WO2013140879A1 - 流体圧増減圧機及び作業機械 - Google Patents

流体圧増減圧機及び作業機械 Download PDF

Info

Publication number
WO2013140879A1
WO2013140879A1 PCT/JP2013/052728 JP2013052728W WO2013140879A1 WO 2013140879 A1 WO2013140879 A1 WO 2013140879A1 JP 2013052728 W JP2013052728 W JP 2013052728W WO 2013140879 A1 WO2013140879 A1 WO 2013140879A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydraulic
output
input
cylinder
Prior art date
Application number
PCT/JP2013/052728
Other languages
English (en)
French (fr)
Inventor
塚根 浩一郎
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012068369A external-priority patent/JP5972625B2/ja
Priority claimed from JP2012068370A external-priority patent/JP5985222B2/ja
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN201380006334.3A priority Critical patent/CN104093979B/zh
Priority to EP13763770.8A priority patent/EP2829730B1/en
Priority to KR1020147020539A priority patent/KR101686595B1/ko
Publication of WO2013140879A1 publication Critical patent/WO2013140879A1/ja
Priority to US14/478,035 priority patent/US20140366717A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F13/00Pressure exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • F15B11/032Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of fluid-pressure converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1466Hollow piston sliding over a stationary rod inside the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/50Monitoring, detection and testing means for accumulators
    • F15B2201/51Pressure detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/214Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being hydrotransformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7055Linear output members having more than two chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7107Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being mechanically linked
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member
    • F15B2211/761Control of a negative load, i.e. of a load generating hydraulic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the present invention relates to a fluid pressure booster / depressor using a fluid pressure cylinder, and a working machine including the fluid pressure booster / depressor.
  • a high water pressure supply device that generates high pressure water using low pressure air is known (see, for example, Patent Document 1).
  • This high water pressure supply device can connect the piston of the primary side pneumatic actuator and the piston of the secondary side hydraulic actuator via a single piston rod, and can interlock the primary side pneumatic actuator and the secondary side hydraulic actuator Make it Then, by reciprocating the piston of the primary pneumatic actuator with the low pressure air, the piston of the secondary hydraulic actuator is reciprocated simultaneously, and high pressure water is continuously supplied from the low pressure air at a fixed pressure conversion ratio.
  • the high water pressure supply device of Patent Document 1 only generates water at a pressure higher than the pressure of air, and can not generate water at a pressure lower than the air pressure.
  • the present invention provides a working machine including a fluid pressure booster / depressor capable of continuously supplying an output pressure including a pressure higher than an input pressure and a pressure lower than the input pressure.
  • the purpose is to
  • a fluid pressure booster / depressor capable of continuously supplying an output pressure, wherein one fluid pressure cylinder or a plurality of interlocking fluids are provided. At least one input pressure chamber to which an input pressure is applied, a pressure higher than the input pressure, and at least one output at which an output pressure including a pressure lower than the input pressure is generated from a plurality of pressure chambers in the pressure cylinder A controller is provided to switchably select the pressure chamber, and a flow control valve that brings the input pressure chamber into communication with the input and the output pressure chamber with the output.
  • the working machine recovers and recovers the main cylinder for driving the working body, the assist cylinder for assisting the main cylinder, and the potential energy of the working body as fluid pressure energy.
  • At least one input pressure to which an input pressure is applied from an accumulator that makes fluid pressure energy available for driving the assist cylinder, and a plurality of pressure chambers in one fluid pressure cylinder or a plurality of interlocking fluid pressure cylinders A control device for switchably selecting a chamber, an output pressure higher than an input pressure, and at least one output pressure chamber in which an output pressure including an output pressure lower than the input pressure is generated;
  • a fluid pressure booster comprising a flow control valve communicating the input with the output pressure chamber and the output; -Pressure decompressor receives as input the accumulator, and output the assist cylinder.
  • the present invention provides a working machine including a fluid pressure booster / depressor capable of continuously supplying an output pressure including a pressure higher than the input pressure and a pressure lower than the input pressure, and a fluid pressure booster / depressor. be able to.
  • FIG. 1 is a hydraulic circuit diagram showing a configuration example of a hydraulic pressure increase and decrease device according to an embodiment of the present invention. It is a figure (the 1) which shows the operation state of the hydraulic circuit diagram of FIG. It is a figure (the 2) which shows the operation state of the hydraulic circuit diagram of FIG. It is a figure (the 3) which shows the operation state of the hydraulic circuit diagram of FIG.
  • FIG. 6 is a hydraulic circuit diagram showing another configuration example of the hydraulic pressure increase and decrease device according to the embodiment of the present invention.
  • FIG. 7 is a hydraulic circuit diagram showing still another configuration example of the hydraulic pressure increase and decrease device according to the embodiment of the present invention. It is an enlarged view of a hydraulic cylinder and a piston rod of a hydraulic pressure increase and decrease device shown in FIG.
  • FIG. 2 is a cross-sectional view of a boom cylinder including an assist cylinder.
  • FIG. 1 is a hydraulic circuit diagram showing a hydraulic pressure increase and decrease device 100 according to an embodiment of the present invention.
  • the hydraulic pressure increase and decrease machine 100 mainly includes hydraulic cylinders 1 and 2, a piston rod 3, three proximity sensors 4C, 4L and 4R, a control device 5, flow control valves 6H, 6R, 7R and 7H, and And an output direct coupling switching valve 8.
  • a hydraulic actuator the combination of the hydraulic cylinders 1, 2 and the piston rod 3 will be referred to as a hydraulic actuator.
  • the hydraulic cylinder 1 is an example of a fluid pressure cylinder, and has a cylindrical piston 1P separating a cylindrical head side pressure chamber 1H and a cylindrical rod side pressure chamber 1R.
  • the hydraulic cylinder 2 is an example of a fluid pressure cylinder, and has a cylindrical piston 2P separating a cylindrical head side pressure chamber 2H and a cylindrical rod side pressure chamber 2R.
  • the piston 1 P of the hydraulic cylinder 1 and the piston 2 P of the hydraulic cylinder 2 are connected via the piston rod 3 and integrally slide inside the hydraulic cylinder 1 and the hydraulic cylinder 2.
  • the cylinder inner diameter of the hydraulic cylinder 1 is smaller than the cylinder inner diameter of the hydraulic cylinder 2.
  • the rod diameter of the piston rod 3 is constant from the connecting portion with the piston 1P to the connecting portion with the piston 2P. Making the rod diameter constant has the effect of shortening the distance between the hydraulic cylinder 1 and the hydraulic cylinder 2. This is because part of the piston rod 3 can be made to enter both in the hydraulic cylinder 1 and in the hydraulic cylinder 2.
  • the rod diameter of the piston rod 3 may be different between the connecting portion with the piston 1P and the connecting portion with the piston 2P. Different rod diameters have the effect of enabling the pressure receiving areas of the rod-side pressure chambers 1R and 2R to be set more flexibly.
  • the proximity sensor 4L is a sensor for detecting that the volume of the head-side pressure chamber 1H of the hydraulic cylinder 1 has become the allowable minimum value. Specifically, the proximity sensor 4L installed at the end of the hydraulic cylinder 1 on the head side pressure chamber 1H side detects that the piston 1P has approached within a predetermined distance range, so that the piston 1P becomes the hydraulic cylinder 1 It detects that one end of has been reached.
  • the proximity sensor 4R is a sensor for detecting that the volume of the head-side pressure chamber 2H of the hydraulic cylinder 2 has become the allowable minimum value.
  • the proximity sensor 4R installed at the end of the hydraulic cylinder 2 on the head side pressure chamber 2H side detects that the piston 2P has approached within a predetermined distance range, so that the piston 2P becomes the hydraulic cylinder 2 It detects that one end of has been reached.
  • Proximity sensor 4C is located on the side of head pressure chamber 1H of hydraulic cylinder 1 when the position of piston 1P is viewed from the stroke center position of hydraulic cylinder 1, and the position of piston 2P is hydraulically viewed from the stroke center position of hydraulic cylinder 2
  • the position of the piston 1P is on the side of the rod-side pressure chamber 1R of the hydraulic cylinder 1 as viewed from the stroke center position of the hydraulic cylinder 1 and the position of the piston 2P is on the side of the rod-side pressure chamber 2R of the cylinder 2
  • the proximity sensor 4C installed between the hydraulic cylinder 1 and the hydraulic cylinder 2 detects that a member at a predetermined position of the piston rod 3 has approached within a predetermined distance range, whereby the piston 1P is detected. Is on either side as viewed from the stroke center position of the hydraulic cylinder 1, and on which side the piston 2P is viewed from the stroke center position of the hydraulic cylinder 2 is detected.
  • hydraulic pressure increase / decrease machine 100 may employ
  • the control device 5 is a device for controlling the movement of the hydraulic pressure increase and decrease device 100, and is a computer including, for example, a central processing unit (CPU), a random access memory (RAM), and a read only memory (ROM). Specifically, the control device 5 controls the movement of the flow control valves 6H, 6R, 7R, 7H and the input / output direct switching valve 8 according to the desired output pressure.
  • the desired output pressure is determined according to the hydraulic oil supply destination, for example, determined according to the operator's input via an input device (not shown). Further, the control device 5 controls the movement of the flow control valves 6H, 6R, 7R, 7H based on the outputs of the proximity sensors 4L, 4R, 4C. This is to allow the desired output pressure to be continuously supplied to the supply destination while reciprocating the pistons 1 P, 2 P and the piston rod 3.
  • the flow control valve 6H is a valve for controlling the flow of hydraulic fluid flowing into and out of the head-side pressure chamber 1H of the hydraulic cylinder 1.
  • the flow control valve 6R is a valve for controlling the flow of hydraulic fluid flowing into and out of the rod-side pressure chamber 1R of the hydraulic cylinder 1.
  • the flow control valve 7R is a valve for controlling the flow of hydraulic fluid flowing into and out of the rod-side pressure chamber 2R of the hydraulic cylinder 2.
  • the flow control valve 7H is a valve for controlling the flow of hydraulic fluid flowing into and out of the head-side pressure chamber 2H of the hydraulic cylinder 2.
  • the flow control valve 6H is connected to the hydraulic oil supply source SR as an input through the conduit C11 and the conduit C1, and the flow control valve 6H is an output of the hydraulic fluid as an output through the conduit C21 and the conduit C2. It is connected to the supply destination SD, and is connected to the hydraulic oil tank through the conduit C31 and the conduit C3. In addition, the flow control valve 6H is connected to the head-side pressure chamber 1H of the hydraulic cylinder 1 through the conduit C1H.
  • the flow control valve 6R is connected to the supply source SR through the conduit C12 and the conduit C1, is connected to the supply destination SD through the conduit C22 and the conduit C2, and is a hydraulic oil tank through the conduit C32 and the conduit C3.
  • the flow control valve 6R is connected to the rod-side pressure chamber 1R of the hydraulic cylinder 1 through the conduit C1R.
  • the flow control valve 7R is connected to the supply source SR through the conduit C13 and the conduit C1, is connected to the supply destination SD through the conduit C23 and the conduit C2, and is a hydraulic oil tank through the conduit C33 and the conduit C3.
  • the flow control valve 7R is connected to the rod-side pressure chamber 2R of the hydraulic cylinder 2 through the conduit C2R.
  • the flow control valve 7H is connected to the supply source SR through the conduit C14 and the conduit C1, is connected to the supply destination SD through the conduit C24 and the conduit C2, and is a hydraulic oil tank through the conduit C34 and the conduit C3.
  • the flow control valve 7H is connected to the head-side pressure chamber 2H of the hydraulic cylinder 2 through the conduit C2H.
  • the input / output direct connection switching valve 8 is a valve that switches whether the input and output of the hydraulic pressure increase and decrease device 100 are directly connected.
  • the input / output direct connection switching valve 8 is connected to the supply source SR through the pipe C25 and the pipe C1, and is connected to the supply SD through the pipe C26 and the pipe C2.
  • the input / output direct connection switching valve 8 may be omitted.
  • FIG. 2 is a diagram showing a state in which the output pressure higher than the input pressure is supplied to the supply destination SD at a predetermined pressure increase ratio while moving the piston rod 3 in the direction indicated by the arrow AR1.
  • FIG. 3 is a diagram showing a state in which the output pressure higher than the input pressure is supplied to the supply destination SD at the same predetermined pressure increase ratio as in FIG. 2 while moving the piston rod 3 in the direction indicated by the arrow AR2. .
  • the control device 5 of the hydraulic pressure increase and decrease device 100 transmits a control signal to the flow control valve 6R to cause the conduit C1R and the conduit C32 to communicate with each other. Further, the control device 5 transmits a control signal to the flow control valve 7R to cause the conduit C2R and the conduit C33 to communicate with each other. Further, the control device 5 transmits a control signal to the flow control valve 7H to connect the conduit C2H and the conduit C14. The control device 5 does not transmit a control signal to the flow control valve 6H in order to connect the conduit C1H and the conduit C21.
  • the hydraulic oil from the source SR flows into the head-side pressure chamber 2H through the conduits C1, C14, and C2H, and the piston 2P Press in the direction indicated by arrow AR1.
  • the hydraulic oil in the head pressure chamber 1H generates an output pressure higher than the input pressure at a predetermined pressure increase ratio, and reaches the supply destination SD through the conduits C1H, C21, and C2.
  • the head side pressure chamber 2H becomes an input pressure chamber
  • the head side pressure chamber 1H becomes an output pressure chamber.
  • the predetermined pressure increase ratio corresponds to the ratio of the pressure receiving area of the piston 1P to the pressure receiving area of the piston 2P.
  • the pressure receiving area of the piston 2P corresponds to the area of the circular surface of the piston 2P
  • the pressure receiving area of the piston 1P corresponds to the area of the circular surface of the piston 1P.
  • part of the hydraulic oil in the rod-side pressure chamber 2R flows into the rod-side pressure chamber 1R through the conduits C2R, C33, C3, C32, and C1R.
  • the piston 1P moves in the direction of the arrow AR1 to compensate for the shortage of hydraulic oil caused by the increase in volume of the rod-side pressure chamber 1R.
  • the remaining portion of the hydraulic oil in the rod-side pressure chamber 2R is discharged to the hydraulic oil tank through the conduits C2R, C33, and C3. In this case, the hydraulic oil in each of the rod-side pressure chamber 1R and the rod-side pressure chamber 2R does not affect the output pressure.
  • the control device 5 controls the flow control valve so that supply of the desired output pressure is continued.
  • the state of 6H, 6R, 7R, 7H is switched to the state shown in FIG.
  • the control device 5 of the hydraulic pressure increase and decrease device 100 transmits a control signal to the flow control valve 6H to connect the conduit C1H and the conduit C31. Further, the control device 5 stops the transmission of the control signal to the flow control valve 6R, and connects the conduit C1R and the conduit C22. Further, the control device 5 transmits a control signal to the flow control valve 7R to connect the conduit C2R and the conduit C13. Further, the control device 5 transmits a control signal to the flow control valve 7H to connect the conduit C2H and the conduit C34.
  • the hydraulic oil from the source SR flows into the rod-side pressure chamber 2R through the conduits C1, C13, and C2R, and the same input pressure as in FIG.
  • the piston 2P is pushed in the direction indicated by the arrow AR2.
  • the hydraulic oil in the rod-side pressure chamber 1R generates an output pressure higher than the input pressure at a predetermined pressure increase ratio equivalent to that in FIG. 2, and passes through the conduits C1R, C22, and C2 to the supply destination SD.
  • the rod side pressure chamber 2R becomes an input pressure chamber
  • the rod side pressure chamber 1R becomes an output pressure chamber.
  • the predetermined pressure increase ratio corresponds to the ratio of the pressure receiving area of the piston 1P to the pressure receiving area of the piston 2P.
  • the pressure receiving area of the piston 2P corresponds to the area (the area of the annular portion) obtained by subtracting the area of the circular cross section of the piston rod 3 from the area of the circular surface of the piston 2P.
  • the pressure receiving area of the piston 1P corresponds to the area (the area of the annular portion) obtained by subtracting the area of the circular cross section of the piston rod 3 from the area of the circular surface of the piston 1P.
  • a part of the hydraulic oil in the head pressure chamber 2H flows into the head pressure chamber 1H through the conduits C2H, C34, C3, C31, and C1H.
  • the piston 1P moves in the direction of the arrow AR2 to compensate for the shortage of hydraulic oil caused by the increase in the volume of the head-side pressure chamber 1H.
  • the remaining portion of the hydraulic oil in the head side pressure chamber 2H is discharged to the hydraulic oil tank through the conduits C2H, C34, and C3. In this case, the hydraulic oil in each of the head side pressure chamber 1H and the head side pressure chamber 2H does not affect the output pressure.
  • the control device 5 controls the flow control valve so that supply of the desired output pressure is continued.
  • the state of 6H, 6R, 7R, 7H is switched to the state shown in FIG.
  • the hydraulic pressure increase / decrease pump 100 continuously supplies the output pressure higher than the input pressure to the supply destination SD at a predetermined pressure increase ratio. Can.
  • the hydraulic pressure increasing and decreasing device 100 sets the head side pressure chamber 2H as an input pressure chamber and sets the head side pressure chamber 1H as an output pressure chamber. Then, when moving the piston rod 3 in the direction indicated by the arrow AR2, the rod side pressure chamber 2R is set as an input pressure chamber, and the rod side pressure chamber 1R is set as an output pressure chamber. As a result, the hydraulic pressure increase and decrease device 100 can continuously supply an output pressure higher than the input pressure at an equal pressure increase ratio, even when the piston rod 3 moves in any direction.
  • the hydraulic pressure increasing and decreasing device 100 selects one or more other pressure chambers as the input pressure chamber and the output pressure chamber, an output pressure different from the input pressure is obtained at a predetermined pressure conversion ratio including a pressure reduction ratio. It may be possible to supply continuously.
  • the control device 5 When starting the movement of the pistons 1P and 2P, the control device 5 first starts the movement of the pistons 1P and 2P in the direction in which the piston stroke can be taken, considering the current position information of the pistons 1P and 2P. Let's do it.
  • FIG. 4 is a view showing a state in which the input pressure of the supply source SR is supplied as it is to the supply destination SD as it is without moving the piston rod 3.
  • the control device 5 transmits a control signal to the flow control valve 6H to connect the conduit C1H and the conduit C31. Further, the control device 5 transmits a control signal to the flow control valve 6R to cause the conduit C1R and the conduit C32 to communicate with each other. Further, the control device 5 transmits a control signal to the flow control valve 7R to cause the conduit C2R and the conduit C33 to communicate with each other. Further, the control device 5 transmits a control signal to the flow control valve 7H to connect the conduit C2H and the conduit C34.
  • These controls are to prevent the hydraulic oil from the supply source SR or the supply destination SD from flowing into the head side pressure chambers 1H and 2H and the rod side pressure chambers 1R and 2R.
  • control device 5 transmits a control signal to the input / output direct connection switching valve 8 to connect the pipe C25 and the pipe C26, thereby connecting the pipe C1 and the pipe C2.
  • the hydraulic pressure increase and decrease device 100 can supply the input pressure of the supply source SR as it is to the supply destination SD as the output pressure.
  • the hydraulic pressure increase and decrease device 100 causes the hydraulic oil to flow from the supply source SR to the supply destination SD, and the output pressure (in the conduit C2) in accordance with the change in the input pressure (pressure in the conduit C1). Even if the pressure) is changed, the hydraulic oil flows from the supply destination SD to the supply source SR, and the input pressure (pressure in the conduit C1) is changed according to the change in the output pressure (pressure in the conduit C2). Good.
  • FIG. 5 is a hydraulic circuit diagram showing a configuration example of the hydraulic pressure increase and decrease device 100A, which corresponds to FIG.
  • the hydraulic pressure increase and decrease machine 100A differs from the hydraulic pressure increase and decrease machine 100 of FIG. 1 in that the flow control valve 6R is omitted and the rod side pressure chamber 1R of the hydraulic cylinder 1 is directly connected to the hydraulic oil tank. It is common. Therefore, the differences will be described in detail while omitting the description of the common parts.
  • the rod-side pressure chamber 1R of the hydraulic cylinder 1 is always connected to the hydraulic oil tank through the conduits C1R, C32 and C3. Therefore, the hydraulic oil from the supply source SR does not flow into the rod-side pressure chamber 1R, and the hydraulic oil in the rod-side pressure chamber 1R does not reach the supply destination SD.
  • the hydraulic pressure increasing and decreasing device 100A can not select the rod-side pressure chamber 1R as an input pressure chamber or an output pressure chamber, so the number of achievable pressure conversion ratios is smaller than that of the hydraulic pressure increasing and decreasing device 100.
  • the hydraulic pressure increase and decrease device 100A can realize the same movement as the hydraulic pressure increase and decrease device 100 with a simpler configuration than the hydraulic pressure increase and decrease device 100.
  • the rod-side pressure chamber 1R is always connected to the hydraulic fluid tank, but instead of the rod-side pressure chamber 1R, the head-side pressure chamber 1H, 2H or the rod-side pressure chamber 2R is used.
  • the head-side pressure chamber 1H, 2H or the rod-side pressure chamber 2R is used.
  • a configuration in which any one is always connected to the hydraulic oil tank may be employed.
  • FIG. 6 is a hydraulic circuit diagram showing a configuration example of the hydraulic pressure increase and decrease device 100B, which corresponds to FIG.
  • the hydraulic pressure increase and decrease device 100B differs from the hydraulic pressure increase and decrease device 100 of FIG. 1 in that the flow control valve 6R is omitted and the rod side pressure chamber 1R of the hydraulic cylinder 1 is directly connected to the conduit C2R. It is common. Therefore, the differences will be described in detail while omitting the description of the common parts.
  • the rod-side pressure chamber 1R of the hydraulic cylinder 1 is always connected to the rod-side pressure chamber 2R through the conduits C1R and C2R. Therefore, the hydraulic oil from the supply source SR does not flow into the rod side pressure chamber 1R alone, and when the hydraulic oil from the supply source SR flows into the rod side pressure chamber 1R, it always enters the rod side pressure chamber 2R. Also, hydraulic oil from the supply source SR flows in. Also, when all the hydraulic oil in the rod side pressure chamber 1R does not reach the supply destination SD, and when the hydraulic oil in the rod side pressure chamber 1R reaches the supply destination SD, the rod side pressure chamber 2R must always be in the rod side pressure chamber 2R. The hydraulic oil from the rod side pressure chamber 1R flows in.
  • the hydraulic pressure increase / decreaser 100B can not select the rod side pressure chamber 1R alone as the input pressure chamber or the output pressure pressure chamber, the number of achievable pressure conversion ratios is smaller than that of the hydraulic pressure increase / decrease pressure device 100. .
  • the hydraulic pressure increase and decrease device 100B can realize the same movement as the hydraulic pressure increase and decrease device 100 with a simpler configuration than the hydraulic pressure increase and decrease device 100.
  • the rod-side pressure chamber 1R is always connected to the rod-side pressure chamber 2R. Instead, the rod-side pressure chamber 1R is always connected to one or more other pressure chambers. Configurations may be employed. Also, instead of always connecting the rod-side pressure chamber 1R to the rod-side pressure chamber 2R, any one of the head-side pressure chamber 1H, 2H or the rod-side pressure chamber 2R is always used as one or more other pressure chambers. A connection configuration may be employed.
  • FIG. 7A is an enlarged view of the hydraulic cylinders 1, 2 and the piston rod 3 of the hydraulic pressure increase and decrease device 100 shown in FIG. 1
  • FIG. 7B is a specification table showing details of the hydraulic cylinders 1, 2.
  • FIG. 7C is a table which shows the detail of the pressure conversion ratio which the hydraulic pressure increase / decrease machine 100 can implement
  • FIG. 7D is a graph which shows the pressure conversion ratio in FIG. 7C, and the relationship of the stage.
  • the pressure receiving area of the head side pressure chamber 1H is about 2.0 times the pressure receiving area of the rod side pressure chamber 1R.
  • the pressure receiving area of the rod side pressure chamber 2R is about 1.7 times the pressure receiving area of the rod side pressure chamber 1R, and the pressure receiving area of the head side pressure chamber 2H is about 3 of the pressure receiving area of the rod side pressure chamber 1R. .3 times.
  • the pressure receiving area of the rod side pressure chamber 1R is the area (the area of the annular portion) obtained by subtracting the cross sectional area of the piston rod 3 from the surface area of the head side pressure chamber 1H.
  • the pressure receiving area of the rod side pressure chamber 2R is the area (area of the annular portion) obtained by subtracting the cross sectional area of the piston rod 3 from the surface area of the head side pressure chamber 2H.
  • FIG. 7C shows that when the pistons 1P and 2P are moved in the left direction, as shown in FIG. 7C, a total of 11 stages of pressure including 0 stages from -5 to +5 stages.
  • the conversion ratio can be set.
  • the hydraulic pressure increase / decrease pressure machine 100 enables setting of a pressure conversion ratio of 11 stages in total including 0 stages from ⁇ 5 stage to +5 stage.
  • a stage indicated by a positive value indicates a stage during pressure increase
  • a stage indicated by a negative value indicates a stage number during pressure reduction
  • a zero stage indicates a stage when the input and output are directly connected.
  • FIG. 7C shows that the hydraulic pressure-increasing and reducing device 100 has five stages for pressure increase, five stages for pressure reduction, and one stage for directly connecting input and output in each of the left and right movement directions.
  • FIG. 7C for example, in the pressure conversion ratio (0.490) of -5 stages when the piston movement direction is left, the rod-side pressure chamber 1R is selected as the input pressure chamber, and the head in the output pressure chamber It shows that it is realized when the side pressure chamber 1H is selected.
  • the rod-side pressure chamber 2R is selected as the input pressure chamber, and the head in the output pressure chamber It shows that this is realized when the side pressure chamber 2H is selected.
  • FIG. 7C also shows the characteristic that the pressure conversion ratios of the corresponding stages in the left and right piston movement directions become equal.
  • -3 pressure conversion ratio (0.745) when the piston movement direction is left corresponds to -3 pressure conversion ratio (0.746) which is the corresponding stage when the piston movement direction is right It becomes equal.
  • This characteristic is necessary to ensure that the desired output pressure is continuously supplied even when the piston movement direction is switched left and right.
  • FIG. 7D is a diagram for more clearly showing the characteristic that the pressure conversion ratios of the corresponding stages in the left and right piston movement directions become equal, and the transition of the solid line is the pressure when the piston movement direction is the right The transition of the conversion ratio is shown, and the transition of the dotted line shows the transition of the pressure conversion ratio when the piston movement direction is left.
  • the pressure conversion ratio of each of the corresponding stages in the left and right piston movement directions is set to increase as the stages go up, while maintaining equality.
  • an odd number of steps of 11 is set in FIG. 7, an even number of steps may be set. In that case, an even number of stages may be realized by omitting the zero stage which is the stage when the input and output are directly coupled.
  • FIG. 8 shows a desirable distribution of pressure conversion ratio in the hydraulic pressure increase and decrease machine 100 having three stages for pressure increase, three stages for pressure reduction, and one stage for directly connecting input and output. It is a figure for demonstrating.
  • FIG. 8 also shows that there are equal-difference and equal-ratio types as a desirable distribution of pressure conversion ratio.
  • the distribution of the pressure conversion ratio is set to be the same distribution in each of the left and right piston movement directions.
  • the equivalence type means a system in which pressure conversion ratios are distributed so that the difference in pressure conversion ratio between two adjacent stages becomes equal, and the arrangement of pressure conversion ratios forms an example of arithmetical difference. Note that "a" in the figure corresponds to a tolerance.
  • the equal ratio type means a method of distributing the pressure conversion ratio so that the ratio of pressure conversion ratio of each two adjacent stages becomes equal, and the arrangement of pressure conversion ratios forms an example of ratio . Note that "e” in the figure corresponds to a common ratio.
  • the designer first determines the maximum pressure conversion ratio and the minimum pressure conversion ratio. Then, the designer determines the number of stages set between the maximum pressure conversion ratio and the minimum pressure conversion ratio, and then determines the tolerance a or the common ratio e, whereby the pressure conversion in the hydraulic pressure intensifier 100 is made. Determine the distribution of the ratio.
  • F9A is a pressure receiving pressure of each pressure chamber when there are four pressure chambers which can be adopted as an input pressure chamber or an output pressure chamber described with reference to FIG. 1 (hereinafter referred to as “four-chamber type”). Show the relationship between the areas.
  • the head pressure receiving area of the hydraulic cylinder having the smaller head pressure receiving area of the two hydraulic cylinders is larger than the difference between the head pressure receiving area and the rod pressure receiving area of the other hydraulic cylinder.
  • the pressure receiving area of each pressure chamber is determined.
  • the head side pressure receiving area S A of the hydraulic cylinder 1 in more head side pressure receiving area is small is larger than the difference between the head side pressure receiving area S D and the rod-side pressure-receiving area S C of the hydraulic cylinder 2
  • the inner diameters of the hydraulic cylinders 1 and 2 and the rod diameter of the piston rod 3 are determined such that the relationship of S A > (S D -S C ) is satisfied.
  • F9B is the pressure receiving pressure of each pressure chamber in the case where there are three pressure chambers which can be adopted as the input pressure chamber or the output pressure chamber described with reference to FIG. 5 (hereinafter referred to as “three-chamber type”). Show the relationship between the areas.
  • pressure chamber ⁇ and pressure chamber ⁇ there are two pressure chambers (referred to as pressure chamber ⁇ and pressure chamber ⁇ ), which become input pressure chambers when moving the piston in a certain direction, and the input pressure when moving the piston in the opposite direction.
  • the pressure receiving area S A pressure receiving area S S of the head-side pressure chamber 1H (corresponding to the pressure chamber ⁇ ) of the hydraulic cylinder 1 serving as the input pressure chamber when moving the pistons 1P and 2P in the right direction.
  • F9C instead of two rod side pressure chambers of two hydraulic cylinders facing each other like F9A in four-chamber type, two rod side pressure chambers are arranged in parallel (hereinafter referred to as "2-cylinder translational type" And the relationship between the pressure receiving area of each pressure chamber.
  • the piston 1P and the piston 2P are connected via a piston rod 3a, and integrally translate in the vertical direction in the drawing inside the hydraulic cylinders 1 and 2, respectively.
  • the rod-side pressure receiving area of the hydraulic cylinder having the smaller head-side pressure receiving area of the two hydraulic cylinders is larger than the difference between the head-side pressure receiving area and the rod-side pressure receiving area in the other hydraulic cylinder
  • the pressure receiving area of each pressure chamber is determined.
  • the rod-side pressure-receiving area S B of the hydraulic cylinder 1 in more head side pressure receiving area is small is larger than the difference between the head side pressure receiving area S D and the rod-side pressure-receiving area S C of the hydraulic cylinder 2
  • the cylinder inner diameters of the hydraulic cylinders 1 and 2 and the rod diameter of the piston rod 3 are determined such that the relationship of S B > (S D -S C ) is satisfied.
  • FIG. 10 is a cross-sectional view showing another configuration example of the hydraulic actuator.
  • F10A shows an example of composition of hydraulic cylinder 1a which may be adopted instead of combination of hydraulic cylinders 1 and 2 and piston rod 3 which is a hydraulic actuator in each of hydraulic pressure increase and decrease machine 100, 100A, 100B.
  • the hydraulic cylinder 1a is an example of a fluid pressure cylinder, has a three-step cylindrical outer shape, and accommodates therein a three-step cylindrical piston 1Pa so as to be slidable in the horizontal direction in the drawing.
  • Four pressure chambers P1 to P4 are formed between the inner wall of the hydraulic cylinder 1a and the piston 1Pa, and each of the four pressure chambers P1 to P4 is supplied with a supply source SR, a supply destination SD, and a flow control valve. It selectively communicates with one of the hydraulic oil tanks.
  • F10B shows a configuration example of the hydraulic cylinder 1b that can be employed instead of the hydraulic actuator in each of the hydraulic pressure increase / decreasers 100, 100A, 100B.
  • the hydraulic cylinder 1b is an example of a fluid pressure cylinder, has a 5-step cylindrical outer shape, and accommodates therein a 5-step cylindrical piston 1Pb so as to be slidable in the horizontal direction in the drawing.
  • Six pressure chambers P1 to P6 are formed between the inner wall of the hydraulic cylinder 1b and the piston 1Pb, and each of the six pressure chambers P1 to P6 is supplied with a supply source SR, a supply destination SD, and a flow control valve. It selectively communicates with one of the hydraulic oil tanks.
  • six flow control valves are provided to correspond to each of the six pressure chambers P1 to P6.
  • F10C shows a configuration example of a hydraulic actuator that can be employed instead of the hydraulic actuator in each of the hydraulic pressure increasing and decreasing devices 100, 100A and 100B.
  • the hydraulic actuator F10C is configured of three hydraulic cylinders 1c1, 1c2, 1c3 and a piston rod 3c.
  • the hydraulic cylinder 1c1 is an example of a fluid pressure cylinder, and has a columnar piston 1Pc1 separating a cylindrical head side pressure chamber P1 and a cylindrical rod side pressure chamber P2.
  • the hydraulic cylinder 1c2 is an example of a fluid pressure cylinder, and has a cylindrical piston 1Pc2 separating a cylindrical head side pressure chamber P3 and a cylindrical rod side pressure chamber P4.
  • the hydraulic cylinder 1c3 is an example of a fluid pressure cylinder, and has a cylindrical piston 1Pc3 separating a cylindrical head side pressure chamber P5 and a cylindrical rod side pressure chamber P6.
  • the pistons 1Pc1, 1Pc2, and 1Pc3 are connected to each other via a piston rod 3c, and integrally slide inside the hydraulic cylinders 1c1, 1c2, and 1c3.
  • Each of the six pressure chambers P1 to P6 is selectively communicated to one of the source SR, the destination SD, and the hydraulic oil tank via a flow control valve.
  • a flow control valve Preferably, six flow control valves are provided to correspond to each of the six pressure chambers P1 to P6.
  • the pressure chamber P1 and the pressure chamber P5 may be controlled by a common flow control valve
  • the pressure chamber P2 and the pressure chamber P6 may be controlled by a common flow control valve.
  • the configuration is substantially equivalent to that of the hydraulic pressure increasing and reducing device shown in F9C.
  • the hydraulic pressure increase / decreasers 100, 100A, 100B switchably select the input pressure chamber and the output pressure chamber from a plurality of pressure chambers in one fluid pressure cylinder or a plurality of interlocked fluid pressure cylinders. Then, the flow control valve is controlled by the control device 5 to connect the selected input pressure chamber to the supply source SR, and to connect the selected output pressure chamber to the supply destination SD. As a result, the output pressure including the pressure higher than the input pressure and the pressure lower than the input pressure can be continuously supplied to the destination SD.
  • the hydraulic pressure reducers 100, 100A and 100B can be miniaturized by using the hydraulic cylinders 1 and 2, and the energy efficiency and controllability are improved as compared with the case where the output pressure is adjusted using the pressure reducing valve. It can be done.
  • hydraulic pressure increase / decreasers 100, 100A, 100B can continuously supply the output pressure equal to the input pressure to the supply destination SD by the input / output direct connection switching valve.
  • the hydraulic pressure increase / decreasers 100, 100A and 100B prepare a plurality of combinations of at least one pressure chamber employed as an input pressure chamber and at least one pressure chamber employed as an output pressure chamber. Thereby, it is possible to prepare to switch the pressure conversion ratio of a plurality of stages. As a result, the hydraulic pressure increase / decreasers 100, 100A and 100B require the supply destination SD even when the pressure (input pressure) at the supply source SR and the pressure (output pressure) required by the supply destination SD are different. An output pressure can be supplied.
  • FIG. 11 is a schematic side view of the shovel 50.
  • the shovel 50 includes an accumulator 21 that converts potential energy of a working body such as the boom 14 into fluid pressure energy and recovers it, and makes it possible to use the recovered fluid pressure energy to drive the working body.
  • the upper swing body 13 is mounted on the lower traveling body 11 of the shovel 50 via the turning mechanism 12.
  • the boom 14 is attached to the upper swing body 13, the arm 15 is attached to the tip of the boom 14, and the bucket 16 is attached to the tip of the arm 15.
  • the boom 14, the arm 15 and the bucket 16 constitute a digging attachment, and are hydraulically driven by the boom cylinder 17, the arm cylinder 18 and the bucket cylinder 19, respectively.
  • the hydraulic drive of the boom 14 by the boom cylinder 17 is assisted by the assist cylinder 20.
  • the boom cylinder 17 to be assisted by the assist cylinder 20 is referred to as a main cylinder.
  • the main cylinder may be another hydraulic cylinder such as the arm cylinder 18 or the like. That is, the assist cylinder 20 may assist hydraulic drive of another working object such as the arm 15 or the like.
  • a cabin 10 is provided at the front of the upper revolving superstructure 13 and an engine (not shown) as a drive source is mounted at the rear. Also, mounted on the upper revolving superstructure 13 are a hydraulic pump (not shown) driven by the engine and a control valve (not shown) for controlling the flow of hydraulic fluid discharged by the hydraulic pump. The control valve controls the flow of hydraulic fluid flowing in and out of various hydraulic actuators such as the boom cylinder 17, the arm cylinder 18, and the bucket cylinder 19.
  • an accumulator 21 is mounted on the upper revolving superstructure 13 for recovering potential energy of the boom 14 as hydraulic energy and making it possible to use the recovered hydraulic energy for driving the assist cylinder 20.
  • the accumulator 21 is connected to the assist cylinder 20 via the hydraulic pressure increase and decrease device 100. Specifically, the accumulator 21 receives hydraulic fluid flowing out of the assist cylinder 20 when the boom 14 is lowered, and discharges the received hydraulic fluid toward the assist cylinder 20 when the boom 14 is raised.
  • FIG. 12 is a hydraulic circuit diagram of the hydraulic pressure increase and decrease device 100 mounted on the shovel 50.
  • the hydraulic circuit diagram of FIG. 12 is largely the same as the hydraulic circuit diagram of FIG. 1 and, therefore, only the differences will be described in detail while omitting the description of the common parts.
  • an accumulator 21 as a supply source of an input pressure is connected to the input of the hydraulic pressure increase and decrease device 100, and a head side pressure chamber of an assist cylinder 20 as a supply destination of an output pressure has a pressure reduction valve 25 at its output.
  • the rod-side pressure chamber of the assist cylinder 20 is connected to the hydraulic oil tank via the conduit C4 and the conduit C3.
  • the head-side pressure chamber of the assist cylinder 20 is a pressure chamber whose volume increases when the boom 14 ascends, and the rod-side pressure chamber of the assist cylinder 20 decreases its volume when the boom 14 ascends Pressure chamber.
  • the posture state detection device 22 is a device for detecting the posture state of the shovel 50.
  • the posture state detection device 22 includes, for example, cylinder stroke sensors that detect the stroke amounts (moving distances from the reference position) of the boom cylinder 17, the arm cylinder 18, the bucket cylinder 19, and the assist cylinder 20, and the detection values thereof Is output to the control device 5.
  • the posture state detection device 22 may include an inclination sensor that detects the inclination of the shovel 50 with respect to the horizontal plane, and may include a pressure sensor that detects the pressure of hydraulic fluid in various hydraulic cylinders.
  • the accumulator state detection device 23 is a device for detecting the state of the accumulator 21, for example, a pressure sensor for detecting the pressure of hydraulic oil in the accumulator 21, and the detected value is sent to the control device 5. Output.
  • the operation state detection device 24 is a device for detecting the operation state of the excavation attachment.
  • the operation state detection device 24 is, for example, a lever operation amount detection device that detects an operation direction and an operation amount of a lever for operating various working objects, and outputs the detection result to the control device 5.
  • the pressure reducing valve 25 is for appropriately reducing the output pressure of the hydraulic pressure increasing and decreasing device 100 to adjust the downward assist target thrust, and is controlled by the control device 5.
  • the controller 5 may detect the pressure in the head-side pressure chamber of the assist cylinder 20, and feedback-control the pressure reducing valve 25 based on the detected value. Further, the pressure reducing valve 25 may be a proportional pressure reducing valve.
  • FIG. 13 is a flowchart showing the flow of the stage determination process, and the control device 5 repeatedly executes the stage determination process at a predetermined cycle when the boom operation lever is operated.
  • control device 5 acquires information on the operation state of the excavation attachment (step S1). Specifically, the control device 5 detects the operation direction and the operation amount of various levers based on the output of the operation state detection device 24.
  • control device 5 acquires information on the posture state of the shovel 50 (step S2). Specifically, the control device 5 detects the inclination of the shovel 50 with respect to the horizontal plane and the posture of the excavation attachment based on the output of the posture state detection device 22.
  • the control device 5 determines the assist target thrust on the basis of the operation state of the excavation attachment and the posture state of the shovel 50 (step S3). Specifically, the control device 5 determines the operating direction of the boom operating lever, the presence or absence of the operation of the arm 15 and the bucket 16, the stroke amount of the boom cylinder 17, the arm cylinder 18, and the bucket cylinder 19, and the inclination of the shovel 50 to the horizontal surface
  • the assist target thrust is determined based on
  • the lowering assist target thrust force for lowering the excavation attachment causes the excavation attachment to stand still. It is set to the value equivalent to the load stationary holding thrust which is the thrust required for Strictly speaking, it is set to a value slightly lower than the stationary load holding thrust. Further, the rising assist target thrust when raising the digging attachment is set to a value that is smaller than the stationary load holding thrust by a predetermined value.
  • the stationary load holding thrust is a value set in advance according to the attitude of the digging attachment and the like.
  • control device 5 acquires information on the state of the accumulator 21 (step S4). Specifically, the control device 5 acquires the pressure of the hydraulic oil in the accumulator 21 based on the output of the accumulator state detection device 23.
  • control device 5 determines the operation direction of the excavation attachment based on the information on the already acquired operation state of the excavation attachment (step S5). Specifically, the control device 5 determines, for example, the operating direction of the boom operating lever.
  • the controller 5 sets the value of the parameter N representing the pressure conversion ratio to the lowest value For example, it is set to -4)) (step S6).
  • control device 5 calculates the thrust by the output pressure that can be supplied by the hydraulic pressure increase / decrease device 100 as the output available thrust. Is determined (step S7).
  • the possible output thrust is calculated, for example, as a value obtained by multiplying the pressure conversion ratio at the N-th stage and the head-side pressure receiving area of the assist cylinder 20 by the pressure of the hydraulic oil in the accumulator 21.
  • step S7 When it is determined that the available output thrust is equal to or less than the rising assist target thrust (NO in step S7), the control device 5 adds the value "1" to the value of the parameter N (step S8). Thereafter, the control device 5 executes the process of step S7 again. That is, after recalculating the possible output thrust, it is determined whether the recalculated available output thrust exceeds the assist target thrust at the time of increase.
  • control device 5 repeats the process of step S7 while raising the gear by one until the available output thrust exceeds the rising assist target thrust.
  • the control device 5 determines the stage indicated by the value of the parameter N at that time as the stage to be actually adopted (step S9).
  • the hydraulic pressure intensifier 100 is operated such that the output pressure is generated at the pressure conversion ratio at the N-th stage.
  • the control device 5 sets the value of the parameter N representing the pressure conversion ratio to a maximum value
  • the stage for example, +4 is set (step S10).
  • control device 5 calculates an output available thrust when the pressure conversion ratio is set to the value of N stages, and determines whether the output available thrust falls below the lowering assist target thrust (step S11).
  • step S11 When it is determined that the available output thrust is equal to or greater than the descending assist target thrust (NO in step S11), the control device 5 subtracts the value "1" from the value of the parameter N (step S12). Thereafter, the control device 5 executes the process of step S11 again. That is, after recalculating the possible output thrust, it is determined whether the recalculated available output thrust is lower than the assist target thrust at the time of lowering.
  • control device 5 repeats the process of step S11 while lowering the speed one by one until the available output thrust falls below the descending assist target thrust.
  • control device 5 determines the stage indicated by the value of the parameter N at that time as the stage to be actually adopted (step S9).
  • the hydraulic pressure intensifier 100 is operated such that the output pressure is generated at the pressure conversion ratio at the N-th stage.
  • FIG. 14 is a diagram showing the correspondence relationship at the time of the boom lowering operation
  • FIG. 15 is a diagram showing the correspondence relationship at the time of the boom raising operation.
  • FIG.14 and FIG.15 shows the correspondence in the case where neither the arm 15 nor the bucket 16 is operated, and the shovel 50 is located on a horizontal surface.
  • the stroke amount of the assist cylinder 20 disposed on the horizontal axis represents 0 (%) of a state in which the assist cylinder 20 is most contracted (a state in which the boom 14 is lowered most) by 0 [%].
  • the state where the boom 14 is most raised is represented by 100 [%].
  • the transition indicated by the thin solid line in the figure represents the transition of the pressure of the hydraulic oil in the accumulator 21, and the transition indicated by the thick solid line is the output possible thrust (output pressure ⁇ pressure receiving area) at the time of direct connection (at 0 stage).
  • the output pressure at the time of direct connection corresponds to the input pressure, that is, the accumulator pressure.
  • the accumulator pressure is approximately in inverse proportion to the stroke amount of the assist cylinder 20, and decreases as the stroke amount increases.
  • the transition indicated by the thick broken line, the thick alternate long and short dashed line, the thick double dotted line, and the thick dotted line indicates the transition of the output available thrust at -1, -2, -3, and -4, respectively. .
  • transitions indicated by the thin broken line, thin one-dot chain line, thin two-dot chain line, and thin dotted line respectively represent the transition of the output available thrust at the + 1st gear, + 2nd gear, + 3rd gear, and + 4th gear.
  • the transition indicated by the gray solid line extending parallel to the horizontal axis represents the transition of the stationary load holding thrust.
  • the load stationary holding thrust is not actually constant, it is described here for convenience regardless of the stroke amount of the assist cylinder 20, that is, constant regardless of the attitude of the boom 14 .
  • the transition indicated by the gray dotted line extending parallel to the horizontal axis represents the transition of the assist target thrust at the time of descent, and indicates that the assist target thrust at the time of the descent transition at a level slightly lower than the stationary load holding thrust.
  • the transition indicated by the sawtooth gray solid line represents the transition of the thrust assumed from the output pressure by the hydraulic pressure increase and decrease device 100 that determines the adopted stage by the stage determination process.
  • the value of the step shown in the upper part of the graph area indicates the relationship between the adopted step and the stroke amount of the assist cylinder 20, and indicates that, for example, -1 step is adopted when the stroke amount is 50 [%]. .
  • the control device 5 determines the stage to be adopted at the time of the boom lowering operation using the correspondence shown in FIG. Specifically, first, the control device 5 sets the current stroke amount (for example, 80%) of the assist cylinder 20 and a thin dotted line indicating the transition of the outputable thrust at the + 4th stage, which is the highest stage. Derivable thrust (275 [N]) at +4 stage specified by is derived. Then, the control device 5 determines that the derived possible output thrust (275 [N]) exceeds the descending assist target thrust (199 [N]).
  • control device 5 sequentially derives the possible output thrust (240 [N]) in the +3 stage and the possible output thrust (205 [N]) in the +2 stage, as described above. In any case, the control device 5 determines that the derived output possible thrust exceeds the descending assist target thrust (199 [N]).
  • the control device 5 derives an outputable thrust (175 [N]) at the + 1st stage which is the next higher stage. In this case, the control device 5 determines that the derived possible output thrust (175 [N]) is equal to or less than the descending assist target thrust (199 [N]). Then, the control device 5 determines the +1 stage at this time as a stage to be actually adopted.
  • the controller 5 controls the boom 14 so that the boom 14 can be smoothly lowered while preventing the lowering of the boom 14 from being stopped or turning upward due to the upward thrust by the assist cylinder 20. Decide.
  • the hydraulic pressure increasing and decreasing device 100 changes the pressure conversion ratio (stage) according to the decrease in the stroke amount of the assist cylinder 20, and the pressure of the hydraulic oil in the accumulator 21, ie, the input of the hydraulic pressure increasing and decreasing device 100. Increase pressure gradually. This is to enable the hydraulic oil to be pushed into the accumulator 21 whose internal pressure gradually increases.
  • the thrust due to the pressure of the hydraulic oil in the head-side pressure chamber of the assist cylinder 20, that is, the thrust due to the output pressure of the hydraulic pressure booster 100 is the head pressure of the assist cylinder 20 by the pressure reducing valve 25 controlled by the controller 5.
  • the pressure of the hydraulic fluid in the chamber is appropriately adjusted and maintained within the predetermined range as shown by the sawtooth gray solid line in FIG.
  • the control apparatus 5 determines the step employ
  • control device 5 sequentially derives the possible output thrust (145 [N]) at the third stage and the possible output thrust (165 [N]) at the second stage, as described above. In any case, the controller 5 determines that the derived output available thrust is equal to or less than the rising assist target thrust (170 [N]).
  • the control device 5 derives an outputable thrust (190 [N]) at the time of the next higher stage, ⁇ 1 stage. In this case, the control device 5 determines that the derived possible output thrust (190 [N]) exceeds the rising assist target thrust (170 [N]). Then, the control device 5 determines the -1 stage at this time as a stage to be actually adopted.
  • control device 5 assists the ascent of the boom 14 by the boom cylinder 17 to raise the boom 14 smoothly while preventing the thrust by the assist cylinder 20 from being excessively insufficient. Determine the appropriate stage.
  • the hydraulic pressure increasing and decreasing device 100 changes the pressure conversion ratio (stage) according to the increase of the stroke amount of the assist cylinder 20, and the thrust by the pressure of the hydraulic oil in the head side pressure chamber of the assist cylinder 20
  • the pressure of the hydraulic oil in the head-side pressure chamber of the assist cylinder 20 is appropriately adjusted by the pressure reducing valve 25 controlled by the control device 5 and the thrust due to the output pressure of the hydraulic pressure increasing and decreasing device 100 is sawtooth gray in FIG.
  • control device 5 stores the stroke amount of the assist cylinder 20 and the adopted step in advance in association with each other, so that the stroke amount of the assist cylinder 20 can be calculated without separately calculating the outputable thrust of each step.
  • the stage of employment may be determined directly based on that.
  • control device 5 uses the same correspondence between the boom raising operation and the boom lowering operation except setting of the assist target thrust, but different correspondences. Relationships may be used.
  • FIG. 16 when the arm 15 or the bucket 16 is operated, or when the shovel 50 is inclined with respect to the horizontal plane, the stroke amount of the assist cylinder 20 and the hydraulic pressure reducing device 100.
  • the correspondence relationship between the input pressure and the output pressure of the pressure regulator and the adopted stage of the hydraulic pressure increase and decrease device 100 will be described.
  • the correspondence relationship shown in FIG. 16 is different from the correspondence relationships shown in FIG. 14 and FIG. 15 in that it uses a stationary load holding thrust that is set to decrease as the stroke amount of the assist cylinder 20 increases. Further, the correspondence shown in FIG.
  • the control device 5 does not stop the lowering of the boom 14 due to the upward thrust by the assist cylinder 20 or prevents the lowering of the boom 14. Determine the appropriate stage so that you can lower the In addition, the control device 5 assists the ascent of the boom 14 by the boom cylinder 17 to raise the boom 14 smoothly while preventing an excessive shortage of the upward thrust by the assist cylinder 20 at the time of the boom raising operation. Determine the appropriate stage to be driven.
  • the hydraulic pressure increase / decrease machine 100 can more flexibly control the pressure of the hydraulic fluid pushed into the assist cylinder 20, and more flexibly control the movement of the assist cylinder 20 and hence the movement of the excavation attachment. Can. That is, the operability of the digging attachment and the utilization efficiency of the hydraulic energy recovered by the accumulator 21 can be enhanced.
  • the hydraulic pressure increase and decrease device 100 can more flexibly control the pressure of the hydraulic oil pushed into the accumulator 21, and can more flexibly control the recovery of the potential energy of the drilling attachment by the accumulator 21. That is, the recovery efficiency of potential energy by the accumulator 21 can be improved.
  • FIG. 17 is a cross-sectional view of the boom cylinder 17 including the assist cylinder 20A, showing the assist cylinder 20A formed in the piston rod of the boom cylinder 17 as a main cylinder to be assisted.
  • the assist cylinder 20A has one port through which hydraulic fluid flows in and out, and the port is connected to the output of the hydraulic pressure increase and decrease device 100.
  • the head-side pressure chamber and the rod-side pressure chamber of the boom cylinder 17 are each connected to a flow control valve (not shown), and can receive hydraulic fluid discharged by a hydraulic pump (not shown). Hydraulic fluid can be discharged.
  • the input of the hydraulic pressure increase and decrease device 100 is connected to the accumulator 21.
  • the hydraulic pressure increasing and decreasing device 100 can more flexibly control the pressure of the hydraulic fluid pushed into the assist cylinder 20A, and more flexibly controls the movement of the assist cylinder 20A and hence the movement of the excavation attachment. can do. That is, the operability of the digging attachment and the utilization efficiency of the hydraulic energy recovered by the accumulator 21 can be enhanced.
  • the hydraulic pressure increase and decrease device 100 can more flexibly control the pressure of the hydraulic oil pushed into the accumulator 21, and can more flexibly control the recovery of the potential energy of the drilling attachment by the accumulator 21. That is, the recovery efficiency of potential energy by the accumulator 21 can be improved.
  • the hydraulic oil may be replaced with another fluid such as air or water.
  • the assist cylinder 20 is mounted in parallel to the front of the boom cylinder 17, but may be mounted in parallel to the side or the rear of the boom cylinder 17. Further, the assist cylinder 20 may be attached to the front, side or rear of the boom cylinder 17 so as to be inclined with respect to the boom cylinder 17.
  • the assist cylinder 20 may be attached to the rear of the boom 14, that is, to the opposite side of the boom 14 with respect to the boom cylinder 17 attached to the front of the boom 14.
  • the assist cylinder 20 extends as the boom 14 descends and contracts as the boom 14 ascends. Therefore, the rod-side pressure chamber of the assist cylinder 20 is connected to the output pressure chamber of the hydraulic pressure increase and decrease device 100, and the head-side pressure chamber of the assist cylinder 20 is connected to the hydraulic oil tank.
  • the hydraulic pressure increase and decrease machine 100 has an accumulator capable of recovering the potential energy of the working body as fluid pressure energy, and a hydraulic elevator and hydraulic pressure having a fluid pressure actuator capable of driving the working body using the fluid pressure energy of the accumulator. You may mount in other working machines, such as a crane.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Press Drives And Press Lines (AREA)
  • Control Of Presses (AREA)

Abstract

 出力圧を連続的に供給可能な油圧増減圧機100は、油圧シリンダ1のヘッド側圧力室1H及びロッド側圧力室1R、並びに、油圧シリンダ2のヘッド側圧力室2H及びロッド側圧力室2Rから、入力圧が適用される少なくとも1つの入力用圧力室と、入力圧より高い圧力、及び、入力圧より低い圧力を含む出力圧が生成される少なくとも1つの出力用圧力室とを切り替え可能に選択する制御装置5と、入力用圧力室と供給源SRとを連通させ、且つ、出力用圧力室と供給先SDとを連通させる流れ制御弁6H、6R、7H、7Rと、を備える。

Description

流体圧増減圧機及び作業機械
 本発明は、流体圧シリンダを用いた流体圧増減圧機、及び流体圧増減圧機を備える作業機械に関する。
 従来、低圧の空気を用いて高圧の水を生成する高水圧供給装置が知られている(例えば、特許文献1参照。)。この高水圧供給装置は、一次側空圧アクチュエータのピストンと二次側水圧アクチュエータのピストンとを1本のピストンロッドを介して連結し、一次側空圧アクチュエータと二次側水圧アクチュエータとを連動可能にする。そして、低圧の空気で一次側空圧アクチュエータのピストンを往復摺動させることによって、二次側水圧アクチュエータのピストンを同時に往復摺動させ、固定の圧力変換比で低圧の空気から高圧の水を連続的に生成できるようにする。
特開2004-278207号公報
 しかしながら、特許文献1の高水圧供給装置は、空気の圧力よりも高い圧力の水を生成するのみであり、空気圧よりも低い圧力の水を生成することができない。
 上述の点に鑑み、本発明は、入力圧より高い圧力、及び、入力圧より低い圧力を含む出力圧を連続的に供給可能な流体圧増減圧機、及び流体圧増減圧機を備える作業機械を提供することを目的とする。
 上述の目的を達成するために、本発明の実施例に係る流体圧増減圧機は、出力圧を連続的に供給可能な流体圧増減圧機であって、1つの流体圧シリンダ又は複数の連動する流体圧シリンダにおける複数の圧力室から、入力圧が適用される少なくとも1つの入力用圧力室と、入力圧より高い圧力、及び、入力圧より低い圧力を含む出力圧が生成される少なくとも1つの出力用圧力室とを切り替え可能に選択する制御装置と、前記入力用圧力室と入力とを連通させ、且つ、前記出力用圧力室と出力とを連通させる流れ制御弁とを備える。
 また、本発明の実施例に係る作業機械は、作業体を駆動するメインシリンダと、前記メインシリンダを補助するアシストシリンダと、前記作業体の位置エネルギを流体圧エネルギとして回収し、且つ、回収した流体圧エネルギを前記アシストシリンダの駆動に利用できるようにするアキュムレータと、1つの流体圧シリンダ又は複数の連動する流体圧シリンダにおける複数の圧力室から、入力圧が適用される少なくとも1つの入力用圧力室と、入力圧より高い出力圧、及び、入力圧より低い出力圧を含む出力圧が生成される少なくとも1つの出力用圧力室とを切り替え可能に選択する制御装置と、前記入力用圧力室と入力とを連通させ、且つ、前記出力用圧力室と出力とを連通させる流れ制御弁とを備える流体圧増減圧機とを備え、前記流体圧増減圧機は、前記アキュムレータを入力とし、前記アシストシリンダを出力とする。
 上述の手段により、本発明は、入力圧より高い圧力、及び、入力圧より低い圧力を含む出力圧を連続的に供給可能な流体圧増減圧機、及び流体圧増減圧機を備える作業機械を提供することができる。
本発明の実施例に係る油圧増減圧機の構成例を示す油圧回路図である。 図1の油圧回路図の動作状態を示す図(その1)である。 図1の油圧回路図の動作状態を示す図(その2)である。 図1の油圧回路図の動作状態を示す図(その3)である。 本発明の実施例に係る油圧増減圧機の別の構成例を示す油圧回路図である。 本発明の実施例に係る油圧増減圧機のさらに別の構成例を示す油圧回路図である。 図1に示す油圧増減圧機の油圧シリンダ及びピストンロッドの拡大図である。 油圧シリンダの詳細を示す仕様表である。 油圧増減圧機が実現可能な圧力変換比の詳細を示す表である。 図7Cにおける圧力変換比とその段の関係を示すグラフである。 圧力変換比の分布を説明する図である。 本発明の実施例に係る油圧増減圧機における油圧アクチュエータの各圧力室の受圧面積の間の関係を説明する図である。 油圧アクチュエータの別の構成例を示す断面図である。 本発明の実施例に係るショベルの概略側面図である。 図11のショベルに搭載される油圧増減圧機の油圧回路図である。 段決定処理の流れを示すフローチャートである。 アシストシリンダのストローク量と、油圧増減圧機の入力圧及び出力圧と、油圧増減圧機の採用段との間の対応関係を示す図(その1)である。 アシストシリンダのストローク量と、油圧増減圧機の入力圧及び出力圧と、油圧増減圧機の採用段との間の対応関係を示す図(その2)である。 アシストシリンダのストローク量と、油圧増減圧機の入力圧及び出力圧と、油圧増減圧機の採用段との間の対応関係を示す図(その3)である。 アシストシリンダを含むブームシリンダの断面図である。
 以下、図面を参照しつつ、本発明の実施例について説明する。
 図1は、本発明の実施例に係る油圧増減圧機100を示す油圧回路図である。油圧増減圧機100は、主に、油圧シリンダ1、2と、ピストンロッド3と、3つの近接センサ4C、4L、4Rと、制御装置5と、流れ制御弁6H、6R、7R、7Hと、入出力直結切換弁8とを備える。なお、以下では、油圧シリンダ1、2、及びピストンロッド3の組み合わせを油圧アクチュエータと称する。
 油圧シリンダ1は、流体圧シリンダの1例であり、円柱状のヘッド側圧力室1Hと円筒状のロッド側圧力室1Rとを隔てる円柱状のピストン1Pを有する。同様に、油圧シリンダ2は、流体圧シリンダの1例であり、円柱状のヘッド側圧力室2Hと円筒状のロッド側圧力室2Rとを隔てる円柱状のピストン2Pを有する。油圧シリンダ1のピストン1Pと油圧シリンダ2のピストン2Pとは、ピストンロッド3を介して連結され、油圧シリンダ1及び油圧シリンダ2のそれぞれの内部を一体的に摺動する。
 本実施例では、油圧シリンダ1のシリンダ内径は、油圧シリンダ2のシリンダ内径よりも小さい。また、ピストンロッド3のロッド径は、ピストン1Pとの連結部からピストン2Pとの連結部にわたって一定である。ロッド径を一定にすることは、油圧シリンダ1と油圧シリンダ2との間の距離を短縮する効果がある。ピストンロッド3の一部を油圧シリンダ1内にも油圧シリンダ2内にも進入させることができるためである。なお、ピストンロッド3のロッド径は、ピストン1Pとの連結部とピストン2Pとの連結部とで異なるものであってもよい。ロッド径を異ならせることは、ロッド側圧力室1R、2Rの受圧面積をより柔軟に設定できるようにする効果がある。
 近接センサ4Lは、油圧シリンダ1のヘッド側圧力室1Hの体積が許容最小値になったことを検出するためのセンサである。具体的には、油圧シリンダ1のヘッド側圧力室1H側の端部に設置される近接センサ4Lは、ピストン1Pが所定距離範囲内に接近したことを検出することによって、ピストン1Pが油圧シリンダ1の一端に達したことを検出する。近接センサ4Rは、油圧シリンダ2のヘッド側圧力室2Hの体積が許容最小値になったことを検出するためのセンサである。具体的には、油圧シリンダ2のヘッド側圧力室2H側の端部に設置される近接センサ4Rは、ピストン2Pが所定距離範囲内に接近したことを検出することによって、ピストン2Pが油圧シリンダ2の一端に達したことを検出する。近接センサ4Cは、ピストン1Pの位置が油圧シリンダ1のストローク中央位置から見て油圧シリンダ1のヘッド側圧力室1Hの側にあり、ピストン2Pの位置が油圧シリンダ2のストローク中央位置から見て油圧シリンダ2のロッド側圧力室2Rの側にあるのか、或いは、ピストン1Pの位置が油圧シリンダ1のストローク中央位置から見て油圧シリンダ1のロッド側圧力室1Rの側にあり、ピストン2Pの位置が油圧シリンダ2のストローク中央位置から見て油圧シリンダ2のヘッド側圧力室2Hの側にあるのかを検出するためのセンサである。具体的には、油圧シリンダ1と油圧シリンダ2との間に設置される近接センサ4Cは、ピストンロッド3の所定位置にある部材が所定距離範囲内に接近したことを検出することによって、ピストン1Pが油圧シリンダ1のストローク中央位置から見て何れの側にあり、ピストン2Pが油圧シリンダ2のストローク中央位置から見て何れの側にあるのかを検出する。
 なお、油圧増減圧機100は、3つの近接センサ4L、4R、4Cの代わりに、ピストンロッド3の位置を継続的に測定可能な1つのポテンショメータを採用してもよい。
 制御装置5は、油圧増減圧機100の動きを制御するための装置であり、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を備えたコンピュータである。具体的には、制御装置5は、所望の出力圧に応じて、流れ制御弁6H、6R、7R、7H、及び、入出力直結切換弁8の動きを制御する。所望の出力圧は、作動油の供給先に応じて決定され、例えば、図示しない入力装置を介した操作者の入力に応じて決定される。また、制御装置5は、近接センサ4L、4R、4Cの出力に基づいて流れ制御弁6H、6R、7R、7Hの動きを制御する。ピストン1P、2P、及びピストンロッド3を往復動させながら、所望の出力圧を供給先に継続的に供給できるようにするためである。
 流れ制御弁6Hは、油圧シリンダ1のヘッド側圧力室1Hに流出入する作動油の流れを制御するための弁である。流れ制御弁6Rは、油圧シリンダ1のロッド側圧力室1Rに流出入する作動油の流れを制御するための弁である。流れ制御弁7Rは、油圧シリンダ2のロッド側圧力室2Rに流出入する作動油の流れを制御するための弁である。流れ制御弁7Hは、油圧シリンダ2のヘッド側圧力室2Hに流出入する作動油の流れを制御するための弁である。
 具体的には、流れ制御弁6Hは、管路C11と管路C1とを通じて、入力としての作動油の供給源SRに接続され、管路C21と管路C2とを通じて、出力としての作動油の供給先SDに接続され、管路C31と管路C3とを通じて作動油タンクに接続される。また、流れ制御弁6Hは、管路C1Hを通じて油圧シリンダ1のヘッド側圧力室1Hに接続される。流れ制御弁6Rは、管路C12と管路C1とを通じて供給源SRに接続され、管路C22と管路C2とを通じて供給先SDに接続され、管路C32と管路C3とを通じて作動油タンクに接続される。また、流れ制御弁6Rは、管路C1Rを通じて油圧シリンダ1のロッド側圧力室1Rに接続される。流れ制御弁7Rは、管路C13と管路C1とを通じて供給源SRに接続され、管路C23と管路C2とを通じて供給先SDに接続され、管路C33と管路C3とを通じて作動油タンクに接続される。また、流れ制御弁7Rは、管路C2Rを通じて油圧シリンダ2のロッド側圧力室2Rに接続される。流れ制御弁7Hは、管路C14と管路C1とを通じて供給源SRに接続され、管路C24と管路C2とを通じて供給先SDに接続され、管路C34と管路C3とを通じて作動油タンクに接続される。また、流れ制御弁7Hは、管路C2Hを通じて油圧シリンダ2のヘッド側圧力室2Hに接続される。
 入出力直結切換弁8は、油圧増減圧機100の入力と出力を直結させるか否かを切り換える弁である。
 具体的には、入出力直結切換弁8は、管路C25及び管路C1を通じて供給源SRに接続され、管路C26及び管路C2を通じて供給先SDに接続される。なお、油圧増減圧機100は、入出力直結切換弁8を省略してもよい。
 次に、図2及び図3を参照しながら、油圧増減圧機100の動きについて説明する。なお、図2は、矢印AR1で示す方向にピストンロッド3を移動させながら、所定の増圧比で入力圧より高い出力圧を供給先SDに供給する状態を示す図である。また、図3は、矢印AR2で示す方向にピストンロッド3を移動させながら、図2の場合と同じ所定の増圧比で入力圧より高い出力圧を供給先SDに供給する状態を示す図である。
 図2において、油圧増減圧機100の制御装置5は、流れ制御弁6Rに対して制御信号を送信し、管路C1Rと管路C32とを連通させる。また、制御装置5は、流れ制御弁7Rに対して制御信号を送信し、管路C2Rと管路C33とを連通させる。また、制御装置5は、流れ制御弁7Hに対して制御信号を送信し、管路C2Hと管路C14とを連通させる。なお、制御装置5は、管路C1Hと管路C21とを連通させるために、流れ制御弁6Hに対しては制御信号を送信しない。
 その結果、図2の黒い太線で示すように、供給源SRからの作動油は、管路C1、C14、及びC2Hを通ってヘッド側圧力室2Hに流入し、所定の入力圧でピストン2Pを矢印AR1で示す方向に押す。すると、ヘッド側圧力室1H内の作動油は、所定の増圧比で入力圧より高い出力圧を発生させ、管路C1H、C21、及びC2を通って供給先SDに至る。この場合、ヘッド側圧力室2Hが入力用圧力室となり、ヘッド側圧力室1Hが出力用圧力室となる。
 なお、所定の増圧比は、ピストン2Pの受圧面積に対するピストン1Pの受圧面積の比に対応する。この場合、ピストン2Pの受圧面積は、ピストン2Pの円形表面の面積に対応し、ピストン1Pの受圧面積は、ピストン1Pの円形表面の面積に対応する。
 また、ロッド側圧力室2R内の作動油の一部は、管路C2R、C33、C3、C32、及びC1Rを通ってロッド側圧力室1Rに流入する。ピストン1Pが矢印AR1の方向に移動し、ロッド側圧力室1Rの体積が増大することによって生じる作動油の不足を補うためである。なお、ロッド側圧力室2R内の作動油の残りの部分は、管路C2R、C33、及びC3を通って作動油タンクに排出される。この場合、ロッド側圧力室1R及びロッド側圧力室2Rのそれぞれにおける作動油が出力圧に影響を与えることはない。
 その後、ピストン1Pが油圧シリンダ1のヘッド側圧力室1H側の端部に達したことを近接センサ4Lが検出すると、制御装置5は、所望の出力圧の供給が継続されるよう、流れ制御弁6H、6R、7R、7Hの状態を図3に示す状態に切り換える。
 図3において、油圧増減圧機100の制御装置5は、流れ制御弁6Hに対して制御信号を送信し、管路C1Hと管路C31とを連通させる。また、制御装置5は、流れ制御弁6Rに対する制御信号の送信を中止し、管路C1Rと管路C22とを連通させる。また、制御装置5は、流れ制御弁7Rに対して制御信号を送信し、管路C2Rと管路C13とを連通させる。また、制御装置5は、流れ制御弁7Hに対して制御信号を送信し、管路C2Hと管路C34とを連通させる。
 その結果、図3の黒い太線で示すように、供給源SRからの作動油は、管路C1、C13、及びC2Rを通ってロッド側圧力室2Rに流入し、図2の場合と同じ入力圧でピストン2Pを矢印AR2で示す方向に押す。すると、ロッド側圧力室1R内の作動油は、図2の場合と同等の所定の増圧比で入力圧より高い出力圧を発生させ、管路C1R、C22、及びC2を通って供給先SDに至る。この場合、ロッド側圧力室2Rが入力用圧力室となり、ロッド側圧力室1Rが出力用圧力室となる。
 なお、所定の増圧比は、ピストン2Pの受圧面積に対するピストン1Pの受圧面積の比に対応する。この場合、ピストン2Pの受圧面積は、ピストン2Pの円形表面の面積からピストンロッド3の円形断面の面積を差し引いた面積(円環部分の面積)に対応する。また、ピストン1Pの受圧面積は、ピストン1Pの円形表面の面積からピストンロッド3の円形断面の面積を差し引いた面積(円環部分の面積)に対応する。これにより、図2の場合と同等の増圧比が実現される。
 また、ヘッド側圧力室2H内の作動油の一部は、管路C2H、C34、C3、C31、及びC1Hを通ってヘッド側圧力室1Hに流入する。ピストン1Pが矢印AR2の方向に移動し、ヘッド側圧力室1Hの体積が増大することによって生じる作動油の不足を補うためである。なお、ヘッド側圧力室2H内の作動油の残りの部分は、管路C2H、C34、及びC3を通って作動油タンクに排出される。この場合、ヘッド側圧力室1H及びヘッド側圧力室2Hのそれぞれにおける作動油が出力圧に影響を与えることはない。
 その後、ピストン2Pが油圧シリンダ2のヘッド側圧力室2H側の端部に達したことを近接センサ4Rが検出すると、制御装置5は、所望の出力圧の供給が継続されるよう、流れ制御弁6H、6R、7R、7Hの状態を図2に示す状態に切り換える。
 このように、油圧増減圧機100は、図2に示す状態と図3に示す状態とを交互に繰り返しながら、所定の増圧比で入力圧より高い出力圧を継続的に供給先SDに供給することができる。
 また、油圧増減圧機100は、矢印AR1で示す方向にピストンロッド3を移動させる際に、ヘッド側圧力室2Hを入力用圧力室とし、ヘッド側圧力室1Hを出力用圧力室とする。そして、矢印AR2で示す方向にピストンロッド3を移動させる際に、ロッド側圧力室2Rを入力用圧力室とし、ロッド側圧力室1Rを出力用圧力室とする。その結果、油圧増減圧機100は、ピストンロッド3が何れの方向に移動する場合であっても、同等の増圧比で入力圧よりも高い出力圧を継続的に供給できるようにする。しかしながら、油圧増減圧機100は、入力用圧力室及び出力用圧力室として1又は複数の別の圧力室を選択しながら、減圧となる比率を含む所定の圧力変換比で入力圧と異なる出力圧を継続的に供給できるようにしてもよい。
 なお、制御装置5は、ピストン1P、2Pの移動を開始させる際には、ピストン1P、2Pの現在の位置情報を考慮し、ピストンストロークが大きく取れる方に先ずピストン1P、2Pの移動を開始させるようにする。
 次に、図4を参照しながら、入出力直結切換弁8の動きについて説明する。なお、図4は、ピストンロッド3を移動させずに、供給源SRの入力圧をそのまま出力圧として供給先SDに供給する状態を示す図である。
 図4において、制御装置5は、流れ制御弁6Hに対して制御信号を送信し、管路C1Hと管路C31とを連通させる。また、制御装置5は、流れ制御弁6Rに対して制御信号を送信し、管路C1Rと管路C32とを連通させる。また、制御装置5は、流れ制御弁7Rに対して制御信号を送信し、管路C2Rと管路C33とを連通させる。また、制御装置5は、流れ制御弁7Hに対して制御信号を送信し、管路C2Hと管路C34とを連通させる。これらの制御は、供給源SR又は供給先SDからの作動油が、ヘッド側圧力室1H、2H、及び、ロッド側圧力室1R、2Rに流入しないようにするためである。
 その上で、制御装置5は、入出力直結切換弁8に対して制御信号を送信し、管路C25と管路C26とを連通させることによって、管路C1と管路C2とを連通させる。
 このように、油圧増減圧機100は、供給源SRの入力圧をそのまま出力圧として供給先SDに供給することができる。
 また、上述の実施例では、油圧増減圧機100は、供給源SRから供給先SDに作動油が流れるようにし、入力圧(管路C1における圧力)の変化に応じて出力圧(管路C2における圧力)を変化させるが、供給先SDから供給源SRに作動油が流れるようにし、出力圧(管路C2における圧力)の変化に応じて入力圧(管路C1における圧力)を変化させてもよい。
 次に、図5を参照しながら、油圧増減圧機の別の構成例100Aについて説明する。なお、図5は、油圧増減圧機100Aの構成例を示す油圧回路図であり、図1に対応する。
 油圧増減圧機100Aは、流れ制御弁6Rを省略し、油圧シリンダ1のロッド側圧力室1Rを作動油タンクに直接接続した点で、図1の油圧増減圧機100と相違するが、その他の点で共通する。そのため、共通部分の説明を省略しながら、相違部分を詳細に説明する。
 図5に示すように、油圧シリンダ1のロッド側圧力室1Rは、管路C1R、C32、及びC3を通じて常に作動油タンクに接続される。そのため、供給源SRからの作動油がロッド側圧力室1Rに流入することはなく、ロッド側圧力室1R内の作動油が供給先SDに至ることもない。
 この構成により、油圧増減圧機100Aは、ロッド側圧力室1Rを入力用圧力室又は出力用圧力室として選択できないため、油圧増減圧機100に比べ、実現可能な圧力変換比の数が少なくなる。しかしながら、油圧増減圧機100Aは、限られた数の圧力変換比を用いる場合には、油圧増減圧機100よりも簡易な構成により、油圧増減圧機100と同等の動きを実現させることができる。
 なお、図5では、ロッド側圧力室1Rを常に作動油タンクに接続する構成が採用されるが、ロッド側圧力室1Rの代わりに、ヘッド側圧力室1H、2H、又はロッド側圧力室2Rの何れか一つを常に作動油タンクに接続する構成が採用されてもよい。
 次に、図6を参照しながら、油圧増減圧機のさらに別の構成例100Bについて説明する。なお、図6は、油圧増減圧機100Bの構成例を示す油圧回路図であり、図1に対応する。
 油圧増減圧機100Bは、流れ制御弁6Rを省略し、油圧シリンダ1のロッド側圧力室1Rを管路C2Rに直接接続した点で、図1の油圧増減圧機100と相違するが、その他の点で共通する。そのため、共通部分の説明を省略しながら、相違部分を詳細に説明する。
 図6に示すように、油圧シリンダ1のロッド側圧力室1Rは、管路C1R及びC2Rを通じて常にロッド側圧力室2Rに接続される。そのため、供給源SRからの作動油がロッド側圧力室1Rのみに流入することはなく、供給源SRからの作動油がロッド側圧力室1Rに流入する際には、必ずロッド側圧力室2Rにも供給源SRからの作動油が流入する。また、ロッド側圧力室1R内の作動油の全てが供給先SDに至ることもなく、ロッド側圧力室1R内の作動油が供給先SDに至る際には、必ずロッド側圧力室2Rにもロッド側圧力室1Rからの作動油が流入する。
 この構成により、油圧増減圧機100Bは、ロッド側圧力室1Rを単独で入力用圧力室又は出力用圧力室として選択できないため、油圧増減圧機100に比べ、実現可能な圧力変換比の数が少なくなる。しかしながら、油圧増減圧機100Bは、限られた数の圧力変換比を用いる場合には、油圧増減圧機100よりも簡易な構成により、油圧増減圧機100と同等の動きを実現させることができる。
 なお、図6では、ロッド側圧力室1Rを常にロッド側圧力室2Rに接続する構成が採用されるが、その代わりに、ロッド側圧力室1Rを常に1又は複数の別の圧力室に接続する構成が採用されてもよい。また、ロッド側圧力室1Rを常にロッド側圧力室2Rに接続する代わりに、ヘッド側圧力室1H、2H、又はロッド側圧力室2Rの何れか一つを常に1又は複数の別の圧力室に接続する構成が採用されてもよい。
 次に、図7を参照しながら、油圧増減圧機100が実現可能な圧力変換比について説明する。なお、図7Aは、図1に示す油圧増減圧機100の油圧シリンダ1、2、及びピストンロッド3の拡大図であり、図7Bは、油圧シリンダ1、2の詳細を示す仕様表である。また、図7Cは、油圧増減圧機100が実現可能な圧力変換比の詳細を示す表であり、図7Dは、図7Cにおける圧力変換比とその段の関係を示すグラフである。
 図7Bで示すように、ヘッド側圧力室1Hの受圧面積は、ロッド側圧力室1Rの受圧面積の約2.0倍である。また、ロッド側圧力室2Rの受圧面積は、ロッド側圧力室1Rの受圧面積の約1.7倍であり、ヘッド側圧力室2Hの受圧面積は、ロッド側圧力室1Rの受圧面積の約3.3倍である。なお、ロッド側圧力室1Rの受圧面積は、ヘッド側圧力室1Hの表面積からピストンロッド3の断面積を差し引いた面積(円環部分の面積)である。同様に、ロッド側圧力室2Rの受圧面積は、ヘッド側圧力室2Hの表面積からピストンロッド3の断面積を差し引いた面積(円環部分の面積)である。
 このような条件の下、図7Cに示すように、油圧増減圧機100は、ピストン1P、2Pを左方向に移動させる場合に、-5段から+5段まで0段を含め合計で11段の圧力変換比を設定可能とする。同様に、油圧増減圧機100は、ピストン1P、2Pを右方向に移動させる場合にも、-5段から+5段まで0段を含め合計で11段の圧力変換比を設定可能とする。なお、正値で示す段は増圧の際の段を表し、負値で示す段は減圧の際の段数を表し、0段は入出力を直結した際の段を表す。したがって、図7Cは、油圧増減圧機100が、左右の移動方向のそれぞれにおいて、増圧のための5つの段と、減圧のための5つの段と、入出力を直結するための1つの段とを有することを示す。
 また、図7Cは、例えば、ピストン移動方向が左の場合の-5段の圧力変換比(0.490)は、入力用圧力室にロッド側圧力室1Rが選択され、出力用圧力室にヘッド側圧力室1Hが選択された場合に実現されることを示す。また、図7Cは、例えば、ピストン移動方向が右の場合の-5段の圧力変換比(0.510)は、入力用圧力室にロッド側圧力室2Rが選択され、出力用圧力室にヘッド側圧力室2Hが選択された場合に実現されることを示す。
 また、図7Cは、左右のピストン移動方向における対応する段のそれぞれの圧力変換比が同等になるという特性を示す。例えば、ピストン移動方向が左の場合の-3段の圧力変換比(0.745)は、ピストン移動方向が右の場合の対応する段である-3段の圧力変換比(0.746)と同等になる。この特性は、ピストン移動方向を左右で切り換えた場合であっても所望の出力圧が継続的に供給されることを確保する上で必要となる。
 図7Dは、左右のピストン移動方向における対応する段のそれぞれの圧力変換比が同等になるという特性をより分かり易く示すための図であり、実線の推移は、ピストン移動方向が右の場合の圧力変換比の推移を示し、点線の推移は、ピストン移動方向が左の場合の圧力変換比の推移を示す。図7Dに示すように、左右のピストン移動方向における対応する段のそれぞれの圧力変換比は、同等であることを維持しながら、段が上がるにつれて増大するように設定される。
 また、図7では、11段という奇数の段数が設定されるが、偶数の段数が設定されてもよい。その場合、入出力を直結した際の段である0段を省略することによって偶数の段数が実現されてもよい。
 次に、図8を参照しながら、圧力変換比の望ましい分布について説明する。なお、図8は、増圧のための3つの段と、減圧のための3つの段と、入出力を直結するための1つの段とを有する油圧増減圧機100における圧力変換比の望ましい分布を説明するための図である。また、図8は、圧力変換比の望ましい分布として等差型及び等比型があることを示す。なお、圧力変換比の分布は、左右のピストン移動方向のそれぞれで同等の分布となるように設定される。
 等差型は、隣り合う2つの段のそれぞれの圧力変換比の差が同等になるように圧力変換比を分布させる方式を意味し、圧力変換比の並びが等差数例を形成する。なお、図中の"a"は、公差に相当する。
 また、等比型は、隣り合う2つの段のそれぞれの圧力変換比の比が同等になるように圧力変換比を分布させる方式を意味し、圧力変換比の並びが等比数例を形成する。なお、図中の"e"は、公比に相当する。
 等差型及び等比型の何れを採用する場合であっても、設計者は、最初に、最大圧力変換比と最小圧力変換比とを決定する。そして、設計者は、最大圧力変換比と最小圧力変換比との間に設定される段の数を決定した上で、公差a又は公比eを決定することによって、油圧増減圧機100における圧力変換比の分布を決定する。
 次に、図9を参照しながら、圧力変換比の並びを実現する上で必要とされる各圧力室の受圧面積の間の関係について説明する。
 F9Aは、図1を用いて説明した、入力用圧力室又は出力用圧力室として採用され得る圧力室が4室ある場合(以下、「4室型」とする。)における、各圧力室の受圧面積の間の関係を示す。
 4室型では、2つの油圧シリンダのうちヘッド側受圧面積が小さいほうの油圧シリンダのヘッド側受圧面積が、他方の油圧シリンダにおけるヘッド側受圧面積とロッド側受圧面積との差より大きくなるように、各圧力室の受圧面積が決定される。
 具体的には、ヘッド側受圧面積が小さいほうの油圧シリンダ1のヘッド側受圧面積Sが、油圧シリンダ2におけるヘッド側受圧面積Sとロッド側受圧面積Sとの差よりも大きくなるように、すなわち、S>(S-S)の関係が満たされるように、油圧シリンダ1、2のシリンダ内径、及びピストンロッド3のロッド径が決定される。
 F9Bは、図5を用いて説明した、入力用圧力室又は出力用圧力室として採用され得る圧力室が3室ある場合(以下、「3室型」とする。)における、各圧力室の受圧面積の間の関係を示す。
 3室型では、ある方向にピストンを動かす際に入力用圧力室となる圧力室が2室(圧力室α及び圧力室γとする。)あり、その反対方向にピストンを動かす際に入力用圧力室となる圧力室が1室(圧力室δとする。)あるときに、圧力室αの受圧面積Sα、圧力室γの受圧面積Sγ、及び圧力室δの受圧面積Sδの関係がSδ>Sα且つSδ>Sγとなる。
 具体的には、F9Bにおいて、右方向にピストン1P、2Pを動かす際に入力用圧力室となる油圧シリンダ1のヘッド側圧力室1H(圧力室αに相当)の受圧面積S(受圧面積Sαに相当)及び油圧シリンダ2のロッド側圧力室2R(圧力室γに相当)の受圧面積S(受圧面積Sγに相当)の何れもが、出力用圧力室となる油圧シリンダ2のヘッド側圧力室2H(圧力室δに相当)のヘッド側受圧面積S(受圧面積Sδに相当)より小さくなるように、すなわち、S>S且つS>Sの関係が満たされるように、油圧シリンダ1、2のシリンダ内径、及びピストンロッド3のロッド径が決定される。
 F9Cは、4室型において、F9Aのように2つの油圧シリンダの2つのロッド側圧力室を対向配置させる代わりに、2つのロッド側圧力室を並列配置した場合(以下、「2シリンダ並進型」とする。)における、各圧力室の受圧面積の間の関係を示す。なお、ピストン1Pとピストン2Pとはピストンロッド3aを介して連結され、油圧シリンダ1、2のそれぞれの内部で、図の上下方向に一体的に並進する。
 2シリンダ並進型では、2つの油圧シリンダのうちヘッド側受圧面積が小さいほうの油圧シリンダのロッド側受圧面積が、他方の油圧シリンダにおけるヘッド側受圧面積とロッド側受圧面積との差より大きくなるように、各圧力室の受圧面積が決定される。
 具体的には、ヘッド側受圧面積が小さいほうの油圧シリンダ1のロッド側受圧面積Sが、油圧シリンダ2におけるヘッド側受圧面積Sとロッド側受圧面積Sとの差よりも大きくなるように、すなわち、S>(S-S)の関係が満たされるように、油圧シリンダ1、2のシリンダ内径、及びピストンロッド3のロッド径が決定される。
 次に、図10を参照しながら、油圧アクチュエータの別の構成例について説明する。なお、図10は、油圧アクチュエータの別の構成例を示す断面図である。
 F10Aは、油圧増減圧機100、100A、100Bのそれぞれにおける油圧アクチュエータである、油圧シリンダ1、2、及びピストンロッド3の組み合わせの代わりに採用され得る油圧シリンダ1aの構成例を示す。
 油圧シリンダ1aは、流体圧シリンダの1例であり、3段円筒状の外形を有し、3段円柱状のピストン1Paをその内部で図の左右方向に摺動可能に収容する。油圧シリンダ1aの内壁とピストン1Paとの間には4つの圧力室P1~P4が形成され、4つの圧力室P1~P4のそれぞれは、流れ制御弁を介して供給源SR、供給先SD、及び作動油タンクのうちの1つに選択的に連通される。
 同様に、F10Bは、油圧増減圧機100、100A、100Bのそれぞれにおける油圧アクチュエータの代わりに採用され得る油圧シリンダ1bの構成例を示す。
 油圧シリンダ1bは、流体圧シリンダの1例であり、5段円筒状の外形を有し、5段円柱状のピストン1Pbをその内部で図の左右方向に摺動可能に収容する。油圧シリンダ1bの内壁とピストン1Pbとの間には6つの圧力室P1~P6が形成され、6つの圧力室P1~P6のそれぞれは、流れ制御弁を介して供給源SR、供給先SD、及び作動油タンクのうちの1つに選択的に連通される。なお、流れ制御弁は、望ましくは、6つの圧力室P1~P6のそれぞれに対応するように6つ用意される。
 同様に、F10Cは、油圧増減圧機100、100A、100Bのそれぞれにおける油圧アクチュエータの代わりに採用され得る油圧アクチュエータの構成例を示す。
 F10Cの油圧アクチュエータは、3つの油圧シリンダ1c1、1c2、1c3と、ピストンロッド3cとで構成される。
 油圧シリンダ1c1は、流体圧シリンダの1例であり、円柱状のヘッド側圧力室P1と円筒状のロッド側圧力室P2とを隔てる円柱状のピストン1Pc1を有する。また、油圧シリンダ1c2は、流体圧シリンダの1例であり、円柱状のヘッド側圧力室P3と円筒状のロッド側圧力室P4とを隔てる円柱状のピストン1Pc2を有する。また、油圧シリンダ1c3は、流体圧シリンダの1例であり、円柱状のヘッド側圧力室P5と円筒状のロッド側圧力室P6とを隔てる円柱状のピストン1Pc3を有する。
 ピストン1Pc1、1Pc2、及び1Pc3は、ピストンロッド3cを介して互いに連結され、油圧シリンダ1c1、1c2、及び1c3のそれぞれの内部を一体的に摺動する。6つの圧力室P1~P6のそれぞれは、流れ制御弁を介して供給源SR、供給先SD、及び作動油タンクのうちの1つに選択的に連通される。なお、流れ制御弁は、望ましくは、6つの圧力室P1~P6のそれぞれに対応するように6つ用意される。また、圧力室P1と圧力室P5を共通の流れ制御弁で制御し、且つ、圧力室P2と圧力室P6を共通の流れ制御弁で制御してもよい。この場合、実質的にF9Cに示す油圧増減圧機と等価な構成となる。
 以上の構成により、油圧増減圧機100、100A、100Bは、1つの流体圧シリンダ又は複数の連動する流体圧シリンダにおける複数の圧力室から入力用圧力室及び出力用圧力室を切り替え可能に選択する。そして、制御装置5により流れ制御弁を制御し、選択した入力用圧力室と供給源SRとを連通させ、且つ、選択した出力用圧力室と供給先SDとを連通させる。その結果、入力圧より高い圧力、及び、入力圧より低い圧力を含む出力圧を供給先SDに継続的に供給することができる。また、油圧増減圧機100、100A、100Bは、油圧シリンダ1、2の使用により小型化が可能であり、また、減圧弁を用いて出力圧を調節する場合に比べ、エネルギ効率及び制御性を向上させることができる。
 また、油圧増減圧機100、100A、100Bは、入出力直結切換弁により、入力圧に等しい出力圧を供給先SDに継続的に供給することができる。
 また、油圧増減圧機100、100A、100Bは、入力用圧力室として採用される少なくとも1つの圧力室と、出力用圧力室として採用される少なくとも1つの圧力室との組み合わせを複数用意する。これにより、複数段の圧力変換比を切り換え可能に用意できる。その結果、油圧増減圧機100、100A、100Bは、供給源SRにおける圧力(入力圧)と、供給先SDが必要とする圧力(出力圧)とが異なる場合にも、供給先SDが必要とする出力圧を供給することができる。
 次に、図11を参照しながら、本発明の実施例に係る、油圧増減圧機100が搭載される作業機械としてのショベル50について説明する。なお、図11は、ショベル50の概略側面図である。ショベル50は、ブーム14等の作業体の位置エネルギを流体圧エネルギに変換して回収し、回収した流体圧エネルギを作業体の駆動に利用できるようにするアキュムレータ21を備える。
 図11に示すように、ショベル50の下部走行体11には、旋回機構12を介して上部旋回体13が搭載される。
 上部旋回体13には、ブーム14が取り付けられ、ブーム14の先端には、アーム15が取り付けられ、アーム15の先端には、バケット16が取り付けられる。ブーム14、アーム15、及びバケット16は、掘削アタッチメントを構成し、ブームシリンダ17、アームシリンダ18、及びバケットシリンダ19によりそれぞれ油圧駆動される。また、ブームシリンダ17によるブーム14の油圧駆動は、アシストシリンダ20によって補助される。この場合、アシストシリンダ20のアシスト対象であるブームシリンダ17をメインシリンダと称する。なお、メインシリンダは、アームシリンダ18等の他の油圧シリンダであってもよい。すなわち、アシストシリンダ20は、アーム15等の他の作業体の油圧駆動を補助してもよい。
 また、上部旋回体13には、その前部にキャビン10が設けられ、その後部に駆動源としてのエンジン(図示せず。)が搭載される。また、上部旋回体13には、エンジンによって駆動される油圧ポンプ(図示せず。)と、油圧ポンプが吐出する作動油の流れを制御するコントロールバルブ(図示せず。)が搭載される。コントロールバルブは、ブームシリンダ17、アームシリンダ18、バケットシリンダ19等の各種油圧アクチュエータを流出入する作動油の流れを制御する。
 さらに、上部旋回体13には、ブーム14の位置エネルギを油圧エネルギとして回収し、且つ、回収した油圧エネルギをアシストシリンダ20の駆動に利用できるようにするアキュムレータ21が搭載される。アキュムレータ21は、油圧増減圧機100を介してアシストシリンダ20に接続される。具体的には、アキュムレータ21は、ブーム14の下降時にアシストシリンダ20から流出する作動油を受け入れ、ブーム14の上昇時にその受け入れた作動油をアシストシリンダ20に向けて吐出する。
 次に、図12を参照しながら、ショベル50に搭載される油圧増減圧機100の動作について説明する。なお、図12は、ショベル50に搭載される油圧増減圧機100の油圧回路図である。図12の油圧回路図は、その大部分が図1の油圧回路図と共通するため、共通部分の説明を省略しながら相違部分を詳細に説明する。
 図12において、油圧増減圧機100の入力には、入力圧の供給源としてのアキュムレータ21が接続され、その出力には、出力圧の供給先としてのアシストシリンダ20のヘッド側圧力室が減圧弁25を介して接続される。なお、アシストシリンダ20のロッド側圧力室は、管路C4及び管路C3を介して作動油タンクに接続される。また、アシストシリンダ20のヘッド側圧力室は、ブーム14が上昇する際にその体積が増大する圧力室であり、アシストシリンダ20のロッド側圧力室は、ブーム14が上昇する際にその体積が減少する圧力室である。
 姿勢状態検出装置22は、ショベル50の姿勢状態を検出するための装置である。姿勢状態検出装置22は、例えば、ブームシリンダ17、アームシリンダ18、バケットシリンダ19、及びアシストシリンダ20のそれぞれのストローク量(基準位置からの移動距離)を検出するシリンダストロークセンサを含み、その検出値を制御装置5に対して出力する。また、姿勢状態検出装置22は、ショベル50の水平面に対する傾斜度を検出する傾斜センサを含んでいてもよく、各種油圧シリンダ内の作動油の圧力を検出する圧力センサを含んでいてもよい。
 アキュムレータ状態検出装置23は、アキュムレータ21の状態を検出するための装置であり、例えば、アキュムレータ21における作動油の圧力を検出するための圧力センサであって、その検出値を制御装置5に対して出力する。
 操作状態検出装置24は、掘削アタッチメントの操作状態を検出するための装置である。操作状態検出装置24は、例えば、各種作業体を操作するためのレバーの操作方向及び操作量を検出するレバー操作量検出装置であって、その検出結果を制御装置5に対して出力する。
 減圧弁25は、油圧増減圧機100の出力圧を適宜減圧して下降時アシスト目標推力を調整するためのものであり、制御装置5によって制御される。なお、制御装置5は、アシストシリンダ20のヘッド側圧力室の圧力を検出し、この検出値に基づいて減圧弁25をフィードバック制御してもよい。また、減圧弁25は、比例減圧弁であってもよい。
 次に、図13を参照しながら、ショベル50に搭載される油圧増減圧機100が、ブーム操作レバーの操作に応じて、圧力変換比の段を決定する処理(以下、「段決定処理」とする。)について説明する。なお、図13は、段決定処理の流れを示すフローチャートであり、制御装置5は、ブーム操作レバーが操作されている場合に、この段決定処理を所定周期で繰り返し実行する。
 最初に、制御装置5は、掘削アタッチメントの操作状態に関する情報を取得する(ステップS1)。具体的には、制御装置5は、操作状態検出装置24の出力に基づいて、各種レバーの操作方向及び操作量を検出する。
 その後、制御装置5は、ショベル50の姿勢状態に関する情報を取得する(ステップS2)。具体的には、制御装置5は、姿勢状態検出装置22の出力に基づいてショベル50の水平面に対する傾き、及び、掘削アタッチメントの姿勢を検出する。
 その後、制御装置5は、掘削アタッチメントの操作状態及びショベル50の姿勢状態に基づいてアシスト目標推力を決定する(ステップS3)。具体的には、制御装置5は、ブーム操作レバーの操作方向、アーム15やバケット16の操作の有無、ブームシリンダ17、アームシリンダ18、及びバケットシリンダ19のストローク量、ショベル50の水平面に対する傾斜度等に基づいて、アシスト目標推力を決定する。
 より具体的には、アーム15やバケット16が操作されておらず、且つ、ショベル50が水平面上に位置する場合、掘削アタッチメントを下降させる際の下降時アシスト目標推力は、掘削アタッチメントを静止させるために必要な推力である負荷静止保持推力と同等の値に設定される。厳密には、負荷静止保持推力よりも僅かに低い値に設定される。また、掘削アタッチメントを上昇させる際の上昇時アシスト目標推力は、負荷静止保持推力を所定値だけ下回る値に設定される。なお、負荷静止保持推力は、掘削アタッチメントの姿勢等に応じて予め設定される値である。
 その後、制御装置5は、アキュムレータ21の状態に関する情報を取得する(ステップS4)。具体的には、制御装置5は、アキュムレータ状態検出装置23の出力に基づいてアキュムレータ21における作動油の圧力を取得する。
 その後、制御装置5は、既に取得した掘削アタッチメントの操作状態に関する情報に基づいて掘削アタッチメントの操作方向を判定する(ステップS5)。具体的には、制御装置5は、例えば、ブーム操作レバーの操作方向を判定する。
 ブーム操作レバーの操作方向、すなわち掘削アタッチメントの操作方向が上げ方向であると判定した場合(ステップS5の上げ方向)、制御装置5は、圧力変換比の段を表すパラメータNの値を最低段(例えば、-4段である。)に設定する(ステップS6)。
 その後、制御装置5は、圧力変換比をN段時の値とした場合に油圧増減圧機100が供給可能な出力圧による推力を出力可能推力として算出し、その出力可能推力が上昇時アシスト目標推力を上回るか否かを判定する(ステップS7)。
 なお、出力可能推力は、例えば、アキュムレータ21における作動油の圧力に、N段時の圧力変換比とアシストシリンダ20のヘッド側受圧面積を乗じた値として算出される。
 出力可能推力が上昇時アシスト目標推力以下であると判定した場合(ステップS7のNO)、制御装置5は、パラメータNの値に値「1」を加算する(ステップS8)。その後、制御装置5は、ステップS7の処理を再び実行する。すなわち、出力可能推力を算出し直した上で、その算出し直した出力可能推力が上昇時アシスト目標推力を上回るか否かを判定する。
 このように、制御装置5は、出力可能推力が上昇時アシスト目標推力を上回るまで段を1つずつ上げながらステップS7の処理を繰り返す。
 出力可能推力が上昇時アシスト目標推力を上回ると判定した場合(ステップS7のYES)、制御装置5は、そのときのパラメータNの値が示す段を、実際に採用する段として決定し(ステップS9)、N段時の圧力変換比で出力圧が生成されるように油圧増減圧機100を動作させる。
 一方、ブーム操作レバーの操作方向、すなわち掘削アタッチメントの操作方向が下げ方向であると判定した場合(ステップS5の下げ方向)、制御装置5は、圧力変換比の段を表すパラメータNの値を最高段(例えば、+4段である。)に設定する(ステップS10)。
 その後、制御装置5は、圧力変換比をN段時の値とした場合の出力可能推力を算出し、その出力可能推力が下降時アシスト目標推力を下回るか否かを判定する(ステップS11)。
 出力可能推力が下降時アシスト目標推力以上であると判定した場合(ステップS11のNO)、制御装置5は、パラメータNの値から値「1」を減算する(ステップS12)。その後、制御装置5は、ステップS11の処理を再び実行する。すなわち、出力可能推力を算出し直した上で、その算出し直した出力可能推力が下降時アシスト目標推力を下回るか否かを判定する。
 このように、制御装置5は、出力可能推力が下降時アシスト目標推力を下回るまで1つずつ段を下げながらステップS11の処理を繰り返す。
 出力可能推力が下降時アシスト目標推力を下回ると判定した場合(ステップS11のYES)、制御装置5は、そのときのパラメータNの値が示す段を、実際に採用する段として決定し(ステップS9)、N段時の圧力変換比で出力圧が生成されるように油圧増減圧機100を動作させる。
 次に、図14及び図15を参照しながら、アシストシリンダ20のストローク量と、油圧増減圧機100の入力圧及び出力圧と、各推力と、油圧増減圧機100の採用段との間の対応関係について説明する。なお、図14は、ブーム下げ操作時の対応関係を示す図であり、図15は、ブーム上げ操作時の対応関係を示す図である。また、図14及び図15は何れも、アーム15やバケット16が操作されておらず、且つ、ショベル50が水平面上に位置する場合の対応関係を示す。
 また、横軸に配置されるアシストシリンダ20のストローク量は、アシストシリンダ20が最も縮んだ状態(ブーム14が最も下降した状態)を0[%]で表し、アシストシリンダ20が最も伸びた状態(ブーム14が最も上昇した状態)を100[%]で表す。
 また、図中の細い実線が示す推移は、アキュムレータ21における作動油の圧力の推移を表し、太い実線が示す推移は、直結時(0段時)の出力可能推力(出力圧×受圧面積)の推移を表す。なお、直結時の出力圧は、入力圧、すなわち、アキュムレータ圧に相当する。また、アキュムレータ圧は、アシストシリンダ20のストローク量に概ね反比例する関係にあり、ストローク量が増大するにつれて減少する。また、太い破線、太い一点鎖線、太い二点鎖線、太い点線が示す推移は、それぞれ、-1段時、-2段時、-3段時、-4段時の出力可能推力の推移を表す。また、細い破線、細い一点鎖線、細い二点鎖線、細い点線が示す推移は、それぞれ、+1段時、+2段時、+3段時、+4段時の出力可能推力の推移を表す。
 なお、横軸に平行に延びる灰色の実線が示す推移は、負荷静止保持推力の推移を表す。なお、負荷静止保持推力は、実際には一定ではないが、ここでは便宜的に、アシストシリンダ20のストローク量にかかわらず、すなわち、ブーム14の姿勢にかかわらず一定となるように記載している。また、横軸に平行に延びる灰色の点線が示す推移は、下降時アシスト目標推力の推移を表し、下降時アシスト目標推力が負荷静止保持推力を僅かに下回るレベルで推移することを示す。また、鋸歯状の灰色の実線が示す推移は、段決定処理によって採用段を決定する油圧増減圧機100による出力圧から想定される推力の推移を表す。なお、グラフ領域の上部に示す段の値は、採用段とアシストシリンダ20のストローク量との関係を示し、例えば、ストローク量が50[%]のときに-1段が採用されることを示す。
 図14に示す対応関係を用いて、制御装置5は、ブーム下げ操作時に採用する段を決定する。具体的には、制御装置5は、先ず、アシストシリンダ20の現在のストローク量(例えば80[%]である。)と、最高段である+4段時の出力可能推力の推移を示す細い点線とによって特定される、+4段時の出力可能推力(275[N])を導出する。そして、制御装置5は、導出した出力可能推力(275[N])が下降時アシスト目標推力(199[N])を上回ると判定する。
 その後、制御装置5は、上述と同様に、+3段時の出力可能推力(240[N])、+2段時の出力可能推力(205[N])を順に導出する。何れの場合も、制御装置5は、導出した出力可能推力が下降時アシスト目標推力(199[N])を上回ると判定する。
 その後、制御装置5は、次に高い段である+1段時の出力可能推力(175[N])を導出する。この場合、制御装置5は、導出した出力可能推力(175[N])が下降時アシスト目標推力(199[N])以下であると判定する。そして、制御装置5は、このときの+1段を実際に採用する段として決定する。
 このように、制御装置5は、アシストシリンダ20による上昇推力によってブーム14の下降が停止してしまい或いは上昇に転じてしまうことがないようにしながら、ブーム14を滑らかに下降させられるよう適切な段を決定する。
 また、ブーム下げ操作時においては、アシストシリンダ20のヘッド側圧力室から流出した作動油が管路C2を介して出力用圧力室に流入し、入力用圧力室から流出した作動油が管路C1を介してアキュムレータ21に流入する。油圧増減圧機100は、図14に示すように、アシストシリンダ20のストローク量の減少に応じて圧力変換比(段)を変え、アキュムレータ21における作動油の圧力、すなわち、油圧増減圧機100の入力における圧力を徐々に増大させる。内部の圧力が徐々に増大するアキュムレータ21に作動油を押し込むことができるようにするためである。この場合、アシストシリンダ20のヘッド側圧力室における作動油の圧力による推力、すなわち、油圧増減圧機100の出力圧による推力は、制御装置5により制御される減圧弁25によってアシストシリンダ20のヘッド側圧力室における作動油の圧力が適宜調整されて、図14の鋸歯状の灰色の実線で示すように、所定範囲内に維持される。
 また、図15に示す対応関係を用いて、制御装置5は、ブーム上げ操作時に採用する段を決定する。具体的には、制御装置5は、先ず、アシストシリンダ20の現在のストローク量(例えば50[%]である。)と、最低段である-4段時の出力可能推力の推移を示す太い点線とによって特定される、-4段時の出力可能推力(125[N])を導出する。そして、制御装置5は、導出した出力可能推力(125[N])が上昇時アシスト目標推力(170[N])以下であると判定する。
 その後、制御装置5は、上述と同様に、-3段時の出力可能推力(145[N])、-2段時の出力可能推力(165[N])を順に導出する。何れの場合も、制御装置5は、導出した出力可能推力が上昇時アシスト目標推力(170[N])以下であると判定する。
 その後、制御装置5は、次に高い段である-1段時の出力可能推力(190[N])を導出する。この場合、制御装置5は、導出した出力可能推力(190[N])が上昇時アシスト目標推力(170[N])を上回ると判定する。そして、制御装置5は、このときの-1段を実際に採用する段として決定する。
 このように、制御装置5は、アシストシリンダ20による上昇推力が過度に不足してしまうことがないようにしながら、ブームシリンダ17によるブーム14の上昇をアシストしてブーム14を滑らかに上昇させられるよう適切な段を決定する。
 また、ブーム上げ操作時においては、アキュムレータ21から流出した作動油が管路C1を介して入力用圧力室に流入し、出力用圧力室から流出した作動油が管路C2を介してアシストシリンダ20のヘッド側圧力室に流入する。油圧増減圧機100は、図15に示すように、アシストシリンダ20のストローク量の増加に応じて圧力変換比(段)を変え、アシストシリンダ20のヘッド側圧力室における作動油の圧力による推力、すなわち、油圧増減圧機100の出力圧による推力が、制御装置5により制御される減圧弁25によってアシストシリンダ20のヘッド側圧力室における作動油の圧力が適宜調整されて、図15の鋸歯状の灰色の実線で示すように、所定範囲内に維持されるようにする。この場合、アキュムレータ21における作動油の圧力、すなわち、油圧増減圧機100の入力圧は、徐々に減少する。アキュムレータ21内の作動油が排出されるためである。
 なお、制御装置5は、アシストシリンダ20のストローク量と採用段とを予め対応付けて記憶しておくことによって、各段の出力可能推力を個別に算出することなく、アシストシリンダ20のストローク量に基づいて採用段を直接決定してもよい。
 また、本実施例では、制御装置5は、図14及び図15に示すように、アシスト目標推力の設定を除き、ブーム上げ操作時とブーム下げ操作時とで同じ対応関係を用いるが、異なる対応関係を用いてもよい。
 次に、図16を参照しながら、アーム15やバケット16が操作されている場合、或いは、ショベル50が水平面に対して傾斜している場合における、アシストシリンダ20のストローク量と、油圧増減圧機100の入力圧及び出力圧と、油圧増減圧機100の採用段との間の対応関係について説明する。なお、図16に示す対応関係は、アシストシリンダ20のストローク量の増加にしたがって減少するように設定された負荷静止保持推力を用いる点で、図14及び図15に示す対応関係と相違する。また、図16に示す対応関係は、アシスト目標推力の設定を除き、ブーム上げ操作時及びブーム下げ操作時の双方で利用され、例えば、ブームを上げながらアームを閉じる複合動作、ブームを下げながらアームを開く複合動作、前傾姿勢のショベル50がブームを上下させる動作等で利用される。
 図16に示す対応関係においても、制御装置5は、ブーム下げ操作時に、アシストシリンダ20による上昇推力によってブーム14の下降が停止してしまい或いは上昇に転じてしまうことがないようにしながら、ブーム14を滑らかに下降させられるよう適切な段を決定する。また、制御装置5は、ブーム上げ操作時に、アシストシリンダ20による上昇推力が過度に不足してしまうことがないようにしながら、ブームシリンダ17によるブーム14の上昇をアシストしてブーム14を滑らかに上昇させられるよう適切な段を決定する。
 以上の構成により、油圧増減圧機100は、アシストシリンダ20内に押し込まれる作動油の圧力をより柔軟に制御することができ、アシストシリンダ20の動き、ひいては掘削アタッチメントの動きをより柔軟に制御することができる。すなわち、掘削アタッチメントの操作性、及び、アキュムレータ21が回収した油圧エネルギの利用効率を高めることができる。
 また、油圧増減圧機100は、アキュムレータ21内に押し込まれる作動油の圧力をより柔軟に制御することができ、掘削アタッチメントの位置エネルギのアキュムレータ21による回収をより柔軟に制御することができる。すなわち、アキュムレータ21による位置エネルギの回収効率を向上させることができる。
 次に、図17を参照しながら、アシストシリンダの別の構成例20Aについいて説明する。なお、図17は、アシストシリンダ20Aを含むブームシリンダ17の断面図であり、アシストシリンダ20Aが、アシスト対象であるメインシリンダとしてのブームシリンダ17のピストンロッド内に形成された状態を示す。
 アシストシリンダ20Aは、作動油が流出入する1つのポートを有し、そのポートが油圧増減圧機100の出力に接続される。なお、ブームシリンダ17のヘッド側圧力室及びロッド側圧力室のそれぞれは、図示しない流量制御弁に接続され、図示しない油圧ポンプが吐出する作動油を受け入れることができ、また、作動油タンクに向けて作動油を排出することができる。なお、油圧増減圧機100の入力は、アキュムレータ21に接続される。
 このような構成においても、油圧増減圧機100は、アシストシリンダ20A内に押し込まれる作動油の圧力をより柔軟に制御することができ、アシストシリンダ20Aの動き、ひいては掘削アタッチメントの動きをより柔軟に制御することができる。すなわち、掘削アタッチメントの操作性、及び、アキュムレータ21が回収した油圧エネルギの利用効率を高めることができる。
 また、油圧増減圧機100は、アキュムレータ21内に押し込まれる作動油の圧力をより柔軟に制御することができ、掘削アタッチメントの位置エネルギのアキュムレータ21による回収をより柔軟に制御することができる。すなわち、アキュムレータ21による位置エネルギの回収効率を向上させることができる。
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなしに上述した実施例に種々の変形及び置換を加えることができる。
 例えば、上述の実施例において、作動油は、空気、水等の他の流体で置き換えられてもよい。
 また、上述の実施例において、アシストシリンダ20は、ブームシリンダ17の前方に平行に取り付けられるが、ブームシリンダ17の側方又は後方に平行に取り付けられてもよい。また、アシストシリンダ20は、ブームシリンダ17の前方、側方、又は後方に、ブームシリンダ17に対して傾斜するように取り付けられてもよい。
 また、アシストシリンダ20は、ブーム14の後方に、すなわち、ブーム14の前方に取り付けられるブームシリンダ17に対してブーム14の反対側に取り付けられてもよい。この場合、アシストシリンダ20は、ブーム14が下降するにつれて伸び、ブーム14が上昇するにつれて縮む。そのため、アシストシリンダ20のロッド側圧力室が油圧増減圧機100の出力用圧力室に接続され、アシストシリンダ20のヘッド側圧力室が作動油タンクに接続される。
 また、油圧増減圧機100は、作業体の位置エネルギを流体圧エネルギとして回収可能なアキュムレータと、アキュムレータの流体圧エネルギを利用して作業体を駆動可能な流体圧アクチュエータとを有する、油圧エレベータ、油圧クレーン等の他の作業機械に搭載されてもよい。
 また、本願は、2012年3月23日に出願した日本国特許出願2012-068369号及び日本国特許出願2012-068370号に基づく優先権を主張するものでありそれらの日本国特許出願の全内容を本願に参照により援用する。
 1、1a、1b、1c1~1c3、2・・・油圧シリンダ 1H、2H・・・ヘッド側圧力室 1P、1Pa、1Pb、1Pc1~1Pc3、2P・・・ピストン 1R、2R・・・ロッド側圧力室 3、3a、3c・・・ピストンロッド 4R、4L、4C・・・近接センサ 5・・・制御装置 6H、6R、7R、7H・・・流れ制御弁 8・・・入出力直結切換弁 10・・・キャビン 11・・・下部走行体 12・・・旋回機構 13・・・上部旋回体 14・・・ブーム 15・・・アーム 16・・・バケット 17・・・ブームシリンダ 18・・・アームシリンダ 19・・・バケットシリンダ 20、20A・・・アシストシリンダ 21・・・アキュムレータ 22・・・姿勢状態検出装置 23・・・アキュムレータ状態検出装置 24・・・操作状態検出装置 25・・・減圧弁 50・・・ショベル 100、100A、100B・・・油圧増減圧機

Claims (7)

  1.  出力圧を連続的に供給可能な流体圧増減圧機であって、
     1つの流体圧シリンダ又は複数の連動する流体圧シリンダにおける複数の圧力室から、入力圧が適用される少なくとも1つの入力用圧力室と、入力圧より高い圧力、及び、入力圧より低い圧力を含む出力圧が生成される少なくとも1つの出力用圧力室とを切り替え可能に選択する制御装置と、
     前記入力用圧力室と入力とを連通させ、且つ、前記出力用圧力室と出力とを連通させる流れ制御弁と、
     を備える流体圧増減圧機。
  2.  前記入力と前記出力とを直結可能な入出力直結切換弁を備える、
     請求項1に記載の流体圧増減圧機。
  3.  入力圧に対する出力圧の比である圧力変換比が複数の段で設定され、
     前記複数の段のそれぞれにおける圧力変換比の並びが等差数列又は等比数列を形成する、
     請求項1に記載の流体圧増減圧機。
  4.  前記1つの流体圧シリンダ又は複数の連動する流体圧シリンダにおけるピストンの位置を検出するピストン位置検出部を備える、
     請求項1に記載の流体圧増減圧機。
  5.  前記複数の連動する流体圧シリンダは、それぞれのピストンを一体的に移動させる共通のロッドを有する、
     請求項1に記載の流体圧増減圧機。
  6.  作業体を駆動するメインシリンダと、
     前記メインシリンダを補助するアシストシリンダと、
     前記作業体の位置エネルギを流体圧エネルギとして回収し、且つ、回収した流体圧エネルギを前記アシストシリンダの駆動に利用できるようにするアキュムレータと、
     1つの流体圧シリンダ又は複数の連動する流体圧シリンダにおける複数の圧力室から、入力圧が適用される少なくとも1つの入力用圧力室と、入力圧より高い出力圧、及び、入力圧より低い出力圧を含む出力圧が生成される少なくとも1つの出力用圧力室とを切り替え可能に選択する制御装置と、前記入力用圧力室と入力とを連通させ、且つ、前記出力用圧力室と出力とを連通させる流れ制御弁とを備える流体圧増減圧機と、を備え、
     前記流体圧増減圧機は、前記アキュムレータを入力とし、前記アシストシリンダを出力とする、
     作業機械。
  7.  前記アシストシリンダは、前記メインシリンダのピストンロッド内に形成される、
     請求項6に記載の作業機械。
PCT/JP2013/052728 2012-03-23 2013-02-06 流体圧増減圧機及び作業機械 WO2013140879A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380006334.3A CN104093979B (zh) 2012-03-23 2013-02-06 流体压增减压机及施工机械
EP13763770.8A EP2829730B1 (en) 2012-03-23 2013-02-06 Device for raising/reducing fluid pressure
KR1020147020539A KR101686595B1 (ko) 2012-03-23 2013-02-06 유체압 증감압기 및 작업기계
US14/478,035 US20140366717A1 (en) 2012-03-23 2014-09-05 Fluid pressure increasing/decreasing machine and working machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012068369A JP5972625B2 (ja) 2012-03-23 2012-03-23 流体圧増減圧機
JP2012068370A JP5985222B2 (ja) 2012-03-23 2012-03-23 作業機械
JP2012-068369 2012-03-23
JP2012-068370 2012-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/478,035 Continuation US20140366717A1 (en) 2012-03-23 2014-09-05 Fluid pressure increasing/decreasing machine and working machine

Publications (1)

Publication Number Publication Date
WO2013140879A1 true WO2013140879A1 (ja) 2013-09-26

Family

ID=49222344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052728 WO2013140879A1 (ja) 2012-03-23 2013-02-06 流体圧増減圧機及び作業機械

Country Status (5)

Country Link
US (1) US20140366717A1 (ja)
EP (1) EP2829730B1 (ja)
KR (1) KR101686595B1 (ja)
CN (1) CN104093979B (ja)
WO (1) WO2013140879A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016007699A1 (en) * 2014-07-11 2016-01-14 Murtech, Inc. Remotely reconfigurable high pressure fluid passive control system for controlling bi-directional piston pumps as active sources of high pressure fluid, as inactive rigid structural members or as isolated free motion devices
US10766793B2 (en) 2012-07-05 2020-09-08 Murtech, Inc. Damping plate sand filtration system and wave energy water desalination system and methods of using potable water produced by wave energy desalination

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160187891A1 (en) * 2014-12-30 2016-06-30 Thomas Michael Reilly Hydrostatic Pressure Exchanger
WO2017127678A1 (en) * 2016-01-20 2017-07-27 Nexmatix Llc Four-way control valve for pneumatic charging and discharging of working vessel
CN108331797B (zh) * 2018-03-28 2023-12-08 江苏徐工工程机械研究院有限公司 一种抛沙灭火车进料装置用油缸
EP3959384A1 (en) 2019-04-24 2022-03-02 Volvo Construction Equipment AB A hydraulic device, a hydraulic system and a working machine
WO2021138679A1 (en) * 2020-01-03 2021-07-08 The Oil Gear Company Subsea hydraulic pressure boosting and regulating system
WO2023093961A1 (en) * 2021-11-29 2023-06-01 Aalborg Universitet A hydraulic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524480Y2 (ja) * 1987-12-09 1993-06-22
JP2004278207A (ja) 2003-03-18 2004-10-07 Nisshin Steel Co Ltd 高圧水供給装置および高圧水供給方法
JP3628365B2 (ja) * 1995-02-09 2005-03-09 理研精機株式会社 アンビルを用いる超高圧作出装置における圧力制御方法
JP4659310B2 (ja) * 1999-06-15 2011-03-30 マランゼ、ベルナール 水を濾過するためのピストンポンプを備えた揚水装置及び同揚水装置を用いて海水を脱塩する方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10158178C1 (de) * 2001-11-28 2003-07-17 Minibooster Hydraulics As Soen Hydraulischer Druckverstärker
DE10361619B4 (de) * 2003-12-30 2006-08-31 Joachim-Andreas Wozar Hydraulische Betätigungsvorrichtung
WO2007065082A2 (en) * 2005-11-29 2007-06-07 Elton Daniel Bishop Digital hydraulic system
CN201149008Y (zh) * 2008-01-07 2008-11-12 扬州锻压机床集团有限公司 气体增压器
CN101498323A (zh) * 2008-10-23 2009-08-05 北京航空航天大学 一种长寿命节能静音型增压阀

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524480Y2 (ja) * 1987-12-09 1993-06-22
JP3628365B2 (ja) * 1995-02-09 2005-03-09 理研精機株式会社 アンビルを用いる超高圧作出装置における圧力制御方法
JP4659310B2 (ja) * 1999-06-15 2011-03-30 マランゼ、ベルナール 水を濾過するためのピストンポンプを備えた揚水装置及び同揚水装置を用いて海水を脱塩する方法
JP2004278207A (ja) 2003-03-18 2004-10-07 Nisshin Steel Co Ltd 高圧水供給装置および高圧水供給方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10766793B2 (en) 2012-07-05 2020-09-08 Murtech, Inc. Damping plate sand filtration system and wave energy water desalination system and methods of using potable water produced by wave energy desalination
WO2016007699A1 (en) * 2014-07-11 2016-01-14 Murtech, Inc. Remotely reconfigurable high pressure fluid passive control system for controlling bi-directional piston pumps as active sources of high pressure fluid, as inactive rigid structural members or as isolated free motion devices
US9334860B2 (en) 2014-07-11 2016-05-10 Murtech, Inc. Remotely reconfigurable high pressure fluid passive control system for controlling bi-directional piston pumps as active sources of high pressure fluid, as inactive rigid structural members or as isolated free motion devices
US9587635B2 (en) 2014-07-11 2017-03-07 Murtech, Inc. Remotely reconfigurable high pressure fluid passive control system for controlling bi-directional piston pumps as active sources of high pressure fluid, as inactive rigid structural members or as isolated free motion devices
US9845800B2 (en) 2014-07-11 2017-12-19 Murtech, Inc. Remotely reconfigurable high pressure fluid passive control system for controlling bi-directional piston pumps as active sources of high pressure fluid, as inactive rigid structural members or as isolated free motion devices
US10030645B2 (en) 2014-07-11 2018-07-24 Murtech, Inc. Remotely reconfigurable high pressure fluid passive control system for controlling bi-directional piston pumps as active sources of high pressure fluid, as inactive rigid structural members or as isolated free motion devices

Also Published As

Publication number Publication date
KR101686595B1 (ko) 2016-12-14
US20140366717A1 (en) 2014-12-18
EP2829730A4 (en) 2015-07-29
EP2829730B1 (en) 2018-04-11
CN104093979A (zh) 2014-10-08
EP2829730A1 (en) 2015-01-28
CN104093979B (zh) 2016-12-21
KR20140107579A (ko) 2014-09-04

Similar Documents

Publication Publication Date Title
WO2013140879A1 (ja) 流体圧増減圧機及び作業機械
EP1580437B1 (en) Hydraulic cylinder for use in a hydraulic tool
JP5236161B2 (ja) 交差機能再成を有する油圧制御システム
CN107893786B (zh) 工程机械的控制系统及工程机械的控制方法
US10519725B2 (en) Hydraulic multi-displacement hoisting cylinder system
JP2006153278A (ja) 設定可能な油圧制御システム
CN104071709B (zh) 一种起重机用固定副臂无级变幅控制系统及起重机
WO2005093262A1 (en) Innerscoping hydraulic system
CA2945219C (en) Device for recovering hydraulic energy in an implement and a corresponding implement
AU2016202937A1 (en) Apparatus for the energy-optimized hydraulic control of at least one double-action working cylinder
JP4578017B2 (ja) 油圧シリンダ駆動装置
JP2015190518A (ja) 定圧力制御液圧駆動装置
CN103899588A (zh) 随车起重机多路换向装置及直臂随车起重机
JP5972625B2 (ja) 流体圧増減圧機
EP3795844A1 (en) Construction machine
JP2010275818A (ja) 建設機械の油圧駆動装置
JP5985222B2 (ja) 作業機械
JP5801254B2 (ja) 供給圧変動抑制機構及び流体圧増減圧機
JP2016205451A (ja) 流体圧回路および作業機械
SE525907C2 (sv) Förfarande vid ett system med ett trycksatt medium för användning och styrnig av en lyftbomsenhet speciellt i förening med en arbetsmaskin
CN106246621A (zh) 用于工程机械的液压油路和工程机械
EP4112946A1 (en) Hydraulic arrangement for a work vehicle
CN105275911A (zh) 带锁紧龙门吊提升油缸

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147020539

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013763770

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE