WO2013140690A1 - Measurement probe and bio-optical measurement system - Google Patents

Measurement probe and bio-optical measurement system Download PDF

Info

Publication number
WO2013140690A1
WO2013140690A1 PCT/JP2012/082944 JP2012082944W WO2013140690A1 WO 2013140690 A1 WO2013140690 A1 WO 2013140690A1 JP 2012082944 W JP2012082944 W JP 2012082944W WO 2013140690 A1 WO2013140690 A1 WO 2013140690A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
measurement
fiber
light
bio
Prior art date
Application number
PCT/JP2012/082944
Other languages
French (fr)
Japanese (ja)
Inventor
後野 和弘
至峰 小林
健二 上村
武志 菅
正弘 片倉
遼佑 伊藤
Original Assignee
オリンパスメディカルシステムズ株式会社
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社, オリンパス株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Publication of WO2013140690A1 publication Critical patent/WO2013140690A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • A61B1/00167Details of optical fibre bundles, e.g. shape or fibre distribution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres

Definitions

  • the present invention relates to a measurement probe used for optical measurement of biological tissue and a biological optical measurement system to which the measurement probe is connected.
  • a biological optical measurement apparatus that irradiates a living tissue with illumination light and estimates the properties of the living tissue based on the measurement value of the detection light reflected or scattered from the living tissue.
  • the bio-optical measurement device is used in combination with an endoscope for observing an organ such as a digestive organ.
  • an endoscope for observing an organ such as a digestive organ.
  • low coherence white light with a short spatial coherence length is irradiated onto the living tissue from the tip of the illumination fiber of the measurement probe, and the intensity distribution of scattered light at a plurality of angles is measured using a plurality of light receiving fibers.
  • a bio-optical measurement device using LEBS (Low-Coherence Enhanced Backscattering) that detects the properties of a living tissue by measurement is proposed (see Patent Document 1).
  • each of a plurality of optical fibers has to be arranged at an appropriate position.
  • the fiber bundle is different from the arrangement of the plurality of optical fibers on the end face of the proximal end portion and the arrangement of the plurality of optical fibers on the end face of the distal end portion.
  • the fiber bundle is a light guide.
  • the biological optical measurement system supplies the illumination light to the measurement probe described above and the measurement probe, and is a return light of the illumination light emitted from the measurement probe, which is reflected by the biological tissue. And / or an optical measurement device that receives scattered return light and performs optical measurement of the living tissue.
  • FIG. 1 is a block diagram schematically showing a configuration of a biological optical measurement system according to an embodiment of the present invention.
  • FIG. 2 is an enlarged schematic view of the main part of the measurement probe of the biological optical measurement system according to the embodiment of the present invention.
  • FIG. 3 is a block diagram schematically showing the configuration of the bio-optical measurement system according to the first modification of the embodiment of the present invention.
  • FIG. 4 is a block diagram schematically showing the configuration of the bio-optical measurement system according to the second modification of the embodiment of the present invention.
  • FIG. 1 is a block diagram schematically showing a configuration of a biological optical measurement system according to an embodiment of the present invention.
  • a bio-optical measurement system 1 shown in FIG. 1 includes a bio-optical measurement apparatus 2 that performs optical measurement on a measurement object such as a biological tissue that is a scatterer to detect the property (characteristic) of the measurement object, and bio-optics. And a measurement probe 3 for measurement that is detachably attached to the measurement apparatus 2 and is inserted into the subject.
  • the measurement object is a living tissue, blood flow, organ such as stomach or pancreas, mucous membrane, and the like.
  • the bio-optical measurement device 2 includes a power source 20, a light source unit 21, a light receiving unit 22, an input unit 23, an output unit 24, a recording unit 25, a connection unit 26, and a control unit 27.
  • the power supply 20 supplies power to each component of the biological optical measurement device 2.
  • the light source unit 21 supplies illumination light to the measurement probe 3 connected to the biological optical measurement device 2.
  • the light source unit 21 includes a light source 211 and an optical system 212.
  • the light source 211 is configured using an incoherent light source such as a white LED (Light Emitting Diode), a xenon lamp, a tungsten lamp, or a halogen lamp.
  • the light source 211 supplies incoherent light having at least one spectral component irradiated to the measurement object via the optical system 212 to an illumination fiber of the measurement probe 3 described later.
  • the optical system 212 transmits the illumination light irradiated by the light source 211 and the collimating lens 212a that collimates the illumination light irradiated by the light source 211, and from the measurement object received by the light receiving fiber of the measurement probe 3 described later.
  • a half mirror 212 b that reflects the return light to the light receiving unit 22, and a condenser lens 212 c that condenses the illumination light irradiated by the light source 211 at the emission position P ⁇ b> 1 from which the biological optical measurement device 2 exits.
  • the light receiving unit 22 receives and measures the light emitted from the measurement probe 3 and reflected and / or scattered by the measurement object.
  • the light receiving unit 22 includes a condenser lens 221 and an optical sensor unit 222.
  • the condensing lens 221 condenses the return light from the measurement probe 3 reflected by the half mirror 212 b of the light source unit 21 and emits it to the optical sensor unit 222.
  • the optical sensor unit 222 is configured using a detector, a spectroscope, or the like, and measures the spectral component and intensity distribution of the return light incident from the light receiving fiber of the measurement probe 3 via the condenser lens 221 to measure each wavelength. Measure.
  • the optical sensor unit 222 is appropriately provided according to the number of light receiving fibers of the measurement probe 3 described later.
  • the input unit 23 is realized by using a push-type switch, a keyboard, a touch panel, and the like, and receives an input of an activation signal for instructing activation of the biological optical measurement device 2 or an instruction signal for instructing various other operations, and is a control unit To 27.
  • the output unit 24 is realized by using a liquid crystal or organic EL (Electro Luminescence) display display, a speaker, and the like, and outputs information related to various processes in the biological optical measurement system 1.
  • a liquid crystal or organic EL (Electro Luminescence) display display a liquid crystal or organic EL (Electro Luminescence) display display, a speaker, and the like, and outputs information related to various processes in the biological optical measurement system 1.
  • the recording unit 25 is realized by using a volatile memory or a non-volatile memory, and records various programs for operating the biological optical measurement device 2, various data used for optical measurement processing, and various parameters.
  • the recording unit 25 temporarily records information being processed by the biological optical measurement device 2.
  • the recording unit 25 records the measurement result of the biological optical measurement device 2.
  • the recording unit 25 may be configured using a memory card or the like attached from the outside of the bio-optical measurement device 2.
  • connection part 26 is detachably connected to a connector part of the measurement probe 3 described later.
  • the connection unit 26 supplies illumination light emitted from the light source unit 21 to the measurement probe 3 and emits return light of the measurement object emitted from the measurement probe 3 to the light receiving unit 22.
  • the connection unit 26 outputs information related to whether or not the measurement probe 3 is connected to the control unit 27.
  • the control unit 27 is configured using a CPU (Central Processing Unit) or the like.
  • the control unit 27 controls the processing operation of each unit of the biological optical measurement device 2.
  • the control unit 27 controls the operation of the bio-optical measurement device 2 by transferring instruction information and data for each component of the bio-optical measurement device 2.
  • the control unit 27 records the measurement result by the light receiving unit 22 in the recording unit 25.
  • the control unit 27 includes a calculation unit 271.
  • the calculation unit 271 performs a plurality of calculation processes based on the measurement result by the light receiving unit 22 and calculates characteristic values related to the properties of the measurement object.
  • the type of the characteristic value is set according to an instruction signal received by the input unit 23, for example.
  • the measurement probe 3 is composed of a fiber bundle composed of a plurality of optical fibers.
  • the measurement probe 3 is configured using a light guide or a random fiber (excluding an image fiber) in which a plurality of optical fibers are irregularly bundled.
  • the light guide differs in the arrangement position (spatial arrangement) of each optical fiber between the end face of the base end portion of the fiber bundle and the end face of the tip end portion of the fiber bundle.
  • the measurement probe 3 is detachably connected to the connection portion 26 of the bio-optical measurement device 2, and includes a connector portion 31 that accommodates the proximal end portion 301a of the fiber bundle 300, a flexible portion 32 having flexibility, and a light source portion.
  • 21 has a distal end portion 33 that emits illumination light supplied from 21 and receives return light from the measurement object, and an optical element 34 that is detachably provided at the distal end portion 33.
  • FIG. 2 is an enlarged schematic view of the main part of the measurement probe 3.
  • the measurement probe 3 includes a fiber bundle 300.
  • the fiber bundle 300 includes an illumination fiber 311 that irradiates the measurement object with illumination light, a first light reception fiber 312 (first light reception channel) and a second light reception fiber 313 (return light from the measurement object that is incident at different angles.
  • the second light receiving channel) and the third light receiving fiber 314 and a plurality of other optical fibers 315 are irregularly bundled.
  • the illumination fiber 311, the first light receiving fiber 312, the second light receiving fiber 313, the third light receiving fiber 314, and the other optical fibers 315 are covered with a covering member 36 for light shielding and scratch prevention.
  • the measurement probe 3 has an illumination fiber 311, a first light receiving fiber 312, a second light receiving fiber 313, a third light beam at a position on the end surface 33 a of the distal end portion 33 and a position on the end surface 321 a of the proximal end portion 321.
  • the arrangement positions of the light receiving fiber 314 and the other optical fibers 315 are different.
  • the illumination light from the light source unit 21 is imaged on the end surface 33 a of the distal end portion 33 of the illumination fiber 311 in the measurement probe 3 through the optical system 212. Therefore, for example, even if the illumination light is imaged at the position of the optical fiber 315b shown in FIG.
  • a part of the illumination light irradiated from the optical fiber 315b is vignetted on the side surface 34b of the optical element 34.
  • the measurement probe 3 decreases the amount of light applied to the measurement object, and as a result, the signal quality (SN) also decreases.
  • the irradiation region R1 of the optical fiber 315 that relays and emits the illumination light emitted from the biological optical measurement device 2 and the irradiation region at the tip of the optical element 34
  • a base end portion 315a of the optical fiber 315 in which R1 is smaller than the area R2 of the end surface 34a at the tip end of the optical element 34 is disposed at a position P2 facing the emission position P1 of the illumination light in the biological optical measurement device 2 (see FIG. 1). reference).
  • the measurement probe 3 uses, as the illumination fiber 311, an optical fiber 315 disposed at a position P ⁇ b> 2 facing the emission position P ⁇ b> 1 where the illumination light in the biological optical measurement device 2 is collected and emitted to the outside.
  • the illumination fiber 311 has several numbers if the light incident from the biological optical measurement device 2 is emitted from the vicinity of the center of the end surface 33a of the fiber bundle 300 of the measurement probe 3 and is not vignetted by the side surface 34b of the optical element 34.
  • the position can be changed as appropriate.
  • the number and position of the illumination fibers 311 can be changed as appropriate according to the length of the optical element 34 if the side surfaces 34b of the optical element 34 are not vignetted.
  • the illumination fiber 311 propagates the illumination light supplied from the light source unit 21 and irradiates the measurement object with the illumination light via the optical element 34. Note that the number of illumination fibers 311 can be appropriately changed according to the inspection item and the type of measurement object, for example, blood flow, stomach, pancreas, or the like.
  • the optical element 34 is formed to be able to irradiate light in a state where the distance between the illumination fiber 311 and the measurement object is fixed and the spatial coherent length is reliably fixed.
  • the optical element 34 fixes the distance between the first light receiving fiber 312 and the measurement object, the distance between the second light receiving fiber 313 and the measurement object, and the distance between the third light receiving fiber 314 and the measurement object, respectively. It is formed so that return light having a scattering angle can be received stably.
  • the surface of the measurement object is flattened by the end face 34a of the optical element 34, the measurement object can be measured without being affected by the uneven shape of the surface of the measurement object.
  • the measurement probe 3 is inserted into the subject via the treatment instrument channel provided in the endoscope apparatus (endoscope scope) of the endoscope system, and illumination is performed.
  • the fiber 311 irradiates the measurement object with illumination light
  • the first light receiving fiber 312, the second light receiving fiber 313, and the third light receiving fiber 314 receive the return light from the measurement object, respectively, and receive the light from the bio-optical measurement device 2.
  • the calculation unit 271 measures the property of the measurement object based on the measurement result of the light receiving unit 22.
  • the irradiation region R1 of the optical fiber 315 emitted when the illumination light emitted by the biological optical measurement device 2 is relayed is optical.
  • a position P2 of the base end portion 315a of the optical fiber 315 in which the irradiation region R1 at the tip of the element 34 is smaller than the area R2 of the end face 34a of the tip of the optical element 34 is opposed to the illumination light emission position P1 in the bio-optical measurement device 2. Therefore, it is possible to accurately irradiate the measurement object with the illumination light without reducing the yield.
  • the spatial layout (arrangement) of optical fibers can be easily adjusted in order to obtain predetermined characteristics even if the measurement probe 3 is constituted by a fiber bundle.
  • the manufacturing cost can be greatly reduced.
  • the measurement probe 3 is composed of a general-purpose light guide, the manufacturing cost can be greatly reduced.
  • FIG. 3 is a block diagram schematically showing the configuration of the biological optical measurement system according to the first modification of the embodiment of the present invention.
  • symbol is attached
  • the bio-optical measurement system 100 shown in FIG. 3 includes a bio-optical measurement device 110 that performs optical measurement on a measurement object and detects the property of the measurement object, and the measurement probe 3.
  • the light source unit 111 supplies illumination light to the measurement probe 3 connected to the biological optical measurement device 110 via the optical fiber 111a.
  • the light source unit 111 is configured using a white LED.
  • the light source unit 111 emits incoherent light having at least one spectral component irradiated to the measurement object via the optical fiber 111a to the emission position P1, and supplies the incoherent light to the illumination fiber 311 of the measurement probe 3.
  • the light receiving unit 112 receives the return light from the measurement object, which is light emitted from the measurement probe 3 through the optical fiber 112a.
  • the light receiving unit 112 is configured using a spectroscope or the like.
  • the light receiving unit 112 outputs the measurement result to the control unit 27.
  • the measurement probe 3 is inserted into the subject via the treatment instrument channel provided in the endoscope apparatus of the endoscope system, and the light source is transmitted via the optical fiber 111a.
  • Illumination light irradiated by the unit 111 is supplied to the illumination fiber 311, the illumination fiber 311 irradiates the measurement object with illumination light, and the first light receiving fiber 312, the second light receiving fiber 313, and the third light receiving fiber 314 are measured.
  • the return light from the object is received and propagated to the light receiving unit 112 of the biological optical measurement device 110.
  • the calculation unit 271 measures the property of the measurement object based on the measurement result of the light receiving unit 1122.
  • the measurement probe 3 is an irradiation region R1 of the optical fiber 315 emitted when the illumination light emitted from the biological optical measurement device 110 is relayed among the plurality of optical fibers 315, and is irradiated at the tip of the optical element 34.
  • the base end portion 315a of the optical fiber 315 in which the region R1 is smaller than the area R2 of the end surface 34a at the tip end of the optical element 34 is disposed at a position P2 that faces the emission position P1 of the illumination light in the bio-optical measurement device 2.
  • the incident position P2 of the illumination light of the illumination fiber 311 in the fiber bundle 300 is easily set with respect to the emission position P1 of the illumination light emitted from the light source unit 111. Can match. Furthermore, the same effects as those of the above-described embodiment are obtained.
  • FIG. 4 is a block diagram schematically showing the configuration of the biological optical measurement system 200 according to the second modification of the embodiment of the present invention.
  • symbol is attached
  • the bio-optical measurement system 200 shown in FIG. 4 includes a bio-optical measurement device 210 that performs optical measurement on a measurement object and detects the property of the measurement object, and the measurement probe 3.
  • the bio-optical measurement device 210 includes a power source 20, an input unit 23, an output unit 24, a recording unit 25, a control unit 27, a light source unit 231, a light source unit 232, a half mirror 233, and a light receiving unit 244. .
  • the light source unit 231 supplies illumination light to the measurement probe 3 connected to the biological optical measurement device 210 via the half mirror 233 and the optical fiber 231a.
  • the light source unit 231 is configured using, for example, a blue LED.
  • the light source unit 231 supplies incoherent light having at least one spectral component that irradiates the measurement object via the optical fiber 231a to the emission position P1, thereby supplying the light to the illumination fiber 311 of the measurement probe 3.
  • the light source unit 232 supplies illumination light to the measurement probe 3 connected to the biological optical measurement device 210 via the half mirror 233 and the optical fiber 231a.
  • the light source unit 232 is configured using, for example, a green LED.
  • the light source unit 232 emits incoherent light having at least one spectral component to be irradiated onto the measurement object via the optical fiber 231a to the emission position P1, thereby supplying the illumination fiber 311 of the measurement probe 3.
  • the half mirror 233 transmits the illumination light emitted from the light source unit 231 and reflects the illumination light emitted from the light source unit 232 toward the connection unit 26.
  • the light receiving unit 234 receives the return light from the measurement object, which is the light emitted from the measurement probe 3 through the optical fiber 234a.
  • the light receiving unit 234 is configured using a spectroscope or the like.
  • the light receiving unit 234 outputs the measurement result to the control unit 27.
  • the measurement probe 3 is inserted into the subject via the treatment instrument channel provided in the endoscope apparatus of the endoscope system, and the light source is transmitted via the optical fiber 231a.
  • Illumination light emitted from the unit 231 and the light source unit 232 is supplied to the illumination fiber 311, and the illumination fiber 311 irradiates the measurement object with illumination light, and the first light receiving fiber 312, the second light receiving fiber 313, and the third light receiving fiber 314.
  • the calculation unit 271 measures the property of the measurement object based on the measurement result of the light receiving unit 234.
  • the measurement probe 3 is the irradiation region R1 of the optical fiber 315 that relays and emits the illumination light emitted from the biological optical measurement device 210 among the plurality of optical fibers 315, and the irradiation region at the tip of the optical element 34. Since the base end portion 315a of the optical fiber 315 in which R1 is smaller than the area R2 of the end surface 34a at the tip end of the optical element 34 is disposed at the position P2 facing the emission position P1 of the illumination light in the bio-optical measurement device 2, transmission characteristics In addition, the illumination fiber 311 can be easily aligned without reducing the yield.
  • the illumination light of the illumination fiber 311 in the fiber bundle 300 is incident on the emission position P1 of the illumination light emitted from the light source unit 231 and the light source unit 232.
  • the position P2 can be easily matched. Furthermore, the same effects as those of the above-described embodiment are obtained.
  • the return light having a specific wavelength region can be measured by controlling the lighting of the light source unit 232 according to the measurement object.
  • two light source units are provided, but three light source units (red LED, blue LED, green LED) may be provided. Accordingly, white illumination light can be supplied to the measurement probe 3, and return light having a specific wavelength range can be measured by controlling lighting of each light source unit.
  • a condensing lens and a collimating lens may be provided as appropriate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Provided are a measurement probe and bio-optical measurement system making it possible to precisely irradiate living tissue with illumination light without diminishing yield. A measurement probe (3) provided with: a fiber bundle (300) constituted of a plurality of optical fibers (315) bundled together; an optical element (34) for maintaining a constant distance between a biological tissue and an end surface of the fiber bundle (300), the optical element (34) being provided to the distal end section of the fiber bundle (300); and a connector section (31) for housing the proximal end section of the fiber bundle (300), the connector section (31) being detachably connected to a bio-optical measurement device for supplying an illumination light to the biological tissue and running optical measurements; wherein proximal end sections (315a) of those optical fibers (315) where an irradiation region of the optical fibers (315) through which the illumination light emitted by the bio-optical measurement device is relayed and emitted, the irradiation region being at the distal end of the optical element (34), is smaller than the surface area of the distal end are arranged at a position facing the position of emission of the illumination light in the bio-optical measurement device.

Description

測定プローブおよび生体光学測定システムMeasuring probe and bio-optical measurement system
 本発明は、生体組織の光学測定を行う際に用いられる測定プローブおよび該測定プローブが接続される生体光学測定システムに関する。 The present invention relates to a measurement probe used for optical measurement of biological tissue and a biological optical measurement system to which the measurement probe is connected.
 近年、生体組織に照明光を照射し、生体組織から反射または散乱された検出光の測定値に基づいて、生体組織の性状を推定する生体光学測定装置が知られている。生体光学測定装置は、消化器等の臓器を観察する内視鏡と組み合わせて使用される。このような生体光学測定装置として、空間コヒーレンス長の短い低コヒーレントの白色光を測定プローブの照明ファイバ先端から生体組織に照射し、複数の角度の散乱光の強度分布を複数の受光ファイバを用いて測定することによって、生体組織の性状を検出するLEBS(Low-Coherence Enhanced Backscattering)を用いた生体光学測定装置が提案されている(特許文献1参照)。 2. Description of the Related Art In recent years, a biological optical measurement apparatus that irradiates a living tissue with illumination light and estimates the properties of the living tissue based on the measurement value of the detection light reflected or scattered from the living tissue is known. The bio-optical measurement device is used in combination with an endoscope for observing an organ such as a digestive organ. As such a bio-optical measurement device, low coherence white light with a short spatial coherence length is irradiated onto the living tissue from the tip of the illumination fiber of the measurement probe, and the intensity distribution of scattered light at a plurality of angles is measured using a plurality of light receiving fibers. A bio-optical measurement device using LEBS (Low-Coherence Enhanced Backscattering) that detects the properties of a living tissue by measurement is proposed (see Patent Document 1).
特表2009-537014号公報Special table 2009-537014
 ところで、上述した技術では、測定プローブを作成する際に照明光を精度よく生体組織に照射するため、複数の光ファイバそれぞれを適切な位置に配置しなければならなかった。しかしながら、各光ファイバを適切な位置に精度よく配置することが難しく、歩留まりが悪いという問題点があった。 By the way, in the above-described technique, in order to accurately irradiate a living tissue with illumination light when creating a measurement probe, each of a plurality of optical fibers has to be arranged at an appropriate position. However, there is a problem that it is difficult to accurately arrange each optical fiber at an appropriate position and the yield is poor.
 本発明は、上記に鑑みてなされたものであって、歩留まりを低下させることなく、照明光を生体組織に精度よく照射することができる測定プローブおよび生体光学測定システムを提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a measurement probe and a bio-optical measurement system that can accurately irradiate a living tissue with illumination light without reducing the yield. .
 上述した課題を解決し、目的を達成するために、本発明にかかる測定プローブは、複数の光ファイバを束ねることによって構成されるファイババンドルと、該ファイババンドルの先端部に設けられ、該ファイババンドルの端面と生体組織との距離を一定にするための光学素子と、前記生体組織に対して照明光を供給して光学測定を行う生体光学測定装置に対して着脱自在に接続され、前記ファイババンドルの基端部を収容するコネタク部と、を備えた測定プローブであって、前記複数の光ファイバのうち、前記生体光学測定装置が出射する照明光を中継して出射する光ファイバの照射領域であって前記光学素子の先端における照射領域が該先端の面積よりも小さい光ファイバの基端部を、前記生体光学測定装置における前記照明光の出射位置と対向する位置に配置したことを特徴とする。 In order to solve the above-described problems and achieve the object, a measurement probe according to the present invention is provided with a fiber bundle configured by bundling a plurality of optical fibers, and provided at a tip portion of the fiber bundle. An optical element for making the distance between the end face of the living body and the living tissue constant, and a biological optical measuring device that supplies optical light to the living tissue to perform optical measurement, and is detachably connected to the fiber bundle. A measuring probe including a base end portion of the plurality of optical fibers, in an irradiation region of the optical fiber that relays and emits the illumination light emitted by the bio-optical measurement device among the plurality of optical fibers. A base end portion of an optical fiber in which an irradiation region at the tip of the optical element is smaller than an area of the tip; Characterized in that arranged in opposite positions with.
 また、本発明にかかる測定プローブは、上記発明において、前記ファイババンドルは、基端部の端面における前記複数の光ファイバの配置と先端部の端面における前記複数の光ファイバの配置とが異なることを特徴とする。 Further, in the measurement probe according to the present invention, in the above invention, the fiber bundle is different from the arrangement of the plurality of optical fibers on the end face of the proximal end portion and the arrangement of the plurality of optical fibers on the end face of the distal end portion. Features.
 また、本発明にかかる測定プローブは、上記発明において、前記ファイババンドルは、ライトガイドであることを特徴とする。 In the measurement probe according to the present invention as set forth in the invention described above, the fiber bundle is a light guide.
 また、本発明にかかる生体光学測定システムは、上述した測定プローブと、前記測定プローブに照明光を供給するとともに、前記測定プローブから出射された照明光の戻り光であって、前記生体組織で反射および/または散乱した戻り光を受光して前記生体組織の光学測定を行う光学測定装置と、を備えたことを特徴とする。 The biological optical measurement system according to the present invention supplies the illumination light to the measurement probe described above and the measurement probe, and is a return light of the illumination light emitted from the measurement probe, which is reflected by the biological tissue. And / or an optical measurement device that receives scattered return light and performs optical measurement of the living tissue.
 本発明によれば、複数の光ファイバのうち、生体光学測定装置が出射する照明光を中継して出射する光ファイバの照射領域であって光学素子の先端における照射領域が該先端の面積よりも小さい光ファイバの基端部を、生体光学測定装置における照明光の出射位置と対向する位置に配置したので、歩留まりを低下させることなく、照明光を生体組織に精度よく照射することができるという効果を奏する。 According to the present invention, among the plurality of optical fibers, the irradiation region of the optical fiber that relays and emits the illumination light emitted from the biological optical measurement device, and the irradiation region at the tip of the optical element is larger than the area of the tip. Since the proximal end portion of the small optical fiber is disposed at a position facing the emission position of the illumination light in the biological optical measurement apparatus, the illumination light can be irradiated onto the living tissue with high accuracy without reducing the yield. Play.
図1は、本発明の一実施の形態にかかる生体光学測定システムの構成を模式的に示すブロック図である。FIG. 1 is a block diagram schematically showing a configuration of a biological optical measurement system according to an embodiment of the present invention. 図2は、本発明の一実施の形態にかかる生体光学測定システムの測定プローブの要部を拡大した模式図である。FIG. 2 is an enlarged schematic view of the main part of the measurement probe of the biological optical measurement system according to the embodiment of the present invention. 図3は、本発明の一実施の形態の変形例1にかかる生体光学測定システムの構成を模式的に示すブロック図である。FIG. 3 is a block diagram schematically showing the configuration of the bio-optical measurement system according to the first modification of the embodiment of the present invention. 図4は、本発明の一実施の形態の変形例2にかかる生体光学測定システムの構成を模式的に示すブロック図である。FIG. 4 is a block diagram schematically showing the configuration of the bio-optical measurement system according to the second modification of the embodiment of the present invention.
 以下、図面を参照して、本発明にかかる測定プローブおよび生体光学測定システムの好適な実施の形態を詳細に説明する。なお、この実施の形態によってこの発明が限定されるものではない。また、図面の記載において、同一の部分には同一の符号を付して説明する。また、図面は、模式的なものであり、各部材の厚みと幅との関係、各部材の比率等は、現実と異なることに留意する必要がある。また、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれる。 Hereinafter, preferred embodiments of a measurement probe and a bio-optical measurement system according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments. In the description of the drawings, the same portions are denoted by the same reference numerals for description. Further, the drawings are schematic, and it is necessary to note that the relationship between the thickness and width of each member, the ratio of each member, and the like are different from actual ones. Moreover, the part from which the relationship and ratio of a mutual dimension differ also in between drawings is contained.
 図1は、本発明の一実施の形態にかかる生体光学測定システムの構成を模式的に示すブロック図である。図1に示す生体光学測定システム1は、散乱体である生体組織等の測定対象物に対して光学測定を行って測定対象物の性状(特性)を検出する生体光学測定装置2と、生体光学測定装置2に着脱自在であり、被検体内に挿入される測定用の測定プローブ3と、を備える。ここで、測定対象物とは、生体組織、血流、胃や膵臓等の臓器および粘膜等である。 FIG. 1 is a block diagram schematically showing a configuration of a biological optical measurement system according to an embodiment of the present invention. A bio-optical measurement system 1 shown in FIG. 1 includes a bio-optical measurement apparatus 2 that performs optical measurement on a measurement object such as a biological tissue that is a scatterer to detect the property (characteristic) of the measurement object, and bio-optics. And a measurement probe 3 for measurement that is detachably attached to the measurement apparatus 2 and is inserted into the subject. Here, the measurement object is a living tissue, blood flow, organ such as stomach or pancreas, mucous membrane, and the like.
 まず、生体光学測定装置2について説明する。生体光学測定装置2は、電源20と、光源部21と、受光部22と、入力部23と、出力部24と、記録部25と、接続部26と、制御部27と、を備える。電源20は、生体光学測定装置2の各構成に電力を供給する。 First, the biological optical measurement device 2 will be described. The bio-optical measurement device 2 includes a power source 20, a light source unit 21, a light receiving unit 22, an input unit 23, an output unit 24, a recording unit 25, a connection unit 26, and a control unit 27. The power supply 20 supplies power to each component of the biological optical measurement device 2.
 光源部21は、生体光学測定装置2に接続される測定プローブ3に照明光を供給する。光源部21は、光源211と、光学系212と、を有する。 The light source unit 21 supplies illumination light to the measurement probe 3 connected to the biological optical measurement device 2. The light source unit 21 includes a light source 211 and an optical system 212.
 光源211は、白色LED(Light Emitting Diode)、キセノンランプ、タングステンランプおよびハロゲンランプのいずれかのインコヒーレント光源を用いて構成される。光源211は、光学系212を介して測定対象物へ照射する少なくとも一つのスペクトル成分を有するインコヒーレント光を後述する測定プローブ3の照明ファイバへ供給する。 The light source 211 is configured using an incoherent light source such as a white LED (Light Emitting Diode), a xenon lamp, a tungsten lamp, or a halogen lamp. The light source 211 supplies incoherent light having at least one spectral component irradiated to the measurement object via the optical system 212 to an illumination fiber of the measurement probe 3 described later.
 光学系212は、光源211が照射した照明光を平行光にするコリメートレンズ212aと、光源211が照射した照明光を透過するとともに、後述する測定プローブ3の受光ファイバが受光した測定対象物からの戻り光を受光部22へ反射するハーフミラー212bと、光源211が照射した照明光を生体光学測定装置2の出射する出射位置P1に集光する集光レンズ212cと、を有する。 The optical system 212 transmits the illumination light irradiated by the light source 211 and the collimating lens 212a that collimates the illumination light irradiated by the light source 211, and from the measurement object received by the light receiving fiber of the measurement probe 3 described later. A half mirror 212 b that reflects the return light to the light receiving unit 22, and a condenser lens 212 c that condenses the illumination light irradiated by the light source 211 at the emission position P <b> 1 from which the biological optical measurement device 2 exits.
 受光部22は、測定プローブ3から出射された光であって測定対象物で反射および/または散乱した戻り光を受光して測定する。受光部22は、集光レンズ221と、光センサ部222と、を有する。 The light receiving unit 22 receives and measures the light emitted from the measurement probe 3 and reflected and / or scattered by the measurement object. The light receiving unit 22 includes a condenser lens 221 and an optical sensor unit 222.
 集光レンズ221は、光源部21のハーフミラー212bが反射した測定プローブ3からの戻り光を集光して光センサ部222へ出射する。 The condensing lens 221 condenses the return light from the measurement probe 3 reflected by the half mirror 212 b of the light source unit 21 and emits it to the optical sensor unit 222.
 光センサ部222は、検出器や分光器等を用いて構成され、集光レンズ221を介して測定プローブ3の受光ファイバから入射した戻り光のスペクトル成分および強度分布を測定して、各波長の測定を行う。光センサ部222は、後述する測定プローブ3の受光ファイバの数に応じて適宜設けられる。 The optical sensor unit 222 is configured using a detector, a spectroscope, or the like, and measures the spectral component and intensity distribution of the return light incident from the light receiving fiber of the measurement probe 3 via the condenser lens 221 to measure each wavelength. Measure. The optical sensor unit 222 is appropriately provided according to the number of light receiving fibers of the measurement probe 3 described later.
 入力部23は、プッシュ式のスイッチ、キーボードおよびタッチパネル等を用いて実現され、生体光学測定装置2の起動を指示する起動信号または他の各種の操作を指示する指示信号の入力を受け付けて制御部27へ出力する。 The input unit 23 is realized by using a push-type switch, a keyboard, a touch panel, and the like, and receives an input of an activation signal for instructing activation of the biological optical measurement device 2 or an instruction signal for instructing various other operations, and is a control unit To 27.
 出力部24は、液晶または有機EL(Electro Luminescence)の表示ディスプレイおよびスピーカ等を用いて実現され、生体光学測定システム1における各種処理に関する情報を出力する。 The output unit 24 is realized by using a liquid crystal or organic EL (Electro Luminescence) display display, a speaker, and the like, and outputs information related to various processes in the biological optical measurement system 1.
 記録部25は、揮発性メモリや不揮発性メモリを用いて実現され、生体光学測定装置2を動作させるための各種プログラム、光学測定処理に使用される各種データや各種パラメータを記録する。記録部25は、生体光学測定装置2の処理中の情報を一時的に記録する。また、記録部25は、生体光学測定装置2の測定結果を記録する。なお、記録部25は、生体光学測定装置2の外部から装着されるメモリカード等を用いて構成されてもよい。 The recording unit 25 is realized by using a volatile memory or a non-volatile memory, and records various programs for operating the biological optical measurement device 2, various data used for optical measurement processing, and various parameters. The recording unit 25 temporarily records information being processed by the biological optical measurement device 2. The recording unit 25 records the measurement result of the biological optical measurement device 2. Note that the recording unit 25 may be configured using a memory card or the like attached from the outside of the bio-optical measurement device 2.
 接続部26は、後述する測定プローブ3のコネクタ部が着脱自在に接続される。接続部26は、光源部21が出射した照明光を測定プローブ3に供給するとともに、測定プローブ3から出射された測定対象物の戻り光を受光部22に出射する。接続部26は、測定プローブ3の接続の有無に関する情報を制御部27に出力する。 The connection part 26 is detachably connected to a connector part of the measurement probe 3 described later. The connection unit 26 supplies illumination light emitted from the light source unit 21 to the measurement probe 3 and emits return light of the measurement object emitted from the measurement probe 3 to the light receiving unit 22. The connection unit 26 outputs information related to whether or not the measurement probe 3 is connected to the control unit 27.
 制御部27は、CPU(Central Processing Unit)等を用いて構成される。制御部27は、生体光学測定装置2の各部の処理動作を制御する。制御部27は、生体光学測定装置2の各構成に対する指示情報やデータの転送等を行うことによって、生体光学測定装置2の動作を制御する。制御部27は、受光部22による測定結果を記録部25に記録する。制御部27は、演算部271を有する。 The control unit 27 is configured using a CPU (Central Processing Unit) or the like. The control unit 27 controls the processing operation of each unit of the biological optical measurement device 2. The control unit 27 controls the operation of the bio-optical measurement device 2 by transferring instruction information and data for each component of the bio-optical measurement device 2. The control unit 27 records the measurement result by the light receiving unit 22 in the recording unit 25. The control unit 27 includes a calculation unit 271.
 演算部271は、受光部22による測定結果に基づいて、複数の演算処理を行い、測定対象物の性状に関わる特性値を演算する。この特性値の種別は、たとえば入力部23が受け付けた指示信号にしたがって設定される。 The calculation unit 271 performs a plurality of calculation processes based on the measurement result by the light receiving unit 22 and calculates characteristic values related to the properties of the measurement object. The type of the characteristic value is set according to an instruction signal received by the input unit 23, for example.
 つぎに、測定プローブ3について説明する。測定プローブ3は、複数の光ファイバからなるファイババンドルで構成される。具体的には、測定プローブ3は、複数の光ファイバが不規則に束ねられたライトガイドやランダムファイバ(イメージファイバを除く)を用いて構成される。ここで、ライトガイドとは、ファイババンドルの基端部の端面とファイババンドルの先端部の端面との各光ファイバの配列位置(空間配列)が異なるものである。測定プローブ3は、生体光学測定装置2の接続部26に着脱自在に接続され、ファイババンドル300の基端部301aを収容するコネクタ部31と、可撓性を有する可撓部32と、光源部21から供給された照明光を出射するとともに、測定対象物からの戻り光を受光する先端部33と、先端部33に着脱自在に設けられた光学素子34と、を有する。 Next, the measurement probe 3 will be described. The measurement probe 3 is composed of a fiber bundle composed of a plurality of optical fibers. Specifically, the measurement probe 3 is configured using a light guide or a random fiber (excluding an image fiber) in which a plurality of optical fibers are irregularly bundled. Here, the light guide differs in the arrangement position (spatial arrangement) of each optical fiber between the end face of the base end portion of the fiber bundle and the end face of the tip end portion of the fiber bundle. The measurement probe 3 is detachably connected to the connection portion 26 of the bio-optical measurement device 2, and includes a connector portion 31 that accommodates the proximal end portion 301a of the fiber bundle 300, a flexible portion 32 having flexibility, and a light source portion. 21 has a distal end portion 33 that emits illumination light supplied from 21 and receives return light from the measurement object, and an optical element 34 that is detachably provided at the distal end portion 33.
 ここで、測定プローブ3の構成について詳細に説明する。図2は、測定プローブ3の要部を拡大した模式図である。図2に示すように、測定プローブ3は、ファイババンドル300を備える。ファイババンドル300は、測定対象物に照明光を照射する照明ファイバ311と、測定対象物からの戻り光が異なる角度で入射する第1受光ファイバ312(第1受光チャンネル)、第2受光ファイバ313(第2受光チャンネル)および第3受光ファイバ314と、他の複数の光ファイバ315とを不規則に束ねて構成される。また、照明ファイバ311、第1受光ファイバ312、第2受光ファイバ313、第3受光ファイバ314および他の複数の光ファイバ315は、側面が遮光と傷防止のため被覆部材36で覆われている。 Here, the configuration of the measurement probe 3 will be described in detail. FIG. 2 is an enlarged schematic view of the main part of the measurement probe 3. As shown in FIG. 2, the measurement probe 3 includes a fiber bundle 300. The fiber bundle 300 includes an illumination fiber 311 that irradiates the measurement object with illumination light, a first light reception fiber 312 (first light reception channel) and a second light reception fiber 313 (return light from the measurement object that is incident at different angles. The second light receiving channel) and the third light receiving fiber 314 and a plurality of other optical fibers 315 are irregularly bundled. The illumination fiber 311, the first light receiving fiber 312, the second light receiving fiber 313, the third light receiving fiber 314, and the other optical fibers 315 are covered with a covering member 36 for light shielding and scratch prevention.
 図2に示すように、測定プローブ3は、先端部33の端面33aにおける位置と基端部321の端面321aにおける位置とで照明ファイバ311、第1受光ファイバ312、第2受光ファイバ313、第3受光ファイバ314および他の複数の光ファイバ315それぞれの配置位置が異なる。また、光源部21からの照明光は、光学系212を経て測定プローブ3における照明ファイバ311の先端部33の端面33aで結像される。このため、たとえば図2に示す光ファイバ315bの位置に照明光が結像されても、光ファイバ315bから照射された照明光の一部が光学素子34の側面34bでケラれる。この場合、測定プローブ3は、測定対象物へ照射する光量が低下し、結果として信号品質(SN)も低下する。そこで、本実施の形態では、複数の光ファイバ315のうち、生体光学測定装置2が出射する照明光を中継して出射する光ファイバ315の照射領域R1であって光学素子34の先端における照射領域R1が光学素子34の先端の端面34aの面積R2よりも小さい光ファイバ315の基端部315aを、生体光学測定装置2における照明光の出射位置P1と対向する位置P2に配置する(図1を参照)。具体的には、測定プローブ3は、生体光学測定装置2における照明光が集光されて外部へ出射される出射位置P1と対向する位置P2に配置した光ファイバ315を照明ファイバ311として使用する。なお、照明ファイバ311は、生体光学測定装置2から入射された光が測定プローブ3のファイババンドル300の端面33aの中心付近から出射され、かつ光学素子34の側面34bでケラれなければ、数や位置を適宜変更することができる。さらに、照明ファイバ311は、光学素子34の側面34bでケラれなければ、光学素子34の長さに応じて、数や位置を適宜変更することができる。 As shown in FIG. 2, the measurement probe 3 has an illumination fiber 311, a first light receiving fiber 312, a second light receiving fiber 313, a third light beam at a position on the end surface 33 a of the distal end portion 33 and a position on the end surface 321 a of the proximal end portion 321. The arrangement positions of the light receiving fiber 314 and the other optical fibers 315 are different. The illumination light from the light source unit 21 is imaged on the end surface 33 a of the distal end portion 33 of the illumination fiber 311 in the measurement probe 3 through the optical system 212. Therefore, for example, even if the illumination light is imaged at the position of the optical fiber 315b shown in FIG. 2, a part of the illumination light irradiated from the optical fiber 315b is vignetted on the side surface 34b of the optical element 34. In this case, the measurement probe 3 decreases the amount of light applied to the measurement object, and as a result, the signal quality (SN) also decreases. Therefore, in the present embodiment, among the plurality of optical fibers 315, the irradiation region R1 of the optical fiber 315 that relays and emits the illumination light emitted from the biological optical measurement device 2, and the irradiation region at the tip of the optical element 34 A base end portion 315a of the optical fiber 315 in which R1 is smaller than the area R2 of the end surface 34a at the tip end of the optical element 34 is disposed at a position P2 facing the emission position P1 of the illumination light in the biological optical measurement device 2 (see FIG. 1). reference). Specifically, the measurement probe 3 uses, as the illumination fiber 311, an optical fiber 315 disposed at a position P <b> 2 facing the emission position P <b> 1 where the illumination light in the biological optical measurement device 2 is collected and emitted to the outside. Note that the illumination fiber 311 has several numbers if the light incident from the biological optical measurement device 2 is emitted from the vicinity of the center of the end surface 33a of the fiber bundle 300 of the measurement probe 3 and is not vignetted by the side surface 34b of the optical element 34. The position can be changed as appropriate. Further, the number and position of the illumination fibers 311 can be changed as appropriate according to the length of the optical element 34 if the side surfaces 34b of the optical element 34 are not vignetted.
 照明ファイバ311は、光源部21から供給された照明光を伝播し、光学素子34を介して測定対象物に照明光を照射する。なお、照明ファイバ311の数は、検査項目および測定対象物の種類、たとえば血流や、胃や膵臓等の部位に応じて適宜変更することができる。 The illumination fiber 311 propagates the illumination light supplied from the light source unit 21 and irradiates the measurement object with the illumination light via the optical element 34. Note that the number of illumination fibers 311 can be appropriately changed according to the inspection item and the type of measurement object, for example, blood flow, stomach, pancreas, or the like.
 第1受光ファイバ312、第2受光ファイバ313および第3受光ファイバ314は、光学素子34を介してそれぞれの先端から入射した測定対象物からの戻り光を伝播し、コネクタ部31から受光部22に出力する。なお、受光ファイバの数は、検査項目および測定対象物の種類、たとえば血流や部位に応じて適宜変更することができる。 The first light receiving fiber 312, the second light receiving fiber 313, and the third light receiving fiber 314 propagate return light from the measurement object incident from the respective tips via the optical element 34, and pass from the connector unit 31 to the light receiving unit 22. Output. In addition, the number of light receiving fibers can be appropriately changed according to the inspection item and the type of measurement object, for example, blood flow or site.
 光学素子34は、照明ファイバ311と測定対象物までの距離を固定し、空間コヒーレント長を確実に一定化させた状態で光を照射可能に形成されている。光学素子34は、第1受光ファイバ312と測定対象物との距離、第2受光ファイバ313と測定対象物との距離および第3受光ファイバ314と測定対象物との距離をそれぞれ固定し、所定の散乱角度の戻り光を安定して受光可能に形成されている。また、光学素子34の端面34aで測定対象物の表面を平坦化させているため、測定対象物の表面の凹凸形状の影響を受けずに測定対象物の測定を行うことができる。 The optical element 34 is formed to be able to irradiate light in a state where the distance between the illumination fiber 311 and the measurement object is fixed and the spatial coherent length is reliably fixed. The optical element 34 fixes the distance between the first light receiving fiber 312 and the measurement object, the distance between the second light receiving fiber 313 and the measurement object, and the distance between the third light receiving fiber 314 and the measurement object, respectively. It is formed so that return light having a scattering angle can be received stably. In addition, since the surface of the measurement object is flattened by the end face 34a of the optical element 34, the measurement object can be measured without being affected by the uneven shape of the surface of the measurement object.
 このように構成された生体光学測定システム1は、内視鏡システムの内視鏡装置(内視鏡スコープ)に設けられた処置具チャンネルを介して測定プローブ3が被検体内に挿入され、照明ファイバ311が測定対象物に照明光を照射し、第1受光ファイバ312、第2受光ファイバ313および第3受光ファイバ314がそれぞれ測定対象物からの戻り光を受光して生体光学測定装置2の受光部22に伝播する。その後、演算部271は、受光部22の測定結果に基づいて、測定対象物の性状を測定する。 In the bio-optical measurement system 1 configured as described above, the measurement probe 3 is inserted into the subject via the treatment instrument channel provided in the endoscope apparatus (endoscope scope) of the endoscope system, and illumination is performed. The fiber 311 irradiates the measurement object with illumination light, and the first light receiving fiber 312, the second light receiving fiber 313, and the third light receiving fiber 314 receive the return light from the measurement object, respectively, and receive the light from the bio-optical measurement device 2. Propagate to part 22. Thereafter, the calculation unit 271 measures the property of the measurement object based on the measurement result of the light receiving unit 22.
 以上説明した本発明の一実施の形態によれば、複数の光ファイバ315のうち、生体光学測定装置2が出射する照明光を中継したときに出射する光ファイバ315の照射領域R1であって光学素子34の先端における照射領域R1が光学素子34の先端の端面34aの面積R2よりも小さい光ファイバ315の基端部315aを、生体光学測定装置2における照明光の出射位置P1と対向する位置P2に配置するので、歩留まりを低下させることなく、照明光を測定対象物に精度よく照射することができる。 According to the embodiment of the present invention described above, among the plurality of optical fibers 315, the irradiation region R1 of the optical fiber 315 emitted when the illumination light emitted by the biological optical measurement device 2 is relayed is optical. A position P2 of the base end portion 315a of the optical fiber 315 in which the irradiation region R1 at the tip of the element 34 is smaller than the area R2 of the end face 34a of the tip of the optical element 34 is opposed to the illumination light emission position P1 in the bio-optical measurement device 2. Therefore, it is possible to accurately irradiate the measurement object with the illumination light without reducing the yield.
 さらに、本発明の一実施の形態によれば、測定プローブ3をファイババンドルで構成しても、所定の特性を得るために光ファイバの空間的レイアウト(配列)を容易に調整することができるので、製造コストを大幅に低下させることができる。 Furthermore, according to one embodiment of the present invention, the spatial layout (arrangement) of optical fibers can be easily adjusted in order to obtain predetermined characteristics even if the measurement probe 3 is constituted by a fiber bundle. The manufacturing cost can be greatly reduced.
 また、本発明の一実施の形態によれば、測定プローブ3を汎用品のライトガイドで構成されているので、製造コストを大幅に低下させることができる。 In addition, according to the embodiment of the present invention, since the measurement probe 3 is composed of a general-purpose light guide, the manufacturing cost can be greatly reduced.
(変形例1)
 本発明の一実施の形態では、光学部の構成を適宜変更することができる。図3は、本発明の一実施の形態の変形例1にかかる生体光学測定システムの構成を模式的に示すブロック図である。なお、上述した実施の形態と同一の構成には同一の符号を付して説明する。
(Modification 1)
In one embodiment of the present invention, the configuration of the optical unit can be changed as appropriate. FIG. 3 is a block diagram schematically showing the configuration of the biological optical measurement system according to the first modification of the embodiment of the present invention. In addition, the same code | symbol is attached | subjected and demonstrated to the structure same as embodiment mentioned above.
 図3に示す生体光学測定システム100は、測定対象物に対して光学測定を行って測定対象物の性状を検出する生体光学測定装置110と、測定プローブ3と、を備える。 The bio-optical measurement system 100 shown in FIG. 3 includes a bio-optical measurement device 110 that performs optical measurement on a measurement object and detects the property of the measurement object, and the measurement probe 3.
 生体光学測定装置110は、電源20と、入力部23と、出力部24と、記録部25と、制御部27と、光源部111と、受光部112と、を備える。 The bio-optical measurement device 110 includes a power supply 20, an input unit 23, an output unit 24, a recording unit 25, a control unit 27, a light source unit 111, and a light receiving unit 112.
 光源部111は、生体光学測定装置110に接続される測定プローブ3に光ファイバ111aを介して照明光を供給する。光源部111は、白色LEDを用いて構成される。光源部111は、光ファイバ111aを介して測定対象物へ照射する少なくとも一つのスペクトル成分を有するインコヒーレント光を出射位置P1に出射することにより、測定プローブ3の照明ファイバ311へ供給する。 The light source unit 111 supplies illumination light to the measurement probe 3 connected to the biological optical measurement device 110 via the optical fiber 111a. The light source unit 111 is configured using a white LED. The light source unit 111 emits incoherent light having at least one spectral component irradiated to the measurement object via the optical fiber 111a to the emission position P1, and supplies the incoherent light to the illumination fiber 311 of the measurement probe 3.
 受光部112は、光ファイバ112aを介して測定プローブ3から出射された光であって測定対象物からの戻り光を受光する。受光部112は、分光器等を用いて構成される。受光部112は、測定結果を制御部27に出力する。 The light receiving unit 112 receives the return light from the measurement object, which is light emitted from the measurement probe 3 through the optical fiber 112a. The light receiving unit 112 is configured using a spectroscope or the like. The light receiving unit 112 outputs the measurement result to the control unit 27.
 このように構成された生体光学測定システム100は、内視鏡システムの内視鏡装置に設けられた処置具チャンネルを介して測定プローブ3が被検体内に挿入され、光ファイバ111aを介して光源部111が照射した照明光が照明ファイバ311に供給され、照明ファイバ311が測定対象物に照明光を照射し、第1受光ファイバ312、第2受光ファイバ313および第3受光ファイバ314がそれぞれ測定対象物からの戻り光を受光して生体光学測定装置110の受光部112に伝播する。その後、演算部271は、受光部1122の測定結果に基づいて、測定対象物の性状を測定する。この場合、測定プローブ3は、複数の光ファイバ315のうち、生体光学測定装置110が出射する照明光を中継したときに出射する光ファイバ315の照射領域R1であって光学素子34の先端における照射領域R1が光学素子34の先端の端面34aの面積R2よりも小さい光ファイバ315の基端部315aを、生体光学測定装置2における照明光の出射位置P1と対向する位置P2に配置する。 In the bio-optical measurement system 100 configured as described above, the measurement probe 3 is inserted into the subject via the treatment instrument channel provided in the endoscope apparatus of the endoscope system, and the light source is transmitted via the optical fiber 111a. Illumination light irradiated by the unit 111 is supplied to the illumination fiber 311, the illumination fiber 311 irradiates the measurement object with illumination light, and the first light receiving fiber 312, the second light receiving fiber 313, and the third light receiving fiber 314 are measured. The return light from the object is received and propagated to the light receiving unit 112 of the biological optical measurement device 110. Thereafter, the calculation unit 271 measures the property of the measurement object based on the measurement result of the light receiving unit 1122. In this case, the measurement probe 3 is an irradiation region R1 of the optical fiber 315 emitted when the illumination light emitted from the biological optical measurement device 110 is relayed among the plurality of optical fibers 315, and is irradiated at the tip of the optical element 34. The base end portion 315a of the optical fiber 315 in which the region R1 is smaller than the area R2 of the end surface 34a at the tip end of the optical element 34 is disposed at a position P2 that faces the emission position P1 of the illumination light in the bio-optical measurement device 2.
 以上説明した本発明の一実施の形態の変形例1によれば、光源部111が出射する照明光の出射位置P1に対して、ファイババンドル300における照明ファイバ311の照明光の入射位置P2を容易に一致させることができる。さらに、上述した実施の形態と同様の効果を奏する。 According to the first modification of the embodiment of the present invention described above, the incident position P2 of the illumination light of the illumination fiber 311 in the fiber bundle 300 is easily set with respect to the emission position P1 of the illumination light emitted from the light source unit 111. Can match. Furthermore, the same effects as those of the above-described embodiment are obtained.
(変形例2)
 また、上述した実施の形態では、1つの光源部111が設けられていたが、複数の光源部を設けてもよい。図4は、本発明の一実施の形態の変形例2にかかる生体光学測定システム200の構成を模式的に示すブロック図である。なお、上述した実施の形態と同一の構成には同一の符号を付して説明する。
(Modification 2)
In the above-described embodiment, one light source unit 111 is provided, but a plurality of light source units may be provided. FIG. 4 is a block diagram schematically showing the configuration of the biological optical measurement system 200 according to the second modification of the embodiment of the present invention. In addition, the same code | symbol is attached | subjected and demonstrated to the structure same as embodiment mentioned above.
 図4に示す生体光学測定システム200は、測定対象物に対して光学測定を行って測定対象物の性状を検出する生体光学測定装置210と、測定プローブ3と、を備える。 The bio-optical measurement system 200 shown in FIG. 4 includes a bio-optical measurement device 210 that performs optical measurement on a measurement object and detects the property of the measurement object, and the measurement probe 3.
 生体光学測定装置210は、電源20と、入力部23と、出力部24と、記録部25と、制御部27と、光源部231と、光源部232と、ハーフミラー233と、受光部244と、を備える。 The bio-optical measurement device 210 includes a power source 20, an input unit 23, an output unit 24, a recording unit 25, a control unit 27, a light source unit 231, a light source unit 232, a half mirror 233, and a light receiving unit 244. .
 光源部231は、生体光学測定装置210に接続される測定プローブ3にハーフミラー233および光ファイバ231aを介して照明光を供給する。光源部231は、たとえば青色LEDを用いて構成される。光源部231は、光ファイバ231aを介して測定対象物へ照射する少なくとも一つのスペクトル成分を有するインコヒーレント光を出射位置P1に出射することにより、測定プローブ3の照明ファイバ311へ供給する。 The light source unit 231 supplies illumination light to the measurement probe 3 connected to the biological optical measurement device 210 via the half mirror 233 and the optical fiber 231a. The light source unit 231 is configured using, for example, a blue LED. The light source unit 231 supplies incoherent light having at least one spectral component that irradiates the measurement object via the optical fiber 231a to the emission position P1, thereby supplying the light to the illumination fiber 311 of the measurement probe 3.
 光源部232は、生体光学測定装置210に接続される測定プローブ3にハーフミラー233および光ファイバ231aを介して照明光を供給する。光源部232は、たとえば緑色LEDを用いて構成される。光源部232は、光ファイバ231aを介して測定対象物へ照射する少なくとも一つのスペクトル成分を有するインコヒーレント光を出射位置P1に出射することにより、測定プローブ3の照明ファイバ311へ供給する。 The light source unit 232 supplies illumination light to the measurement probe 3 connected to the biological optical measurement device 210 via the half mirror 233 and the optical fiber 231a. The light source unit 232 is configured using, for example, a green LED. The light source unit 232 emits incoherent light having at least one spectral component to be irradiated onto the measurement object via the optical fiber 231a to the emission position P1, thereby supplying the illumination fiber 311 of the measurement probe 3.
 ハーフミラー233は、光源部231から出射された照明光を透過するとともに、光源部232から出射された照明光を接続部26に向けて反射する。 The half mirror 233 transmits the illumination light emitted from the light source unit 231 and reflects the illumination light emitted from the light source unit 232 toward the connection unit 26.
 受光部234は、光ファイバ234aを介して測定プローブ3から出射された光であって測定対象物からの戻り光を受光する。受光部234は、分光器等を用いて構成される。受光部234は、測定結果を制御部27に出力する。 The light receiving unit 234 receives the return light from the measurement object, which is the light emitted from the measurement probe 3 through the optical fiber 234a. The light receiving unit 234 is configured using a spectroscope or the like. The light receiving unit 234 outputs the measurement result to the control unit 27.
 このように構成された生体光学測定システム200は、内視鏡システムの内視鏡装置に設けられた処置具チャンネルを介して測定プローブ3が被検体内に挿入され、光ファイバ231aを介して光源部231および光源部232が出射した照明光が照明ファイバ311に供給され、照明ファイバ311が測定対象物に照明光を照射し、第1受光ファイバ312、第2受光ファイバ313および第3受光ファイバ314がそれぞれ測定対象物からの戻り光を受光して生体光学測定装置210の受光部234に伝播する。その後、演算部271は、受光部234の測定結果に基づいて、測定対象物の性状を測定する。この場合、測定プローブ3は、複数の光ファイバ315のうち、生体光学測定装置210が出射する照明光を中継して出射する光ファイバ315の照射領域R1であって光学素子34の先端における照射領域R1が光学素子34の先端の端面34aの面積R2よりも小さい光ファイバ315の基端部315aを、生体光学測定装置2における照明光の出射位置P1と対向する位置P2に配置するので、伝送特性および歩留まりを低下させることなく、容易に照明ファイバ311の位置合わせを行うことができる。 In the bio-optical measurement system 200 configured as described above, the measurement probe 3 is inserted into the subject via the treatment instrument channel provided in the endoscope apparatus of the endoscope system, and the light source is transmitted via the optical fiber 231a. Illumination light emitted from the unit 231 and the light source unit 232 is supplied to the illumination fiber 311, and the illumination fiber 311 irradiates the measurement object with illumination light, and the first light receiving fiber 312, the second light receiving fiber 313, and the third light receiving fiber 314. Receives the return light from the measurement object and propagates it to the light receiving unit 234 of the biological optical measurement apparatus 210. Thereafter, the calculation unit 271 measures the property of the measurement object based on the measurement result of the light receiving unit 234. In this case, the measurement probe 3 is the irradiation region R1 of the optical fiber 315 that relays and emits the illumination light emitted from the biological optical measurement device 210 among the plurality of optical fibers 315, and the irradiation region at the tip of the optical element 34. Since the base end portion 315a of the optical fiber 315 in which R1 is smaller than the area R2 of the end surface 34a at the tip end of the optical element 34 is disposed at the position P2 facing the emission position P1 of the illumination light in the bio-optical measurement device 2, transmission characteristics In addition, the illumination fiber 311 can be easily aligned without reducing the yield.
 以上説明した本発明の一実施の形態の変形例2によれば、光源部231および光源部232が出射する照明光の出射位置P1に対して、ファイババンドル300における照明ファイバ311の照明光の入射位置P2を容易に一致させることができる。さらに、上述した実施の形態と同様の効果を奏する。 According to the second modification of the embodiment of the present invention described above, the illumination light of the illumination fiber 311 in the fiber bundle 300 is incident on the emission position P1 of the illumination light emitted from the light source unit 231 and the light source unit 232. The position P2 can be easily matched. Furthermore, the same effects as those of the above-described embodiment are obtained.
 また、本実施の形態の変形例2によれば、測定対象物に応じて光源部232の点灯を制御することにより、特定の波長域を有する戻り光の測定を行うことができる。 Further, according to the second modification of the present embodiment, the return light having a specific wavelength region can be measured by controlling the lighting of the light source unit 232 according to the measurement object.
 なお、本実施の形態の変形例2では、2つの光源部が設けられていたが、3つの光源部(赤色LED,青色LED,緑色LED)を設けてもよい。これにより、白色光の照明光を測定プローブ3へ供給することができるとともに、各光源部の点灯を制御することにより、特定の波長域を有する戻り光の測定を行うことができる。この場合、集光レンズおよびコリメートレンズを適宜設けてもよい。 In the second modification of the present embodiment, two light source units are provided, but three light source units (red LED, blue LED, green LED) may be provided. Accordingly, white illumination light can be supplied to the measurement probe 3, and return light having a specific wavelength range can be measured by controlling lighting of each light source unit. In this case, a condensing lens and a collimating lens may be provided as appropriate.
 1,100,200 生体光学測定システム
 2,110,210 生体光学測定装置
 3 測定プローブ
 20 電源
 21,111,231,232 光源部
 22,112,234 受光部
 23 入力部
 24 出力部
 25 記録部
 26 接続部
 27 制御部
 31 コネクタ部
 32 可撓部
 33 先端部
 34 光学素子
 36 被覆部材
 111a,112a,231a,234a,315,315b 光ファイバ
 211 光源
 212 光学系
 221 集光レンズ
 222 光センサ部
 271 演算部
 300 ファイババンドル
 300a,315a,321 基端部
 311 照明ファイバ
 312 第1受光ファイバ
 313 第2受光ファイバ
 314 第3受光ファイバ
 321a 端面
 P1 出射位置
 P2 位置
 R1 出射領域
DESCRIPTION OF SYMBOLS 1,100,200 Bio-optical measurement system 2,110,210 Bio-optical measurement apparatus 3 Measuring probe 20 Power supply 21,111,231,232 Light source part 22,112,234 Light-receiving part 23 Input part 24 Output part 25 Recording part 26 Connection Unit 27 control unit 31 connector unit 32 flexible unit 33 tip unit 34 optical element 36 coating member 111a, 112a, 231a, 234a, 315, 315b optical fiber 211 light source 212 optical system 221 condensing lens 222 optical sensor unit 271 calculation unit 300 Fiber bundle 300a, 315a, 321 Base end 311 Illumination fiber 312 First light receiving fiber 313 Second light receiving fiber 314 Third light receiving fiber 321a End face P1 emission position P2 position R1 emission area

Claims (4)

  1.  複数の光ファイバを束ねることによって構成されるファイババンドルと、該ファイババンドルの先端部に設けられ、該ファイババンドルの端面と生体組織との距離を一定にするための光学素子と、前記生体組織に対して照明光を供給して光学測定を行う生体光学測定装置に対して着脱自在に接続され、前記ファイババンドルの基端部を収容するコネタク部と、を備えた測定プローブであって、
     前記複数の光ファイバのうち、前記生体光学測定装置が出射する照明光を中継して出射する光ファイバの照射領域であって前記光学素子の先端における照射領域が該先端の面積よりも小さい光ファイバの基端部を、前記生体光学測定装置における前記照明光の出射位置と対向する位置に配置したことを特徴とする測定プローブ。
    A fiber bundle configured by bundling a plurality of optical fibers, an optical element provided at a tip portion of the fiber bundle for making a distance between the end face of the fiber bundle and the living tissue constant, and the living tissue. A measurement probe comprising a connector portion that is detachably connected to a biological optical measurement device that performs optical measurement by supplying illumination light, and that houses a proximal end portion of the fiber bundle,
    Among the plurality of optical fibers, an optical fiber that is an irradiation region of an optical fiber that relays and emits illumination light emitted from the biological optical measurement device, and an irradiation region at the tip of the optical element is smaller than the area of the tip The base probe is arranged at a position facing the emission position of the illumination light in the bio-optical measurement device.
  2.  前記ファイババンドルは、基端部の端面における前記複数の光ファイバの配置と先端部の端面における前記複数の光ファイバの配置とが異なることを特徴とする請求項1に記載の測定プローブ。 2. The measurement probe according to claim 1, wherein the fiber bundle is different in arrangement of the plurality of optical fibers on an end surface of a proximal end portion and arrangement of the plurality of optical fibers on an end surface of a distal end portion.
  3.  前記ファイババンドルは、ライトガイドであることを特徴とする請求項1に記載の測定プローブ。 The measurement probe according to claim 1, wherein the fiber bundle is a light guide.
  4.  請求項1に記載の測定プローブと、
     前記測定プローブに照明光を供給するとともに、前記測定プローブから出射された照明光の戻り光であって、前記生体組織で反射および/または散乱した戻り光を受光して前記生体組織の光学測定を行う光学測定装置と、
     を備えたことを特徴とする生体光学測定システム。
    A measurement probe according to claim 1;
    An illumination light is supplied to the measurement probe, and the return light of the illumination light emitted from the measurement probe is received and reflected and / or scattered by the living tissue to perform optical measurement of the living tissue. An optical measuring device to perform,
    A bio-optical measurement system comprising:
PCT/JP2012/082944 2012-03-21 2012-12-19 Measurement probe and bio-optical measurement system WO2013140690A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261613657P 2012-03-21 2012-03-21
US61/613,657 2012-03-21

Publications (1)

Publication Number Publication Date
WO2013140690A1 true WO2013140690A1 (en) 2013-09-26

Family

ID=49222176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082944 WO2013140690A1 (en) 2012-03-21 2012-12-19 Measurement probe and bio-optical measurement system

Country Status (1)

Country Link
WO (1) WO2013140690A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004287172A (en) * 2003-03-24 2004-10-14 Hitachi Metals Ltd Optical fiber with spherical tip, and collimator
JP2009537014A (en) * 2006-05-12 2009-10-22 ノースウェスタン ユニバーシティ Low coherence enhanced backscatter spectroscopy system, method and apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004287172A (en) * 2003-03-24 2004-10-14 Hitachi Metals Ltd Optical fiber with spherical tip, and collimator
JP2009537014A (en) * 2006-05-12 2009-10-22 ノースウェスタン ユニバーシティ Low coherence enhanced backscatter spectroscopy system, method and apparatus

Similar Documents

Publication Publication Date Title
JP6173325B2 (en) Measuring probe and bio-optical measurement system
JP5390045B2 (en) probe
US9788732B2 (en) Optical measuring device and fiber bundle association method
JP5276228B2 (en) Optical measurement system, optical measurement apparatus, calibration member, and calibration method
US9014517B2 (en) Fiber unit
JP5959652B2 (en) Scattered light measuring device
JP5847089B2 (en) Optical measuring apparatus and optical measuring system
JP6000957B2 (en) Optical measuring apparatus and calibration method
WO2013140689A1 (en) Measurement probe, bio-optical measurement apparatus and bio-optical measurement system
JPWO2012057150A1 (en) Optical measuring device and probe
US9883802B2 (en) Measurement probe
WO2013140690A1 (en) Measurement probe and bio-optical measurement system
WO2013118399A1 (en) Bio-optical measurement device and measurement probe
JP5596870B2 (en) Measuring probe
JP5469291B1 (en) Optical measuring apparatus and optical measuring system
JP5526292B1 (en) Bio-optical measurement device, measurement probe, and bio-optical measurement system
WO2015174543A1 (en) Measurement probe and optical measurement system
WO2013133341A1 (en) Optical measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP