WO2013140874A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2013140874A1
WO2013140874A1 PCT/JP2013/052658 JP2013052658W WO2013140874A1 WO 2013140874 A1 WO2013140874 A1 WO 2013140874A1 JP 2013052658 W JP2013052658 W JP 2013052658W WO 2013140874 A1 WO2013140874 A1 WO 2013140874A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
circuit
relays
power
Prior art date
Application number
PCT/JP2013/052658
Other languages
French (fr)
Japanese (ja)
Inventor
敏 井堀
正宏 平賀
雅之 広田
祐介 荒尾
良 田中
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201380006797.XA priority Critical patent/CN104081612A/en
Publication of WO2013140874A1 publication Critical patent/WO2013140874A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • H02H9/002Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off limiting inrush current on switching on of inductive loads subjected to remanence, e.g. transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions

Definitions

  • the present invention relates to a power conversion device in which a plurality of relays of the same capacity are connected in parallel to an inrush prevention suppression circuit.
  • Power converters are widely used as speed control devices for motors in industry and home appliances.
  • the voltage-type inverter which is currently the mainstream power converter, converts AC voltage to DC with a forward converter, smoothes it with a large capacity electrolytic capacitor in the DC intermediate circuit, and then AC voltage with an arbitrary frequency again with an inverter. Convert to
  • An inrush prevention circuit is provided for the purpose of protecting the rectifier diode constituting the forward converter from the charging current from the large charging current to the electrolytic capacitor in the DC intermediate circuit.
  • the inrush prevention circuit includes a resistor for suppressing current and a relay connected in parallel to the resistor.
  • the charging current to the electrolytic capacitor is suppressed by resistance, and the relay is turned on when the charging voltage of the electrolytic capacitor is fully charged. After the relay is turned on, no current flows through the resistor that suppresses the current, and all current flows through the relay. Therefore, the resistor that suppresses the current has a resistance loss until the relay is turned on. Become.
  • Patent Document 1 as a parallel contact abnormality detection device, solenoid coils that are depolarized from each other are connected in series with parallel connection points, and a contact detection signal that detects a voltage generated between each connection point is output. It is disclosed that the system can be safely stopped by detecting an abnormality in the parallel contact portion using an inrush current limiting relay.
  • Patent Document 2 detects the effective value of the voltage of the three-phase AC power input to the power converter and the DC voltage rectified by the rectifier circuit, and the DC voltage is calculated based on the effective value.
  • a power conversion device is disclosed in which a switch is closed by a control circuit when a threshold value is exceeded.
  • Patent Document 3 discloses an inverter device characterized in that a plurality of semiconductor switching elements of an inrush prevention circuit are connected in parallel.
  • an object is to provide a power conversion device that can perform the operation, and detects the abnormality of a parallel contact, and the change rate of the voltage detection value of the DC intermediate circuit is set in advance for the ON timing of the relay. There is no disclosure of what to do when it falls below the stated value.
  • paragraph [0024] describes that the set value of ⁇ V is determined based on the allowable power of the rectifier circuit 2 in the power converter, the capacity of the smoothing capacitor 6, and the like. However, there is no disclosure about the point at which the switch is turned on when the rate of change in the voltage detection value of the DC intermediate circuit composed of the smoothing capacitor becomes equal to or less than a preset value.
  • a transformer is required to detect the effective value of the voltage of the three-phase AC power input to the power converter, which again becomes a major bottleneck for downsizing the inverter device.
  • paragraph [0028] includes a load for reliably operating the thyristors 4a and 4b when the gate trigger current and the gate trigger voltage of the thyristors 4a and 4b with respect to the lower limit value of the operating temperature of the inverter device are IGT2 and VGT2, respectively.
  • the line must pass through the shaded area in FIG. 3 without interruption. In other words, it is necessary for the semiconductor switching elements 4a and 4b to ignite within a predetermined ambient temperature range of the inverter device. If the power supply voltage of the DC power supply 5 dedicated to the inrush prevention circuit is Vs, the hatched portion is interrupted. It is disclosed that the load line passing through is within the range of the load line e and the load line f, the minimum value of the gate resistance 13 is obtained from the load line e, and the maximum value of the gate resistance is obtained from the load line f. Has been.
  • the power supply voltage value and the gate resistance value are determined in consideration of the fluctuation range of the power supply voltage and the variation in resistance value.
  • the inrush prevention circuit DC power source 5 is a DC power source based on the cathode potentials of the thyristors 4a and 4b.
  • this DC power supply 5 for the inrush prevention circuit is described as using a switching power supply or using a secondary battery such as a battery like other DC power supplies used inside the inverter device, it is described.
  • An independent separate power supply must be prepared as the DC power supply 5 for the inrush prevention circuit, and this is also a bottleneck for downsizing the inverter device.
  • paragraph [0009] clearly states that the semiconductor switching element can be applied to the inrush prevention circuit of the large-capacity inverter device, and the purpose is to obtain an inexpensive and highly reliable inverter device and motor drive device. However, it does not assume a small inverter device with a small capacity.
  • Patent Document 3 does not disclose that the thyristors 4a and 4b connected in parallel are turned on when the rate of change in the voltage detection value of the DC intermediate circuit is equal to or lower than a preset value.
  • Patent Document 1 Patent Document 2 and Patent Document 3, a plurality of relays of the same capacity are connected in parallel to the resistors constituting the inrush prevention circuit, and the plurality of relays connected in parallel are used to detect the voltage of the DC intermediate circuit. There is no disclosure of a point that turns on when the rate of change of the value is equal to or lower than a preset value.
  • Patent Document 1 Regarding the parallel driving of relays or thyristors described in Patent Document 1, Patent Document 2, and Patent Document 3, none of the elements can be turned on simultaneously in terms of timing.
  • the current concentrates on the element that is turned on first in time, and ideally, the current is shared about half each when the other element is turned on with a time delay. Even in this case, if the impedances of the elements connected in parallel are not equal, the current concentrates on the element having the smaller impedance, and there is a risk of contact welding of the relay or destruction of the thyristor element, for example. For this reason, in Patent Document 1, it is possible to connect the solenoid coil in series with the parallel connection point of the relay, and to use the depolarization to make the shared current substantially uniform, but a coil that is a scroll is required. .
  • the effective value of the voltage of the three-phase AC power source input to the power converter and the DC voltage rectified by the rectifier circuit are detected, and the DC voltage is calculated based on the effective value.
  • the switch is closed by the control circuit when the threshold ⁇ V or more is reached
  • the capacitance value of the electrolytic capacitor for smoothing has a variation in the initial capacitance value with respect to the stated capacity of the component. Since the specification is ⁇ 20%, even if the capacitance is 1000 ⁇ F, the capacitance value will be a barack from 800 ⁇ F to 1200 ⁇ F. In other words, the actual capacitance value is unknown even when looking at the capacitance value described in the actual product of the smoothing electrolytic capacitor.
  • the electrolytic capacitor for smoothing has a chemical reaction inside, and its lifetime is generally called the 10 ° C half law (Arrhenius's law). Has a characteristic that the life is doubled when the temperature drops by 10 °C.
  • a smoothing electrolytic capacitor is defined as a life component, and it is difficult to accurately predict a capacity decrease due to aging.
  • the set value of ⁇ V is determined based on the allowable power of the rectifier circuit 2 in the power converter, the capacity of the smoothing capacitor 6, and the like.
  • the method of determining is not particularly specified, but it is described that it may be determined experimentally at the time of product design, for example, but the threshold voltage is considered in consideration of the initial variation of the capacitance value of the electrolytic capacitor and the capacitance decrease due to secular change. It is practically difficult to calculate ⁇ V in advance.
  • An object of the present invention is to provide a power conversion device that is miniaturized as a whole device by connecting a plurality of relays having the same capacity in parallel with a resistor constituting an inrush prevention circuit.
  • a forward converter that rectifies an alternating voltage of an alternating current power source and converts it into a direct current voltage, a direct current intermediate circuit having a smoothing capacitor that smoothes the direct current voltage of the forward converter, and the direct current intermediate circuit
  • a variable current circuit comprising: a current limiting circuit that suppresses a charging current to the smoothing capacitor; a voltage detection circuit that detects a voltage of the DC intermediate circuit; and an inverse converter that converts the DC voltage of the forward converter to an AC voltage.
  • a power converter that outputs AC power having a voltage variable frequency, wherein a plurality of relays are connected in parallel to the resistance of the source circuit, and a rate of change of a voltage detection value of the DC intermediate circuit is preset. The configuration is such that the plurality of relays are turned on when the value becomes lower than the value.
  • a plurality of relays connected in parallel to the resistance of the current-limiting circuit are turned on when the rate of change of the voltage detection value of the DC intermediate circuit is equal to or less than a preset value, Since the current flowing through each relay can be suppressed, and the current sharing ratio can be made substantially the same, a power conversion device that is downsized as a whole device can be provided.
  • FIG. 1 shows a main circuit configuration diagram of the power converter 12 according to the present embodiment.
  • 1 is a forward converter that converts AC power into DC power
  • 2 is a smoothing capacitor
  • 3 is an inverse converter that converts DC power into AC power of an arbitrary frequency
  • 4 is an AC motor.
  • Reference numeral 6 denotes a cooling fan for cooling the power semiconductor module 11 including the forward converter 1 and the reverse converter 3.
  • the digital operation panel 7 is a digital operation panel that can set, change and display various control data of the power converter 12.
  • the MCU which is a microcomputer mounted on the control circuit 5, performs calculations based on information from the storage data of the storage unit in which various control data is stored, and generates various control data input from the digital operation panel 7. It is configured to perform necessary control processing accordingly.
  • the digital operation panel 7 is configured to display an abnormality when an abnormality occurs.
  • a driver circuit 8 drives the switching element of the inverse converter.
  • an inrush prevention circuit which is composed of a resistor RB for suppressing the initial charging current to the smoothing capacitor 2 and relays RY1 and RY2 connected in parallel to the resistor.
  • RYS is the signal that turns on relays RY1 and RY2. Although the case where two relays are arranged in parallel is described, the number of relays arranged in parallel is not limited. Since the inverter which is the power converter 12 is a known technique, a detailed description thereof is omitted.
  • Figure 2 is an example of the main circuit component layout. Relays RY1 and RY2 having the same capacity with lead terminals are mounted in a soldered state on a substrate 8 on which a drive circuit is mounted.
  • a cooling fan 6 for cooling the cooling fin 6 (a dotted line portion in the figure) is mounted on the cooling fin 13 with the composite module 11 which is a collective power semiconductor in which the forward converter 1 and the reverse converter 3 are mounted in one module. ) Is a structure attached to the upper surface of the cooling fin. Since the composite module 11 configured as a collective power semiconductor generates a large loss, heat generated by this loss is conducted to the cooling fin 13 and the cooling fan 6 is used to cool the cooling fin 13.
  • a resin module case 14 on which the control circuit 5 is mounted is attached to the cooling fin 13 so as to cover the drive circuit 8 and the power semiconductor 11.
  • FIG. 3 is an example of a dimensional diagram of the relay.
  • (a) is a dimensional diagram of a relay with a rated current of 8A
  • (b) is a dimensional diagram of a relay with a rated current of 16A.
  • the volume of the relay in (a) is 10 * 20 * 15.6, and the volume of the relay in (b) is 15.7 * 30.1 * 23.3.
  • FIG. 4 is an example of a DC voltage detection circuit configuration diagram of the DC intermediate circuit.
  • the DC voltage Vpn of the DC intermediate circuit is divided by the resistors R1 and R2, the divided voltage is insulated by the insulated linear amplifier AMP, the insulated voltage is taken into the A / D converter of the microcomputer, and the rate of change of the DC voltage is calculated To do.
  • the DC voltage change rate ⁇ Vpn can be calculated by the following formula.
  • Vpn (tn) Detected DC voltage after elapse of time (tn)
  • Vpn Time (tn) to time t (n + 1) Rate of change of DC voltage until the lapse of time
  • the rate of change of DC voltage at each time from time tn to time t (n + 1) is calculated, and when this rate of change falls below a preset value,
  • the relay excitation drive circuit 15 operates, and the RYS output signal causes a current to flow through an excitation circuit (not shown) of the relays RY1 and RY2 to turn on the relays RY1 and RY2.
  • Vpn ⁇ 2 * V * [1-exp ⁇ -t / (C * R) ⁇ ] ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  • the charging voltage Vpn is determined uniquely by the effective value of the input power supply voltage Vrs by V, the capacitance value C of the smoothing capacitor 2, and the resistance value R of the current limiting resistor RB.
  • the change rate ⁇ Vpn of the charging voltage Vpn to the smoothing capacitor 2 expressed by the equation (2) is calculated and detected, and when this change rate becomes a predetermined value or less, the excitation drive circuit 15 of the relay If the is operated, current flowing through the plurality of relays can be suppressed, and welding of the contact points of the relay due to charging overcurrent to the smoothing capacitor 2 when the relay is on can be prevented.
  • FIG. 5 is an example of a transient characteristic diagram of the charging voltage Vpn to the smoothing capacitor 2.
  • the three-phase AC power input to the power converter at time to is turned on, and the charging voltage of the smoothing capacitor 2 rises according to the equation (2).
  • the charging voltage of the electrolytic capacitor according to the equation (2) is detected, it can be detected as information including the initial variation in the capacitance value of the electrolytic capacitor and the capacitance drop due to aging.
  • the set value of ⁇ V disclosed in paragraph [0024] of Patent Document 2 is the rectifier circuit in the power converter. 2 is determined based on the allowable power of 2 and the capacity of the smoothing capacitor 6, for example, it may be determined experimentally during product design, but the voltage detection value of the DC intermediate circuit that is the voltage across the electrolytic capacitor By detecting the rate of change, it is possible to consider all initial variations in the capacitance value of the electrolytic capacitor and capacitance reduction due to aging, and it is not necessary to determine experimentally at the time of product design.
  • the voltage of the DC intermediate circuit is detected every predetermined detection time ⁇ t, the change rate ⁇ Vpn of the DC intermediate circuit at time tn and time t (n + 1) is calculated, and this change rate is a preset value ⁇ Vd At time t (n + 1) when the following occurs, the excitation drive circuit 15 of the relay operates, and the RYS output signal causes a current to flow through the excitation circuit (not shown) of the relays RY1 and RY2 to turn on the relays RY1 and RY2. It is a configuration.
  • FIG. 6 is an example of a copper foil pattern diagram on the substrate.
  • the current I flowing into the relays RY1 and RY2 is inversely proportional to the impedance from the inflow point to the outflow point, that is, the wiring length of the copper foil pattern. If the cross-sectional areas of the copper foil patterns are the same, the longer the wiring length, the higher the impedance and the smaller the current, and the shorter the wiring length, the smaller the impedance and the larger the current.
  • a large amount of current flows through the relay RY1 with a short copper foil pattern (0.7I: 70%), and a small current (0.3I: 30%) through the relay RY2 with a long copper foil pattern.
  • current sharing between relays RY1 and RY2 becomes unbalanced. In this case, the inflowing current concentrates on the relay RY1, resulting in exceeding the rated current specification, which causes destruction such as contact welding of the relay RY1.
  • the total impedance of the current inflow side copper foil pattern and the current outflow side copper foil pattern from the current inflow and outflow points to the lead electrode terminals of the relays RY1 and RY2 is approximately the same for each relay RY1 and RY2. If the mounting is performed in consideration of the copper foil pattern and the lead terminal arrangement of the relay, the sharing of the current flowing through the relays RY1 and RY2 connected in parallel can be made uniform.
  • relays RY1 and RY2 connected in parallel can be fully utilized.
  • the case where there are two relays in parallel is described, but the number of relays in parallel is not limited.
  • FIG. 7 is another example of a copper foil pattern diagram on the substrate.
  • (A) and (b) are examples of copper foil patterns in which the sharing of the current flowing through the relays RY1 and RY2 connected in parallel is balanced.
  • (a) shows the pattern wiring length from the branch point of the current inflow side wiring to RY1 and RY2 connected in parallel to the current outflow connection point to RY2 and the branch point of the current inflow side of RY1 to RY1. This is the case of the copper foil pattern where the pattern wiring length to the current flow connection point is approximately the same.
  • (B) is from the branch point of the current inflow side wiring to RY1 and RY2 connected in parallel to RY2.
  • the ratio of the wiring length and cross-sectional area of the pattern up to the current outflow connection point and the ratio of the wiring length and cross-sectional area of the pattern from the branch point of the wiring on the current inflow side of RY1 to the current flow connection point to RY1 are substantially the same It is an example at the time of setting it as the copper foil pattern which becomes.
  • This resistivity ⁇ is a constant uniquely determined by the material, for example, for copper: 1.72 ⁇ 10 ⁇ -6 ohm ⁇ cm, for silver: 1.62 ⁇ 10 ⁇ -6 ohm ⁇ cm. Therefore, once the material is determined, the impedance Z of the wiring pattern is determined by the ratio of the wiring length L and the cross-sectional area S (product of the pattern width and the pattern thickness), that is, Z ⁇ L / S. That is, if the cross-sectional area S is doubled, the impedance Z becomes the same even if the wiring length is doubled.
  • the impedance Z of the copper foil pattern can be made equal.
  • An example is (a).
  • the impedance Z of the copper foil pattern can be made equal if the wiring length L of the copper foil pattern and the ratio of the cross-sectional area S are designed to be substantially the same.
  • An example in this case is (b). Even in this case, the sharing of the current flowing through the relays RY1 and RY2 connected in parallel can be made uniform.
  • the copper foil pattern on the substrate can be provided on both the front surface and the back surface of the substrate.
  • the ratio of the wiring length and cross-sectional area of the pattern provided on the front surface and the wiring length of the pattern provided on the back surface It may be considered that the ratio of the cross-sectional areas is parallel, and the same applies to the case where a pattern is provided on the inner layer of the substrate.
  • (a) and (b) are one example and do not limit the copper foil pattern on the substrate.
  • This embodiment describes the case where there are two relays in parallel, but the number of relays in parallel is not limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Rectifiers (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

A power conversion device for outputting AC power having variable voltage and variable frequency, the power conversion device comprising: a forward converter for rectifying and converting AC voltage of an AC power source into DC voltage; a DC intermediate circuit having a smoothing capacitor for smoothing the DC voltage of the forward converter; a current-limiting circuit for suppressing a charge current to the smoothing capacitor of the DC intermediate circuit; a voltage detection circuit for detecting the voltage of the DC intermediate circuit; and a reverse converter for converting the DC voltage of the forward converter into AC voltage. A plurality of relays are connected in parallel to a resistor of the current-limiting circuit, and the plurality of relays are switched on when the rate of change of the voltage detection value of the DC intermediate circuit is equal to or less than a value set in advance.

Description

電力変換装置Power converter
 本発明は、突入防止抑制回路に同一容量のリレーを複数個並列に接続した電力変換装置に関する。 The present invention relates to a power conversion device in which a plurality of relays of the same capacity are connected in parallel to an inrush prevention suppression circuit.
 電力変換装置は、産業界をはじめ家電製品にも電動機の速度制御装置として多く採用されている。現在主流の電力変換装置である電圧型インバータは、交流電圧を順変換器で直流に変換し、直流中間回路にある大きな容量の電解コンデンサで平滑化し、逆変換器で再び任意の周波数の交流電圧に変換する。 Power converters are widely used as speed control devices for motors in industry and home appliances. The voltage-type inverter, which is currently the mainstream power converter, converts AC voltage to DC with a forward converter, smoothes it with a large capacity electrolytic capacitor in the DC intermediate circuit, and then AC voltage with an arbitrary frequency again with an inverter. Convert to
 直流中間回路にある電解コンデンサへの大きな充電電流から順変換器を構成する整流ダイオードを充電電流から保護する目的で突入防止回路が設けられている。この突入防止回路には、電流を抑制する抵抗とその抵抗に並列にリレーが接続されるのが一般的である。 An inrush prevention circuit is provided for the purpose of protecting the rectifier diode constituting the forward converter from the charging current from the large charging current to the electrolytic capacitor in the DC intermediate circuit. In general, the inrush prevention circuit includes a resistor for suppressing current and a relay connected in parallel to the resistor.
 電源の投入時には、電解コンデンサへの充電電流を抵抗で抑制し、電解コンデンサの充電電圧が満充電された時点でリレーをオンさせる。リレーオン後は、電流を抑制する抵抗には電流は流れず全ての電流がリレーに流れることになるため、電流を抑制する抵抗には、リレーがオンするまでの間、抵抗損失が発生することになる。 When turning on the power, the charging current to the electrolytic capacitor is suppressed by resistance, and the relay is turned on when the charging voltage of the electrolytic capacitor is fully charged. After the relay is turned on, no current flows through the resistor that suppresses the current, and all current flows through the relay. Therefore, the resistor that suppresses the current has a resistance loss until the relay is turned on. Become.
 しかし、電力変換装置の容量が大きくなると、その容量に比例して、リレーに流れる電流も大きくなり、結果的にリレーの体積が増大し、電力変換装置が大型化し、小型化の面で大きな隘路になるという問題があった。 However, as the capacity of the power converter increases, the current flowing through the relay also increases in proportion to the capacity. As a result, the volume of the relay increases, the power converter increases in size, and a large bottleneck in terms of miniaturization. There was a problem of becoming.
 特許文献1には、並列接点異常検出装置として、互いに減極性となるようなソレノイドコイルを並列接続点と直列に接続し、更にそれぞれの接続点間に発生した電圧を検出する接点検出信号を出力する電圧検出器を備え、突入電流制限用リレーを用いて並列接点部の異常検出を行い、システムを安全に停止する事ができることが開示されている。 In Patent Document 1, as a parallel contact abnormality detection device, solenoid coils that are depolarized from each other are connected in series with parallel connection points, and a contact detection signal that detects a voltage generated between each connection point is output. It is disclosed that the system can be safely stopped by detecting an abnormality in the parallel contact portion using an inrush current limiting relay.
 また、特許文献2には、電力変換装置に入力された3相交流電源の電圧の実効値と、整流回路によって整流された直流電圧を検出し、直流電圧が実効値をもとにして算出した閾値以上となったときに、制御回路により開閉器を閉じることを特徴とする電力変換装置について開示されている。 Patent Document 2 detects the effective value of the voltage of the three-phase AC power input to the power converter and the DC voltage rectified by the rectifier circuit, and the DC voltage is calculated based on the effective value. A power conversion device is disclosed in which a switch is closed by a control circuit when a threshold value is exceeded.
 特許文献3には、突入防止回路の複数の半導体スイッチング素子を並列に接続したことを特徴とするインバータ装置が開示されている。 Patent Document 3 discloses an inverter device characterized in that a plurality of semiconductor switching elements of an inrush prevention circuit are connected in parallel.
特開2008-206280号JP 2008-206280 特開2011-87378号JP 2011-87378 特開2001-112265号JP 2001-112265
 引用文献1の段落[0004]には、従来技術による電力変換装置の並列接点異常検出装置は、突入電流制限用リレーに内蔵された異常検出接点を用いて行われるため、高価であった。また異常検出接点を持たない突入電流制限用リレー接点の並列使用は、片方の接点が開放故障した場合にもう一方の接点へ電流が集中し焼損してしまうという問題があったことが開示されている。段落[0005]には、このような問題点に鑑みてなされたものとして、異常検出接点を持たない突入電流制限用リレーを用いて安価に並列接点部の異常検出ができ、システムを安全に停止する事ができる電力変換装置を提供することを目的とすることが開示されており、並列接点の異常を検出するもので、リレーのオンタイミングを直流中間回路の電圧検出値の変化率が予め設定された値以下になった時点で行うことについての開示はない。 In paragraph [0004] of Cited Document 1, the parallel contact abnormality detection device for the power conversion device according to the prior art is expensive because it is performed using the abnormality detection contact incorporated in the inrush current limiting relay. Also, it has been disclosed that the parallel use of inrush current limiting relay contacts that do not have an anomaly detection contact has the problem that if one of the contacts fails to open, the current concentrates on the other contact and burns out. Yes. In paragraph [0005], in view of such a problem, it is possible to detect the abnormality of the parallel contact portion at low cost by using an inrush current limiting relay having no abnormality detection contact, and to stop the system safely. It is disclosed that an object is to provide a power conversion device that can perform the operation, and detects the abnormality of a parallel contact, and the change rate of the voltage detection value of the DC intermediate circuit is set in advance for the ON timing of the relay. There is no disclosure of what to do when it falls below the stated value.
 また、直流回路に流れる大きな電流がソレノイドコイルにも流れるため、体格の大きいコイルが必要となり、インバータ装置の小型化の大きな隘路事項となる。 In addition, since a large current flowing through the DC circuit also flows through the solenoid coil, a large-sized coil is required, which is a major bottleneck for downsizing the inverter device.
 引用文献2の段落[0023]には、t=t2でVdc>Vdc*-ΔVになると、指令信号発生器12から開閉器6に対して開閉器をONさせ、その状態を維持する指令信号が出力され、開閉器6がON状態になることが記載されている。 In paragraph [0023] of the cited document 2, when Vdc> Vdc * −ΔV at t = t2, a command signal for turning on the switch from the command signal generator 12 to the switch 6 and maintaining the state is provided. It is output that the switch 6 is turned on.
 また、段落[0024]には、ΔVの設定値は、電力変換装置内の整流回路2の許容電力や平滑コンデンサ6の容量などをもとにして定めると記載されている。しかし、平滑コンデンサからなる直流中間回路の電圧検出値の変化率が予め設定された値以下になった時点で開閉器をオンする点についての開示はない。 Also, paragraph [0024] describes that the set value of ΔV is determined based on the allowable power of the rectifier circuit 2 in the power converter, the capacity of the smoothing capacitor 6, and the like. However, there is no disclosure about the point at which the switch is turned on when the rate of change in the voltage detection value of the DC intermediate circuit composed of the smoothing capacitor becomes equal to or less than a preset value.
 また、電力変換装置に入力された3相交流電源の電圧の実効値を検出するための変圧器が必要となり、やはりインバータ装置の小型化の大きな隘路事項となる。 Also, a transformer is required to detect the effective value of the voltage of the three-phase AC power input to the power converter, which again becomes a major bottleneck for downsizing the inverter device.
 引用文献3の段落[0006]には、従来技術1のインバータ装置においては、突入防止回路のリレー、電磁接触器などにコイルを使用するため、入力周波数により特性が変化するという問題があり、例えば、インバータの受電電圧に制約が生じていたことが記載されている。 The paragraph [0006] of the cited document 3 has a problem that the characteristics change depending on the input frequency because the inverter device of the prior art 1 uses a coil for the relay of the inrush prevention circuit, the electromagnetic contactor, etc. It is described that there was a restriction on the received voltage of the inverter.
 また、段落[0025]には、平滑C電圧が所定の電圧まで上昇する所定時間が経過した後に(t=a)、突入防止回路制御部6を作動させて突入防止用駆動回路30を駆動することにより、サイリスタ4a、4bをオンさせ、サイリスタ電源電圧を立ち上げることが開示されている。 In paragraph [0025], after a predetermined time for the smooth C voltage to rise to a predetermined voltage has elapsed (t = a), the inrush prevention circuit controller 6 is operated to drive the inrush prevention drive circuit 30. Thus, it is disclosed to turn on the thyristor power supply voltage by turning on the thyristors 4a and 4b.
 さらに、段落[0028]には、インバータ装置の使用温度の下限値に対するサイリスタ4a、4bのゲートトリガ電流及びゲートトリガ電圧を各々IGT2、VGT2とすると、サイリスタ4a、4bを確実に動作させるための負荷線は、図3中の斜線部内を途切れることなく通ることが必要である。すなわち、インバータ装置の所定周囲温度範囲内で半導体スイッチング素子4a、4bが点弧するようにすることが必要であり、突入防止回路専用直流電源5の電源電圧をVsとすると、斜線部内を途切れることなく通る負荷線は、負荷線eと負荷線fの範囲内であり、負荷線eよりゲート抵抗13の最小値が求められ、また、負荷線fよりゲート抵抗の最大値が求められることが開示されている。 Furthermore, paragraph [0028] includes a load for reliably operating the thyristors 4a and 4b when the gate trigger current and the gate trigger voltage of the thyristors 4a and 4b with respect to the lower limit value of the operating temperature of the inverter device are IGT2 and VGT2, respectively. The line must pass through the shaded area in FIG. 3 without interruption. In other words, it is necessary for the semiconductor switching elements 4a and 4b to ignite within a predetermined ambient temperature range of the inverter device. If the power supply voltage of the DC power supply 5 dedicated to the inrush prevention circuit is Vs, the hatched portion is interrupted. It is disclosed that the load line passing through is within the range of the load line e and the load line f, the minimum value of the gate resistance 13 is obtained from the load line e, and the maximum value of the gate resistance is obtained from the load line f. Has been.
 実際の回路設計においては、電源電圧の変動幅や抵抗値のバラツキなどを考慮して、電源電圧値及びゲート抵抗値を決定することになる。 In actual circuit design, the power supply voltage value and the gate resistance value are determined in consideration of the fluctuation range of the power supply voltage and the variation in resistance value.
 なお、サイリスタのゲートカソード間に抵抗を接続するような場合には、この抵抗に流れる電流分も見込んで設計することが必要であることが記載されており、動作温度に依存してゲートトリガ電流が大きく変化するサイリスタのゲート制御の難しさが述べられている。つまり、インバータ装置の仕様動作温度の最低値でもサイリスタを正確に動作させるためには、負荷線eより求まられた最小ゲート抵抗値Rmin以下にしなければならない。 It is described that when a resistor is connected between the gate and cathode of the thyristor, it is necessary to take into account the current flowing through this resistor, and the gate trigger current depends on the operating temperature. The difficulty of gate control of thyristors, in which sigma changes greatly, is described. That is, in order to operate the thyristor accurately even at the minimum value of the specified operating temperature of the inverter device, it must be less than the minimum gate resistance value Rmin obtained from the load line e.
 ゲート抵抗の発生損失は(Vs*Vs)/Rminに比例して増大するため、許容損失が大きく体格も大きい抵抗体が必要になりインバータ装置の小型化の隘路事項になる。 発 生 Since the generated loss of gate resistance increases in proportion to (Vs * Vs) / Rmin, a resistor with a large allowable loss and a large physique is required, which is a bottleneck for downsizing the inverter device.
 また、段落[0023]には、突入防止回路用直流電源5は、サイリスタ4a、4bのカソード電位を基準とした直流電源である。この突入防止回路用直流電源5は、インバータ装置内部で使用する他の直流電源と同様にスイッチング電源を用いたり、あるいはバッテリ等の2次電池を用いること等が考えられると記載されているが、突入防止回路用直流電源5として独立した別電源を準備しなければならず、この点もインバータ装置の小型化の隘路事項になる。 In paragraph [0023], the inrush prevention circuit DC power source 5 is a DC power source based on the cathode potentials of the thyristors 4a and 4b. Although this DC power supply 5 for the inrush prevention circuit is described as using a switching power supply or using a secondary battery such as a battery like other DC power supplies used inside the inverter device, it is described. An independent separate power supply must be prepared as the DC power supply 5 for the inrush prevention circuit, and this is also a bottleneck for downsizing the inverter device.
 さらに、段落[0009]には、大容量のインバータ装置の突入防止回路に半導体スイッチング素子を適用でき、安価で、信頼性の高いインバータ装置及び電動機駆動装置を得ることを目的とすることが明記されてはいるが、寸法的に厳しい小容量の小型インバータ装置を想定していない。 Further, paragraph [0009] clearly states that the semiconductor switching element can be applied to the inrush prevention circuit of the large-capacity inverter device, and the purpose is to obtain an inexpensive and highly reliable inverter device and motor drive device. However, it does not assume a small inverter device with a small capacity.
 また、特許文献3には、直流中間回路の電圧検出値の変化率が予め設定された値以下になった時点で並列接続されたサイリスタ4a、4bをオンする点についての開示はない。 Further, Patent Document 3 does not disclose that the thyristors 4a and 4b connected in parallel are turned on when the rate of change in the voltage detection value of the DC intermediate circuit is equal to or lower than a preset value.
 特許文献1と特許文献2および特許文献3には、突入防止回路を構成する抵抗に同一容量のリレーを複数個並列に接続し、並列に接続された複数個のリレーを直流中間回路の電圧検出値の変化率が予め設定された値以下になった時点でオンする点については一切開示されていない。 In Patent Document 1, Patent Document 2 and Patent Document 3, a plurality of relays of the same capacity are connected in parallel to the resistors constituting the inrush prevention circuit, and the plurality of relays connected in parallel are used to detect the voltage of the DC intermediate circuit. There is no disclosure of a point that turns on when the rate of change of the value is equal to or lower than a preset value.
 特許文献1と特許文献2および特許文献3に記載されたリレーあるいはサイリスタの並列駆動に関しては、いずれも素子をタイミング的に同時にオンさせることはできない。 Regarding the parallel driving of relays or thyristors described in Patent Document 1, Patent Document 2, and Patent Document 3, none of the elements can be turned on simultaneously in terms of timing.
 同時にリレーの励磁回路あるいはサイリスタのゲート回路に電圧を印加したとしても、素子のバラツキで同時にオンさせることはできない。かならずタイムラグが発生する。 同時 に Even if a voltage is applied to the relay excitation circuit or thyristor gate circuit at the same time, it cannot be turned on simultaneously due to variations in the elements. There is always a time lag.
 この場合、時間的に先にオンした素子に電流が集中し、時間遅れでもう一方の素子がオンした時点で理想的には電流が約半分ずつを分担することになる。この場合においても並列接続された素子の各々のインピーダンスが等しくないとインピーダンスの小さい方の素子に電流が集中することになり、例えばリレーの接点溶着やサイリスタ素子の破壊の虞がある。このため、特許文献1ではソレノイドコイルをリレーの並列接続点と直列に接続し、その減極性を利用して分担電流を略均一化することが可能であるが、巻物であるコイルが必要になる。 In this case, the current concentrates on the element that is turned on first in time, and ideally, the current is shared about half each when the other element is turned on with a time delay. Even in this case, if the impedances of the elements connected in parallel are not equal, the current concentrates on the element having the smaller impedance, and there is a risk of contact welding of the relay or destruction of the thyristor element, for example. For this reason, in Patent Document 1, it is possible to connect the solenoid coil in series with the parallel connection point of the relay, and to use the depolarization to make the shared current substantially uniform, but a coil that is a scroll is required. .
 また、特許文献2では電力変換装置に入力された3相交流電源の電圧の実効値と、整流回路によって整流された直流電圧を検出し、上記直流電圧が上記実効値をもとにして算出した閾値ΔV以上となったときに、制御回路により開閉器を閉じることが開示されているが、一般的に平滑用電解コンデンサの静電容量値は、部品の記載容量に対し初期容量値のバラツキが±20%仕様であるため、仮に1000μFの容量であったとしても、その静電容量値は800μFから1200μFにバラックことになる。つまり平滑用電解コンデンサの現品に記載されている静電容量値を見ても、実際の静電容量値は不明である。 In Patent Document 2, the effective value of the voltage of the three-phase AC power source input to the power converter and the DC voltage rectified by the rectifier circuit are detected, and the DC voltage is calculated based on the effective value. Although it is disclosed that the switch is closed by the control circuit when the threshold ΔV or more is reached, in general, the capacitance value of the electrolytic capacitor for smoothing has a variation in the initial capacitance value with respect to the stated capacity of the component. Since the specification is ± 20%, even if the capacitance is 1000 μF, the capacitance value will be a barack from 800 μF to 1200 μF. In other words, the actual capacitance value is unknown even when looking at the capacitance value described in the actual product of the smoothing electrolytic capacitor.
 このため、電力変換装置に搭載した時点で、初期の静電容量値を測定及び記憶しておく必要があるが現実的ではない。さらに、電解コンデンサは有寿命品であるため、新部品に交換時、初期の静電容量値を測定及び記憶しておく必要があるが、この点についても現実的とは言えない。 For this reason, it is necessary to measure and store the initial capacitance value when it is mounted on the power converter, but this is not realistic. Furthermore, since the electrolytic capacitor has a limited life, it is necessary to measure and store the initial capacitance value when replacing with a new part. However, this point is not realistic.
 さらには、平滑用電解コンデンサは、内部で化学反応が起きており、その寿命は一般的に10℃半減則(アレニウスの法則)と言われ、温度が10℃上がると寿命が半分になり、温度が10℃下がると寿命が倍になるという特性を持っている。 In addition, the electrolytic capacitor for smoothing has a chemical reaction inside, and its lifetime is generally called the 10 ° C half law (Arrhenius's law). Has a characteristic that the life is doubled when the temperature drops by 10 ℃.
 一般的に電力変換装置である汎用インバータの場合、平滑用電解コンデンサは寿命部品と定義されており、経年変化による容量低下を正確に予測するのは難しい。 Generally, in the case of a general-purpose inverter that is a power conversion device, a smoothing electrolytic capacitor is defined as a life component, and it is difficult to accurately predict a capacity decrease due to aging.
 段落[0024]には、ΔVの設定値は、電力変換装置内の整流回路2の許容電力や平滑コンデンサ6の容量などをもとにして定める。その定め方は特に規定しないが、例えば製品設計時に実験的に定めてもよいと記載されているが、電解コンデンサの静電容量値の初期バラツキや経年変化による容量低下までを考慮して閾値電圧ΔVを予め算出することは現実的には難しい。 In paragraph [0024], the set value of ΔV is determined based on the allowable power of the rectifier circuit 2 in the power converter, the capacity of the smoothing capacitor 6, and the like. The method of determining is not particularly specified, but it is described that it may be determined experimentally at the time of product design, for example, but the threshold voltage is considered in consideration of the initial variation of the capacitance value of the electrolytic capacitor and the capacitance decrease due to secular change. It is practically difficult to calculate ΔV in advance.
 さらに、特許文献3では平滑C電圧が所定の電圧まで上昇する所定時間が経過した後に(t=a)、突入防止回路制御部6を作動させることが記載されているが、所定時間に関しても、電解コンデンサの静電容量値の初期バラツキや経年変化による容量低下までを考慮して所定時間を予め算出することは現実的には難しい。 Furthermore, in Patent Document 3, it is described that the inrush prevention circuit control unit 6 is operated after a predetermined time when the smooth C voltage rises to the predetermined voltage (t = a). It is practically difficult to calculate the predetermined time in advance in consideration of the initial variation in the capacitance value of the electrolytic capacitor and the capacity decrease due to secular change.
 また、段落[0025]には、サイリスタ4a、4bをオンさせてから所定時間後に(t=b)、インバータ部8の半導体スイッチング素子を駆動し、モータ周波数を立ち上げると記載されているように、平滑C電圧が確立してからモータを駆動するため、電解コンデンサの静電容量値の初期バラツキや経年変化による容量低下を考慮しての最悪の状態で決定することはできるが、基本的には所定時間(t=b)が最も長い場合で設定する必要があり、電力変換装置に入力された3相交流電源の投入から電力変換装置が起動できるまでの時間が長くなるという問題が発生する。 Further, paragraph [0025] describes that the semiconductor switching element of the inverter unit 8 is driven to raise the motor frequency after a predetermined time (t = b) after turning on the thyristors 4a and 4b. In order to drive the motor after the smooth C voltage is established, it can be determined in the worst state considering the initial variation of the capacitance value of the electrolytic capacitor and the capacity decrease due to aging. Needs to be set when the predetermined time (t = b) is the longest, and there is a problem that the time from when the three-phase AC power input to the power converter is turned on until the power converter can be started is increased. .
 本発明の目的は、突入防止回路を構成する抵抗に並列に複数個の同一容量のリレーを接続することによって、装置全体として小型化された電力変換装置を提供することにある。 An object of the present invention is to provide a power conversion device that is miniaturized as a whole device by connecting a plurality of relays having the same capacity in parallel with a resistor constituting an inrush prevention circuit.
 上記課題を解決するため、交流電源の交流電圧を整流して直流電圧に変換する順変換器と、この順変換器の直流電圧を平滑する平滑コンデンサを有する直流中間回路と、前記直流中間回路の平滑コンデンサへの充電電流を抑制する限流回路と、前記直流中間回路の電圧を検出する電圧検出回路と、前記順変換器の直流電圧を交流電圧に変換する逆変換器と、を備る可変電圧可変周波数の交流電力を出力する電力変換装置であって、前記源流回路の抵抗には複数のリレーが並列に接続されており、前記直流中間回路の電圧検出値の変化率が予め設定された値以下になった時点で前記複数のリレーをオンするという構成をとる。 In order to solve the above problems, a forward converter that rectifies an alternating voltage of an alternating current power source and converts it into a direct current voltage, a direct current intermediate circuit having a smoothing capacitor that smoothes the direct current voltage of the forward converter, and the direct current intermediate circuit A variable current circuit comprising: a current limiting circuit that suppresses a charging current to the smoothing capacitor; a voltage detection circuit that detects a voltage of the DC intermediate circuit; and an inverse converter that converts the DC voltage of the forward converter to an AC voltage. A power converter that outputs AC power having a voltage variable frequency, wherein a plurality of relays are connected in parallel to the resistance of the source circuit, and a rate of change of a voltage detection value of the DC intermediate circuit is preset. The configuration is such that the plurality of relays are turned on when the value becomes lower than the value.
 本発明によれば、直流中間回路の電圧検出値の変化率が予め設定された値以下になった時点で限流回路の抵抗に並列に接続された複数個のリレーをオンすることにより、複数個のリレーに流れる電流を抑制でき、その電流の分担率も略同一化することができるため、装置全体として小型化された電力変換装置を提供することができる。 According to the present invention, a plurality of relays connected in parallel to the resistance of the current-limiting circuit are turned on when the rate of change of the voltage detection value of the DC intermediate circuit is equal to or less than a preset value, Since the current flowing through each relay can be suppressed, and the current sharing ratio can be made substantially the same, a power conversion device that is downsized as a whole device can be provided.
電力変換装置の主回路構成図である。It is a main circuit block diagram of a power converter device. 電力変換装置の部品配置構成図の一例である。It is an example of the components arrangement | positioning block diagram of a power converter device. 定格電流8Aのリレーの寸法図である。It is a dimensional drawing of a relay with a rated current of 8A. 定格電流16Aのリレーの寸法図である。It is a dimensional drawing of a relay with a rated current of 16A. 直流中間回路の直流電圧検出回路構成図の一例である。It is an example of the DC voltage detection circuit block diagram of a DC intermediate circuit. 平滑コンデンサへの充電電圧Vpnの過渡特性図の一例である。It is an example of the transient characteristic figure of the charging voltage Vpn to a smoothing capacitor. 基板上の銅箔パターン図の一例である。It is an example of the copper foil pattern figure on a board | substrate. 基板上の銅箔パターン図の一例である。It is an example of the copper foil pattern figure on a board | substrate. 基板上の銅箔パターン図の他の一例である。It is another example of the copper foil pattern figure on a board | substrate. 基板上の銅箔パターン図の他の一例である。It is another example of the copper foil pattern figure on a board | substrate.
 以下図面を用いて本発明について説明する。なお、各図における共通の構成については同一の参照番号を付してある。また、本発明は図示例に限定されるものではない。 Hereinafter, the present invention will be described with reference to the drawings. In addition, the same reference number is attached | subjected about the common structure in each figure. Further, the present invention is not limited to the illustrated example.
 図1は、本実施例に係る電力変換装置12の主回路構成図を示すものである。1は交流電力を直流電力に変換する順変換器、2は平滑用コンデンサ、3は直流電力を任意の周波数の交流電力に変換する逆変換器、4は交流電動機である。6は順変換器1および逆変換器3を備えるパワー半導体モジュール11を冷却するための冷却ファンである。 FIG. 1 shows a main circuit configuration diagram of the power converter 12 according to the present embodiment. 1 is a forward converter that converts AC power into DC power, 2 is a smoothing capacitor, 3 is an inverse converter that converts DC power into AC power of an arbitrary frequency, and 4 is an AC motor. Reference numeral 6 denotes a cooling fan for cooling the power semiconductor module 11 including the forward converter 1 and the reverse converter 3.
 7は電力変換装置12の各種制御データを設定、変更および異常表示が行えるデジタル操作パネルである。制御回路5に実装されたマイコンであるMCUは、各種の制御データが格納された記憶部の記憶データからの情報に基づいて演算が行われ、デジタル操作パネル7から入力される各種の制御データに応じて必要な制御処理が行えるように構成されている。なお、このデジタル操作パネル7には異常が発生した場合にその異常が表示される構成になっている。 7 is a digital operation panel that can set, change and display various control data of the power converter 12. The MCU, which is a microcomputer mounted on the control circuit 5, performs calculations based on information from the storage data of the storage unit in which various control data is stored, and generates various control data input from the digital operation panel 7. It is configured to perform necessary control processing accordingly. The digital operation panel 7 is configured to display an abnormality when an abnormality occurs.
 5は、逆変換器のパワー半導体であるスイッチング素子を制御すると共に、電力変換装置12全体の制御を司る働きをするもので、マイコンMCUが搭載された制御回路であり、デジタル操作パネル7から入力される各種の制御データに応じて必要な制御処理が行なえるように構成されている。8は逆変換器のスイッチング素子を駆動するドライバー回路である。 5 is a control circuit that controls the switching element, which is a power semiconductor of the reverse converter, and also controls the power converter 12 as a whole, and is a control circuit equipped with a microcomputer MCU, which is input from the digital operation panel 7. It is configured so that necessary control processing can be performed according to various control data. A driver circuit 8 drives the switching element of the inverse converter.
 9は、突入防止回路であり、平滑用コンデンサ2への初期充電電流を抑制するための抵抗RBと該抵抗に並列に接続されたリレーRY1とRY2で構成されている。 9 is an inrush prevention circuit, which is composed of a resistor RB for suppressing the initial charging current to the smoothing capacitor 2 and relays RY1 and RY2 connected in parallel to the resistor.
 リレーRY1とRY2をオンする信号がRYSである。並列されたリレーが2個の場合について記載したものであるが、並列されたリレーの個数を限定するものではない。電力変換装置12であるインバータは公知の技術であるため、詳細な説明は割愛する。 RYS is the signal that turns on relays RY1 and RY2. Although the case where two relays are arranged in parallel is described, the number of relays arranged in parallel is not limited. Since the inverter which is the power converter 12 is a known technique, a detailed description thereof is omitted.
 図2は、主回路部品配置図の一例である。リード端子構成の同一容量のリレーRY1とRY2がドライブ回路を搭載した基板8にはんだ接続された状態で搭載されている。 Figure 2 is an example of the main circuit component layout. Relays RY1 and RY2 having the same capacity with lead terminals are mounted in a soldered state on a substrate 8 on which a drive circuit is mounted.
 順変換器1と逆変換器3が一個のモジュール内に搭載された集合パワー半導体である複合モジュール11を冷却フィン13に搭載し、冷却フィンを冷却するための冷却ファン6(図中の点線部分)が冷却フィンの上面に取り付けられた構造である。集合パワー半導体として構成された複合モジュール11は、大きな損失を発生するため、この損失による発熱を冷却フィン13に熱伝導させ、冷却ファン6により冷却フィン13を冷却する構成となっている。そして、冷却フィン13には、ドライブ回路8及びパワー半導体11を覆うように、制御回路5が搭載された樹脂モジュールケース14が取り付けられている。 A cooling fan 6 for cooling the cooling fin 6 (a dotted line portion in the figure) is mounted on the cooling fin 13 with the composite module 11 which is a collective power semiconductor in which the forward converter 1 and the reverse converter 3 are mounted in one module. ) Is a structure attached to the upper surface of the cooling fin. Since the composite module 11 configured as a collective power semiconductor generates a large loss, heat generated by this loss is conducted to the cooling fin 13 and the cooling fan 6 is used to cool the cooling fin 13. A resin module case 14 on which the control circuit 5 is mounted is attached to the cooling fin 13 so as to cover the drive circuit 8 and the power semiconductor 11.
 図3は、リレーの寸法図の一例である。(a)は、定格電流8Aのリレーの寸法図であり、(b)は定格電流16Aのリレーの寸法図である。(a)のリレーの体積は10*20*15.6であり、(b)のリレーの体積は15.7*30.1*23.3である。図2は(a)のリレーを2個搭載した場合の図であるが、(b)のリレーを1個搭載した場合とでインバータ装置内部の占有体積比を比較すると       2*(10*20*15.6)/(15.7*30.1*23.3)*100≒57%
であり、小さい定格電流のリレーを2個並列に接続する方が占有体積比が小さくなり、寸法的に厳しい小容量の小型インバータ装置に適した構成であると言える。
FIG. 3 is an example of a dimensional diagram of the relay. (a) is a dimensional diagram of a relay with a rated current of 8A, and (b) is a dimensional diagram of a relay with a rated current of 16A. The volume of the relay in (a) is 10 * 20 * 15.6, and the volume of the relay in (b) is 15.7 * 30.1 * 23.3. Fig. 2 shows the case where two relays of (a) are installed, but comparing the occupied volume ratio in the inverter device with the case of installing one relay of (b), 2 * (10 * 20 * 15.6) / (15.7 * 30.1 * 23.3) * 100 ≒ 57%
Therefore, it can be said that connecting two relays with small rated currents in parallel reduces the occupied volume ratio and is suitable for a small-sized small inverter device with strict dimensions.
 図4は、直流中間回路の直流電圧検出回路構成図の一例である。 FIG. 4 is an example of a DC voltage detection circuit configuration diagram of the DC intermediate circuit.
 直流中間回路の直流電圧Vpnを抵抗R1とR2で分圧し、分圧電圧を絶縁リニアアンプAMPで絶縁し、絶縁された電圧をマイコンのA/D変換器に取込み、直流電圧の変化率を演算する。 The DC voltage Vpn of the DC intermediate circuit is divided by the resistors R1 and R2, the divided voltage is insulated by the insulated linear amplifier AMP, the insulated voltage is taken into the A / D converter of the microcomputer, and the rate of change of the DC voltage is calculated To do.
 直流電圧の変化率ΔVpnは下式により演算できる。 The DC voltage change rate ΔVpn can be calculated by the following formula.
      ΔVpn=[Vpn{t(n+1)}-Vpn{t(n)}]-------------式(1)
 ここで、
 Vpn{t(n+1)}:時間t(n+1)経過後の検出直流電圧
 Vpn(tn):時間(tn)経過後の検出直流電圧
 ΔVpn: 時間(tn)から時間t(n+1)経過までの直流電圧の変化率
 時間tnから時間t(n+1)までの各時間における直流電圧の変化率を演算し、この変化率が予め設定された値以下になった時点で、リレーの励磁駆動回路15が動作し、RYS出力信号により、リレーRY1とRY2の図示していない励磁回路に電流を流しリレーRY1とRY2をオンさせる構成にしてある。
ΔVpn = [Vpn {t (n + 1)}-Vpn {t (n)}] ------------- Equation (1)
here,
Vpn {t (n + 1)}: Detected DC voltage after elapse of time t (n + 1) Vpn (tn): Detected DC voltage after elapse of time (tn) ΔVpn: Time (tn) to time t (n + 1) Rate of change of DC voltage until the lapse of time The rate of change of DC voltage at each time from time tn to time t (n + 1) is calculated, and when this rate of change falls below a preset value, The relay excitation drive circuit 15 operates, and the RYS output signal causes a current to flow through an excitation circuit (not shown) of the relays RY1 and RY2 to turn on the relays RY1 and RY2.
 図1における直流中間回路である平滑コンデンサ2への充電電圧Vpnは、電力変換装置への入力電源電圧の実効値をVとすると下式で表されることは周知である。 It is well known that the charging voltage Vpn to the smoothing capacitor 2 that is the DC intermediate circuit in FIG. 1 is expressed by the following equation, where the effective value of the input power supply voltage to the power converter is V.
    Vpn=√2*V*[1-exp{-t/(C*R)}]-------------------------------------式(2)
 ここで、tは時間、Cは平滑コンデンサ2の容量値、Rは限流抵抗RBの抵抗値である。
Vpn = √2 * V * [1-exp {-t / (C * R)}] ---------------------------- --------- Formula (2)
Here, t is time, C is the capacitance value of the smoothing capacitor 2, and R is the resistance value of the current limiting resistor RB.
 式(2)から、充電電圧Vpnは、入力電源電圧Vrsの実効値をVと平滑コンデンサ2の容量値Cと限流抵抗RBの抵抗値Rにより一義的に定まり、その過渡特性の充電時定数τ=C*Rも一義的に定まる。このことは、特許文献2で開示されている様な入力電源電圧の実効値Vを検出する必要もなく、入力電源電圧の実効値Vの変化や平滑コンデンサ2の経時変化による容量低下も全て含んだ形で式(2)として表される。 From Equation (2), the charging voltage Vpn is determined uniquely by the effective value of the input power supply voltage Vrs by V, the capacitance value C of the smoothing capacitor 2, and the resistance value R of the current limiting resistor RB. τ = C * R is also uniquely determined. This eliminates the need to detect the effective value V of the input power supply voltage as disclosed in Patent Document 2, and includes all changes in capacitance due to changes in the effective value V of the input power supply voltage and changes over time of the smoothing capacitor 2. It is expressed as an equation (2) in an elliptical form.
 このため、式(2)で表される平滑コンデンサ2への充電電圧Vpnの変化率ΔVpnを演算検出し、この変化率が予め設定された値以下になった時点で、リレーの励磁駆動回路15を動作させれば、複数個のリレーに流れる電流を抑制し、リレーオン時の平滑コンデンサ2への充電過電流によるリレーの接点部の溶着を未然に防止することができる。 For this reason, the change rate ΔVpn of the charging voltage Vpn to the smoothing capacitor 2 expressed by the equation (2) is calculated and detected, and when this change rate becomes a predetermined value or less, the excitation drive circuit 15 of the relay If the is operated, current flowing through the plurality of relays can be suppressed, and welding of the contact points of the relay due to charging overcurrent to the smoothing capacitor 2 when the relay is on can be prevented.
 図5は、平滑コンデンサ2への充電電圧Vpnの過渡特性図の一例である。時刻toで電力変換装置に入力された3相交流電源が投入され、平滑コンデンサ2の充電電圧は式(2)に沿って上昇して行く。この際に重要なことは、平滑コンデンサ2の容量値Cと限流抵抗RBの抵抗値Rにより一義的に定まり、その過渡特性の充電時定数τ=C*Rも一義的に定まる点にあり、このことは、発明が解決しようとする課題で述べた問題点である、電解コンデンサの静電容量値の初期バラツキや経年変化による容量低下までが式(2)内に考慮された挙動を示すことである。 FIG. 5 is an example of a transient characteristic diagram of the charging voltage Vpn to the smoothing capacitor 2. The three-phase AC power input to the power converter at time to is turned on, and the charging voltage of the smoothing capacitor 2 rises according to the equation (2). What is important in this case is that the capacitance value C of the smoothing capacitor 2 and the resistance value R of the current limiting resistor RB are uniquely determined, and the charging time constant τ = C * R of the transient characteristic is also uniquely determined. This is the problem described in the problem to be solved by the invention, that is, the initial variation of the capacitance value of the electrolytic capacitor and the capacity decrease due to secular change show the behavior considered in the equation (2). That is.
 式(2)に従った電解コンデンサの充電電圧を検出すれば、電解コンデンサの静電容量値の初期バラツキや経年変化による容量低下まで含んだ情報として検出することができる。 If the charging voltage of the electrolytic capacitor according to the equation (2) is detected, it can be detected as information including the initial variation in the capacitance value of the electrolytic capacitor and the capacitance drop due to aging.
 すなわち、電解コンデンサの静電容量値の初期バラツキや経年変化による容量低下がいくらあろうとも、特許文献2の段落[0024]に開示されているΔVの設定値は、電力変換装置内の整流回路2の許容電力や平滑コンデンサ6の容量などをもとにして定め、例えば製品設計時に実験的に定めてもよいと記載されているが、電解コンデンサの両端電圧である直流中間回路の電圧検出値の変化率を検出すれば、電解コンデンサの静電容量値の初期バラツキや経年変化による容量低下を全て考慮でき、製品設計時に実験的に定める必要がないことを意味する。 That is, no matter how much the capacitance value of the electrolytic capacitor varies due to initial variation or aging, the set value of ΔV disclosed in paragraph [0024] of Patent Document 2 is the rectifier circuit in the power converter. 2 is determined based on the allowable power of 2 and the capacity of the smoothing capacitor 6, for example, it may be determined experimentally during product design, but the voltage detection value of the DC intermediate circuit that is the voltage across the electrolytic capacitor By detecting the rate of change, it is possible to consider all initial variations in the capacitance value of the electrolytic capacitor and capacitance reduction due to aging, and it is not necessary to determine experimentally at the time of product design.
 予め定められた検出時間Δt毎に直流中間回路の電圧を検出し、時刻tnと時刻t(n+1)における直流中間回路の変化率ΔVpnを演算し、この変化率が予め設定された値ΔVd以下になった時点t(n+1)で、リレーの励磁駆動回路15が動作し、RYS出力信号により、リレーRY1とRY2の図示していない励磁回路に電流を流しリレーRY1とRY2をオンさせる構成である。 The voltage of the DC intermediate circuit is detected every predetermined detection time Δt, the change rate ΔVpn of the DC intermediate circuit at time tn and time t (n + 1) is calculated, and this change rate is a preset value ΔVd At time t (n + 1) when the following occurs, the excitation drive circuit 15 of the relay operates, and the RYS output signal causes a current to flow through the excitation circuit (not shown) of the relays RY1 and RY2 to turn on the relays RY1 and RY2. It is a configuration.
 図6は、基板上の銅箔パターン図の一例である。 FIG. 6 is an example of a copper foil pattern diagram on the substrate.
 (a)と(b)は、ドライブ回路8を構成する各部品のうちリレーが搭載された箇所を拡大したものであり、黒塗りされた太線は、基板上に配線された銅箔パターンで、この銅箔パターンに電流が流れる。 (a) and (b) are enlarged parts where the relay is mounted among the components constituting the drive circuit 8, and the thick black line is a copper foil pattern wired on the substrate, A current flows through the copper foil pattern.
 リレーRY1とRY2のリード端子が基板上に設けられたスルーホールを貫通し、はんだ接続されている一例である。ここで、(a)は、並列接続されたリレーRY1とRY2に流れる電流の分担がアンバランスとなる銅箔パターンの例である。 This is an example in which the lead terminals of relays RY1 and RY2 pass through through holes provided on the substrate and are soldered. Here, (a) is an example of a copper foil pattern in which the sharing of currents flowing through the relays RY1 and RY2 connected in parallel is unbalanced.
 リレーRY1とRY2に流入する電流Iは、流入点から流出点までのインピーダンス、すなわち銅箔パターンの配線長に反比例する。銅箔パターンの断面積が同一であれば、配線長が長い程インピーダンスは高くなり電流は小さく、配線長が短い程インピーダンスは小さくなり電流は大きくなる。(a)の銅箔パターン例の場合、銅箔パターンが短いリレーRY1に電流が沢山流れ(0.7I:70%)、銅箔パターンが長いリレーRY2には少ない電流(0.3I:30%)が流れることになり、リレーRY1とRY2に流れる電流の分担がアンバランスになることになる。この場合には、流入する電流がリレーRY1に集中し、定格電流仕様をオーバーする結果となり、リレーRY1の接点溶着など破壊の要因となる。 The current I flowing into the relays RY1 and RY2 is inversely proportional to the impedance from the inflow point to the outflow point, that is, the wiring length of the copper foil pattern. If the cross-sectional areas of the copper foil patterns are the same, the longer the wiring length, the higher the impedance and the smaller the current, and the shorter the wiring length, the smaller the impedance and the larger the current. In the copper foil pattern example (a), a large amount of current flows through the relay RY1 with a short copper foil pattern (0.7I: 70%), and a small current (0.3I: 30%) through the relay RY2 with a long copper foil pattern. As a result, current sharing between relays RY1 and RY2 becomes unbalanced. In this case, the inflowing current concentrates on the relay RY1, resulting in exceeding the rated current specification, which causes destruction such as contact welding of the relay RY1.
 上記不具合の発生をなくし、並列接続されたリレーRY1とRY2に流れる電流の分担がバランスする(0.5I:50%)銅箔パターンの例が(b)である。 (B) An example of a copper foil pattern that eliminates the above-mentioned problems and balances the sharing of current flowing through relays RY1 and RY2 connected in parallel (0.5I: 50%) is (b).
 電流の流入点および流出点からリレーRY1とRY2の各リード電極端子への電流流入側の銅箔パターンと電流流出側の銅箔パターンによる合計インピーダンスが各リレーRY1とRY2とで略同一となるような銅箔パターンとリレーのリード端子配置を考慮して実装すれば、並列接続されたリレーRY1とRY2に流れる電流の分担を均一化することができる。 The total impedance of the current inflow side copper foil pattern and the current outflow side copper foil pattern from the current inflow and outflow points to the lead electrode terminals of the relays RY1 and RY2 is approximately the same for each relay RY1 and RY2. If the mounting is performed in consideration of the copper foil pattern and the lead terminal arrangement of the relay, the sharing of the current flowing through the relays RY1 and RY2 connected in parallel can be made uniform.
 すなわち、並列接続されたリレーRY1とRY2の定格を十分に活用できることになる。本実施例は、並列されたリレーが2個の場合について記載したものであるが、並列されたリレーの個数を限定するものではない。 That is, the ratings of relays RY1 and RY2 connected in parallel can be fully utilized. In the present embodiment, the case where there are two relays in parallel is described, but the number of relays in parallel is not limited.
 図7は、基板上の銅箔パターン図の他の一例である。 FIG. 7 is another example of a copper foil pattern diagram on the substrate.
 (a)と(b)は、ドライブ回路8を構成する各部品のうちリレーが搭載された箇所を拡大したものであり、黒塗りされた太線は、基板上に配線された銅箔パターンで、この銅箔パターンに電流が流れる。 (a) and (b) are enlarged parts where the relay is mounted among the components constituting the drive circuit 8, and the thick black line is a copper foil pattern wired on the substrate, A current flows through the copper foil pattern.
 (a)と(b)は、並列接続されたリレーRY1とRY2に流れる電流の分担がバランスする銅箔パターンの例である。 (A) and (b) are examples of copper foil patterns in which the sharing of the current flowing through the relays RY1 and RY2 connected in parallel is balanced.
 (a)は、並列接続されたRY1とRY2への電流流入側の配線の分岐点からRY2への電流流出接続点までのパターン配線長と、RY1の電流流入側の配線の分岐点からRY1への電流流接続点までのパターン配線長が略同一となるような銅箔パターンの場合であり、(b)は、並列接続されたRY1とRY2への電流流入側の配線の分岐点からRY2への電流流出接続点までのパターンの配線長と断面積の比と、RY1の電流流入側の配線の分岐点からRY1への電流流接続点までのパターンの配線長と断面積の比が略同一となるような銅箔パターンにした場合の例である。 (a) shows the pattern wiring length from the branch point of the current inflow side wiring to RY1 and RY2 connected in parallel to the current outflow connection point to RY2 and the branch point of the current inflow side of RY1 to RY1. This is the case of the copper foil pattern where the pattern wiring length to the current flow connection point is approximately the same. (B) is from the branch point of the current inflow side wiring to RY1 and RY2 connected in parallel to RY2. The ratio of the wiring length and cross-sectional area of the pattern up to the current outflow connection point and the ratio of the wiring length and cross-sectional area of the pattern from the branch point of the wiring on the current inflow side of RY1 to the current flow connection point to RY1 are substantially the same It is an example at the time of setting it as the copper foil pattern which becomes.
 銅箔パターンのインピーダンスZは、Z=ρ*L/Sで決まり、ρは抵抗率である。この抵抗率ρは、材質で一義的に決まる定数であり、例えば、銅の場合:1.72×10^-6 ohm・cm、銀の場合:1.62×10^-6 ohm・cmである。このため、材質が決まれば、配線パターンのインピーダンスZは、その配線長Lとその断面積S(パターン幅とパターン厚みの積)の比、すなわちZ∝L/Sで決定されることになる。すなわち、断面積Sを2倍にすれば、配線長を2倍長くしてもインピーダンスZは同一になる。 The impedance Z of the copper foil pattern is determined by Z = ρ * L / S, and ρ is the resistivity. This resistivity ρ is a constant uniquely determined by the material, for example, for copper: 1.72 × 10 ^ -6 ohm · cm, for silver: 1.62 × 10 ^ -6 ohm · cm. Therefore, once the material is determined, the impedance Z of the wiring pattern is determined by the ratio of the wiring length L and the cross-sectional area S (product of the pattern width and the pattern thickness), that is, Z∝L / S. That is, if the cross-sectional area S is doubled, the impedance Z becomes the same even if the wiring length is doubled.
 このため、銅箔パターンの断面積Sが同じ場合には、銅箔パターンの配線長Lが略同一となるように設計すれば、銅箔パターンのインピーダンスZが等しくすることができ、この場合の実施例が(a)である。また、銅箔パターンの断面積Sが異なる場合は、銅箔パターンの配線長Lとその断面積Sの比が略同一となるように設計すれば、銅箔パターンのインピーダンスZが等しくすることができ、この場合の実施例が(b)である。この場合においても、並列接続されたリレーRY1とRY2に流れる電流の分担を均一化することができる。 For this reason, when the cross-sectional area S of the copper foil pattern is the same, if the wiring length L of the copper foil pattern is designed to be substantially the same, the impedance Z of the copper foil pattern can be made equal. An example is (a). Also, when the cross-sectional area S of the copper foil pattern is different, the impedance Z of the copper foil pattern can be made equal if the wiring length L of the copper foil pattern and the ratio of the cross-sectional area S are designed to be substantially the same. An example in this case is (b). Even in this case, the sharing of the current flowing through the relays RY1 and RY2 connected in parallel can be made uniform.
 もちろん、基板上の銅箔パターンは基板の表面と裏面双方に設けることも可能であり、この場合には表面に設けたパターンの配線長と断面積の比と裏面に設けたパターンの配線長と断面積の比の並列と考えればよいし、基板の内層にもパターンを設けた場合についても同様である。(a)と(b)は一実施例であり、基板上の銅箔パターンを限定するものではない。 Of course, the copper foil pattern on the substrate can be provided on both the front surface and the back surface of the substrate. In this case, the ratio of the wiring length and cross-sectional area of the pattern provided on the front surface and the wiring length of the pattern provided on the back surface It may be considered that the ratio of the cross-sectional areas is parallel, and the same applies to the case where a pattern is provided on the inner layer of the substrate. (a) and (b) are one example and do not limit the copper foil pattern on the substrate.
 すなわち、並列接続されたリレーRY1とRY2の定格を十分に活用できることになる。 That is, the ratings of relays RY1 and RY2 connected in parallel can be fully utilized.
 本実施例は、並列されたリレーが2個の場合について記載したものであるが、並列されたリレーの個数を限定するものではない。 This embodiment describes the case where there are two relays in parallel, but the number of relays in parallel is not limited.
1… 順変換器、2… 平滑用電解コンデンサ、3… 逆変換器、4… 交流電動機、5… 制御回路、6… 冷却ファン、7… デジタル操作パネル、8… ドライブ回路、9…突入防止回路、10… コネクタ、11… パワー半導体、12… 電力変換装置、13… 冷却フィン、14… 樹脂モールドケース、15… リレーの励磁駆動回路、RB… 限流抵抗、RY1,RY2,RY3… リレー、MCU… マイコン、Vpn…平滑コンデンサを有する直流中間回路検出電圧、RYS… リレー接点オン信号、AMP… 絶縁リニアアンプ、AD… A/D変換器、*:乗算因子、√… 平方根、ΔVd…予め設定された変化率値、L… 銅箔パターンの配線長、S… 銅箔パターンの断面積 1 ... Order converter, 2 ... Smoothing electrolytic capacitor, 3 ... Reverse converter, 4 ... AC motor, 5 ... Control circuit, 6 ... Cooling fan, 7 ... Digital operation panel, 8 ... Drive circuit, 9 ... Inrush prevention circuit , 10 ... connector, 11 ... power semiconductor, 12 ... power converter, 13 ... cooling fin, 14 ... resin molded case, 15 ... relay excitation drive circuit, RB ... current limiting resistor, RY1, RY2, RY3 ... relay, MCU ... microcomputer, Vpn ... DC intermediate circuit detection voltage with smoothing capacitor, RYS ... relay contact on signal, AMP ... isolated linear amplifier, AD ... A / D converter, *: multiplication factor, √ ... square root, ΔVd ... preset Change rate value, L ... copper foil pattern wiring length, S ... copper foil pattern cross-sectional area

Claims (5)

  1.  交流電源の交流電圧を整流して直流電圧に変換する順変換器と、
     この順変換器の直流電圧を平滑する平滑コンデンサを有する直流中間回路と、
     前記直流中間回路の平滑コンデンサへの充電電流を抑制する限流回路と、
     前記直流中間回路の電圧を検出する電圧検出回路と、
     前記順変換器の直流電圧を交流電圧に変換する逆変換器と、
    を備る可変電圧可変周波数の交流電力を出力する電力変換装置であって、
     前記源流回路の抵抗には複数のリレーが並列に接続されており、前記直流中間回路の電圧検出値の変化率が予め設定された値以下になった時点で前記複数のリレーをオンすることを特徴とする電力変換装置。
    A forward converter that rectifies the AC voltage of the AC power source and converts it into a DC voltage;
    A DC intermediate circuit having a smoothing capacitor for smoothing the DC voltage of the forward converter;
    A current limiting circuit for suppressing a charging current to the smoothing capacitor of the DC intermediate circuit;
    A voltage detection circuit for detecting a voltage of the DC intermediate circuit;
    An inverse converter that converts a DC voltage of the forward converter into an AC voltage;
    A power conversion device that outputs AC power with variable voltage and variable frequency comprising:
    A plurality of relays are connected in parallel to the resistance of the source circuit, and the plurality of relays are turned on when the rate of change in the voltage detection value of the DC intermediate circuit is equal to or less than a preset value. A power conversion device.
  2.  請求項1に記載の電力変換装置において、
     前記並列に接続されたリレーは同一定格容量のリレーで構成されたことを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    The power converter according to claim 1, wherein the relays connected in parallel are configured with relays having the same rated capacity.
  3.  請求項1に記載の電力変換装置において、
     前記複数の並列接続されたリレーの電極端子は、各リレーの電極端子への電流流入側の銅箔パターンと電流流出側の銅箔パターンによる合計インピーダンスがリレー毎に略同一となるような銅箔配線パターンにしたことを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    The electrode terminals of the plurality of relays connected in parallel are such that the total impedance due to the current inflow side copper foil pattern and the current outflow side copper foil pattern to each relay electrode terminal is substantially the same for each relay. A power converter characterized by having a wiring pattern.
  4.  請求項1に記載の電力変換装置において、
     並列接続されたRY1とRY2への電流流入側の配線の分岐点からRY2への電流流出接続点までのパターン配線長と、RY1の電流流入側の配線の分岐点からRY1への電流流接続点までのパターン配線長が略同一となるような配線パターンにしたことを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    Pattern wiring length from the branch point of the current inflow side wiring to RY1 and RY2 connected in parallel to the current outflow connection point to RY2 and the current flow connection point from the branch point of the current inflow side of RY1 to RY1 A power conversion device characterized by having a wiring pattern in which the pattern wiring lengths up to are substantially the same.
  5.  請求項1に記載の電力変換装置において、
     並列接続されたRY1とRY2への電流流入側の配線の分岐点からRY2への電流流出接続点までのパターンの配線長と断面積の比と、RY1の電流流入側の配線の分岐点からRY1への電流流接続点までのパターンの配線長と断面積の比が略同一となるような配線パターンにしたことを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    The ratio of the pattern wiring length and cross-sectional area from the branch point of the current inflow side wiring to RY1 and RY2 connected in parallel to the current outflow connection point to RY2, and RY1 from the branch point of the current inflow side wiring of RY1 A power converter having a wiring pattern in which the ratio of the wiring length and the cross-sectional area of the pattern up to the current flow connection point is substantially the same.
PCT/JP2013/052658 2012-03-23 2013-02-06 Power conversion device WO2013140874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380006797.XA CN104081612A (en) 2012-03-23 2013-02-06 Power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012066534A JP5814841B2 (en) 2012-03-23 2012-03-23 Power converter
JP2012-066534 2012-03-23

Publications (1)

Publication Number Publication Date
WO2013140874A1 true WO2013140874A1 (en) 2013-09-26

Family

ID=49222339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052658 WO2013140874A1 (en) 2012-03-23 2013-02-06 Power conversion device

Country Status (3)

Country Link
JP (1) JP5814841B2 (en)
CN (1) CN104081612A (en)
WO (1) WO2013140874A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109286326A (en) * 2018-10-18 2019-01-29 珠海格力电器股份有限公司 High-power frequency conversion expanded circuit, control method, device and frequency conversion drive plate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3379712B1 (en) * 2015-11-18 2020-07-29 Hitachi Industrial Equipment Systems Co., Ltd. Power conversion device
FR3061812B1 (en) * 2017-01-11 2022-06-10 Caly Tech PROTECTION DEVICE FOR ELECTRICAL EQUIPMENT

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246778A (en) * 1989-03-17 1990-10-02 Mitsubishi Electric Corp Surge current preventing circuit for inverter
JP2000059988A (en) * 1998-08-10 2000-02-25 Sanken Electric Co Ltd Rush current preventive circuit
JP2001112265A (en) * 1999-10-06 2001-04-20 Hitachi Ltd Inverter and motor driver
JP2008210944A (en) * 2007-02-26 2008-09-11 Toshiba Tec Corp Wiring substrate equipped with isometric wiring capable of applied with large current
JP2010110085A (en) * 2008-10-29 2010-05-13 Daikin Ind Ltd Inverter apparatus and air-conditioning machine using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5317188B2 (en) * 2009-02-20 2013-10-16 株式会社安川電機 Inverter device for electric vehicle and protection method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246778A (en) * 1989-03-17 1990-10-02 Mitsubishi Electric Corp Surge current preventing circuit for inverter
JP2000059988A (en) * 1998-08-10 2000-02-25 Sanken Electric Co Ltd Rush current preventive circuit
JP2001112265A (en) * 1999-10-06 2001-04-20 Hitachi Ltd Inverter and motor driver
JP2008210944A (en) * 2007-02-26 2008-09-11 Toshiba Tec Corp Wiring substrate equipped with isometric wiring capable of applied with large current
JP2010110085A (en) * 2008-10-29 2010-05-13 Daikin Ind Ltd Inverter apparatus and air-conditioning machine using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109286326A (en) * 2018-10-18 2019-01-29 珠海格力电器股份有限公司 High-power frequency conversion expanded circuit, control method, device and frequency conversion drive plate

Also Published As

Publication number Publication date
JP5814841B2 (en) 2015-11-17
JP2013198383A (en) 2013-09-30
CN104081612A (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5955484B1 (en) Converter unit system and converter unit
JP2010156661A (en) Insulation deterioration detection device of motor
JP5743944B2 (en) Power converter
EP3084800B1 (en) Electrical switching apparatus including alternating current electronic trip circuit with arc fault detection circuit and power supply
WO2013140874A1 (en) Power conversion device
JP2011217463A (en) Inverter device
KR20160040415A (en) Intelligent Switching Module For Capacitor
CN109245508B (en) Electronic device
KR101514748B1 (en) Distribution Panel Including Intelligent Switching Module For Capacitor
CN110088871B (en) Electrical path fault detector and circuit breaker including the same
JP2006304557A (en) Protection circuit and power supply device
KR101568154B1 (en) Intelligent Switching Module For Capacitor
JP2019062640A (en) Power supply device
JP2014239616A (en) Power conversion device for vehicle
WO2011151906A1 (en) Inverter apparatus
JP2006042498A (en) Power conversion apparatus
JP6955951B2 (en) Discharge device
JP6987266B2 (en) Power converter and air conditioner
JP2011097789A (en) Power factor improving circuit
JP2016225440A (en) Resistor
JP2016195520A (en) Rush current protecting circuit, motor, and blowing device
JP4775588B2 (en) Input protection device
JP2006034000A (en) Rush current prevention circuit for air conditioner
JP6481593B2 (en) Terminal connection structure of switching element
JP2000184584A (en) Voltage type inverter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764469

Country of ref document: EP

Kind code of ref document: A1