WO2013140813A1 - Optical transmitter/receiver, method for manufacturing same, optical transmission/reception card, and optical transmission system - Google Patents

Optical transmitter/receiver, method for manufacturing same, optical transmission/reception card, and optical transmission system Download PDF

Info

Publication number
WO2013140813A1
WO2013140813A1 PCT/JP2013/001943 JP2013001943W WO2013140813A1 WO 2013140813 A1 WO2013140813 A1 WO 2013140813A1 JP 2013001943 W JP2013001943 W JP 2013001943W WO 2013140813 A1 WO2013140813 A1 WO 2013140813A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
substrate
optical transceiver
receiving element
Prior art date
Application number
PCT/JP2013/001943
Other languages
French (fr)
Japanese (ja)
Inventor
柳町 成行
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013140813A1 publication Critical patent/WO2013140813A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4245Mounting of the opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4257Details of housings having a supporting carrier or a mounting substrate or a mounting plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4257Details of housings having a supporting carrier or a mounting substrate or a mounting plate
    • G02B6/4259Details of housings having a supporting carrier or a mounting substrate or a mounting plate of the transparent type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features

Definitions

  • a wiring backplane is mounted on a case on which the CPU card and the switch card are mounted, and each CPU card and the switch card are connected via the backplane.
  • the communication between the CPU card and the switch card is performed using a communication protocol such as PCI-Express (registered trademark) and Ethernet (registered trademark) widely used in LAN (Local Area Network).
  • FIG. 1 is a perspective view showing an external appearance of a housing of an optical transmission system according to an embodiment of the present invention.
  • an optical transceiver is mounted on a card, and optical transmission of large-capacity data is performed between a large number of cards accommodated in the housing 10.
  • the communication between the CPU card 11 and the switch card 12 is performed using a communication protocol such as PCI-Express (registered trademark) or Ethernet (registered trademark) widely used in LAN (Local Area Network). Can do.
  • PCI-Express registered trademark
  • Ethernet registered trademark
  • LAN Local Area Network
  • the light transmissive adhesive layer 136 is provided so as to cover the solder layer 135, but the present invention is not limited to this.
  • the optical surface 131a may be protected by forming a light-transmitting adhesive layer 136 so as to cover the optical surface 131a of the VCSEL / Pin-PD 131.
  • the solder reflow process is performed, so that the VCSEL / reflow element at the time of solder reflow can be obtained. It is possible to prevent the positional deviation of the Pin-PD 131, and there is an effect that it can be accurately coupled to the polymer optical waveguide 56 on the card (I / O part substrate 51). Therefore, according to the present invention, it is possible to provide a high-performance and highly reliable optical transceiver, a manufacturing method thereof, an optical transmission / reception card, and an optical communication system with small coupling loss.
  • the sealing resin portion 137 is referred to as a first sealing material
  • the molding material 205 is referred to as a second sealing material.
  • the first sealing material can use the same resin as the light-transmitting adhesive layer 136, and is transparent in the wavelength region of 850 nm band which is the communication wavelength of the VCSEL / Pin-PD 131. is there.
  • the second sealing material does not have to be transparent in the wavelength region of the 850 nm band that is the communication wavelength of the VCSEL / Pin-PD 131.
  • the optical transceiver of the present embodiment includes a second sealing material (molding material 205) formed so as to cover at least a region where the optical transmitter 310 or the optical receiver 320 is mounted on the mounting substrate 301. But you can.
  • optical transceiver further comprising a mold sealing portion that is sealed with a molding material and packaged so as to further cover the substrate sealed with the sealing resin portion. 12 8).
  • the light-transmitting adhesive layer is an optical transceiver that transmits light in a wavelength region of 850 nm, which is a communication wavelength of the light transmitting element or the light receiving element. 13. 8).
  • a plurality of light transmitting elements or light receiving elements each having an optical surface for entering and exiting light; and
  • the plurality of light transmitting elements or light receiving elements have a surface on which a predetermined position is mounted, and a plurality of through holes are formed so that light can enter and exit from the plurality of light transmitting elements or the light receiving elements.

Abstract

An optical transmitter/receiver (53), provided with: a VCSEL/Pin-PD (131); a substrate (133) having formed therein a through-hole (134) so as to enable entry and exit of light from the VCSEL/Pin-PD (131); a solder layer (135) provided to one surface (133a) of the substrate (133), the solder layer (135) being melted by a solder reflow process and bonding the optical surface (131a) of the VCSEL/Pin-PD (131) to one surface (133a) of the substrate (133); a light-transmissive adhesion layer (136) for causing, before the solder reflow process, the VCSEL/Pin-PD (131) and the substrate (133) to adhere to each other, the light-transmissive adhesion layer (136) transmitting light entering/exiting the VCSEL/Pin-PD (131); and a sealing resin part (137) which is formed, before the solder reflow process, on the substrate (133) so as to cover the VCSEL/Pin-PD (131) caused to adhere by the light-transmissive adhesion layer (136).

Description

光送受信器、その製造方法、光送受信カード、および光通信システムOptical transceiver, method for manufacturing the same, optical transceiver card, and optical communication system
 本発明は、光送受信器、その製造方法、光送受信カード、および光通信システムに関する。 The present invention relates to an optical transceiver, a manufacturing method thereof, an optical transceiver card, and an optical communication system.
 近年、コンピュータ等情報処理装置に求められる性能は飛躍的に伸びており、これに伴いコンピュータ間の通信容量の増大も顕著となっている。コンピュータシステムの一例としては、1つまたは複数のCPU(Central Processing Unit)カードを筐体に搭載し、連携処理するブレードサーバという形態がある。 In recent years, the performance required for information processing devices such as computers has increased dramatically, and along with this, the increase in communication capacity between computers has become remarkable. As an example of a computer system, there is a form of a blade server in which one or a plurality of CPU (Central Processing Unit) cards are mounted in a casing and perform cooperative processing.
 一般的なブレードサーバは、パーソナルコンピュータをカード状にした形態である。ブレードサーバは、CPU、メモリ、ハードディスク等を搭載するCPUカードと、任意のCPUカード間の通信を行うために経路を切り替えるスイッチカードから主に構成される。 A general blade server is a personal computer in the form of a card. The blade server is mainly composed of a CPU card on which a CPU, a memory, a hard disk, and the like are mounted, and a switch card that switches a path in order to perform communication between arbitrary CPU cards.
 また、これらCPUカードとスイッチカードを搭載する筐体には、配線が施されたバックプレーンが搭載され、各CPUカードとスイッチカード間はバックプレーン経由で接続される。なお、CPUカードとスイッチカード間の通信は、たとえば、PCI―Express(登録商標)や、LAN(Local Area Network)で広く用いられるイーサネット(登録商標)等の通信用プロトコルを用いて行われる。 In addition, a wiring backplane is mounted on a case on which the CPU card and the switch card are mounted, and each CPU card and the switch card are connected via the backplane. The communication between the CPU card and the switch card is performed using a communication protocol such as PCI-Express (registered trademark) and Ethernet (registered trademark) widely used in LAN (Local Area Network).
 近年、伝送速度が10Gbpsクラスとなりつつあり、より大容量伝送が可能な光伝送の利用が想定されている。
 この様な短距離光伝送(通常100m以下程度)は、通常、マルチモード光送受信器、および、マルチモード光ファイバを用いて行われる。なお、マルチモード光送受信器は、送信側に安価なVCSEL(Vertical Cavity Surface Emitting Laser:面発光型半導体レーザ)とLDD(Laser Diode Driver)、受信側にPin-PD(Photo Diode:発光ダイオード)とTIA(Trans Impedance Amp)で構成することができる。
In recent years, the transmission speed is becoming the 10 Gbps class, and the use of optical transmission capable of larger capacity transmission is assumed.
Such short-distance optical transmission (usually about 100 m or less) is usually performed using a multimode optical transceiver and a multimode optical fiber. The multimode optical transceiver includes an inexpensive VCSEL (Vertical Cavity Surface Emitting Laser) and LDD (Laser Diode Driver) on the transmitting side, and a Pin-PD (Photo Diode) on the receiving side. It can be composed of TIA (Trans Impedance Amp).
 このような、光入出射面が基板への実装面と同一方向の光モジュールの一例が特許文献1に記載されている。このような、光モジュールは、まず、光送受信器をカードに半田実装し、その後、光送受信器の上部に光ファイバ付き光コネクタ装着する。 An example of such an optical module in which the light incident / exit surface is in the same direction as the mounting surface on the substrate is described in Patent Document 1. In such an optical module, an optical transceiver is first solder-mounted on a card, and then an optical connector with an optical fiber is mounted on the optical transceiver.
 また、半田実装面側に光出射する光送受信器をコネクタなしで直接実装する光モジュールの一例が、特許文献2に記載されている。 Further, Patent Document 2 describes an example of an optical module in which an optical transceiver that emits light on the solder mounting surface side is directly mounted without a connector.
特開2010‐010342号公報JP 2010-010342 A 特開2004‐235418号公報JP 2004-235418 A
 上述した特許文献に記載の光送受信器、およびその製造方法においてはコネクタを用いない直接実装型光送受信器が、カード上のポリマ光導波路と正確に結合できず、結合損失が大きくなるという問題点があった。 The optical transceiver described in the above-mentioned patent document, and the direct mounting type optical transceiver that does not use a connector in the manufacturing method thereof cannot be accurately coupled to the polymer optical waveguide on the card, resulting in a large coupling loss. was there.
 その理由は、VCSEL/Pin-PD、LDD/TIAを基板に実装するための半田リフロー工程において、実装機でVCSEL/Pin-PDを正確に位置決めしたとしても、VCSEL/Pin-PDが半田溶融時の張力によりずれて固定されてしまうためである。 The reason for this is that even if the VCSEL / Pin-PD is accurately positioned by the mounting machine in the solder reflow process for mounting the VCSEL / Pin-PD and LDD / TIA on the board, the VCSEL / Pin-PD is not melted. This is because they are displaced and fixed by the tension.
 本発明の目的は、上述した課題である半田リフロー固定における素子の位置ずれ発生の問題点を解決する光送受信器、その製造方法、光送受信カード、および光通信システムを提供することにある。 An object of the present invention is to provide an optical transmitter / receiver, a manufacturing method thereof, an optical transmitter / receiver card, and an optical communication system that solve the above-described problem of occurrence of positional deviation of elements in solder reflow fixing.
 本発明の光送受信器の製造方法は、
 光を入出射する光学面を有する送光素子または受光素子を、前記送光素子または前記受光素子からの光の入出射が可能なようにスルーホールが形成された基板の一面に接合させる半田層を設け、
 前記送光素子または前記受光素子を前記基板の前記一面上に接着し、前記送光素子または前記受光素子の前記光学面から入出射する光を透過する光透過性接着層を形成し、
 前記送光素子または前記受光素子を覆うように前記基板上に封止樹脂部を形成し、
 前記送光素子または前記受光素子を前記封止樹脂部で封止した後、半田リフロー処理にて前記半田層を溶融させ、前記送光素子または前記受光素子を前記基板に接合して実装する。
The manufacturing method of the optical transceiver of the present invention is as follows:
A solder layer for joining a light transmitting element or a light receiving element having an optical surface for entering and exiting light to one surface of a substrate on which a through hole is formed so that light can be incident and emitted from the light transmitting element or the light receiving element. Provided,
Bonding the light transmitting element or the light receiving element on the one surface of the substrate, and forming a light-transmitting adhesive layer that transmits light entering and exiting the optical surface of the light transmitting element or the light receiving element;
Forming a sealing resin portion on the substrate so as to cover the light transmitting element or the light receiving element;
After the light transmitting element or the light receiving element is sealed with the sealing resin portion, the solder layer is melted by a solder reflow process, and the light transmitting element or the light receiving element is bonded and mounted on the substrate.
 本発明の光送受信器は、
 光を入出射する光学面を有する送光素子または受光素子と、
 前記送光素子または受光素子が所定の位置に搭載される一面を有し、前記送光素子または前記受光素子からの光入出射が可能なようにスルーホールが形成された基板と、
 前記基板の前記一面に設けられ、半田リフロー処理で溶融して、前記送光素子または前記受光素子の前記光学面を前記基板の前記一面に接合させる半田層と、
 前記半田リフロー処理より前に、前記送光素子または前記受光素子と前記基板を接着し、前記送光素子または前記受光素子の前記光学面から入出射する光を透過する光透過性接着層と、
 前記半田リフロー処理より前に、前記光透過性接着層で接着された前記送光素子または前記受光素子を覆うように前記基板上に形成される封止樹脂部と、を備える。
The optical transceiver of the present invention is
A light transmitting element or a light receiving element having an optical surface for entering and exiting light; and
A substrate having a surface on which the light transmitting element or the light receiving element is mounted at a predetermined position, and a through-hole formed so that light can enter and exit from the light transmitting element or the light receiving element;
A solder layer provided on the one surface of the substrate, melted by a solder reflow process, and joining the optical surface of the light transmitting element or the light receiving element to the one surface of the substrate;
Prior to the solder reflow process, the light-transmitting element or the light-receiving element and the substrate are bonded, and a light-transmitting adhesive layer that transmits light entering and exiting the optical surface of the light-transmitting element or the light-receiving element;
And a sealing resin portion formed on the substrate so as to cover the light-transmitting element or the light-receiving element bonded by the light-transmitting adhesive layer before the solder reflow process.
 本発明の光送受信カードは、
 上記光送受信器と、
 前記光送受信器の基板と、を備え、
 前記基板の一面には、ポリマ光導波路が形成され、
 当該ポリマ光導波路の光入出射位置に前記光送受信器の光入出射位置が一致するように前記光送受信器が搭載される。
The optical transceiver card of the present invention is
The optical transceiver;
A substrate of the optical transceiver,
A polymer optical waveguide is formed on one surface of the substrate,
The optical transceiver is mounted so that the light incident / exit position of the optical transceiver coincides with the light incident / exit position of the polymer optical waveguide.
 本発明の光通信システムは、
 筐体に複数の上記光送受信カードを搭載し、
 バックプレーン経由で複数の前記光送受信カード間の光通信を行う。
The optical communication system of the present invention is
A plurality of the above-mentioned optical transmission / reception cards are mounted on the housing,
Optical communication between the plurality of optical transmission / reception cards is performed via a backplane.
 また、本発明の各種の構成要素は、必ずしも個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、ある構成要素が他の構成要素の一部であること、ある構成要素の一部と他の構成要素の一部とが重複していること、等でもよい。 The various components of the present invention do not necessarily have to be independent of each other. A plurality of components are formed as a single member, and a single component is formed of a plurality of members. It may be that a certain component is a part of another component, a part of a certain component overlaps with a part of another component, or the like.
 また、本発明の製造方法には複数の手順を順番に記載してあるが、特に明記されない限り、その記載の順番は複数の手順を実行する順番を限定するものではない。このため、本発明の製造方法を実施するときには、その複数の手順の順番は内容的に支障のない範囲で変更することができる。 In addition, although a plurality of procedures are described in order in the manufacturing method of the present invention, unless otherwise specified, the described order does not limit the order in which the plurality of procedures are executed. For this reason, when implementing the manufacturing method of this invention, the order of the several procedure can be changed in the range which does not have trouble in content.
 さらに、本発明の製造方法の複数の手順は、特に明記されない限り、個々に相違するタイミングで実行されることに限定されない。このため、ある手順の実行中に他の手順が発生すること、ある手順の実行タイミングと他の手順の実行タイミングとの一部ないし全部が重複していること、等でもよい。 Furthermore, the plurality of procedures of the manufacturing method of the present invention are not limited to being executed at different timings unless otherwise specified. For this reason, another procedure may occur during the execution of a certain procedure, or some or all of the execution timing of a certain procedure and the execution timing of another procedure may overlap.
 本発明によれば、信頼性の高い光送受信器、その製造方法、光送受信カード、および光通信システムが提供される。 According to the present invention, a highly reliable optical transceiver, a manufacturing method thereof, an optical transceiver card, and an optical communication system are provided.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本発明の実施の形態に係る光伝送システムの筐体の外観を示す斜視図である。It is a perspective view which shows the external appearance of the housing | casing of the optical transmission system which concerns on embodiment of this invention. 本発明の実施の形態に係る光伝送システムにおけるブレードサーバの構成の一例を示す斜視図である。It is a perspective view showing an example of composition of a blade server in an optical transmission system concerning an embodiment of the invention. 本発明の実施の形態に係る光伝送システムの筐体の断面図である。It is sectional drawing of the housing | casing of the optical transmission system which concerns on embodiment of this invention. 本発明の実施の形態に係る光伝送システムの筐体内のバックプレーンの正面図である。It is a front view of the backplane in the housing | casing of the optical transmission system which concerns on embodiment of this invention. 本発明の実施の形態に係る光伝送システムの構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the optical transmission system which concerns on embodiment of this invention. 本発明の実施の形態に係る光伝送システムのI/O部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the I / O part of the optical transmission system which concerns on embodiment of this invention. 本発明の実施の形態に係る光送受信器が実装されたカードの部分正面図である。It is a partial front view of the card | curd in which the optical transceiver which concerns on embodiment of this invention was mounted. 本発明の実施の形態に係る光送受信器が実装されたカードの部分断面図である。It is a fragmentary sectional view of the card | curd in which the optical transceiver which concerns on embodiment of this invention was mounted. 本発明の実施の形態に係る光送受信器の上面図である。1 is a top view of an optical transceiver according to an embodiment of the present invention. 本発明の実施の形態に係る光送受信器の断面図である。It is sectional drawing of the optical transmitter-receiver which concerns on embodiment of this invention. 本発明の実施の形態に係る光送受信器の光の入出射の位置合わせを説明するための図である。It is a figure for demonstrating alignment of the incident / exit of the light of the optical transmitter-receiver which concerns on embodiment of this invention. 本発明の実施の形態に係る光送受信器の製造工程の手順を説明するための図である。It is a figure for demonstrating the procedure of the manufacturing process of the optical transmitter-receiver which concerns on embodiment of this invention. 本発明の実施の形態に係る光送受信器の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the optical transmitter-receiver which concerns on embodiment of this invention. 本発明の実施の形態に係る光送受信器の上面図である。1 is a top view of an optical transceiver according to an embodiment of the present invention. 本発明の実施の形態に係る光送受信器の断面図である。It is sectional drawing of the optical transmitter-receiver which concerns on embodiment of this invention. 本発明の実施の形態に係る光送受信器の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the optical transmitter-receiver which concerns on embodiment of this invention. 本発明の実施の形態に係る光送受信器を複数一括して実装した基板の上面図である。It is a top view of a substrate on which a plurality of optical transceivers according to an embodiment of the present invention are mounted in a lump. 本発明の実施の形態に係る光送受信器を複数一括して実装した基板の断面図である。1 is a cross-sectional view of a substrate on which a plurality of optical transceivers according to an embodiment of the present invention are mounted in a batch. 本発明の実施の形態に係る光送受信器の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the optical transmitter-receiver which concerns on embodiment of this invention. 光ファイバ付き光コネクタを用いる光送受信器の実装形態を説明するための図である。It is a figure for demonstrating the mounting form of the optical transmitter / receiver using an optical connector with an optical fiber. 光ファイバ付き光コネクタを用いる光送受信器の断面図である。It is sectional drawing of the optical transmitter-receiver using an optical connector with an optical fiber. 光コネクタレスでポリマ光導波路に直接実装する光送受信器の実装形態を説明するための図である。It is a figure for demonstrating the mounting form of the optical transmitter / receiver directly mounted in a polymer optical waveguide without an optical connector. 光コネクタレスでポリマ光導波路に直接実装する光送受信器の断面図である。It is sectional drawing of the optical transmitter / receiver directly mounted in a polymer optical waveguide without an optical connector.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、各図において、本発明の本質に関わらない部分の構成については省略してあり、図示されていない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate. Moreover, in each figure, about the structure of the part which is not related to the essence of this invention, it has abbreviate | omitted and is not illustrated.
(第1の実施の形態)
 図1は、本発明の実施の形態に係る光伝送システムの筐体の外観を示す斜視図である。
 本発明の実施の形態に係る光伝送システムは、光送受信器をカードに搭載し、筐体10内に収容された多数のカード間で大容量データの光伝送を行う。
(First embodiment)
FIG. 1 is a perspective view showing an external appearance of a housing of an optical transmission system according to an embodiment of the present invention.
In the optical transmission system according to the embodiment of the present invention, an optical transceiver is mounted on a card, and optical transmission of large-capacity data is performed between a large number of cards accommodated in the housing 10.
 本発明の実施の形態に係る光伝送システムは、筐体10と、複数のCPUカード11と、1つまたは複数のスイッチカード12とを含む。なお、図1では、筐体10は、シャーシ1段分のみ図示されている。筐体10は、複数段のシャーシを含むことができ、本発明の光伝送システムは、シャーシを跨いだカード間の光伝送に適用できる。さらに、本発明の光伝送システムは、複数の筐体10間の光伝送にも適用できる。
 また、本発明の実施の形態に係る光伝送システムの構成例では、CPUカード11およびスイッチカード12間の通信において、大容量または高速の主信号データの通信時には光伝送を用い、管理系等の低速または少容量データの通信時には電気伝送を用いる。
The optical transmission system according to the embodiment of the present invention includes a housing 10, a plurality of CPU cards 11, and one or a plurality of switch cards 12. In FIG. 1, the housing 10 is shown only for one stage of the chassis. The housing 10 can include a plurality of stages of chassis, and the optical transmission system of the present invention can be applied to optical transmission between cards straddling the chassis. Furthermore, the optical transmission system of the present invention can also be applied to optical transmission between a plurality of housings 10.
Further, in the configuration example of the optical transmission system according to the embodiment of the present invention, in communication between the CPU card 11 and the switch card 12, optical transmission is used during communication of large-capacity or high-speed main signal data. Electrical transmission is used for low-speed or small-volume data communication.
 図2は、本発明の実施の形態に係る光伝送システムおけるブレードサーバの構成の一例を示す斜視図である。
 図2に示すように、これらCPUカード11とスイッチカード12を搭載する筐体10(図1)には、配線14が施されたバックプレーン15が搭載されており、各CPUカード11とスイッチカード12間はバックプレーン15経由で接続されている。CPUカード11には、たとえば、CPU3、チップセット4、ハードディスク5、およびメモリ6等が搭載される。スイッチカード12には、たとえば、スイッチ8、およびメモリ9等が搭載される。
FIG. 2 is a perspective view showing an example of the configuration of the blade server in the optical transmission system according to the embodiment of the present invention.
As shown in FIG. 2, a housing 10 (FIG. 1) on which the CPU card 11 and the switch card 12 are mounted is provided with a backplane 15 to which wiring 14 is applied. 12 are connected via a backplane 15. For example, CPU 3, chip set 4, hard disk 5, and memory 6 are mounted on CPU card 11. For example, a switch 8 and a memory 9 are mounted on the switch card 12.
 なお、CPUカード11とスイッチカード12間の通信は、たとえば、PCI―Express(登録商標)や、LAN(Local Area Network)で広く用いられるイーサネット(登録商標)等の通信用プロトコルを用いて行うことができる。 The communication between the CPU card 11 and the switch card 12 is performed using a communication protocol such as PCI-Express (registered trademark) or Ethernet (registered trademark) widely used in LAN (Local Area Network). Can do.
 このようなブレードサーバの筐体10内カード間のプロトコルを伝送する媒体としては、現状、チャネル当たり3Gbpsクラスの伝送速度で伝送距離が1m程度であるため電気伝送が主流である。しかし、近年、伝送速度が10Gbpsクラスとなりつつあり、より大容量伝送が可能な光伝送の利用が想定されている。 As a medium for transmitting a protocol between cards in the chassis 10 of the blade server, electrical transmission is mainly used because the transmission distance is about 1 m at a transmission speed of 3 Gbps class per channel. However, in recent years, the transmission speed is becoming the 10 Gbps class, and the use of optical transmission capable of larger capacity transmission is assumed.
 本実施形態の光伝送システムは、筐体10間の短距離光伝送(通常100m以下程度)を、マルチモード光送受信器、および、マルチモード光ファイバを用いて行う。または、本実施形態のマルチモード光送受信器は、後述するように、送信側に安価なVCSELとLDD、受信側にPin-PDとTIAで構成される。 The optical transmission system of the present embodiment performs short-distance optical transmission (usually about 100 m or less) between the casings 10 using a multimode optical transceiver and a multimode optical fiber. Alternatively, as will be described later, the multimode optical transceiver according to the present embodiment includes an inexpensive VCSEL and LDD on the transmission side and Pin-PD and TIA on the reception side.
 次に、図3および図4を用いて、筐体10の内部構造を説明する。図3は、図1の筐体10の線A-A′における断面図である。図4は、筐体10内のバックプレーンの正面図である。図2では、バックプレーン15は1枚板で示しているが、特にこれに限定されない。たとえば、図3および図4の本実施形態の光伝送システムの構成例では、光バックプレーン22および電気バックプレーン23の2枚に分かれている。 Next, the internal structure of the housing 10 will be described with reference to FIGS. 3 is a cross-sectional view taken along line AA ′ of the housing 10 of FIG. FIG. 4 is a front view of the backplane in the housing 10. In FIG. 2, the backplane 15 is shown as a single plate, but is not particularly limited thereto. For example, in the configuration example of the optical transmission system according to the present embodiment shown in FIGS. 3 and 4, the optical backplane 22 and the electrical backplane 23 are separated.
 CPUカード11およびスイッチカード12には、1つまたは複数の光コネクタ211と、1つまたは複数の電源コネクタ212と、1つまたは複数の電気コネクタ213とがそれぞれ搭載される。また、筐体10には光バックプレーン22および電気バックプレーン23が搭載される。さらに、光バックプレーン22上には1つまたは複数の光コネクタ221がCPUカード11およびスイッチカード12上の光コネクタ211と対向するように搭載される。 The CPU card 11 and the switch card 12 are mounted with one or more optical connectors 211, one or more power connectors 212, and one or more electrical connectors 213, respectively. An optical backplane 22 and an electrical backplane 23 are mounted on the housing 10. Further, one or more optical connectors 221 are mounted on the optical backplane 22 so as to face the optical connectors 211 on the CPU card 11 and the switch card 12.
 同様に、電気バックプレーン23上には、1つまたは複数の電源コネクタ231および1つまたは複数の電気コネクタ232が、CPUカード11およびスイッチカード12上の電源コネクタ212および電気コネクタ213とそれぞれ対向するように搭載される。これらCPUカード11およびスイッチカード12が筐体10に挿入されると、光コネクタ211と221、電源コネクタ212と231、電気コネクタ213と232がそれぞれ嵌合する構造となっている。カードが挿入される各スロット間の光接続は、光バックプレーン22に搭載の光コネクタ221に接続されている光ファイバ222を通して行われる。また、図示していないが電気バックプレーン23上には電気のパターン配線がされており、このパターンに沿って各スロット間の電気配線が施されている。 Similarly, on the electrical backplane 23, one or more power connectors 231 and one or more electrical connectors 232 face the power connector 212 and the electrical connector 213 on the CPU card 11 and the switch card 12, respectively. To be mounted. When the CPU card 11 and the switch card 12 are inserted into the housing 10, the optical connectors 211 and 221, the power connectors 212 and 231, and the electrical connectors 213 and 232 are fitted. Optical connection between each slot into which the card is inserted is made through an optical fiber 222 connected to an optical connector 221 mounted on the optical backplane 22. Although not shown, an electrical pattern wiring is provided on the electrical backplane 23, and electrical wiring between the slots is provided along this pattern.
 なお、光ファイバ222は、マルチモード光ファイバであり、光信号を閉じこめ進行させる直径50umの円形コア部と、コア部を取り囲み、光をコア部に閉じこめる直径125umのクラッド部を含む。 Note that the optical fiber 222 is a multimode optical fiber, and includes a circular core portion having a diameter of 50 μm for confining and advancing an optical signal, and a clad portion having a diameter of 125 μm surrounding the core portion and confining light in the core portion.
 また、CPUカード11は、図4のCPUカードスロット31へ、スイッチカード12は、図4のスイッチカードスロット32へそれぞれ挿入されることにより上記のコネクタ嵌合がなされる。 The CPU card 11 is inserted into the CPU card slot 31 shown in FIG. 4, and the switch card 12 is inserted into the switch card slot 32 shown in FIG.
 次に、本発明の筐体内光伝送システム1の機能構成について説明する。図5は、本発明の実施の形態に係る光伝送システム1の構成を示す機能ブロック図である。
 本実施形態の筐体内光伝送システム1において、CPUカード11は、CPU部111と、メモリ部112と、ノースブリッジ部113と、I/O部114と、サウスブリッジ部115と、を備える。
Next, the functional configuration of the in-housing optical transmission system 1 of the present invention will be described. FIG. 5 is a functional block diagram showing the configuration of the optical transmission system 1 according to the embodiment of the present invention.
In the intra-casing optical transmission system 1 of the present embodiment, the CPU card 11 includes a CPU unit 111, a memory unit 112, a north bridge unit 113, an I / O unit 114, and a south bridge unit 115.
 CPU部111は、演算処理や命令処理を行う。ノースブリッジ部113は、メモリ部112等の高速バスを持つデバイスとCPU部111と接続する。サウスブリッジ部115は、ノースブリッジ部113経由でI/O部114等の低速バスを持つデバイスとCPU部111を接続する。 The CPU unit 111 performs arithmetic processing and command processing. The north bridge unit 113 is connected to the CPU unit 111 and a device having a high-speed bus such as the memory unit 112. The south bridge unit 115 connects the CPU unit 111 and a device having a low-speed bus such as the I / O unit 114 via the north bridge unit 113.
 また、筐体内光伝送システム1において、スイッチカード12は、CPUカード11に伝送路116を介してそれぞれ接続され、1つまたは複数のI/O部121と、経路テーブル部122と、スイッチ部123とを備える。
 1つまたは複数のI/O部121は、1つまたは複数のCPUカード11からのデータをそれぞれ受信する。経路テーブル部122は、所望のCPUカード11がどのスイッチポートに接続されているかの情報が保存される。スイッチ部123は、I/O部121と接続され、経路テーブル部122を参照してポート接続を行う。CPUカード11間の接続はスイッチカード12経由で実現される。
In the intra-casing optical transmission system 1, the switch card 12 is connected to the CPU card 11 via the transmission path 116, and one or a plurality of I / O units 121, a route table unit 122, and a switch unit 123. With.
One or more I / O units 121 receive data from one or more CPU cards 11, respectively. The route table unit 122 stores information about which switch port the desired CPU card 11 is connected to. The switch unit 123 is connected to the I / O unit 121 and performs port connection with reference to the route table unit 122. Connection between the CPU cards 11 is realized via the switch card 12.
 また、光伝送システム1の各構成要素は、CPU、メモリ、メモリにロードされた本図の構成要素を実現するプログラム、そのプログラムを格納するハードディスクなどの記憶ユニット、ネットワーク接続用インタフェースを備える任意のコンピュータのハードウェアとソフトウェアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。ここで説明する図5および図6等は、ハードウェア単位の構成ではなく、機能単位のブロックを示している。 Each component of the optical transmission system 1 includes a CPU, a memory, a program that realizes the components shown in the figure loaded in the memory, a storage unit such as a hard disk that stores the program, and an interface for network connection. It is realized by any combination of computer hardware and software. It will be understood by those skilled in the art that there are various modifications to the implementation method and apparatus. FIG. 5 and FIG. 6 described here show functional unit blocks, not hardware unit configurations.
 次に、図6は、CPUカード11のI/O部114の詳細を示す機能ブロック図である。I/O部114は、プロトコル処理部41と、物理層部42と、光送信部43と、光受信部44と、を含む。 Next, FIG. 6 is a functional block diagram showing details of the I / O unit 114 of the CPU card 11. The I / O unit 114 includes a protocol processing unit 41, a physical layer unit 42, an optical transmission unit 43, and an optical reception unit 44.
 I/O部114におけるCPUカード11とスイッチカード12との信号伝送は以下のように行われる。CPUカード11において、サウスブリッジ部115から受けた信号をプロトコル処理部41が所望の伝送フォーマット(イーサネット(登録商標)、PCI-Express(登録商標)等)に変換する。変換後の信号が、符号化(イーサネット(登録商標)では8B/10Bや64B/66B等の符号化手段がある)や伝送媒体に適したビット列信号に変換する物理層部42を介して、光送信部43または光受信部44とやりとりされる。そして、光送信部43または光受信部44が、伝送路116を介してスイッチカード12と信号をやりとりする。 Signal transmission between the CPU card 11 and the switch card 12 in the I / O unit 114 is performed as follows. In the CPU card 11, the protocol processing unit 41 converts the signal received from the south bridge unit 115 into a desired transmission format (Ethernet (registered trademark), PCI-Express (registered trademark), etc.). The converted signal is optically transmitted through the physical layer unit 42 that converts the signal into a bit string signal suitable for encoding (such as 8B / 10B or 64B / 66B in Ethernet (registered trademark)) or a transmission medium. The data is exchanged with the transmitter 43 or the optical receiver 44. Then, the optical transmitter 43 or the optical receiver 44 exchanges signals with the switch card 12 via the transmission path 116.
 図7は、本発明の実施の形態に係る光送受信器が実装されたカードの部分正面図である。ここで図7は、図6のI/O部114の物理層部42のより詳細な構造を示した図である。I/O部114は、物理層処理を行うLSI52と、物理層部LSI52からの電気信号を光信号に変換する光送受信器53と、I/O部基板51の表面51aに形成された複数のポリマ光導波路56と、図4の光バックプレーン22搭載の光コネクタ221と嵌合するカード側光コネクタ211とを含む。物理層部LSI52からの電気信号はI/O部基板51上に形成された高速電気配線55経由で光送受信器53に伝送され、光信号に変換される。なお、嵌合部54については後述する。 FIG. 7 is a partial front view of a card on which the optical transceiver according to the embodiment of the present invention is mounted. FIG. 7 is a diagram showing a more detailed structure of the physical layer unit 42 of the I / O unit 114 of FIG. The I / O unit 114 includes an LSI 52 that performs physical layer processing, an optical transceiver 53 that converts an electrical signal from the physical layer LSI 52 into an optical signal, and a plurality of I / O units formed on the surface 51 a of the I / O unit substrate 51. A polymer optical waveguide 56 and a card-side optical connector 211 fitted to the optical connector 221 mounted on the optical backplane 22 in FIG. 4 are included. The electrical signal from the physical layer LSI 52 is transmitted to the optical transceiver 53 via the high-speed electrical wiring 55 formed on the I / O substrate 51 and converted into an optical signal. The fitting portion 54 will be described later.
 次に、図8は、図7の光送受信器53が実装されたカード(I/O部基板51)の線B-B′における部分断面図である。光送受信器53は、発光素子(VCSEL)または受光素子(Pin-PD)131および発光素子を駆動するLDD132または受光素子からの微弱電流を電圧に変換増幅するTIA132を含む。VCSEL131とLDD132が光送信器を形成し、Pin-PD131とTIA132が光受信器を形成する。 Next, FIG. 8 is a partial sectional view taken along line BB ′ of the card (I / O unit substrate 51) on which the optical transceiver 53 of FIG. 7 is mounted. The optical transceiver 53 includes a light emitting element (VCSEL) or a light receiving element (Pin-PD) 131, an LDD 132 that drives the light emitting element, or a TIA 132 that converts a weak current from the light receiving element into a voltage and amplifies it. The VCSEL 131 and the LDD 132 form an optical transmitter, and the Pin-PD 131 and the TIA 132 form an optical receiver.
 光送受信器53は、発光素子または受光素子の少なくとも1つを含み、さらに、発光素子と受光素子の両方を含むこともできる。以下、VCSEL/Pin-PD131、LDD/TIA132とそれぞれ示す。これは、光送受信器53が、VCSELまたはPin-PDのいずれか、または両方を含むことを意味し、さらに、VCSELを有する場合は、LDDを有し、Pin-PDを有する場合は、TIAを有することを意味する。 The optical transceiver 53 includes at least one of a light emitting element or a light receiving element, and can further include both a light emitting element and a light receiving element. Hereinafter, VCSEL / Pin-PD131 and LDD / TIA132 are shown respectively. This means that the optical transceiver 53 includes either or both of a VCSEL and a Pin-PD. Further, when having a VCSEL, it has an LDD, and when it has a Pin-PD, it has a TIA. It means having.
 図8に示すように、本実施形態の光送受信器53は、光送受信器53のI/O部基板51への半田実装面53aと光送受信器53の光の入出射面が同一方向にある。したがって、光送受信器53の光の入出射面をI/O部基板51の表面51aに対面させて光送受信器53を載置することができる。 As shown in FIG. 8, in the optical transceiver 53 of this embodiment, the solder mounting surface 53a of the optical transceiver 53 on the I / O board 51 and the light incident / exit surface of the optical transceiver 53 are in the same direction. . Therefore, the optical transceiver 53 can be placed with the light incident / exit surface of the optical transceiver 53 facing the surface 51 a of the I / O unit substrate 51.
 ポリマ光導波路56は、I/O部基板51上にフォトプロセス等で一括形成される。ポリマ光導波路56は、約50um程度の矩形状コア部および数10um~100um程度の矩形クラッド部で構成されている。 The polymer optical waveguide 56 is collectively formed on the I / O part substrate 51 by a photo process or the like. The polymer optical waveguide 56 includes a rectangular core portion of about 50 μm and a rectangular clad portion of about several tens to 100 μm.
 また、I/O部基板51表面に形成されたポリマ光導波路56には光路を90度変換するミラー57が内蔵されている。入射された光信号は、ミラー57で90度光路変換後、I/O部基板51を水平方向に進み、再度ミラー57で90度光路変換後、光コネクタ211経由でカード間を接続する光ファイバ222に入力される。 Also, a polymer optical waveguide 56 formed on the surface of the I / O unit substrate 51 has a built-in mirror 57 for converting the optical path by 90 degrees. The incident optical signal is converted into a 90-degree optical path by the mirror 57, then travels in the horizontal direction through the I / O unit substrate 51, is again converted into a 90-degree optical path by the mirror 57, and is connected to the cards via the optical connector 211. 222 is input.
 このように、本実施形態のような構成を有する光送受信器53は、コネクタを用いずにI/O部基板51に直接実装することができる。そして、ポリマ光導波路56を用いることで光ファイバ取り回し工数を削減でき、さらにコネクタを用いないことで、部品点数を削減できる。よって低コストで光送受信器53を構成することができる。 Thus, the optical transceiver 53 having the configuration as in the present embodiment can be directly mounted on the I / O unit substrate 51 without using a connector. Then, by using the polymer optical waveguide 56, it is possible to reduce the man-hour for manipulating the optical fiber, and it is possible to reduce the number of parts by not using the connector. Therefore, the optical transceiver 53 can be configured at low cost.
 このように、本実施形態の光伝送システム1は、バックプレーン15経由で複数の光送受信カード(CPUカード11およびスイッチカード12)間の光通信を筐体10内で行う。
 あるいは、本実施形態の光伝送システム1は、複数の筐体10間の光通信を行う。
As described above, the optical transmission system 1 according to the present embodiment performs optical communication between the plurality of optical transmission / reception cards (the CPU card 11 and the switch card 12) in the housing 10 via the backplane 15.
Alternatively, the optical transmission system 1 of the present embodiment performs optical communication between the plurality of housings 10.
 たとえば、本発明の光送受信器とは異なり、光ファイバ901付き光コネクタ903を上部に装着するタイプの光送受信器905は、図20に示すような構造を有する。図20の構成では、光送受信器905をカード906に半田実装し、その後、光送受信器905の上部に光ファイバ901付き光コネクタ903を装着する。 For example, unlike the optical transceiver of the present invention, an optical transceiver 905 of the type in which an optical connector 903 with an optical fiber 901 is attached to the upper part has a structure as shown in FIG. In the configuration of FIG. 20, the optical transceiver 905 is solder-mounted on a card 906, and then an optical connector 903 with an optical fiber 901 is mounted on the optical transceiver 905.
 さらに、光コネクタを用いる他の光送受信器の例として、図21に示すものもある。このタイプの光送受信器の製造方法について説明する。
 まず、セラミクス材料等の高周波特性のよい実装基板911上にLDD/TIA912をフリップチップ実装する。次に、電気パッドと光入出射面913aが同一面にあるVCSEL/Pin-PD913を光入出射面913aが実装基板面911aと反対になるように接着固定する。次に、LDD/TIA912の信号ラインが接続されている実装基板911上の引き出しパッドとVCSEL/Pin-PD913の電気パッドが導通するようにワイヤーボンディング915で接続する。
Furthermore, as another example of the optical transceiver using the optical connector, there is the one shown in FIG. A method for manufacturing this type of optical transceiver will be described.
First, an LDD / TIA 912 is flip-chip mounted on a mounting substrate 911 with good high frequency characteristics such as a ceramic material. Next, the VCSEL / Pin-PD 913 having the electric pad and the light incident / exit surface 913a on the same surface is bonded and fixed so that the light incident / exit surface 913a is opposite to the mounting substrate surface 911a. Next, the lead pad on the mounting substrate 911 to which the signal line of the LDD / TIA 912 is connected and the electrical pad of the VCSEL / Pin-PD 913 are connected by wire bonding 915.
 次に、実装基板911上部に基板911を覆うようにシールドカバー916を設置するとともに、VCSEL/Pin-PD913からの光入出射を効率的に光ファイバ923に結像させるためのレンズアレイ917が設置された光レセプタクル918を設置することにより光送受信器が完成される。また、光コネクタ920は光レセプタクル918によりVCSEL/Pin-PD913の入出射位置と光ファイバ923の光軸が正確に一致するように固定される。
 さらに、光コネクタ920には光路を90度曲げるミラー921が設置されており、光送受信から垂直方向に入出射する光信号はミラー921により90度光路変換され光ファイバ923に入出力される。
Next, a shield cover 916 is installed on the mounting substrate 911 so as to cover the substrate 911, and a lens array 917 for efficiently imaging light incident / exit from the VCSEL / Pin-PD 913 on the optical fiber 923 is installed. By installing the optical receptacle 918, the optical transceiver is completed. Further, the optical connector 920 is fixed by the optical receptacle 918 so that the entrance / exit position of the VCSEL / Pin-PD 913 and the optical axis of the optical fiber 923 are exactly aligned.
Further, the optical connector 920 is provided with a mirror 921 that bends the optical path by 90 degrees. An optical signal that enters and exits the optical transmission / reception in the vertical direction is converted by the mirror 921 by 90 degrees and is input / output to / from the optical fiber 923.
 図20または図21のような光コネクタを用いた光送受信器は、コネクタ等の部品や、光ファイバの取り回し工数が多かった。
 そこで、コネクタ等の部品点数削減や、光ファイバ取り回しの工数削減のため、図22に示すようなコネクタを用いないタイプの光送受信器がある。このタイプの光送受信器は、カード931上にポリマ光導波路932をフォトプロセス等で一括形成し(光ファイバ取り回し工数削減)、半田実装面側に光出射する光送受信器941をコネクタなしで(部品点数削減)直接実装する。
The optical transceiver using the optical connector as shown in FIG. 20 or FIG. 21 has many man-hours for handling components such as connectors and optical fibers.
Therefore, there is an optical transceiver that does not use a connector as shown in FIG. 22 in order to reduce the number of components such as connectors and man-hours for handling optical fibers. In this type of optical transceiver, polymer optical waveguides 932 are collectively formed on a card 931 by a photo process or the like (reducing the number of man-hours for handling optical fibers), and the optical transceiver 941 for emitting light to the solder mounting surface side is provided without a connector (components). (Direction reduction) Implement directly.
 図23は、図22の光コネクタを用いない光送受信器950の断面図を示した図である。その製造方法について説明する。まず、セラミクス材料等の高周波特性のよい実装基板951上にLDD/TIA952とVCSEL/Pin-PD953をフリップチップ実装する。このときLDD/TIA952とVCSEL/Pin-PD953の信号ラインは実装基板951上に形成された電気配線により接続される。
 次に、実装基板上部に基板951を覆うようにシールドカバー955を設置することにより光送受信器950が完成される。なお、VCSEL/Pin-PD953からの光入出射は実装基板951に空けられたスルーホール956によりなされる。
FIG. 23 is a cross-sectional view of an optical transceiver 950 that does not use the optical connector of FIG. The manufacturing method will be described. First, an LDD / TIA 952 and a VCSEL / Pin-PD 953 are flip-chip mounted on a mounting substrate 951 with good high frequency characteristics such as a ceramic material. At this time, the signal lines of the LDD / TIA 952 and the VCSEL / Pin-PD 953 are connected by electrical wiring formed on the mounting substrate 951.
Next, an optical transceiver 950 is completed by installing a shield cover 955 so as to cover the substrate 951 on the mounting substrate. Light entering / exiting from the VCSEL / Pin-PD 953 is made through a through hole 956 formed in the mounting substrate 951.
 しかしながら、上述した製造方法で製造されるコネクタを用いずに直接実装するタイプの光送受信器においては、カード931上のポリマ光導波路932と光送受信器941を正確に結合できず、結合損失が大きくなるという問題点があった。その理由は、VCSEL/Pin-PDとLDD/TIAの半田リフロー処理工程において、実装機で正確に位置決めさたVCSEL/Pin-PDが、半田溶融時の張力によりずれて固定されてしまうからである。
 そこで、本発明は、光送受信器とポリマ光導波路が正確に結合でき、結合損失を小さくすることができるコネクタなしで直接実装する光送受信器、およびその製造方法を提供する。
However, in the type of optical transceiver that is directly mounted without using the connector manufactured by the above-described manufacturing method, the polymer optical waveguide 932 on the card 931 and the optical transceiver 941 cannot be accurately coupled, resulting in a large coupling loss. There was a problem of becoming. The reason is that the VCSEL / Pin-PD accurately positioned by the mounting machine is displaced and fixed by the tension at the time of solder melting in the solder reflow processing step of the VCSEL / Pin-PD and LDD / TIA. .
Accordingly, the present invention provides an optical transceiver that can be directly mounted without a connector that can accurately couple an optical transceiver and a polymer optical waveguide and reduce coupling loss, and a method of manufacturing the same.
 以下、本発明の実施の形態に係る光送受信器53の構成について図9および図10を用いて説明する。
 図9は、光送受信器53の上面図である。図10は、図9の光送受信器の線C-C′における断面図である。
 本発明の実施の形態に係る光送受信器53は、光を入出射する光学面131aを有する送光素子または受光素子(VCSEL/Pin-PD131)と、基板(実装基板133)と、半田層135と、光透過性接着層136と、封止樹脂部137と、を備える。
 実装基板133は、送光素子または受光素子(VCSEL/Pin-PD131)が所定の位置に搭載される一面133aを有し、送光素子または受光素子(VCSEL/Pin-PD131)からの光入出射が可能なようにスルーホール134が形成される。半田層135は、実装基板133の一面133aに設けられ、半田リフロー処理で溶融して、送光素子または受光素子(VCSEL/Pin-PD131)の光学面131aを実装基板133の一面133aに接合させる。
The configuration of the optical transceiver 53 according to the embodiment of the present invention will be described below with reference to FIGS.
FIG. 9 is a top view of the optical transceiver 53. FIG. 10 is a cross-sectional view of the optical transceiver of FIG. 9 taken along line CC ′.
The optical transceiver 53 according to the embodiment of the present invention includes a light transmitting / receiving element (VCSEL / Pin-PD 131) having an optical surface 131a for entering and exiting light, a substrate (mounting substrate 133), and a solder layer 135. And a light-transmitting adhesive layer 136 and a sealing resin portion 137.
The mounting substrate 133 has one surface 133a on which a light transmitting element or a light receiving element (VCSEL / Pin-PD 131) is mounted at a predetermined position, and light incident / exit from the light transmitting element or the light receiving element (VCSEL / Pin-PD 131). Through hole 134 is formed so that The solder layer 135 is provided on one surface 133a of the mounting substrate 133, and is melted by a solder reflow process to join the optical surface 131a of the light transmitting element or the light receiving element (VCSEL / Pin-PD 131) to the one surface 133a of the mounting substrate 133. .
 光透過性接着層136は、半田リフロー処理より前に、送光素子または受光素子(VCSEL/Pin-PD131)の光学面131aと実装基板133の一面133aの間に形成され、送光素子または受光素子(VCSEL/Pin-PD131)と基板133を接着し、送光素子または受光素子(VCSEL/Pin-PD131)の光学面131aから入出射する光を透過する。封止樹脂部137は、半田リフロー処理より前に、光透過性接着層136で実装基板133に仮接着された送光素子または受光素子(VCSEL/Pin-PD131)を覆うように実装基板133上に形成される。
 送光素子または受光素子(VCSEL/Pin-PD131)は、光透過性接着層136で実装基板133に仮に接着され、封止樹脂部137で封止された後、半田リフロー処理にて半田層135を溶融させることにより実装基板133に接合させて実装される。
The light transmissive adhesive layer 136 is formed between the optical surface 131a of the light transmitting element or the light receiving element (VCSEL / Pin-PD 131) and the one surface 133a of the mounting substrate 133 before the solder reflow process. The element (VCSEL / Pin-PD 131) and the substrate 133 are bonded to transmit light incident / exited from the optical surface 131a of the light transmitting element or the light receiving element (VCSEL / Pin-PD 131). The sealing resin portion 137 is formed on the mounting substrate 133 so as to cover the light transmitting element or the light receiving element (VCSEL / Pin-PD 131) temporarily bonded to the mounting substrate 133 with the light-transmitting adhesive layer 136 before the solder reflow process. Formed.
The light transmitting element or the light receiving element (VCSEL / Pin-PD 131) is temporarily bonded to the mounting substrate 133 with a light transmissive adhesive layer 136, sealed with a sealing resin portion 137, and then solder layer 135 by a solder reflow process. Is melted and bonded to the mounting substrate 133 for mounting.
 より詳細には、実装基板133は、高周波特性のよいセラミクス基板が望ましいが、有機材料、ガラス材料でもよい。実装基板133の一面133aには、VCSEL/Pin-PD131およびLDD/TIA132間の信号ラインが接続されるように電気配線が形成される。なお、実装基板133に形成されるスルーホール134に、縦型のポリマ光導波路を充填してもよい。 More specifically, the mounting substrate 133 is preferably a ceramic substrate having good high-frequency characteristics, but may be an organic material or a glass material. On one surface 133a of the mounting substrate 133, electrical wiring is formed so that signal lines between the VCSEL / Pin-PD 131 and the LDD / TIA 132 are connected. The through hole 134 formed in the mounting substrate 133 may be filled with a vertical polymer optical waveguide.
 光透過性接着層136は、VCSEL/Pin-PD131の通信波長である850nm帯の波長領域において透明な熱硬化樹脂で形成することができる。たとえば、光透過性接着層136を形成する熱硬化樹脂は、エポキシ樹脂等とすることができ、100~200℃程度で硬化する。 The light-transmitting adhesive layer 136 can be formed of a transparent thermosetting resin in a wavelength region of 850 nm band that is a communication wavelength of the VCSEL / Pin-PD 131. For example, the thermosetting resin that forms the light-transmitting adhesive layer 136 can be an epoxy resin or the like, and is cured at about 100 to 200 ° C.
 封止樹脂部137は、光透過性接着層136と同じ光透過性樹脂で形成することができる。よって、材料の種類と材料準備工程を削減することができる。 The sealing resin portion 137 can be formed of the same light transmissive resin as the light transmissive adhesive layer 136. Therefore, the kind of material and the material preparation process can be reduced.
 図11は、本発明の実施の形態に係る光送受信器53の光の入出射の位置合わせを説明するための図である。以下、図9~図11を用いて説明する。
 本発明の実施の形態に係る光送受信器53のVCSEL/Pin-PD131は、I/O部基板51に半田実装される光学面131a側に光信号を出射する構造を有し、光コネクタなしでI/O部基板51に形成されたポリマ光導波路56へ光信号を入射する。図11に示すように、本実施形態のVCSEL/Pin-PD131は、その光学面131aに光入出射部138を有する。
 たとえば、光入出射部138から出射した光は、実装基板133のスルーホール134を通過し、光送受信器53の外部へ取り出される。そして、I/O部基板51に照射された光は、さらに、I/O部基板51に内蔵されたミラー57で90度光路変換後、I/O部基板51のポリマ光導波路56内を水平方向に進むこととなる。なお、Pin-PDの場合、光の信号方向は逆になる。
FIG. 11 is a diagram for explaining alignment of light incident / exit of the optical transceiver 53 according to the embodiment of the present invention. This will be described below with reference to FIGS.
The VCSEL / Pin-PD 131 of the optical transceiver 53 according to the embodiment of the present invention has a structure for emitting an optical signal to the optical surface 131a side that is solder-mounted on the I / O unit substrate 51, and without an optical connector. An optical signal is incident on a polymer optical waveguide 56 formed on the I / O unit substrate 51. As shown in FIG. 11, the VCSEL / Pin-PD 131 of this embodiment has a light incident / exit section 138 on its optical surface 131a.
For example, light emitted from the light incident / exit section 138 passes through the through hole 134 of the mounting substrate 133 and is extracted outside the optical transceiver 53. The light irradiated onto the I / O unit substrate 51 is further subjected to a 90-degree optical path change by the mirror 57 built in the I / O unit substrate 51, and then horizontally in the polymer optical waveguide 56 of the I / O unit substrate 51. It will go in the direction. In the case of Pin-PD, the signal direction of light is reversed.
 ポリマ光導波路56は、図11(b)に示すように、クラッド58とコア59を有する。図11(b)では、説明を簡単にするために1つのコア59のみを示しているが、ポリマ光導波路56には、図7に示すように複数のコア59を含むことができる。 The polymer optical waveguide 56 has a clad 58 and a core 59 as shown in FIG. In FIG. 11B, only one core 59 is shown for ease of explanation, but the polymer optical waveguide 56 can include a plurality of cores 59 as shown in FIG.
 本実施形態において、ポリマ光導波路56の光入出射位置に光送受信器53の光入出射位置が一致するように光送受信器53がI/O部基板51に搭載される。 In this embodiment, the optical transceiver 53 is mounted on the I / O unit substrate 51 so that the light incident / exit position of the optical transceiver 53 matches the light incident / exit position of the polymer optical waveguide 56.
 このように、光送受信器53のVCSEL/Pin-PD131の光入出射部138の光の入出射位置と、I/O部基板51上に形成されたポリマ光導波路56のコア59位置は、結合損失を小さくするために正確に位置決めする必要がある。 Thus, the light incident / exit position of the light incident / exiting portion 138 of the VCSEL / Pin-PD 131 of the optical transceiver 53 and the position of the core 59 of the polymer optical waveguide 56 formed on the I / O portion substrate 51 are coupled. Accurate positioning is required to reduce loss.
 そのために、第1に、VCSEL/Pin-PD131を実装基板133に実装する時に位置合わせが必要である。VCSEL/Pin-PD131の光入出射部138と実装基板133のスルーホール134の位置が一致するように、実装基板133の一面133aには、VCSEL/Pin-PD131を半田実装するための半田層135が配置される。 Therefore, first, alignment is necessary when the VCSEL / Pin-PD 131 is mounted on the mounting substrate 133. A solder layer 135 for solder mounting the VCSEL / Pin-PD 131 on one surface 133a of the mounting substrate 133 so that the light incident / exiting portion 138 of the VCSEL / Pin-PD 131 and the position of the through hole 134 of the mounting substrate 133 coincide. Is placed.
 VCSEL/Pin-PD131を実装基板133に搭載する際には、たとえば、実装基板133の一面133aに設けられた半田層135またはガイド穴61、あるいは、位置合わせ用のマーカ(不図示)と実装基板133の位置を画像認識処理でマッチングさせることができる。たとえば、図11(a)の点線l2の位置を合わせ、10um以下の搭載精度を有する搭載器を用いて実装基板133にVCSEL/Pin-PD131を搭載する。このようにして、光送受信器53のVCSEL/Pin-PD131から入出射する光が実装基板133のスルーホール134の所定の位置で通過することができる。 When mounting the VCSEL / Pin-PD 131 on the mounting substrate 133, for example, the solder layer 135 or the guide hole 61 provided on one surface 133a of the mounting substrate 133, or a marker for alignment (not shown) and the mounting substrate. The position of 133 can be matched by image recognition processing. For example, the VCSEL / Pin-PD 131 is mounted on the mounting substrate 133 by using the mounting device having the mounting accuracy of 10 μm or less by aligning the position of the dotted line 12 in FIG. In this way, light incident / exited from the VCSEL / Pin-PD 131 of the optical transceiver 53 can pass through a predetermined position of the through hole 134 of the mounting substrate 133.
 第2に、光送受信器53をI/O部基板51に実装する時に位置合わせが必要である。その位置決めは嵌合部54でなされる。嵌合部54は、たとえば、図11(b)に示すように、光送受信器53の実装基板133に設けられたガイド穴61と、I/O部基板51の表面51aに設けられたガイドピン62とから構成することができる。 Second, alignment is required when the optical transceiver 53 is mounted on the I / O unit substrate 51. The positioning is performed by the fitting portion 54. For example, as shown in FIG. 11B, the fitting portion 54 includes a guide hole 61 provided in the mounting substrate 133 of the optical transceiver 53 and a guide pin provided in the surface 51 a of the I / O portion substrate 51. 62.
 光送受信器53をI/O部基板51に実装し、光送受信器53のガイドピン62にI/O部基板51のガイド穴61が嵌合したとき、光送受信器53のVCSEL/Pin-PD131から入出射する光がI/O部基板51に形成されたポリマ光導波路56のコア59位置に正確に位置が合うように、ポリマ光導波路56のコア59、ガイド穴61、およびガイドピン62の位置をそれぞれ決定する。このようにして、光送受信器53のスルーホール134から入出射する光が、I/O部基板51に設けられたポリマ光導波路56のコア59位置に到達できる。 When the optical transceiver 53 is mounted on the I / O board 51 and the guide hole 61 of the I / O board 51 is fitted to the guide pin 62 of the optical transceiver 53, the VCSEL / Pin-PD 131 of the optical transceiver 53 is fitted. Of the core 59, the guide hole 61, and the guide pin 62 of the polymer optical waveguide 56 so that the light entering and exiting from the core 59 of the polymer optical waveguide 56 formed on the I / O unit substrate 51 is accurately positioned. Each position is determined. In this way, light entering and exiting from the through hole 134 of the optical transceiver 53 can reach the position of the core 59 of the polymer optical waveguide 56 provided on the I / O part substrate 51.
 このように構成される光送受信器53の製造方法について、以下説明する。
 図12は、本発明の実施の形態に係る光送受信器の製造工程の手順を説明するための図である。図13は、本発明の実施の形態に係る光送受信器の製造工程を示すフローチャートである。なお、光送受信器53以外の構成要素の製造方法について、本発明の本質に関わらないので説明を省略する。
 本発明の実施の形態に係る光送受信器53の製造方法は、光を入出射する光学面131aを有する送光素子または受光素子(VCSEL/Pin-PD131)を、送光素子または受光素子(VCSEL/Pin-PD131)からの光の入出射が可能なようにスルーホール134が形成された実装基板133の一面133aに接合させる半田層135を設け、送光素子または受光素子(VCSEL/Pin-PD131)と基板133の一面133a上の間に形成され、送光素子または受光素子(VCSEL/Pin-PD131)を基板133の一面133a上に接着し、送光素子または受光素子(VCSEL/Pin-PD131)の光学面131aから入出射する光を透過する光透過性接着層136を形成し(ステップS11、ステップS13、ステップS15)、送光素子または受光素子(VCSEL/Pin-PD131)を覆うように基板133上に封止樹脂部137を形成し(ステップS17、ステップS19)、送光素子または受光素子(VCSEL/Pin-PD131)を封止樹脂部137で封止した後、半田リフロー処理にて半田層135を溶融させ、送光素子または受光素子(VCSEL/Pin-PD131)を基板133に接合して実装する(ステップS21)。
A method for manufacturing the optical transceiver 53 configured as described above will be described below.
FIG. 12 is a diagram for explaining the procedure of the manufacturing process of the optical transceiver according to the embodiment of the present invention. FIG. 13 is a flowchart showing manufacturing steps of the optical transceiver according to the embodiment of the present invention. In addition, since it does not relate to the essence of this invention about the manufacturing method of components other than the optical transmitter-receiver 53, description is abbreviate | omitted.
In the method of manufacturing the optical transceiver 53 according to the embodiment of the present invention, a light transmitting element or light receiving element (VCSEL / Pin-PD 131) having an optical surface 131a for entering and exiting light is used as a light transmitting element or light receiving element (VCSEL). / Pin-PD 131) is provided with a solder layer 135 to be bonded to one surface 133a of the mounting substrate 133 on which the through hole 134 is formed so that light can enter and exit from the light transmitting element or light receiving element (VCSEL / Pin-PD 131). ) And one surface 133a of the substrate 133, and a light transmitting element or a light receiving element (VCSEL / Pin-PD131) is bonded onto one surface 133a of the substrate 133, and the light transmitting element or the light receiving element (VCSEL / Pin-PD131) is formed. ) Is formed (step S11, step S11). Step S13, Step S15), a sealing resin portion 137 is formed on the substrate 133 so as to cover the light transmitting element or the light receiving element (VCSEL / Pin-PD 131) (Step S17, Step S19), and the light transmitting element or the light receiving element (VCSEL / Pin-PD131) is sealed with the sealing resin portion 137, and then the solder layer 135 is melted by a solder reflow process, and the light transmitting element or the light receiving element (VCSEL / Pin-PD131) is bonded to the substrate 133. (Step S21).
 より詳細には、まず、図12(a)に示すように、スルーホール134が形成された実装基板133の一面133aにVCSEL/Pin-PD131およびLDD/TIA132を半田実装するための半田層135を設ける。 More specifically, first, as shown in FIG. 12A, a solder layer 135 for solder mounting the VCSEL / Pin-PD 131 and the LDD / TIA 132 on the one surface 133a of the mounting substrate 133 in which the through hole 134 is formed. Provide.
 そして、図12(b)に示すように、実装基板133の一面133a上のVCSEL/Pin-PD131の搭載位置に、かつ半田層135を覆うように、光透過性樹脂を塗布し、光透過性接着層136を形成する(図13のステップS11)。なお、LDD/TIA132の搭載位置にも光透過性樹脂を塗布してもよい。 Then, as shown in FIG. 12B, a light-transmitting resin is applied to the mounting position of the VCSEL / Pin-PD 131 on the one surface 133a of the mounting substrate 133 and so as to cover the solder layer 135. An adhesive layer 136 is formed (step S11 in FIG. 13). Note that a light transmissive resin may also be applied to the mounting position of the LDD / TIA 132.
 そして、図12(c)に示すように、実装基板133の一面133a上に、VCSEL/Pin-PD131を、搭載器を用いて正確に搭載する。このとき、LDD/TIA132も実装基板133の所定の位置に搭載する(図13のステップS13)。そして、100~200℃程度のオーブンで加熱し、光透過性樹脂を硬化させ、VCSEL/Pin-PD131を実装基板133に仮固定する(図13のステップS15)。 Then, as shown in FIG. 12C, the VCSEL / Pin-PD 131 is accurately mounted on the one surface 133a of the mounting substrate 133 using the mounting device. At this time, the LDD / TIA 132 is also mounted at a predetermined position on the mounting substrate 133 (step S13 in FIG. 13). Then, it is heated in an oven at about 100 to 200 ° C. to cure the light transmitting resin, and the VCSEL / Pin-PD 131 is temporarily fixed to the mounting substrate 133 (step S15 in FIG. 13).
 そして、図12(d)に示すように、VCSEL/Pin-PD131およびLDD/TIA132を封止材の光透過性樹脂で覆う(図13のステップS17)。そして、オーブン加熱で封止材の光透過性樹脂を硬化させ、封止樹脂部137を形成する(図13のステップS19)。 Then, as shown in FIG. 12D, the VCSEL / Pin-PD 131 and the LDD / TIA 132 are covered with a light-transmitting resin as a sealing material (step S17 in FIG. 13). Then, the light transmissive resin of the sealing material is cured by oven heating to form the sealing resin portion 137 (step S19 in FIG. 13).
 そして、実装基板133をリフロー炉に入れ、半田リフロー処理により、半田層135を溶融させ、VCSEL/Pin-PD131とLDD/TIA132を実装基板133に本固定する(図13のステップS21)。
 このようにして、図12(e)に示すように、光送受信器53が完成する。上記リフロー工程(図13のステップS21)においては、半田の張力によりチップが搭載位置から通常動くが、VCSEL/Pin-PD131は光透過性接着層136で実装基板133に仮固定されているため、当初搭載した正確な搭載位置からずれることがない。
Then, the mounting substrate 133 is put into a reflow furnace, and the solder layer 135 is melted by a solder reflow process, and the VCSEL / Pin-PD 131 and the LDD / TIA 132 are permanently fixed to the mounting substrate 133 (step S21 in FIG. 13).
In this way, the optical transceiver 53 is completed as shown in FIG. In the reflow process (step S21 in FIG. 13), the chip normally moves from the mounting position due to the tension of the solder, but the VCSEL / Pin-PD 131 is temporarily fixed to the mounting substrate 133 by the light-transmitting adhesive layer 136. There is no deviation from the exact mounting position that was initially installed.
 また、半田溶融時にフラックスが生じるが、半田層135が光透過性接着層136で覆われているため、VCSEL/Pin-PD131の光学面131aにフラックスが付着することもない。よって、フラックス付着による光送受信器53の光入出力信号のパワー低下もない。 In addition, a flux is generated when the solder is melted, but since the solder layer 135 is covered with the light-transmitting adhesive layer 136, the flux does not adhere to the optical surface 131a of the VCSEL / Pin-PD 131. Therefore, there is no power reduction of the optical input / output signal of the optical transceiver 53 due to the flux adhesion.
 なお、本実施形態では、半田層135を覆うように光透過性接着層136を設ける構成としたが、これに限定されない。たとえば、VCSEL/Pin-PD131の光学面131aを覆うように光透過性接着層136を形成し、光学面131aを保護してもよい。 In this embodiment, the light transmissive adhesive layer 136 is provided so as to cover the solder layer 135, but the present invention is not limited to this. For example, the optical surface 131a may be protected by forming a light-transmitting adhesive layer 136 so as to cover the optical surface 131a of the VCSEL / Pin-PD 131.
 以上説明したように、本発明によれば、送光素子または受光素子(VCSEL/Pin-PD131)を光透過性樹脂により仮固定した後に、半田リフロー工程を行うことで、半田リフロー時のVCSEL/Pin-PD131の位置ずれを防止することが可能となり、カード(I/O部基板51)上のポリマ光導波路56と正確に結合できるという効果を奏する。よって、本発明によれば、結合損失が小さく、高性能かつ高信頼な光送受信器、その製造方法、光送受信カード、および光通信システムが提供できる。 As described above, according to the present invention, after temporarily fixing the light transmitting element or the light receiving element (VCSEL / Pin-PD 131) with the light transmissive resin, the solder reflow process is performed, so that the VCSEL / reflow element at the time of solder reflow can be obtained. It is possible to prevent the positional deviation of the Pin-PD 131, and there is an effect that it can be accurately coupled to the polymer optical waveguide 56 on the card (I / O part substrate 51). Therefore, according to the present invention, it is possible to provide a high-performance and highly reliable optical transceiver, a manufacturing method thereof, an optical transmission / reception card, and an optical communication system with small coupling loss.
 さらに、本発明によれば、送光素子または受光素子(VCSEL/Pin-PD131)を光透過性樹脂により仮固定した後に、半田リフロー工程を行うことで、半田溶融時、フラックスがVCSEL/Pin-PD131の光学面131aに回り込んで付着することを防止することが可能となり、光入出力信号パワーの低下を防止できるという効果を奏する。
 よって、本発明によれば、伝送効率を向上することができる。
Furthermore, according to the present invention, after temporarily fixing the light transmitting element or the light receiving element (VCSEL / Pin-PD131) with a light-transmitting resin, a solder reflow process is performed, so that the flux is VCSEL / Pin- It is possible to prevent the optical surface 131a of the PD 131 from going around and adhere to the optical surface 131a, and the optical input / output signal power can be prevented from being lowered.
Therefore, according to the present invention, transmission efficiency can be improved.
(第2の実施の形態)
 図14および図15は、本発明の実施の形態に係る光伝送システム1の光送受信器53の構成を示す図である。図14は、光送受信器53の上面図である。図15は、図14の光送受信器53の線D-D′における断面図である。
 本実施形態の光伝送システム1の光送受信器53は、上記実施の形態とは、I/O部基板51の反り防止用の枠201をさらに設けた点で相違する。
(Second Embodiment)
14 and 15 are diagrams showing the configuration of the optical transceiver 53 of the optical transmission system 1 according to the embodiment of the present invention. FIG. 14 is a top view of the optical transceiver 53. FIG. 15 is a sectional view taken along line DD ′ of the optical transceiver 53 of FIG.
The optical transceiver 53 of the optical transmission system 1 of this embodiment is different from the above embodiment in that a warp prevention frame 201 of the I / O unit substrate 51 is further provided.
 本発明の実施の形態に係る光送受信器53は、上記実施形態の光送受信器53の構成に加え、実装基板133の一面133a上に所定の位置に搭載される送光素子または受光素子(VCSEL/Pin-PD131)の周囲を囲うように実装基板133の一面133aに搭載され、一面133aに対して垂直に延在する側面202を有するとともに、上部と下部が開放している枠201をさらに備える。封止樹脂部137は、枠201の側面202と当該枠201が搭載された実装基板133の一面133aにより形成される空間203内に充填されて形成される。 In addition to the configuration of the optical transceiver 53 of the above embodiment, the optical transceiver 53 according to the embodiment of the present invention includes a light transmitting element or a light receiving element (VCSEL) mounted at a predetermined position on the one surface 133a of the mounting substrate 133. / Pin-PD 131) is further provided with a frame 201 which is mounted on one surface 133a of the mounting substrate 133 so as to surround the periphery of the mounting substrate 133, has a side surface 202 extending perpendicularly to the one surface 133a, and is open at the top and bottom. . The sealing resin portion 137 is formed by being filled in a space 203 formed by the side surface 202 of the frame 201 and the one surface 133a of the mounting substrate 133 on which the frame 201 is mounted.
 さらに、本実施形態の光送受信器53は、図15に示すように、封止樹脂部137で封止された実装基板133をさらに覆うようにモールド材205で封止してパッケージングする。モールド材205は、シリコンウエハをパッケージ化する一般的なモールド材を用いることができ、たとえば、エポキシ樹脂等である。 Further, as shown in FIG. 15, the optical transceiver 53 of the present embodiment is packaged by being sealed with a molding material 205 so as to further cover the mounting substrate 133 sealed with the sealing resin portion 137. As the mold material 205, a general mold material for packaging a silicon wafer can be used, for example, an epoxy resin.
 ここで、本実施形態において、封止樹脂部137は第1の封止材と呼び、モールド材205は第2の封止材と呼ぶ。上記実施形態で鮮明したように、第1の封止材は、光透過性接着層136と同じ樹脂を用いることができ、VCSEL/Pin-PD131の通信波長である850nm帯の波長領域において透明である。一方、第2の封止材は、VCSEL/Pin-PD131の通信波長である850nm帯の波長領域において透明である必要はない。 Here, in the present embodiment, the sealing resin portion 137 is referred to as a first sealing material, and the molding material 205 is referred to as a second sealing material. As clearly shown in the above embodiment, the first sealing material can use the same resin as the light-transmitting adhesive layer 136, and is transparent in the wavelength region of 850 nm band which is the communication wavelength of the VCSEL / Pin-PD 131. is there. On the other hand, the second sealing material does not have to be transparent in the wavelength region of the 850 nm band that is the communication wavelength of the VCSEL / Pin-PD 131.
 すなわち、第1の封止材は、VCSEL/Pin-PD131の通信波長である850nm帯の波長領域の光を透過することを特徴とし、第2の封止材は、VCSEL/Pin-PD131の通信波長である850nm帯の波長領域の光を透過あるいは透過しないことを特徴とする。 That is, the first sealing material transmits light in a wavelength region of 850 nm band that is a communication wavelength of the VCSEL / Pin-PD 131, and the second sealing material is a communication of the VCSEL / Pin-PD 131. It is characterized by not transmitting or transmitting light in the wavelength region of the 850 nm band that is the wavelength.
 枠201が、光送受信器53のVCSEL/Pin-PD131とLDD/TIA132の周囲を囲うように所定の位置に搭載されるように、たとえば、実装基板133上には、予め半田層を形成してもよい。VCSEL/Pin-PD131およびLDD/TIA132の実装基板133上の予め定められた搭載位置に基づいて枠201の搭載位置を決めることができる。 For example, a solder layer is previously formed on the mounting substrate 133 so that the frame 201 is mounted at a predetermined position so as to surround the VCSEL / Pin-PD 131 and the LDD / TIA 132 of the optical transceiver 53. Also good. The mounting position of the frame 201 can be determined based on a predetermined mounting position on the mounting substrate 133 of the VCSEL / Pin-PD 131 and the LDD / TIA 132.
 枠201は、たとえば、金属等、熱膨張率が実装基板と近い材料で形成され、実装基板133に半田あるいは接着材により接合される。枠201は、半田リフロー工程による実装基板133の反りを数ミクロン以下に抑えることができる厚さであるのが好ましい。
 枠201は、実装基板133の一面133aに設けられることにより、半田リフロー工程時の実装基板の反りを防止することができ、VCSEL/Pin-PD131の破壊を防止できる。さらに、第1の封止材である光透過性樹脂の粘性が低い場合などに、実装基板133上の他の領域に漏れて広がるのを防ぐことができる。
The frame 201 is formed of a material having a thermal expansion coefficient close to that of the mounting substrate, such as metal, and is bonded to the mounting substrate 133 with solder or an adhesive. The frame 201 preferably has a thickness that can suppress warping of the mounting substrate 133 due to the solder reflow process to several microns or less.
The frame 201 is provided on the one surface 133a of the mounting substrate 133, so that the mounting substrate can be prevented from warping during the solder reflow process, and the VCSEL / Pin-PD 131 can be prevented from being broken. Furthermore, when the light-transmitting resin as the first sealing material has a low viscosity, it can be prevented from leaking and spreading to other regions on the mounting substrate 133.
 このように構成される光送受信器53の製造方法について以下に説明する。
 図16は、本発明の実施の形態に係る光送受信器の製造工程を示すフローチャートである。なお、光送受信器53以外の構成要素の製造方法については、本発明の本質に関わらないので説明を省略する。
 本発明の実施の形態に係る光送受信器53の製造方法は、上記実施形態の光送受信器53の製造方法の工程(図16のステップS11~ステップS15)に加え、さらに、実装基板133の一面133aの所定の位置に搭載される送光素子または受光素子(VCSEL/Pin-PD131)の周囲に設けられ、実装基板133の一面133aに対して垂直に延在する側面202を有するとともに、上部と下部が開放している枠201を、実装基板133の一面133aに固着し(図16のステップS101)、第1の封止材である封止樹脂部137を、枠201の側面202と当該枠201が搭載された実装基板133の一面133aにより形成される空間203内に充填して形成する(図16のステップS103、ステップS105、ステップS107)工程を含む。
A method for manufacturing the optical transceiver 53 configured as described above will be described below.
FIG. 16 is a flowchart showing manufacturing steps of the optical transceiver according to the embodiment of the present invention. In addition, about the manufacturing method of components other than the optical transmitter-receiver 53, since it is not related to the essence of this invention, description is abbreviate | omitted.
The manufacturing method of the optical transceiver 53 according to the embodiment of the present invention is not limited to the steps of the manufacturing method of the optical transceiver 53 of the above embodiment (Steps S11 to S15 in FIG. A side surface 202 provided around a light transmitting element or a light receiving element (VCSEL / Pin-PD 131) mounted at a predetermined position of 133a and extending perpendicularly to one surface 133a of the mounting substrate 133; The frame 201 whose lower part is open is fixed to one surface 133a of the mounting substrate 133 (step S101 in FIG. 16), and the sealing resin portion 137 as the first sealing material is connected to the side surface 202 of the frame 201 and the frame. 201 is filled and formed in a space 203 formed by one surface 133a of the mounting substrate 133 on which 201 is mounted (step S103, step S105, FIG. Tsu, including the flop S107) process.
 さらに、本実施形態の光送受信器53の製造方法において、封止樹脂部137で封止された実装基板133をさらに覆うように第2の封止材であるモールド材で封止してパッケージングする(図16のステップS109)工程を含むことができる。 Further, in the method of manufacturing the optical transceiver 53 of the present embodiment, the packaging substrate 133 sealed with the sealing resin portion 137 is sealed with a molding material that is a second sealing material so as to further cover the packaging. (Step S109 in FIG. 16) can be included.
 より具体的には、図16に示すように、まず、VCSEL/Pin-PD131およびLDD/TIA132が枠内に収まるように、枠201を実装基板133の一面133a上に半田固定あるいは接着固定する(ステップS101)。 More specifically, as shown in FIG. 16, first, the frame 201 is solder-fixed or adhesively fixed on the one surface 133a of the mounting substrate 133 so that the VCSEL / Pin-PD 131 and the LDD / TIA 132 fit within the frame ( Step S101).
 次に、図13のステップS11~ステップS15と同様の工程を行う。すなわち、VCSEL/Pin-PD131の搭載位置に光透過性樹脂を塗布し、光透過性接着層136を形成し(ステップS11)、VCSEL/Pin-PD131およびLDD/TIA132を実装基板133の所定の位置に搭載する(ステップS13)。そして、100~200℃程度のオーブンで加熱し、光透過性樹脂を硬化させ、VCSEL/Pin-PD131を実装基板133に仮固定する(ステップS15)。 Next, the same process as step S11 to step S15 in FIG. 13 is performed. That is, a light-transmitting resin is applied to the mounting position of the VCSEL / Pin-PD 131 to form a light-transmitting adhesive layer 136 (step S11), and the VCSEL / Pin-PD 131 and the LDD / TIA 132 are placed at predetermined positions on the mounting substrate 133. (Step S13). Then, it is heated in an oven at about 100 to 200 ° C. to cure the light transmitting resin, and the VCSEL / Pin-PD 131 is temporarily fixed to the mounting substrate 133 (step S15).
 次に、枠201の側面202と実装基板133の一面133aで形成された空間203内に第1の封止材を充填し、VCSEL/Pin-PD131およびLDD/TIA132を第1の封止材で覆う(ステップS103)。そして、オーブン加熱で第1の封止材を硬化させる(ステップS105)。
 次に、実装基板133をリフロー炉に入れ、半田リフロー処理により、半田層135を溶融させ、VCSEL/Pin-PD131およびLDD/TIA132を実装基板133に本固定する(ステップS107)。
Next, a first sealing material is filled into a space 203 formed by the side surface 202 of the frame 201 and the one surface 133a of the mounting substrate 133, and the VCSEL / Pin-PD 131 and the LDD / TIA 132 are filled with the first sealing material. Cover (step S103). Then, the first sealing material is cured by oven heating (step S105).
Next, the mounting substrate 133 is put into a reflow furnace, the solder layer 135 is melted by a solder reflow process, and the VCSEL / Pin-PD 131 and the LDD / TIA 132 are permanently fixed to the mounting substrate 133 (step S107).
 次に、実装基板133全体を覆うように第2の封止材であるモールド材205を形成し、パッケージングを完了する(ステップS109)。なお、850nm帯の波長領域において不透明な第2の封止材のVCSEL/Pin-PD131の光学面131aへの回り込みは、先に形成されている第1の封止材(封止樹脂部137)により防止される。 Next, the molding material 205 as the second sealing material is formed so as to cover the entire mounting substrate 133, and the packaging is completed (step S109). Note that the second sealing material that is opaque in the wavelength region of the 850 nm band wraps around the optical surface 131a of the VCSEL / Pin-PD 131, so that the first sealing material (sealing resin portion 137) that has been formed first is used. Is prevented.
 上記実施形態で説明したように、上記リフロー工程(図16のステップS107)においては、半田の張力によりチップが搭載位置から通常動くが、本発明では、VCSEL/Pin-PD131は光透過性接着層136で実装基板133に仮固定されているため、当初搭載した正確な搭載位置からずれることがない。 As described in the above embodiment, in the reflow process (step S107 in FIG. 16), the chip normally moves from the mounting position due to the tension of the solder. In the present invention, the VCSEL / Pin-PD 131 is a light-transmitting adhesive layer. Since it is temporarily fixed to the mounting board 133 at 136, it does not deviate from the initial accurate mounting position.
 また、半田溶融時にフラックスが生じるが、半田層135が光透過性接着層136で覆われているため、VCSEL/Pin-PD131の光学面131aにフラックスが付着することもない。 In addition, a flux is generated when the solder is melted, but since the solder layer 135 is covered with the light-transmitting adhesive layer 136, the flux does not adhere to the optical surface 131a of the VCSEL / Pin-PD 131.
 さらに、一般的な鉛フリー半田を用いた場合、炉内のピーク温度が260℃程度と高温となり、通常実装基板133に反りが生じる。そして、実装基板とVCSEL/Pin-PDとの熱膨張率の差によりVCSEL/Pin-PDが破壊してしまう可能性がある。これに対し本発明では、実装基板133上に設置した基板反り防止用の枠201により実装基板133の反りが低減され、反りによるVCSEL/Pin-PD131の破壊を防止することができる。 Furthermore, when general lead-free solder is used, the peak temperature in the furnace is as high as about 260 ° C., and the mounting substrate 133 is generally warped. Then, there is a possibility that the VCSEL / Pin-PD may be destroyed due to the difference in thermal expansion coefficient between the mounting substrate and the VCSEL / Pin-PD. On the other hand, in the present invention, the warpage of the mounting substrate 133 is reduced by the substrate warpage preventing frame 201 installed on the mounting substrate 133, and the destruction of the VCSEL / Pin-PD 131 due to the warpage can be prevented.
 また、枠201内に充填された第1の封止材が、VCSEL/Pin-PD131の保護を行う。さらに、枠201により、第1の封止材が実装基板133上の他の領域に漏れ出ることもない。 In addition, the first sealing material filled in the frame 201 protects the VCSEL / Pin-PD 131. Further, the frame 201 prevents the first sealing material from leaking to other regions on the mounting substrate 133.
 以上説明したように、本発明によれば、上記実施形態と同様な効果を奏するとともに、さらに、実装基板133に枠201を設け、その中にVCSEL/Pin-PD131を光透過性接着層136で仮固定して搭載し、封止樹脂部137で封止することで、半田リフロー工程時の実装基板133の反りを防止することが可能となり、VCSEL/Pin-PD131の破壊を防止できるという効果を奏する。 As described above, according to the present invention, the same effects as those of the above-described embodiment can be obtained. Further, the frame 201 is provided on the mounting substrate 133, and the VCSEL / Pin-PD 131 is formed therein with the light-transmitting adhesive layer 136. Temporarily fixing and mounting and sealing with the sealing resin portion 137 can prevent the mounting substrate 133 from warping during the solder reflow process, and can prevent the VCSEL / Pin-PD 131 from being destroyed. Play.
 さらに、本発明によれば、VCSEL/Pin-PD131の通信波長である850nm帯の赤外領域において透明な第1の封止材により、VCSEL/Pin-PD131の通信波長である850nm帯の赤外領域において不透明な第2の封止材が、VCSEL/Pin-PD131の光学面131aに回り込むことを防止することが可能となり、光送受信器53から光信号を確実に入出力できるという効果を奏する。 Furthermore, according to the present invention, the first sealing material that is transparent in the infrared region of the 850 nm band, which is the communication wavelength of the VCSEL / Pin-PD 131, allows the infrared of the 850 nm band, which is the communication wavelength of the VCSEL / Pin-PD 131. It is possible to prevent the second sealing material that is opaque in the region from entering the optical surface 131a of the VCSEL / Pin-PD 131, and the optical signal can be reliably input / output from the optical transceiver 53.
(第3の実施の形態)
 図17および図18は、本発明の実施の形態に係る光伝送システム1の光送受信器53を複数一括実装した基板を示す図である。図17は、基板の上面図である。図18は、図17の基板の線E-E′における断面図である。
 本実施形態の光伝送システム1は、上記実施の形態とは、複数の光送受信器53を一括して基板に実装して、複数の光送受信器53を製造する点で相違する。本実施形態の光伝送システム1の光送受信器53は、第1の実施の形態の光伝送システム1の光送受信器53の構成、すなわち、枠201を含まない構成も含むことができる。
 以下、本実施形態では、上記実施形態との相違点についてのみ詳細に説明する。
(Third embodiment)
17 and 18 are diagrams showing a substrate on which a plurality of optical transceivers 53 of the optical transmission system 1 according to the embodiment of the present invention are mounted in a lump. FIG. 17 is a top view of the substrate. FIG. 18 is a cross-sectional view taken along line EE ′ of the substrate of FIG.
The optical transmission system 1 of the present embodiment is different from the above-described embodiment in that a plurality of optical transceivers 53 are manufactured by mounting a plurality of optical transceivers 53 collectively on a substrate. The optical transceiver 53 of the optical transmission system 1 of the present embodiment can also include a configuration of the optical transceiver 53 of the optical transmission system 1 of the first embodiment, that is, a configuration that does not include the frame 201.
Hereinafter, in this embodiment, only differences from the above embodiment will be described in detail.
 本実施形態において、光送受信器は、複数の送光素子または受光素子(複数のVCSEL311と複数のLDD312、または複数のPin-PD321と複数のTAI322)と、複数の送光素子または受光素子が搭載できる実装基板301と、単一のVCSEL311とLDD312、または単一のPin-PD321とTAI322を囲うように搭載された複数の枠302と、枠302の枠内に充填される第1の封止材(封止樹脂部137)とを含む。 In this embodiment, the optical transceiver includes a plurality of light transmitting elements or light receiving elements (a plurality of VCSELs 311 and a plurality of LDDs 312 or a plurality of Pin-PDs 321 and a plurality of TAIs 322) and a plurality of light transmitting elements or light receiving elements. Mounting substrate 301, a single VCSEL 311 and LDD 312, or a plurality of frames 302 mounted so as to surround a single Pin-PD 321 and TAI 322, and a first sealing material filled in the frame 302 (Sealing resin part 137).
 さらに、本実施形態の光送受信器は、実装基板301の少なくとも光送信器310または光受信器320が搭載された領域を覆うように形成された第2の封止材(モールド材205)を含んでもよい。 Furthermore, the optical transceiver of the present embodiment includes a second sealing material (molding material 205) formed so as to cover at least a region where the optical transmitter 310 or the optical receiver 320 is mounted on the mounting substrate 301. But you can.
 図17の左側に、VCSEL311とLDD312を有する光送信器310が実装され、右側に、Pin-PD321とTAI322を有する光受信器320が実装されている。
 そして、光送信器310と光受信器320の各々を囲む枠302が実装基板301に設けられている。本実施形態の実装基板301、枠302、VCSEL311、LDD312、Pin-PD321、およびTAI322等は、上記実施形態で説明したものと同じ構成とすることができる。なお、図では、光送信器310と光受信器320をそれぞれ囲むように枠302が設置されているが、これに限定されない。複数の光送信器310または光受信器320を囲むように設けられてもよい。
An optical transmitter 310 having a VCSEL 311 and an LDD 312 is mounted on the left side of FIG. 17, and an optical receiver 320 having a Pin-PD 321 and a TAI 322 is mounted on the right side.
A frame 302 surrounding each of the optical transmitter 310 and the optical receiver 320 is provided on the mounting substrate 301. The mounting substrate 301, the frame 302, the VCSEL 311, the LDD 312, the Pin-PD 321, the TAI 322, and the like of this embodiment can have the same configuration as that described in the above embodiment. In the figure, the frame 302 is provided so as to surround the optical transmitter 310 and the optical receiver 320, but the present invention is not limited to this. The plurality of optical transmitters 310 or the optical receivers 320 may be provided so as to surround them.
 実装基板301には、VCSEL311またはPin-PD321との光入出射が可能なようにスルーホール134が複数形成される。スルーホール134の形成位置とVCSEL311またはPin-PD321の搭載位置は、上記実施形態と同様にして決めることができる。 A plurality of through holes 134 are formed in the mounting substrate 301 so that light can enter and exit from the VCSEL 311 or the Pin-PD 321. The formation position of the through hole 134 and the mounting position of the VCSEL 311 or the Pin-PD 321 can be determined in the same manner as in the above embodiment.
 本発明の実施の形態に係る光送受信器の製造方法について以下に説明する。
 図19は、本発明の実施の形態に係る光送受信器の製造工程を示すフローチャートである。
 まず、実装基板301上に複数のVCSEL311とLDD312または複数のPin-PD321とTAI322が枠内に収まるように位置決めした所定の位置に複数の枠201をそれぞれ半田固定あるいは接着固定する(ステップS201)。ここで、たとえば、各枠302には、VCSEL311とLDD312、またはPin-PD321とTAI322が配置される位置に半田層135が予め形成されている。
A method for manufacturing an optical transceiver according to an embodiment of the present invention will be described below.
FIG. 19 is a flowchart showing manufacturing steps of the optical transceiver according to the embodiment of the present invention.
First, a plurality of frames 201 are fixed by soldering or adhesive fixing at predetermined positions positioned so that a plurality of VCSELs 311 and LDDs 312 or a plurality of Pin-PDs 321 and TAI 322 fit within the frame on the mounting substrate 301 (step S201). Here, for example, in each frame 302, a solder layer 135 is formed in advance at a position where the VCSEL 311 and the LDD 312 or the Pin-PD 321 and the TAI 322 are arranged.
 次に、各VCSEL/Pin-PDの搭載位置に光透過性樹脂を塗布する(ステップS203)。なお、光透過性樹脂は、少なくとも各VCSEL311または各Pin-PD321の搭載位置の半田層135を覆うように塗布すればよい。
 そして、複数のVCSEL311とLDD312または複数のPin-PD321とTAI322を実装基板301上の各枠302内に搭載する(ステップS205)。
Next, a light transmissive resin is applied to each VCSEL / Pin-PD mounting position (step S203). The light transmissive resin may be applied so as to cover at least the solder layer 135 at the mounting position of each VCSEL 311 or each Pin-PD 321.
Then, a plurality of VCSELs 311 and LDDs 312 or a plurality of Pin-PDs 321 and TAIs 322 are mounted in the respective frames 302 on the mounting substrate 301 (step S205).
 次に、オーブン加熱で光透過性樹脂を硬化し、光透過性接着層136(不図示)を形成し、複数のVCSEL311と複数のPin-PD321をそれぞれ仮固定する(ステップS207)。次に、各枠302内に第1の封止材である光透過性樹脂を充填し(ステップS209)、オーブン加熱で硬化させ、封止樹脂部137を形成する(ステップS211)。 Next, the light transmissive resin is cured by oven heating to form a light transmissive adhesive layer 136 (not shown), and the plurality of VCSELs 311 and the plurality of Pin-PDs 321 are each temporarily fixed (step S207). Next, each frame 302 is filled with a light-transmitting resin as a first sealing material (step S209) and cured by oven heating to form a sealing resin portion 137 (step S211).
 次に、実装基板301をリフロー炉に入れ、半田溶融して、複数のVCSEL311とLDD312または複数のPin-PD321とTAI322を実装基板301に本固定する(ステップS213)。 Next, the mounting board 301 is put into a reflow furnace and melted by soldering, and a plurality of VCSELs 311 and LDDs 312 or a plurality of Pin-PDs 321 and TAIs 322 are permanently fixed to the mounting board 301 (step S213).
 次に、実装基板301の全体または少なくとも複数のVCSEL311とLDD312または複数のPin-PD321とTAI322を覆うように第2の封止材であるモールド材205で封止し、硬化させてパッケージングを完了する(ステップS215)。 Next, the entire mounting substrate 301 or at least a plurality of VCSELs 311 and LDDs 312 or a plurality of Pin-PDs 321 and TAI 322 are covered with a molding material 205 as a second sealing material and cured to complete packaging. (Step S215).
 次に、それぞれの光送受信器(光送信器310または光受信器320)単位で、ダイシングにより個片化する(ステップS217)。なお、個片化の単位は図示した光送信器、光受信器の単位でもよいし、複数の光送信器、受信器にまたがってもよい。 Next, each optical transceiver (optical transmitter 310 or optical receiver 320) is divided into individual pieces by dicing (step S217). Note that the unit of singulation may be the unit of the illustrated optical transmitter or optical receiver, or may extend over a plurality of optical transmitters or receivers.
 なお、個片化時のVCSEL/Pin-PDまたはLDD/TIAのチップ剥離を避けるため、通常のシリコンウエハ上に形成されたLSIを個片化する場合と同様に、樹脂材料で実装基板301をモールドした後にダイシングで個片化する必要がある。 In order to avoid VCSEL / Pin-PD or LDD / TIA chip separation during singulation, the mounting substrate 301 is made of a resin material in the same manner as when an LSI formed on a normal silicon wafer is singulated. After molding, it is necessary to divide into pieces by dicing.
 さらに、フリップチップでの実装では、実装基板を高温に保ちながら、実装基板とチップ間を熱圧着するため、最後のチップが搭載されるまで、最初に搭載されたチップが高温状態にさらされ続けることになる。これは、チップの信頼性低下、ひいてはチップ破壊の原因となるため、フリップチップ実装ではなく加熱時間の短い半田リフローでの一括実装が好ましい。 In addition, in flip chip mounting, the mounting substrate and the chip are thermocompression bonded while keeping the mounting substrate at a high temperature, so that the first mounted chip continues to be exposed to a high temperature state until the last chip is mounted. It will be. This causes a decrease in the reliability of the chip and, in turn, causes the chip to be destroyed. Therefore, it is preferable to perform a batch mounting by solder reflow with a short heating time instead of the flip chip mounting.
 以上説明したように、本発明によれば、上記実施形態と同様な効果を奏するとともに、さらに、実装基板301に搭載する複数の送光素子または複数の受光素子を複数の枠302でそれぞれ囲み、光透過性樹脂で仮固定した後、第1の封止材で封止し、その後、半田リフロー処理で半田溶融により複数の送光素子または複数の受光素子を一括して接合させて実装し、個片化することで、信頼性の高い本発明の光送受信器を効率よく製造することができる。 As described above, according to the present invention, the same effects as those of the above-described embodiment can be obtained, and the plurality of light transmitting elements or the plurality of light receiving elements mounted on the mounting substrate 301 are surrounded by the plurality of frames 302, respectively. After temporarily fixing with a light transmissive resin, it is sealed with a first sealing material, and then a plurality of light transmitting elements or a plurality of light receiving elements are collectively bonded and mounted by solder melting in a solder reflow process, By separating into individual pieces, a highly reliable optical transceiver according to the present invention can be efficiently manufactured.
 このように、本発明によれば、大面積の実装基板上にVCSEL/Pin-PD、LDD/TIAを一括実装/一括検査を行い、それぞれ個片化して光送受信器を製造することで、更なる低コスト化を実施することができる。
 よって、本発明によれば、低コストで高性能かつ高信頼性の光送受信器、その製造方法、光送受信カード、および光通信システムが提供される。
As described above, according to the present invention, VCSEL / Pin-PD and LDD / TIA are collectively mounted / inspected on a large-area mounting substrate, and are separated into individual pieces to manufacture an optical transceiver. The cost can be reduced.
Therefore, according to the present invention, a low-cost, high-performance and high-reliability optical transceiver, a manufacturing method thereof, an optical transceiver card, and an optical communication system are provided.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
 たとえば、上記実施形態では、枠を上部から見た形状は、VCSEL/Pin-PDおよびLDD/TIAの周囲を囲む矩形であるが、これに限定されない。たとえば、矩形以外の形状でもよく、他の多角形や円形でもよく、あるいは、閉じた形状でなく、一部が開口している形状であってもよし、さらに、側面を有する複数のプレートを組み合わせて配置してもよい。また、複数のVCSEL/Pin-PDおよびLDD/TIAを一緒に囲んでもよいし、格子状に囲むようにしてもよい。なお、VCSEL/Pin-PDおよびLDD/TIAの周囲を囲む必要はなく、VCSEL/Pin-PDおよびLDD/TIAの搭載位置以外の場所に搭載されればよい。 For example, in the above embodiment, the shape of the frame as viewed from above is a rectangle surrounding the periphery of VCSEL / Pin-PD and LDD / TIA, but is not limited thereto. For example, it may be a shape other than a rectangle, may be other polygons or circles, or may be a shape that is partially closed rather than a closed shape, and a plurality of plates having side surfaces are combined. May be arranged. Further, a plurality of VCSEL / Pin-PDs and LDD / TIAs may be enclosed together or in a lattice shape. It is not necessary to surround the periphery of the VCSEL / Pin-PD and LDD / TIA, and the VCSEL / Pin-PD and LDD / TIA may be mounted at a place other than the mounting position.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 以下、参考形態の例を付記する。
1. 光を入出射する光学面を有する送光素子または受光素子を、前記送光素子または前記受光素子からの光の入出射が可能なようにスルーホールが形成された基板の一面に接合させる半田層を設け、
 前記送光素子または前記受光素子を前記基板の前記一面上に接着し、前記送光素子または前記受光素子の前記光学面から入出射する光を透過する光透過性接着層を形成し、
 前記送光素子または前記受光素子を覆うように前記基板上に封止樹脂部を形成し、
 前記送光素子または前記受光素子を前記封止樹脂部で封止した後、半田リフロー処理にて前記半田層を溶融させ、前記送光素子または前記受光素子を前記基板に接合して実装する光送受信器の製造方法。
2. 1.に記載の光送受信器の製造方法において、
 前記基板の前記一面の前記所定の位置に搭載される前記送光素子または前記受光素子の周囲に設けられ、前記基板の前記一面に対して垂直に延在する側面を有するとともに、上部と下部が開放している枠を、前記基板の前記一面に固着し、
 前記封止樹脂部を、前記枠の前記側面と当該枠が搭載された前記基板の前記一面により形成される空間内に充填して形成する光送受信器の製造方法。
3. 1.または2.に記載の光送受信器の製造方法において、
 前記封止樹脂部を、前記光透過性接着層と同じ光透過性樹脂で形成する光送受信器の製造方法。
4. 1.乃至3.いずれかに記載の光送受信器の製造方法において、
 前記封止樹脂部で封止された前記基板をさらに覆うようにモールド材で封止してパッケージングする光送受信器の製造方法。
5. 1.乃至4.いずれかに記載の光送受信器の製造方法において、
 前記光透過性接着層は、前記送光素子または前記受光素子の通信波長である850nm帯の波長領域の光を透過する光送受信器の製造方法。
6. 1.乃至5.いずれかに記載の光送受信器の製造方法において、
 前記基板を前記光送受信器毎にダイシングにより個片化する光送受信器の製造方法。
7. 1.乃至6.いずれかに記載の光送受信器の製造方法において、
 前記基板の前記一面の前記所定の位置に搭載される前記送光素子または前記受光素子の周囲に設けられ、前記基板の前記一面に対して垂直に延在する側面を有するとともに、上部と下部が開放している枠は、熱膨張率が前記基板と近い材料からなる光送受信器の製造方法。
8. 光を入出射する光学面を有する送光素子または受光素子と、
 前記送光素子または受光素子が所定の位置に搭載される一面を有し、前記送光素子または前記受光素子からの光入出射が可能なようにスルーホールが形成された基板と、
 前記基板の前記一面に設けられ、半田リフロー処理で溶融して、前記送光素子または前記受光素子の前記光学面を前記基板の前記一面に接合させる半田層と、
 前記半田リフロー処理より前に、前記送光素子または前記受光素子と前記基板を接着し、前記送光素子または前記受光素子の前記光学面から入出射する光を透過する光透過性接着層と、
 前記半田リフロー処理より前に、前記光透過性接着層で接着された前記送光素子または前記受光素子を覆うように前記基板上に形成される封止樹脂部と、を備える光送受信器。
9. 8.に記載の光送受信器において、
 前記基板の前記一面上に前記所定の位置に搭載される前記送光素子または前記受光素子の周囲を囲うように前記基板の前記一面に搭載され、前記一面に対して垂直に延在する側面を有するとともに、上部と下部が開放している枠をさらに備え、
 前記封止樹脂部は、前記枠の前記側面と当該枠が搭載された前記基板の前記一面により形成される空間内に充填されて形成される光送受信器。
10. 8.または9.に記載の光送受信器において、
 前記封止樹脂部は、前記光透過性接着層と同じ光透過性樹脂で形成される光送受信器。
11. 8.乃至10.いずれかに記載の光送受信器において、
 前記封止樹脂部で封止された前記基板をさらに覆うようにモールド材で封止してパッケージングするモールド封止部をさらに備える光送受信器。
12. 8.乃至11.いずれかに記載の光送受信器において、
 前記光透過性接着層は、前記送光素子または前記受光素子の通信波長である850nm帯の波長領域の光を透過する光送受信器。
13. 8.乃至12.いずれかに記載の光送受信器において、
 前記基板は、その一面上に、複数の前記送光素子または前記受光素子が形成され、
 各前記送光素子または前記受光素子は、前記基板をダイシングにより個片化される光送受信器。
14. 8.乃至13.いずれかに記載の光送受信器において、
 前記基板の前記一面の前記所定の位置に搭載される前記送光素子または前記受光素子の周囲を囲うように前記基板の前記一面に搭載され、前記一面に対して垂直に延在する側面を有するとともに、上部と下部が開放している枠は、熱膨張率が前記基板と近い材料からなる光送受信器。
15. 光を入出射する光学面をそれぞれ有する複数の送光素子または受光素子と、
 複数の前記送光素子または受光素子が所定の位置に搭載される一面を有し、複数の前記送光素子または前記受光素子からの光入出射が可能なように複数のスルーホールが形成された基板と、
 前記基板の前記一面に設けられ、半田リフロー処理で溶融して、複数の前記送光素子または前記受光素子の前記光学面を前記基板の前記一面に接合させる半田層と、
 前記半田リフロー処理より前に、複数の前記送光素子または前記受光素子と前記基板を接着し、複数の前記送光素子または前記受光素子の前記光学面から入出射する光を透過する光透過性接着層と、
 前記半田リフロー処理より前に、前記光透過性接着層で接着された複数の前記送光素子または前記受光素子を覆うように前記基板上に形成される封止樹脂部と、を備える光送受信器。
16. 15.に記載の光送受信器において、
 前記基板の前記一面上に前記所定の位置に搭載される複数の前記送光素子または前記受光素子の周囲を囲うように前記基板の前記一面に搭載され、前記一面に対して垂直に延在する側面を有するとともに、上部と下部が開放している枠をさらに備え、
 前記封止樹脂部は、前記枠の前記側面と当該枠が搭載された前記基板の前記一面により形成される空間内に充填されて形成される光送受信器。
17. 15.または16.に記載の光送受信器において、
 複数の前記送光素子または前記受光素子に対してそれぞれ複数の前記枠を設ける光送受信器。
18. 15.乃至17.いずれかに記載の光送受信器において、
 前記封止樹脂部は、前記光透過性接着層と同じ光透過性樹脂で形成される光送受信器。
19. 15.乃至18.いずれかに記載の光送受信器において、
 前記封止樹脂部で封止された前記基板をさらに覆うようにモールド材で封止してパッケージングするモールド封止部をさらに備える光送受信器。
20. 15.乃至19.いずれかに記載の光送受信器において、
 前記光透過性接着層は、複数の前記送光素子または前記受光素子の通信波長である850nm帯の波長領域の光を透過する光送受信器。
21. 15.乃至20.いずれかに記載の光送受信器において、
 前記送光素子または前記受光素子は、前記基板をダイシングにより個片化される光送受信器。
22. 15.乃至21.いずれかに記載の光送受信器において、
 前記基板の前記一面上に前記所定の位置に搭載される複数の前記送光素子または前記受光素子の周囲を囲うように前記基板の前記一面に搭載され、前記一面に対して垂直に延在する側面を有するとともに、上部と下部が開放している枠は、熱膨張率が前記基板と近い材料からなる光送受信器。
23. 8.乃至22.いずれかに記載の光送受信器と、
 前記光送受信器の基板と、を備え、
 前記基板の一面には、ポリマ光導波路が形成され、
 当該ポリマ光導波路の光入出射位置に前記光送受信器の光入出射位置が一致するように前記光送受信器が搭載される光送受信カード。
24. 筐体に複数の23.に記載の光送受信カードを搭載し、
 バックプレーン経由で複数の前記光送受信カード間の光通信を行う光通信システム。
25. 筐体に複数の23.記載の光送受信カードを搭載し、
 複数の筐体間での光通信を行う光通信システム。
Hereinafter, examples of the reference form will be added.
1. A solder layer for joining a light transmitting element or a light receiving element having an optical surface for entering and exiting light to one surface of a substrate on which a through hole is formed so that light can be incident and emitted from the light transmitting element or the light receiving element. Provided,
Bonding the light transmitting element or the light receiving element on the one surface of the substrate, and forming a light-transmitting adhesive layer that transmits light entering and exiting the optical surface of the light transmitting element or the light receiving element;
Forming a sealing resin portion on the substrate so as to cover the light transmitting element or the light receiving element;
After the light-transmitting element or the light-receiving element is sealed with the sealing resin portion, the solder layer is melted by a solder reflow process, and the light-transmitting element or the light-receiving element is bonded to the substrate for mounting. A method of manufacturing a transceiver.
2. 1. In the manufacturing method of the optical transceiver described in
The substrate is provided around the light-transmitting element or the light-receiving element mounted at the predetermined position on the one surface of the substrate, has a side surface extending perpendicularly to the one surface of the substrate, and an upper portion and a lower portion Fixing the open frame to the one surface of the substrate;
A method for manufacturing an optical transceiver, wherein the sealing resin portion is formed by filling a space formed by the side surface of the frame and the one surface of the substrate on which the frame is mounted.
3. 1. Or 2. In the manufacturing method of the optical transceiver described in
The manufacturing method of the optical transmitter / receiver which forms the said sealing resin part with the same transparent resin as the said transparent adhesive layer.
4). 1. To 3. In the method of manufacturing an optical transceiver according to any one of the following:
A method for manufacturing an optical transceiver, wherein the substrate sealed with the sealing resin portion is further sealed with a molding material and packaged.
5. 1. To 4. In the method of manufacturing an optical transceiver according to any one of the following:
The light transmitting adhesive layer is a method of manufacturing an optical transceiver that transmits light in a wavelength region of 850 nm band that is a communication wavelength of the light transmitting element or the light receiving element.
6). 1. To 5. In the method of manufacturing an optical transceiver according to any one of the following:
A method of manufacturing an optical transceiver, wherein the substrate is separated into pieces for each optical transceiver by dicing.
7). 1. To 6. In the method of manufacturing an optical transceiver according to any one of the following:
The substrate is provided around the light-transmitting element or the light-receiving element mounted at the predetermined position on the one surface of the substrate, has a side surface extending perpendicularly to the one surface of the substrate, and an upper portion and a lower portion The open frame is a method of manufacturing an optical transceiver having a coefficient of thermal expansion close to that of the substrate.
8). A light transmitting element or a light receiving element having an optical surface for entering and exiting light; and
A substrate having a surface on which the light transmitting element or the light receiving element is mounted at a predetermined position, and a through-hole formed so that light can enter and exit from the light transmitting element or the light receiving element;
A solder layer provided on the one surface of the substrate, melted by a solder reflow process, and joining the optical surface of the light transmitting element or the light receiving element to the one surface of the substrate;
Prior to the solder reflow process, the light-transmitting element or the light-receiving element and the substrate are bonded, and a light-transmitting adhesive layer that transmits light entering and exiting the optical surface of the light-transmitting element or the light-receiving element;
An optical transceiver comprising: a sealing resin portion formed on the substrate so as to cover the light transmitting element or the light receiving element bonded by the light-transmitting adhesive layer before the solder reflow process.
9. 8). In the optical transceiver described in
A side surface mounted on the one surface of the substrate so as to surround the light transmitting element or the light receiving element mounted at the predetermined position on the one surface of the substrate and extending perpendicularly to the one surface. And further comprising a frame that is open at the top and bottom,
The sealing resin portion is an optical transceiver formed by filling a space formed by the side surface of the frame and the one surface of the substrate on which the frame is mounted.
10. 8). Or 9. In the optical transceiver described in
The sealing resin portion is an optical transceiver formed of the same light-transmitting resin as the light-transmitting adhesive layer.
11. 8). To 10. In the optical transceiver according to any one of the following:
An optical transceiver further comprising a mold sealing portion that is sealed with a molding material and packaged so as to further cover the substrate sealed with the sealing resin portion.
12 8). To 11. In the optical transceiver according to any one of the following:
The light-transmitting adhesive layer is an optical transceiver that transmits light in a wavelength region of 850 nm, which is a communication wavelength of the light transmitting element or the light receiving element.
13. 8). To 12. In the optical transceiver according to any one of the following:
The substrate has a plurality of light transmitting elements or light receiving elements formed on one surface thereof,
Each of the light transmitting elements or the light receiving elements is an optical transceiver in which the substrate is separated into pieces by dicing.
14 8). Thru 13. In the optical transceiver according to any one of the following:
A side surface mounted on the one surface of the substrate so as to surround the light transmitting element or the light receiving device mounted at the predetermined position on the one surface of the substrate, and extending perpendicularly to the one surface. In addition, the frame whose upper and lower portions are open is an optical transceiver made of a material whose thermal expansion coefficient is close to that of the substrate.
15. A plurality of light transmitting elements or light receiving elements each having an optical surface for entering and exiting light; and
The plurality of light transmitting elements or light receiving elements have a surface on which a predetermined position is mounted, and a plurality of through holes are formed so that light can enter and exit from the plurality of light transmitting elements or the light receiving elements. A substrate,
A solder layer provided on the one surface of the substrate, melted by a solder reflow process, and joining the optical surfaces of the plurality of light transmitting elements or the light receiving elements to the one surface of the substrate;
Prior to the solder reflow process, a plurality of the light transmitting elements or the light receiving elements and the substrate are bonded to each other, and light is transmitted through the light incident / exited from the optical surface of the plurality of light transmitting elements or the light receiving elements. An adhesive layer;
An optical transceiver including a sealing resin portion formed on the substrate so as to cover the plurality of light-transmitting elements or the light-receiving elements bonded by the light-transmitting adhesive layer before the solder reflow process .
16. 15. In the optical transceiver described in
Mounted on the one surface of the substrate so as to surround a plurality of the light transmitting elements or the light receiving elements mounted at the predetermined position on the one surface of the substrate, and extends perpendicularly to the one surface. It further includes a frame having side surfaces and open at the top and bottom,
The sealing resin portion is an optical transceiver formed by filling a space formed by the side surface of the frame and the one surface of the substrate on which the frame is mounted.
17. 15. Or 16. In the optical transceiver described in
An optical transceiver in which a plurality of the frames are provided for each of the plurality of light transmitting elements or the light receiving elements.
18. 15. To 17. In the optical transceiver according to any one of the following:
The sealing resin portion is an optical transceiver formed of the same light-transmitting resin as the light-transmitting adhesive layer.
19. 15. To 18. In the optical transceiver according to any one of the following:
An optical transceiver further comprising a mold sealing portion that is sealed with a molding material and packaged so as to further cover the substrate sealed with the sealing resin portion.
20. 15. Thru 19. In the optical transceiver according to any one of the following:
The light-transmitting adhesive layer is an optical transceiver that transmits light in a wavelength region of 850 nm, which is a communication wavelength of the plurality of light transmitting elements or light receiving elements.
21. 15. To 20. In the optical transceiver according to any one of the following:
The light transmitting / receiving element or the light receiving element is an optical transceiver in which the substrate is separated into pieces by dicing.
22. 15. Thru 21. In the optical transceiver according to any one of the following:
Mounted on the one surface of the substrate so as to surround a plurality of the light transmitting elements or the light receiving elements mounted at the predetermined position on the one surface of the substrate, and extends perpendicularly to the one surface. The frame having side surfaces and open at the top and bottom is an optical transceiver made of a material having a thermal expansion coefficient close to that of the substrate.
23. 8). Thru 22. An optical transceiver according to any one of the above,
A substrate of the optical transceiver,
A polymer optical waveguide is formed on one surface of the substrate,
An optical transceiver card on which the optical transceiver is mounted so that the light incident / exit position of the optical transceiver coincides with the light incident / exit position of the polymer optical waveguide.
24. A plurality of 23. Equipped with the optical transceiver card described in
An optical communication system that performs optical communication between a plurality of optical transmission / reception cards via a backplane.
25. A plurality of 23. Equipped with the described optical transceiver card,
An optical communication system that performs optical communication between a plurality of cases.
 この出願は、2012年3月23日に出願された日本出願特願2012-067632号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-066762, filed on Mar. 23, 2012, the entire disclosure of which is incorporated herein.

Claims (10)

  1.  光を入出射する光学面を有する送光素子または受光素子を、前記送光素子または前記受光素子からの光の入出射が可能なようにスルーホールが形成された基板の一面に接合させる半田層を設け、
     前記送光素子または前記受光素子を前記基板の前記一面上に接着し、前記送光素子または前記受光素子の前記光学面から入出射する光を透過する光透過性接着層を形成し、
     前記送光素子または前記受光素子を覆うように前記基板上に封止樹脂部を形成し、
     前記送光素子または前記受光素子を前記封止樹脂部で封止した後、半田リフロー処理にて前記半田層を溶融させ、前記送光素子または前記受光素子を前記基板に接合して実装する光送受信器の製造方法。
    A solder layer for joining a light transmitting element or a light receiving element having an optical surface for entering and exiting light to one surface of a substrate on which a through hole is formed so that light can be incident and emitted from the light transmitting element or the light receiving element. Provided,
    Bonding the light transmitting element or the light receiving element on the one surface of the substrate, and forming a light-transmitting adhesive layer that transmits light entering and exiting the optical surface of the light transmitting element or the light receiving element;
    Forming a sealing resin portion on the substrate so as to cover the light transmitting element or the light receiving element;
    After the light-transmitting element or the light-receiving element is sealed with the sealing resin portion, the solder layer is melted by a solder reflow process, and the light-transmitting element or the light-receiving element is bonded to the substrate for mounting. A method of manufacturing a transceiver.
  2.  請求項1に記載の光送受信器の製造方法において、
     前記基板の前記一面の所定の位置に搭載される前記送光素子または前記受光素子の周囲に設けられ、前記基板の前記一面に対して垂直に延在する側面を有するとともに、上部と下部が開放している枠を、前記基板の前記一面に固着し、
     前記封止樹脂部を、前記枠の前記側面と当該枠が搭載された前記基板の前記一面により形成される空間内に充填して形成する光送受信器の製造方法。
    In the manufacturing method of the optical transceiver according to claim 1,
    Provided around the light transmitting element or the light receiving element mounted at a predetermined position on the one surface of the substrate, has a side surface extending perpendicularly to the one surface of the substrate, and an upper portion and a lower portion are open Fixing the frame to the one surface of the substrate;
    A method for manufacturing an optical transceiver, wherein the sealing resin portion is formed by filling a space formed by the side surface of the frame and the one surface of the substrate on which the frame is mounted.
  3.  請求項1または2に記載の光送受信器の製造方法において、
     前記封止樹脂部を、前記光透過性接着層と同じ光透過性樹脂で形成する光送受信器の製造方法。
    In the manufacturing method of the optical transceiver according to claim 1 or 2,
    The manufacturing method of the optical transmitter / receiver which forms the said sealing resin part with the same transparent resin as the said transparent adhesive layer.
  4.  請求項1乃至3いずれかに記載の光送受信器の製造方法において、
     前記封止樹脂部で封止された前記基板をさらに覆うようにモールド材で封止してパッケージングする光送受信器の製造方法。
    In the manufacturing method of the optical transceiver according to any one of claims 1 to 3,
    A method for manufacturing an optical transceiver, wherein the substrate sealed with the sealing resin portion is further sealed with a molding material and packaged.
  5.  請求項1乃至4いずれかに記載の光送受信器の製造方法において、
     前記光透過性接着層は、前記送光素子または前記受光素子の通信波長である850nm帯の波長領域の光を透過する光送受信器の製造方法。
    In the manufacturing method of the optical transceiver according to any one of claims 1 to 4,
    The light transmitting adhesive layer is a method of manufacturing an optical transceiver that transmits light in a wavelength region of 850 nm band that is a communication wavelength of the light transmitting element or the light receiving element.
  6.  請求項1乃至5いずれかに記載の光送受信器の製造方法において、
     複数の前記送光素子または前記受光素子を前記基板上に実装し、
     前記基板を光送受信器毎にダイシングにより個片化する光送受信器の製造方法。
    In the manufacturing method of the optical transceiver according to any one of claims 1 to 5,
    A plurality of the light transmitting elements or the light receiving elements are mounted on the substrate,
    A method of manufacturing an optical transceiver, wherein the substrate is separated into pieces for each optical transceiver by dicing.
  7.  光を入出射する光学面を有する送光素子または受光素子と、
     前記送光素子または前記受光素子が所定の位置に搭載される一面を有し、前記送光素子または前記受光素子からの光入出射が可能なようにスルーホールが形成された基板と、
     前記基板の前記一面に設けられ、半田リフロー処理で溶融して、前記送光素子または前記受光素子の前記光学面を前記基板の前記一面に接合させる半田層と、
     前記半田リフロー処理より前に、前記送光素子または前記受光素子と前記基板を接着し、前記送光素子または前記受光素子の前記光学面から入出射する光を透過する光透過性接着層と、
     前記半田リフロー処理より前に、前記光透過性接着層で接着された前記送光素子または前記受光素子を覆うように前記基板上に形成される封止樹脂部と、を備える光送受信器。
    A light transmitting element or a light receiving element having an optical surface for entering and exiting light; and
    A substrate having a surface on which the light transmitting element or the light receiving element is mounted at a predetermined position, and a through hole formed so that light can enter and exit from the light transmitting element or the light receiving element;
    A solder layer provided on the one surface of the substrate, melted by a solder reflow process, and joining the optical surface of the light transmitting element or the light receiving element to the one surface of the substrate;
    Prior to the solder reflow process, the light-transmitting element or the light-receiving element and the substrate are bonded, and a light-transmitting adhesive layer that transmits light entering and exiting the optical surface of the light-transmitting element or the light-receiving element;
    An optical transceiver comprising: a sealing resin portion formed on the substrate so as to cover the light transmitting element or the light receiving element bonded by the light-transmitting adhesive layer before the solder reflow process.
  8.  請求項7に記載の光送受信器において、
     前記基板の前記一面上に前記所定の位置に搭載される前記送光素子または前記受光素子の周囲を囲うように前記基板の前記一面に搭載され、前記一面に対して垂直に延在する側面を有するとともに、上部と下部が開放している枠をさらに備え、
     前記封止樹脂部は、前記枠の前記側面と当該枠が搭載された前記基板の前記一面により形成される空間内に充填されて形成される光送受信器。
    The optical transceiver according to claim 7,
    A side surface mounted on the one surface of the substrate so as to surround the light transmitting element or the light receiving element mounted at the predetermined position on the one surface of the substrate and extending perpendicularly to the one surface. And further comprising a frame that is open at the top and bottom,
    The sealing resin portion is an optical transceiver formed by filling a space formed by the side surface of the frame and the one surface of the substrate on which the frame is mounted.
  9.  請求項7または8に記載の光送受信器と、
     前記光送受信器の基板と、を備え、
     前記基板の一面には、ポリマ光導波路が形成され、
     当該ポリマ光導波路の光入出射位置に前記光送受信器の光入出射位置が一致するように前記光送受信器が搭載される光送受信カード。
    An optical transceiver according to claim 7 or 8,
    A substrate of the optical transceiver,
    A polymer optical waveguide is formed on one surface of the substrate,
    An optical transceiver card on which the optical transceiver is mounted so that the light incident / exit position of the optical transceiver coincides with the light incident / exit position of the polymer optical waveguide.
  10.  筐体に複数の請求項9に記載の光送受信カードを搭載し、
     バックプレーン経由で複数の前記光送受信カード間の光通信を行う光通信システム。
    A plurality of optical transmission / reception cards according to claim 9 are mounted on a housing,
    An optical communication system that performs optical communication between a plurality of optical transmission / reception cards via a backplane.
PCT/JP2013/001943 2012-03-23 2013-03-22 Optical transmitter/receiver, method for manufacturing same, optical transmission/reception card, and optical transmission system WO2013140813A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-067632 2012-03-23
JP2012067632 2012-03-23

Publications (1)

Publication Number Publication Date
WO2013140813A1 true WO2013140813A1 (en) 2013-09-26

Family

ID=49222286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001943 WO2013140813A1 (en) 2012-03-23 2013-03-22 Optical transmitter/receiver, method for manufacturing same, optical transmission/reception card, and optical transmission system

Country Status (1)

Country Link
WO (1) WO2013140813A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294964A (en) * 2002-04-03 2003-10-15 Sumitomo Electric Ind Ltd Optical communication module
JP2006323316A (en) * 2005-05-20 2006-11-30 Sumitomo Bakelite Co Ltd Optical waveguide structure
JP2008216712A (en) * 2007-03-06 2008-09-18 Furukawa Electric Co Ltd:The Packaging method for optical component
JP2009162990A (en) * 2008-01-07 2009-07-23 Omron Corp Optical transmission module with reinforcing component for reinforcing substrate of optical transmission module, and electronic device with the light transmission module
JP2011064813A (en) * 2009-09-15 2011-03-31 Sumitomo Bakelite Co Ltd Optical element mounting substrate, opto-elecric hybrid substrate and electronic equipment
JP2011095599A (en) * 2009-10-30 2011-05-12 Murata Mfg Co Ltd Optical coupling structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294964A (en) * 2002-04-03 2003-10-15 Sumitomo Electric Ind Ltd Optical communication module
JP2006323316A (en) * 2005-05-20 2006-11-30 Sumitomo Bakelite Co Ltd Optical waveguide structure
JP2008216712A (en) * 2007-03-06 2008-09-18 Furukawa Electric Co Ltd:The Packaging method for optical component
JP2009162990A (en) * 2008-01-07 2009-07-23 Omron Corp Optical transmission module with reinforcing component for reinforcing substrate of optical transmission module, and electronic device with the light transmission module
JP2011064813A (en) * 2009-09-15 2011-03-31 Sumitomo Bakelite Co Ltd Optical element mounting substrate, opto-elecric hybrid substrate and electronic equipment
JP2011095599A (en) * 2009-10-30 2011-05-12 Murata Mfg Co Ltd Optical coupling structure

Similar Documents

Publication Publication Date Title
EP1723456B1 (en) System and method for the fabrication of an electro-optical module
TWI610103B (en) Apparatus,processor and computing system for optical i/o system using planar light-wave integrated circuit
JP4425936B2 (en) Optical module
JP5621046B2 (en) Electronic module having a plurality of flex circuit connectors
US7728399B2 (en) Molded optical package with fiber coupling feature
JP2007535712A (en) Method and apparatus for providing an electro-optical coupler
US20120237158A1 (en) Opto-electric hybrid board and manufacturing method therefor
KR100645414B1 (en) Optical semiconductor module and method of manufacturing the same
JP2012208306A (en) Optoelectric hybrid substrate and manufacturing method thereof
JP2019184941A (en) Optical sub-assembly and method for manufacturing the same, and optical module
Bamiedakis et al. Low-cost PCB-integrated 10-Gb/s optical transceiver built with a novel integration method
CN105339820A (en) Optical-module member, optical module, and electronic device
CN114488438B (en) Optical module
KR101964853B1 (en) Semiconductor Chip Package Having Optical Interface
KR101266616B1 (en) Optical interconnection module
JP2012189950A (en) Opto-electric hybrid board and manufacturing method therefor
KR102529088B1 (en) Connector Plug and Active Optical Cable Assembly Using the Same
JP5029343B2 (en) Optical substrate manufacturing method
KR20240004186A (en) Ultra-small Transmitter Optical Sub-Assembly
JP2007057976A (en) Optical module
US8636426B2 (en) Photoelectric conversion system with optical transceive module
WO2013140813A1 (en) Optical transmitter/receiver, method for manufacturing same, optical transmission/reception card, and optical transmission system
JP2009145605A (en) Optical substrate and method of manufacturing the same, and optical component and electronic device including the same
JP2007086367A (en) Optical pin, optical pin connector and optical path conversion module
JP5136142B2 (en) Optical substrate manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13763762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP