WO2013139781A1 - Verfahren zur herstellung von polyurethan-hartschäumen und polyisocyanurat-hartschäumen - Google Patents

Verfahren zur herstellung von polyurethan-hartschäumen und polyisocyanurat-hartschäumen Download PDF

Info

Publication number
WO2013139781A1
WO2013139781A1 PCT/EP2013/055675 EP2013055675W WO2013139781A1 WO 2013139781 A1 WO2013139781 A1 WO 2013139781A1 EP 2013055675 W EP2013055675 W EP 2013055675W WO 2013139781 A1 WO2013139781 A1 WO 2013139781A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
oil
mol
component
polyol
Prior art date
Application number
PCT/EP2013/055675
Other languages
English (en)
French (fr)
Inventor
Gunnar Kampf
Original Assignee
Basf Se
Basf Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se, Basf Schweiz Ag filed Critical Basf Se
Priority to AU2013237561A priority Critical patent/AU2013237561B2/en
Priority to EA201491634A priority patent/EA201491634A1/ru
Priority to ES13710414T priority patent/ES2704402T3/es
Priority to BR112014022421-8A priority patent/BR112014022421B1/pt
Priority to PL13710414T priority patent/PL2828309T3/pl
Priority to KR1020147029773A priority patent/KR102058227B1/ko
Priority to JP2015500883A priority patent/JP6227624B2/ja
Priority to MX2014011434A priority patent/MX364715B/es
Priority to CN201380015646.0A priority patent/CN104204016B/zh
Priority to CA2868194A priority patent/CA2868194A1/en
Priority to EP13710414.7A priority patent/EP2828309B1/de
Publication of WO2013139781A1 publication Critical patent/WO2013139781A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4219Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from aromatic dicarboxylic acids and dialcohols in combination with polycarboxylic acids and/or polyhydroxy compounds which are at least trifunctional
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • C08G18/4247Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids
    • C08G18/4252Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids derived from polyols containing polyether groups and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4288Polycondensates having carboxylic or carbonic ester groups in the main chain modified by higher fatty oils or their acids or by resin acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0019Use of organic additives halogenated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0038Use of organic additives containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/02Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by the reacting monomers or modifying agents during the preparation or modification of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/022Foams characterised by the foaming process characterised by mechanical pre- or post-treatments premixing or pre-blending a part of the components of a foamable composition, e.g. premixing the polyol with the blowing agent, surfactant and catalyst and only adding the isocyanate at the time of foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/10Water or water-releasing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen oder Polyisocyanurat-Hartschaumstoffen durch Umsetzung von mindestens einem Polyisocyanat A), Polyetheresterpolyolen B) auf Basis aromatischer Dicarbonsäuren, die durch Veresterung von b1) 10 bis 70 Mol-% einer Dicarbonsäurezusammensetzung, enthaltend b11) 50 bis 100 Mol-%, bezogen auf die Dicarbonsäure-zusammensetzung, einer oder mehrerer aromatischer Dicarbonsäuren oder Derivate derselben, b12) 0 bis 50 Mol-%, bezogen auf die Dicarbonsäure-zusammensetzung b1), einer oder mehrerer aliphatischer Dicarbonsäuren oder Derivate derselben, b2) 2 bis 30 Mol-% einer oder mehrerer Fettsäuren und/oder Fettsäurederivate, b3) 10 bis 70 Mol-% eines oder mehrerer aliphatischer oder cycloaliphatischer Diole mit 2 bis 18 C-Atomen oder Alkoxylate derselben, b4) 2 bis 50 Mol-% eines Polyetherpolyols mit einer Funktionalität größer oder gleich 2, hergestellt durch Alkoxylierung eines Polyols mit einer Funktionalität größer oder gleich 2 in Gegenwart eines Amins als Katalysator, erhältlich sind, gegebenenfalls weiteren Polyesterpolyole C), die sich von denen der Komponente B) unterscheiden, und mindestens einem Polyetherpolyol D), wobei das Massenverhältnis der Summe der Komponenten B) und gegebenenfalls C) zu Komponente D) mindestens 7 beträgt. Die vorliegende Erfindung betrifft außerdem die so erhältlichen Hartschaumstoffe sowie deren Verwendung zur Herstellung von Sandwichelementen mit starren oder flexiblen Deckschichten. Darüber hinaus richtet sich die vorliegende Erfindung auf die zugrundeliegenden Polyolkomponenten.

Description

Verfahren zur Herstellung von Polyurethan-Hartschäumen und Polyisocyanurat-Hartschaumen
Beschreibung Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen oder Polyisocyanurat-Hartschaumstoffen unter Verwendung von bestimmten Poly- etheresterpolyolen auf Basis aromatischer Dicarbonsäuren. Die vorliegende Erfindung betrifft außerdem die so erhältlichen Hartschaumstoffe sowie deren Verwendung zur Herstellung von Sandwichelementen mit starren oder flexiblen Deckschichten. Darüber hinaus richtet sich die vorliegende Erfindung auf die zugrundeliegenden Polyolkomponenten.
Die Herstellung von Polyurethan-Hartschaumstoffen durch Umsetzung von organischen oder modifizierten organischen Di- oder Polyisocyanaten mit höhermolekularen Verbindung mit mindestens zwei reaktiven Wasserstoffatomen, insbesondere mit Polyetherpolyolen aus der Alky- lenoxidpolymerisation oder Polyesterpolyolen aus der Polykondensation von Alkoholen mit Dicarbonsäuren in Gegenwart von Polyurethankatalysatoren, Kettenverlängerungs- und/oder Vernetzungsmitteln, Treibmitteln und weiteren Hilfs- und Zusatzstoffen ist bekannt und wird in zahlreichen Patent- und Literaturveröffentlichungen beschrieben. Im Rahmen der vorliegenden Offenbarung werden die Begriffe„Polyesterpolyol",„Polyesterol", „Polyesteralkohol" und die Abkürzung„PESOL" gleichbedeutend verwendet.
Bei Einsatz von Polyesterpolyolen ist es üblich, Polykondensate aus aromatischen und/oder aliphatischen Dicarbonsäuren und Alkandiolen und/oder -triolen bzw. Etherdiolen einzusetzen. Es ist aber auch möglich, Polyesterabfälle und hier insbesondere Polyethylenterephthalat
(PET)- bzw. Polybutylenterephthalat (PBT)-Abfälle zu verarbeiten. Hierfür sind eine ganze Reihe von Verfahren bekannt und beschrieben. Grundlage einiger Verfahren ist die Umwandlung des Polyesters in einen Diester der Terephthalsäure, z.B. in Dimethylterephthalat. In
DE-A 100 37 14 und US-A 5,051 ,528 werden derartige Umesterungen unter Einsatz von Methanol und Umesterungskatalysatoren beschrieben.
Ferner ist bekannt, dass Terephthalsäure-basierte Ester bezüglich des Brandverhaltens Phthal- säure-basierten Estern überlegen sind, wie zum Beispiel in WO 2010/043624 beschrieben. Beim Einsatz der Polyesterpolyole, die auf aromatischen Carbonsäuren oder deren Derivaten basieren (wie Terephthalsäure oder Phthalsäureanhydrid), zur Herstellung von Polyurethan (PU)-Hartschaumstoffen macht sich oft die hohe Viskosität der Polyesterpolyole negativ bemerkbar, da somit die Viskosität der Abmischungen mit den Polyestern ansteigt und dadurch die Vermischung mit dem Isocyanat deutlich erschwert wird.
Aus der EP-A 1 058 701 sind aromatische Polyesterpolyole mit niedriger Viskosität bekannt, die durch Umesterung eines Gemisches aus Phtalsäurederivaten, Diolen, Polyolen und hydrophoben fettbasierten Materialien erhalten werden. Zudem kann es in bestimmten Systemen zur Herstellung von PU-Hartschaumstoffen, zum Beispiel unter Verwendung von Glycerin als höherfunktionelle alkoholische Polyester-Komponente, zu Problemen mit einer unzureichenden Maßhaltigkeit kommen, d.h. das Schaumstoff-Produkt verformt sich nach der Entformung oder nach der Druckstrecke bei Verarbeitung nach dem Doppelbandverfahren deutlich.
Auch ist das Problem des Verhaltens von PU-Hartschaumstoffen im Brandfall bisher nicht für alle Systeme befriedigend gelöst. Beispielsweise kann sich beim Einsatz von Trimethylolpropan (TMP) als höherfunktionelle alkoholische Polyester-Komponente im Brandfall eine toxische Verbindung bilden.
Ein generelles Problem bei der Herstellung von Hartschaumstoffen ist die Ausbildung von Oberflächendefekten, vorzugsweise an der Grenzfläche zu metallischen Deckschichten. Diese Schaumoberflächendefekte bedingen die Ausbildung einer unebenen Metalloberfläche bei Sandwichelementen und führen somit oft zu einer optischen Beanstandung des Produkts. Eine Verbesserung der Schaumoberfläche vermindert die Häufigkeit des Auftretens solche Oberflächendefekte und führt somit zu einer optischen Verbesserung der Oberfläche von Sandwichelementen. Polyurethan-Hartschaumstoffe zeigen häufig eine hohe Sprödigkeit, was sich beim Zuschnitt der Schäume entweder durch eine starke Staubentwicklung und hohe Empfindlichkeit des Schaums zeigt, oder im Falle des Sägens des Schaumstoffs, vor allem beim Sägen von Verbundelementen mit metallischen Deckschichten und einem Kern aus einem Polyisocyanurat- schaum zur Rissbildung im Schaum führen kann.
Ferner ist es allgemein wünschenswert, Systeme mit einer möglichst hohen Eigenreaktivität bereitzustellen, um den Einsatz von Katalysatoren zu minimieren.
All diese Probleme können umgangen werden, in dem spezielle Polyetherole als höherfunktio- nelle alkoholische Polyester-Komponente zur Herstellung des Polyesterpolyols eingesetzt werden.
Im Regelfall werden diese Polyetherole durch katalysierte Alkoxylierung eines OH-funktionellen Starters hergestellt.
Als Alkoxylierungs-Katalysatoren werden standardmäßig basische Verbindungen, insbesondere KOH, eingesetzt. Auch Dimetallcyanid (DMC)-Katalysatoren oder Carbene werden in manchen Fällen verwendet. Bei den oft verwendeten KOH-Katalysatoren für die Alkoxylierung von OH-funktionellen Verbindungen muss jedoch nach der Umsetzung noch ein Aufarbeitungsschritt erfolgen, um den Katalysator vom Produkt abzutrennen. Diese Aufarbeitung erfolgt normalerweise durch Neutrali- sation und anschließende Filtration. Dabei bleiben allerdings meist gewisse Mengen des Produkts im abzutrennenden Katalysator, wodurch die Produktausbeute sinkt.
Wünschenswert wäre es, wenn auf die Aufarbeitung der Polyetherole verzichtet werden könnte (u.a. aufgrund von Polyolverlusten und der notwendigen Investition in diesen Anlagenteil). Bei der routinemäßig angewandten KOH-Katalyse würde jedoch der basische Katalysator im Po- lyetherol verbleiben und blockiert die nachfolgende säurekatalysierte Veresterung zur Herstellung von Polyesterolen. Aufgabe der Erfindung war es somit, PU-Hartschaumstoffe mit den oben beschriebenen technischen Vorteilen bereitzustellen, wobei die dazu verwendeten Einsatzstoffe, vor allem die dazu verwendeten Polyester auf Basis der speziellen Polyetherole, mit möglichst geringem Aufwand (also u.a. mit möglichst wenig Aufarbeitungs- und Reinigungsschritten) hergestellt werden sollten.
Gelöst wird die Aufgabe durch ein Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen oder Polyisocyanurat-Hartschaumstoffen umfassend die Umsetzung von
A) mindestens einem Polyisocyanat,
B) mindestens einem Polyetheresterpolyol, erhältlich durch Veresterung von
b1 ) 10 bis 70 Mol-% einer Dicarbonsäurezusammensetzung, enthaltend
b1 1 ) 50 bis 100 Mol-%, bezogen auf die Dicarbonsäurezusammensetzung, einer oder mehrerer aromatischer Dicarbonsäuren oder Derivate derselben, b12) 0 bis 50 Mol-%, bezogen auf die Dicarbonsäurezusammensetzung b1 ), einer oder mehrerer aliphatischer Dicarbonsäuren oder Derivate derselben, b2) 2 bis 30 Mol-% einer oder mehrerer Fettsäuren und/oder Fettsäurederivate, b3) 10 bis 70 Mol-% eines oder mehrerer aliphatischer oder cycloaliphatischer Diole mit
2 bis 18 C-Atomen oder Alkoxylate derselben,
b4) 2 bis 50 Mol-% eines Polyetherpolyols mit einer Funktionalität größer oder gleich 2, hergestellt durch Alkoxylierung eines Polyols mit einer Funktionalität größer oder gleich 2 in Gegenwart eines Amins als Katalysator,
jeweils bezogen auf die Gesamtmenge der Komponenten b1 ) bis b4), wobei sich die Komponenten b1 ) bis b4) zu 100 Mol-% addieren,
C) gegebenenfalls weiteren Polyesterpolyolen, die sich von denen der Komponente B) unter- scheiden,
D) mindestens ein Polyetherpolyol, und
E) gegebenenfalls Flammschutzmitteln,
F) einem oder mehreren Treibmitteln,
G) Katalysatoren, und
H) gegebenenfalls weiteren Hilfsmitteln oder Zusatzstoffen, wobei das Massenverhältnis der Summe der Komponenten B) und gegebenenfalls C) zu Komponente D) mindestens 7 beträgt.
Überraschenderweise können die in Gegenwart eines Amins als Katalysator hergestellten Po- lyetherpolyole b4) ohne Aufarbeitungsschritt und ohne andere Nachteile in der nachfolgenden sauerkatalysierten Veresterung eingesetzt werden, obwohl der basische, aminische Alkoxylie- rungskatalysator im Polyetherpolyol b4) verbleibt.
Gegenstand der vorliegenden Erfindung ist außerdem eine Polyolkomponente enthaltend die vorgenannten Komponenten B) bis H), wobei das Massenverhältnis der Summe der Komponenten B) und gegebenenfalls C) zu Komponente D) mindestens 7 beträgt.
Weitere Gegenstände der vorliegenden Erfindung sind Polyurethan-Hartschaumstoffe und Poly- isocyanurat-Hartschaumstoffe, erhältlich nach dem erfindungsgemäßen Verfahren sowie deren Verwendung zur Herstellung von Sandwich-Elementen mit starren oder flexiblen Deckschichten.
Die Erfindung wird nachfolgend näher erläutert. Kombinationen von bevorzugten Ausführungsformen verlassen den Rahmen der vorliegenden Erfindung nicht. Dies gilt insbesondere in Be- zug auf die als bevorzugt gekennzeichneten Ausführungsformen der einzelnen Komponenten A) bis H) der vorliegenden Erfindung. Die nachfolgend im Rahmen von Komponente B) bis H) aufgeführten Ausführungsformen beziehen sich sowohl auf das erfindungsgemäße Verfahren und die so erhältlichen Hartschaumstoffe als auch auf die erfindungsgemäßen Polyolkompo- nenten.
Komponente B
Im Rahmen der vorliegenden Offenbarung sind die Begriffe„Polyesterpolyol" und„Polyesterol" gleichbedeutend, ebenso die Begriffe„Polyetherpolyol" und„Polyetherol".
Vorzugsweise enthält die Komponente b1 1 ) mindestens eine Verbindung, die aus der Gruppe bestehend aus Terephthalsäure, Dimethylterephthalat (DMT), Polyethylenterephthalat (PET), Phthalsäure, Phthalsäureanhydrid (PSA) und Isophthalsäure ausgewählt wird. Besonders bevorzugt enthält die Komponente b1 1 ) mindestens eine Verbindung aus der Gruppe bestehend aus Terephthalsäure, Dimethylterephthalat (DMT), Polyethylenterephthalat (PET) und Phthalsäureanhydrid (PSA). Ganz besonders bevorzugt enthält die Komponente b1 1 ) Phthalsäureanhydrid, Dimethylterephthalat (DMT), Terephthalsäure oder Gemische daraus. Die aromatischen Dicarbonsäuren oder deren Derivate der Komponente b1 1 ) werden besonders bevorzugt aus den vorgenannten aromatischen Dicarbonsäuren bzw. Dicarbonsäurederivaten und im speziel- len aus Terephthalsäure und/oder Dimethylterephthalat (DMT) ausgewählt. Terephthalsäure und/oder DMT in Komponente b1 1 ) führt zu Polyetherestern B) mit besonders guten Brand- Schutzeigenschaften. Terephthalsaure ist dabei ganz besonders bevorzugt, da im Gegensatz zu DMT die Entstehung von störenden Abspaltungsprodukten vermieden werden kann.
Im Allgemeinen sind aliphatische Dicarbonsäuren oder -derivate (Komponente b12) zu 0 bis 30 Mol-%, bevorzugt 0 bis 10 Mol-% in der Dicarbonsäurezusammensetzung b1 ) enthalten. Besonders bevorzugt enthält die Dicarbonsäurezusammensetzung b1 ) keine aliphatischen Dicarbonsäuren oder Derivate derselben und besteht somit zu 100 Mol-% aus einer oder mehreren aromatischen Dicarbonsäuren oder deren Derivate, wobei die vorgenannten bevorzugt sind. Vorzugsweise wird die Komponente b2) in Mengen von 3 bis 20 Mol-%, besonders bevorzugt 5 bis 18 Mol-% eingesetzt.
Vorzugsweise wird die Komponente b3) in Mengen von 20 bis 60 Mol-%, bevorzugt von 25 bis 55 Mol-%, besonders bevorzugt von 30 bis 45 Mol-% eingesetzt.
Vozugsweise wird die Komponente b4) in Mengen von 2 bis 40 Mol-%, bevorzugt 8 bis
35 Mol-%, besonders bevorzugt 15 bis 25 Mol-% eingesetzt.
In einer Ausführungsform der Erfindung besteht die Fettsäure oder das Fettsäurederivat b2) aus einer Fettsäure bzw. Fettsäuremischung, einem oder mehreren Glycerin-Estern von Fettsäuren, bzw. von Fettsäuremischungen und/oder einem oder mehreren Fettsäuremonoestern, wie beispielsweise Biodiesel oder Methylestern von Fettsäuren, besonders bevorzugt besteht die Komponente b2) aus einer Fettsäure bzw. Fettsäuremischung und/oder einem oder mehreren Fettsäuremonoestern, spezifischer besteht die Komponente b2) aus einer Fettsäure bzw. Fett- säuremischung und/oder Biodiesel und im speziellen besteht die Komponente b2) aus einer Fettsäure bzw. Fettsäuremischung.
In einer bevorzugten Ausführungsform der Erfindung ist die Fettsäure oder das Fettsäurederivat b2) ausgewählt aus der Gruppe bestehend aus Rizinusöl, Polyhydroxyfettsäuren, Ricinolsäure, Stearinsäure, Hydroxyl-modifizierte Öle, Weintraubenkernöl, schwarzem Kümmelöl, Kürbis- kernöl, Borretschsamenöl, Sojabohnenöl, Weizensamenöl, Rapsöl, Sonnenblumenkernöl, Erd- nussöl, Aprikosenkernöl, Pistazienöl, Mandelöl, Olivenöl, Macadamianussöl, Avocadoöl, Sand- dornöl, Sesamöl, Hanföl, Haselnussöl, Primelöl, Wildrosenöl, Distelöl, Walnussöl, tierischem Talg, wie beispielsweise Rindertalg, Fettsäuren, Hydroxyl-modifizierten Fettsäuren, Biodiesel, Methylestern von Fettsäuren und Fettsäureestern basierend auf Miyristoleinsäure, Palmitoleinsäure, Ölsäure, Vaccensäure, Petroselinsäure, Gadoleinsäure, Erukasäure, Nervonsäure, Li- nolsäure, a- und γ-Linolensäure, Stearidonsäure, Arachidonsäure, Timnodonsäure, Clupano- donsäure und Cervonsäure sowie Mischfettsäuren. In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist die Fettsäure oder das Fettsäurederivat b2) Ölsäure, Biodiesel, Sojaöl, Rapsöl oder Talg, besonders bevorzugt Ölsäure, Biodiesel, Sojaöl, Rapsöl oder Rindertalg, spezifischer Ölsäure oder Biodiesel und im speziellen Ölsäure. Die Fettsäure oder das Fettsäurederivat verbessert unter anderem die Treibmittellöslichkeit bei der Herstellung von Polyurethanhartschaumstoffen.
Ganz besonders bevorzugt umfasst Komponente b2) kein Triglycerid, insbesondere kein Öl oder Fett. Das durch die Veresterung bzw. Umesterung freiwerdende Glycerin aus dem Triglycerid verschlechtert wie oben ausgeführt die Maßhaltigkeit des Hartschaums. Bevorzugte Fettsäuren und Fettsäurederivate sind im Rahmen von Komponente b2) insofern die Fettsäuren selbst sowie Alkylmonoester von Fettsäuren oder Alkylmonoester von Fettsäuregemischen, insbesondere die Fettsäuren selbst und/oder Biodiesel.
Vorzugsweise ist das aliphatische oder cycloaliphatische Diol b3) ausgewählt aus der Gruppe bestehend aus Ethylenglykol, Diethylenglykol, Propylenglykol, 1 ,3-Propandiol, 1 ,4-Butandiol, 1 ,5-Pentandiol, 1 ,6-Hexandiol, 2-Methyl-1 ,3-propandiol und 3-Methyl-1 ,5-pentandiol und Alko- xylaten derselben. Besonders bevorzugt ist das aliphatische Diol b3) Monoethylenglykol oder Diethylenglykol, insbesondere Diethylenglykol.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist der Aminkatalysator zur Herstellung der Komponente b4) ausgewählt aus der Gruppe enthaltend Dimethylethanolamin (DMEOA), Imidazol und Imidazolderivate sowie Mischungen daraus, besonders bevorzugt Imidazol.
Vorzugsweise wird ein solches Polyetherpolyol b4) mit einer Funktionalität größer 2 eingesetzt, das durch Alkoxylierung eines Polyols mit einer Funktionalität größer oder gleich 3 hergestellt wurde.
Vorzugsweise weist das Polyetherpolyol b4) eine Funktionalität von größer als 2 auf. Vorzugsweise weist es eine Funktionalität größer oder gleich 2,7, insbesondere größer oder gleich 2,9 auf. Im Allgemeinen weist es eine Funktionalität von kleiner oder gleich 6, bevorzugt kleiner oder gleich 5, besonders bevorzugt kleiner oder gleich 4 auf.
In einer Ausführungsform der vorliegenden Erfindung ist das Polyetherpolyol b4) erhältlich durch Umsetzung eines Polyols mit einer Funktionalität von größer als 2 mit Ethylenoxid und/ oder Propylenoxid, bevorzugt mit Ethylenoxid. Besonders bevorzugt ist das Polyetherpolyol b4) erhältlich durch Alkoxylierung mit Ethylenoxid, was zu Polyurethan-Hartschaumstoffen mit verbesserten Brandschutzeigenschaften führt.
Vorzugsweise ist das Polyetherpolyol b4) erhältlich durch Alkoxylierung, vorzugsweise Ethoxy- lierung, eines Polyols, ausgewählt aus der Gruppe bestehend aus Sorbit, Pentaerythrit, Trime- thylolpropan, Glycerin, Polyglycerin und deren Gemischen, besonders bevorzugt eines Polyols, ausgewählt aus der Gruppe bestehend aus Trimethylolpropan und Glycerin. In einer speziellen Ausführungsform der Erfindung besteht das Polyetherpolyol b4) aus dem Umsetzungsprodukt von Glycerin mit Ethylenoxid und/ oder Propylenoxid, bevorzugt mit Ethylenoxid. Hierdurch ergibt sich eine besonders hohe Lagerstabilität der Komponente B. In einer weiteren speziellen Ausführungsform der Erfindung besteht das Polyetherpolyol b4) aus dem Umsetzungsprodukt von Trimethylolpropan mit Ethylenoxid und/oder Propylenoxid, bevorzugt mit Ethylenoxid. Hierdurch ergibt sich ebenfalls eine besonders hohe verbesserte Lagerstabilität der Komponente B). Vorzugsweise weist das Polyetherpolyol b4) eine OH-Zahl im Bereich von 150 bis 1250 mg KOH/g, bevorzugt 300 bis 950 mg KOH/g, besonders bevorzugt 500 bis 800 mg KOH/g auf. In diesem Bereich lassen sich besonders günstige mechanische Eigenschaften sowie Brandschutzeigenschaften erzielen. In einer besonders bevorzugten Ausführungsform der Erfindung besteht das Polyetherpolyol b4) aus dem Umsetzungsprodukt von Trimethylolpropan oder Glycerin, bevorzugt Glycerin, mit Ethylenoxid, wobei die OH-Zahl des Polyetherpolyols b4) im Bereich von 500 bis 800 mg KOH/g, bevorzugt 500 bis 650 mg KOH/g, liegt und Imidazol als Alkoxylierungskatalysator Verwendung findet.
In einer insbesondere bevorzugten Ausführungsform der Erfindung besteht das Polyetherpolyol b4) aus dem Umsetzungsprodukt von Trimethylolpropan oder Glycerin, bevorzugt Glycerin, mit Ethylenoxid, wobei die OH-Zahl des Polyetherpolyols b4) im Bereich von 500 bis 800 mg KOH/g, bevorzugt 500 bis 650 mg KOH/g, liegt, Imidazol als Alkoxylierungskatalysator Verwen- dung findet, und das aliphatische oder cycloaliphatische Diol b3) ist Diethylenglykol, und die Fettsäure oder das Fettsäurederivat b2) ist Ölsäure.
Vorzugsweise werden pro kg Polyetheresterpolyol B) mindestens 200 mmol, besonders bevorzugt mindestens 400 mmol, insbesondere bevorzugt mindestens 600 mmol, speziell bevorzugt mindestens 800 mmol, im speziellen mindestens 1000 mmol der Komponente b4) verwendet.
Vorzugsweise weist das Polyetheresterpolyol B) eine zahlengewichtete mittlere Funktionalität von größer oder gleich 2, bevorzugt von größer als 2, besonders bevorzugt von größer als 2,2 und insbesondere von größer als 2,3 auf, was zu einer höheren Vernetzungsdichte des damit hergestellten Polyurethans und damit zu besseren mechanischen Eigenschaften des Polyurethanschaums führt.
Zur Herstellung der Polyetheresterpolyole können die aliphatischen und aromatischen Polycar- bonsäuren und/oder -derivate und mehrwertigen Alkohole katalysatorfrei oder vorzugsweise in Gegenwart von Veresterungskatalysatoren, zweckmäßigerweise in einer Atmosphäre aus Inertgas wie Stickstoff in der Schmelze bei Temperaturen von 150 bis 280°C, vorzugsweise 180 bis 260°C gegebenenfalls unter vermindertem Druck bis zu der gewünschten Säurezahl, die vor- teilhafterweise kleiner als 10, vorzugsweise kleiner als 2 ist, polykondensiert werden. Nach einer bevorzugten Ausführungsform wird das Veresterungsgemisch bei den oben genannten Temperaturen bis zu einer Säurezahl von 80 bis 20, vorzugsweise 40 bis 20, unter Normaldruck und anschließend unter einem Druck von kleiner als 500 mbar, vorzugsweise 40 bis 400 mbar, polykondensiert. Als Veresterungskatalysatoren kommen beispielsweise Eisen-, Cadmium-, Kobalt-, Blei-, Zink-, Antimon-, Magnesium-, Titan- und Zinnkatalysatoren in Form von Metallen, Metalloxiden oder Metallsalzen in Betracht. Die Polykondensation kann jedoch auch in flüssiger Phase in Gegenwart von Verdünnungs- und/oder Schleppmitteln, wie z.B. Benzol, Toluol, Xylol oder Chlorbenzol, zur azeotropen Abdestillation des Kondensationswassers durchgeführt wer- den.
Zur Herstellung der Polyetheresterpolyole werden die organischen Polycarbonsäuren und/oder -derivate und mehrwertigen Alkohole vorteilhafterweise im Molverhältnis von 1 : 1 bis 2,2, vorzugsweise 1 : 1 ,05 bis 2,1 und besonders bevorzugt 1 : 1 ,1 bis 2,0 polykondensiert.
Die erhaltenen Polyetheresterpolyole weisen im Allgemeinen ein zahlenmittleres Molekulargewicht von 300 bis 3000, vorzugsweise 400 bis 1000 und insbesondere 450 bis 800 auf.
Im Allgemeinen ist der Anteil der erfindungsgemäßen Polyetheresterpolyole B) mindestens 10 Gew.-%, bevorzugt mindestens 20 Gew.-%, besonders bevorzugt mindestens 40 Gew.-% und im Speziellen mindestens 50 Gew.-% bezogen auf die Summe der Komponenten B) bis H).
Zur Herstellung der Polyurethan-Hartschaumstoffe nach dem erfindungsgemäßen Verfahren finden, neben den oben beschriebenen speziellen Polyesterpolyolen (Polyetheresterpolyole B), die an sich bekannten Aufbaukomponenten Verwendung, zu denen im Einzelnen folgendes auszuführen ist.
Komponente A Unter Polyisocyanat wird im Rahmen der vorliegenden Erfindung eine organische Verbindung verstanden, welche mindestens zwei reaktive Isocyanatgruppen pro Molekül enthält, d. h. die Funktionalität beträgt mindestens 2. Sofern die eingesetzten Polyisocyanate oder ein Gemisch mehrerer Polyisocyanate keine einheitliche Funktionalität aufweisen, so beträgt der zahlenge- wichtete Mittelwert der Funktionalität der eingesetzten Komponente A) mindestens 2.
Als Polyisocyanate A) kommen die an sich bekannten aliphatischen, cycloaliphatischen, araliphatischen und vorzugsweise die aromatischen mehrwertigen Isocyanate in Betracht. Derartige mehrfunktionelle Isocyanate sind an sich bekannt oder können nach an sich bekannten Methoden hergestellt werden. Die mehrfunktionellen Isocyanate können insbesondere auch als Mischungen eingesetzt werden, so dass die Komponente A) in diesem Fall verschiedene mehrfunktionelle Isocyanate enthält. Als Polyisocyanat in Betracht kommende mehrfunktionelle Iso- cyanate weisen zwei (im folgenden Diisocyanate genannt) oder mehr als zwei Isocyanatg nippen pro Molekül auf.
Im Einzelnen seien insbesondere genannt: Alkylendiisocyanate mit 4 bis 12 Kohlenstoffatomen im Alkylenrest, wie 1 ,12-Dodecandiioscyanat, 2-Ethyltetramethylendiisocyanat-1 ,4,2-methyl- pentamethylendiisocyanat-1 ,5, Tetramethylendiisocyanat-1 ,4, und vorzugsweise Hexamethyl- endiisocyanat-1 ,6; cycloaliphatische Diisocyanate wie Cyclohexan-1 ,3- und 1 ,4-diisocyanat sowie beliebige Gemische dieser Isomeren, 1 -lsocyanato-3,3,5-trimethyl-5-isocyanatomethyl- cyclohexan (IPDI), 2,4- und 2,6-Hexahydrotoluylendiisocyanat sowie die entsprechenden Iso- merengemische, 4,4'-, 2,2'- und 2,4'-Dicyclohexylmethandiisocyanat sowie die entsprechenden Isomerengemische, und vorzugsweise aromatische Polyisocyanate, wie 2,4- und 2,6- Toluylendiisocyanat und die entsprechenden Isomerengemische, 4,4'-, 2,4'- und 2,2'- Diphenylmethandiisocyanat und die entsprechenden Isomerengemische, Mischungen aus 4,4'- und 2,2'-Diphenylmethandiisocyanaten, Polyphenylpolymethylenpolyisocyanate, Mischungen aus 4,4'-, 2,4'- und 2,2'-Diphenylmethandiisocyanaten und Polyphenylpolymethylenpolyiso- cyanaten (Roh-MDI) und Mischungen aus Roh-MDI und Toluylendiisocyanaten.
Insbesondere geeignet sind 2,2'-, 2,4'- und/oder 4, 4'-Diphenylmethandiisocyanat (MDI), 1 ,5- Naphthylendiisocyanat (NDI), 2,4- und/oder 2, 6-Toluylendiisocyanat (TDI), 3,3'-Dimethyl- diphenyldiisocyanat, 1 ,2-Diphenylethandiisocyanat und/oder p-Phenylen-diisocyanat (PPDI), Tri-, Tetra-, Penta-, Hexa-, Hepta- und/oder Octamethylendiisocyanat, 2-Methylpentamethylen- 1 ,5-diisocyanat, 2-Ethylbutylen-1 ,4-diisocyanat, Pentamethylen-1 ,5-diisocyanat, Butylen-1 ,4- diisocyanat, 1 -lsocyanato-3,3,5-trimethyl-5-iso-cyanatomethyl-cyclohexan (Isophoron- diisocyanat, IPDI), 1 ,4- und/oder 1 ,3-Bis(isocyanatomethyl)cyclohexan (HXDI), 1 ,4- Cyclohexandiisocyanat, 1 -Methyl-2,4- und/oder -2,6-cyclohexandiisocyanat und 4,4'-, 2,4'- und/oder 2,2'-Dicyclohexylmethandiisocyanat.
Häufig werden auch modifizierte Polyisocyanate, d.h. Produkte, die durch chemische Umsetzung organischer Polyisocyanate erhalten werden und die mindestens zwei reaktive Isocyanat- gruppen pro Molekül aufweisen, verwendet. Insbesondere genannt seien Ester-, Harnstoff-, Biuret-, Allophanat-, Carbodiimid-, Isocyanurat-, Uretdion-, Carbamat- und/oder Urethangrup- pen enthaltende Polyisocyanate.
Besonders bevorzugt sind als Polyisocyanate der Komponente A) folgende Ausführungsformen: i) Mehrfunktionelle Isocyanate auf Basis von Toluylendiisocyanat (TDI), insbesondere 2,4- TDI oder 2,6-TDI oder Mischungen aus 2,4- und 2,6-TDI;
ii) Mehrfunktionelle Isocyanate auf Basis von Diphenylmethandiisocyanat (MDI), insbesondere 2,2'-MDI oder 2,4'-MDI oder 4,4'-MDI oder oligomeres MDI, das auch als Polyphe- nylpolymethylenisocyanat bezeichnet wird, oder Mischungen aus zwei oder drei der vorgenannten Diphenylmethandiisocyanate, oder Roh-MDI, welches bei der Herstellung von MDI anfällt, oder Mischungen aus mindestens einem Oligomer des MDI und mindestens einem der vorgenannten niedermolekularen MDI-Derivate;
iii) Gemische aus mindestens einem aromatischen Isocyanat gemäß Ausführungsform i) und mindestens einem aromatischen Isocyanat gemäß Ausführungsform ii).
Als Polyisocyanat ganz besonders bevorzugt ist polymeres Diphenylmethandiisocyanat. Bei polymerem Diphenylmethandiisocyanat (im folgenden polymeres MDI genannt) handelt es sich um ein Gemisch aus zweikernigem MDI und oligomeren Kondensationsprodukten und somit Derivaten von Diphenylmethandiisocyanat (MDI). Die Polyisocyanate können bevorzugt auch aus Mischungen von monomeren aromatischen Diisocyanaten und polymerem MDI aufgebaut sein.
Polymeres MDI enthält neben zweikernigem MDI ein oder mehrere mehrkernige Kondensationsprodukte des MDI mit einer Funktionalität von mehr als 2, insbesondere 3 oder 4 oder 5. Polymeres MDI ist bekannt und wird häufig als Polyphenylpolymethylenisocyanat oder auch als oligomeres MDI bezeichnet. Polymeres MDI ist üblicherweise aus einer Mischung aus MDI- basierten Isocyanaten mit unterschiedlicher Funktionalität aufgebaut. Üblicherweise wird polymeres MDI im Gemisch mit monomerem MDI eingesetzt. Die (mittlere) Funktionalität eines Polyisocyanates, welches polymeres MDI enthält, kann im Bereich von ungefähr 2,2 bis ungefähr 5 variieren, insbesondere von 2,3 bis 4, insbesondere von 2,4 bis 3,5. Eine solche Mischung von MDI-basierten mehrfunktionellen Isocyanaten mit unterschiedlichen Funktionalitäten ist insbesondere das Roh-MDI, das bei der Herstellung von MDI als Zwischenprodukt erhalten wird.
Mehrfunktionelle Isocyanate oder Mischungen mehrerer mehrfunktioneller Isocyanate auf Basis von MDI sind bekannt und werden beispielsweise von BASF Polyurethanes GmbH unter dem Namen Lupranat® vertrieben. Vorzugsweise beträgt die Funktionalität der Komponente A) mindestens zwei, insbesondere mindestens 2,2 und besonders bevorzugt mindestens 2,4. Die Funktionalität der Komponente A) beträgt bevorzugt von 2,2 bis 4 und besonders bevorzugt von 2,4 bis 3.
Vorzugsweise beträgt der Gehalt an Isocyanatgruppen der Komponente A) von 5 bis
10 mmol/g, insbesondere von 6 bis 9 mmol/g, besonders bevorzugt von 7 bis 8,5 mmol/g. Dem Fachmann ist bekannt, dass der Gehalt an Isocyanatgruppen in mmol/g und das sogenannte Äquivalenzgewicht in g/Äquivalent in einem reziproken Verhältnis stehen. Der Gehalt an Isocyanatgruppen in mmol/g ergibt sich aus dem Gehalt in Gew.-% nach ASTM D-5155-96 A. In einer besonders bevorzugten Ausführungsform besteht die Komponente A) aus mindestens einem mehrfunktionellen Isocyanat ausgewählt aus Diphenylmethan-4,4'-diisocyanat, Diphe- nylmethan-2,4'-diisocyanat, Diphenylmethan-2,2'-diisocyanat und oligomerem Diphenylmet- handiisocyanat. Im Rahmen dieser bevorzugten Ausführungsform enthält die Komponente (a1 ) besonders bevorzugt oligomeres Diphenylmethandiisocyanat und weist eine Funktionalität von mindestens 2,4 auf. Die Viskosität der eingesetzten Komponente A) kann in einem weiten Bereich variieren. Vorzugsweise weist die Komponente A) eine Viskosität von 100 bis 3000 mPa*s, besonders bevorzugt von 200 bis 2500 mPa*s, auf.
Komponente C
Geeignete Polyesterpolyole C), die sich von den Polyetheresterpolyolen B) unterscheiden, können beispielsweise aus organischen Dicarbonsäuren mit 2 bis 12 Kohlenstoffatomen, vorzugsweise aromatischen, oder Gemischen aus aromatischen und aliphatischen Dicarbonsäuren und mehrwertigen Alkoholen, vorzugsweise Diolen, mit 2 bis 12 Kohlenstoffatomen, vorzugsweise 2 bis 6 Kohlenstoffatomen hergestellt werden.
Als Dicarbonsäuren kommen insbesondere in Betracht: Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure, Sebazinsäure, Decandicarbonsäure, Maleinsäure, Fumarsäure, Phthalsäure, Isophthalsäure und Terephthalsäure. Verwendet werden können ebenso Deri- vate dieser Dicarbonsäuren, wie beispielsweise Dimethylterephthalat. Die Dicarbonsäuren können dabei sowohl einzeln als auch im Gemisch verwendet werden. Anstelle der freien Dicarbonsäuren können auch die entsprechenden Dicarbonsäurederivate, wie z.B. Dicarbonsäurees- ter von Alkoholen mit 1 bis 4 Kohlenstoffatomen oder Dicarbonsäureanhydride eingesetzt werden. Als aromatische Dicarbonsäuren werden vorzugsweise Phthalsäure, Phthalsäureanhydrid, Terephthalsäure und/oder Isophthalsäure im Gemisch oder alleine verwendet. Als aliphatische Dicarbonsäuren werden vorzugsweise Dicarbonsäuregemische aus Bernstein-, Glutar- und Adipinsäure in Mengenverhältnissen von beispielsweise 20 bis 35 : 35 bis 50 : 20 bis 32 Gew.- Teilen, und insbesondere Adipinsäure verwendet. Beispiele für zwei- und mehrwertige Alkohole, insbesondere Diole sind: Ethandiol, Diethylenglykol, 1 ,2- bzw. 1 ,3-Propandiol, Dipropylenglykol, 1 ,4-Butandiol, 1 ,5-Pentandiol, 1 ,6-Hexandiol, 1 ,10-Decandiol, Glycerin, Trimethylolpropan und Pentaerythritol. Vorzugsweise verwendet werden Ethandiol, Diethylenglykol, 1 ,4-Butandiol, 1 ,5-Pentandiol, 1 ,6-Hexandiol oder Mischungen aus mindestens zwei der genannten Diole, insbesondere Mischungen aus 1 ,4-Butandiol, 1 ,5-Pentandiol und 1 ,6-Hexandiol. Eingesetzt werden können ferner Polyesterpolyole aus Lactonen, z.B. ε-Caprolacton oder Hydroxycarbonsäu- ren, z.B. co-Hydroxycapronsäure.
Zur Herstellung der weiteren Polyesterpolyole C) kommen auch biobasierte Ausgangsstoffe und/oder deren Derivate in Frage, wie z. B. Rizinusöl, Polyhydroxyfettsäuren, Ricinolsäure, Hydroxyl-modifizierten Ölen, Weintraubenkernöl, schwarzem Kümmelöl, Kürbiskernöl, Bor- retschsamenöl, Sojabohnenöl, Weizensamenöl, Rapsöl, Sonnenblumenkernöl, Erdnussöl, Apri- kosenkernöl, Pistazienöl, Mandelöl, Olivenöl, Macadamianussöl, Avocadoöl, Sanddornöl, Se- samöl, Hanföl, Haselnussöl, Primelöl, Wildrosenöl, Distelöl, Walnussöl, Fettsäuren, Hydroxyl- modifizierten Fettsäuren und Fettsäureester basierend auf Myristoleinsäure, Palmitoleinsäure, Ölsäure, Vaccensäure, Petroselinsäure, Gadoleinsäure, Erukasäure, Nervonsäure, Linolsäure, a- und γ-Linolensäure, Stearidonsäure, Arachidonsäure, Timnodonsäure, Clupanodonsäure und Cervonsäure.
Im Allgemeinen beträgt das Massenverhältnis der Polyetheresterpolyole B) zu den Polyesterpo- lyolen C) mindestens 0,1 , bevorzugt mindestens 0,25, besonders bevorzugt mindestens 0,5 und insbesondere mindestens 0,8. Bevorzugt beträgt der Anteil der Polyetheresterpolyole B) an der Gesamtmenge der Polyesterpolyole B) und C) mindestens 25 Gew.-%, bevorzugt mindestens 50 Gew.-%, besonders bevorzugt mindestens 75 Gew.-%, insbesondere 100 Gew.-%. Besonders bevorzugt werden keine weiteren Polyesterpolyole C) mit umgesetzt.
Komponente D Erfindungsgemäß wird als Komponente D) mindestens ein Polyetherpolyole D) verwendet. Die Polyetherole D) können die nach bekannten Verfahren, beispielsweise durch anionische Polymerisation von einem oder mehreren Alkylenoxiden mit 2 bis 4 Kohlenstoffatomen mit Alkalihydroxiden, wie Natrium- oder Kaliumhydroxid, Alkalialkoholaten, wie Natriummethylat, Natriumoder Kaliumethylat oder Kaliumisopropylat, oder aminischen Alkoxylierungs-Katalysatoren, wie Dimethylethanolamin (DMEOA), Imidazol und/oder Imidazolderivate, unter Verwendung mindestens eines Startermoleküls, das 2 bis 8, vorzugsweise 2 bis 6 reaktive Wasserstoffatome gebunden enthält, oder durch kationische Polymerisation mit Lewis-Säuren, wie Antimonpen- tachlorid, Borfluorid-Etherat oder Bleicherde, hergestellt werden. Geeignete Alkylenoxide sind beispielsweise Tetrahydrofuran, 1 ,3-Propylenoxid, 1 ,2- bzw. 2,3- Butylenoxid, Styroloxid und vorzugsweise Ethylenoxid und 1 ,2-Propylenoxid. Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischungen verwendet werden. Bevorzugte Alkylenoxide sind Propylenoxid und Ethylenoxid, besonders bevorzugt ist Ethylenoxid. Als Startermoleküle kommen beispielsweise in Betracht: Wasser, organische Dicarbonsäuren, wie Bernsteinsäure, Adipinsäure, Phthalsäure und Terephthalsäure, aliphatische und aromatische, gegebenenfalls N-mono-, N,N- und Ν,Ν'-dialkylsubstituierte Diamine mit 1 bis 4 Kohlenstoffatomen im Alkylrest, wie gegebenenfalls mono- und dialkylsubstituiertes Ethylendiamin, Diethylentriamin, Triethylentetramin, 1 ,3-Propylendiamin, 1 ,3- bzw. 1 ,4-Butylendiamin, 1 ,2-, 1 ,3-, 1 ,4-, 1 ,5- und 1 ,6-Hexamethylendiamin, Phenylendiamine, 2,3-, 2,4- und 2,6-Toluylen- diamin und 4,4'-, 2,4'- und 2,2'-Diamino-diphenylmethan. Besonders bevorzugt sind die genannten diprimären Amine, beispielsweise Ethylendiamin.
Als Startermoleküle kommen ferner in Betracht: Alkanolamine, wie z.B. Ethanolamin, N-Methyl- und N-Ethylethanolamin, Dialkanolamine, wie z.B. Diethanolamin, N-Methyl- und N- Ethyldiethanolamin, und Trialkanolamine, wie z.B. Triethanolamin, und Ammoniak. Vorzugsweise verwendet werden zwei oder mehrwertige Alkohole, wie Ethandiol, Propandiol- 1 ,2 und -1 ,3, Diethylenglykol (DEG), Dipropylenglykol, Butandiol-1 ,4, Hexandiol-1 ,6, Glycerin, Trimethylolpropan, Pentaerythrit, Sorbit und Saccharose. Die Polyetherpolyole D), vorzugsweise Polyoxypropylenpolyole und Polyoxyethylenpolyole, besonders bevorzugt Polyoxyethylenpolyole, besitzen eine Funktionalität von vorzugsweise 2 bis 6, besonders bevorzugt 2 bis 4, insbesondere 2 bis 3 und im Speziellen 2 und zahlenmittlere Molekulargewichte von 150 bis 3000 g/mol, vorzugsweise 200 bis 2000 g/mol und insbesondere 250 bis 1000 g/mol.
In einer bevorzugten Ausführungsform der Erfindung wird ein alkoxyliertes Diol, bevorzugt ein ethoxyliertes Diol, beispielsweise ethoxylierter Ethylenglykol, als Polyetherpolyol D) mitverwendet, vorzugsweise handelt es sich dabei um Polyethylenglykol. In einer speziellen Ausführungsform der Erfindung besteht die Polyetherol-Komponente D) ausschließlich aus Polyethylenglykol, vorzugsweise mit einem zahlenmittleren Molekulargewicht von 250 bis 1000 g/mol.
Im Allgemeinen beträgt der Anteil der Polyetherpolyole D) 0 bis 1 1 Gew.-%, bevorzugt 2 bis 9 Gew.-%, besonders bevorzugt 4 bis 8 Gew.-%, bezogen auf die Summe der Komponenten B) bis H).
Erfindungsgemäß ist das Massenverhältnis der Summe der Komponenten B) und C) zu der Komponente D) größer als 7, bevorzugt größer als 7,5, besonders bevorzugt größer als 8, ins- besondere bevorzugt größer als 10 und speziell bevorzugt größer als 12.
Weiterhin ist das erfindungsgemäße Massenverhältnis der Summe der Komponenten B) und C) zu der Komponente D) kleiner als 80, bevorzugt kleiner als 40, besonders bevorzugt kleiner als 30, insbesondere bevorzugt kleiner als 20, speziell bevorzugt kleiner als 16 und im speziellen kleiner als 13.
Komponente E
Als Flammschutzmittel E) können im Allgemeinen die aus dem Stand der Technik bekannten Flammschutzmittel verwendet werden. Geeignete Flammschutzmittel sind beispielsweise bro- mierte Ester, bromierte Ether (Ixol) oder bromierte Alkohole wie Dibromneopentylakohol, Tri- bromneopentylalkohol und PHT-4-Diol, sowie chlorierte Phosphate wie Tris-(2-chlorethyl)phos- phat, Tris-(2-chlorpropyl)phosphat (TCPP), Tris(1 ,3-dichlorpropyl)phosphat, Trikresylphosphat, Tris-(2,3-dibrompropyl)phosphat, Tetrakis-(2-chlorethyl)-ethylendiphosphat, Dimethylmethan- phosphonat, Diethanolaminomethylphosphonsäurediethylester sowie handelsübliche halogen- haltige Flammschutzpolyole. Als weitere Phosphate oder Phosphonate können Diethylethan- phosphonat (DEEP), Triethylphosphat (TEP), Dimethylpropylphosphonat (DMPP), Diphenylkre- sylphosphat (DPK) als flüssige Flammschutzmittel eingesetzt werden.
Außer den bereits genannten Flammschutzmitteln können auch anorganische oder organische Flammschutzmittel, wie roter Phosphor, roten Phosphor enthaltende Zurichtungen, Aluminiumoxidhydrat, Antimontrioxid, Arsenoxid, Ammoniumpolyphosphat und Calciumsulfat, Blähgraphit oder Cyanursäurederivate, wie z.B. Melamin, oder Mischungen aus mindestens zwei Flammschutzmitteln, wie z.B. Ammoniumpolyphosphaten und Melamin sowie gegebenenfalls Maisstärke oder Ammoniumpolyphosphat, Melamin, Blähgraphit und gegebenenfalls aromati- sehe Polyester zum Flammfestmachen der Polyurethan-Hartschaumstoffe verwendet werden.
Bevorzugte Flammschutzmittel weisen keine mit Isocyanatgruppen reaktive Gruppen auf. Vorzugsweise sind die Flammschutzmittel bei Raumtemperatur flüssig. Besonders bevorzugt sind TCPP, DEEP, TEP, DMPP und DPK.
Im Allgemeinen beträgt der Anteil des Flammschutzmittels E), 2 bis 50 Gew.-%, bevorzugt 5 bis 30 Gew.-%, besonders bevorzugt 8 bis 25 Gew.-%, bezogen auf die Komponenten B) bis H).
Komponente F
Zu Treibmitteln F), welche zur Herstellung der Polyurethan-Hartschaumstoffe verwendet werden, gehören vorzugsweise Wasser, Ameisensäure und Gemische daraus. Diese reagieren mit Isocyanatgruppen unter Bildung von Kohlendioxid und im Falle von Ameisensäure zu Kohlendioxid und Kohlenstoffmonoxid. Da diese Treibmittel das Gas durch eine chemische Reaktion mit den Isocyanatgruppen freisetzen, werden sie als chemische Treibmittel bezeichnet. Daneben können physikalische Treibmittel wie niedrig siedende Kohlenwasserstoffe eingesetzt werden. Geeignet sind insbesondere Flüssigkeiten, welche gegenüber den Polyisocyanaten A) inert sind und Siedepunkte unter 100 °C, vorzugsweise unter 50 °C bei Atmosphärendruck aufweisen, so dass sie unter dem Einfluss der exothermen Polyadditionsreaktion verdampfen. Beispiele derar- tiger, vorzugsweise verwendeter Flüssigkeiten sind Alkane, wie Heptan, Hexan, n- und iso- Pentan, vorzugsweise technische Gemische aus n- und iso-Pentanen, n- und iso-Butan und Propan, Cycloalkane, wie Cyclopentan und/oder Cyclohexan, Ether, wie Furan, Dimethylether und Diethylether, Ketone, wie Aceton und Methylethylketon, Carbonsäurealkylester, wie Methyl- formiat, Dimethyloxalat und Ethylacetat und halogenierte Kohlenwasserstoffe, wie Methylen- Chlorid, Dichlormonofluormethan, Difluormethan, Trifluormethan, Difluorethan, Tetrafluorethan, Chlordifluorethane, 1 ,1 -Dichlor-2,2,2-trifluorethan, 2,2-Dichlor-2-fluorethan und Heptafluorpro- pan. Auch Gemische dieser niedrigsiedenden Flüssigkeiten untereinander und/oder mit anderen substituierten oder unsubstituierten Kohlenwasserstoffen können verwendet werden. Geeignet sind ferner organische Carbonsäuren, wie z.B. Ameisensäure, Essigsäure, Oxalsäure, Ricinolsäure und carboxylgruppenhaltige Verbindungen. Vorzugsweise werden keine halogenierten Kohlenwasserstoffe als Treibmittel verwendet. Vorzugsweise werden als chemische Treibmittel Wasser, Ameisensäure-Wasser-Mischungen oder Ameisensäure verwendet, besonders bevorzugte chemische Treibmittel sind Ameisensäure- Wasser-Mischungen oder Ameisensäure. Vorzugsweise werden als physikalische Treibmittel Pentanisomere, bzw. Mischungen von Pentanisomeren verwendet.
Die chemischen Treibmittel können dabei alleine, d.h. ohne Zusatz von physikalischen Treibmitteln, oder zusammen mit physikalischen Treibmitteln verwendet werden. Vorzugsweise werden die chemischen Treibmittel zusammen mit physikalischen Treibmitteln verwendet, wobei die Verwendung von Ameisensäure-Wasser-Mischungen oder reiner Ameisensäure zusammen mit Pentanisomeren oder Gemischen aus Pentanisomeren bevorzugt sind.
Die Treibmittel sind entweder ganz oder teilweise in der Polyolkomponente (d.h.
B+C+D+E+F+G+H) gelöst oder werden direkt vor dem Verschäumen der Polyolkomponente über einen Statikmischer zudosiert. Für gewöhnlich liegen Wasser, Ameisensäure-Wasser- Mischungen oder Ameisensäure ganz oder teilweise in der Polyolkomponente gelöst vor und wird das physikalische Treibmittel (beispielsweise Pentan) und gegebenenfalls der Rest des chemischen Treibmittels„online" dosiert. Zu der Polyolkomponente wird in situ Pentan, eventuell ein Teil des chemischen Treibmittels, sowie teilweise oder vollständig der Katalysator zugegeben. Die Hilfs- und Zusatzstoffe, wie auch die Flammschutzmittel sind bereits im Polyolblend enthalten.
Die eingesetzte Menge des Treibmittels bzw. der Treibmittelmischung liegt bei 1 bis 45 Gew.-%, vorzugsweise 1 bis 30 Gew.-%, besonders bevorzugt 1 ,5 bis 20 Gew.-%, jeweils bezogen auf die Summe der Komponenten B) bis H).
Dient Wasser, Ameisensäure oder eine Ameisensäure-Wasser-Mischung als Treibmittel, so wird es vorzugsweise der Polyolkomponente (B+C+D+E+F+G+H) in einer Menge von 0,2 bis 10 Gew.-%, bezogen auf die Komponente B), zugesetzt. Der Zusatz des Wassers, der Ameisensäure oder der Ameisensäure-Wasser-Mischung kann in Kombination mit dem Einsatz der anderen beschriebenen Treibmittel erfolgen. Bevorzugt wird Ameisensäure oder eine Ameisensäure-Wasser-Mischung in Kombination mit Pentan eingesetzt. Komponente G
Als Katalysatoren G) zur Herstellung der Polyurethan-Hartschaumstoffe werden insbesondere Verbindungen verwendet, die die Reaktion der reaktive Wasserstoffatome, insbesondere Hydroxylgruppen, enthaltenden Verbindungen der Komponenten B) bis H) mit den Polyisocyanaten A) stark beschleunigen. Zweckmäßigerweise verwendet werden basische Polyurethankatalysatoren, beispielsweise tertiäre Amine, wie Triethylamin, Tributylamin, Dimethylbenzylamin, Dicyclohexylmethylamin, Dimethylcyclohexylamin, Ν,Ν,Ν',Ν'-Tetramethyldiaminodiethylether, Bis-(dimethylaminopropyl)- harnstoff, N-Methyl- bzw. N-Ethylmorpholin, N-Cyclohexylmorpholin, Ν,Ν,Ν',Ν'-Tetrame- thylethylendiamin, Ν,Ν,Ν,Ν-Tetramethylbutandiamin, N,N,N,N-Tetramethylhexandiamin-1 ,6, Pentamethyldiethylentriamin, Bis(2-dimethylaminoethyl)ether, Dimethylpiperazin, N-Dimethyl- aminoethylpiperidin, 1 ,2-Dimethylimidazol, 1 -Azabicyclo-(2,2,0)-octan, 1 ,4.Diazabicyclo.- (2,2,2).octan(Dabco) und Alkanolaminverbindungen, wie Triethanolamin, Triisopropanolamin, N-Methyl- und N-Ethyldiethanolamin, Dimethylaminoethanol, 2-(N,N-Dimethylaminoethoxy)- ethanol, N,N',N"-Tris-(dialkylaminoalkyl)hexahydrotriazine, z.B. N,N',N"-Tris-(dimethylamino- propyl)-s-hexahydrotriazin, und Triethylendiamin. Geeignet sind jedoch auch Metallsalze, wie Eisen(ll)-chlorid, Zinkchlorid, Bleioctoat und vorzugsweise Zinnsalze, wie Zinndioctoat, Zinn- diethylhexoat und Dibutylzinndilaurat sowie insbesondere Mischungen aus tertiären Aminen und organischen Zinnsalzen.
Als Katalysatoren kommen ferner in Betracht: Amidine, wie 2,3-Dimethyl-3,4,5,6-tetrahydro- pyrimidin, Tetraalkylammoniumhydroxide, wie Tetramethylammoniumhydroxid, Alkalihydroxide, wie Natriumhydroxid und Alkalialkoholate, wie Natriummethylat und Kaliumisopropylat, Alkali- carboxylate sowie Alkalisalze von langkettigen Fettsäuren mit 10 bis 20 C-Atomen und gegebe- nenfalls seitenständigen OH-Gruppen. Vorzugsweise verwendet werden 0,001 bis 10 Gew.-teile Katalysator bzw. Katalysatorkombination, bezogen (d. h. gerechnet) auf 100 Gewichtsteile der Komponente B). Es besteht auch die Möglichkeit, die Reaktionen ohne Katalyse ablaufen zu lassen. In diesem Fall wird die katalytische Aktivität von mit Aminen gestarteten Polyolen ausgenutzt.
Wird beim Verschäumen ein größerer Polyisocyanatüberschuss verwendet, kommen als Katalysatoren für die Trimerisierungsreaktion der überschüssigen NCO-Gruppen untereinander ferner in Betracht: Isocyanuratgruppen bildende Katalysatoren, beispielsweise Ammoniumionenoder Alkalimetallsalze, speziell Ammonium- oder Alkalimetallcarboxylate, alleine oder in Kombi- nation mit tertiären Aminen. Die Isocyanurat-Bildung führt zu flammwidrigen PIR-Schaum- stoffen, welche bevorzugt im technischen Hartschaum, beispielsweise im Bauwesen als Dämmplatte oder Sandwichelemente, eingesetzt werden.
Weitere Angaben zu den genannten und weitere Ausgangsstoffe können der Fachliteratur, bei- spielsweise dem Kunststoffhandbuch, Band VII, Polyurethane, Carl Hanser Verlag München, Wien, 1 ., 2. und 3. Auflage 1966, 1983 und 1993, entnommen werden.
Komponente H Der Reaktionsmischung zur Herstellung der Polyurethan-Hartschaumstoffe können gegebenenfalls noch weitere Hilfsmittel und/oder Zusatzstoffe H) zugesetzt werden. Genannt seien beispielsweise oberflächenaktive Substanzen, Schaumstabilisatoren, Zellregler, Füllstoffe, Färb- Stoffe, Pigmente, Hydrolyseschutzmittel, fungistatische und bakteriostatisch wirkende Substanzen.
Als oberflächenaktive Substanzen kommen z.B. Verbindungen in Betracht, welche zur Unter- Stützung der Homogenisierung der Ausgangsstoffe dienen und gegebenenfalls auch geeignet sind, die Zellstruktur der Kunststoffe zu regulieren. Genannt seien beispielsweise Emulgatoren, wie die Natriumsalze von Ricinusolsulfaten oder von Fettsäuren sowie Salze von Fettsäuren mit Aminen, z.B. ölsaures Diethylamin, stearinsaures Diethanolamin, ricinolsaures Diethanolamin, Salze von Sulfonsäuren, z.B. Alkali- oder Ammoniumsalze von Dodecylbenzol- oder Dinaph- thylmethandisulfonsäure und Ricinolsäure; Schaumstabilisatoren, wie Siloxanoxalkylen- Mischpolymerisate und andere Organopolysiloxane, oxethylierte Alkylphenole, oxethylierte Fettalkohole, Paraffinöle, Ricinusöl- bzw. Ricinolsäureester, Türkischrotöl und Erdnussöl, und Zellregler, wie Paraffine, Fettalkohole und Dimethylpolysiloxane. Zur Verbesserung der Emul- gierwirkung, der Zellstruktur und/oder Stabilisierung des Schaumes eignen sich ferner die oben beschriebenen oligomeren Acrylate mit Polyoxyalkylen- und Fluoralkanresten als Seitengruppen. Die oberflächenaktiven Substanzen werden üblicherweise in Mengen von 0,01 bis 10 Gew.-teile, bezogen (d. h. gerechnet) auf 100 Gew.-teile der Komponente B), angewandt.
Als Füllstoffe, insbesondere verstärkend wirkende Füllstoffe, sind die an sich bekannten, übli- chen organischen und anorganischen Füllstoffe, Verstärkungsmittel, Beschwerungsmittel, Mittel zur Verbesserung des Abriebverhaltens in Anstrichfarben, Beschichtungsmittel usw. zu verstehen. Im Einzelnen seien beispielhaft genannt: anorganische Füllstoffe wie silikatische Mineralien, beispielsweise Schichtsilikate wie Antigorit, Serpentin, Hornblenden, Amphibole, Chrisotil und Talkum, Metalloxide, wie Kaolin, Aluminiumoxide, Titanoxide und Eisenoxide, Metallsalze, wie Kreide, Schwerspat und anorganische Pigmente, wie Cadmiumsulfid und Zinksulfid, sowie Glas u.a. Vorzugsweise verwendet werden Kaolin (China Clay), Aluminiumsilikat und Copräzipi- tate aus Bariumsulfat und Aluminiumsilikat sowie natürliche und synthetische faserförmige Mineralien wie Wollastonit, Metall- und insbesondere Glasfasern verschiedener Länge, die gegebenenfalls geschlichtet sein können. Als organische Füllstoffe kommen beispielsweise in Be- tracht: Kohle, Melamin, Kollophonium, Cyclopentadienylharze und Pfropfpolymerisate sowie Cellulosefasern, Polyamid-, Polyacrylnitril-, Polyurethan-, Polyesterfasern auf der Grundlage von aromatischen und/oder aliphatischen Dicarbonsäureestern und insbesondere Kohlenstofffasern. Die anorganischen und organischen Füllstoffe können einzeln oder als Gemische verwendet werden und werden der Reaktionsmischung vorteilhafterweise in Mengen von 0,5 bis
50 Gew.-%, vorzugsweise 1 bis 40 Gew.-%, bezogen auf das Gewicht der Komponenten A) bis H), zugegeben, wobei jedoch der Gehalt an Matten, Vliesen und Geweben aus natürlichen und synthetischen Fasern Werte bis 80 Gew.-%, bezogen auf das Gewicht der Komponenten A) bis H), erreichen kann. Nähere Angaben über die oben genannten anderen üblichen Hilfs- und Zusatzstoffe sind der Fachliteratur, beispielsweise der Monographie von J.H. Saunders und K.C. Frisch "High Polymers" Band XVI, Polyurethanes, Teil 1 und 2, Verlag Interscience Publishers 1962 bzw. 1964, oder dem Kunststoff-Handbuch, Polyurethane, Band VII, Hanser-Verlag, München, Wien, 1. und 2. Auflage, 1966 und 1983 zu entnehmen.
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Polyolkomponente enthaltend: 10 bis 90 Gew.-% der Polyetheresterpolyole B),
0 bis 60 Gew.-% der weiteren Polyesterpoylole C),
0,1 bis 1 1 Gew.-% der Polyetherpolyole D),
2 bis 50 Gew.-% Flammschutzmittel E),
1 bis 45 Gew.-% Treibmittel F),
0,5 bis 10 Gew.-% Katalysatoren G), und
0,5 bis 20 Gew.-% weitere Hilfs- und Zusatzstoffe H),
jeweils wie vorstehend definiert und jeweils bezogen auf das Gesamtgewicht der Komponenten B) bis H), wobei sich die Gew.-% zu 100 Gew.-% ergänzen, und wobei das Massenverhältnis der Summe der Komponenten B) und C) zu Komponente D) mindestens 7 beträgt.
Besonders bevorzugt umfasst die Polyolkomponente
50 bis 90 Gew.-% der Polyetheresterpolyole B),
0 bis 20 Gew.-% der weiteren Polyesterpoylole C),
2 bis 9 Gew.-% der Polyetherpolyole D),
5 bis 30 Gew.-% Flammschutzmittel E),
1 bis 30 Gew.-% Treibmittel F),
0,5 bis 10 Gew.-% Katalysatoren G), und
0,5 bis 20 Gew.-% weitere Hilfs- und Zusatzstoffe H),
jeweils wie vorstehend definiert und jeweils bezogen auf das Gesamtgewicht der Komponenten B) bis H), wobei sich die Gew.-% zu 100 Gew.-% ergänzen, und wobei das Massenverhältnis der Summe der Komponenten B) und C) zu Komponente D) mindestens 7,5 beträgt.
Weiterhin ist das erfindungsgemäße Massenverhältnis der Summe der Komponenten B) und gegebenenfalls C) zu der Komponente D) in den erfindungsgemäßen Polyolkomponenten vorzugsweise kleiner als 80, bevorzugt kleiner als 40, besonders bevorzugt kleiner als 30, insbe- sondere bevorzugt kleiner als 20, speziell bevorzugt kleiner als 16 und im speziellen kleiner als 13.
Zur Herstellung der erfindungsgemäßen Polyurethan-Hartschaumstoffe werden die gegebenenfalls modifizierten organischen Polyisocyanate A), die speziellen erfindungsgemäßen Polyethe- resterpolyole B), gegebenenfalls die weiteren Polyesterpolyole C), die Polyetherole D) und die weiteren Komponenten E) bis H) in solchen Mengen vermischt, dass das Äquivalenzverhältnis von NCO-Gruppen der Polyisocyanate A) zur Summe der reaktiven Wasserstoffatome der Komponenten B), gegebenenfalls C) sowie D) bis H), 1 bis 6:1 , vorzugsweise 1 ,6 bis 5:1 und insbesondere 2,5 bis 3,5:1 , beträgt.
Die Erfindung wird durch die nachstehenden Beispiele näher erläutert.
Beispiele
Es wurden die nachstehenden Polyesterpolyole (Polyesterol 1 ) bzw. Polyetheresterpolyole (Po- lyesterol 2 und Polyesterol 3) eingesetzt, wobei der erfindungsgemäße Polyesterol 3 mit einem Polyetherol hergestellt wurde, welcher zwischen Alkoxylierung und Veresterung nicht aufgearbeitet werden musste, da die Alkoxylierung in Gegenwart eines aminischen Alkoxylierungskata- lysators durchgeführt wurde.
Polyesterpolyol 1 (Vergleich): Veresterungsprodukt von Terephthalsäure (34 Mol-%), Ölsäure (9 Mol-%), Diethylenglykol (40 Mol-%) und Glyzerin (17 Mol-%) mit einer Hydroxylfunktionalität von 2,3, einer Hydroxylzahl von 244 mg KOH/g und einem Ölsäuregehalt im Polyesterol von 20 Gew.-%.
Polyesterpolyol 2 (Vergleich): Veresterungsprodukt von Terephthalsäure (31 Mol-%), Ölsäure (8 Mol-%), Diethylenglykol (43 Mol-%) und einem Polyether (18 Mol-%) auf Basis von Glyzerin und Ethylenoxid mit einer OH-Funktionalität von 3 und einer Hydroxylzahl von 535 mg KOH/g hergestellt in Gegenwart von KOH als Alkoxylierungskatalysator mit anschließender Neutralisation und Abtrennung des entstandenen Kaliumsalzes. Der Polyester weist eine Hydroxylfunktionalität von 2,3, eine Hydroxylzahl von 237 mg KOH/g und einen Ölsäuregehalt im Polyesterol von 15 Gew.-% auf.
Polyesterpolyol 3 (erfindungsgemäß): Veresterungsprodukt von Terephthalsäure (31 Mol-%), Ölsäure (8 Mol-%), Diethylenglykol (43 Mol-%) und einem Polyether (18 Mol-%) auf Basis von Glyzerin und Ethylenoxid mit einer OH-Funktionalität von 3 und einer Hydroxylzahl von 546 mg KOH/g, hergestellt in Gegenwart von Imidazol als Alkoxylierungskatalysator. Dieser Polyether wurde aufarbeitungsfrei in der nachfolgenden Veresterung eingesetzt. Der Polyester weist eine Hydroxylfunktionalität von 2,3, eine Hydroxylzahl von 239 mg KOH/g und einen Ölsäuregehalt im Polyesterpolyol von 15 Gew.-% auf. Bestimmung der Maßhaltigkeit
Zur Bestimmung der Maßhaltigkeit wird die Elementdicke nach der Verschäumung bestimmt. Hierfür wird ein Sandwichelement mit 0,05 mm dicker Aluminiumfolie als Deckschichtmaterial im Doppelbandverfahren hergestellt und 5 Minuten nach der Herstellung die Elementdicke in der Mitte des Elements bestimmt. Je näher die so bestimmte Elementdicke an der eingestellten Elementdicke (im vorliegenden Fall 170 mm) ist, desto besser ist die Maßhaltigkeit. Beispiele 1 sowie Vergleichsbeispiel 1 und 2
Herstellung von Polyurethan-Hartschaumstoffen (Variante 1 )
Die Isocyanate sowie die mit Isocyanat reaktiven Komponenten wurden zusammen mit den Treibmitteln, Katalysatoren und allen weiteren Zusatzstoffen bei einem konstanten Mischungsverhältnis von Polyolkomponente zu Isocyanat von 100 : 160 verschäumt.
Polyolkomponente:
65 Gewichtsteile Polyesterol gemäß Beispielen bzw. Vergleichsbeispielen
8 Gewichtsteile Polyetherol aus ethoxyliertem Ethylenglykol mit einer Hydroxyfunktionali- tät von 2 und einer Hydroxyzahl von 190 mg KOH/g
25 Gewichtsteile Flammschutzmittel Trischlorisopropylphosphat (TCPP)
2,0 Gewichtsteile Stabilisator Tegostab B8443 (siliconhaltiger Stabilisator)
Zusatzstoffe: ca. 8 Gewichtsteile Pentan S 80:20 (bestehend aus 80 Gew.% n-Pentan und 20 Gew.-%
Iso-Pentan)
1 ,6 Gewichtsteile Ameisensäurelösung (85 Gew.-% in Wasser)
1 ,6 Gewichtsteile Kaliumformiat-Lösung (36 Gew.-% in Ethylenglykol)
weiterhin Bis(2-dimethylaminoethyl)ether-Lösung (70 Gew.-% in Dipropylenglykol) zum Einstellen der Abbindezeiten
Isocyanatkomponente:
160 Gewichtsteile Lupranat® M50 (polymeres Methylendiphenyldiisocyanat (PMDI), mit einer Viskosität von ca. 500 mPa*s bei 25 °C von BASF SE)
Es wurden 170 mm dicke Sandwichelemente nach dem Doppelbandverfahren hergestellt. Die Rohdichte wurde dabei bei konstantem Gehalt der 85 %-igen wässrigen Ameisensäure-Lösung von 1 ,6 Teilen durch Variation des Pentangehalts auf 38 +/- 1 g/L eingestellt. Die Abbindezeit wurde ferner auf 39 +/- 1 s durch Variation des Anteils der 70 %-igen Bis(2- dimethylaminoethyl)ether-Lösung eingestellt.
Die Ergebnisse sind in Tabelle 1 zusammengefasst. Tabelle 1 : Ergebnisse der Versuche zur Herstellung von 170 mm dicken Sandwichelementen nach dem Doppelbandverfahren
Figure imgf000023_0001
Man erkennt dabei deutlich, dass die Polyetheresterpolyole (Polyesterol 2 und 3) die Maßhaltigkeit des Polyurethanhartschaumstoffs verbessern, wobei die Herstellung des erfindungsgemäßen Polyesterols 3 durch die Vermeidung des Aufarbeitungsschrittes (Neutralisation und Abtrennung des Kaliumsalzes) deutlich erleichtert ist. Diese Arbeitserleichterung macht sich im Endprodukt nicht negativ bemerkbar, wie Tabelle 1 zeigt.

Claims

Patentansprüche
Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen oder Polyisocyanurat- Hartschaumstoffen umfassend die Umsetzung von mindestens einem Polyisocyanat,
mindestens einem Polyetheresterpolyol, erhältlich durch Veresterung von b1 ) 10 bis 70 Mol-% einer Dicarbonsäurezusammensetzung, enthaltend b1 1 ) 50 bis 100 Mol-%, bezogen auf die Dicarbonsäurezusammensetzung, einer oder mehrerer aromatischer Dicarbonsäuren oder Derivate derselben,
b12) 0 bis 50 Mol-%, bezogen auf die Dicarbonsäurezusammensetzung b1 ), einer oder mehrerer aliphatischer Dicarbonsäuren oder Derivate derselben,
b2) 2 bis 30 Mol-% einer oder mehrerer Fettsäuren und/oder Fettsäurederivate, b3) 10 bis 70 Mol-% eines oder mehrerer aliphatischer oder cycloaliphatischer Diole mit 2 bis 18 C-Atomen oder Alkoxylate derselben,
b4) 2 bis 50 Mol-% eines Polyetherpolyols mit einer Funktionalität größer oder gleich 2, hergestellt durch Alkoxylierung eines Polyols mit einer Funktionalität größer oder gleich 2 in Gegenwart eines Amins als Katalysator,
jeweils bezogen auf die Gesamtmenge der Komponenten b1 ) bis b4), wobei sich die
Komponenten b1 ) bis b4) zu 100 Mol-% addieren,
gegebenenfalls weiteren Polyesterpolyolen, die sich von denen der Komponente B) unterscheiden,
mindestens einem Polyetherpolyol, und
gegebenenfalls Flammschutzmitteln,
einem oder mehreren Treibmitteln,
Katalysatoren, und
gegebenenfalls weiteren Hilfsmitteln oder Zusatzstoffen, wobei das Massenverhältnis der Summe der Komponenten B) und gegebenenfalls C) zu Komponente D) mindestens 7 beträgt.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Massenverhältnis von Polyetheresterpolyolen B) zu den weiteren Polyesterpolyolen C) mindestens 0,1 beträgt.
Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass keine weiteren Polyesterpolyole C) mit umgesetzt werden. 4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Massenverhältnis der Summe der Komponenten B) und C) zu der Komponente D) kleiner als 80, bevorzugt kleiner als 40, besonders bevorzugt kleiner als 30, insbeson- dere bevorzugt kleiner als 20, speziell bevorzugt kleiner als 16 und im speziellen kleiner als 13 ist.
Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Polyetherpolyol b4) eine Funktionalität von > 2 aufweist.
Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Polyetherpolyol b4) hergestellt ist durch Alkoxylierung eines Polyols, ausgewählt aus der Gruppe bestehend aus Sorbit, Pentaerythrit, Trimethylolpropan, Glycerin, Poly- glycerin und deren Gemischen.
Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Polyetherpolyol b4) durch Alkoxylierung mit Ethylenoxid hergestellt ist.
Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Komponente b1 1 ) ein oder mehrere Verbindungen, ausgewählt aus der Gruppe bestehend aus Terephthalsäure, Dimethylterephthalat, Polyethylenterephthalat, Phthalsäure, Phthalsäureanhydrid und Isopththalsäure, enthält.
Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Dicarbonsäurezusammensetzung b1 ) keine aliphatischen Dicarbonsäuren b12) enthält.
Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Fettsäure oder das Fettsäurederivat b2) ausgewählt sind aus der Gruppe bestehend aus Rizinusöl, Polyhydroxyfettsäuren, Ricinolsäure, Hydroxyl-modifizierte Öle, Wein- traubenkernöl, schwarzem Kümmelöl, Kürbiskernöl, Borretschsamenöl, Sojabohnenöl, Weizensamenöl, Rapsöl, Sonnenblumenkernöl, Erdnussöl, Aprikosenkernöl, Pistazienöl, Mandelöl, Olivenöl, Macadamianussöl, Avocadoöl, Sanddornöl, Sesamöl, Hanföl, Hasel- nussöl, Primelöl, Wildrosenöl, Distelöl, Walnussöl sowie Fettsäuren, Hydroxyl- modifizierten Fettsäuren und Fettsäureestern basierend auf Miyristoleinsäure, Palmitoleinsäure, Ölsäure, Vaccensäure, Petroselinsäure, Gadoleinsäure, Erukasäure, Nervon- säure, Linolsäure, a- und γ-Linolensäure, Stearidonsäure, Arachidonsäure, Timnodonsäu- re, Clupanodonsäure und Cervonsäure.
1 1 . Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Fettsäure oder das Fettsäurederivat b2) ausgewählt ist aus der Gruppe bestehend aus Ölsäure und Ölsäureme- thylester. 12. Verfahren nach einem oder mehreren der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass die aliphatischen oder cycloaliphatischen Diole b3) ausgewählt sind aus der Gruppe bestehend aus Ethylenglykol, Diethylenglykol, Propylenglykol, 1 ,3-Propandiol, 1 ,4- Butandiol, 1 ,5-Pentandiol, 1 ,6-Hexandiol, 2-Methyl-1 ,3-propandiol und 3-Methyl-1 ,5- Pentandiol und Alkoxylaten derselben.
13. Verfahren nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Polyetherol-Komponente D) aus Polyoxypropylenpolyolen und / oder Po- lyoxyethylenpolyolen, vorzugsweise Polyoxyethylenpolyolen besteht.
14. Verfahren nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Polyetherol-Komponente D) ausschließlich aus Polyethylenglykol besteht und keine weiteren Polyetherole beinhaltet.
15. Verfahren nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Flammschutzmittel E) keine mit Isocyanatgruppen reaktive Gruppen aufweisen.. 16. Verfahren nach einem oder mehreren der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Treibmittel F) chemische und physikalische Treibmittel beinhalten, wobei das chemische Treibmittel ausgewählt ist aus der Gruppe Wasser, Ameisensäure-Wasser- Mischungen und Ameisensäure, bevorzugt Ameisensäure-Wasser-Mischungen und Ameisensäure und das physikalische Treibmittel aus einem oder mehreren Pentanisome- ren besteht.
17. Polyurethan-Hartschaumstoff oder Polyisocyanurathartschaumstoff, erhältlich nach dem Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 16. 18. Verwendung der Polyurethan-Hartschaumstoffe oder Polyisocyanurat-Hartschaumstoffe gemäß Anspruch 17 zur Herstellung von Sandwichelementen mit starren oder flexiblen Deckschichten.
19. Polyolkomponente zur Herstellung von Polyurethan-Hartschaumstoffen enthaltend
10 bis 90 Gew.-% der Polyetheresterpolyole B),
0 bis 60 Gew.-% der weiteren Polyesterpoylole C),
0,1 bis 1 1 Gew.-% der Polyetherpolyole D),
2 bis 50 Gew.-% Flammschutzmittel E),
1 bis 45 Gew.-% Treibmittel F),
0,5 bis 10 Gew.-% Katalysatoren G),
0,5 bis 20 Gew.-% weitere Hilfs- und Zusatzstoffe H),
die Komponenten B) bis H) wie in den Ansprüchen 1 bis 16 definiert und jeweils bezogen auf das Gesamtgewicht der Komponenten B) bis H), wobei sich die Gew.-% zu 100 Gew.- % ergänzen, und wobei das Massenverhältnis der Summe der Komponenten B) und ge- gebenenfalls C) zu Komponente D) mindestens 7 beträgt. Polyolkomponente nach Anspruch 19, dadurch gekennzeichnet, dass das Massenverhältnis der Summe der Komponenten B) und C) zu der Komponente D) kleiner als 80, bevorzugt kleiner als 40, besonders bevorzugt kleiner als 30, insbesondere bevorzugt kleiner als 20, speziell bevorzugt kleiner als 16 und im speziellen kleiner als 13 ist.
PCT/EP2013/055675 2012-03-23 2013-03-19 Verfahren zur herstellung von polyurethan-hartschäumen und polyisocyanurat-hartschäumen WO2013139781A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
AU2013237561A AU2013237561B2 (en) 2012-03-23 2013-03-19 Method for producing polyurethane-rigid foams and polyisocyanurate rigid foams
EA201491634A EA201491634A1 (ru) 2012-03-23 2013-03-19 Способ получения жестких полиуретановых пенопластов и жестких полиизоциануратных пенопластов
ES13710414T ES2704402T3 (es) 2012-03-23 2013-03-19 Procedimiento para la fabricación de espumas duras de poliuretano y espumas duras de poliisocianurato
BR112014022421-8A BR112014022421B1 (pt) 2012-03-23 2013-03-19 processo para produzir espumas de poliuretano rígidas ou espumas de poliisocianurato rígidas, espuma de poliisocianurato ou poliuretano rígida, uso das espumas de poliisocianurato ou poliuretano rígidas e componente poliol para produzir espumas de poliuretano rígidas
PL13710414T PL2828309T3 (pl) 2012-03-23 2013-03-19 Sposób wytwarzania sztywnych pianek poliuretanowych i sztywnych pianek poliizocyjanuranowych
KR1020147029773A KR102058227B1 (ko) 2012-03-23 2013-03-19 경질 폴리우레탄 발포체 및 경질 폴리이소시아누레이트 발포체의 제조 방법
JP2015500883A JP6227624B2 (ja) 2012-03-23 2013-03-19 ポリウレタン硬質フォームおよびポリイソシアヌレート硬質フォームを製造するための方法
MX2014011434A MX364715B (es) 2012-03-23 2013-03-19 Procedimiento para la preparacion de espumas duras de poliuretano y espumas duras de poliisocianurato.
CN201380015646.0A CN104204016B (zh) 2012-03-23 2013-03-19 用于制备硬质聚氨酯泡沫和硬质聚异氰脲酸酯泡沫的方法
CA2868194A CA2868194A1 (en) 2012-03-23 2013-03-19 Method for producing polyurethane-rigid foams and polyisocyanurate rigid foams
EP13710414.7A EP2828309B1 (de) 2012-03-23 2013-03-19 Verfahren zur herstellung von polyurethan-hartschäumen und polyisocyanurat-hartschäumen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12160963 2012-03-23
EP12160963.0 2012-03-23

Publications (1)

Publication Number Publication Date
WO2013139781A1 true WO2013139781A1 (de) 2013-09-26

Family

ID=47901112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/055675 WO2013139781A1 (de) 2012-03-23 2013-03-19 Verfahren zur herstellung von polyurethan-hartschäumen und polyisocyanurat-hartschäumen

Country Status (13)

Country Link
EP (1) EP2828309B1 (de)
JP (1) JP6227624B2 (de)
KR (1) KR102058227B1 (de)
CN (1) CN104204016B (de)
AU (1) AU2013237561B2 (de)
BR (1) BR112014022421B1 (de)
CA (1) CA2868194A1 (de)
EA (1) EA201491634A1 (de)
ES (1) ES2704402T3 (de)
MX (1) MX364715B (de)
PL (1) PL2828309T3 (de)
TW (1) TW201343700A (de)
WO (1) WO2013139781A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9475220B2 (en) 2013-02-13 2016-10-25 Basf Se Process for producing composite elements
WO2023066838A1 (de) 2021-10-18 2023-04-27 Basf Se Verfahren zur herstellung von verbesserten polyisocyanurat-hartschaumstoffen auf basis von aromatischen polyesterpolyolen und ethylenoxid basierten polyetherpolyolen
WO2023194140A1 (en) 2022-04-04 2023-10-12 Basf Se Value chain return process for the recovery of phosphorous ester-based flame retardants from polyurethane rigid foams

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT3310835T (pt) * 2015-06-18 2022-09-20 Basf Se Processo para a produção de espumas rígidas de poliuretano
CN104974340B (zh) * 2015-06-25 2017-03-29 淄博德信联邦化学工业有限公司 主链中含酯键的高活性聚醚多元醇的制备方法
CN105176054A (zh) * 2015-08-10 2015-12-23 常州仁华化工有限公司 一种阻燃性生物质基聚氨酯泡沫的制备方法
US10975190B2 (en) * 2016-07-21 2021-04-13 Bionanofoam Llc Bio-based and hydrophilic polyurethane prepolymer and foam made therefrom
MX2020007698A (es) * 2018-01-23 2020-11-12 Stepan Co Polioles para aplicaciones de poliuretano de bajo contenido de compuestos organicos volatiles (voc).
LT3774983T (lt) * 2018-04-10 2022-10-25 Stepan Company Poliolio mišiniai ir standžios putos su pagerintomis žemos temperatūros r vertėmis
CN109054024A (zh) * 2018-08-09 2018-12-21 苏州思德新材料科技有限公司 一种聚酯泡沫制备用的有机硅泡沫稳定剂的制备方法
CN112805312B (zh) * 2018-08-21 2023-03-21 亨茨曼国际有限公司 用于pir/pur泡沫生产的催化剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1003714B (de) 1956-01-25 1957-03-07 Glanzstoff Ag Verfahren zum Abbau von Polyaethylenterephthalat zu Terephthalsaeuredimethylester
US5051528A (en) 1990-04-24 1991-09-24 Eastman Kodak Company Recovery process for ethylene glycol and dimethylterephthalate
EP1058701A1 (de) 1998-02-23 2000-12-13 Stepan Company Niedrigviskose-polyesterpolyole und verfahren zu ihrer herstellung
EP2177555A2 (de) * 2008-10-16 2010-04-21 Bayer MaterialScience AG Verfahren zur Herstellung von Polyetheresterpolyolen
WO2010043624A2 (de) 2008-10-15 2010-04-22 Basf Se Polyesterpolyole auf basis von terephthalsäure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3276463B2 (ja) * 1993-07-07 2002-04-22 三井化学株式会社 硬質ポリウレタンフォームの製造法
DE10156014A1 (de) * 2001-11-15 2003-06-05 Basf Ag Verfahren zur Herstellung von Polyetheralkoholen
ZA200709673B (en) * 2006-11-13 2009-09-30 Bayer Materialscience Ag Process for the preparation of polyether-ester polyols

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1003714B (de) 1956-01-25 1957-03-07 Glanzstoff Ag Verfahren zum Abbau von Polyaethylenterephthalat zu Terephthalsaeuredimethylester
US5051528A (en) 1990-04-24 1991-09-24 Eastman Kodak Company Recovery process for ethylene glycol and dimethylterephthalate
EP1058701A1 (de) 1998-02-23 2000-12-13 Stepan Company Niedrigviskose-polyesterpolyole und verfahren zu ihrer herstellung
WO2010043624A2 (de) 2008-10-15 2010-04-22 Basf Se Polyesterpolyole auf basis von terephthalsäure
EP2177555A2 (de) * 2008-10-16 2010-04-21 Bayer MaterialScience AG Verfahren zur Herstellung von Polyetheresterpolyolen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Kunststoffhandbuch, Band VII, Polyurethane", vol. VII, 1966, CARL HANSER VERLAG
"Kunststoff-Handbuch, Polyurethane", vol. VII, 1966, HANSER-VERLAG
J.H. SAUNDERS; K.C. FRISCH: "Polyurethanes", vol. XVI, 1962, VERLAG INTERSCIENCE PUBLISHERS, article "High Polymers"

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9475220B2 (en) 2013-02-13 2016-10-25 Basf Se Process for producing composite elements
WO2023066838A1 (de) 2021-10-18 2023-04-27 Basf Se Verfahren zur herstellung von verbesserten polyisocyanurat-hartschaumstoffen auf basis von aromatischen polyesterpolyolen und ethylenoxid basierten polyetherpolyolen
WO2023194140A1 (en) 2022-04-04 2023-10-12 Basf Se Value chain return process for the recovery of phosphorous ester-based flame retardants from polyurethane rigid foams

Also Published As

Publication number Publication date
EA201491634A1 (ru) 2015-02-27
CN104204016B (zh) 2017-06-20
AU2013237561B2 (en) 2016-04-28
JP6227624B2 (ja) 2017-11-08
PL2828309T3 (pl) 2019-03-29
CA2868194A1 (en) 2013-09-26
CN104204016A (zh) 2014-12-10
BR112014022421B1 (pt) 2021-01-05
ES2704402T3 (es) 2019-03-18
AU2013237561A1 (en) 2014-10-09
MX364715B (es) 2019-05-06
JP2015512453A (ja) 2015-04-27
EP2828309A1 (de) 2015-01-28
EP2828309B1 (de) 2018-10-10
MX2014011434A (es) 2015-04-14
TW201343700A (zh) 2013-11-01
KR102058227B1 (ko) 2019-12-20
KR20140139061A (ko) 2014-12-04

Similar Documents

Publication Publication Date Title
EP2804886B1 (de) Verfahren zur herstellung von polyurethan-hartschäumen
EP2800769B1 (de) Verfahren zur herstellung von polyurethan-hartschäumen und polyisocyanurat-hartschäumen
EP2828309B1 (de) Verfahren zur herstellung von polyurethan-hartschäumen und polyisocyanurat-hartschäumen
EP2340269B1 (de) Polyesterpolyole auf basis von terephthalsäure
EP2646490B1 (de) Polyesterpolyole auf basis aromatischer dicarbonsäuren
EP2678367B1 (de) Polyesterpolyole auf basis aromatischer dicarbonsäuren und daraus hergestellte polyurethanhartschäume
EP3105274B1 (de) Verfahren zur herstellung von polyurethan-hartschäumen und polyisocyanurat-hartschäumen
EP2855551B1 (de) Verfahren zur herstellung von polyurethan-hartschaumstoffen
EP3036267B1 (de) Verbesserte polyurethan- und polyisocyanurat-hartschaumstoffe auf basis von fettsäuremodifizierten polyetherpolyolen
EP2900719B1 (de) Polyurethan- und polyisocyanurat-hartschaumstoffe auf basis von fettsäuremodifizierten polyetherpolyolen
EP2820059B1 (de) Polyurethan-hartschaumstoffe
EP2820057B1 (de) Polyetheresterpolyole und ihre verwendung zur herstellung von polyurethan-hartschaumstoffen
EP2855557B1 (de) Polyesterole zur herstellung von polyurethan-hartschaumstoffen
WO2018202567A1 (de) Polyurethanhartschaumstoffe mit verbessertem brandverhalten
WO2015150304A1 (de) Verfahren zur herstellung von polyurethan-hartschäumen
WO2014124824A1 (de) Verfahren zur herstellung von verbundelementen
EP2900445B1 (de) Verfahren zur herstellung von verbundprofilen
WO2023066838A1 (de) Verfahren zur herstellung von verbesserten polyisocyanurat-hartschaumstoffen auf basis von aromatischen polyesterpolyolen und ethylenoxid basierten polyetherpolyolen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13710414

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013710414

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015500883

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2868194

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/011434

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 201491634

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2013237561

Country of ref document: AU

Date of ref document: 20130319

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147029773

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014022421

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014022421

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140910