WO2013140759A1 - Switching element and device using same - Google Patents

Switching element and device using same Download PDF

Info

Publication number
WO2013140759A1
WO2013140759A1 PCT/JP2013/001692 JP2013001692W WO2013140759A1 WO 2013140759 A1 WO2013140759 A1 WO 2013140759A1 JP 2013001692 W JP2013001692 W JP 2013001692W WO 2013140759 A1 WO2013140759 A1 WO 2013140759A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
electrode
piezoelectric
film
substrate
Prior art date
Application number
PCT/JP2013/001692
Other languages
French (fr)
Japanese (ja)
Inventor
勝巳 阿部
茂樹 篠田
哲也 吉成
門澤 秀樹
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013140759A1 publication Critical patent/WO2013140759A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/964Piezo-electric touch switches

Definitions

  • the present invention relates to a switching element in which a gate electrode of a switching transistor and an electrode of a piezoelectric element are integrated.
  • the present invention relates to a switching element that operates using an electromotive force generated by a piezoelectric element and a device to which the switching element is applied.
  • a method of shortening the start time of the sensor node as much as possible and extending the standby time is taken. While the sensor node is active, power consumption is high because various functions such as sensor devices, control microcomputers, and wireless communication modules are used, but power consumption is extremely low because most functions are not used during standby. Become. Therefore, for example, an operation flow is constructed in which the sensor node is periodically started at a frequency of once per minute, information is acquired by the sensor device, the result is transmitted by the wireless module, and then the standby state is returned. The If such an operation flow is adopted, the sensor node is activated for about ten seconds or more, and most of the activity is occupied by the standby time. Therefore, when the power consumption is averaged, the power consumption can be sufficiently reduced. Can do.
  • Patent Document 1 a device that converts light, pressure, heat, and a magnetic field into voltage is used, and a switching element such as a transistor is turned on by the voltage output from this device. Then, a method of supplying power to the sensor node has been proposed. For example, if a piezoelectric element that converts pressure into electricity is used as a weight sensor, a person can ride on the gravity sensor to generate a voltage and to conduct the switching element.
  • a vibration sensor that detects the operation of the mechanical device is used.
  • the power switch of the sensor can be turned on. That is, a switching element is formed by the vibration sensor and a power switch that operates according to the voltage from the vibration sensor, and the switching element functions as a trigger circuit.
  • a general event detection vibration sensor as described in Patent Document 2 is bonded to a detection object, and is connected to a substrate inside a sensor node by a signal cable and outputs a signal to a switching transistor. For this reason, the distance between a vibration sensor and a switching transistor is large, and there exists a subject that it becomes easy to receive to the influence of external noise.
  • the vibration sensor becomes large, and thus there is a problem that it is difficult to make the vibration sensor and the switching transistor as one device.
  • An object of the present invention is to provide a trigger circuit in which a piezoelectric element and a switching transistor are realized by one device and are not easily affected by external noise.
  • the switching element of the present invention is characterized in that the electrode of the piezoelectric element also serves as one of the electrodes of the switching transistor. More specifically, a substrate, a source region and a drain region provided on one surface of the substrate, an insulating film provided on the substrate, a first electrode layer disposed on the insulating film, The switching element includes a piezoelectric film disposed on one electrode layer and a second electrode layer disposed on the piezoelectric film.
  • the switching element of the present invention includes a substrate, a diffusion region provided on the substrate, an insulating film provided on the diffusion region, and a piezoelectric element provided on the insulating film. To do.
  • the piezoelectric element and the switching transistor can be made into one device, the influence of external noise can be suppressed, and a highly reliable trigger circuit without malfunction can be realized.
  • 1 is a cross-sectional structure diagram of a switching element according to a first embodiment of the present invention.
  • 1 is an upper plan view of a switching element according to a first embodiment of the present invention.
  • 1 is a cross-sectional structure diagram of a switching element according to a first embodiment of the present invention.
  • 1 is a cross-sectional structure diagram of a switching device according to a first embodiment of the present invention.
  • 1 is a circuit diagram according to a first embodiment of the present invention. It is a schematic diagram of the manufacturing process of the switching element which concerns on the 1st Embodiment of this invention. It is a schematic diagram of the manufacturing process of the switching element which concerns on the 1st Embodiment of this invention.
  • FIG. 6 is a cross-sectional structure diagram of a switching element according to a third embodiment of the present invention. It is sectional structure drawing of the switching element which concerns on the 4th Embodiment of this invention. It is a circuit diagram concerning a 5th embodiment of the present invention. It is sectional structure drawing of the switching element which concerns on the 5th Embodiment of this invention. It is a circuit diagram concerning a 6th embodiment of the present invention.
  • FIG. 1 shows a cross-sectional structure diagram of a switching element 1 according to a first embodiment of the present invention.
  • FIG. 1 is a cross-sectional view taken along the line A-A ′ of FIG. 2 described later.
  • FIG. 2 is a top plan view of the switching element 1 according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along the line B-B ′ of FIG.
  • the switching element 1 of the first embodiment includes a piezoelectric sheet 11 (corresponding to a piezoelectric element) and a semiconductor substrate 15 (including a Pwell region) through an insulating film 17. It consists of connected laminates.
  • the piezoelectric sheet 11 has a structure in which a piezoelectric film 12 is sandwiched between electrode films 13a and 13b.
  • the piezoelectric film 12 is formed by forming a piezoelectric material into a thin plate shape.
  • piezoelectric ceramics such as BaTiO3 (barium titanate), PZT (lead zirconate titanate), ZnO (zinc oxide), or piezoelectric polymers such as polyvinylidene fluoride are suitable.
  • piezoelectric ceramics PMN (lead magnesium niobate), PZNT (lead zinc niobate titanate solid solution), or the like can also be used.
  • the piezoelectric sheet 11 is formed by pressure-bonding a conductive sheet on both sides of the piezoelectric film 12, or by connecting via a conductive material.
  • the conductive sheet corresponds to the electrode films 13a and 13b.
  • An electrode bump 16 is formed on a part of the electrode film 13 a outside the piezoelectric sheet 11 without covering the piezoelectric sheet 11, and an insulating portion 18 is provided so as to surround the electrode bump 16.
  • the semiconductor substrate 15 of the first embodiment uses a p-type semiconductor substrate and is a constituent element of the semiconductor layer 10.
  • the semiconductor layer 10 includes a channel layer 15b (part of the Pwell layer), an N + region 15a, and a buried wiring (source electrode 14a, drain electrode 14b) in which a groove formed in the N + region 15a is filled with metal. It has an electrode.
  • the electrode in which the embedded wirings are arranged at regular intervals is either the source electrode 14a or the drain electrode 14b.
  • the source electrode 14a and the drain electrode 14b are alternately arranged.
  • All the source electrodes 14a are electrically connected. Similarly, all the drain electrodes 14b are electrically connected. In addition, about the source electrode 14a and the drain electrode 14b, what is electrically connected is shown with the same code
  • connection state of the source electrode 14a and the drain electrode 14b has the configuration and positional relationship as shown in the top plan view of FIG. 2 and the cross-sectional view of FIG.
  • the electrode film 13b, the insulating film 17, the insulating portion 18, and the like are omitted.
  • part of the electrode film 13a and the piezoelectric film 12 is shown as a transmission diagram in order to clarify the shapes and positional relationships of the source electrode 14a and the drain electrode 14b.
  • the electrode film 13b of the piezoelectric sheet 11 is bonded to the surface on which the source electrode 14a and the drain electrode 14b are disposed on the semiconductor substrate 15 with the insulating film 17 interposed therebetween.
  • the electrode film 13b serves as both the gate electrode of the switching transistor and the electrode of the piezoelectric sheet 11.
  • the exposed surface of the source electrode 14 a is electrically connected to the outer electrode film 13 a of the piezoelectric sheet 11 via the electrode bump 16.
  • a resin protective film 19 is affixed to the other surface of the semiconductor substrate 15. The protective film 19 is not an essential configuration.
  • FIG. 4 shows an example of the switching device 20 on which the switching element 1 of the first embodiment is mounted.
  • the switching element 1 of the first embodiment is attached to a metal or resin support plate 23.
  • a weight 24 is mounted on the tip of the support plate 23, and the opposite end is fixed to the fixing portion 22 to form a cantilever structure.
  • the electrode bump 16 of the switching element 1 is connected to a microcomputer or the like provided outside by a wiring 25. Further, the outside of the switching device 20 is covered with a housing 21.
  • the switching element 1 When an external stress is applied to the cantilever structure, the switching element 1 is bent together with the support plate 23.
  • the piezoelectric film 12 is compressed or sheared by the bending of the switching element 1, and a potential difference is generated between the electrode films 13 a and 13 b on the front and back surfaces of the piezoelectric sheet 11.
  • the electrode film 13b which is one electrode of the piezoelectric sheet 11 also serves as a gate electrode.
  • the electrode film 13 a that is the other electrode of the piezoelectric sheet 11 is electrically connected to the source electrode 14 a of the semiconductor layer 10. Note that the electrode film 13a can be electrically connected to a back gate electrode (an electrode drawn from the Pwell layer) depending on the configuration.
  • the drain electrode 14b and the source electrode 14a of the switching element 1 can be electrically connected by external vibration.
  • FIG. 5 shows an example of a circuit diagram relating to the switching element 1 of the first embodiment of the present invention.
  • the circuit diagram of FIG. 5 is an example and does not limit the present invention.
  • the switching element 1 includes a piezoelectric element 31 and an n-type MOSFET 32.
  • the piezoelectric element 31 corresponds to the piezoelectric sheet 11 of FIG. 1 and includes the piezoelectric film 12 and the two electrode films 13a and 13b.
  • the n-type MOSFET 32 includes a source electrode 14a, a drain electrode 14b, an insulating film 17, and a channel layer 15b.
  • the N + region 15a including the source electrode 14a or the drain electrode 14b inside becomes a source region or a drain region, respectively.
  • the plurality of source electrodes 14a and the plurality of drain electrodes 14b shown in FIG. 1 are connected in parallel. Therefore, the n-type MOSFET 32 of FIG. 5 is formed by any adjacent source region / drain region.
  • the resistor 33 and the switching element 1 are connected in series between the power supply 34 and the GND 35, and the reset signal input port or the interrupt signal input port of the microcomputer 36 is an electrode on the power supply side of the switching element 1, that is, a drain electrode. 14b.
  • the resistor 33 may be provided inside the microcomputer 36.
  • the potential of the input port of the microcomputer 36 decreases from VDD to GND.
  • the microcomputer 36 can detect a change in the potential and can transition from the sleep state to the activated state. That is, in the microcomputer 36, the activation threshold is provided at a positive potential smaller than VDD.
  • the sleep state means a state in which the microcomputer 36 can react to an input signal although the CPU of the microcomputer 36 is in a stopped state.
  • the switching element 1 may be inserted into a power supply line connecting the microcomputer 36 and the power supply 34 so that power is supplied to the microcomputer 36 when the switching element 1 is turned on.
  • the switching element according to the first embodiment of the present invention is used, a piezoelectric element that generates a voltage in response to vibration or the like, and a switching transistor that conducts the transistor in accordance with an output from the piezoelectric element are combined into one device. can do. Therefore, the influence of external noise can be suppressed. Therefore, a highly reliable trigger circuit can be realized without malfunction.
  • the piezoelectric films 12 formed into a thin plate shape having a thickness of 10 to 100 ⁇ m are pressure-bonded to the electrode films 13a and 13b in which a conductive material is formed into a sheet shape through the conductive material (FIG. 6A).
  • a part of the electrode film 13b is opened without forming the piezoelectric film 12, and an electrically conductive material and an insulating resin are applied to the opening by printing or the like, and sintered, thereby electrically connecting to the semiconductor layer 10.
  • the electrode bump 16 for connection and the insulating part 18 are formed (FIG. 6B).
  • the semiconductor layer 10 can be formed by a general semiconductor process. That is, an N + region having an arbitrary pattern and a buried wiring are formed in each step by ion implantation, dry etching, vapor deposition, photolithography, or the like. In the following description, details of each process are omitted.
  • a p-type semiconductor substrate is used.
  • a portion where the diffusion layer is not formed is masked, and impurity ions are introduced into the opening by ion implantation (FIG. 6C).
  • the diffusion layer formed here is an N + region.
  • a metal to be a wiring is vapor-deposited at the location where dry etching is performed (FIG. 6E).
  • the back surface of the semiconductor wafer is mechanically and chemically ground to make the semiconductor substrate 15 have a thickness of about 10 to 100 ⁇ m (not shown).
  • an insulating material is applied on the piezoelectric sheet 11 or the semiconductor substrate 15 so as to have a thickness of about 1 ⁇ m, and the piezoelectric sheet 11 and the semiconductor substrate 15 are connected via the insulating material.
  • the protective sheet 19 is affixed on the back surface of the semiconductor substrate 15 (FIG. 6F).
  • the switching element according to the first embodiment of the present invention.
  • the switching element demonstrated after this can also be manufactured by the manufacturing method similar to 1st Embodiment.
  • FIG. 7 shows a cross-sectional structure diagram of a switching element 2 according to a second embodiment of the present invention.
  • drain electrode 54b, the source electrode 54a, and the gate electrode 54c are formed on the surface of the semiconductor substrate 55.
  • the switching element 2 is composed of a laminated body in which the piezoelectric sheet 51 and the semiconductor substrate 55 are connected via an insulating film 57 or an insulating part 58.
  • the piezoelectric sheet 51 has a structure in which a piezoelectric film 52 is sandwiched between electrode films 53a and 53b.
  • the material and forming method of the piezoelectric sheet 51 are the same as those in the first embodiment.
  • a part of the electrode on the end (outer side) of the piezoelectric sheet 51 is provided with an electrode bump 56 and an insulating part 58 surrounding the electrode bump 56 without covering the piezoelectric sheet 51.
  • a p-type semiconductor substrate is used as the semiconductor substrate 55 of the second embodiment.
  • the semiconductor substrate 55 is a component of the semiconductor layer 50.
  • the semiconductor layer 50 has a channel layer 55b (a part of the Pwell layer) and an N + region 55a inside the Pwell layer.
  • the source electrode 54a or the drain electrode 54b is formed on the surface of the N + region 55a.
  • the positional relationship and connection state between the source electrode 54a and the drain electrode 54b are the same as in the first embodiment.
  • the gate electrode 54c is located at a position facing the channel layer 55b with the insulating film 57 interposed therebetween. One surface of the gate electrode 54c is in contact with the insulating film 57, and the other surface is in contact with the electrode film 53b.
  • the insulating film 57 may be formed only between the gate electrode 54c and the channel layer 55b. In that case, it is assumed that there is an insulating portion 58 between the source electrode 54a or the drain electrode 54b and the electrode film 53b.
  • the electrode film 53b of the piezoelectric sheet 51 is bonded to the surface of the semiconductor substrate 55 on which the source electrode 54a and the drain electrode 54b are disposed with the insulating film 57 interposed therebetween.
  • the source electrode 54a, the drain electrode 54b, the channel layer 55b formed on the semiconductor substrate 55 sandwiched between the source electrode 54a and the drain electrode 54b, the insulating film 57, and the channel layer 55b of the electrode film 53b are electrically connected.
  • a switching transistor is formed by the gate electrode 54c thus formed. Since the electrode film 53b and the gate electrode 54c are electrically connected, the electrode film 53b also serves as the gate electrode 54c of the switching transistor described above and the electrode of the piezoelectric sheet 51.
  • a part of the source electrode 54 a is exposed on the surface of the semiconductor substrate 55.
  • the exposed surface of the source electrode 54 a is electrically connected to the outer electrode film 53 a of the piezoelectric sheet 51 via the electrode bump 56.
  • a resin protective film 59 is affixed to the other surface of the semiconductor substrate 55.
  • the switching element of the second embodiment does not need to form a buried wiring, a transistor can be formed by a relatively simple process.
  • FIG. 8 is a sectional structural view of a switching element 3 according to a third embodiment of the present invention.
  • a source electrode (electrode film 63b) is formed on the surface facing the piezoelectric sheet 61, and a drain electrode (electrode film 63c) is formed on the opposite surface (back surface). It is a point to form.
  • the switching element 3 includes a stacked body in which a piezoelectric sheet 61 and a semiconductor substrate 65 are connected via an insulating portion 68.
  • the piezoelectric sheet 61 has a structure in which a piezoelectric film 62 is sandwiched between electrode films 63a and 63b.
  • the material and forming method of the piezoelectric sheet 61 are the same as those in the first embodiment.
  • An n-type semiconductor substrate is used as the semiconductor substrate 65 of the third embodiment.
  • the semiconductor substrate 65 is a constituent element of the semiconductor layer 60.
  • an N + region 65a, a Pbase region (channel layer 65b), and an Nwell region (substrate 65) are formed in this order from the surface facing the piezoelectric sheet 61.
  • a groove formed by etching a part of the N + region 65a and the channel layer 65b, an oxide film (insulating film 67) covering the wall surface of the groove, and a buried wiring (gate electrode) made of a conductive material filling the inside thereof 64) is formed.
  • This buried wiring becomes a so-called gate electrode 64.
  • the gate electrode 64 is exposed at a part of the surface of the semiconductor substrate 65.
  • a part of the surface of the semiconductor substrate 65 is electrically connected to the electrode film 63 a outside the piezoelectric sheet 61 through the electrode bumps 66.
  • the switching element 1 of the first embodiment is composed of a horizontal transistor
  • the current flows in a direction parallel to the surface of the semiconductor substrate.
  • the switching element 3 of the third embodiment is composed of a vertical transistor
  • the current flows in a direction perpendicular to the surface of the semiconductor substrate. That is, in the third embodiment, since the vertical transistor structure can increase the number of carrier paths per unit area, lower on-resistance can be realized, and power loss due to the transistor can be further reduced. Can do.
  • FIG. 9 is a sectional structural view of a switching element 4 according to a fourth embodiment of the present invention.
  • an organic semiconductor is used as a semiconductor layer instead of a silicon semiconductor.
  • the piezoelectric sheet 71 includes a piezoelectric film 72 and electrode sheets 73a and 73b, as in the first embodiment.
  • One end portion of the piezoelectric sheet 71 is provided with a conductive electrode bump 76 formed so as to be electrically connected to the electrode film 73 a and an insulating portion 78 formed so as to surround the electrode bump 76.
  • An insulating film 77 is formed on the surface of the piezoelectric sheet 71 on the electrode film 73b side so that a part of the electrode bumps 76 is exposed.
  • the insulating film 77 is preferably formed by a printing process described later.
  • a metal wiring to be the source electrode 74a or the drain electrode 74b is formed by, for example, a printing method. Thereafter, an organic semiconductor is applied between the metal wirings by a printing process such as screen printing, ink jetting, or microcontact to form the semiconductor region 75.
  • the semiconductor region 75 located between the source electrode 74a and the drain electrode 74b and close to the piezoelectric sheet 71 functions as the channel layer 75a.
  • the semiconductor layer 70 is formed by the source electrode 74a, the drain electrode 74b, the semiconductor region 75, and the channel layer 75a. Further, the portion of the electrode film 73b that faces the channel layer 75a functions as a gate electrode. As described above, a transistor structure using an organic semiconductor can be formed.
  • a transistor can be directly formed on the piezoelectric sheet 71 by a printing process, instead of pasting a previously formed piezoelectric sheet and a semiconductor substrate.
  • the manufacturing cost of the switching element can be kept low by using the printing process.
  • FIG. 10 is a circuit diagram using a switching element 80 according to a fifth embodiment of the present invention.
  • a resistor 88, a Zener diode 87, and a depletion type p-type MOSFET 82 are provided inside or on the surface of the semiconductor.
  • the zener diode 87 and the depletion type p-type MOSFET 82 are connected between the piezoelectric element 81 and the gate electrode of the n-type MOSFET 83 and between the GND 85.
  • the gate electrode of the p-type MOSFET 82 and the drain electrode 94 b of the n-type MOSFET 83 are connected via a resistor 88.
  • the power supply 84 and the resistor 89 are the same as those in the first embodiment, and thus description thereof is omitted.
  • the p-type MOSFET 82 is controlled by the microcomputer 86 to hold the gate electrode of the p-type MOSFET 82 at the GND potential. Operate. As a result, charges accumulated in the gate electrodes of the piezoelectric element 81 and the n-type MOSFET 83 can be released to the GND 85. As a result, it is possible to suppress the accumulation of charge in the gate electrode of the n-type MOSFET 83 and the unstable operation.
  • FIG. 11 shows a sectional structural view of the switching element 5 according to the fifth embodiment of the present invention.
  • a p-type semiconductor substrate is used as the semiconductor substrate 95 of the fifth embodiment.
  • the semiconductor substrate 95 is a component of the semiconductor layer 90.
  • the semiconductor layer 90 includes an n-type MOSFET 83 having a channel layer 95b (a part of the Pwell layer) and an N + region 95a inside the Pwell layer.
  • a source electrode 94a or a drain electrode 94b is provided inside the N + region 95a.
  • the semiconductor layer 90 includes a p-type MOSFET 82 having an Nbase region 95c.
  • the Nbase region 95c has two P + regions 95d and 95e, an N + region 95f, and a P ⁇ region 95g.
  • the two P + regions 95d and 95e are connected by a P ⁇ region 95g serving as a channel layer.
  • One P + region 95e is in contact with the N + region 95f, and a source electrode 94d is formed therebetween.
  • a drain electrode 94c is formed in the other P + region 95d.
  • the Nbase region 95c is formed inside the Pwell layer.
  • P + regions 95d and 95e, an N + region 95f, and a P ⁇ region 95g are formed in the Nbase region 95c.
  • buried wiring is formed in the P + regions 95d and 95e and the N + region 95f, and these are used as the drain electrode 94c and the source electrode 94d.
  • gate electrodes 94e and 94f made of polysilicon are provided on the surface of the semiconductor substrate 95 via an insulating layer 97.
  • the Zener diode 87 and the resistor 88 can be formed in the semiconductor layer 90 in the process of forming the p-type MOSFET 82.
  • the resistor 88 it is not an essential configuration.
  • the piezoelectric sheet 91 has a structure in which a piezoelectric film 92 is sandwiched between an electrode film 93 and a gate electrode 94e.
  • the material and the forming method of the piezoelectric sheet 91 are the same as those in the first embodiment except that only one electrode film 93 is provided.
  • an electrode bump 96 and an insulating portion 98 surrounding the electrode bump 96 are provided on a part of the electrode on the end (outside) of the piezoelectric sheet 91 without providing the piezoelectric film 92 and the gate electrode 94e.
  • the source electrode 94d of the p-type MOSFET 82 and the gate electrode 94e of the n-type MOSFET 83 are electrically connected (not shown).
  • the gate electrode 94f is connected to the resistor 88.
  • a protective sheet 99 is provided on the surface of the semiconductor substrate 95 opposite to the surface on which the piezoelectric sheet 91 is formed.
  • the protective sheet 99 is not necessarily an essential configuration.
  • MOSFETs are formed in the switching element, but three or more MOSFETs can be formed in the same manner.
  • a diode, a resistor, or a capacitor can be formed in the semiconductor layer. Therefore, it is possible to incorporate a rectifier circuit such as a diode bridge circuit or a booster circuit such as a half wave double rectifier circuit.
  • FIG. 12 shows a circuit diagram of a wireless sensor using a switching element according to an embodiment of the present invention.
  • the wireless sensor according to the sixth embodiment shown in FIG. 12 includes a sensor device 109, a wireless module 108, a microcomputer 106, a power source 104, a switching transistor 107, and a switching element 110.
  • the resistor 103 and the switching element 110 are connected in series between the power supply 104 and the GND 105. Note that the switching transistor 107 is different from the switching transistor included in the switching element 110.
  • the sensor device 109 acquires environmental information.
  • the wireless module 108 wirelessly transmits information acquired by the sensor device 109.
  • the microcomputer 106 controls the wireless module 108.
  • the power source 104 supplies power for starting the microcomputer 106 and the wireless module 108.
  • the microcomputer 106 is connected to the electrode on the power supply 104 side of the switching element 110.
  • a switching transistor 107 that controls power supply is provided between the power source 104 and the wireless module 108 and the sensor device 109.
  • the microcomputer 106 is activated by the output from the switching element 110.
  • the switching transistor 107 When the microcomputer 106 is activated, the switching transistor 107 is turned on by the microcomputer 106 and power is supplied to the wireless module 108 and the sensor device 109.
  • the operation of the microcomputer 106 is the same as that in the first embodiment.
  • the wireless module 108 transmits the environment information acquired by the sensor device 109 to a management device of the wireless sensor network.
  • the piezoelectric element and the switching transistor can be manufactured as one device, so that a highly reliable trigger circuit without malfunction can be obtained.
  • the wireless sensor using the switching element of the present invention has been described.
  • the application of the switching element of the present invention is not limited to the wireless sensor, and can be applied to various environmental sensors. It is.
  • the piezoelectric element and the switching transistor that is turned on by the output voltage of the piezoelectric element can be realized by one device. Therefore, the influence of external noise can be suppressed, and a highly reliable trigger circuit without malfunction can be realized.
  • the present invention relates to a switching element in which a gate electrode of a switching transistor and an electrode of a piezoelectric element are integrated.
  • the present invention relates to a switching element that operates using an electromotive force generated by a piezoelectric element and a device to which the switching element is applied.
  • the switching element of the present invention can be used, for example, as a trigger circuit for an environmental sensor having a wireless function.
  • Switching element 10 Semiconductor layer 11 Piezoelectric sheet 12 Piezoelectric film 13a, 13b Electrode film 14a Source electrode 14b Drain electrode 15 Semiconductor substrate 15a N + area

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

This switching element is characterized in that the electrode of the piezoelectric element also functions as one of the electrodes of the switching transistor. More specifically, the switching element is provided with: a substrate; a source region and drain region provided to one surface of the substrate; an insulating film arranged on the substrate; a first electrode layer arranged on the insulating film; a piezoelectric film arranged on the first electrode layer; and a second electrode layer arranged on the piezoelectric film.

Description

スイッチング素子およびそれを用いたデバイスSwitching element and device using the same
 本発明は、スイッチングトランジスタのゲート電極と圧電素子の電極を一体化したスイッチング素子に関する。特に、圧電素子によって発生した起電力を利用して動作するスイッチング素子およびそれを適用したデバイスに関する。 The present invention relates to a switching element in which a gate electrode of a switching transistor and an electrode of a piezoelectric element are integrated. In particular, the present invention relates to a switching element that operates using an electromotive force generated by a piezoelectric element and a device to which the switching element is applied.
 近年、屋内外の様々な場所にセンサノードを設置し、気温、湿度、明るさ、あるいは、人の動きをセンシングデバイスで観測し、そこで得られたデータを元に、照明や空調の制御を行うことによって、エネルギー消費量を減らす技術に期待がもたれている。このようなセンサノードを無線通信で接続した無線センサネットワークは、省エネルギーだけではなく、防犯、防災などの安心・安全な社会を実現する技術の一つとして以前より普及が期待されていた。しかしながら、このような無線センサネットワークは、コストや電源供給などの問題によって、普及が妨げられていた。 In recent years, sensor nodes have been installed in various places indoors and outdoors, and temperature, humidity, brightness, or human movements are observed with sensing devices, and lighting and air conditioning are controlled based on the data obtained there. As a result, technology is expected to reduce energy consumption. Wireless sensor networks in which such sensor nodes are connected by wireless communication have been expected to spread widely as one of the technologies for realizing a safe and secure society such as crime prevention and disaster prevention as well as energy saving. However, the spread of such wireless sensor networks has been hampered by problems such as cost and power supply.
 センサノードの消費電力を抑制するためには、センサノードの起動時間を極力短くして、待機時間を長くする方法が取られる。センサノードが起動している間は、センサデバイスや制御マイコン、無線通信モジュールなど様々な機能が使われるために消費電力は大きいものの、待機時はほとんどの機能が使われないため消費電力はきわめて小さくなる。そこで、例えば、センサノードを1分間に1回といった頻度で定期的に起動した後、センサデバイスで情報を取得し、無線モジュールで結果を送信し、その後、待機状態に戻るといった動作フローが構築される。このような動作フローを取り入れると、センサノードが起動している時間は十数秒程度で済み、その活動の大部分は待機時間で占められるため、消費電力を平均化すると十分に低電力化することができる。 In order to suppress the power consumption of the sensor node, a method of shortening the start time of the sensor node as much as possible and extending the standby time is taken. While the sensor node is active, power consumption is high because various functions such as sensor devices, control microcomputers, and wireless communication modules are used, but power consumption is extremely low because most functions are not used during standby. Become. Therefore, for example, an operation flow is constructed in which the sensor node is periodically started at a frequency of once per minute, information is acquired by the sensor device, the result is transmitted by the wireless module, and then the standby state is returned. The If such an operation flow is adopted, the sensor node is activated for about ten seconds or more, and most of the activity is occupied by the standby time. Therefore, when the power consumption is averaged, the power consumption can be sufficiently reduced. Can do.
 一方、定期的な起動では問題が有る場合、例えば、人感センサのように人が接近したことを情報として送信する場合は、不定期に事象が発生するため、常時センサノードを起動しなければならなかった。 On the other hand, when there is a problem with regular activation, for example, when information indicating that a person has approached is sent as information such as a human sensor, an event occurs irregularly, so the sensor node must always be activated. did not become.
 このような問題点を解決する技術としては、例えば、特許文献1では、光、圧力、熱、磁界を電圧に変換するデバイスを用い、このデバイスから出力された電圧でトランジスタなどのスイッチング素子を導通させて、センサノードに電力を供給する方式が提案されている。例えば、圧力を電気に変換する圧電素子を重量センサとして用いれば、重力センサの上に人が乗ることで電圧を発生し、スイッチング素子を導通することが出来る。 As a technique for solving such a problem, for example, in Patent Document 1, a device that converts light, pressure, heat, and a magnetic field into voltage is used, and a switching element such as a transistor is turned on by the voltage output from this device. Then, a method of supplying power to the sensor node has been proposed. For example, if a piezoelectric element that converts pressure into electricity is used as a weight sensor, a person can ride on the gravity sensor to generate a voltage and to conduct the switching element.
 また、特許文献2に記載のセンサ装置では、機械装置の稼働を検知する振動センサを用い、機械装置の稼働により振動センサが電圧を発生することによって、センサの電源スイッチを入れることができる。すなわち、振動センサと、振動センサからの電圧によって動作する電源スイッチとによってスイッチング素子が形成され、そのスイッチング素子がトリガ回路として機能する。 In the sensor device described in Patent Document 2, a vibration sensor that detects the operation of the mechanical device is used. When the vibration sensor generates a voltage by the operation of the mechanical device, the power switch of the sensor can be turned on. That is, a switching element is formed by the vibration sensor and a power switch that operates according to the voltage from the vibration sensor, and the switching element functions as a trigger circuit.
特開2004-312509号公報JP 2004-31509 A 特開2008-186336号公報JP 2008-186336 A
 特許文献2に記載されたような一般的な事象検知用振動センサは、検知対象物に接着され、信号ケーブルによりセンサノード内部の基板に接続され実装されたスイッチングトランジスタに信号を出力する。このため、振動センサとスイッチングトランジスタ間の距離が大きく、外来ノイズの影響を受けやすくなるという課題がある。 A general event detection vibration sensor as described in Patent Document 2 is bonded to a detection object, and is connected to a substrate inside a sensor node by a signal cable and outputs a signal to a switching transistor. For this reason, the distance between a vibration sensor and a switching transistor is large, and there exists a subject that it becomes easy to receive to the influence of external noise.
 また、一般的に、振動センサの内部にスイッチングトランジスタを実装すると、振動センサが大きくなるため、振動センサとスイッチングトランジスタを一つのデバイスにすることが難しいという課題がある。 Also, generally, when a switching transistor is mounted inside the vibration sensor, the vibration sensor becomes large, and thus there is a problem that it is difficult to make the vibration sensor and the switching transistor as one device.
 本発明の目的は、圧電素子とスイッチングトランジスタを一つのデバイスで実現し、外来ノイズの影響を受けにくいトリガ回路を提供することにある。 An object of the present invention is to provide a trigger circuit in which a piezoelectric element and a switching transistor are realized by one device and are not easily affected by external noise.
 本発明のスイッチング素子は、圧電素子の電極がスイッチングトランジスタのいずれかの電極を兼ねることを特徴とする。より具体的には、基板と、基板の一方の面に設けられたソース領域およびドレイン領域と、基板上に設けられた絶縁膜と、絶縁膜上に配置された第1の電極層と、第1の電極層上に配置された圧電膜と、圧電膜上に配置された第2の電極層と、を備えるスイッチング素子とする。 The switching element of the present invention is characterized in that the electrode of the piezoelectric element also serves as one of the electrodes of the switching transistor. More specifically, a substrate, a source region and a drain region provided on one surface of the substrate, an insulating film provided on the substrate, a first electrode layer disposed on the insulating film, The switching element includes a piezoelectric film disposed on one electrode layer and a second electrode layer disposed on the piezoelectric film.
 また、本発明のスイッチング素子は、基板と、基板上に設けられた拡散領域と、拡散領域上に設けられた絶縁膜と、絶縁膜上に設けられた圧電素子と、を備えることを特徴とする。 The switching element of the present invention includes a substrate, a diffusion region provided on the substrate, an insulating film provided on the diffusion region, and a piezoelectric element provided on the insulating film. To do.
 本発明のスイッチング素子によれば、圧電素子とスイッチングトランジスタを一つのデバイスとすることができるため、外来ノイズの影響を抑制でき、誤動作のない信頼性の高いトリガ回路を実現することができる。 According to the switching element of the present invention, since the piezoelectric element and the switching transistor can be made into one device, the influence of external noise can be suppressed, and a highly reliable trigger circuit without malfunction can be realized.
本発明の第1の実施形態に係るスイッチング素子の断面構造図である。1 is a cross-sectional structure diagram of a switching element according to a first embodiment of the present invention. 本発明の第1の実施形態に係るスイッチング素子の上方平面図である。1 is an upper plan view of a switching element according to a first embodiment of the present invention. 本発明の第1の実施形態に係るスイッチング素子の断面構造図である。1 is a cross-sectional structure diagram of a switching element according to a first embodiment of the present invention. 本発明の第1の実施形態に係るスイッチングデバイスの断面構造図である。1 is a cross-sectional structure diagram of a switching device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る回路図である。1 is a circuit diagram according to a first embodiment of the present invention. 本発明の第1の実施形態に係るスイッチング素子の製造工程の模式図である。It is a schematic diagram of the manufacturing process of the switching element which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るスイッチング素子の製造工程の模式図である。It is a schematic diagram of the manufacturing process of the switching element which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るスイッチング素子の製造工程の模式図である。It is a schematic diagram of the manufacturing process of the switching element which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るスイッチング素子の製造工程の模式図である。It is a schematic diagram of the manufacturing process of the switching element which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るスイッチング素子の製造工程の模式図である。It is a schematic diagram of the manufacturing process of the switching element which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るスイッチング素子の製造工程の模式図である。It is a schematic diagram of the manufacturing process of the switching element which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係るスイッチング素子の断面構造図である。It is a sectional structure figure of a switching element concerning a 2nd embodiment of the present invention. 本発明の第3の実施形態に係るスイッチング素子の断面構造図である。FIG. 6 is a cross-sectional structure diagram of a switching element according to a third embodiment of the present invention. 本発明の第4の実施形態に係るスイッチング素子の断面構造図である。It is sectional structure drawing of the switching element which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る回路図である。It is a circuit diagram concerning a 5th embodiment of the present invention. 本発明の第5の実施形態に係るスイッチング素子の断面構造図である。It is sectional structure drawing of the switching element which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る回路図である。It is a circuit diagram concerning a 6th embodiment of the present invention.
 以下に、本発明を実施するための好ましい形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。 Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. However, the preferred embodiments described below are technically preferable for carrying out the present invention, but the scope of the invention is not limited to the following.
 〔第1の実施形態〕図1に、本発明の第1の実施形態に係るスイッチング素子1の断面構造図を示す。図1は、後述する図2のA-A’断面における断面図となる。図2には、本発明の第1の実施形態に係るスイッチング素子1の上面平面図を示す。また、図3には、図2のB-B’断面における断面図を示す。 First Embodiment FIG. 1 shows a cross-sectional structure diagram of a switching element 1 according to a first embodiment of the present invention. FIG. 1 is a cross-sectional view taken along the line A-A ′ of FIG. 2 described later. FIG. 2 is a top plan view of the switching element 1 according to the first embodiment of the present invention. FIG. 3 is a cross-sectional view taken along the line B-B ′ of FIG.
 〔スイッチング素子の構成〕図1に示す通り、第1の実施形態のスイッチング素子1は、圧電シート11(圧電素子に相当する)と半導体基板15(Pwell領域を含む)が絶縁膜17を介して接続された積層体からなる。 [Configuration of Switching Element] As shown in FIG. 1, the switching element 1 of the first embodiment includes a piezoelectric sheet 11 (corresponding to a piezoelectric element) and a semiconductor substrate 15 (including a Pwell region) through an insulating film 17. It consists of connected laminates.
 圧電シート11は、圧電膜12を電極フィルム13a、13bで挟み込んだ構造をとる。 The piezoelectric sheet 11 has a structure in which a piezoelectric film 12 is sandwiched between electrode films 13a and 13b.
 圧電膜12は、圧電材料を薄板状に形成したものである。 The piezoelectric film 12 is formed by forming a piezoelectric material into a thin plate shape.
 圧電膜12の圧電材料としては、BaTiO3(チタン酸バリウム)、PZT(チタン酸ジルコン酸鉛)、ZnO(酸化亜鉛)の様な圧電セラミックス、あるいは、ポリフッ化ビニリデンの様な圧電ポリマーが適している。また、圧電セラミックスとしては、PMN(マグネシウム酸ニオブ酸鉛)、PZNT(亜鉛ニオブ酸チタン酸鉛固溶体)などを用いることもできる。 As the piezoelectric material of the piezoelectric film 12, piezoelectric ceramics such as BaTiO3 (barium titanate), PZT (lead zirconate titanate), ZnO (zinc oxide), or piezoelectric polymers such as polyvinylidene fluoride are suitable. . Moreover, as piezoelectric ceramics, PMN (lead magnesium niobate), PZNT (lead zinc niobate titanate solid solution), or the like can also be used.
 圧電シート11は、圧電膜12の両面に、導電性シートを圧着する、あるいは、導電性材料を介して接続することによって形成する。なお、導電性シートは、電極フィルム13a、13bに相当する。 The piezoelectric sheet 11 is formed by pressure-bonding a conductive sheet on both sides of the piezoelectric film 12, or by connecting via a conductive material. The conductive sheet corresponds to the electrode films 13a and 13b.
 以上が、圧電シート11の構成である。 The above is the configuration of the piezoelectric sheet 11.
 圧電シート11の外側の電極フィルム13aの一部には、圧電シート11を被覆せずに電極バンプ16が形成され、さらに電極バンプ16を囲む様に絶縁部18が設置されている。 An electrode bump 16 is formed on a part of the electrode film 13 a outside the piezoelectric sheet 11 without covering the piezoelectric sheet 11, and an insulating portion 18 is provided so as to surround the electrode bump 16.
 第1の実施形態の半導体基板15は、p型半導体基板を用いており、半導体層10の構成要素となる。半導体層10は、チャネル層15b(Pwell層の一部)と、N+領域15aと、N+領域15aの内部に形成した溝を金属で埋め込んだ埋め込み配線(ソース電極14a、ドレイン電極14b)による電極を有する。 The semiconductor substrate 15 of the first embodiment uses a p-type semiconductor substrate and is a constituent element of the semiconductor layer 10. The semiconductor layer 10 includes a channel layer 15b (part of the Pwell layer), an N + region 15a, and a buried wiring (source electrode 14a, drain electrode 14b) in which a groove formed in the N + region 15a is filled with metal. It has an electrode.
 埋め込み配線を一定の間隔で整列させた電極は、ソース電極14aあるいはドレイン電極14bのどちらかの電極となる。ソース電極14aとドレイン電極14bとは、交互に配置されている。 The electrode in which the embedded wirings are arranged at regular intervals is either the source electrode 14a or the drain electrode 14b. The source electrode 14a and the drain electrode 14b are alternately arranged.
 全てのソース電極14a同士は電気的に接続されている。同様に、全てのドレイン電極14bは電気的に接続されている。なお、ソース電極14aおよびドレイン電極14bについて、電気的に接続されているものについては同じ符号で示す。 All the source electrodes 14a are electrically connected. Similarly, all the drain electrodes 14b are electrically connected. In addition, about the source electrode 14a and the drain electrode 14b, what is electrically connected is shown with the same code | symbol.
 ソース電極14aとドレイン電極14bの接続状態は、図2の上面平面図および図3の断面図に示したような構成および位置関係となる。なお、図2においては、ソース電極14aおよびドレイン電極14bの位置関係を明らかにするため、電極フィルム13b、絶縁膜17、絶縁部18などは省略している。また、電極フィルム13aおよび圧電膜12は、ソース電極14aおよびドレイン電極14bの形状や位置関係を明らかにするために、一部を透過図として示した。 The connection state of the source electrode 14a and the drain electrode 14b has the configuration and positional relationship as shown in the top plan view of FIG. 2 and the cross-sectional view of FIG. In FIG. 2, in order to clarify the positional relationship between the source electrode 14a and the drain electrode 14b, the electrode film 13b, the insulating film 17, the insulating portion 18, and the like are omitted. Further, part of the electrode film 13a and the piezoelectric film 12 is shown as a transmission diagram in order to clarify the shapes and positional relationships of the source electrode 14a and the drain electrode 14b.
 圧電シート11の電極フィルム13bは、半導体基板15上のソース電極14aおよびドレイン電極14bが配置された面と、絶縁膜17を挟んで接合される。ソース電極14aと、ドレイン電極14bと、ソース電極14aとドレイン電極14bに挟まれた半導体基板15に形成されるチャネル層15bと、絶縁膜17と、電極フィルム13bのチャネル層15bと対面する部位(ゲート電極)によって、スイッチングトランジスタが形成される。なお、電極フィルム13bは、前述のスイッチングトランジスタのゲート電極と、圧電シート11の電極を兼ねることになる。 The electrode film 13b of the piezoelectric sheet 11 is bonded to the surface on which the source electrode 14a and the drain electrode 14b are disposed on the semiconductor substrate 15 with the insulating film 17 interposed therebetween. Source electrode 14a, drain electrode 14b, channel layer 15b formed on semiconductor substrate 15 sandwiched between source electrode 14a and drain electrode 14b, insulating film 17, and part facing channel layer 15b of electrode film 13b ( A switching transistor is formed by the gate electrode. The electrode film 13b serves as both the gate electrode of the switching transistor and the electrode of the piezoelectric sheet 11.
 また、ソース電極14aの一部は、半導体基板15表面に露出している。ソース電極14aの露出面は、圧電シート11の外側の電極フィルム13aと電極バンプ16を介して電気的に接続される。半導体基板15の他方の面には、樹脂製の保護フィルム19が貼付されている。なお、保護フィルム19は必須の構成ではない。 Further, a part of the source electrode 14 a is exposed on the surface of the semiconductor substrate 15. The exposed surface of the source electrode 14 a is electrically connected to the outer electrode film 13 a of the piezoelectric sheet 11 via the electrode bump 16. A resin protective film 19 is affixed to the other surface of the semiconductor substrate 15. The protective film 19 is not an essential configuration.
 〔スイッチングモジュールの構成〕図4には、第1の実施形態のスイッチング素子1を搭載したスイッチングデバイス20の一例を示した。 [Configuration of Switching Module] FIG. 4 shows an example of the switching device 20 on which the switching element 1 of the first embodiment is mounted.
 図4に示す通り、スイッチングデバイス20において、第1の実施形態のスイッチング素子1は、金属製あるいは樹脂製の支持板23に貼付けられている。支持板23の先端には、錘24を搭載し、その反対の端部は固定部22に固定され、片持ち梁構造を形成している。スイッチング素子1の電極バンプ16は、配線25によって外部に設けられたマイコンなどに接続されている。また、スイッチングデバイス20の外側は、筐体21で覆われている。 As shown in FIG. 4, in the switching device 20, the switching element 1 of the first embodiment is attached to a metal or resin support plate 23. A weight 24 is mounted on the tip of the support plate 23, and the opposite end is fixed to the fixing portion 22 to form a cantilever structure. The electrode bump 16 of the switching element 1 is connected to a microcomputer or the like provided outside by a wiring 25. Further, the outside of the switching device 20 is covered with a housing 21.
 片持ち梁構造部に外部応力が印加されると、支持板23とともにスイッチング素子1が屈曲する。スイッチング素子1の屈曲により圧電膜12は圧縮あるいはせん断変形を起こし、圧電シート11の表裏面の電極フィルム13a、13bの間に電位差が生じる。 When an external stress is applied to the cantilever structure, the switching element 1 is bent together with the support plate 23. The piezoelectric film 12 is compressed or sheared by the bending of the switching element 1, and a potential difference is generated between the electrode films 13 a and 13 b on the front and back surfaces of the piezoelectric sheet 11.
 圧電シート11の一方の電極である電極フィルム13bは、ゲート電極を兼ねている。また、圧電シート11のもう一方の電極である電極フィルム13aは、半導体層10のソース電極14aと電気的に接続されている。なお、電極フィルム13aは、構成によってはバックゲート電極(Pwell層から引き出された電極)に電気的に接続することもできる。 The electrode film 13b which is one electrode of the piezoelectric sheet 11 also serves as a gate electrode. The electrode film 13 a that is the other electrode of the piezoelectric sheet 11 is electrically connected to the source electrode 14 a of the semiconductor layer 10. Note that the electrode film 13a can be electrically connected to a back gate electrode (an electrode drawn from the Pwell layer) depending on the configuration.
 そのため、スイッチング素子1の変形によって、ドレイン電極14bとソース電極14a間のゲート電極に対向したPwell領域の一部は、チャネル層15bとなり、キャリアパスが形成されて導通される。すなわち、外部からの振動によりスイッチング素子1のドレイン電極14bとソース電極14a間は、電気的に導通状態とすることができる。 Therefore, due to the deformation of the switching element 1, a part of the Pwell region facing the gate electrode between the drain electrode 14b and the source electrode 14a becomes the channel layer 15b, and a carrier path is formed and is conducted. In other words, the drain electrode 14b and the source electrode 14a of the switching element 1 can be electrically connected by external vibration.
 〔スイッチング素子の動作〕図5に本発明の第1の実施形態のスイッチング素子1に係る回路図の一例を示す。なお、図5の回路図は一例であり、本発明を限定するものではない。 [Operation of Switching Element] FIG. 5 shows an example of a circuit diagram relating to the switching element 1 of the first embodiment of the present invention. The circuit diagram of FIG. 5 is an example and does not limit the present invention.
 スイッチング素子1は、圧電素子31およびn型MOSFET32を備えている。 The switching element 1 includes a piezoelectric element 31 and an n-type MOSFET 32.
 圧電素子31は、図1の圧電シート11に相当し、圧電膜12および2つの電極フィルム13a、13bを有する。 The piezoelectric element 31 corresponds to the piezoelectric sheet 11 of FIG. 1 and includes the piezoelectric film 12 and the two electrode films 13a and 13b.
 n型MOSFET32は、図1において、ソース電極14a、ドレイン電極14b、絶縁膜17およびチャネル層15bを備える。なお、n型MOSFET32において、ソース電極14aまたはドレイン電極14bを内部に含むN+領域15aは、それぞれソース領域またはドレイン領域となる。また、図1に示した複数のソース電極14a、複数のドレイン電極14bは、それぞれ並列に接続されている。そのため、図5のn型MOSFET32は、いずれかの隣接しあうソース領域ドレイン領域によって形成される。 In FIG. 1, the n-type MOSFET 32 includes a source electrode 14a, a drain electrode 14b, an insulating film 17, and a channel layer 15b. In the n-type MOSFET 32, the N + region 15a including the source electrode 14a or the drain electrode 14b inside becomes a source region or a drain region, respectively. Further, the plurality of source electrodes 14a and the plurality of drain electrodes 14b shown in FIG. 1 are connected in parallel. Therefore, the n-type MOSFET 32 of FIG. 5 is formed by any adjacent source region / drain region.
 電源34とGND35の間に、抵抗33とスイッチング素子1が直列に接続され、マイコン36のリセット信号用の入力ポートあるいは割り込み信号用の入力ポートがスイッチング素子1の電源側の電極、すなわち、ドレイン電極14bに接続されている。なお、デバイスによっては、抵抗33がマイコン36の内部に設けられていてもよい。 The resistor 33 and the switching element 1 are connected in series between the power supply 34 and the GND 35, and the reset signal input port or the interrupt signal input port of the microcomputer 36 is an electrode on the power supply side of the switching element 1, that is, a drain electrode. 14b. Depending on the device, the resistor 33 may be provided inside the microcomputer 36.
 外部からの振動によりスイッチング素子1が導通状態となると、マイコン36の入力ポートの電位は、VDDからGNDに低下する。マイコン36がスリープ状態の場合、マイコン36はこの電位の変動を検知し、スリープ状態から起動状態に遷移することが可能である。すなわち、マイコン36においては、VDDより小さい正の電位に起動の閾値が設けられている。なお、スリープ状態とは、マイコン36のCPUは停止状態であるが、入力信号に対してはマイコン36が反応できる状態のことを意味する。 When the switching element 1 becomes conductive due to vibrations from the outside, the potential of the input port of the microcomputer 36 decreases from VDD to GND. When the microcomputer 36 is in the sleep state, the microcomputer 36 can detect a change in the potential and can transition from the sleep state to the activated state. That is, in the microcomputer 36, the activation threshold is provided at a positive potential smaller than VDD. Note that the sleep state means a state in which the microcomputer 36 can react to an input signal although the CPU of the microcomputer 36 is in a stopped state.
 すなわち、人の接近による振動を起点としてマイコン36を起動、その後センサデバイスや無線モジュール等の周辺デバイスの起動を完了することができる。あるいは、スイッチング素子1をマイコン36と電源34を接続する電源ラインに挿入し、スイッチング素子1が導通するとマイコン36に電力が供給されるように構成しても良い。 That is, it is possible to start the microcomputer 36 starting from vibration caused by the approach of a person, and then complete startup of peripheral devices such as sensor devices and wireless modules. Alternatively, the switching element 1 may be inserted into a power supply line connecting the microcomputer 36 and the power supply 34 so that power is supplied to the microcomputer 36 when the switching element 1 is turned on.
 本発明の第1の実施形態に係るスイッチング素子を用いれば、振動等に応答して電圧を発生する圧電素子と、圧電素子からの出力に応じてトランジスタの導通を行うスイッチングトランジスタを一つのデバイスとすることができる。そのため、外来ノイズの影響を抑制することができる。したがって、誤動作のなく信頼性の高いトリガ回路を実現することができる。 If the switching element according to the first embodiment of the present invention is used, a piezoelectric element that generates a voltage in response to vibration or the like, and a switching transistor that conducts the transistor in accordance with an output from the piezoelectric element are combined into one device. can do. Therefore, the influence of external noise can be suppressed. Therefore, a highly reliable trigger circuit can be realized without malfunction.
 〔スイッチング素子の製造方法〕図6A~6Fを用いて、第1の実施形態に係るスイッチング素子の製造方法を説明する。 [Manufacturing Method of Switching Element] A manufacturing method of the switching element according to the first embodiment will be described with reference to FIGS. 6A to 6F.
 厚さ10~100μmの薄板状に形成された圧電膜12の表裏に、導電性材料をシート状に形成した電極フィルム13a、13bと、導電材料を介して圧着する(図6A)。 The piezoelectric films 12 formed into a thin plate shape having a thickness of 10 to 100 μm are pressure-bonded to the electrode films 13a and 13b in which a conductive material is formed into a sheet shape through the conductive material (FIG. 6A).
 電極フィルム13bの一部には圧電膜12を形成せずに開口し、開口部に導電性材料、及び、絶縁性樹脂を印刷等で塗布、焼結することによって、半導体層10との電気的接続用の電極バンプ16および絶縁部18を形成する(図6B)。 A part of the electrode film 13b is opened without forming the piezoelectric film 12, and an electrically conductive material and an insulating resin are applied to the opening by printing or the like, and sintered, thereby electrically connecting to the semiconductor layer 10. The electrode bump 16 for connection and the insulating part 18 are formed (FIG. 6B).
 一方、半導体層10は、一般的な半導体工程によって形成することができる。すなわち、イオン注入、ドライエッチング、蒸着、及び、フォトリソグラフ等により各工程に於いて任意のパターンのN+領域、埋め込み配線を形成する。なお、以下の説明において、各工程の詳細は省略する。 On the other hand, the semiconductor layer 10 can be formed by a general semiconductor process. That is, an N + region having an arbitrary pattern and a buried wiring are formed in each step by ion implantation, dry etching, vapor deposition, photolithography, or the like. In the following description, details of each process are omitted.
 第1の実施形態では、p型半導体基板を用いる。拡散層を形成しない部分にはマスクをし、開口部分にはイオン注入によって不純物イオンを導入する(図6C)。ここで形成した拡散層は、N+領域とする。 In the first embodiment, a p-type semiconductor substrate is used. A portion where the diffusion layer is not formed is masked, and impurity ions are introduced into the opening by ion implantation (FIG. 6C). The diffusion layer formed here is an N + region.
 次に、ソース電極14aまたはドレイン電極14bを形成する箇所にドライエッチングを施す(図6D)。 Next, dry etching is performed on the portion where the source electrode 14a or the drain electrode 14b is formed (FIG. 6D).
 さらに、ドライエッチングを施した箇所に配線となる金属を蒸着する(図6E)。 Furthermore, a metal to be a wiring is vapor-deposited at the location where dry etching is performed (FIG. 6E).
 その後、半導体ウェハの裏面を機械的、化学的に研削し、半導体基板15の厚さを10~100μm程度とする(図は省略)。 Thereafter, the back surface of the semiconductor wafer is mechanically and chemically ground to make the semiconductor substrate 15 have a thickness of about 10 to 100 μm (not shown).
 最後に、絶縁材料を圧電シート11あるいは半導体基板15上に、1μm程度の厚さになるように塗布し、絶縁材料を介して圧電シート11と半導体基板15を接続する。また、半導体基板15の裏面に保護シート19を貼付する(図6F)。 Finally, an insulating material is applied on the piezoelectric sheet 11 or the semiconductor substrate 15 so as to have a thickness of about 1 μm, and the piezoelectric sheet 11 and the semiconductor substrate 15 are connected via the insulating material. Moreover, the protective sheet 19 is affixed on the back surface of the semiconductor substrate 15 (FIG. 6F).
 以上が本発明の第1の実施形態に係るスイッチング素子の製造方法である。なお、これ以降で説明するスイッチング素子も、第1の実施形態と同様の製造方法によって製造することができる。 The above is the method for manufacturing the switching element according to the first embodiment of the present invention. In addition, the switching element demonstrated after this can also be manufactured by the manufacturing method similar to 1st Embodiment.
 〔第2の実施形態〕図7に、本発明の第2の実施形態に係るスイッチング素子2の断面構造図を示す。 Second Embodiment FIG. 7 shows a cross-sectional structure diagram of a switching element 2 according to a second embodiment of the present invention.
 第1の実施形態との相違点は、ドレイン電極54b、ソース電極54a、ゲート電極54cを半導体基板55表面に形成したことである。 The difference from the first embodiment is that the drain electrode 54b, the source electrode 54a, and the gate electrode 54c are formed on the surface of the semiconductor substrate 55.
 図7に示す通り、第2の実施形態のスイッチング素子2は、圧電シート51と半導体基板55が、絶縁膜57または絶縁部58を介して接続された積層体からなる。 As shown in FIG. 7, the switching element 2 according to the second embodiment is composed of a laminated body in which the piezoelectric sheet 51 and the semiconductor substrate 55 are connected via an insulating film 57 or an insulating part 58.
 圧電シート51は、圧電膜52を電極フィルム53a、53bで挟み込んだ構造をとる。圧電シート51の材料および形成方法は、第1の実施形態と同様である。 The piezoelectric sheet 51 has a structure in which a piezoelectric film 52 is sandwiched between electrode films 53a and 53b. The material and forming method of the piezoelectric sheet 51 are the same as those in the first embodiment.
 圧電シート51の端部(外側)の電極の一部には、圧電シート51を被覆せずに、電極バンプ56と、電極バンプ56を囲む絶縁部58が設置されている。 A part of the electrode on the end (outer side) of the piezoelectric sheet 51 is provided with an electrode bump 56 and an insulating part 58 surrounding the electrode bump 56 without covering the piezoelectric sheet 51.
 第2の実施形態の半導体基板55には、p型半導体基板を用いている。半導体基板55は、半導体層50の構成要素となる。半導体層50は、内部にチャネル層55b(Pwell層の一部)と、Pwell層の内部のN+領域55aを有する。 A p-type semiconductor substrate is used as the semiconductor substrate 55 of the second embodiment. The semiconductor substrate 55 is a component of the semiconductor layer 50. The semiconductor layer 50 has a channel layer 55b (a part of the Pwell layer) and an N + region 55a inside the Pwell layer.
 第2の実施形態においては、N+領域55aの表面に、ソース電極54aまたはドレイン電極54bを形成する。ソース電極54aとドレイン電極54bとの位置関係および接続状態は、第1の実施形態と同様である。 In the second embodiment, the source electrode 54a or the drain electrode 54b is formed on the surface of the N + region 55a. The positional relationship and connection state between the source electrode 54a and the drain electrode 54b are the same as in the first embodiment.
 絶縁膜57を挟んでチャネル層55bと対面する位置には、ゲート電極54cが位置する。ゲート電極54cの一方の面は絶縁膜57と接し、また、他方の面は電極フィルム53bと接している。 The gate electrode 54c is located at a position facing the channel layer 55b with the insulating film 57 interposed therebetween. One surface of the gate electrode 54c is in contact with the insulating film 57, and the other surface is in contact with the electrode film 53b.
 なお、絶縁膜57は、ゲート電極54cとチャネル層55bの間のみに形成されていてもよい。その場合は、ソース電極54aまたはドレイン電極54bと、電極フィルム53bとの間には、絶縁部58があるものとする。 Note that the insulating film 57 may be formed only between the gate electrode 54c and the channel layer 55b. In that case, it is assumed that there is an insulating portion 58 between the source electrode 54a or the drain electrode 54b and the electrode film 53b.
 圧電シート51の電極フィルム53bは、半導体基板55上のソース電極54aおよびドレイン電極54bが配置された面と、絶縁膜57を挟んで接合される。ソース電極54aと、ドレイン電極54bと、ソース電極54aとドレイン電極54bに挟まれた半導体基板55に形成されるチャネル層55bと、絶縁膜57と、電極フィルム53bのチャネル層55bと電気的に接続されたゲート電極54cによって、スイッチングトランジスタが形成される。なお、電極フィルム53bとゲート電極54cと電気的に接続されているため、電極フィルム53bは、前述のスイッチングトランジスタのゲート電極54cと、圧電シート51の電極を兼ねることになる。 The electrode film 53b of the piezoelectric sheet 51 is bonded to the surface of the semiconductor substrate 55 on which the source electrode 54a and the drain electrode 54b are disposed with the insulating film 57 interposed therebetween. The source electrode 54a, the drain electrode 54b, the channel layer 55b formed on the semiconductor substrate 55 sandwiched between the source electrode 54a and the drain electrode 54b, the insulating film 57, and the channel layer 55b of the electrode film 53b are electrically connected. A switching transistor is formed by the gate electrode 54c thus formed. Since the electrode film 53b and the gate electrode 54c are electrically connected, the electrode film 53b also serves as the gate electrode 54c of the switching transistor described above and the electrode of the piezoelectric sheet 51.
 また、ソース電極54aの一部は、半導体基板55表面に露出している。ソース電極54aの露出面は、圧電シート51の外側の電極フィルム53aと電極バンプ56を介して電気的に接続される。半導体基板55の他方の面には、樹脂製の保護フィルム59が貼付されている。 Further, a part of the source electrode 54 a is exposed on the surface of the semiconductor substrate 55. The exposed surface of the source electrode 54 a is electrically connected to the outer electrode film 53 a of the piezoelectric sheet 51 via the electrode bump 56. A resin protective film 59 is affixed to the other surface of the semiconductor substrate 55.
 以上のような構成の第2の実施形態のスイッチング素子においても、第1の実施形態と同様の作用・効果を得ることができる。 Also in the switching element of the second embodiment having the above-described configuration, the same operations and effects as those of the first embodiment can be obtained.
 さらに、第2の実施形態のスイッチング素子は、埋め込み配線を形成する必要がないため比較的簡便な工程でトランジスタを形成することができる。 Furthermore, since the switching element of the second embodiment does not need to form a buried wiring, a transistor can be formed by a relatively simple process.
 〔第3の実施形態〕図8に、本発明の第3の実施形態に係るスイッチング素子3の断面構造図を示す。 [Third Embodiment] FIG. 8 is a sectional structural view of a switching element 3 according to a third embodiment of the present invention.
 第1の実施形態との相違点は、半導体層60において、圧電シート61との対向面にソース電極(電極フィルム63b)を形成し、その反対面(裏面)にドレイン電極(電極フィルム63c)を形成する点である。 The difference from the first embodiment is that in the semiconductor layer 60, a source electrode (electrode film 63b) is formed on the surface facing the piezoelectric sheet 61, and a drain electrode (electrode film 63c) is formed on the opposite surface (back surface). It is a point to form.
 図8に示す通り、第3の実施形態のスイッチング素子3は、圧電シート61と半導体基板65が、絶縁部68を介して接続された積層体からなる。 As shown in FIG. 8, the switching element 3 according to the third embodiment includes a stacked body in which a piezoelectric sheet 61 and a semiconductor substrate 65 are connected via an insulating portion 68.
 圧電シート61は、圧電膜62を電極フィルム63a、63bで挟み込んだ構造をとる。圧電シート61の材料および形成方法は、第1の実施形態と同様である。 The piezoelectric sheet 61 has a structure in which a piezoelectric film 62 is sandwiched between electrode films 63a and 63b. The material and forming method of the piezoelectric sheet 61 are the same as those in the first embodiment.
 第3の実施形態の半導体基板65には、n型半導体基板を用いている。半導体基板65は、半導体層60の構成要素となる。半導体層60の内部は、圧電シート61との対向面から順に、N+領域65a、Pbase領域(チャネル層65b)、Nwell領域(基板65)が形成されている。また、N+領域65aおよびチャネル層65bの一部をエッチングして形成した溝と、溝の壁面を覆う酸化膜(絶縁膜67)と、その内部を充填した導電材料よりなる埋め込み配線(ゲート電極64)が形成されている。 An n-type semiconductor substrate is used as the semiconductor substrate 65 of the third embodiment. The semiconductor substrate 65 is a constituent element of the semiconductor layer 60. Inside the semiconductor layer 60, an N + region 65a, a Pbase region (channel layer 65b), and an Nwell region (substrate 65) are formed in this order from the surface facing the piezoelectric sheet 61. Also, a groove formed by etching a part of the N + region 65a and the channel layer 65b, an oxide film (insulating film 67) covering the wall surface of the groove, and a buried wiring (gate electrode) made of a conductive material filling the inside thereof 64) is formed.
 この埋め込み配線がいわゆるゲート電極64となる。ゲート電極64は、半導体基板65の表面の一部で露出している。半導体基板65の表面の一部は、電極バンプ66を介して圧電シート61の外側の電極フィルム63aと電気的に接続される。 This buried wiring becomes a so-called gate electrode 64. The gate electrode 64 is exposed at a part of the surface of the semiconductor substrate 65. A part of the surface of the semiconductor substrate 65 is electrically connected to the electrode film 63 a outside the piezoelectric sheet 61 through the electrode bumps 66.
 以上のような構成の第3の実施形態のスイッチング素子においても、第1の実施形態と同様の作用・効果を得ることができる。 Also in the switching element of the third embodiment having the above-described configuration, it is possible to obtain the same operations and effects as those of the first embodiment.
 また、第1の実施形態のスイッチング素子1では、横型のトランジスタで構成されているため、電流は半導体基板の表面に対して平行な方向に流れる。それに対し、第3の実施形態のスイッチング素子3は、縦型のトランジスタで構成されるため、電流は半導体基板の表面に対して垂直な方向に流れる。すなわち、第3の実施形態では、縦型のトランジスタ構造とすることによって、単位面積当たりのキャリアパスを多くすることができるため、より低いオン抵抗を実現でき、トランジスタによる電力損失をより小さくすることができる。 In addition, since the switching element 1 of the first embodiment is composed of a horizontal transistor, the current flows in a direction parallel to the surface of the semiconductor substrate. On the other hand, since the switching element 3 of the third embodiment is composed of a vertical transistor, the current flows in a direction perpendicular to the surface of the semiconductor substrate. That is, in the third embodiment, since the vertical transistor structure can increase the number of carrier paths per unit area, lower on-resistance can be realized, and power loss due to the transistor can be further reduced. Can do.
 〔第4の実施形態〕図9に、本発明の第4の実施形態に係るスイッチング素子4の断面構造図を示す。 [Fourth Embodiment] FIG. 9 is a sectional structural view of a switching element 4 according to a fourth embodiment of the present invention.
 第1の実施形態との相違点は、第4の実施形態では半導体層としてシリコン系の半導体ではなく、有機系の半導体を用いることである。 The difference from the first embodiment is that in the fourth embodiment, an organic semiconductor is used as a semiconductor layer instead of a silicon semiconductor.
 圧電シート71は、第1の実施形態と同様に、圧電膜72と、電極シート73a,73bからなる。圧電シート71の一端部には、電極フィルム73aと電気的に接続するように形成した導電性の電極バンプ76と、電極バンプ76を取り囲むように形成した絶縁部78を設ける。 The piezoelectric sheet 71 includes a piezoelectric film 72 and electrode sheets 73a and 73b, as in the first embodiment. One end portion of the piezoelectric sheet 71 is provided with a conductive electrode bump 76 formed so as to be electrically connected to the electrode film 73 a and an insulating portion 78 formed so as to surround the electrode bump 76.
 圧電シート71の電極フィルム73b側の面には、電極バンプ76の一部が露出するように、絶縁膜77を形成する。絶縁膜77は、後述する印刷プロセスで形成することが好ましい。 An insulating film 77 is formed on the surface of the piezoelectric sheet 71 on the electrode film 73b side so that a part of the electrode bumps 76 is exposed. The insulating film 77 is preferably formed by a printing process described later.
 絶縁膜77の表面には、例えば印刷工法などによって、ソース電極74aまたはドレイン電極74bとなる金属配線を形成する。その後、金属配線の間に、スクリーン印刷やインクジェット、マイクロコンタクト等の印刷プロセスにより、有機系半導体を塗布して半導体領域75を形成する。 On the surface of the insulating film 77, a metal wiring to be the source electrode 74a or the drain electrode 74b is formed by, for example, a printing method. Thereafter, an organic semiconductor is applied between the metal wirings by a printing process such as screen printing, ink jetting, or microcontact to form the semiconductor region 75.
 ソース電極74aとドレイン電極74bとの間に位置し、圧電シート71に近い側の半導体領域75が、チャネル層75aとして機能する。ソース電極74a、ドレイン電極74b、半導体領域75およびチャネル層75aによって半導体層70が形成される。また、電極フィルム73bのチャネル層75aと対面する部位は、ゲート電極として機能する。このように、有機系半導体を用いたトランジスタ構造を形成することができる。 The semiconductor region 75 located between the source electrode 74a and the drain electrode 74b and close to the piezoelectric sheet 71 functions as the channel layer 75a. The semiconductor layer 70 is formed by the source electrode 74a, the drain electrode 74b, the semiconductor region 75, and the channel layer 75a. Further, the portion of the electrode film 73b that faces the channel layer 75a functions as a gate electrode. As described above, a transistor structure using an organic semiconductor can be formed.
 すなわち、有機系半導体を用いることにより、予め形成した圧電シートと半導体基板を貼り合わせるのではなく、印刷プロセスによって圧電シート71上に直接トランジスタを形成することができる。 That is, by using an organic semiconductor, a transistor can be directly formed on the piezoelectric sheet 71 by a printing process, instead of pasting a previously formed piezoelectric sheet and a semiconductor substrate.
 以上のような構成の第4の実施形態のスイッチング素子においても、第1の実施形態と同様の作用・効果を得ることができる。 Also in the switching element of the fourth embodiment configured as described above, the same operations and effects as those of the first embodiment can be obtained.
 さらに、第4の実施形態では、印刷工程を使用することにより、スイッチング素子の製造コストを低く抑えられる。 Furthermore, in the fourth embodiment, the manufacturing cost of the switching element can be kept low by using the printing process.
 〔第5の実施形態〕図10に、本発明の第5の実施形態に係るスイッチング素子80を用いた回路図を示す。 [Fifth Embodiment] FIG. 10 is a circuit diagram using a switching element 80 according to a fifth embodiment of the present invention.
 第1の実施形態との相違点は、半導体内部または表面に抵抗88、ツェナーダイオード87、デプレッション型のp型MOSFET82が設けられている点である。ツェナーダイオード87とデプレッション型のp型MOSFET82は、圧電素子81とn型MOSFET83のゲート電極との間とGND85との間に接続されている。また、p型MOSFET82のゲート電極とn型MOSFET83のドレイン電極94bが抵抗88を介して接続されている。なお、電源84および抵抗89は、第1の実施形態と同様であるため、説明は省略する。 The difference from the first embodiment is that a resistor 88, a Zener diode 87, and a depletion type p-type MOSFET 82 are provided inside or on the surface of the semiconductor. The zener diode 87 and the depletion type p-type MOSFET 82 are connected between the piezoelectric element 81 and the gate electrode of the n-type MOSFET 83 and between the GND 85. Further, the gate electrode of the p-type MOSFET 82 and the drain electrode 94 b of the n-type MOSFET 83 are connected via a resistor 88. Note that the power supply 84 and the resistor 89 are the same as those in the first embodiment, and thus description thereof is omitted.
 圧電素子81の変形により生じた電荷がn型MOSFET83のゲート電極に蓄積され、マイコン86に信号出力した後、マイコン86の制御によりp型MOSFET82のゲート電極をGND電位に保持すると、p型MOSFET82が動作する。その結果、圧電素子81及びn型MOSFET83のゲート電極に蓄積された電荷をGND85に放出することができる。これにより、n型MOSFET83のゲート電極に電荷が蓄積され、動作が不安定になることを抑制することができる。 After the electric charge generated by the deformation of the piezoelectric element 81 is accumulated in the gate electrode of the n-type MOSFET 83 and a signal is output to the microcomputer 86, the p-type MOSFET 82 is controlled by the microcomputer 86 to hold the gate electrode of the p-type MOSFET 82 at the GND potential. Operate. As a result, charges accumulated in the gate electrodes of the piezoelectric element 81 and the n-type MOSFET 83 can be released to the GND 85. As a result, it is possible to suppress the accumulation of charge in the gate electrode of the n-type MOSFET 83 and the unstable operation.
 続いて、図11に、本発明の第5の実施形態に係るスイッチング素子5の断面構造図を示す。 Subsequently, FIG. 11 shows a sectional structural view of the switching element 5 according to the fifth embodiment of the present invention.
 第5の実施形態の半導体基板95には、p型半導体基板を用いている。半導体基板95は、半導体層90の構成要素となる。 A p-type semiconductor substrate is used as the semiconductor substrate 95 of the fifth embodiment. The semiconductor substrate 95 is a component of the semiconductor layer 90.
 半導体層90は、内部にチャネル層95b(Pwell層の一部)と、Pwell層の内部のN+領域95aを有するn型MOSFET83を備えている。また、N+領域95aの内部には、ソース電極94aまたはドレイン電極94bが設けられている。さらに、半導体層90は、Nbase領域95cを有するp型MOSFET82を備えている。Nbase領域95cは、その内部に、2つのP+領域95d、95eと、N+領域95fと、P-領域95gとを有している。 The semiconductor layer 90 includes an n-type MOSFET 83 having a channel layer 95b (a part of the Pwell layer) and an N + region 95a inside the Pwell layer. A source electrode 94a or a drain electrode 94b is provided inside the N + region 95a. Further, the semiconductor layer 90 includes a p-type MOSFET 82 having an Nbase region 95c. The Nbase region 95c has two P + regions 95d and 95e, an N + region 95f, and a P− region 95g.
 p型MOSFET82において、2つのP+領域95d、95eは、チャネル層となるP-領域95gによって接続されている。また、一方のP+領域95eは、N+領域95fと接しており、その間にはソース電極94dが形成されている。また、他方のP+領域95dにはドレイン電極94cが形成されている。 In the p-type MOSFET 82, the two P + regions 95d and 95e are connected by a P− region 95g serving as a channel layer. One P + region 95e is in contact with the N + region 95f, and a source electrode 94d is formed therebetween. A drain electrode 94c is formed in the other P + region 95d.
 p型MOSFET82を形成するためには、まず、Pwell層内部にNbase領域95cを形成する。次に、Nbase領域95c内部に、P+領域95d、95e、N+領域95f、P-領域95gを形成する。さらに、P+領域95d、95eおよびN+領域95fに埋め込み配線を形成し、これをドレイン電極94c、ソース電極94dとする。 In order to form the p-type MOSFET 82, first, the Nbase region 95c is formed inside the Pwell layer. Next, P + regions 95d and 95e, an N + region 95f, and a P− region 95g are formed in the Nbase region 95c. Further, buried wiring is formed in the P + regions 95d and 95e and the N + region 95f, and these are used as the drain electrode 94c and the source electrode 94d.
 さらに、半導体基板95表面には絶縁層97を介して、ポリシリコンで形成されたゲート電極94e、94fが設けられている。なお、ツェナーダイオード87及び抵抗88は、p型MOSFET82を形成する工程で半導体層90に作り込むことができる。また、抵抗88を設けることが好ましいが、必須の構成ではない。 Furthermore, gate electrodes 94e and 94f made of polysilicon are provided on the surface of the semiconductor substrate 95 via an insulating layer 97. Note that the Zener diode 87 and the resistor 88 can be formed in the semiconductor layer 90 in the process of forming the p-type MOSFET 82. Moreover, although it is preferable to provide the resistor 88, it is not an essential configuration.
 圧電シート91は、圧電膜92を電極フィルム93とゲート電極94eで挟み込んだ構造をとる。圧電シート91の材料および形成方法は、電極フィルム93を一つだけ設けるという点以外は、第1の実施形態と同様である。また、圧電シート91の端部(外側)の電極の一部には、圧電膜92およびゲート電極94eを設けずに、電極バンプ96と、電極バンプ96を囲む絶縁部98が設置されている。 The piezoelectric sheet 91 has a structure in which a piezoelectric film 92 is sandwiched between an electrode film 93 and a gate electrode 94e. The material and the forming method of the piezoelectric sheet 91 are the same as those in the first embodiment except that only one electrode film 93 is provided. In addition, an electrode bump 96 and an insulating portion 98 surrounding the electrode bump 96 are provided on a part of the electrode on the end (outside) of the piezoelectric sheet 91 without providing the piezoelectric film 92 and the gate electrode 94e.
 なお、p型MOSFET82のソース電極94dとn型MOSFET83のゲート電極94eは、図示しないが電気的に接続されている。また、ゲート電極94fは、抵抗88に接続されている。 Note that the source electrode 94d of the p-type MOSFET 82 and the gate electrode 94e of the n-type MOSFET 83 are electrically connected (not shown). The gate electrode 94f is connected to the resistor 88.
 また、半導体基板95において、圧電シート91を形成した面と反対側の面には、保護シート99を設ける。ただし、本実施形態のスイッチング素子5においては、保護シート99は、必ずしも必須の構成ではない。 Further, a protective sheet 99 is provided on the surface of the semiconductor substrate 95 opposite to the surface on which the piezoelectric sheet 91 is formed. However, in the switching element 5 of the present embodiment, the protective sheet 99 is not necessarily an essential configuration.
 以上のような構成の第5の実施形態のスイッチング素子においても、第1の実施形態と同様の作用・効果を得ることができる。 Also in the switching element according to the fifth embodiment having the above-described configuration, the same operations and effects as those in the first embodiment can be obtained.
 また、第5の実施形態のスイッチング素子においては、スイッチング素子の中に2つのMOSFETを形成しているが、同様に3つ以上のMOSFETを形成することもできる。 In the switching element of the fifth embodiment, two MOSFETs are formed in the switching element, but three or more MOSFETs can be formed in the same manner.
 さらに、第5の実施形態では、ダイオード、抵抗、あるいは、コンデンサを半導体層に作り込むことができる。そのため、ダイオードブリッジ回路の様な整流回路や、半波倍整流回路の様な昇圧回路を組み込むことが可能である。 Furthermore, in the fifth embodiment, a diode, a resistor, or a capacitor can be formed in the semiconductor layer. Therefore, it is possible to incorporate a rectifier circuit such as a diode bridge circuit or a booster circuit such as a half wave double rectifier circuit.
 〔第6の実施形態〕図12に、本発明の実施形態に係るスイッチング素子を用いた無線センサの回路図を示す。 [Sixth Embodiment] FIG. 12 shows a circuit diagram of a wireless sensor using a switching element according to an embodiment of the present invention.
 図12に示した第6の実施形態の無線センサは、センサデバイス109と、無線モジュール108と、マイコン106と、電源104と、スイッチングトランジスタ107と、スイッチング素子110とを備えている。抵抗103とスイッチング素子110は、電源104とGND105の間に直列に接続されている。なお、スイッチングトランジスタ107は、スイッチング素子110に含まれるスイッチングトランジスタとは異なるものである。 The wireless sensor according to the sixth embodiment shown in FIG. 12 includes a sensor device 109, a wireless module 108, a microcomputer 106, a power source 104, a switching transistor 107, and a switching element 110. The resistor 103 and the switching element 110 are connected in series between the power supply 104 and the GND 105. Note that the switching transistor 107 is different from the switching transistor included in the switching element 110.
 センサデバイス109は、環境情報を取得する。無線モジュール108は、センサデバイス109で取得した情報を無線で送信する。マイコン106は、無線モジュール108の制御を行う。電源104は、マイコン106や無線モジュール108を起動するための電力を供給する。 The sensor device 109 acquires environmental information. The wireless module 108 wirelessly transmits information acquired by the sensor device 109. The microcomputer 106 controls the wireless module 108. The power source 104 supplies power for starting the microcomputer 106 and the wireless module 108.
 スイッチング素子110の電源104側の電極とマイコン106が接続されている。電源104と、無線モジュール108およびセンサデバイス109の間に、電力供給を制御するスイッチングトランジスタ107が設けられている。スイッチング素子110からの出力により、マイコン106が起動される。 The microcomputer 106 is connected to the electrode on the power supply 104 side of the switching element 110. A switching transistor 107 that controls power supply is provided between the power source 104 and the wireless module 108 and the sensor device 109. The microcomputer 106 is activated by the output from the switching element 110.
 マイコン106が起動されると、マイコン106によりスイッチングトランジスタ107が導通され、無線モジュール108およびセンサデバイス109に電力が供給される。なお、マイコン106の動作は、第1の実施形態と同様である。 When the microcomputer 106 is activated, the switching transistor 107 is turned on by the microcomputer 106 and power is supplied to the wireless module 108 and the sensor device 109. The operation of the microcomputer 106 is the same as that in the first embodiment.
 その際、無線モジュール108は、センサデバイス109が取得した環境情報を、無線センサネットワークの管理装置などに送信する。 At that time, the wireless module 108 transmits the environment information acquired by the sensor device 109 to a management device of the wireless sensor network.
 以上のように、本実施形態の無線センサデバイスを用いれば、圧電素子とスイッチングトランジスタを一つのデバイスとして製造することができるため、誤動作のない信頼性の高いトリガ回路が得られる。 As described above, if the wireless sensor device of this embodiment is used, the piezoelectric element and the switching transistor can be manufactured as one device, so that a highly reliable trigger circuit without malfunction can be obtained.
 なお、第6の実施形態において、本発明のスイッチング素子を用いた無線センサについて記載したが、本発明のスイッチング素子の用途は無線センサに限定されるわけではなく、種々の環境センサなどに適応可能である。 In the sixth embodiment, the wireless sensor using the switching element of the present invention has been described. However, the application of the switching element of the present invention is not limited to the wireless sensor, and can be applied to various environmental sensors. It is.
 以上のように、本発明の実施形態にかかるスイッチング素子を用いれば、圧電素子と、その圧電素子の出力電圧により導通するスイッチングトランジスタを一つのデバイスで実現することができる。そのため、外来ノイズの影響を抑制でき、誤動作のない信頼性の高いトリガ回路を実現することができる。 As described above, if the switching element according to the embodiment of the present invention is used, the piezoelectric element and the switching transistor that is turned on by the output voltage of the piezoelectric element can be realized by one device. Therefore, the influence of external noise can be suppressed, and a highly reliable trigger circuit without malfunction can be realized.
 以上、実施形態及び実施例を参照して本願発明を説明してきたが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiments and examples, the present invention is not limited to the above embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2012年3月21日に出願された日本出願特願2012-63583を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-63583 filed on March 21, 2012, the entire disclosure of which is incorporated herein.
 本発明は、スイッチングトランジスタのゲート電極と圧電素子の電極を一体化したスイッチング素子に関する。特に、圧電素子によって発生した起電力を利用して動作するスイッチング素子およびそれを適用したデバイスに関する。本発明のスイッチング素子は、例えば、無線機能を有する環境センサのトリガ回路などとして用いることができる。 The present invention relates to a switching element in which a gate electrode of a switching transistor and an electrode of a piezoelectric element are integrated. In particular, the present invention relates to a switching element that operates using an electromotive force generated by a piezoelectric element and a device to which the switching element is applied. The switching element of the present invention can be used, for example, as a trigger circuit for an environmental sensor having a wireless function.
 1  スイッチング素子
 10  半導体層
 11  圧電シート
 12  圧電膜
 13a、13b  電極フィルム
 14a  ソース電極
 14b  ドレイン電極
 15  半導体基板
 15a  N+領域
 15b  チャネル層
 16  電極バンプ
 17  絶縁膜
 18  絶縁部
 19  保護フィルム
 20  スイッチングデバイス
 21  筐体
 22  固定部
 23  支持板
 24  錘
 25  配線
 31  圧電素子
 32  n型MOSFET
 33  抵抗
 34  電源
 35  GND
 36  マイコン
 80  スイッチング素子
 81  圧電素子
 82  p型MOSFET
 83  n型MOSFET
 87  ツェナーダイオード
 94c  ドレイン電極
 94d  ソース電極
 94e、94f  ゲート電極
 95a、95f  N+領域
 95b  チャネル層
 95c  Nbase領域
 95d、95e  P+領域
 95g  P-領域
 107  スイッチングトランジスタ
 108  無線モジュール
 109  センサデバイス
 110  スイッチング素子
DESCRIPTION OF SYMBOLS 1 Switching element 10 Semiconductor layer 11 Piezoelectric sheet 12 Piezoelectric film 13a, 13b Electrode film 14a Source electrode 14b Drain electrode 15 Semiconductor substrate 15a N + area | region 15b Channel layer 16 Electrode bump 17 Insulating film 18 Insulating part 19 Protective film 20 Switching device 21 Housing Body 22 Fixed portion 23 Support plate 24 Weight 25 Wiring 31 Piezoelectric element 32 n-type MOSFET
33 Resistor 34 Power supply 35 GND
36 Microcomputer 80 Switching element 81 Piezoelectric element 82 p-type MOSFET
83 n-type MOSFET
87 Zener diode 94c Drain electrode 94d Source electrode 94e, 94f Gate electrode 95a, 95f N + region 95b Channel layer 95c Nbase region 95d, 95e P + region 95g P- region 107 Switching transistor 108 Wireless module 109 Sensor device 110 Switching element

Claims (10)

  1.  圧電素子の電極がスイッチングトランジスタのいずれかの電極を兼ねることを特徴とするスイッチング素子。 A switching element characterized in that the electrode of the piezoelectric element also serves as any electrode of a switching transistor.
  2.  基板と、
     前記基板の一方の面に設けられたソース領域およびドレイン領域と、
     前記基板上に配置された絶縁膜と、
     前記絶縁膜上に配置された第1の電極層と、
     前記第1の電極層上に配置された圧電膜と、
     前記圧電膜上に配置された第2の電極層と、を備えることを特徴とする請求項1に記載のスイッチング素子。
    A substrate,
    A source region and a drain region provided on one surface of the substrate;
    An insulating film disposed on the substrate;
    A first electrode layer disposed on the insulating film;
    A piezoelectric film disposed on the first electrode layer;
    The switching element according to claim 1, further comprising: a second electrode layer disposed on the piezoelectric film.
  3.  前記第2の電極層と、前記ソース電極と、が電極端に接続されていることを特徴とする請求項2に記載のスイッチング素子。 The switching element according to claim 2, wherein the second electrode layer and the source electrode are connected to an electrode end.
  4.  前記ソース領域と、前記ドレイン領域と、前記絶縁膜と、前記第1の電極層と、で形成されるトランジスタが複数配置されていることを特徴とする請求項3に記載のスイッチング素子。 4. The switching element according to claim 3, wherein a plurality of transistors formed of the source region, the drain region, the insulating film, and the first electrode layer are arranged.
  5.  複数の前記トランジスタが並列に接続されていることを特徴とする請求項4に記載のスイッチング素子。 The switching element according to claim 4, wherein a plurality of the transistors are connected in parallel.
  6.  前記圧電膜は、バリウム、チタン、鉛、亜鉛、ジルコニウムおよびニオブからなる群より選ばれた1種以上の金属元素を有する酸化物を含む圧電セラミックスであることを特徴とする請求項2乃至5のいずれか一項に記載のスイッチング素子。 6. The piezoelectric ceramic according to claim 2, wherein the piezoelectric film is a piezoelectric ceramic containing an oxide having one or more metal elements selected from the group consisting of barium, titanium, lead, zinc, zirconium and niobium. The switching element as described in any one.
  7.  前記圧電膜は、少なくともポリフッ化ビニリデンを含む圧電高分子材料であることを特徴とする請求項2乃至5のいずれか一項に記載のスイッチング素子。 The switching element according to any one of claims 2 to 5, wherein the piezoelectric film is a piezoelectric polymer material containing at least polyvinylidene fluoride.
  8.  請求項5に記載のスイッチング素子において、
     前記基板には、ツェナーダイオードおよび電界効果トランジスタが設けられ、
     前記ツェナーダイオードおよび前記電界効果トランジスタの一方の端子は前記第1の電極層と接続され、他方の端子は電源端に接続されることを特徴とするスイッチング素子。
    The switching element according to claim 5, wherein
    The substrate is provided with a Zener diode and a field effect transistor,
    One terminal of the Zener diode and the field effect transistor is connected to the first electrode layer, and the other terminal is connected to a power supply terminal.
  9.  請求項1乃至8のいずれか一項に記載のスイッチング素子と、
     情報を取得するセンサデバイスと、
     前記センサデバイスで取得した情報を無線で送信する無線モジュールと、
     前記センサデバイスおよび前記無線モジュールを制御するマイコンと、
     前記センサデバイス、前記無線モジュールおよび前記マイコンを起動するための電源と、
     前記電源から前記無線モジュールおよび前記センサデバイスへの電力供給を制御するスイッチングトランジスタと、を備え、
     前記スイッチング素子からの出力により起動されたマイコンにより前記スイッチングトランジスタが導通され、前記無線モジュールおよび前記センサデバイスに電力供給されることを特徴とする無線センサデバイス。
    The switching element according to any one of claims 1 to 8,
    A sensor device for obtaining information;
    A wireless module that wirelessly transmits information acquired by the sensor device;
    A microcomputer for controlling the sensor device and the wireless module;
    A power source for activating the sensor device, the wireless module and the microcomputer;
    A switching transistor for controlling power supply from the power source to the wireless module and the sensor device,
    A wireless sensor device, wherein the switching transistor is turned on by a microcomputer activated by an output from the switching element, and power is supplied to the wireless module and the sensor device.
  10.  基板と、
     前記基板上に配置された拡散領域と、
     前記拡散領域上に配置された絶縁膜と、
     前記絶縁膜上に配置された圧電素子と、を備えることを特徴とするスイッチング素子。
    A substrate,
    A diffusion region disposed on the substrate;
    An insulating film disposed on the diffusion region;
    And a piezoelectric element disposed on the insulating film.
PCT/JP2013/001692 2012-03-21 2013-03-14 Switching element and device using same WO2013140759A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-063583 2012-03-21
JP2012063583 2012-03-21

Publications (1)

Publication Number Publication Date
WO2013140759A1 true WO2013140759A1 (en) 2013-09-26

Family

ID=49222241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001692 WO2013140759A1 (en) 2012-03-21 2013-03-14 Switching element and device using same

Country Status (1)

Country Link
WO (1) WO2013140759A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578362A (en) * 2015-01-21 2015-04-29 广东顺德中山大学卡内基梅隆大学国际联合研究院 Vibration energy collection device
EP3627704A1 (en) * 2018-09-20 2020-03-25 Boréas Technologies Inc. Zero-power wake-up sensing circuit in piezoelectric haptic feedback

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139472A (en) * 1995-11-10 1997-05-27 Nec Corp Ferroelectric memory
JP2005294300A (en) * 2004-03-31 2005-10-20 Univ Of Tokyo Non-single crystal transistor integrated circuit and its manufacturing method
JP2006140271A (en) * 2004-11-11 2006-06-01 Toshiba Corp Semiconductor apparatus
JP2007310177A (en) * 2006-05-18 2007-11-29 Fdk Corp Spatial light modulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139472A (en) * 1995-11-10 1997-05-27 Nec Corp Ferroelectric memory
JP2005294300A (en) * 2004-03-31 2005-10-20 Univ Of Tokyo Non-single crystal transistor integrated circuit and its manufacturing method
JP2006140271A (en) * 2004-11-11 2006-06-01 Toshiba Corp Semiconductor apparatus
JP2007310177A (en) * 2006-05-18 2007-11-29 Fdk Corp Spatial light modulator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578362A (en) * 2015-01-21 2015-04-29 广东顺德中山大学卡内基梅隆大学国际联合研究院 Vibration energy collection device
EP3627704A1 (en) * 2018-09-20 2020-03-25 Boréas Technologies Inc. Zero-power wake-up sensing circuit in piezoelectric haptic feedback
CN110928405A (en) * 2018-09-20 2020-03-27 波瑞阿斯技术公司 Zero power wake-up sensing circuit in piezoelectric haptic feedback
KR20200033750A (en) * 2018-09-20 2020-03-30 보레어스 테크놀로지스 인크. Zero-Power Wake-up Sensing Circuit in Piezoelectric Haptic Feedback
US11302859B2 (en) 2018-09-20 2022-04-12 Boréas Technologies Inc. Zero-power wake-up sensing circuit in piezoelectric haptic feedback
KR102511129B1 (en) 2018-09-20 2023-03-15 보레어스 테크놀로지스 인크. Zero-Power Wake-up Sensing Circuit in Piezoelectric Haptic Feedback
JP7467053B2 (en) 2018-09-20 2024-04-15 ボレアス テクノロジーズ インコーポレイテッド A Zero-Power Wake-Up Detection Circuit for Piezoelectric Haptic Feedback

Similar Documents

Publication Publication Date Title
TWI813633B (en) Piezoelectric micromachined ultrasound transducer device
CN108376686B (en) Array substrate, manufacturing method thereof and display device
JP5044196B2 (en) Piezoelectric sensor and manufacturing method thereof
US9370116B2 (en) Display device
WO2011045836A1 (en) Sensor device and method for fabricating sensor device
KR101366735B1 (en) Power generating device and power generating module using same
EP2562837A1 (en) Ferroelectric device
US20130285507A1 (en) Vibration power generating element and vibration power generating device using same
EP1251558A8 (en) Semiconductor device
WO2011122345A1 (en) Pressure detection device and manufacturing method of same, display device and manufacturing method of same, and tft substrate with pressure detection device
KR20180082976A (en) Touch display device
CN107340927B (en) Display panel and display device
CN110536082B (en) Active pixel sensing circuit, active pixel sensing sensor, display panel and device
WO2014199583A1 (en) Infrared sensor
WO2013140759A1 (en) Switching element and device using same
JP2004251742A (en) Sensor device
JP2015100886A (en) Electronic device and electronic equipment
JP5147033B2 (en) Sensor, sensor array, current measuring device
US20220098030A1 (en) Sensor with integrated heater
JP3146054U (en) Power generation sheet
WO2021081925A1 (en) Organic light-emitting diode display substrate and manufacturing method therefor, and display apparatus
JP6155648B2 (en) Piezoresistive element and semiconductor sensor
JP2012173156A (en) Infrared sensor module
JP6106840B2 (en) PZT device
JP2010232567A (en) Semiconductor integrated device, and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13763931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP