (and the elliptical mirror 204). Therefore, it is not necessary to strictly define the positional relationship between the bottom opening 203a of the light guide 203 and the illumination light source device, and light from the illumination light source device may be incident on the light guide 203. Therefore, a headlight having a high degree of freedom regarding the arrangement of the light sources can be realized.
 また、ヘッドライト200では、ヘッドライト200から所定の距離離れた地点において、従来の照明装置と同様の形状の投光スポットを形成できる。 Further, in the headlight 200, a light projection spot having the same shape as that of the conventional lighting device can be formed at a predetermined distance from the headlight 200.
 また、ライトガイド203の厚さが、底部開口部203aから出射部203bに向かうにつれて薄くなることに加えて、ライトガイド203が湾曲していることにより、ライトガイド203の内部を光が全反射しつつ伝搬する際に、反射角度をより効果的に変化させることができる。 In addition to the light guide 203 becoming thinner as it goes from the bottom opening 203a to the emission portion 203b, the light guide 203 is curved so that light is totally reflected inside the light guide 203. When propagating, the reflection angle can be changed more effectively.
 また、ライトガイド203の内部空間に物体を配置することにより、ヘッドライト200自身の機能と、上記物体が有する機能とを組み合わせた、これまでにないヘッドライトを実現することができる。 Also, by arranging an object in the internal space of the light guide 203, an unprecedented headlight that combines the function of the headlight 200 itself and the function of the object can be realized.
 〔実施の形態3〕
 本発明の他の実施の形態について図18および19に基づいて説明すれば、以下のとおりである。なお、上述の実施の形態と同様の部材に関しては、同じ符号を付し、その説明を省略する。
[Embodiment 3]
The following will describe another embodiment of the present invention with reference to FIGS. In addition, about the member similar to the above-mentioned embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 <ヘッドライト300の構成>
 図18は、本発明の他の実施の形態であるヘッドライト(車両用前照灯)300の構成を示す図である。ヘッドライト300は、図18に示すように、ハイビーム用LED(第1の光源)301、ロービーム用LED(第2の光源)302、ライトガイド(導光部)303、楕円ミラー(反射部)304、プロジェクションレンズ(投光用部材)305、遮光板(投光用部材)306および金属ベース307を備えている。
<Configuration of headlight 300>
FIG. 18 is a diagram showing a configuration of a headlight (vehicle headlamp) 300 according to another embodiment of the present invention. As shown in FIG. 18, the headlight 300 includes a high beam LED (first light source) 301, a low beam LED (second light source) 302, a light guide (light guide unit) 303, and an elliptical mirror (reflection unit) 304. , A projection lens (light projecting member) 305, a light shielding plate (light projecting member) 306, and a metal base 307.
 (ハイビーム用白色LED301)
 ハイビーム用白色LED301は、ハイビーム用の照明光を出射する光源であって、出射した照明光をライトガイド303により導光させ、図18にハイビーム投光2として破線で示すように、ライトガイド303から放出させる。ここで、ヘッドライト300によるハイビーム投光2の投光は、図9に示すヘッドライト200による投光と原理は同じものである。
(White LED 301 for high beam)
The high-beam white LED 301 is a light source that emits high-beam illumination light, and guides the emitted illumination light by the light guide 303. Release. Here, the projection of the high beam projection 2 by the headlight 300 is the same as the projection by the headlight 200 shown in FIG.
 このハイビーム用白色LED301は、ライトガイド303の頂点(底部)近傍に形成された底部開口部303aに配されている。この底部開口部303aは、ライトガイド303の頂点近傍の端部と金属ベース307の表面とによって形成されている開口部であり、例えば半円である。 The white LED 301 for high beam is arranged in a bottom opening 303 a formed near the top (bottom) of the light guide 303. The bottom opening 303a is an opening formed by an end near the top of the light guide 303 and the surface of the metal base 307, and is, for example, a semicircle.
 (ロービーム用白色LED302)
 ロービーム用白色LED302は、ロービーム用の照明光を出射する光源であって、出射した照明光を楕円ミラー304によって反射させプロジェクションレンズ305により屈折させ、図18にロービーム投光3として示すように、ハイビーム投光2よりも低い方向にプロジェクションレンズ305から放出させる。
(White LED 302 for low beam)
The low-beam white LED 302 is a light source that emits low-beam illumination light. The emitted illumination light is reflected by the elliptical mirror 304 and refracted by the projection lens 305. As shown in FIG. The light is emitted from the projection lens 305 in a direction lower than the light projection 2.
 ロービーム用白色LED302は、楕円ミラー304の2つの焦点のうち、ハイビーム用白色LED301に近い焦点(楕円ミラー304の頂点に近い方の焦点(第1焦点と称する))の位置に配置されることが好ましい。この場合、ロービーム用白色LED302から出射された光は、楕円ミラー304により反射され、楕円ミラー304の他方の焦点(第2焦点と称する)に集光される。 Of the two focal points of the elliptical mirror 304, the low-beam white LED 302 may be disposed at a focal point close to the high-beam white LED 301 (a focal point closer to the apex of the elliptical mirror 304 (referred to as a first focal point)). preferable. In this case, the light emitted from the low-beam white LED 302 is reflected by the elliptical mirror 304 and condensed on the other focal point (referred to as a second focal point) of the elliptical mirror 304.
 なお、上述のハイビーム用白色LED301およびロービーム用白色LED302の代わりに、励起光(例えば、レーザ光)により励起され蛍光を出射する蛍光体など、他の種類の光源を用いてもよい。 It should be noted that instead of the high-beam white LED 301 and the low-beam white LED 302 described above, other types of light sources such as a phosphor that is excited by excitation light (for example, laser light) and emits fluorescence may be used.
 (ライトガイド303)
 ライトガイド303は、図9に示すライトガイド203と同様の機能を有する導光部であり、ハイビーム用白色LED301から出射された光をその内部において伝搬する過程の少なくとも一部において当該光を外部へ放出する。
(Light guide 303)
The light guide 303 is a light guide unit having the same function as the light guide 203 shown in FIG. 9, and the light is emitted to the outside in at least a part of the process of propagating the light emitted from the high-beam white LED 301 inside. discharge.
 ただし、ライトガイド203と異なり、ライトガイド303は、ライトガイド203の上部半分のみの形状を有している。 However, unlike the light guide 203, the light guide 303 has only the shape of the upper half of the light guide 203.
 すなわち、ライトガイド303は、図形(例えば、円、楕円または放物線)の対称軸を回転軸として当該図形を回転させることによって形成される曲面(回転体の曲面)を、上記回転軸を含む平面で切断することによって得られる部分曲面の少なくとも一部を有している。また、ライトガイド303は、上述の回転楕円曲面を有するものであることが好ましく、この構成により、金属ベース307が水平方向と平行である場合に、ハイビーム投光2の方向は、水平方向と平行になる。 That is, the light guide 303 has a curved surface (curved surface of a rotating body) formed by rotating the figure about the axis of symmetry of the figure (for example, a circle, an ellipse, or a parabola) as a rotation axis on a plane including the rotation axis. It has at least a part of a partial curved surface obtained by cutting. Moreover, it is preferable that the light guide 303 has the above-mentioned spheroid curved surface. With this configuration, when the metal base 307 is parallel to the horizontal direction, the direction of the high beam projection 2 is parallel to the horizontal direction. become.
 また、ライトガイド303は、楕円ミラー304によって規定される空間内に配されており、ロービーム用白色LED302から出射された光を透過する。それゆえ、ライトガイド303は、楕円ミラー304によるロービーム用の照明光の配光制御に大きな影響を与えない。 The light guide 303 is disposed in a space defined by the elliptical mirror 304 and transmits light emitted from the low-beam white LED 302. Therefore, the light guide 303 does not significantly affect the light distribution control of the low beam illumination light by the elliptical mirror 304.
 ライトガイド303の材質は、ライトガイド203の材質と同様のものでよい。 The material of the light guide 303 may be the same as the material of the light guide 203.
 上述のように、ハイビーム用白色LED301は、底部開口部303aに配されており、この底部開口部303aが、ライトガイド303に照明光を入射させる入射部である。 As described above, the high-beam white LED 301 is disposed in the bottom opening 303 a, and the bottom opening 303 a is an incident portion that causes illumination light to enter the light guide 303.
 底部開口部303aから入射した光は、光の伝搬経路の他方の端部(すなわち、終端部)である出射部303bおよびその近傍から主に出射される。出射部303bは、ライトガイド303のカップ形状の開口部である。底部開口部303aから入射した光は、出射部203bのみから出射されるわけではないが、説明の便宜上、カップ形状の開口部を出射部303bと称する。 The light incident from the bottom opening 303a is mainly emitted from the emission part 303b which is the other end part (that is, the terminal part) of the light propagation path and its vicinity. The emission part 303 b is a cup-shaped opening of the light guide 303. The light incident from the bottom opening 303a is not emitted only from the emitting part 203b, but for convenience of explanation, the cup-shaped opening is referred to as the emitting part 303b.
 (楕円ミラー304)
 楕円ミラー304は、ロービーム用白色LED302から出射されたロービーム用の照明光を反射させ、当該照明光をプロジェクションレンズ305の焦点に導光するとともに、ライトガイド303から漏れたハイビーム用の照明光を反射させ、所定の方向に投光する光学部材である。
(Elliptical mirror 304)
The elliptical mirror 304 reflects the low-beam illumination light emitted from the low-beam white LED 302, guides the illumination light to the focal point of the projection lens 305, and reflects the high-beam illumination light leaked from the light guide 303. The optical member projects light in a predetermined direction.
 楕円ミラー304の、ライトガイド303と対向する面が反射面になっている。楕円ミラー304の材質は、楕円ミラー204と同様のものでよい。 The surface of the elliptical mirror 304 facing the light guide 303 is a reflecting surface. The material of the elliptical mirror 304 may be the same as that of the elliptical mirror 204.
 この楕円ミラー304は、楕円ミラー204の上部半分のみの形状を有している。すなわち、楕円ミラー304は、上記回転体の曲面を、上記回転軸を含む平面で切断することによって得られる部分曲面の少なくとも一部を有している。 The elliptical mirror 304 has only the shape of the upper half of the elliptical mirror 204. That is, the elliptical mirror 304 has at least a part of a partial curved surface obtained by cutting the curved surface of the rotating body along a plane including the rotation axis.
 なお、ヘッドライト300が備える反射鏡の形状は、ライトガイド303の形状およびロービーム用白色LED302の投光特性を考慮して設計されればよく、上記反射鏡は楕円ミラーに限定されない。また、上記反射鏡の形状に対応するようにライトガイド303の形状を設計すればよい。 The shape of the reflecting mirror included in the headlight 300 may be designed in consideration of the shape of the light guide 303 and the light projection characteristics of the low-beam white LED 302, and the reflecting mirror is not limited to an elliptical mirror. Further, the shape of the light guide 303 may be designed so as to correspond to the shape of the reflecting mirror.
 (反射鏡の変更例)
 楕円ミラー304を設ける代わりに、ライトガイド303の外側面303dに反射機能を有する反射膜をコートしてもよい。この構成では、ライトガイド303の外側面303dからは、光が漏れないようにすることができる。ただし、出射部303bおよびその近傍には、上記反射膜を設けないことが好ましい。
(Example of changing the reflector)
Instead of providing the elliptical mirror 304, a reflection film having a reflection function may be coated on the outer surface 303d of the light guide 303. In this configuration, light can be prevented from leaking from the outer surface 303 d of the light guide 303. However, it is preferable not to provide the reflective film in the emission part 303b and the vicinity thereof.
 また、この構成では、ライトガイド303の外側面303dに形成された反射膜によって、ロービーム用白色LED302から出射されたロービーム用の照明光を配光制御できる。 In this configuration, the light distribution of the low-beam illumination light emitted from the low-beam white LED 302 can be controlled by the reflective film formed on the outer surface 303 d of the light guide 303.
 (プロジェクションレンズ305)
 プロジェクションレンズ305は、ロービーム用の照明光を所定の方向へ投光する投光部材であり、楕円ミラー304の第2焦点に、プロジェクションレンズ305の焦点が位置するように配置されている。
(Projection lens 305)
The projection lens 305 is a light projecting member that projects illumination light for low beam in a predetermined direction, and is arranged so that the focal point of the projection lens 305 is located at the second focal point of the elliptical mirror 304.
 ロービーム用白色LED302から出射された光は、楕円ミラー304により反射され、楕円ミラー304の第2焦点に集光された後、プロジェクションレンズ305により屈折され、投光される。 The light emitted from the low-beam white LED 302 is reflected by the elliptical mirror 304, collected at the second focal point of the elliptical mirror 304, and then refracted and projected by the projection lens 305.
 プロジェクションレンズ305の光軸に沿って、当該プロジェクションレンズ305を正面から見たとき、プロジェクションレンズ305の外側にライトガイド303の出射部303bが配置されている。換言すれば、プロジェクションレンズ305の半径は、ライトガイド303の開口部(出射部303b)の半径よりも小さく設計されている。 When the projection lens 305 is viewed from the front along the optical axis of the projection lens 305, the emitting portion 303b of the light guide 303 is disposed outside the projection lens 305. In other words, the radius of the projection lens 305 is designed to be smaller than the radius of the opening (the emission part 303b) of the light guide 303.
 そのため、出射部303bからハイビームの主たる投光方向へ向けて出射した光は、プロジェクションレンズ305を透過せずに外部へ投光される。従って、ハイビーム用の照明光の投光にプロジェクションレンズ305は影響を与えない。 Therefore, the light emitted from the emitting unit 303b in the main light projecting direction of the high beam is projected outside without passing through the projection lens 305. Accordingly, the projection lens 305 does not affect the projection of the high beam illumination light.
 (遮光板306)
 遮光板306は、ロービーム用の照明光の一部を遮光することにより、ロービームに適した配光特性(投光パターン)を実現するための遮光板である。この遮光板306は、楕円ミラー304とプロジェクションレンズ305との間に配置されている。
(Light shielding plate 306)
The light shielding plate 306 is a light shielding plate for realizing a light distribution characteristic (light projection pattern) suitable for the low beam by shielding a part of the illumination light for the low beam. The light shielding plate 306 is disposed between the elliptical mirror 304 and the projection lens 305.
 (金属ベース307)
 金属ベース307は、ハイビーム用白色LED301、ロービーム用白色LED302、ライトガイド303および楕円ミラー304を支える基板であり、その材質は、例えばアルミニウム等の金属である。
(Metal base 307)
The metal base 307 is a substrate that supports the white LED 301 for high beam, the white LED 302 for low beam, the light guide 303, and the elliptical mirror 304, and the material thereof is a metal such as aluminum.
 金属ベース307を熱伝導性の高い物質によって形成することにより、ロービーム用白色LED302から放熱させることができる。このような効果を期待しないのであれば、金属ベース307の材質は特に限定されない。 By forming the metal base 307 with a material having high thermal conductivity, it is possible to dissipate heat from the low-beam white LED 302. If such an effect is not expected, the material of the metal base 307 is not particularly limited.
 (投光パターン)
 図19は、ヘッドライト300を用いて、25m先に設置したスクリーンに光を投光したときの投光パターンを示す図であり、(a)はロービーム用白色LED302のみを点灯した場合の投光パターンを示す図であり、(b)はハイビーム用白色LED301およびロービーム用白色LED302を点灯した場合の投光パターンを示す図である。図19において、投光パターン321Lは、ロービーム用白色LED302のみを点灯した場合の投光パターンである。投光パターン321Hは、ハイビーム用白色LED301のみを点灯した場合の投光パターンである。
(Light emission pattern)
FIG. 19 is a diagram showing a light projection pattern when light is projected onto a screen installed 25 m ahead using the headlight 300, and (a) is a light projection when only the low-beam white LED 302 is turned on. It is a figure which shows a pattern, (b) is a figure which shows the light projection pattern at the time of lighting white LED301 for high beams, and white LED302 for low beams. In FIG. 19, a light projection pattern 321L is a light projection pattern when only the low-beam white LED 302 is turned on. The light projection pattern 321H is a light projection pattern when only the high-beam white LED 301 is turned on.
 このように、投光パターン321Lの投光時も、投光パターン321Hの投光時も、各投光パターンの投光に係る光学系(特に、ライトガイド303、楕円ミラー304、プロジェクションレンズ305)が互いに干渉することなく、所望の投光特性を得ることができている。 As described above, the optical system (particularly, the light guide 303, the elliptical mirror 304, and the projection lens 305) related to the projection of each projection pattern, both when the projection pattern 321L and the projection pattern 321H are projected. Can obtain desired light projecting characteristics without interfering with each other.
 なお、昼間走行時において、ハイビーム用白色LED301を弱く点灯することにより、投光パターン321Lの輝度を下げて投光することによって、ヘッドライト300の周囲を弱く照明させれば、ヘッドライト300を、DRL(Daytime Running Lamps)(日中走行用ライト)として利用することができる。 During daytime running, if the surroundings of the headlight 300 are weakly illuminated by lowering the brightness of the light projection pattern 321L by illuminating the high-beam white LED 301 weakly, the headlight 300 is It can be used as DRL (Daytime Running Lamps).
 <ヘッドライト300の効果>
 以上のように、ヘッドライト300では、ハイビーム用の照明光を投光するライトガイド303の内部空間にロービーム用白色LED302が配置されている。このロービーム用白色LED302から出射された光は、ライトガイド303を透過し、楕円ミラー304によって反射された後、プロジェクションレンズ305によって外部へ投光される。
<Effect of headlight 300>
As described above, in the headlight 300, the low-beam white LED 302 is disposed in the internal space of the light guide 303 that projects high-beam illumination light. The light emitted from the low-beam white LED 302 is transmitted through the light guide 303, reflected by the elliptical mirror 304, and then projected to the outside by the projection lens 305.
 それゆえ、ハイビーム用の照明光を投光する光学系と、ロービーム用の照明光を投光する光学系とを組み合わせたコンパクトな照明装置を実現できる。 Therefore, it is possible to realize a compact illumination device that combines an optical system that projects illumination light for high beams and an optical system that projects illumination light for low beams.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional Notes]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 本発明は、車両用前照灯、車両以外の移動物体の照明装置や、サーチライト、プロジェクターなど様々な照明装置として利用できる。 The present invention can be used as various lighting devices such as a vehicle headlamp, a lighting device for a moving object other than a vehicle, a search light, and a projector.
1    照明装置
11   レーザユニット
11B  LED(第1の光源)
11G  LED(第1の光源)
11R  LED(第1の光源)
11a  LED(第1の光源)
12   発光部(第1の光源)
13   ライトガイド(導光部材)
13a  入射部
14   反射フィルム(反射部)
15   遮光板(投光用部材)
200  ヘッドライト(車両用前照灯)
202  発光部(第1の光源)
203  ライトガイド(導光部材)
203a 底部開口部(入射部)
204  楕円ミラー(反射部)
300  ヘッドライト(車両用前照灯)
301  ハイビーム用白色LED(第1の光源)
302  ロービーム用白色LED(第2の光源)
303  ライトガイド(導光部材)
303a 底部開口部(入射部)
304  楕円ミラー(反射部)
305  プロジェクションレンズ(投光用部材)
306  遮光板(投光用部材)
1 Illumination Device 11 Laser Unit 11B LED (First Light Source)
11G LED (first light source)
11R LED (first light source)
11a LED (first light source)
12 Light emitting section (first light source)
13 Light guide (light guide member)
13a Incident part 14 Reflective film (reflective part)
15 Shading plate (light projecting member)
200 Headlight (vehicle headlamp)
202 Light emitting unit (first light source)
203 Light guide (light guide member)
203a Bottom opening (incident part)
204 Elliptical mirror (reflection part)
300 Headlight (vehicle headlamp)
301 White LED for high beam (first light source)
302 White LED for low beam (second light source)
303 Light guide (light guide member)
303a Bottom opening (incident part)
304 Elliptical mirror (reflection part)
305 Projection lens (projection member)
306 Shading plate (light projecting member)

Claims (19)

  1.  第1の光源と、
     上記第1の光源から出射された光を入射する入射部を有する導光部材とを備え、
     上記導光部材は、上記入射部から入射した光をその内部において伝搬する過程の少なくとも一部において当該光を外部へ放出するものであり、
     上記導光部材の厚さは、上記入射部から遠ざかるにつれて小さくなっていることを特徴とする照明装置。
    A first light source;
    A light guide member having an incident portion for entering the light emitted from the first light source,
    The light guide member emits the light to the outside in at least a part of the process of propagating the light incident from the incident portion in the inside,
    The thickness of the said light guide member is small as it distances from the said incident part, The illuminating device characterized by the above-mentioned.
  2.  上記導光部材を、当該導光部材から出射される光の主たる進行方向に対して垂直な平面で切断したときの断面形状は、環状またはその部分形状を含んでいることを特徴とする請求項1に記載の照明装置。 The cross-sectional shape when the light guide member is cut along a plane perpendicular to the main traveling direction of light emitted from the light guide member includes an annular shape or a partial shape thereof. The lighting device according to 1.
  3.  上記導光部材の少なくとも一部は、湾曲していることを特徴とする請求項2に記載の照明装置。 The lighting device according to claim 2, wherein at least a part of the light guide member is curved.
  4.  上記導光部材は、カップ形状またはその部分形状を有しており、
     上記入射部は、上記カップ形状またはその部分形状の底部に形成されていることを特徴とする請求項1~3のいずれか1項に記載の照明装置。
    The light guide member has a cup shape or a partial shape thereof,
    The lighting device according to any one of claims 1 to 3, wherein the incident portion is formed on a bottom portion of the cup shape or a partial shape thereof.
  5.  上記導光部材は、回転楕円体の一部の形状を外形として有していることを特徴とする請求項1~3のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 3, wherein the light guide member has a part of a spheroid as an outer shape.
  6.  上記導光部材は、上記回転楕円体の2つの焦点の中間点を含む平面であって上記回転楕円体の回転軸に垂直な平面で上記回転楕円体を切断したうちの片側の形状を外形として有していることを特徴とする請求項5に記載の照明装置。 The light guide member is a plane including an intermediate point between the two focal points of the spheroid, and a shape on one side of the spheroid cut by a plane perpendicular to the rotation axis of the spheroid is defined as an outer shape. The lighting device according to claim 5, wherein the lighting device is provided.
  7.  上記導光部材の、上記入射部以外の一部の面が反射面として機能するか、または、上記一部の面と対向する反射面を有する反射部が配されていることを特徴とする請求項1~6のいずれか1項に記載の照明装置。 A part of the light guide member other than the incident part functions as a reflection surface, or a reflection part having a reflection surface facing the part of the surface is provided. Item 7. The lighting device according to any one of Items 1 to 6.
  8.  上記一部の面と上記反射部の上記反射面との間には隙間が形成されていることを特徴とする請求項7に記載の照明装置。 The illumination device according to claim 7, wherein a gap is formed between the partial surface and the reflective surface of the reflective portion.
  9.  上記導光部材によって規定される空間内に配置された、上記第1の光源とは異なる第2の光源をさらに備え、
     上記導光部材は、上記第2の光源から出射された光を反射する反射面を有していることを特徴とする請求項1~6のいずれか1項に記載の照明装置。
    A second light source different from the first light source, disposed in the space defined by the light guide member;
    The lighting device according to any one of claims 1 to 6, wherein the light guide member has a reflecting surface that reflects light emitted from the second light source.
  10.  上記導光部材によって規定される空間内に配置された、上記第1の光源とは異なる第2の光源と、
     上記第2の光源から出射された光を反射する反射鏡とをさらに備え、
     上記導光部材は、上記第2の光源から出射された光を透過させることができ、上記反射鏡によって規定される空間内に配置されていることを特徴とする請求項1~6のいずれか1項に記載の照明装置。
    A second light source different from the first light source, disposed in a space defined by the light guide member;
    A reflecting mirror that reflects the light emitted from the second light source;
    The light guide member is capable of transmitting light emitted from the second light source, and is disposed in a space defined by the reflecting mirror. The lighting device according to item 1.
  11.  上記反射鏡が有する反射面と、当該反射面と対向する、上記導光部材の少なくとも一部の面との間には隙間が形成されていることを特徴とする請求項10に記載の照明装置。 The lighting device according to claim 10, wherein a gap is formed between a reflecting surface of the reflecting mirror and at least a part of the light guide member facing the reflecting surface. .
  12.  上記入射部に沿って複数の上記第1の光源または当該複数の第1の光源から導光された光の出射部が配置されていることを特徴とする請求項1~11のいずれか1項に記載の照明装置。 12. A plurality of the first light sources or light emitting portions guided from the plurality of first light sources are arranged along the incident portion. The lighting device described in 1.
  13.  上記第1の光源は、発光ダイオードまたはレーザ素子、もしくは、励起光によって蛍光を発する発光体であることを特徴とする請求項1~12のいずれか1項に記載の照明装置。 13. The illumination device according to claim 1, wherein the first light source is a light emitting diode, a laser element, or a light emitter that emits fluorescence by excitation light.
  14.  上記第2の光源は、発光ダイオードまたはレーザ素子、もしくは、励起光によって蛍光を発する発光体であることを特徴とする請求項9~11のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 9 to 11, wherein the second light source is a light emitting diode, a laser element, or a light emitter that emits fluorescence by excitation light.
  15.  請求項1~14のいずれか1項に記載の照明装置を備えることを特徴とする車両用前照灯。 A vehicle headlamp comprising the lighting device according to any one of claims 1 to 14.
  16.  上記導光部材によって規定される空間内に配置された、上記第1の光源とは異なる第2の光源と、
     上記第2の光源から出射された光を、すれ違い用前照灯の配光特性を有する光として外部へ投光する投光用部材とをさらに備えることを特徴とする請求項15項に記載の車両用前照灯。
    A second light source different from the first light source, disposed in a space defined by the light guide member;
    The light projecting member according to claim 15, further comprising: a light projecting member that projects the light emitted from the second light source to the outside as light having a light distribution characteristic of a passing headlamp. Vehicle headlamp.
  17.  上記導光部材から投光される光は、走行用前照灯の配光特性を有していることを特徴とする請求項15または16に記載の車両用前照灯。 The vehicle headlamp according to claim 15 or 16, wherein the light projected from the light guide member has a light distribution characteristic of a traveling headlamp.
  18.  日中走行用ライトであることを特徴とする請求項15~17のいずれか1項に記載の車両用前照灯。 The vehicle headlamp according to any one of claims 15 to 17, wherein the vehicle headlamp is a daytime running light.
  19.  光源から出射された光を入射する入射部を有し、当該入射部から入射した光をその内部において伝搬する過程の少なくとも一部において当該光を外部へ放出する導光部材であり、
     上記導光部材の厚さは、上記入射部から遠ざかるにつれて小さくなっていることを特徴とする導光部材。
    A light guide member that includes an incident portion that receives light emitted from a light source, and that emits the light to the outside in at least part of a process of propagating light incident from the incident portion in the interior;
    The thickness of the said light guide member is small as it distances from the said incident part, The light guide member characterized by the above-mentioned.
PCT/JP2013/056579 2012-03-22 2013-03-11 Illumination device, vehicle headlight, and light-guiding member WO2013141053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-066192 2012-03-22
JP2012066192A JP2013197057A (en) 2012-03-22 2012-03-22 Lighting device, vehicular headlight, and light guide member

Publications (1)

Publication Number Publication Date
WO2013141053A1 true WO2013141053A1 (en) 2013-09-26

Family

ID=49222513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056579 WO2013141053A1 (en) 2012-03-22 2013-03-11 Illumination device, vehicle headlight, and light-guiding member

Country Status (2)

Country Link
JP (1) JP2013197057A (en)
WO (1) WO2013141053A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143622A (en) * 2015-02-04 2016-08-08 株式会社タムラ製作所 Led lighting device, projector and headlight

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078034A (en) * 2006-09-22 2008-04-03 Stanley Electric Co Ltd Vehicular lighting tool
WO2009001272A1 (en) * 2007-06-27 2008-12-31 Koninklijke Philips Electronics N.V. Light output device with light guide with a truncated cone shape
JP2010067372A (en) * 2008-09-08 2010-03-25 Koito Mfg Co Ltd Infrared light irradiation lamp for vehicle
JP2010086944A (en) * 2008-09-08 2010-04-15 Koito Mfg Co Ltd Vehicular infrared light irradiation lamp
JP2010212203A (en) * 2009-03-12 2010-09-24 Stanley Electric Co Ltd Lamp fitting for vehicle
JP2011187162A (en) * 2010-03-04 2011-09-22 Stanley Electric Co Ltd Vehicular lamp
JP2012009355A (en) * 2010-06-25 2012-01-12 Sharp Corp Light-emitting device, lighting device, and vehicular headlight

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078034A (en) * 2006-09-22 2008-04-03 Stanley Electric Co Ltd Vehicular lighting tool
WO2009001272A1 (en) * 2007-06-27 2008-12-31 Koninklijke Philips Electronics N.V. Light output device with light guide with a truncated cone shape
JP2010067372A (en) * 2008-09-08 2010-03-25 Koito Mfg Co Ltd Infrared light irradiation lamp for vehicle
JP2010086944A (en) * 2008-09-08 2010-04-15 Koito Mfg Co Ltd Vehicular infrared light irradiation lamp
JP2010212203A (en) * 2009-03-12 2010-09-24 Stanley Electric Co Ltd Lamp fitting for vehicle
JP2011187162A (en) * 2010-03-04 2011-09-22 Stanley Electric Co Ltd Vehicular lamp
JP2012009355A (en) * 2010-06-25 2012-01-12 Sharp Corp Light-emitting device, lighting device, and vehicular headlight

Also Published As

Publication number Publication date
JP2013197057A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
US9863595B2 (en) Light-emitting unit with optical plate reflecting excitation light and transmitting fluorescent light, and light-emitting device, illumination device, and vehicle headlight including the unit
US9291759B2 (en) Illumination device and vehicle headlight
US8733957B2 (en) Light emitting device, vehicle headlamp, and illumination device
WO2013094590A1 (en) Light emitting device, vehicle light fitting and vehicle
KR102154645B1 (en) Vehicle headlight
EP2534411B1 (en) Lamp comprising a phosphor, radiation source, optical system and heatsink
JP6258083B2 (en) Light emitting unit, light emitting device, lighting device, and vehicle headlamp
JP5888015B2 (en) Vehicle lamp and vehicle
JP6509480B2 (en) Lighting device
JP6352429B2 (en) Light emitting device, lighting device, vehicle headlamp and control system
US8371706B2 (en) Light projection structure and lighting apparatus
US10281103B2 (en) Body and lighting tool for vehicle
JP5812283B2 (en) LIGHT EMITTING DEVICE, VEHICLE LIGHT, AND VEHICLE
JP2014010918A (en) Luminaire and vehicle headlight
JP5891858B2 (en) Light emitting device and vehicle lamp
WO2013141053A1 (en) Illumination device, vehicle headlight, and light-guiding member
JP2014170758A (en) Lighting device and vehicle headlight
JP5895331B2 (en) LIGHT EMITTING DEVICE, VEHICLE LIGHT, AND VEHICLE
JP5896212B2 (en) LIGHT EMITTING DEVICE, VEHICLE LIGHT, AND VEHICLE
JP2004363060A (en) Lamp fitting
JP6072447B2 (en) Lighting device and vehicle headlamp
JP2006092887A (en) Lamp
JP2015005389A (en) Vehicle lighting appliance
JP2013033622A (en) Lamp fitting
KR20170023592A (en) Lamp for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13763583

Country of ref document: EP

Kind code of ref document: A1