WO2013137464A1 - Organic el display element comprising optical laminate - Google Patents

Organic el display element comprising optical laminate Download PDF

Info

Publication number
WO2013137464A1
WO2013137464A1 PCT/JP2013/057541 JP2013057541W WO2013137464A1 WO 2013137464 A1 WO2013137464 A1 WO 2013137464A1 JP 2013057541 W JP2013057541 W JP 2013057541W WO 2013137464 A1 WO2013137464 A1 WO 2013137464A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
transparent support
plate
liquid crystal
Prior art date
Application number
PCT/JP2013/057541
Other languages
French (fr)
Japanese (ja)
Inventor
直良 山田
裕介 古木
淳 渡部
誠 石黒
慎平 吉田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201380014240.0A priority Critical patent/CN104170525B/en
Priority to JP2014505041A priority patent/JP5745686B2/en
Priority to KR1020147025436A priority patent/KR101631399B1/en
Publication of WO2013137464A1 publication Critical patent/WO2013137464A1/en
Priority to US14/484,453 priority patent/US9588271B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133635Multifunctional compensators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • the present invention relates to an organic electroluminescence (hereinafter referred to as “organic EL”) display device having an optical laminate.
  • organic EL organic electroluminescence
  • An organic electroluminescence (organic EL) display device is a self-luminous thin display device, and has advantages in display performance such as higher visibility and less viewing angle dependency than a liquid crystal display device. In addition to the advantages that the display can be made lighter and thinner, there is a possibility that a display device having a shape that could not be realized so far can be realized by using a flexible substrate.
  • the organic EL display device has excellent characteristics as described above. However, since layers with different refractive indexes are laminated on the electrode using a transparent conductive material with a high refractive index such as ITO, or a metal material with a high reflectance is used, external light is reflected at the interface between them and contrast is increased. Reflection and reflection problems may occur due to internal reflection.
  • Fig. 1 shows a typical configuration of an organic EL element.
  • the organic EL display basically has a back electrode 2, an organic layer 3 including two or three layers including a light emitting layer, and a transparent electrode or a semitransparent electrode. 4.
  • the light emitted from the organic layer 3 is reflected directly or by the back electrode 2 formed of aluminum or the like and is emitted from the transparent substrate 5.
  • the organic layer 3 has a structure in which pixels of a total of three colors of red, green, and blue, or a total of four colors added with white are arranged in a matrix, A structure in which the organic layer 3 is made of an element that emits white light and obtains a color display by combining a color filter has been proposed (for example, Patent Documents 1 and 2).
  • the organic EL element has a structure in which layers having different refractive indexes are stacked or a structure using a metal electrode, external light is reflected at the interface of each layer, which may cause problems such as a decrease in contrast and reflection. is there.
  • an absorption linear polarizing plate In order to suppress the adverse effects of external light reflection as described above, an absorption linear polarizing plate, a circular polarizing plate made of a ⁇ / 4 plate (for example, Patent Documents 3, 4, 5, and 6), an absorption linear polarizing plate, A proposal has been made to use a circularly polarizing plate comprising a ⁇ / 2 plate and a ⁇ / 4 plate (for example, Patent Document 7).
  • the circularly polarizing plate is used not only for organic EL display devices but also for many applications such as reflective LCDs, transflective LCDs, transparent displays, brightness enhancement films, optical disk pickups and PS conversion elements.
  • ⁇ / 4 plate or ⁇ / 2 plate needs to have its slow axis set at an angle that is neither parallel nor orthogonal to the absorption axis of the polarizing plate.
  • ⁇ / 4 plates and ⁇ / 2 plates used in organic EL display devices are retardation plates that exhibit optical anisotropy by stretching a polymer film.
  • the phase axis direction generally corresponds to the longitudinal direction or the lateral direction of a sheet-like or roll-like film.
  • the polymer film has a problem that the phase difference changes with changes in temperature and humidity, and the desired performance may not be obtained.
  • a coating liquid containing a discotic liquid crystal compound or a rod-shaped liquid crystal compound is applied to a roll-shaped film, and optical anisotropy is expressed by orienting in a predetermined direction.
  • a phase difference plate having a slow axis at an angle that is neither parallel nor orthogonal is proposed (Patent Documents 8 and 9).
  • a retardation plate whose orientation is fixed so that the disc surface of discotic liquid crystal molecules is substantially perpendicular to the film surface (Patent Documents 10, 11, 12, 13, and 14).
  • the circularly polarizing plate prepared in accordance with the above-mentioned patent document has a problem in that reflection when observed from an oblique direction cannot be sufficiently reduced, and viewing angle characteristics may be deteriorated.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an organic EL display device having excellent viewing angle characteristics with high productivity.
  • An organic EL display device satisfying the requirements.
  • the second transparent support layer has an Rth of 0 nm to 200 nm at a wavelength of 550 nm.
  • a ⁇ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a transparent support layer comprising one or more layers, and a ⁇ / 4 plate comprising a layer containing a discotic liquid crystal compound,
  • An organic EL display device comprising an organic EL panel in this order, wherein the Rth of the transparent support layer at a wavelength of 550 nm is -10 nm to 140 nm.
  • An organic EL display device comprising an organic EL panel in this order, wherein the Rth of the transparent support layer at a wavelength of 550 nm is ⁇ 30 nm to 30 nm.
  • a ⁇ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a ⁇ / 4 plate comprising a layer containing a discotic liquid crystal compound, and a transparent support layer comprising one or more layers,
  • An organic EL display device comprising an organic EL panel in this order, wherein the transparent support layer has an Rth of -10 nm to 100 nm at a wavelength of 550 nm [4].
  • a ⁇ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a transparent support layer comprising one or more layers, a ⁇ / 4 plate comprising a layer containing a rod-like liquid crystal compound, and organic [4]
  • a ⁇ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a ⁇ / 4 plate comprising a layer containing a rod-like liquid crystal compound, a transparent support layer comprising one or more layers, and an organic An organic EL display device comprising an EL panel in this order, wherein the Rth of the transparent support layer at a wavelength of 550 nm is ⁇ 110 nm to 40 nm.
  • An organic EL display device comprising a plate, a second transparent support layer composed of one or more layers, and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is from ⁇ 50 nm
  • An organic EL display device comprising, in this order, a second transparent support layer composed of one or more layers, and an organic EL panel, wherein Rth at a wavelength of 550 nm of the first transparent support layer is ⁇ 40 nm to 140 nm
  • a ⁇ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a first transparent support layer comprising one or more layers, and a ⁇ / 4 comprising a layer containing a discotic liquid crystal compound.
  • An organic EL display device comprising a plate, a second transparent support layer composed of one or more layers, and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is ⁇ 40 nm to [4]
  • a ⁇ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a first transparent support layer comprising at least one layer, and a layer comprising a rod-like liquid crystal compound
  • An organic EL display device comprising, in this order, a second transparent support layer composed of one or more layers, and an organic EL panel, wherein Rth at a wavelength of 550 nm of the first transparent support layer is ⁇ 70 nm to 100 nm.
  • a polarizer layer At least a polarizer layer, a transparent support layer composed of one or more layers, a ⁇ / 2 plate composed of a layer containing a rod-like liquid crystal compound, a ⁇ / 4 plate composed of a layer containing a rod-like liquid crystal compound, and an organic EL
  • the transparent support layer has an Rth of ⁇ 30 nm to 30 nm at a wavelength of 550 nm.
  • a ⁇ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a transparent support layer comprising one or more layers, a ⁇ / 4 plate comprising a layer containing a discotic liquid crystal compound, and organic An organic EL display device comprising an EL panel in this order, wherein the Rth of the transparent support layer at a wavelength of 550 nm is -50 nm to 90 nm.
  • a ⁇ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a transparent support layer comprising one or more layers, a ⁇ / 4 plate comprising a layer containing a rod-like liquid crystal compound, and an organic EL
  • the transparent support layer has an Rth of ⁇ 140 nm to 10 nm at a wavelength of 550 nm.
  • a ⁇ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a ⁇ / 4 plate comprising a layer containing a discotic liquid crystal compound, a transparent support layer comprising one or more layers, an organic An organic EL display device comprising an EL panel in this order, wherein the Rth of the transparent support layer at a wavelength of 550 nm is ⁇ 50 nm to 110 nm.
  • a ⁇ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a ⁇ / 4 plate comprising a layer containing a rod-like liquid crystal compound, a transparent support layer comprising one or more layers, and an organic EL
  • the transparent support layer has an Rth of -100 nm to 10 nm at a wavelength of 550 nm.
  • An organic EL display device comprising a ⁇ / 4 plate composed of a layer containing a discotic liquid crystal compound and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is ⁇ 140 nm to 40 nm.
  • An organic EL display device comprising a ⁇ / 4 plate composed of a layer containing a rod-like liquid crystal compound and an organic EL panel in this order, wherein the Rth of the first transparent support layer at a wavelength of 550 nm is ⁇ 150 nm to 40 nm.
  • a ⁇ / 4 plate comprising at least a polarizer layer, a first transparent support layer comprising one or more layers, a ⁇ / 2 plate comprising a rod-like liquid crystal compound layer, and a layer comprising a discotic liquid crystal compound
  • an organic EL display device comprising, in this order, a second transparent support layer composed of one or more layers, and an organic EL panel, wherein Rth at a wavelength of 550 nm of the first transparent support layer is ⁇ 140 nm to 40 nm.
  • An organic EL display device comprising a second transparent support layer composed of one or more layers and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is ⁇ 120 nm to 40 nm
  • a ⁇ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a first transparent support layer comprising one or more layers, and a ⁇ / 4 plate comprising a layer containing a discotic liquid crystal compound
  • An organic EL display device comprising, in this order, a second transparent support layer composed of one or more layers, and an organic EL panel, wherein Rth at a wavelength of 550 nm of the first transparent support layer is from ⁇ 100 nm to 80 nm
  • a ⁇ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a first transparent support layer comprising one or more layers, and a ⁇ / 4 plate comprising a layer containing a rod-like liquid crystal compound;
  • An organic EL display device comprising a second transparent support layer composed of one or more layers and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is ⁇ 150 nm to 40 nm
  • organic EL means organic electroluminescence.
  • the reflection of the reflected image due to the internal reflection of the organic EL element is sufficiently reduced both in the front direction and in the oblique direction, and an organic EL display device excellent in display performance, productivity, and durability is provided. Can be provided.
  • FIG. 2 is a schematic diagram of an organic EL display device.
  • polarizing plate is used to include both a long polarizing plate and a polarizing plate cut into a size incorporated in a display device unless otherwise specified. Yes.
  • cutting includes “punching” and “cutting out”.
  • polarizing film and “polarizing plate” are distinguished from each other.
  • polarizing plate is a laminate having a transparent protective film that protects the polarizing film on at least one surface of the “polarizing film”. It shall mean the body.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation and retardation in the thickness direction at the wavelength ⁇ , respectively.
  • Re ( ⁇ ) is measured with KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.) by making light having a wavelength of ⁇ nm incident in the normal direction of the film.
  • the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is the film surface when Re ( ⁇ ) is used and the in-plane slow axis (determined by KOBRA 21ADH or WR) is the tilt axis (rotation axis) (if there is no slow axis) Measurement is performed at a total of 6 points by injecting light of wavelength ⁇ nm from each inclined direction in steps of 10 degrees from the normal direction to 50 ° on one side with respect to the film normal direction (with any rotation direction as the rotation axis). Then, KOBRA 21ADH or WR is calculated based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value.
  • Re ( ⁇ ) represents a retardation value in a direction inclined by an angle ⁇ from the normal direction.
  • nx represents the refractive index in the slow axis direction in the plane
  • ny represents the refractive index in the direction orthogonal to nx in the plane
  • nz is the direction orthogonal to nx and ny.
  • d represents a film thickness.
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is from ⁇ 50 ° to the normal direction of the film, with Re ( ⁇ ) being an in-plane slow axis (determined by KOBRA 21ADH or WR) as an inclination axis (rotation axis).
  • Re ( ⁇ ) being an in-plane slow axis (determined by KOBRA 21ADH or WR) as an inclination axis (rotation axis).
  • the value of the catalog of a polymer handbook (John WILEY & SONS, INC) and various optical films can be used for the assumed value of average refractive index. If the average refractive index is not known, it can be measured with an Abbe refractometer.
  • the average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59).
  • an optical film is synonymous with an optically anisotropic layer.
  • optically anisotropic layer that can be used in the present invention including the ⁇ / 2 plate and the ⁇ / 4 plate will be described.
  • the ⁇ / 4 plate used in the present invention may be an optically anisotropic support having the desired ⁇ / 4 function by itself, or an optically anisotropic layer on a support made of a polymer film. Etc. may be included. That is, in the latter case, a desired ⁇ / 4 function is provided by laminating another layer on the support.
  • the constituent material of the optically anisotropic layer is not particularly limited, and may be a layer formed from a composition containing a liquid crystalline compound and exhibiting optical anisotropy expressed by molecular orientation of the liquid crystalline compound.
  • the polymer film may be a layer having optical anisotropy developed by orienting a polymer in the film and may have both layers.
  • the above equation may be achieved at any wavelength in the visible light range (for example, 550 nm), but the in-plane retardation Re (550) at a wavelength of 550 nm is 115 nm ⁇ Re (550) ⁇ 155 nm.
  • the thickness is preferably 120 nm to 145 nm. Within this range, it is preferable because the leakage of reflected light can be reduced to an invisible level when combined with a ⁇ / 2 plate described later.
  • the ⁇ / 2 plate used in the present invention may be an optically anisotropic support having the desired ⁇ / 2 function by itself, or an optically anisotropic layer on a support made of a polymer film. Etc. may be included. That is, in the latter case, a desired ⁇ / 2 function is provided by laminating another layer on the support.
  • the constituent material of the optically anisotropic layer is not particularly limited, and may be a layer formed from a composition containing a liquid crystalline compound and exhibiting optical anisotropy expressed by molecular orientation of the liquid crystalline compound.
  • the polymer film may be a layer having optical anisotropy developed by orienting a polymer in the film and may have both layers.
  • the in-plane retardation Re1 of the ⁇ / 2 plate is set to be substantially twice the in-plane retardation Re2 of the ⁇ / 4 plate.
  • the above equation may be achieved at any wavelength in the visible light range, but is preferably achieved at a wavelength of 550 nm. This range is preferable because it can reduce the leakage of reflected light to a level where it is not visually recognized when combined with the ⁇ / 4 plate.
  • the angle formed by the slow axis direction of the ⁇ / 2 plate and the absorption axis direction of the polarizer layer is 75 ° ⁇ 8 °.
  • the range is preferably 75 ° ⁇ 6 °, more preferably 75 ° ⁇ 3 °.
  • the angle formed by the slow axis direction of the ⁇ / 4 plate and the absorption axis direction of the polarizer layer is preferably in the range of 15 ° ⁇ 8 °, and is in the range of 15 ° ⁇ 6 °. More preferably, the range is 15 ° ⁇ 3 °.
  • the above range is preferable because light leakage of reflected light can be reduced to a level where it is not visually recognized.
  • the angle formed by the slow axis direction of the ⁇ / 2 plate and the absorption axis direction of the polarizer layer is 15 ° ⁇ 8 °.
  • the range is preferably 15 ° ⁇ 6 °, more preferably 15 ° ⁇ 3 °.
  • an angle formed between the slow axis direction of the ⁇ / 4 plate and the absorption axis direction of the polarizer layer is preferably in the range of 75 ° ⁇ 8 °, and is in the range of 75 ° ⁇ 6 °. More preferably, the range is 75 ° ⁇ 3 °.
  • the above range is preferable because light leakage of reflected light can be reduced to a level where it is not visually recognized.
  • the material for the optically anisotropic support used in the present invention is not particularly limited.
  • Various polymer films such as cellulose acylate, polycarbonate polymer, polyester polymer such as polyethylene terephthalate and polyethylene naphthalate, acrylic polymer such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymer (AS resin), etc. Styrene polymers and the like can be used.
  • Polyolefins such as polyethylene and polypropylene, polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers, polyethersulfone polymers , Polyether ether ketone polymer, polyphenylene sulfide polymer, vinylidene chloride polymer, vinyl alcohol polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or polymer mixed with the above-mentioned polymers
  • One or more polymers can be selected from the above and used as the main component to produce a polymer film, which can be used for the production of optical films in a combination that satisfies the above characteristics. That.
  • the optically anisotropic layer was formed from a composition containing a liquid crystalline compound. It is preferable that at least one layer is included. That is, it is preferably a laminate of a polymer film (transparent support) and an optically anisotropic layer formed from a composition containing a liquid crystal compound.
  • a polymer film having a small optical anisotropy may be used, or a polymer film exhibiting an optical anisotropy by stretching or the like may be used.
  • the support preferably has a light transmittance of 80% or more.
  • the type of liquid crystalline compound used for forming the optically anisotropic layer that the ⁇ / 2 plate and the ⁇ / 4 plate may have is not particularly limited.
  • an optically anisotropic layer obtained by fixing by photocrosslinking or thermal crosslinking, or after forming a polymer liquid crystalline compound in a nematic alignment in a liquid crystal state An optically anisotropic layer obtained by fixing the orientation by cooling can also be used.
  • the optically anisotropic layer is a layer formed by fixing the liquid crystalline compound by polymerization or the like. After that, it is no longer necessary to show liquid crystallinity.
  • the polymerizable liquid crystal compound may be a polyfunctional polymerizable liquid crystal or a monofunctional polymerizable liquid crystal compound.
  • the liquid crystalline compound may be a discotic liquid crystalline compound or a rod-like liquid crystalline compound.
  • liquid crystal compounds can be classified into a rod type and a disk type from the shape.
  • Polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992).
  • any liquid crystal compound can be used, but a rod-like liquid crystal compound or a disk-like liquid crystal compound is preferably used.
  • Two or more kinds of rod-like liquid crystal compounds, two or more kinds of disk-like liquid crystal compounds, or a mixture of a rod-like liquid crystal compound and a disk-like liquid crystal compound may be used.
  • the liquid crystal compound may be a mixture of two or more types, and in that case, at least one preferably has two or more reactive groups.
  • the rod-like liquid crystal compound for example, those described in JP-A-11-513019 and JP-A-2007-279688 can be preferably used.
  • the discotic liquid crystal compound include JP-A-2007-108732 and JP-A-2007-108732.
  • the molecules of the liquid crystal compound are fixed in any alignment state of vertical alignment, horizontal alignment, hybrid alignment, and tilt alignment.
  • the disc surface of the discotic liquid crystalline compound is substantially perpendicular to the film surface (optically anisotropic layer surface), or a rod shape It is preferable that the major axis of the liquid crystal compound is substantially horizontal with respect to the film surface (optically anisotropic layer surface).
  • substantially perpendicular to the discotic liquid crystalline compound means that the average angle between the film surface (optically anisotropic layer surface) and the disc surface of the discotic liquid crystalline compound is in the range of 70 ° to 90 °. Means. 80 ° to 90 ° is more preferable, and 85 ° to 90 ° is still more preferable. That the rod-like liquid crystalline compound is substantially horizontal means that the angle formed by the film surface (optically anisotropic layer surface) and the director of the rod-like liquid crystalline compound is in the range of 0 ° to 20 °. 0 ° to 10 ° is more preferable, and 0 ° to 5 ° is still more preferable.
  • the optically anisotropic layer may consist of only one layer, or two or more layers of optically different layers.
  • a laminate of anisotropic layers may be used.
  • the optically anisotropic layer comprises a coating liquid containing a liquid crystalline compound such as a rod-like liquid crystalline compound or a discotic liquid crystalline compound, and, if desired, a polymerization initiator, an alignment control agent and other additives described later. It can be formed by coating on top. It is preferable to form an alignment film on a support and apply the coating solution on the surface of the alignment film.
  • a liquid crystalline compound such as a rod-like liquid crystalline compound or a discotic liquid crystalline compound
  • the alignment film In the present invention, it is preferable to align the molecules of the liquid crystal compound by applying the composition to the surface of the alignment film. Since the alignment film has a function of defining the alignment direction of the liquid crystalline compound, it is preferably used for realizing a preferred embodiment of the present invention. However, if the alignment state is fixed after aligning the liquid crystalline compound, the alignment film plays the role, and thus is not necessarily an essential component of the present invention. That is, it is also possible to produce the polarizing plate of the present invention by transferring only the optically anisotropic layer on the alignment film in which the alignment state is fixed onto the polarizing layer or the support.
  • the alignment film is preferably formed by polymer rubbing treatment.
  • polymer examples include methacrylate copolymers, styrene copolymers, polyolefins, polyvinyl alcohol and modified polyvinyl alcohol, poly (N-methylol) described in paragraph No. [0022] of JP-A-8-338913, for example. Acrylamide), polyester, polyimide, vinyl acetate copolymer, carboxymethylcellulose, polycarbonate and the like. Silane coupling agents can be used as the polymer.
  • Water-soluble polymers eg, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol, modified polyvinyl alcohol
  • gelatin, polyvinyl alcohol and modified polyvinyl alcohol are more preferred
  • polyvinyl alcohol and modified polyvinyl alcohol are most preferred.
  • the rubbing treatment can be performed by a treatment method widely adopted as a liquid crystal alignment treatment process for LCD. That is, a method of obtaining the orientation by rubbing the surface of the orientation film in a certain direction using paper, gauze, felt, rubber, nylon, polyester fiber or the like can be used. In general, it is carried out by rubbing several times using a cloth in which fibers having a uniform length and thickness are flocked on average.
  • the said composition is apply
  • the thickness of the alignment film is preferably in the range of 0.1 to 10 ⁇ m.
  • Re and Rth shall refer to values at a wavelength of 550 nm.
  • the in-plane retardation (Re) of the transparent support (polymer film) that supports the optically anisotropic layer is preferably 0 to 50 nm, more preferably 0 to 30 nm, and more preferably 0 to 10 nm. Is more preferable. The above range is preferable because light leakage of reflected light can be reduced to a level where it is not visually recognized.
  • the retardation (Rth) in the thickness direction of the support is preferably selected depending on the combination with the optically anisotropic layer provided on or below the support. Thereby, it is possible to reduce the light leakage of the reflected light and the coloring when observed from an oblique direction.
  • At least a polarizer layer a first transparent support layer composed of one or more layers, a ⁇ / 2 plate composed of a layer containing a discotic liquid crystal compound, a second transparent support layer composed of one or more layers, and a disco
  • Rth of the first transparent support layer is ⁇ 30 nm to 150 nm.
  • the thickness is preferably 30 nm to 120 nm, more preferably 60 nm to 90 nm.
  • the Rth of the second transparent support layer is preferably 0 nm to 200 nm, more preferably 50 nm to 150 nm, and still more preferably 90 nm to 130 nm.
  • Rth of the transparent support layer is preferably ⁇ 10 nm to 140 nm, more preferably 10 nm to 120 nm, and 40 nm to 80 nm. More preferably.
  • Rth of the transparent support layer is preferably ⁇ 30 nm to 30 nm, more preferably ⁇ 20 nm to 10 nm.
  • Rth of the transparent support layer is preferably ⁇ 10 nm to 100 nm, more preferably 20 nm to 70 nm, and more preferably 30 nm to 60 nm. More preferably.
  • Rth of the transparent support layer is preferably ⁇ 50 nm to 150 nm, more preferably ⁇ 30 nm to 130 nm, and 20 nm to 70 nm. More preferably.
  • Rth of the transparent support layer is preferably ⁇ 90 nm to 50 nm, more preferably ⁇ 60 nm to 30 nm, and ⁇ 20 nm to 20 nm. More preferably it is.
  • Rth of the transparent support layer is preferably ⁇ 110 nm to 40 nm, more preferably ⁇ 90 nm to 20 nm, and ⁇ 50 nm to ⁇ 10 nm. More preferably.
  • the Rth of the first transparent support layer is ⁇ 40 nm to 140 nm. It is preferably 0 nm to 100 nm, more preferably 40 nm to 80 nm.
  • the Rth of the second transparent support layer is preferably ⁇ 70 nm to 70 nm, more preferably ⁇ 30 nm to 30 nm.
  • Rth of the first transparent support layer is ⁇ 50 nm to 130 nm. It is preferably from ⁇ 30 nm to 100 nm, and more preferably from 0 nm to 80 nm.
  • the Rth of the second transparent support layer is preferably 0 nm to 100 nm, and more preferably 20 nm to 80 nm.
  • Rth of the first transparent support layer is ⁇ 40 nm to 140 nm. It is preferably -20 nm to 100 nm, more preferably 10 nm to 50 nm.
  • Rth of the second transparent support layer is preferably from ⁇ 100 nm to 40 nm, more preferably from ⁇ 50 nm to 0 nm, and further preferably from ⁇ 40 nm to ⁇ 10 nm.
  • a ⁇ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a first transparent support layer comprising one or more layers, and a ⁇ / 4 plate comprising a layer containing a discotic liquid crystal compound.
  • Rth of the first transparent support layer is ⁇ 40 nm to 150 nm. It is preferably from ⁇ 10 nm to 100 nm, and more preferably from 30 nm to 60 nm.
  • the Rth of the second transparent support layer is preferably ⁇ 50 nm to 100 nm, more preferably ⁇ 30 nm to 70 nm, and further preferably 10 nm to 50 nm.
  • a ⁇ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a first transparent support layer comprising one or more layers, and a ⁇ / 4 plate comprising a layer containing a rod-like liquid crystal compound;
  • Rth of the first transparent support layer is -70 nm to 100 nm. It is preferably -30 nm to 50 nm, more preferably -10 nm to 30 nm.
  • the Rth of the second transparent support layer is preferably ⁇ 110 nm to 40 nm, more preferably ⁇ 80 nm to 0 nm, and further preferably ⁇ 50 nm to 0 nm.
  • Rth of the transparent support layer is preferably ⁇ 150 nm to 50 nm, more preferably ⁇ 130 nm to 30 nm, and ⁇ 90 nm to 0 nm. More preferably it is.
  • the Rth of the transparent support layer is preferably ⁇ 30 nm to 30 nm, and more preferably ⁇ 10 nm to 20 nm.
  • Rth of the transparent support layer is preferably ⁇ 50 nm to 90 nm, more preferably ⁇ 30 nm to 60 nm, and ⁇ 10 nm to 10 nm. More preferably it is.
  • the transparent support layer preferably has Rth of ⁇ 140 nm to 10 nm, more preferably ⁇ 120 nm to ⁇ 10 nm, and ⁇ 80 nm to ⁇ 50 nm. More preferably.
  • Rth of the transparent support layer is preferably ⁇ 50 nm to 110 nm, more preferably ⁇ 30 nm to 90 nm, and 10 nm to 50 nm. More preferably.
  • the Rth of the transparent support layer is preferably ⁇ 100 nm to 10 nm, more preferably ⁇ 80 nm to ⁇ 20 nm, and ⁇ 60 nm to ⁇ 30 nm. More preferably.
  • At least a polarizer layer, a first transparent support layer composed of one or more layers, a ⁇ / 2 plate composed of a layer containing a rod-like liquid crystal compound, a second transparent support layer composed of one or more layers
  • Rth of the first transparent support layer is ⁇ 140 nm to 40 nm. It is preferably -100 nm to 10 nm, more preferably -80 nm to 0 nm.
  • the Rth of the second transparent support layer is preferably ⁇ 70 nm to 70 nm, more preferably ⁇ 40 nm to 40 nm.
  • At least a polarizer layer, a first transparent support layer composed of one or more layers, a ⁇ / 2 plate composed of a layer containing a rod-like liquid crystal compound, a second transparent support layer composed of one or more layers
  • Rth of the first transparent support layer is ⁇ 150 nm to 40 nm. Is more preferable, ⁇ 120 nm to 0 nm is more preferable, and ⁇ 100 nm to ⁇ 50 nm is still more preferable.
  • the Rth of the second transparent support layer is preferably ⁇ 200 nm to 0 nm, more preferably ⁇ 150 nm to ⁇ 50 nm, and further preferably ⁇ 130 nm to ⁇ 90 nm.
  • At least a polarizer layer a first transparent support layer composed of one or more layers, a ⁇ / 2 plate composed of a layer containing a rod-like liquid crystal compound, and a ⁇ / 4 plate composed of a layer containing a discotic liquid crystal compound;
  • Rth of the first transparent support layer is ⁇ 140 nm to 40 nm. It is preferably -100 nm to 20 nm, more preferably -50 nm to 0 nm.
  • the Rth of the second transparent support layer is preferably ⁇ 40 nm to 100 nm, more preferably ⁇ 10 nm to 50 nm, and further preferably 10 nm to 50 nm.
  • Rth of the first transparent support layer is ⁇ 120 nm to 40 nm. Is more preferable, ⁇ 100 nm to 30 nm is more preferable, and ⁇ 70 nm to 0 nm is still more preferable.
  • Rth of the second transparent support layer is preferably ⁇ 100 nm to 0 nm, and more preferably ⁇ 80 nm to ⁇ 20 nm.
  • a ⁇ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a first transparent support layer comprising one or more layers, and a ⁇ / 4 plate comprising a layer containing a discotic liquid crystal compound;
  • Rth of the first transparent support layer is ⁇ 100 nm to 80 nm. It is preferably -60 nm to 40 nm, more preferably -30 nm to 20 nm.
  • the Rth of the second transparent support layer is preferably ⁇ 40 nm to 100 nm, more preferably ⁇ 10 nm to 70 nm, and further preferably 0 nm to 50 nm.
  • a ⁇ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a first transparent support layer comprising one or more layers, and a ⁇ / 4 plate comprising a layer containing a rod-like liquid crystal compound;
  • Rth of the first transparent support layer is ⁇ 150 nm to 40 nm. Is preferable, ⁇ 90 nm to 0 nm is more preferable, and ⁇ 60 nm to ⁇ 20 nm is still more preferable.
  • the Rth of the second transparent support layer is preferably from ⁇ 100 nm to 50 nm, more preferably from ⁇ 70 nm to 10 nm, and further preferably from ⁇ 50 nm to ⁇ 10 nm.
  • polymers examples include cellulose acylate films (for example, cellulose triacetate film, cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film), polyolefins such as polyethylene and polypropylene, polyethylene terephthalate and polyethylene naphthalate, etc.
  • cellulose acylate films for example, cellulose triacetate film, cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film
  • polyolefins such as polyethylene and polypropylene, polyethylene terephthalate and polyethylene naphthalate, etc.
  • Polyester resin film polyethersulfone film, polyacrylic resin film such as polymethyl methacrylate, polyurethane resin film, polyester film, polycarbonate film, polysulfone film, polyether film, polymethylpentene film, polyetherketone film, (Meth) acrylonitrile film, polyolefin, alicyclic structure Polymer (norbornene resin (Arton: trade name, manufactured by JSR Corporation, amorphous polyolefin (ZEONEX: trade name, manufactured by ZEON CORPORATION)), etc.
  • triacetyl cellulose polyethylene terephthalate, alicyclic type A polymer having a structure is preferable, and triacetyl cellulose is particularly preferable.
  • the polymer film is preferably formed by a solvent cast method.
  • a lamination casting method such as a co-casting method, a sequential casting method, or a coating method can also be used.
  • a cellulose acetate solution (dope) for each layer is prepared.
  • a casting dope for each layer (which may be three layers or more) is simultaneously pressed from another slit or the like on a casting support (band or drum).
  • the casting dope for the first layer is first extruded from the casting giusa on the casting support, cast, and dried on the second layer without drying or drying.
  • Extrude the casting dope for casting from the casting gieser cast the dope sequentially to the third layer or more, if necessary, peel it off from the support at an appropriate time, and dry it.
  • the core layer film is formed into a film by a solution casting method to prepare a coating solution that is applied to the surface layer, and then applied to the film one side at a time or both sides simultaneously using an appropriate coating machine.
  • This is a method of forming a film having a laminated structure by applying and drying a liquid.
  • the thickness of the transparent support may be about 10 ⁇ m to 200 ⁇ m, preferably 10 ⁇ m to 80 ⁇ m, and more preferably 20 ⁇ m to 60 ⁇ m.
  • the transparent support may be composed of a plurality of laminated layers. The thinner one is preferable for the suppression of external light reflection, but a thickness of 10 ⁇ m or more is preferable because the strength of the film becomes good.
  • surface treatment eg, glow discharge treatment, corona discharge treatment, ultraviolet light (UV) Treatment, flame treatment.
  • An adhesive layer undercoat layer may be provided on the transparent support.
  • the average particle diameter of the transparent support or the long transparent support is 10 to 100 nm in order to provide slippage in the transport process or to prevent the back surface and the surface from sticking after winding. It is preferable to use a polymer layer in which about 5% to 40% of a solid content of inorganic particles are mixed and formed on one side of the support by coating or co-casting with the support.
  • the present invention is not limited to this mode, and one sheet A ⁇ / 2 plate and a ⁇ / 4 plate may be laminated on one side of the transparent support, or a ⁇ / 2 plate may be laminated on one side of one transparent support, and the other side.
  • a ⁇ / 4 plate may be laminated.
  • the ⁇ / 2 plate or the ⁇ / 4 plate is composed only of a stretched polymer film (optically anisotropic support) alone but a liquid crystal film formed from a composition containing a liquid crystalline compound. Also good. Preferred examples of the liquid crystal film are the same as the preferred examples of the optically anisotropic layer.
  • the ⁇ / 2 plate and ⁇ / 4 plate are preferably manufactured continuously in the state of a long film.
  • the slow axis angle of ⁇ / 2 or ⁇ / 4 is preferably 15 ° ⁇ 8 ° or 75 ° ⁇ 8 ° with respect to the longitudinal direction of the long film.
  • the angle of the slow axis of the optically anisotropic layer can be adjusted by the rubbing angle.
  • the angle of the slow axis can be adjusted by the stretching direction.
  • the organic EL display device of the present invention may contain an ultraviolet absorber in the optically anisotropic layer, the transparent support, or the surface film.
  • an ultraviolet absorber any UV absorber can be used, and any known UV absorber can be used.
  • a benzotriazole-based or hydroxyphenyltriazine-based ultraviolet absorber is preferable in order to obtain a high ultraviolet-absorbing property and to obtain an ultraviolet-absorbing ability (ultraviolet-cutting ability) used in an electronic image display device.
  • two or more ultraviolet absorbers having different maximum absorption wavelengths can be used in combination.
  • the content of the ultraviolet absorber is usually 20 parts by mass or less, preferably 1 to 20 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin, although it depends on the required ultraviolet transmittance and the absorbance of the ultraviolet absorber. .
  • the content of the ultraviolet absorber is usually 20 parts by mass or less, preferably 1 to 20 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin, although it depends on the required ultraviolet transmittance and the absorbance of the ultraviolet absorber. .
  • the content of the ultraviolet absorber is usually 20 parts by mass or less, preferably 1 to 20 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin, although it depends on the required ultraviolet transmittance and the absorbance of the ultraviolet absorber. .
  • the polarizing plate used in the present invention has a protective film and a polarizing film.
  • the polarizing film any of an iodine polarizing film, a dye polarizing film using a dichroic dye, and a polyene polarizing film may be used.
  • the iodine polarizing film and the dye polarizing film are generally produced using a polyvinyl alcohol film.
  • the absorption axis of the polarizing film corresponds to the stretching direction of the film. Accordingly, the polarizing film stretched in the longitudinal direction (transport direction) has an absorption axis parallel to the longitudinal direction, and the polarizing film stretched in the lateral direction (perpendicular to the transport direction) is perpendicular to the longitudinal direction. Has an absorption axis.
  • a preferred method for producing a polarizing plate used in the present invention includes a step in which the optical laminate and the polarizing film are successively laminated in a long state.
  • the long polarizing plate is cut in accordance with the screen size of the image display device used.
  • a polarizing film integrated optical film functioning as a circularly polarizing plate or an elliptically polarizing plate can be produced with high productivity.
  • the organic electroluminescence display device of the present invention is a display device in which a plurality of organic compound thin films including a light emitting layer or a light emitting layer are formed between a pair of electrodes of an anode and a cathode.
  • a layer, an electron injection layer, an electron transport layer, a protective layer, and the like may be included, and each of these layers may have other functions.
  • Various materials can be used for forming each layer.
  • the anode supplies holes to a hole injection layer, a hole transport layer, a light emitting layer, and the like, and a metal, an alloy, a metal oxide, an electrically conductive compound, or a mixture thereof can be used.
  • Specific examples include conductive metal oxides such as tin oxide, zinc oxide, indium oxide, and indium tin oxide (ITO), or metals such as gold, silver, chromium, and nickel, and these metals and conductive metal oxides.
  • Inorganic conductive materials such as copper iodide and copper sulfide, organic conductive materials such as polyaniline, polythiophene, and polypyrrole, and laminates of these with ITO, preferably conductive metals It is an oxide, and ITO is particularly preferable from the viewpoint of productivity, high conductivity, transparency, and the like.
  • the thickness of the anode can be appropriately selected depending on the material, but is usually preferably in the range of 10 nm to 5 ⁇ m, more preferably 50 nm to 1 ⁇ m, and further preferably 100 nm to 500 nm.
  • the substrate is not particularly limited, but is preferably transparent or translucent, and a substrate in which an anode is formed on a substrate such as soda lime glass, non-alkali glass, or transparent resin is usually used.
  • a substrate such as soda lime glass, non-alkali glass, or transparent resin is usually used.
  • non-alkali glass it is preferable to use non-alkali glass as the material in order to reduce ions eluted from the glass.
  • soda-lime glass it is preferable to use what gave barrier coatings, such as a silica.
  • the thickness of the substrate is not particularly limited as long as it is sufficient to maintain the mechanical strength. However, in a mode in which a light scattering film is used on the surface of the display device, character blur tends to occur when the thickness of the substrate on the viewing side is large. The thinner the better.
  • the viewing-side substrate is preferably 0.01 mm to 0.70 mm, more preferably 0.02 to 0.50 mm, and particularly preferably 0.03 to 0.30 mm.
  • a thin (preferably glass) substrate of 0.03 to 0.30 mm on the viewing side.
  • the thickness is smaller than 0.30 ⁇ m, it is more preferable to improve the strength by coating a polymer on at least one of one side and the end.
  • Alkaline solution composition Alkaline solution composition (parts by mass) ⁇ Potassium hydroxide 4.7 parts by weight Water 15.8 parts by weight Isopropanol 63.7 parts by weight
  • Surfactant SF-1 C 14 H 29 O (CH 2 CH 2 O) 20 H 1.0 part by weight Propylene glycol 14. 8 parts by mass ⁇
  • composition of alignment film coating solution Denatured polyvinyl alcohol 10 parts by weight Water 371 parts by weight Methanol 119 parts by weight Glutaraldehyde 0.5 parts by weight Photopolymerization initiator (Irgacure 2959, manufactured by Ciba Japan) 0.3 parts by mass ⁇
  • the coating liquid A containing a discotic liquid crystal compound having the following composition was continuously applied with a wire bar on the prepared alignment film.
  • the conveyance speed (V) of the film was 36 m / min.
  • the coating liquid was heated with warm air at 120 ° C. for 90 seconds.
  • UV irradiation was performed at 80 ° C. to fix the alignment of the liquid crystal compound.
  • the thickness of the optically anisotropic layer, that is, the liquid crystal compound layer was adjusted so as to be 1.6 ⁇ m to 4.0 ⁇ m, and various films having Re (550) at 550 nm of 125 nm to 300 nm were obtained.
  • the following pyridinium salt (A) 0.5 part by mass
  • the following fluoropolymer (FP1) 0.2 part by mass
  • the direction of the slow axis of the produced film was orthogonal to the rotation axis of the rubbing roller. That is, the slow axis was 15 °, 45 °, or 75 ° counterclockwise with respect to the longitudinal direction of the support.
  • the average inclination angle of the disc surface of the discotic liquid crystalline molecules with respect to the film surface was 90 °, and it was confirmed that the discotic liquid crystal was aligned perpendicular to the film surface.
  • a coating liquid (B) containing a rod-like liquid crystal compound having the following composition was applied to a cellulose acylate film to obtain various films having a Re (550) at 550 nm of 125 nm to 300 nm.
  • the average inclination angle of the long axis of the rod-like liquid crystal compound with respect to the film surface was 0 °, and it was confirmed that the liquid crystal compound was aligned horizontally with respect to the film surface. Further, the angle of the slow axis was orthogonal to the rotation axis of the rubbing roller.
  • composition of coating solution (B) for optically anisotropic layer ⁇ The following rod-like liquid crystal compound (A) 100 parts by mass Photopolymerization initiator (Irgacure 907, manufactured by Ciba Japan) 3 parts by mass Sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass
  • the above fluoropolymer (FP1) 0.3 part by mass Methyl ethyl ketone 193 parts by mass Cyclohexanone 50 parts by mass ⁇
  • optically anisotropic layer formed by the above method is peeled off from the cellulose acylate film, and the optical difference of the separately prepared cellulose acylate film with an optically anisotropic layer is obtained. It stuck together with the adhesive on the anisotropic layer (transfer). Thus, a cellulose acylate film in which two types of optically anisotropic layers having different retardations and slow axes were formed was obtained.
  • a polyvinyl alcohol (PVA) film having a thickness of 80 ⁇ m is dyed by dipping in an aqueous iodine solution having an iodine concentration of 0.05 mass% at 30 ° C. for 60 seconds, and then boric acid concentration is 4 mass%. While being immersed in an aqueous boric acid solution for 60 seconds, the film was longitudinally stretched 5 times the original length and then dried at 50 ° C. for 4 minutes to obtain a polarizing film having a thickness of 20 ⁇ m.
  • PVA polyvinyl alcohol
  • Example 138 Preparation of cellulose ester solution A-1
  • the following composition was put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose ester solution A-1.
  • cellulose ester solution A-1 Composition of cellulose ester solution A-1 ⁇ Cellulose acetate (acetylation degree 2.86) 100 parts by mass Methylene chloride (first solvent) 320 parts by mass Methanol (second solvent) 83 parts by mass 1-butanol (third solvent) 3 parts by mass Triphenyl Phosphate 7.6 parts by mass, biphenyldiphenyl phosphate 3.8 parts by mass ⁇
  • UV absorber solution C-1 Composition of UV absorber solution C-1 ⁇ UV absorber (UV-1 below) 10.0 parts by weight UV absorber (UV-2 below) 10.0 parts by weight Methylene chloride 55.7 parts by weight Methanol 10 parts by weight Butanol 1.3 parts by weight ⁇ Cellulose ester solution A-1 12.9 parts by mass ⁇
  • the cast dope film was dried by applying a dry air of 34 ° C. at 150 m 3 / min on the drum, and the residual solvent was peeled off from the drum in a state of 150%. During peeling, 15% stretching was performed in the transport direction (longitudinal direction). Thereafter, the film is conveyed while being held by a pin tenter (pin tenter described in FIG. 3 of JP-A-4-1009) at both ends in the width direction (direction perpendicular to the casting direction) and stretched in the width direction. No processing was performed. Furthermore, it dried further by conveying between the rolls of a heat processing apparatus, and manufactured the cellulose acylate film (T1). The produced long cellulose acylate film (T1) had a residual solvent amount of 0.2%, a thickness of 60 ⁇ m, and Re and Rth at 550 nm of 0.8 nm and 40 nm, respectively.
  • the produced cellulose acylate film (T1) was subjected to alkali saponification treatment in the same manner as described above.
  • An alignment film coating solution having the following composition was continuously applied thereon with a # 14 wire bar. Drying was performed with warm air of 60 ° C. for 60 seconds, and further with warm air of 100 ° C. for 120 seconds.
  • composition of alignment film coating solution
  • a coating liquid (C) containing a discotic liquid crystal compound having the following composition was continuously applied on the prepared alignment film with a wire bar of # 5.0.
  • the conveyance speed (V) of the film was 26 m / min.
  • it was heated with warm air of 115 ° C. for 90 seconds, then heated with warm air of 80 ° C. for 60 seconds, and irradiated with UV at 80 ° C.
  • the alignment of the liquid crystal compound was fixed.
  • the average inclination angle of the disk surface of the DLC compound with respect to the film surface was 90 °, and it was confirmed that the DLC compound was oriented perpendicular to the film surface.
  • the angle of the slow axis was parallel to the rotation axis of the rubbing roller, and was 15 ° when the film longitudinal direction was 90 °.
  • composition of coating solution (C) for optically anisotropic layer ⁇ 80 parts by mass of the following discotic liquid crystal compound (B) 20 parts by mass of the following discotic liquid crystal compound (C) 10 parts by mass of the above acrylate monomer (Irgacure 907, manufactured by Ciba Japan) 3 parts by mass of the following 0.9 parts by mass of the following boronic acid-containing compound 0.08 parts by mass
  • the following polymer 0.6 parts by mass
  • the above fluoropolymer (FP1) 0.3 parts by mass Methyl ethyl ketone 183 parts by mass Cyclohexanone 40 parts by mass Department ⁇
  • optically anisotropic layer containing rod-like liquid crystal (RLC) compound The optically anisotropic layer containing the produced DLC compound was continuously rubbed. At this time, the longitudinal direction of the long film and the transport direction are parallel, and the angle formed between the longitudinal direction of the film and the rotation axis of the rubbing roller is ⁇ 75 ° (counterclockwise) (the longitudinal direction of the film is 90 °). Then, the rotation axis of the rubbing roller is 165 °).
  • a coating liquid (D) containing a rod-like liquid crystal compound having the following composition was continuously applied onto the prepared alignment film with a # 2.2 wire bar.
  • the conveyance speed (V) of the film was 26 m / min.
  • the coating liquid was heated with warm air of 60 ° C. for 60 seconds and irradiated with UV at 60 ° C. to fix the orientation of the liquid crystal compound.
  • the average inclination angle of the long axis of the rod-like liquid crystal compound with respect to the film surface was 0 °, and it was confirmed that the liquid crystal compound was aligned horizontally with respect to the film surface.
  • the angle of the slow axis was orthogonal to the rotation axis of the rubbing roller, and 75 ° when the film longitudinal direction was 90 °.
  • composition of coating solution (D) for optically anisotropic layer ⁇ The above rod-shaped liquid crystal compound (A) 20 parts by mass The following rod-shaped liquid crystal compound (B) 80 parts by mass Photopolymerization initiator (Irgacure 907, manufactured by Ciba Japan) 3 parts by mass sensitizer (Kayacure DETX, Nippon Kayaku) 1 part by mass The following fluoropolymer (FP4) 0.3 part by mass Methyl ethyl ketone 193 parts by mass Cyclohexanone 50 parts by mass ⁇ ⁇
  • a film (F1) in which an optically anisotropic layer containing a DLC compound and an optically anisotropic layer containing an RLC compound were laminated on a cellulose acylate film was produced.
  • This film was immersed in an aqueous sodium hydroxide solution at 1.5 mol / liter at 55 ° C., and the sodium hydroxide was thoroughly washed away with water. Then, after being immersed in a diluted sulfuric acid aqueous solution at 0.005 mol / liter at 35 ° C. for 1 minute, it was immersed in water to sufficiently wash away the diluted sulfuric acid aqueous solution. Finally, the sample was thoroughly dried at 120 ° C.
  • a polarizer and a polarizer protective film prepared in the same manner as above were prepared, and the film (F1), the polarizer, and the polarizer protective film were bonded so that the cellulose acylate surface of the film (F1) was in contact with the polarizer. Combined. In this way, an optical laminate of Example 138 was produced.
  • Example 139 The optically anisotropic layer composed of the DLC compound and RLC compound of the film (F1) is peeled off from the cellulose acylate film, and bonded so that the layer composed of the DLC compound is in contact with the surface of the polarizer of (4).
  • the polarizer protective film described in (5) above was bonded to the other surface using a polyvinyl adhesive. In this way, an optical laminate of Example 139 was produced.
  • Example 140 to 143 A commercially available norbornene-based polymer film “ZEONOR ZF14” (manufactured by Optes Co., Ltd.) is stretched to adjust the film thickness to 50 ⁇ m, and a polymer film having Re (550) of 125 nm and Rth (550) of 74 nm is obtained. Obtained. This was bonded to an optically anisotropic layer, a polarizer, and a polarizer protective film in the same manner as in Examples 1 to 135 described above to produce optical laminates shown in Examples 140 to 143.
  • Example 144 to 147 The polycarbonate type ⁇ / 4 film used in the 3D glasses attached to 55LW5700, which is a 3D-TV made by LG Electronics, is peeled off, and the optically anisotropic layer is peeled off in the same manner as in Examples 1 to 135 described above. Then, the optical laminates shown in Examples 144 to 147 in Table 8 below were prepared by bonding to the polarizer and the polarizer protective film.
  • Comparative Examples 1 to 20 Various optical laminates shown in Comparative Examples 1 to 20 in Tables 9 to 14 below were prepared in the same manner as in Examples 1 to 135 described above.
  • Comparative Example 21 A commercially available norbornene-based polymer film “ZEONOR ZF14” (manufactured by Optes Co., Ltd.) is diagonally stretched to adjust the film thickness to 50 ⁇ m, and Re (550) is 125 nm and Rth (550) is 85 nm. Got. This was bonded to a transparent support, a polarizer, and a polarizer protective film in the same manner as in Examples 1 to 135 described above to prepare various optical laminates shown in Comparative Example 21 in Table 15 below.
  • ZONOR ZF14 manufactured by Optes Co., Ltd.
  • the evaluation results are shown in Tables 1 to 15 below.
  • the absorption axis angle and slow axis angle shown in Tables 1 to 15 below were set to 0 ° as the transmission axis angle of the polarizer, and positive when viewed clockwise from the viewing side of the organic EL panel.
  • the evaluation results shown in Tables 1 to 15 below do not change even when the definition that the clockwise direction is negative is used.
  • the transmission axis of the polarizer can be bonded to the organic EL panel at an arbitrary angle.
  • the organic EL display devices of Examples 1 to 147 which are the organic EL display devices of the present invention, have the optimum Rth of the organic EL display device of Comparative Example 20 or Comparative Example 21, which is a conventional circularly polarizing plate, or a transparent support. It can be seen that the visibility under bright light is superior to those of the organic EL display devices of Comparative Examples 1 to 19 which are not adjusted to a proper value.
  • the optical laminate used in the organic EL display device of the present invention can be produced by Roll to Roll, and an organic EL display device having excellent antireflection performance is high in addition to high productivity and excellent cost resistance. It becomes possible to provide with a yield.
  • the organic EL display device of the present invention has a temperature of 0 ° C. to 30 ° C. and a humidity of 0%. In the range of ⁇ 90%, no change in antireflection performance was visible.
  • the optical layered body of the present invention can be suitably used for antireflection of not only an organic EL display device but also a reflective liquid crystal display device, a transflective liquid crystal display device, a transparent display and the like. It can also be used as a brightness enhancement film by being installed on the backlight side of a liquid crystal display device. Furthermore, it can be used for applications such as optical disk pickups and PS conversion elements.
  • the reflection of the reflected image due to the internal reflection of the organic EL element is sufficiently reduced both in the front direction and in the oblique direction, and an organic EL display device excellent in display performance, productivity, and durability is provided. Can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polarising Elements (AREA)

Abstract

An organic EL display device is provided that exhibits excellent viewing angle characteristics and superior production characteristics. The organic EL display device is provided with at least a polarizer layer, a λ/2 plate, a λ/4 plate, and an organic EL panel in this order, and is characterized in that the in-plane retardation (Re2(550)) of the λ/4 plate at 550 nm satisfies 115≤Re2(550)≤155, and the in-plane retardation (Re1(550)) of the λ/2 plate at 550 nm satisfies Re1(550)=2×Re2(550)±50 nm.

Description

光学積層体を有する有機ELディスプレイ素子ORGANIC EL DISPLAY ELEMENT HAVING OPTICAL LAMINATE
 本発明は光学積層体を有する有機エレクトロルミネッセンス(以下、「有機EL」という。)表示装置に関する。 The present invention relates to an organic electroluminescence (hereinafter referred to as “organic EL”) display device having an optical laminate.
 有機エレクトロルミネッセンス(有機EL)表示装置は、自発光型の薄型表示装置であり、液晶表示装置と比較して視認性が高い、視野角依存性が少ないといった表示性能上の利点を有する。またディスプレイを軽量化、薄層化できるといった利点に加え、フレキシブルな基板を用いることでこれまで実現できなかった形状の表示装置を実現できる可能性を有している。 An organic electroluminescence (organic EL) display device is a self-luminous thin display device, and has advantages in display performance such as higher visibility and less viewing angle dependency than a liquid crystal display device. In addition to the advantages that the display can be made lighter and thinner, there is a possibility that a display device having a shape that could not be realized so far can be realized by using a flexible substrate.
 有機EL表示装置は上述したような優れた特徴を有する。しかし、電極にITOなどの高屈折率の透明導電性材料を用いて屈折率の異なる層を積層したり、反射率の高い金属材料などを用いるため、外光がそれらの界面で反射し、コントラスト低下や内部反射による映り込みの問題が生じることがある。 The organic EL display device has excellent characteristics as described above. However, since layers with different refractive indexes are laminated on the electrode using a transparent conductive material with a high refractive index such as ITO, or a metal material with a high reflectance is used, external light is reflected at the interface between them and contrast is increased. Reflection and reflection problems may occur due to internal reflection.
 図1に有機EL素子の代表的な構成を示す。有機EL表示装置は基本的には、図1に示すように、TFT基板1の上に、背面電極2、発光層を含み2層又は3層からなる有機層3、及び透明電極又は半透明電極4、透明基板5が積層された構成を有し、背面電極2から注入された正孔と透明電極4から注入された電子が有機層3で再結合し、蛍光性物質などを励起することにより発光するものである。そして、有機層3から発光した光は、直接、又はアルミニウムなどで形成される背面電極2で反射して透明基板5から出射する。また、カラー表示を実現するために、前記有機層3が赤色、緑色、青色の計三色、又は更に白色を加えた計四色の画素がマトリックス状に配置された構造を有するものや、前記有機層3が白色光を発光する素子からなり、カラーフィルタを組み合わせることでカラー表示を得る構造などが提案されている(例えば特許文献1、2)。 Fig. 1 shows a typical configuration of an organic EL element. As shown in FIG. 1, the organic EL display basically has a back electrode 2, an organic layer 3 including two or three layers including a light emitting layer, and a transparent electrode or a semitransparent electrode. 4. A structure in which a transparent substrate 5 is laminated, and holes injected from the back electrode 2 and electrons injected from the transparent electrode 4 are recombined in the organic layer 3 to excite a fluorescent substance or the like. It emits light. The light emitted from the organic layer 3 is reflected directly or by the back electrode 2 formed of aluminum or the like and is emitted from the transparent substrate 5. In order to realize color display, the organic layer 3 has a structure in which pixels of a total of three colors of red, green, and blue, or a total of four colors added with white are arranged in a matrix, A structure in which the organic layer 3 is made of an element that emits white light and obtains a color display by combining a color filter has been proposed (for example, Patent Documents 1 and 2).
 このように有機EL素子は、屈折率の異なる層を積層する構造や、金属電極を用いる構造を有するため、外光が各層の界面で反射し、コントラスト低下や映り込みの問題などを生じることがある。 As described above, since the organic EL element has a structure in which layers having different refractive indexes are stacked or a structure using a metal electrode, external light is reflected at the interface of each layer, which may cause problems such as a decrease in contrast and reflection. is there.
 上記のような外光反射による悪影響を抑えるため、吸収型直線偏光板と、λ/4板からなる円偏光板(例えば特許文献3、4、5、6)や、吸収型直線偏光板と、λ/2板と、λ/4板とからなる円偏光板を用いる提案がなされている(例えば特許文献7)。 In order to suppress the adverse effects of external light reflection as described above, an absorption linear polarizing plate, a circular polarizing plate made of a λ / 4 plate (for example, Patent Documents 3, 4, 5, and 6), an absorption linear polarizing plate, A proposal has been made to use a circularly polarizing plate comprising a λ / 2 plate and a λ / 4 plate (for example, Patent Document 7).
 また、円偏光板は有機EL表示装置のみならず、反射型LCD、半透過型LCD、透明ディスプレイ、輝度向上膜、光ディスク用ピックアップやPS変換素子など、非常に多くの用途に用いられる。 Further, the circularly polarizing plate is used not only for organic EL display devices but also for many applications such as reflective LCDs, transflective LCDs, transparent displays, brightness enhancement films, optical disk pickups and PS conversion elements.
日本国特許4630884号公報Japanese Patent No. 4630884 日本国特開2011-59611号公報Japanese Unexamined Patent Publication No. 2011-59611 日本国特開平7-142170号公報Japanese Unexamined Patent Publication No. 7-142170 日本国特開平9-127885号公報Japanese Laid-Open Patent Publication No. 9-127858 日本国特開2003-332068号公報Japanese Unexamined Patent Publication No. 2003-332068 日本国特開2002-98833号公報Japanese Unexamined Patent Publication No. 2002-98833 日本国特開2007-188033号公報Japanese Laid-Open Patent Publication No. 2007-188033 日本国特開2001-4837号公報Japanese Unexamined Patent Publication No. 2001-4837 日本国特開2004-53841号公報Japanese Unexamined Patent Publication No. 2004-53841 日本国特開平9-292522号公報Japanese Patent Laid-Open No. 9-292522 日本国特開2000-56310号公報Japanese Unexamined Patent Publication No. 2000-56310 日本国特開2000-104073号公報Japanese Unexamined Patent Publication No. 2000-104073 日本国特開2000-105316号公報Japanese Unexamined Patent Publication No. 2000-105316 日本国特開2007-108732号公報Japanese Unexamined Patent Publication No. 2007-108732
 上記のλ/4板やλ/2板は、その遅相軸を偏光板の吸収軸と平行でも直交でもない角度に設定する必要がある。現在、有機EL表示装置に使用されている大部分のλ/4板やλ/2板はポリマーフィルムを延伸することで光学異方性を発現させた位相差板であるが、ポリマーフィルムの遅相軸方向は、一般にシート状あるいはロール状フィルムの縦方向又は横方向に相当する。一方、偏光板の吸収軸はロール状フィルムの長手方向に平行であるため、λ/4板又はλ/2板と偏光板を貼り合わせるためには、それぞれのフィルムをカットし、得られたチップを所定の角度になるように貼り合わせる必要がある。チップの貼り合わせで位相差板と偏光板の積層体を製造しようとすると、粘着剤の塗布工程や、チップカットあるいはチップの貼り合わせ工程が必要となり、処理が煩雑であって、軸ズレによる品質低下が起きやすく、歩留まりが低下し、コストが増大し、異物の混入も起きやすいという問題があった。 The above λ / 4 plate or λ / 2 plate needs to have its slow axis set at an angle that is neither parallel nor orthogonal to the absorption axis of the polarizing plate. Currently, most λ / 4 plates and λ / 2 plates used in organic EL display devices are retardation plates that exhibit optical anisotropy by stretching a polymer film. The phase axis direction generally corresponds to the longitudinal direction or the lateral direction of a sheet-like or roll-like film. On the other hand, since the absorption axis of the polarizing plate is parallel to the longitudinal direction of the roll film, in order to bond the λ / 4 plate or λ / 2 plate and the polarizing plate, each film is cut and the obtained chip Must be pasted together so as to have a predetermined angle. When trying to manufacture a laminate of a retardation plate and a polarizing plate by chip bonding, an adhesive coating process, chip cutting or chip bonding process is required, and the process is complicated and the quality due to axial misalignment There is a problem that the reduction easily occurs, the yield decreases, the cost increases, and foreign matters are likely to be mixed.
 また、シート状あるいはロール状フィルムの斜め方向に遅相軸を有するポリマーフィルムは製造が非常に困難であるという問題があった。 Also, there is a problem that a polymer film having a slow axis in an oblique direction of a sheet-like or roll-like film is very difficult to produce.
 また、ポリマーフィルムは温湿度の変化に伴って位相差が変化し、所望の性能が得られなくなる場合があるという問題があった。 Also, the polymer film has a problem that the phase difference changes with changes in temperature and humidity, and the desired performance may not be obtained.
 かかる問題を解決するために、ロール状フィルムにディスコティック液晶化合物や棒状液晶化合物を含有する塗布液を塗布し、所定の方向に配向させることで光学異方性を発現させ、ロール状フィルムに対して平行でも直交でもない角度に遅相軸を有す位相差板が提案されている(特許文献8、9)。また、ディスコティック液晶分子の円盤面がフィルム面に対して実質的に垂直になるように配向固定化された位相差板が開示されている(特許文献10、11、12、13、14)。 In order to solve such a problem, a coating liquid containing a discotic liquid crystal compound or a rod-shaped liquid crystal compound is applied to a roll-shaped film, and optical anisotropy is expressed by orienting in a predetermined direction. A phase difference plate having a slow axis at an angle that is neither parallel nor orthogonal is proposed (Patent Documents 8 and 9). In addition, there is disclosed a retardation plate whose orientation is fixed so that the disc surface of discotic liquid crystal molecules is substantially perpendicular to the film surface (Patent Documents 10, 11, 12, 13, and 14).
 しかしながら、前述の特許文献に従って作成される円偏光板では、斜め方向から観察したときの反射を十分に低減することができず、視野角特性が悪くなる場合があるという問題があった。  However, the circularly polarizing plate prepared in accordance with the above-mentioned patent document has a problem in that reflection when observed from an oblique direction cannot be sufficiently reduced, and viewing angle characteristics may be deteriorated.
 本発明は上記課題を解決するためになされたものであり、その目的とするところは、視野角特性に優れた有機EL表示装置を、高い生産性で提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an organic EL display device having excellent viewing angle characteristics with high productivity.
[1]少なくとも偏光子層と、λ/2板と、λ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記λ/4板の550nmにおける面内レターデーションRe2(550)が
    115≦Re2(550)≦155
を満たし、かつ前記λ/2板の550nmにおける面内レターデーションRe1(550)が
    Re1(550)=2×Re2(550)±50nm
を満たす有機EL表示装置。
[2]前記偏光子層の吸収軸方向と前記λ/2板の遅相軸方向とのなす角が
    -30°×Rth1(550)/|Rth1(550)|+45°±8°
の範囲であり、かつ前記偏光子層の吸収軸方向と前記λ/4板の遅相軸方向とのなす角が
    30°×Rth1(550)/|Rth1(550)|+45°±8°
の範囲である[1]の有機EL表示装置。ただし、Rth1(550)は前記λ/2板の波長550nmにおける厚さ方向のレターデーションである。
[3]前記λ/2板、及び前記λ/4板の少なくとも一方がディスコティック液晶化合物、又は棒状液晶化合物のいずれかを含む層である[2]の有機EL表示装置。
[4]前記偏光子層から前記λ/2板までの間の層であって、前記λ/2板を含み前記偏光子層を含まない全ての層の波長550nmにおけるRthの総和が-150nm~150nmであり、かつ、前記λ/2板から前記λ/4板までの間の層であって、前記λ/4板を含み前記λ/2板を含まない全ての層の波長550nmにおけるRthの総和が-120nm~120nmである[3]の有機EL表示装置。
[5]少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる第2の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-30nm~150nmであり、前記第2の透明支持体層の波長550nmにおけるRthが0nm~200nmである[4]の有機EL表示装置。
[1] An organic EL display device including at least a polarizer layer, a λ / 2 plate, a λ / 4 plate, and an organic EL panel in this order, and an in-plane retardation Re2 at 550 nm of the λ / 4 plate (550) is 115 ≦ Re2 (550) ≦ 155
And the in-plane retardation Re1 (550) at 550 nm of the λ / 2 plate is Re1 (550) = 2 × Re2 (550) ± 50 nm
An organic EL display device satisfying the requirements.
[2] The angle formed by the absorption axis direction of the polarizer layer and the slow axis direction of the λ / 2 plate is −30 ° × Rth1 (550) / | Rth1 (550) | + 45 ° ± 8 °
And the angle formed by the absorption axis direction of the polarizer layer and the slow axis direction of the λ / 4 plate is 30 ° × Rth1 (550) / | Rth1 (550) | + 45 ° ± 8 °
The organic EL display device according to [1], which is a range of [1]. However, Rth1 (550) is retardation in the thickness direction at a wavelength of 550 nm of the λ / 2 plate.
[3] The organic EL display device according to [2], wherein at least one of the λ / 2 plate and the λ / 4 plate is a layer containing either a discotic liquid crystal compound or a rod-like liquid crystal compound.
[4] The sum of Rth at a wavelength of 550 nm of all the layers between the polarizer layer and the λ / 2 plate, including the λ / 2 plate but not the polarizer layer, is −150 nm to Rth of all the layers that are 150 nm and between the λ / 2 plate and the λ / 4 plate, including the λ / 4 plate but not the λ / 2 plate, at a wavelength of 550 nm [3] The organic EL display device according to [3], which has a total sum of −120 nm to 120 nm.
[5] At least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, and a second transparent support layer composed of one or more layers And a λ / 4 plate composed of a layer containing a discotic liquid crystal compound, and an organic EL panel in this order, wherein the first transparent support layer has an Rth of −30 nm to 550 nm at a wavelength of 550 nm [4] The organic EL display device according to [4], wherein the second transparent support layer has an Rth of 0 nm to 200 nm at a wavelength of 550 nm.
[6]少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-10nm~140nmである[4]の有機EL表示装置。
[7]少なくとも偏光子層と、1層以上からなる透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-30nm~30nmである[4]の有機EL表示装置。
[8]少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-10nm~100nmである[4]の有機EL表示装置。
[9]少なくとも偏光子層と、1層以上からなる透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える光学積層体であって、前記透明支持体層の波長550nmにおけるRthが-50nm~150nmである[4]の有機EL表示装置。
[10]少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える光学積層体であって、前記透明支持体層の波長550nmにおけるRthが-90nm~50nmである[4]の有機EL表示装置。
[6] A λ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a transparent support layer comprising one or more layers, and a λ / 4 plate comprising a layer containing a discotic liquid crystal compound, An organic EL display device comprising an organic EL panel in this order, wherein the Rth of the transparent support layer at a wavelength of 550 nm is -10 nm to 140 nm.
[7] At least a polarizer layer, a transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, and a λ / 4 plate composed of a layer containing a discotic liquid crystal compound, An organic EL display device comprising an organic EL panel in this order, wherein the Rth of the transparent support layer at a wavelength of 550 nm is −30 nm to 30 nm.
[8] A λ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a λ / 4 plate comprising a layer containing a discotic liquid crystal compound, and a transparent support layer comprising one or more layers, An organic EL display device comprising an organic EL panel in this order, wherein the transparent support layer has an Rth of -10 nm to 100 nm at a wavelength of 550 nm [4].
[9] At least a polarizer layer, a transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, a λ / 4 plate composed of a layer containing a rod-like liquid crystal compound, and organic [4] The organic EL display device according to [4], which is an optical laminate comprising an EL panel in this order, wherein Rth of the transparent support layer at a wavelength of 550 nm is −50 nm to 150 nm.
[10] A λ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a transparent support layer comprising one or more layers, a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, and organic [4] The organic EL display device according to [4], which is an optical laminate comprising an EL panel in this order, wherein Rth of the transparent support layer at a wavelength of 550 nm is −90 nm to 50 nm.
[11]少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-110nm~40nmである[4]の有機EL表示装置。
[12]少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる第2の透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-40nm~140nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-70nm~70nmである[4]の有機EL表示装置。
[13]少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-50nm~130nmであり、前記第2の透明支持体層の波長550nmにおけるRthが0nm~100nmである[4]の有機EL表示装置。
[14]少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-40nm~140nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-100nm~40nmである[4]の有機EL表示装置。
[15]少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-40nm~150nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-50nm~100nmである[4]の有機EL表示装置。
[11] A λ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, a transparent support layer comprising one or more layers, and an organic An organic EL display device comprising an EL panel in this order, wherein the Rth of the transparent support layer at a wavelength of 550 nm is −110 nm to 40 nm.
[12] At least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, and a second transparent support layer composed of one or more layers And a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, and an organic EL panel in this order, wherein the Rth of the first transparent support layer at a wavelength of 550 nm is −40 nm to 140 nm. The organic EL display device according to [4], wherein Rth of the second transparent support layer at a wavelength of 550 nm is −70 nm to 70 nm.
[13] At least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, and λ / 4 composed of a layer containing a discotic liquid crystal compound. An organic EL display device comprising a plate, a second transparent support layer composed of one or more layers, and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is from −50 nm [4] The organic EL display device according to [4], wherein the second transparent support layer has an Rth of 0 nm to 100 nm at a wavelength of 550 nm.
[14] At least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, and a λ / 4 plate composed of a layer containing a rod-like liquid crystal compound An organic EL display device comprising, in this order, a second transparent support layer composed of one or more layers, and an organic EL panel, wherein Rth at a wavelength of 550 nm of the first transparent support layer is −40 nm to 140 nm The organic EL display device according to [4], wherein Rth of the second transparent support layer at a wavelength of 550 nm is −100 nm to 40 nm.
[15] A λ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a first transparent support layer comprising one or more layers, and a λ / 4 comprising a layer containing a discotic liquid crystal compound. An organic EL display device comprising a plate, a second transparent support layer composed of one or more layers, and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is −40 nm to [4] The organic EL display device according to [4], wherein the second transparent support layer has an Rth of -50 nm to 100 nm at a wavelength of 550 nm.
[16]少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-70nm~100nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-110nm~40nmである[4]の有機EL表示装置。
[17]少なくとも偏光子層と、1層以上からなる透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-150nm~50nmである[4]の有機EL表示装置。
[18]少なくとも偏光子層と、1層以上からなる透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-30nm~30nmである[4]の有機EL表示装置。
[19]少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-50nm~90nmである[4]の有機EL表示装置。
[20]少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-140nm~10nmである[4]の有機EL表示装置。
[16] A λ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a first transparent support layer comprising at least one layer, and a layer comprising a rod-like liquid crystal compound An organic EL display device comprising, in this order, a second transparent support layer composed of one or more layers, and an organic EL panel, wherein Rth at a wavelength of 550 nm of the first transparent support layer is −70 nm to 100 nm. The organic EL display device according to [4], wherein Rth of the second transparent support layer at a wavelength of 550 nm is −110 nm to 40 nm.
[17] At least a polarizer layer, a transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a rod-like liquid crystal compound, a λ / 4 plate composed of a layer containing a discotic liquid crystal compound, and organic An organic EL display device comprising an EL panel in this order, wherein the Rth of the transparent support layer at a wavelength of 550 nm is −150 nm to 50 nm.
[18] At least a polarizer layer, a transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a rod-like liquid crystal compound, a λ / 4 plate composed of a layer containing a rod-like liquid crystal compound, and an organic EL The organic EL display device according to [4], wherein the transparent support layer has an Rth of −30 nm to 30 nm at a wavelength of 550 nm.
[19] A λ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a transparent support layer comprising one or more layers, a λ / 4 plate comprising a layer containing a discotic liquid crystal compound, and organic An organic EL display device comprising an EL panel in this order, wherein the Rth of the transparent support layer at a wavelength of 550 nm is -50 nm to 90 nm.
[20] A λ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a transparent support layer comprising one or more layers, a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, and an organic EL The organic EL display device according to [4], wherein the transparent support layer has an Rth of −140 nm to 10 nm at a wavelength of 550 nm.
[21]少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-50nm~110nmである[4]の有機EL表示装置。
[22]少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-100nm~10nmである[4]の有機EL表示装置。
[23]少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる第2の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-140nm~40nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-70nm~70nmである[4]の有機EL表示装置。
[24]少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる第2の透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-150nm~40nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-200nm~0nmである[4]の有機EL表示装置。
[25]少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-140nm~40nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-40nm~100nmである[4]の有機EL表示装置。
[21] A λ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a λ / 4 plate comprising a layer containing a discotic liquid crystal compound, a transparent support layer comprising one or more layers, an organic An organic EL display device comprising an EL panel in this order, wherein the Rth of the transparent support layer at a wavelength of 550 nm is −50 nm to 110 nm.
[22] A λ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, a transparent support layer comprising one or more layers, and an organic EL The organic EL display device according to [4], wherein the transparent support layer has an Rth of -100 nm to 10 nm at a wavelength of 550 nm.
[23] At least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a rod-like liquid crystal compound, and a second transparent support layer composed of one or more layers An organic EL display device comprising a λ / 4 plate composed of a layer containing a discotic liquid crystal compound and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is −140 nm to 40 nm. The organic EL display device according to [4], wherein Rth of the second transparent support layer at a wavelength of 550 nm is −70 nm to 70 nm.
[24] At least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a rod-like liquid crystal compound, and a second transparent support layer composed of one or more layers An organic EL display device comprising a λ / 4 plate composed of a layer containing a rod-like liquid crystal compound and an organic EL panel in this order, wherein the Rth of the first transparent support layer at a wavelength of 550 nm is −150 nm to 40 nm. The organic EL display device according to [4], wherein the second transparent support layer has an Rth of −200 nm to 0 nm at a wavelength of 550 nm.
[25] A λ / 4 plate comprising at least a polarizer layer, a first transparent support layer comprising one or more layers, a λ / 2 plate comprising a rod-like liquid crystal compound layer, and a layer comprising a discotic liquid crystal compound And an organic EL display device comprising, in this order, a second transparent support layer composed of one or more layers, and an organic EL panel, wherein Rth at a wavelength of 550 nm of the first transparent support layer is −140 nm to 40 nm. [4] The organic EL display device according to [4], wherein Rth of the second transparent support layer at a wavelength of 550 nm is −40 nm to 100 nm.
[26]少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-120nm~40nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-100nm~0nmである[4]の有機EL表示装置。
[27]少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-100nm~80nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-40nm~100nmである[4]の有機EL表示装置。
[28]少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-150nm~40nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-100nm~50nmである[4]の有機EL表示装置。
[29]前記偏光子層と前記有機ELパネルとの間に少なくとも1層のセルロースアシレート層を含む[1]~[28]のいずれかの有機EL表示装置。
[26] At least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a rod-like liquid crystal compound, and a λ / 4 plate composed of a layer containing a rod-like liquid crystal compound; An organic EL display device comprising a second transparent support layer composed of one or more layers and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is −120 nm to 40 nm The organic EL display device according to [4], wherein the second transparent support layer has an Rth of -100 nm to 0 nm at a wavelength of 550 nm.
[27] A λ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a first transparent support layer comprising one or more layers, and a λ / 4 plate comprising a layer containing a discotic liquid crystal compound An organic EL display device comprising, in this order, a second transparent support layer composed of one or more layers, and an organic EL panel, wherein Rth at a wavelength of 550 nm of the first transparent support layer is from −100 nm to 80 nm [4] The organic EL display device according to [4], wherein Rth of the second transparent support layer at a wavelength of 550 nm is −40 nm to 100 nm.
[28] A λ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a first transparent support layer comprising one or more layers, and a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound; An organic EL display device comprising a second transparent support layer composed of one or more layers and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is −150 nm to 40 nm The organic EL display device according to [4], wherein the second transparent support layer has an Rth of -100 nm to 50 nm at a wavelength of 550 nm.
[29] The organic EL display device according to any one of [1] to [28], comprising at least one cellulose acylate layer between the polarizer layer and the organic EL panel.
 なお、本明細書において「A~B」という記載は「A以上B以下」の意味を表す。また、有機ELとは、有機エレクトロルミネッセンスを意味する。
 また、本明細書において「遅相軸」とは、面内において屈折率が最大となる方向を意味し、更に屈折率の測定波長は、特別な記述がない限り、可視光域(λ=550nm)での値である。
In the present specification, the description “A to B” means “A to B”. Moreover, organic EL means organic electroluminescence.
In the present specification, the “slow axis” means a direction in which the refractive index is maximum in the plane, and the measurement wavelength of the refractive index is a visible light region (λ = 550 nm) unless otherwise specified. ).
 本発明によれば、有機EL素子の内部反射による反射像の映り込みを、正面方向においても斜め方向においても十分に低減し、表示性能、生産性、及び耐久性に優れた有機EL表示装置を提供することができる。 According to the present invention, the reflection of the reflected image due to the internal reflection of the organic EL element is sufficiently reduced both in the front direction and in the oblique direction, and an organic EL display device excellent in display performance, productivity, and durability is provided. Can be provided.
は有機EL表示装置の模式図である。FIG. 2 is a schematic diagram of an organic EL display device.
 以下に本発明を詳細に説明する。
 なお、本実施形態の説明において「偏光板」とは、特別な記述がない限り、長尺の偏光板、及び表示装置に組み込まれる大きさに裁断された偏光板の両者を含む意味で用いている。なお、ここでいう「裁断」には「打ち抜き」及び「切り出し」等も含むものとする。また、本実施形態の説明では、「偏光膜」と「偏光板」とを区別して用いるが、「偏光板」は「偏光膜」の少なくとも片面に該偏光膜を保護する透明保護膜を有する積層体のことを意味するものとする。
The present invention is described in detail below.
In the description of this embodiment, the term “polarizing plate” is used to include both a long polarizing plate and a polarizing plate cut into a size incorporated in a display device unless otherwise specified. Yes. Here, “cutting” includes “punching” and “cutting out”. In the description of the present embodiment, “polarizing film” and “polarizing plate” are distinguished from each other. However, “polarizing plate” is a laminate having a transparent protective film that protects the polarizing film on at least one surface of the “polarizing film”. It shall mean the body.
 また、本明細書において、Re(λ)、Rth(λ)は、各々、波長λにおける面内のレターデーション、及び厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADH、又はWR(王子計測機器(株)製)において、波長λnmの光をフィルム法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルターをマニュアルで交換するか、又は測定値をプログラム等で変換して測定することができる。測定されるフィルムが、1軸又は2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)が算出される。
 Rth(λ)は、前記Re(λ)を、面内の遅相軸(KOBRA 21ADH、又はWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50°まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADH、又はWRが算出する。なお、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値、及び入力された膜厚値を基に、以下の式(A)、及び式(III)よりRthを算出することもできる。
In this specification, Re (λ) and Rth (λ) represent in-plane retardation and retardation in the thickness direction at the wavelength λ, respectively. Re (λ) is measured with KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.) by making light having a wavelength of λ nm incident in the normal direction of the film. In selecting the measurement wavelength λnm, the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like. When the film to be measured is represented by a uniaxial or biaxial refractive index ellipsoid, Rth (λ) is calculated by the following method.
Rth (λ) is the film surface when Re (λ) is used and the in-plane slow axis (determined by KOBRA 21ADH or WR) is the tilt axis (rotation axis) (if there is no slow axis) Measurement is performed at a total of 6 points by injecting light of wavelength λ nm from each inclined direction in steps of 10 degrees from the normal direction to 50 ° on one side with respect to the film normal direction (with any rotation direction as the rotation axis). Then, KOBRA 21ADH or WR is calculated based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value. In the above case, in the case of a film having a direction in which the retardation value is zero at a certain tilt angle with the in-plane slow axis from the normal direction as the rotation axis, retardation at a tilt angle larger than the tilt angle. The value is calculated by KOBRA 21ADH or WR after changing its sign to negative. The retardation value is measured from two inclined directions with the slow axis as the tilt axis (rotation axis) (if there is no slow axis, the arbitrary direction in the film plane is the rotation axis). Rth can also be calculated from the following formula (A) and formula (III) based on the value, the assumed value of the average refractive index, and the input film thickness value.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
・・・・・・式(A)
 なお、上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値を表す。また、式(A)におけるnxは、面内における遅相軸方向の屈折率を表し、nyは、面内においてnxに直交する方向の屈折率を表し、nzは、nx及びnyに直交する方向の屈折率を表す。dは膜厚を表す。
 Rth=((nx+ny)/2-nz)×d・・・・・式(III)
・ ・ ・ ・ ・ ・ Formula (A)
Note that Re (θ) represents a retardation value in a direction inclined by an angle θ from the normal direction. In the formula (A), nx represents the refractive index in the slow axis direction in the plane, ny represents the refractive index in the direction orthogonal to nx in the plane, and nz is the direction orthogonal to nx and ny. Represents the refractive index. d represents a film thickness.
Rth = ((nx + ny) / 2−nz) × d (formula (III))
 測定されるフィルムが、1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法により、Rth(λ)は算出される。Rth(λ)は、前記Re(λ)を、面内の遅相軸(KOBRA 21ADH、又はWRにより判断される)を傾斜軸(回転軸)として、フィルム法線方向に対して-50°から+50°まで10°ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。また、上記の測定において、平均屈折率の仮定値は、ポリマーハンドブック(JOHN WILEY&SONS、INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについては、アッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADH又はWRはnx、ny、nzを算出する。この算出されたnx,ny,nzよりNz=(nx-nz)/(nx-ny)が更に算出される。 When the film to be measured is a film that cannot be expressed by a uniaxial or biaxial refractive index ellipsoid, that is, a film having no so-called optical axis, Rth (λ) is calculated by the following method. Rth (λ) is from −50 ° to the normal direction of the film, with Re (λ) being an in-plane slow axis (determined by KOBRA 21ADH or WR) as an inclination axis (rotation axis). Measured at 11 points by making light of wavelength λ nm incident in 10 ° steps up to + 50 °, and based on the measured retardation value, average refractive index assumption value and input film thickness value. Calculated by KOBRA 21ADH or WR. Moreover, in said measurement, the value of the catalog of a polymer handbook (John WILEY & SONS, INC) and various optical films can be used for the assumed value of average refractive index. If the average refractive index is not known, it can be measured with an Abbe refractometer. The average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59). By inputting these assumed values of average refractive index and film thickness, KOBRA 21ADH or WR calculates nx, ny, and nz. Nz = (nx−nz) / (nx−ny) is further calculated from the calculated nx, ny, and nz.
 以下、本発明の有機EL表示装置の作製に利用される種々の材料、及び製造方法等を詳細に説明する。なお、本明細書中、光学フィルムは光学異方性層と同義である。 Hereinafter, various materials and manufacturing methods used for manufacturing the organic EL display device of the present invention will be described in detail. In addition, in this specification, an optical film is synonymous with an optically anisotropic layer.
[光学異方性層]
 以下、λ/2板及びλ/4板を含め、本発明で用いることのできる光学異方性層について説明する。
[Optically anisotropic layer]
Hereinafter, the optically anisotropic layer that can be used in the present invention including the λ / 2 plate and the λ / 4 plate will be described.
 本発明に使用されるλ/4板は、支持体自身で目的のλ/4機能を有する光学異方性支持体であってもよいし、ポリマーフィルムからなる支持体上に光学異方性層等を有していてもよい。すなわち、後者の場合、支持体上に他の層を積層させることで所望のλ/4機能を持たせる。光学異方性層の構成材料については特に制限されず、液晶性化合物を含有する組成物から形成され、該液晶性化合物の分子の配向によって発現された光学異方性を示す層であっても、ポリマーフィルムを延伸してフィルム中の高分子を配向させて発現させた光学異方性を有する層であっても、双方の層を有していてもよい。すなわち、1枚又は2枚以上の二軸性フィルムによって構成することができるし、またCプレートとAプレートとの組合せ等、一軸性フィルムを2枚以上組合せることでも構成することができる。勿論、1枚以上の二軸性フィルムと、1枚以上の一軸性フィルムとを組み合わせることによっても構成することもできる。
 ここで、「λ/4板」とは、特定の波長λnmにおける面内レターデーションRe(λ)が
  Re(λ)=λ/4
を満たす光学異方性層のことをいう。上式は可視光域のいずれかの波長(例えば、550nm)において達成されていれば良いが、波長550nmにおける面内レターデーションRe(550)が
  115nm≦Re(550)≦155nm
であることが好ましく、120nm~145nmであることがより好ましい。この範囲であると、後述するλ/2板と組み合わせたときに、反射光の光漏れを視認されない程度まで低減できるため好ましい。
The λ / 4 plate used in the present invention may be an optically anisotropic support having the desired λ / 4 function by itself, or an optically anisotropic layer on a support made of a polymer film. Etc. may be included. That is, in the latter case, a desired λ / 4 function is provided by laminating another layer on the support. The constituent material of the optically anisotropic layer is not particularly limited, and may be a layer formed from a composition containing a liquid crystalline compound and exhibiting optical anisotropy expressed by molecular orientation of the liquid crystalline compound. The polymer film may be a layer having optical anisotropy developed by orienting a polymer in the film and may have both layers. That is, it can be constituted by one or two or more biaxial films, or can be constituted by combining two or more uniaxial films such as a combination of a C plate and an A plate. Of course, it can also be configured by combining one or more biaxial films and one or more uniaxial films.
Here, “λ / 4 plate” means that in-plane retardation Re (λ) at a specific wavelength λnm is Re (λ) = λ / 4.
An optically anisotropic layer satisfying the above. The above equation may be achieved at any wavelength in the visible light range (for example, 550 nm), but the in-plane retardation Re (550) at a wavelength of 550 nm is 115 nm ≦ Re (550) ≦ 155 nm.
The thickness is preferably 120 nm to 145 nm. Within this range, it is preferable because the leakage of reflected light can be reduced to an invisible level when combined with a λ / 2 plate described later.
 本発明に使用されるλ/2板は、支持体自身で目的のλ/2機能を有する光学異方性支持体であってもよいし、ポリマーフィルムからなる支持体上に光学異方性層等を有していてもよい。すなわち、後者の場合、支持体上に他の層を積層させることで所望のλ/2機能を持たせる。光学異方性層の構成材料については特に制限されず、液晶性化合物を含有する組成物から形成され、該液晶性化合物の分子の配向によって発現された光学異方性を示す層であっても、ポリマーフィルムを延伸してフィルム中の高分子を配向させて発現させた光学異方性を有する層であっても、双方の層を有していてもよい。すなわち、1枚又は2枚以上の二軸性フィルムによって構成することができるし、またCプレートとAプレートとの組合せ等、一軸性フィルムを2枚以上組合せることでも構成することができる。勿論、1枚以上の二軸性フィルムと、1枚以上の一軸性フィルムとを組み合わせることによっても構成することもできる。
 ここで、「λ/2板」とは、特定の波長λnmにおける面内レターデーションRe(λ)が
  Re(λ)=λ/2
を満たす光学異方性層のことをいう。上式は可視光域のいずれかの波長(例えば、550nm)において達成されていれば良い。更に、本発明ではλ/2板の面内レターデーションRe1がλ/4板の面内レターデーションRe2に対し実質的に2倍であるように設定される。ここで、「レターデーションが実質的に2倍である」とは、
  Re1=2×Re2±50nm
であることを意味する。ただし、
  Re1=2×Re2±20nm
であることがより好ましく、
  Re1=2×Re2±10nm
であることが更に好ましい。上式は可視光域のいずれかの波長において達成されていれば良いが、波長550nmにおいて達成されていることが好ましい。この範囲であると、前記したλ/4板と組み合わせたときに、反射光の光漏れを視認されない程度まで低減できるため好ましい。
The λ / 2 plate used in the present invention may be an optically anisotropic support having the desired λ / 2 function by itself, or an optically anisotropic layer on a support made of a polymer film. Etc. may be included. That is, in the latter case, a desired λ / 2 function is provided by laminating another layer on the support. The constituent material of the optically anisotropic layer is not particularly limited, and may be a layer formed from a composition containing a liquid crystalline compound and exhibiting optical anisotropy expressed by molecular orientation of the liquid crystalline compound. The polymer film may be a layer having optical anisotropy developed by orienting a polymer in the film and may have both layers. That is, it can be constituted by one or two or more biaxial films, or can be constituted by combining two or more uniaxial films such as a combination of a C plate and an A plate. Of course, it can also be configured by combining one or more biaxial films and one or more uniaxial films.
Here, “λ / 2 plate” means that the in-plane retardation Re (λ) at a specific wavelength λnm is Re (λ) = λ / 2.
An optically anisotropic layer satisfying the above. The above equation may be achieved at any wavelength in the visible light range (for example, 550 nm). Further, in the present invention, the in-plane retardation Re1 of the λ / 2 plate is set to be substantially twice the in-plane retardation Re2 of the λ / 4 plate. Here, “Retardation is substantially doubled”
Re1 = 2 × Re2 ± 50 nm
It means that. However,
Re1 = 2 × Re2 ± 20 nm
More preferably,
Re1 = 2 × Re2 ± 10 nm
More preferably. The above equation may be achieved at any wavelength in the visible light range, but is preferably achieved at a wavelength of 550 nm. This range is preferable because it can reduce the leakage of reflected light to a level where it is not visually recognized when combined with the λ / 4 plate.
 また、前記λ/2板の波長550nmにおけるRthが負である場合には、該λ/2板の遅相軸方向と前記偏光子層の吸収軸方向とのなす角が75°±8°の範囲であることが好ましく、75°±6°の範囲であることがより好ましく、75°±3°の範囲であることが更に好ましい。更にこのとき、前記λ/4板の遅相軸方向と前記偏光子層の吸収軸方向とのなす角が15°±8°の範囲であることが好ましく、15°±6°の範囲であることがより好ましく、15°±3°の範囲であることが更に好ましい。上記の範囲であると、反射光の光漏れを視認されない程度まで低減できるため好ましい。 When Rth at a wavelength of 550 nm of the λ / 2 plate is negative, the angle formed by the slow axis direction of the λ / 2 plate and the absorption axis direction of the polarizer layer is 75 ° ± 8 °. The range is preferably 75 ° ± 6 °, more preferably 75 ° ± 3 °. Further, at this time, the angle formed by the slow axis direction of the λ / 4 plate and the absorption axis direction of the polarizer layer is preferably in the range of 15 ° ± 8 °, and is in the range of 15 ° ± 6 °. More preferably, the range is 15 ° ± 3 °. The above range is preferable because light leakage of reflected light can be reduced to a level where it is not visually recognized.
 また、前記λ/2板の波長550nmにおけるRthが正である場合には、該λ/2板の遅相軸方向と前記偏光子層の吸収軸方向とのなす角が15°±8°の範囲であることが好ましく、15°±6°の範囲であることがより好ましく、15°±3°の範囲であることが更に好ましい。更にこのとき、前記λ/4板の遅相軸方向と前記偏光子層の吸収軸方向とのなす角が75°±8°の範囲であることが好ましく、75°±6°の範囲であることがより好ましく、75°±3°の範囲であることが更に好ましい。上記の範囲であると、反射光の光漏れを視認されない程度まで低減できるため好ましい。 When Rth at a wavelength of 550 nm of the λ / 2 plate is positive, the angle formed by the slow axis direction of the λ / 2 plate and the absorption axis direction of the polarizer layer is 15 ° ± 8 °. The range is preferably 15 ° ± 6 °, more preferably 15 ° ± 3 °. Further, at this time, an angle formed between the slow axis direction of the λ / 4 plate and the absorption axis direction of the polarizer layer is preferably in the range of 75 ° ± 8 °, and is in the range of 75 ° ± 6 °. More preferably, the range is 75 ° ± 3 °. The above range is preferable because light leakage of reflected light can be reduced to a level where it is not visually recognized.
 本発明に使用される光学異方性支持体の材料について特に制限はない。種々のポリマーフィルム、例えば、セルロースアシレート、ポリカーボネート系ポリマー、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー等を利用することができる。また、ポリエチレン、ポリプロピレン等のポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、塩化ビニリデン系ポリマー、ビニルアルコール系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、又は前記ポリマーを混合したポリマー等から1種又は2種以上のポリマーを選択し、主成分として用いてポリマーフィルムを作製し、上記特性を満足する組合せで、光学フィルムの作製に利用することができる。 The material for the optically anisotropic support used in the present invention is not particularly limited. Various polymer films such as cellulose acylate, polycarbonate polymer, polyester polymer such as polyethylene terephthalate and polyethylene naphthalate, acrylic polymer such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymer (AS resin), etc. Styrene polymers and the like can be used. Polyolefins such as polyethylene and polypropylene, polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers, polyethersulfone polymers , Polyether ether ketone polymer, polyphenylene sulfide polymer, vinylidene chloride polymer, vinyl alcohol polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or polymer mixed with the above-mentioned polymers One or more polymers can be selected from the above and used as the main component to produce a polymer film, which can be used for the production of optical films in a combination that satisfies the above characteristics. That.
 λ/2板及びλ/4板がポリマーフィルム(透明支持体)と光学異方性層との積層体である場合、光学異方性層は、液晶性化合物を含有する組成物から形成された層を少なくとも一層含んでいることが好ましい。即ち、ポリマーフィルム(透明支持体)と液晶性化合物を含有する組成物から形成された光学異方性層との積層体であることが好ましい。透明支持体には光学異方性が小さいポリマーフィルムを用いてもよいし、延伸処理などにより光学異方性を発現させたポリマーフィルムを用いてもよい。支持体は光透過率が80%以上であることが好ましい。 When the λ / 2 plate and the λ / 4 plate are a laminate of a polymer film (transparent support) and an optically anisotropic layer, the optically anisotropic layer was formed from a composition containing a liquid crystalline compound. It is preferable that at least one layer is included. That is, it is preferably a laminate of a polymer film (transparent support) and an optically anisotropic layer formed from a composition containing a liquid crystal compound. For the transparent support, a polymer film having a small optical anisotropy may be used, or a polymer film exhibiting an optical anisotropy by stretching or the like may be used. The support preferably has a light transmittance of 80% or more.
[液晶性化合物を含む光学異方性層]
 前記λ/2板及びλ/4板が有してもよい光学異方性層の形成に用いられる液晶性化合物の種類については特に制限されない。例えば、低分子液晶性化合物を液晶状態においてネマチック配向に形成後、光架橋や熱架橋によって固定化して得られる光学異方性層や、高分子液晶性化合物を液晶状態においてネマチック配向に形成後、冷却することによって当該配向を固定化して得られる光学異方性層を用いることもできる。なお本発明では、光学異方性層に液晶性化合物が用いられる場合であっても、光学異方性層は、該液晶性化合物が重合等によって固定されて形成された層であり、層となった後はもはや液晶性を示す必要はない。重合性液晶性化合物は、多官能性重合性液晶でもよいし、単官能性重合性液晶性化合物でもよい。また、液晶性化合物は、ディスコティック液晶性化合物でもよいし、棒状液晶性化合物でもよい。
[Optically Anisotropic Layer Containing Liquid Crystalline Compound]
The type of liquid crystalline compound used for forming the optically anisotropic layer that the λ / 2 plate and the λ / 4 plate may have is not particularly limited. For example, after forming a low molecular liquid crystalline compound in a nematic alignment in a liquid crystal state, an optically anisotropic layer obtained by fixing by photocrosslinking or thermal crosslinking, or after forming a polymer liquid crystalline compound in a nematic alignment in a liquid crystal state, An optically anisotropic layer obtained by fixing the orientation by cooling can also be used. In the present invention, even when a liquid crystalline compound is used for the optically anisotropic layer, the optically anisotropic layer is a layer formed by fixing the liquid crystalline compound by polymerization or the like. After that, it is no longer necessary to show liquid crystallinity. The polymerizable liquid crystal compound may be a polyfunctional polymerizable liquid crystal or a monofunctional polymerizable liquid crystal compound. The liquid crystalline compound may be a discotic liquid crystalline compound or a rod-like liquid crystalline compound.
一般的に、液晶化合物はその形状から、棒状タイプと円盤状タイプに分類できる。更にそれぞれ低分子と高分子タイプがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。本発明では、いずれの液晶化合物を用いることもできるが、棒状液晶化合物又は円盤状液晶化合物を用いるのが好ましい。2種以上の棒状液晶化合物、2種以上の円盤状液晶化合物、又は棒状液晶化合物と円盤状液晶化合物との混合物を用いてもよい。温度変化や湿度変化を小さくできることから、反応性基を有する棒状液晶化合物又は円盤状液晶化合物を用いて形成することがより好ましく、少なくとも1つは1液晶分子中の反応性基が2以上あることが更に好ましい。液晶化合物は二種類以上の混合物でもよく、その場合少なくとも1つが2以上の反応性基を有していることが好ましい。
 棒状液晶化合物としては、例えば、特表平11-513019や特開2007-279688号に記載のものを好ましく用いることができ、ディスコティック液晶化合物としては、例えば、特開2007-108732号や特開2010-244038号に記載のものを好ましく用いることができるが、これらに限定されない。
In general, liquid crystal compounds can be classified into a rod type and a disk type from the shape. In addition, there are low and high molecular types, respectively. Polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992). In the present invention, any liquid crystal compound can be used, but a rod-like liquid crystal compound or a disk-like liquid crystal compound is preferably used. Two or more kinds of rod-like liquid crystal compounds, two or more kinds of disk-like liquid crystal compounds, or a mixture of a rod-like liquid crystal compound and a disk-like liquid crystal compound may be used. It is more preferable to use a rod-like liquid crystal compound or a disk-like liquid crystal compound having a reactive group, since at least one of the reactive groups in one liquid crystal molecule is at least one, because temperature change and humidity change can be reduced. Is more preferable. The liquid crystal compound may be a mixture of two or more types, and in that case, at least one preferably has two or more reactive groups.
As the rod-like liquid crystal compound, for example, those described in JP-A-11-513019 and JP-A-2007-279688 can be preferably used. Examples of the discotic liquid crystal compound include JP-A-2007-108732 and JP-A-2007-108732. Although what is described in 2010-244038 can be used preferably, it is not limited to these.
 前記光学異方性層において、液晶化合物の分子は、垂直配向、水平配向、ハイブリッド配向及び傾斜配向のいずれかの配向状態に固定化されていることが好ましい。視野角依存性が対称である位相差板を作製するためには、ディスコティック液晶性化合物の円盤面がフィルム面(光学異方性層面)に対して実質的に垂直であるか、又は、棒状液晶性化合物の長軸がフィルム面(光学異方性層面)に対して実質的に水平であることが好ましい。ディスコティック液晶性化合物が実質的に垂直とは、フィルム面(光学異方性層面)とディスコティック液晶性化合物の円盤面とのなす角度の平均値が70°~90°の範囲内であることを意味する。80°~90°がより好ましく、85°~90°が更に好ましい。棒状液晶性化合物が実質的に水平とは、フィルム面(光学異方性層面)と棒状液晶性化合物のダイレクターとのなす角度が0°~20°の範囲内であることを意味する。0°~10°がより好ましく、0°~5°が更に好ましい。 In the optically anisotropic layer, it is preferable that the molecules of the liquid crystal compound are fixed in any alignment state of vertical alignment, horizontal alignment, hybrid alignment, and tilt alignment. In order to produce a retardation plate having a symmetric viewing angle dependency, the disc surface of the discotic liquid crystalline compound is substantially perpendicular to the film surface (optically anisotropic layer surface), or a rod shape It is preferable that the major axis of the liquid crystal compound is substantially horizontal with respect to the film surface (optically anisotropic layer surface). The term “substantially perpendicular to the discotic liquid crystalline compound” means that the average angle between the film surface (optically anisotropic layer surface) and the disc surface of the discotic liquid crystalline compound is in the range of 70 ° to 90 °. Means. 80 ° to 90 ° is more preferable, and 85 ° to 90 ° is still more preferable. That the rod-like liquid crystalline compound is substantially horizontal means that the angle formed by the film surface (optically anisotropic layer surface) and the director of the rod-like liquid crystalline compound is in the range of 0 ° to 20 °. 0 ° to 10 ° is more preferable, and 0 ° to 5 ° is still more preferable.
 前記λ/2板及びλ/4板が、液晶性化合物を含有する光学異方性層を含む場合、該光学異方性層は一層のみからなっていてもよいし、二層以上の光学異方性層の積層体であってもよい。 When the λ / 2 plate and the λ / 4 plate include an optically anisotropic layer containing a liquid crystalline compound, the optically anisotropic layer may consist of only one layer, or two or more layers of optically different layers. A laminate of anisotropic layers may be used.
 前記光学異方性層は、棒状液晶性化合物又はディスコティック液晶性化合物等の液晶性化合物と、所望により、後述する重合開始剤や配向制御剤や他の添加剤を含む塗布液を、支持体上に塗布することで形成することができる。支持体上に配向膜を形成し、該配向膜表面に前記塗布液を塗布して形成することが好ましい。 The optically anisotropic layer comprises a coating liquid containing a liquid crystalline compound such as a rod-like liquid crystalline compound or a discotic liquid crystalline compound, and, if desired, a polymerization initiator, an alignment control agent and other additives described later. It can be formed by coating on top. It is preferable to form an alignment film on a support and apply the coating solution on the surface of the alignment film.
[配向膜]
 本発明では、配向膜の表面に前記組成物を塗布して、液晶性化合物の分子を配向させるのが好ましい。配向膜は液晶性化合物の配向方向を規定する機能を有するため、本発明の好ましい態様を実現する上で利用するのが好ましい。しかし、液晶性化合物を配向後にその配向状態を固定してしまえば、配向膜はその役割を果たしているために、本発明の構成要素としては必ずしも必須のものではない。即ち、配向状態が固定された配向膜上の光学異方性層のみを偏光層や支持体上に転写して本発明の偏光板を作製することも可能である。
 配向膜は、ポリマーのラビング処理により形成することが好ましい。
[Alignment film]
In the present invention, it is preferable to align the molecules of the liquid crystal compound by applying the composition to the surface of the alignment film. Since the alignment film has a function of defining the alignment direction of the liquid crystalline compound, it is preferably used for realizing a preferred embodiment of the present invention. However, if the alignment state is fixed after aligning the liquid crystalline compound, the alignment film plays the role, and thus is not necessarily an essential component of the present invention. That is, it is also possible to produce the polarizing plate of the present invention by transferring only the optically anisotropic layer on the alignment film in which the alignment state is fixed onto the polarizing layer or the support.
The alignment film is preferably formed by polymer rubbing treatment.
 ポリマーの例には、例えば特開平8-338913号公報明細書中段落番号[0022]記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコール及び変性ポリビニルアルコール、ポリ(N-メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N-メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコール及び変性ポリビニルアルコールが更に好ましく、ポリビニルアルコール及び変性ポリビニルアルコールが最も好ましい。 前記ラビング処理は、LCDの液晶配向処理工程として広く採用されている処理方法を適用することができる。即ち、配向膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法を用いることができる。一般的には、長さ及び太さが均一な繊維を平均的に植毛した布などを用いて数回程度ラビングを行うことにより実施される。 Examples of the polymer include methacrylate copolymers, styrene copolymers, polyolefins, polyvinyl alcohol and modified polyvinyl alcohol, poly (N-methylol) described in paragraph No. [0022] of JP-A-8-338913, for example. Acrylamide), polyester, polyimide, vinyl acetate copolymer, carboxymethylcellulose, polycarbonate and the like. Silane coupling agents can be used as the polymer. Water-soluble polymers (eg, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol, modified polyvinyl alcohol) are preferred, gelatin, polyvinyl alcohol and modified polyvinyl alcohol are more preferred, and polyvinyl alcohol and modified polyvinyl alcohol are most preferred. . The rubbing treatment can be performed by a treatment method widely adopted as a liquid crystal alignment treatment process for LCD. That is, a method of obtaining the orientation by rubbing the surface of the orientation film in a certain direction using paper, gauze, felt, rubber, nylon, polyester fiber or the like can be used. In general, it is carried out by rubbing several times using a cloth in which fibers having a uniform length and thickness are flocked on average.
 配向膜のラビング処理面に前記組成物を塗布して、液晶性化合物の分子を配向させる。その後、必要に応じて、配向膜ポリマーと光学異方性層に含まれる多官能モノマーとを反応させるか、あるいは、架橋剤を用いて配向膜ポリマーを架橋させることで、前記光学異方性層を形成することができる。
 配向膜の膜厚は、0.1~10μmの範囲にあることが好ましい。
The said composition is apply | coated to the rubbing process surface of alignment film, and the molecule | numerator of a liquid crystalline compound is aligned. Thereafter, if necessary, the alignment film polymer and the polyfunctional monomer contained in the optically anisotropic layer are reacted, or the alignment film polymer is crosslinked using a crosslinking agent, thereby the optically anisotropic layer. Can be formed.
The thickness of the alignment film is preferably in the range of 0.1 to 10 μm.
[透明支持体(ポリマーフィルム)]
 本段落より以降、特に断りのないときには、Re、及びRthは波長550nmにおける値を指すものとする。
[Transparent support (polymer film)]
From this paragraph onward, unless otherwise noted, Re and Rth shall refer to values at a wavelength of 550 nm.
 光学異方性層を支持する透明支持体(ポリマーフィルム)の面内のレターデーション(Re)は0~50nmであることが好ましく、0~30nmであることがより好ましく、0~10nmであることが更に好ましい。上記の範囲であると、反射光の光漏れを視認されない程度まで低減できるため好ましい。  The in-plane retardation (Re) of the transparent support (polymer film) that supports the optically anisotropic layer is preferably 0 to 50 nm, more preferably 0 to 30 nm, and more preferably 0 to 10 nm. Is more preferable. The above range is preferable because light leakage of reflected light can be reduced to a level where it is not visually recognized.
 また、該支持体の厚さ方向のレターデーション(Rth)はその上又は下に設けられる光学異方性層との組み合わせによって選択することが好ましい。それによって、斜め方向から観察したときの反射光の光漏れ、及び色味付きを低減することができる。 The retardation (Rth) in the thickness direction of the support is preferably selected depending on the combination with the optically anisotropic layer provided on or below the support. Thereby, it is possible to reduce the light leakage of the reflected light and the coloring when observed from an oblique direction.
 少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる第2の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記第1の透明支持体層のRthが-30nm~150nmであることが好ましく、30nm~120nmであることがより好ましく、60nm~90nmであることが更に好ましい。また、前記第2の透明支持体層のRthが0nm~200nmであることが好ましく、50nm~150nmであることがより好ましく、90nm~130nmであることが更に好ましい。 At least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, a second transparent support layer composed of one or more layers, and a disco In the case of an organic EL display device including a λ / 4 plate composed of a layer containing a tick liquid crystal compound and an organic EL panel in this order, Rth of the first transparent support layer is −30 nm to 150 nm. The thickness is preferably 30 nm to 120 nm, more preferably 60 nm to 90 nm. The Rth of the second transparent support layer is preferably 0 nm to 200 nm, more preferably 50 nm to 150 nm, and still more preferably 90 nm to 130 nm.
 また、少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記透明支持体層のRthが-10nm~140nmであることが好ましく、10nm~120nmであることがより好ましく、40nm~80nmであることが更に好ましい。 Further, at least a polarizer layer, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, a transparent support layer composed of one or more layers, a λ / 4 plate composed of a layer containing a discotic liquid crystal compound, and organic In the case of an organic EL display device including an EL panel in this order, Rth of the transparent support layer is preferably −10 nm to 140 nm, more preferably 10 nm to 120 nm, and 40 nm to 80 nm. More preferably.
 また、少なくとも偏光子層と、1層以上からなる透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記透明支持体層のRthが-30nm~30nmであることが好ましく、-20nm~10nmであることがより好ましい。 Further, at least a polarizer layer, a transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, a λ / 4 plate composed of a layer containing a discotic liquid crystal compound, and an organic In the case of an organic EL display device including an EL panel in this order, Rth of the transparent support layer is preferably −30 nm to 30 nm, more preferably −20 nm to 10 nm.
 また、少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記透明支持体層のRthが-10nm~100nmであることが好ましく、20nm~70nmであることがより好ましく、30nm~60nmであることが更に好ましい。 Further, at least a polarizer layer, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, a λ / 4 plate composed of a layer containing a discotic liquid crystal compound, a transparent support layer composed of one or more layers, an organic In the case of an organic EL display device including an EL panel in this order, Rth of the transparent support layer is preferably −10 nm to 100 nm, more preferably 20 nm to 70 nm, and more preferably 30 nm to 60 nm. More preferably.
 また、少なくとも偏光子層と、1層以上からなる透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記透明支持体層のRthが-50nm~150nmであることが好ましく、-30nm~130nmであることがより好ましく、20nm~70nmであることが更に好ましい。 Further, at least a polarizer layer, a transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, a λ / 4 plate composed of a layer containing a rod-like liquid crystal compound, and an organic EL In the case of an organic EL display device having panels in this order, Rth of the transparent support layer is preferably −50 nm to 150 nm, more preferably −30 nm to 130 nm, and 20 nm to 70 nm. More preferably.
 また、少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記透明支持体層のRthが-90nm~50nmであることが好ましく、-60nm~30nmであることがより好ましく、-20nm~20nmであることが更に好ましい。 Further, at least a polarizer layer, a λ / 2 plate made of a layer containing a discotic liquid crystal compound, a transparent support layer made of one or more layers, a λ / 4 plate made of a layer containing a rod-like liquid crystal compound, and an organic EL In the case of an organic EL display device including a panel in this order, Rth of the transparent support layer is preferably −90 nm to 50 nm, more preferably −60 nm to 30 nm, and −20 nm to 20 nm. More preferably it is.
 また、少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記透明支持体層のRthが-110nm~40nmであることが好ましく、-90nm~20nmであることがより好ましく、-50nm~-10nmであることが更に好ましい。 Further, at least a polarizer layer, a λ / 2 plate comprising a layer containing a discotic liquid crystal compound, a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, a transparent support layer comprising one or more layers, and an organic EL In the case of an organic EL display device having panels in this order, Rth of the transparent support layer is preferably −110 nm to 40 nm, more preferably −90 nm to 20 nm, and −50 nm to −10 nm. More preferably.
 また、少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる第2の透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記第1の透明支持体層のRthが-40nm~140nmであることが好ましく、0nm~100nmであることがより好ましく、40nm~80nmであることが更に好ましい。また、前記第2の透明支持体層のRthが-70nm~70nmであることが好ましく、-30nm~30nmであることがより好ましい。 Further, at least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, and a second transparent support layer composed of one or more layers In the case of an organic EL display device comprising a λ / 4 plate composed of a layer containing a rod-like liquid crystal compound and an organic EL panel in this order, the Rth of the first transparent support layer is −40 nm to 140 nm. It is preferably 0 nm to 100 nm, more preferably 40 nm to 80 nm. The Rth of the second transparent support layer is preferably −70 nm to 70 nm, more preferably −30 nm to 30 nm.
 また、少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記第1の透明支持体層のRthが-50nm~130nmであることが好ましく、-30nm~100nmであることがより好ましく、0nm~80nmであることが更に好ましい。また、前記第2の透明支持体層のRthが0nm~100nmであることが好ましく、20nm~80nmであることがより好ましい。 Further, at least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, and a λ / 4 plate composed of a layer containing a discotic liquid crystal compound When the organic EL display device includes the second transparent support layer composed of one or more layers and the organic EL panel in this order, Rth of the first transparent support layer is −50 nm to 130 nm. It is preferably from −30 nm to 100 nm, and more preferably from 0 nm to 80 nm. The Rth of the second transparent support layer is preferably 0 nm to 100 nm, and more preferably 20 nm to 80 nm.
 また、少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記第1の透明支持体層のRthが-40nm~140nmであることが好ましく、-20nm~100nmであることがより好ましく、10nm~50nmであることが更に好ましい。また、前記第2の透明支持体層のRthが-100nm~40nmであることが好ましく、-50nm~0nmであることがより好ましく、-40nm~-10nmであることが更に好ましい。 Further, at least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, and a λ / 4 plate composed of a layer containing a rod-like liquid crystal compound, In the case of an organic EL display device including a second transparent support layer composed of one or more layers and an organic EL panel in this order, Rth of the first transparent support layer is −40 nm to 140 nm. It is preferably -20 nm to 100 nm, more preferably 10 nm to 50 nm. In addition, Rth of the second transparent support layer is preferably from −100 nm to 40 nm, more preferably from −50 nm to 0 nm, and further preferably from −40 nm to −10 nm.
 また、少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記第1の透明支持体層のRthが-40nm~150nmであることが好ましく、-10nm~100nmであることがより好ましく、30nm~60nmであることが更に好ましい。また、前記第2の透明支持体層のRthが-50nm~100nmであることが好ましく、-30nm~70nmであることがより好ましく、10nm~50nmであることが更に好ましい。 Further, a λ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a first transparent support layer comprising one or more layers, and a λ / 4 plate comprising a layer containing a discotic liquid crystal compound. When the organic EL display device includes the second transparent support layer composed of one or more layers and the organic EL panel in this order, Rth of the first transparent support layer is −40 nm to 150 nm. It is preferably from −10 nm to 100 nm, and more preferably from 30 nm to 60 nm. The Rth of the second transparent support layer is preferably −50 nm to 100 nm, more preferably −30 nm to 70 nm, and further preferably 10 nm to 50 nm.
 また、少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記第1の透明支持体層のRthが-70nm~100nmであることが好ましく、-30nm~50nmであることがより好ましく、-10nm~30nmであることが更に好ましい。また、前記第2の透明支持体層のRthが-110nm~40nmであることが好ましく、-80nm~0nmであることがより好ましく、-50nm~0nmであることが更に好ましい。 A λ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a first transparent support layer comprising one or more layers, and a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound; In the case of an organic EL display device including a second transparent support layer composed of one or more layers and an organic EL panel in this order, Rth of the first transparent support layer is -70 nm to 100 nm. It is preferably -30 nm to 50 nm, more preferably -10 nm to 30 nm. The Rth of the second transparent support layer is preferably −110 nm to 40 nm, more preferably −80 nm to 0 nm, and further preferably −50 nm to 0 nm.
 また、少なくとも偏光子層と、1層以上からなる透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記透明支持体層のRthが-150nm~50nmであることが好ましく、-130nm~30nmであることがより好ましく、-90nm~0nmであることが更に好ましい。 Further, at least a polarizer layer, a transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a rod-like liquid crystal compound, a λ / 4 plate composed of a layer containing a discotic liquid crystal compound, and an organic EL In the case of an organic EL display device including a panel in this order, Rth of the transparent support layer is preferably −150 nm to 50 nm, more preferably −130 nm to 30 nm, and −90 nm to 0 nm. More preferably it is.
 また、少なくとも偏光子層と、1層以上からなる透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記透明支持体層のRthが-30nm~30nmであることが好ましく、-10nm~20nmであることが更に好ましい。 Further, at least a polarizer layer, a transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a rod-like liquid crystal compound, a λ / 4 plate composed of a layer containing a rod-like liquid crystal compound, and an organic EL panel In this order, the Rth of the transparent support layer is preferably −30 nm to 30 nm, and more preferably −10 nm to 20 nm.
 また、少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記透明支持体層のRthが-50nm~90nmであることが好ましく、-30nm~60nmであることがより好ましく、-10nm~10nmであることが更に好ましい。 Further, at least a polarizer layer, a λ / 2 plate made of a layer containing a rod-like liquid crystal compound, a transparent support layer made of one or more layers, a λ / 4 plate made of a layer containing a discotic liquid crystal compound, and an organic EL In the case of an organic EL display device including a panel in this order, Rth of the transparent support layer is preferably −50 nm to 90 nm, more preferably −30 nm to 60 nm, and −10 nm to 10 nm. More preferably it is.
 また、少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記透明支持体層のRthが-140nm~10nmであることが好ましく、-120nm~-10nmであることがより好ましく、-80nm~-50nmであることが更に好ましい。 Further, at least a polarizer layer, a λ / 2 plate comprising a layer containing a rod-like liquid crystal compound, a transparent support layer comprising one or more layers, a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, and an organic EL panel In this order, the transparent support layer preferably has Rth of −140 nm to 10 nm, more preferably −120 nm to −10 nm, and −80 nm to −50 nm. More preferably.
 また、少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記透明支持体層のRthが-50nm~110nmであることが好ましく、-30nm~90nmであることがより好ましく、10nm~50nmであることが更に好ましい。 Further, at least a polarizer layer, a λ / 2 plate comprising a layer containing a rod-like liquid crystal compound, a λ / 4 plate comprising a layer containing a discotic liquid crystal compound, a transparent support layer comprising one or more layers, and an organic EL In the case of an organic EL display device having panels in this order, Rth of the transparent support layer is preferably −50 nm to 110 nm, more preferably −30 nm to 90 nm, and 10 nm to 50 nm. More preferably.
 また、少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記透明支持体層のRthが-100nm~10nmであることが好ましく、-80nm~-20nmであることがより好ましく、-60nm~-30nmであることが更に好ましい。 Further, at least a polarizer layer, a λ / 2 plate comprising a layer containing a rod-like liquid crystal compound, a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, a transparent support layer comprising one or more layers, and an organic EL panel In this order, the Rth of the transparent support layer is preferably −100 nm to 10 nm, more preferably −80 nm to −20 nm, and −60 nm to −30 nm. More preferably.
 また、少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる第2の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記第1の透明支持体層のRthが-140nm~40nmであることが好ましく、-100nm~10nmであることがより好ましく、-80nm~0nmであることが更に好ましい。また、前記第2の透明支持体層のRthが-70nm~70nmであることが好ましく、-40nm~40nmがより好ましい。 Also, at least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a rod-like liquid crystal compound, a second transparent support layer composed of one or more layers, In the case of an organic EL display device including a λ / 4 plate composed of a layer containing a discotic liquid crystal compound and an organic EL panel in this order, Rth of the first transparent support layer is −140 nm to 40 nm. It is preferably -100 nm to 10 nm, more preferably -80 nm to 0 nm. The Rth of the second transparent support layer is preferably −70 nm to 70 nm, more preferably −40 nm to 40 nm.
 また、少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる第2の透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記第1の透明支持体層のRthが-150nm~40nmであることが好ましく、-120nm~0nmであることがより好ましく、-100nm~-50nmであることが更に好ましい。また、前記第2の透明支持体層のRthが-200nm~0nmであることが好ましく、-150nm~-50nmであることがより好ましく、-130nm~-90nmであることが更に好ましい。 Also, at least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a rod-like liquid crystal compound, a second transparent support layer composed of one or more layers, In the case of an organic EL display device including a λ / 4 plate composed of a layer containing a rod-like liquid crystal compound and an organic EL panel in this order, Rth of the first transparent support layer is −150 nm to 40 nm. Is more preferable, −120 nm to 0 nm is more preferable, and −100 nm to −50 nm is still more preferable. The Rth of the second transparent support layer is preferably −200 nm to 0 nm, more preferably −150 nm to −50 nm, and further preferably −130 nm to −90 nm.
 また、少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記第1の透明支持体層のRthが-140nm~40nmであることが好ましく、-100nm~20nmであることがより好ましく、-50nm~0nmであることが更に好ましい。また、前記第2の透明支持体層のRthが-40nm~100nmであることが好ましく、-10nm~50nmであることがより好ましく、10nm~50nmであることが更に好ましい。 Further, at least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a rod-like liquid crystal compound, and a λ / 4 plate composed of a layer containing a discotic liquid crystal compound; In the case of an organic EL display device including a second transparent support layer composed of one or more layers and an organic EL panel in this order, Rth of the first transparent support layer is −140 nm to 40 nm. It is preferably -100 nm to 20 nm, more preferably -50 nm to 0 nm. The Rth of the second transparent support layer is preferably −40 nm to 100 nm, more preferably −10 nm to 50 nm, and further preferably 10 nm to 50 nm.
 また、少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記第1の透明支持体層のRthが-120nm~40nmであることが好ましく、-100nm~30nmであることがより好ましく、-70nm~0nmであることが更に好ましい。また、前記第2の透明支持体層のRthが-100nm~0nmであることが好ましく、-80nm~-20nmであることがより好ましい。 Further, at least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a rod-like liquid crystal compound, and a λ / 4 plate composed of a layer containing a rod-like liquid crystal compound, In the case of an organic EL display device including a second transparent support layer composed of one or more layers and an organic EL panel in this order, Rth of the first transparent support layer is −120 nm to 40 nm. Is more preferable, −100 nm to 30 nm is more preferable, and −70 nm to 0 nm is still more preferable. In addition, Rth of the second transparent support layer is preferably −100 nm to 0 nm, and more preferably −80 nm to −20 nm.
 また、少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記第1の透明支持体層のRthが-100nm~80nmであることが好ましく、-60nm~40nmであることがより好ましく、-30nm~20nmであることが更に好ましい。また、前記第2の透明支持体層のRthが-40nm~100nmであることが好ましく、-10nm~70nmであることがより好ましく、0nm~50nmであることが更に好ましい。 A λ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a first transparent support layer comprising one or more layers, and a λ / 4 plate comprising a layer containing a discotic liquid crystal compound; In the case of an organic EL display device including a second transparent support layer composed of one or more layers and an organic EL panel in this order, Rth of the first transparent support layer is −100 nm to 80 nm. It is preferably -60 nm to 40 nm, more preferably -30 nm to 20 nm. The Rth of the second transparent support layer is preferably −40 nm to 100 nm, more preferably −10 nm to 70 nm, and further preferably 0 nm to 50 nm.
 また、少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置である場合には、前記第1の透明支持体層のRthが-150nm~40nmであることが好ましく、-90nm~0nmであることがより好ましく、-60nm~-20nmであることが更に好ましい。また、前記第2の透明支持体層のRthが-100nm~50nmであることが好ましく、-70nm~10nmであることがより好ましく、-50nm~-10nmであることが更に好ましい。 A λ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a first transparent support layer comprising one or more layers, and a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound; In the case of an organic EL display device including a second transparent support layer composed of one or more layers and an organic EL panel in this order, Rth of the first transparent support layer is −150 nm to 40 nm. Is preferable, −90 nm to 0 nm is more preferable, and −60 nm to −20 nm is still more preferable. The Rth of the second transparent support layer is preferably from −100 nm to 50 nm, more preferably from −70 nm to 10 nm, and further preferably from −50 nm to −10 nm.
 ポリマーの例には、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系樹脂フィルム、ポリエーテルスルホンフィルム、ポリメチルメタクリレート等のポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルム、ポリオレフィン、脂環式構造を有するポリマー(ノルボルネン系樹脂(アートン:商品名、JSR社製、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製))、などが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、脂環式構造を有するポリマーが好ましく、特にトリアセチルセルロースが好ましい。 Examples of polymers include cellulose acylate films (for example, cellulose triacetate film, cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film), polyolefins such as polyethylene and polypropylene, polyethylene terephthalate and polyethylene naphthalate, etc. Polyester resin film, polyethersulfone film, polyacrylic resin film such as polymethyl methacrylate, polyurethane resin film, polyester film, polycarbonate film, polysulfone film, polyether film, polymethylpentene film, polyetherketone film, (Meth) acrylonitrile film, polyolefin, alicyclic structure Polymer (norbornene resin (Arton: trade name, manufactured by JSR Corporation, amorphous polyolefin (ZEONEX: trade name, manufactured by ZEON CORPORATION)), etc. Among them, triacetyl cellulose, polyethylene terephthalate, alicyclic type A polymer having a structure is preferable, and triacetyl cellulose is particularly preferable.
 ポリマーフィルムは、ソルベントキャスト法により形成することが好ましい。前記ソルベントキャスト法として、共流延法、逐次流延法、塗布法などの積層流延法も用いることができる。共流延法及び逐次流延法により製造する場合には、先ず、各層用のセルロースアセテート溶液(ドープ)を調製する。共流延法(重層同時流延)は、流延用支持体(バンド又はドラム)の上に、各層(3層あるいはそれ以上でもよい)各々の流延用ドープを別のスリットなどから同時に押出す流延用ギーサからドープを押出して、各層同時に流延し、適当な時期に支持体から剥ぎ取って、乾燥しフィルムを成形する流延法である。
 逐次流延法は、流延用支持体の上に先ず第1層用の流延用ドープを流延用ギーサから押出して、流延し、乾燥あるいは乾燥することなく、その上に第2層用の流延用ドープを流延用ギーサから押出して流延する要領で、必要なら第3層以上まで逐次ドープを流延・積層して、適当な時期に支持体から剥ぎ取って、乾燥しフィルムを成形する流延法である。
 塗布法は、一般的には、コア層のフィルムを溶液製膜法によりフィルムに成形し、表層に塗布する塗布液を調製し、適当な塗布機を用いて、片面づつ又は両面同時にフィルムに塗布液を塗布・乾燥して積層構造のフィルムを成形する方法である。
The polymer film is preferably formed by a solvent cast method. As the solvent casting method, a lamination casting method such as a co-casting method, a sequential casting method, or a coating method can also be used. When producing by the co-casting method and the sequential casting method, first, a cellulose acetate solution (dope) for each layer is prepared. In the co-casting method (multi-layer simultaneous casting), a casting dope for each layer (which may be three layers or more) is simultaneously pressed from another slit or the like on a casting support (band or drum). This is a casting method in which the dope is extruded from the casting gies to be cast, and each layer is cast at the same time, peeled off from the support at an appropriate time, and dried to form a film.
In the sequential casting method, the casting dope for the first layer is first extruded from the casting giusa on the casting support, cast, and dried on the second layer without drying or drying. Extrude the casting dope for casting from the casting gieser, cast the dope sequentially to the third layer or more, if necessary, peel it off from the support at an appropriate time, and dry it. This is a casting method for forming a film.
In general, the core layer film is formed into a film by a solution casting method to prepare a coating solution that is applied to the surface layer, and then applied to the film one side at a time or both sides simultaneously using an appropriate coating machine. This is a method of forming a film having a laminated structure by applying and drying a liquid.
 透明支持体の厚さは10μm~200μm程度のものを用いることができるが、好ましくは10μm~80μmであり、20μm~60μmであることがより好ましい。また、透明支持体は複数枚の積層からなっていてもよい。外光反射の抑制には薄い方が好ましいが、10μm以上であるとフィルムの強度が良好となり好ましい。透明支持体とその上に設けられる層(接着層、垂直配向膜あるいは位相差層)との接着を改善するため、透明支持体に表面処理(例、グロー放電処理、コロナ放電処理、紫外線(UV)処理、火炎処理)を実施してもよい。透明支持体の上に、接着層(下塗り層)を設けてもよい。また、透明支持体や長尺の透明支持体には、搬送工程でのすべり性を付与したり、巻き取った後の裏面と表面の貼り付きを防止するために、平均粒径が10~100nm程度の無機粒子を固形分重量比で5%~40%混合したポリマー層を支持体の片側に塗布や支持体との共流延によって形成したものを用いることが好ましい。 The thickness of the transparent support may be about 10 μm to 200 μm, preferably 10 μm to 80 μm, and more preferably 20 μm to 60 μm. The transparent support may be composed of a plurality of laminated layers. The thinner one is preferable for the suppression of external light reflection, but a thickness of 10 μm or more is preferable because the strength of the film becomes good. In order to improve adhesion between the transparent support and the layer (adhesive layer, vertical alignment film or retardation layer) provided thereon, surface treatment (eg, glow discharge treatment, corona discharge treatment, ultraviolet light (UV) ) Treatment, flame treatment). An adhesive layer (undercoat layer) may be provided on the transparent support. The average particle diameter of the transparent support or the long transparent support is 10 to 100 nm in order to provide slippage in the transport process or to prevent the back surface and the surface from sticking after winding. It is preferable to use a polymer layer in which about 5% to 40% of a solid content of inorganic particles are mixed and formed on one side of the support by coating or co-casting with the support.
 なお上記では、支持体上に光学異方性層を設けた積層体構造であるλ/2板又はλ/4板について説明したが、本発明はこの態様に限定されるものではなく、1枚の透明支持体の片面にλ/2板とλ/4板が積層されたものであってもよく、又は1枚の透明支持体の片面にλ/2板が積層され、もう一方の片面にλ/4板が積層されたものであってもよい。更に、λ/2板又はλ/4板は、延伸ポリマーフィルム(光学異方性支持体)単独からなっていても、液晶性化合物を含有する組成物から形成された液晶フィルムのみからなっていてもよい。液晶フィルムの好ましい例も、前記光学異方性層の好ましい例と同様である。 In the above description, the λ / 2 plate or λ / 4 plate having a laminated structure in which an optically anisotropic layer is provided on a support has been described. However, the present invention is not limited to this mode, and one sheet A λ / 2 plate and a λ / 4 plate may be laminated on one side of the transparent support, or a λ / 2 plate may be laminated on one side of one transparent support, and the other side. A λ / 4 plate may be laminated. Further, the λ / 2 plate or the λ / 4 plate is composed only of a stretched polymer film (optically anisotropic support) alone but a liquid crystal film formed from a composition containing a liquid crystalline compound. Also good. Preferred examples of the liquid crystal film are the same as the preferred examples of the optically anisotropic layer.
 前記λ/2板及びλ/4板は長尺状フィルムの状態で連続的に製造されることが好ましい。このとき、λ/2又はλ/4の遅相軸角は、前記長尺状フィルムの長手方向に対して15°±8°、又は75°±8°であることが好ましい。このようにすることで、後述する光学積層体の製造において、前記長尺状フィルムの長手方向と偏光膜の長手方向を一致させてロールトゥロールによる貼り合せを行うことが可能になり、貼り合せの軸角度の精度が高く、生産性の高い円偏光板や楕円偏光板の製造が可能になる。なお、光学異方性層が液晶性化合物から形成される場合には、光学異方性層の遅相軸の角度はラビングの角度で調整できる。また、λ/2板又はλ/4板が延伸処理したポリマーフィルム(光学異方性支持体)から形成される場合は、延伸方向によって遅相軸の角度が調整できる。 The λ / 2 plate and λ / 4 plate are preferably manufactured continuously in the state of a long film. At this time, the slow axis angle of λ / 2 or λ / 4 is preferably 15 ° ± 8 ° or 75 ° ± 8 ° with respect to the longitudinal direction of the long film. In this way, in the production of the optical laminate described later, the longitudinal direction of the long film and the longitudinal direction of the polarizing film can be matched and roll-to-roll bonding can be performed. This makes it possible to manufacture a circularly polarizing plate and an elliptically polarizing plate with high accuracy of the shaft angle and high productivity. In the case where the optically anisotropic layer is formed of a liquid crystalline compound, the angle of the slow axis of the optically anisotropic layer can be adjusted by the rubbing angle. When the λ / 2 plate or the λ / 4 plate is formed from a stretched polymer film (optically anisotropic support), the angle of the slow axis can be adjusted by the stretching direction.
[紫外線吸収剤]
 本発明の有機EL表示装置は、光学異方性層、透明支持体、又は表面フィルムに紫外線吸収剤を含有していてもよい。紫外線吸収剤を含有することにより、光学積層体や、有機ELパネル、液晶パネル等を紫外線から保護することができる。紫外線吸収剤としては、紫外線吸収性を発現できるもので、公知のものがいずれも使用できる。そのような紫外線吸収剤のうち、紫外線吸収性が高く、電子画像表示装置で用いられる紫外線吸収能(紫外線カット能)を得るためにベンゾトリアゾール系又はヒドロキシフェニルトリアジン系の紫外線吸収剤が好ましい。また、紫外線の吸収幅を広くするために、最大吸収波長の異なる紫外線吸収剤を2種以上併用することができる。
[Ultraviolet absorber]
The organic EL display device of the present invention may contain an ultraviolet absorber in the optically anisotropic layer, the transparent support, or the surface film. By containing the ultraviolet absorber, the optical laminate, the organic EL panel, the liquid crystal panel, and the like can be protected from ultraviolet rays. As the UV absorber, any UV absorber can be used, and any known UV absorber can be used. Among such ultraviolet absorbers, a benzotriazole-based or hydroxyphenyltriazine-based ultraviolet absorber is preferable in order to obtain a high ultraviolet-absorbing property and to obtain an ultraviolet-absorbing ability (ultraviolet-cutting ability) used in an electronic image display device. Moreover, in order to widen the absorption width of ultraviolet rays, two or more ultraviolet absorbers having different maximum absorption wavelengths can be used in combination.
 紫外線吸収剤の含有量は、求める紫外線透過率や紫外線吸収剤の吸光度にもよるが、前記紫外線硬化型樹脂100質量部に対して、通常20質量部以下、好ましくは1~20質量部である。紫外線吸収剤の含有量が20質量部よりも多い場合には、硬化性組成物の紫外線による硬化性が低下する傾向があると共に、光学フィルムの可視光線透過率が低下するおそれもある。一方、1質量部より少ない場合には、光学フィルムの紫外線吸収性を十分に発揮することができなくなる。 The content of the ultraviolet absorber is usually 20 parts by mass or less, preferably 1 to 20 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin, although it depends on the required ultraviolet transmittance and the absorbance of the ultraviolet absorber. . When there is more content of an ultraviolet absorber than 20 mass parts, while there exists a tendency for the sclerosis | hardenability by the ultraviolet-ray of a curable composition to fall, there also exists a possibility that the visible light transmittance | permeability of an optical film may fall. On the other hand, when the amount is less than 1 part by mass, the ultraviolet absorption of the optical film cannot be sufficiently exhibited.
[偏光板]
 本発明に使用される偏光板は、保護膜と偏光膜とを有する。偏光膜としては、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜のいずれを用いてもよい。ヨウ素系偏光膜及び染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造する。偏光膜の吸収軸は、フィルムの延伸方向に相当する。従って、縦方向(搬送方向)に延伸された偏光膜は長手方向に対して平行に吸収軸を有し、横方向(搬送方向と垂直方向)に延伸された偏光膜は長手方向に対して垂直に吸収軸を有す。また、保護膜としては光学的等方性が高いセルロースエステルフィルムを用いることが好ましい。
[Polarizer]
The polarizing plate used in the present invention has a protective film and a polarizing film. As the polarizing film, any of an iodine polarizing film, a dye polarizing film using a dichroic dye, and a polyene polarizing film may be used. The iodine polarizing film and the dye polarizing film are generally produced using a polyvinyl alcohol film. The absorption axis of the polarizing film corresponds to the stretching direction of the film. Accordingly, the polarizing film stretched in the longitudinal direction (transport direction) has an absorption axis parallel to the longitudinal direction, and the polarizing film stretched in the lateral direction (perpendicular to the transport direction) is perpendicular to the longitudinal direction. Has an absorption axis. Moreover, it is preferable to use a cellulose ester film having high optical isotropy as the protective film.
 本発明に使用される偏光板の好ましい製造方法は、上記光学積層体と偏光膜とが、それぞれ長尺の状態で連続的に積層される工程を含む。該長尺の偏光板は用いられる画像表示装置の画面の大きさに合わせて裁断される。 A preferred method for producing a polarizing plate used in the present invention includes a step in which the optical laminate and the polarizing film are successively laminated in a long state. The long polarizing plate is cut in accordance with the screen size of the image display device used.
 偏光膜として直線偏光膜を用い、上記光学異方性層,又は透明支持体層と組み合わせることで、円偏光板又は楕円偏光板として機能する偏光膜一体型の光学フィルムを高い生産性で製造できる。 By using a linear polarizing film as the polarizing film and combining with the optically anisotropic layer or the transparent support layer, a polarizing film integrated optical film functioning as a circularly polarizing plate or an elliptically polarizing plate can be produced with high productivity. .
[有機エレクトロルミネッセンス表示装置]
 本発明の有機エレクトロルミネッセンス表示装置は陽極、陰極の一対の電極間に発光層若しくは発光層を含む複数の有機化合物薄膜を形成した表示装置であり、発光層のほか正孔注入層、正孔輸送層、電子注入層、電子輸送層、保護層などを有してもよく、またこれらの各層はそれぞれ他の機能を備えたものであってもよい。各層の形成にはそれぞれ種々の材料を用いることができる。
[Organic electroluminescence display]
The organic electroluminescence display device of the present invention is a display device in which a plurality of organic compound thin films including a light emitting layer or a light emitting layer are formed between a pair of electrodes of an anode and a cathode. A layer, an electron injection layer, an electron transport layer, a protective layer, and the like may be included, and each of these layers may have other functions. Various materials can be used for forming each layer.
 陽極は正孔注入層、正孔輸送層、発光層などに正孔を供給するものであり、金属、合金、金属酸化物、電気伝導性化合物、又はこれらの混合物などを用いることができ、好ましくは仕事関数が4eV以上の材料である。具体例としては酸化スズ、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)等の導電性金属酸化物、あるいは金、銀、クロム、ニッケル等の金属、更にこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられ、好ましくは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からITOが好ましい。陽極の膜厚は材料により適宜選択可能であるが、通常10nm~5μmの範囲のものが好ましく、より好ましくは50nm~1μmであり、更に好ましくは100nm~500nmである。 The anode supplies holes to a hole injection layer, a hole transport layer, a light emitting layer, and the like, and a metal, an alloy, a metal oxide, an electrically conductive compound, or a mixture thereof can be used. Is a material having a work function of 4 eV or more. Specific examples include conductive metal oxides such as tin oxide, zinc oxide, indium oxide, and indium tin oxide (ITO), or metals such as gold, silver, chromium, and nickel, and these metals and conductive metal oxides. Inorganic conductive materials such as copper iodide and copper sulfide, organic conductive materials such as polyaniline, polythiophene, and polypyrrole, and laminates of these with ITO, preferably conductive metals It is an oxide, and ITO is particularly preferable from the viewpoint of productivity, high conductivity, transparency, and the like. The thickness of the anode can be appropriately selected depending on the material, but is usually preferably in the range of 10 nm to 5 μm, more preferably 50 nm to 1 μm, and further preferably 100 nm to 500 nm.
 基板は、特に限定されないが、透明又は半透明であることがよく、通常、ソーダライムガラス、無アルカリガラス、透明樹脂等の基板上に陽極を形成したものが用いられる。ガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合、シリカなどのバリアコートを施したものを使用することが好ましい。 The substrate is not particularly limited, but is preferably transparent or translucent, and a substrate in which an anode is formed on a substrate such as soda lime glass, non-alkali glass, or transparent resin is usually used. When glass is used, it is preferable to use non-alkali glass as the material in order to reduce ions eluted from the glass. Moreover, when using soda-lime glass, it is preferable to use what gave barrier coatings, such as a silica.
 基板の厚みは、機械的強度を保つのに十分であれば特に制限はないが、表示装置表面に光散乱フィルムを用いる態様では、視認側の基板の厚みが厚いと文字ボケが生じやすく、基板の厚みは薄いほど良い。視認側の基板は、0.01mm~0.70mmが好ましく、0.02~0.50mmがより好ましく、0.03~0.30mmが特に好ましい。 The thickness of the substrate is not particularly limited as long as it is sufficient to maintain the mechanical strength. However, in a mode in which a light scattering film is used on the surface of the display device, character blur tends to occur when the thickness of the substrate on the viewing side is large. The thinner the better. The viewing-side substrate is preferably 0.01 mm to 0.70 mm, more preferably 0.02 to 0.50 mm, and particularly preferably 0.03 to 0.30 mm.
 強度、表示装置の寿命の点では、視認側に0.03~0.30mmの薄い(好ましくはガラス)基板を用いるのがもっとも好ましい形態と言える。0.30μmより薄い場合は片側の面及び端部の少なくとも一方にポリマーをコーティングして強度を向上させることがより好ましい。 In terms of strength and lifetime of the display device, it is most preferable to use a thin (preferably glass) substrate of 0.03 to 0.30 mm on the viewing side. When the thickness is smaller than 0.30 μm, it is more preferable to improve the strength by coating a polymer on at least one of one side and the end.
 以下に実施例と比較例を挙げて本発明の特徴を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
(1)透明支持体の準備
 各種公知の技術を用いて、下記表1~7に記載の光学特性を持つセルロースアシレートからなる透明支持体を準備した。
(1) Preparation of transparent support Using various known techniques, a transparent support made of cellulose acylate having optical properties described in Tables 1 to 7 below was prepared.
(2)透明支持体上への液晶性化合物の塗布
(アルカリ鹸化処理)
 前述のいずれかの透明支持体を、温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、フィルムのバンド面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/mで塗布し、110℃に加熱した(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。続いて、同じくバーコーターを用いて、純水を3ml/m塗布した。次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアシレートフィルムを作製した。
(2) Application of liquid crystalline compound on transparent support (alkali saponification treatment)
One of the transparent supports described above is passed through a dielectric heating roll having a temperature of 60 ° C., the film surface temperature is raised to 40 ° C., and then an alkali solution having the composition shown below is applied to the band surface of the film. Was applied at a coating amount of 14 ml / m 2 and transported for 10 seconds under a steam far-infrared heater manufactured by Noritake Company Limited, heated to 110 ° C. Subsequently, 3 ml / m 2 of pure water was applied using the same bar coater. Next, washing with a fountain coater and draining with an air knife were repeated three times, and then transported to a drying zone at 70 ° C. for 10 seconds and dried to prepare an alkali saponified cellulose acylate film.
(アルカリ溶液組成)
──────────────────────────────────
アルカリ溶液組成(質量部)
──────────────────────────────────
 水酸化カリウム                   4.7質量部
 水                        15.8質量部
 イソプロパノール                 63.7質量部
 界面活性剤
 SF-1:C1429O(CHCHO)20H    1.0質量部
 プロピレングリコール               14.8質量部
──────────────────────────────────
(Alkaline solution composition)
──────────────────────────────────
Alkaline solution composition (parts by mass)
──────────────────────────────────
Potassium hydroxide 4.7 parts by weight Water 15.8 parts by weight Isopropanol 63.7 parts by weight Surfactant SF-1: C 14 H 29 O (CH 2 CH 2 O) 20 H 1.0 part by weight Propylene glycol 14. 8 parts by mass ──────────────────────────────────
(配向膜の形成)
 上記のように鹸化処理した長尺状のセルロースアシレートフィルムに、下記の組成の配向膜塗布液を#14のワイヤーバーで連続的に塗布した。60℃の温風で60秒、更に100℃の温風で120秒乾燥した。
(Formation of alignment film)
To the long cellulose acylate film saponified as described above, an alignment film coating solution having the following composition was continuously applied with a # 14 wire bar. Drying was performed with warm air of 60 ° C. for 60 seconds, and further with warm air of 100 ° C. for 120 seconds.
配向膜塗布液の組成
――――――――――――――――――――――――――――――――――
下記の変性ポリビニルアルコール             10質量部
水                          371質量部
メタノール                      119質量部
グルタルアルデヒド                  0.5質量部
光重合開始剤(イルガキュアー2959、チバ・ジャパン製)
                           0.3質量部
――――――――――――――――――――――――――――――――――
Composition of alignment film coating solution ――――――――――――――――――――――――――――――――――
Denatured polyvinyl alcohol 10 parts by weight Water 371 parts by weight Methanol 119 parts by weight Glutaraldehyde 0.5 parts by weight Photopolymerization initiator (Irgacure 2959, manufactured by Ciba Japan)
0.3 parts by mass ――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(ディスコティック液晶(DLC)性化合物を含む光学異方性層の形成)
 上記作製した配向膜に連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向とラビングローラーの回転軸とのなす角が15°、45°、75°のいずれかになるように調節した。
(Formation of optically anisotropic layer containing discotic liquid crystal (DLC) compound)
The alignment film thus prepared was continuously rubbed. At this time, the longitudinal direction of the long film and the transport direction were parallel, and the angle formed by the film longitudinal direction and the rotation axis of the rubbing roller was adjusted to be 15 °, 45 °, or 75 °. .
 下記の組成のディスコティック液晶化合物を含む塗布液Aを上記作製した配向膜上にワイヤーバーで連続的に塗布した。フィルムの搬送速度(V)は36m/minとした。塗布液の溶媒の乾燥及びディスコティック液晶化合物の配向熟成のために、120℃の温風で90秒間加熱した。続いて、80℃にてUV照射を行い、液晶化合物の配向を固定化した。光学異方性層、すなわち液晶化合物層の厚さが1.6μm~4.0μmまでの厚みになるように調節し、550nmにおけるRe(550)が125nm~300nmである種々のフィルムを得た。 The coating liquid A containing a discotic liquid crystal compound having the following composition was continuously applied with a wire bar on the prepared alignment film. The conveyance speed (V) of the film was 36 m / min. In order to dry the solvent of the coating solution and to mature the orientation of the discotic liquid crystal compound, the coating liquid was heated with warm air at 120 ° C. for 90 seconds. Subsequently, UV irradiation was performed at 80 ° C. to fix the alignment of the liquid crystal compound. The thickness of the optically anisotropic layer, that is, the liquid crystal compound layer was adjusted so as to be 1.6 μm to 4.0 μm, and various films having Re (550) at 550 nm of 125 nm to 300 nm were obtained.
光学異方性層塗布液(A)の組成
―――――――――――――――――――――――――――――――――
下記のディスコティック液晶化合物(A)        91質量部
下記のアクリレートモノマー               5質量部
光重合開始剤(イルガキュアー907、チバガイギー社製) 3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製)    1質量部
下記のピリジニウム塩(A)             0.5質量部
下記のフッ素系ポリマー(FP1)          0.2質量部
下記のフッ素系ポリマー(FP3)          0.1質量部
メチルエチルケトン                 189質量部
―――――――――――――――――――――――――――――――――
Composition of coating solution (A) for optically anisotropic layer ―――――――――――――――――――――――――――――――――
91 parts by weight of the following discotic liquid crystal compound (A) 5 parts by weight of the following acrylate monomer (Irgacure 907, manufactured by Ciba Geigy) 3 parts by weight of sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass The following pyridinium salt (A) 0.5 part by mass The following fluoropolymer (FP1) 0.2 part by mass The following fluoropolymer (FP3) 0.1 part by mass Methyl ethyl ketone 189 parts by mass ――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
アクリレートモノマー:
エチレンオキサイド変性トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)
Acrylate monomer:
Ethylene oxide modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 作製したフィルムの遅相軸の方向はラビングローラーの回転軸と直交していた。すなわち、支持体の長手方向に対して、遅相軸は反時計回りに15°、45°、又は75°の方向であった。ディスコティック液晶性分子の円盤面のフィルム面に対する平均傾斜角は90°であり、ディスコティック液晶がフィルム面に対して垂直に配向していることを確認した。 The direction of the slow axis of the produced film was orthogonal to the rotation axis of the rubbing roller. That is, the slow axis was 15 °, 45 °, or 75 ° counterclockwise with respect to the longitudinal direction of the support. The average inclination angle of the disc surface of the discotic liquid crystalline molecules with respect to the film surface was 90 °, and it was confirmed that the discotic liquid crystal was aligned perpendicular to the film surface.
(棒状液晶(RLC)化合物を含む光学異方性層の形成)
 上記のフィルムと同様にして、下記組成の棒状液晶化合物を含む塗布液(B)をセルロースアシレートフィルムに塗布し、550nmにおけるRe(550)が125nm~300nmである種々のフィルムを得た。棒状液晶化合物の長軸のフィルム面に対する平均傾斜角は0°であり、液晶化合物がフィルム面に対して、水平に配向していることを確認した。また、遅相軸の角度はラビングローラーの回転軸と直交していた。
(Formation of optically anisotropic layer containing rod-like liquid crystal (RLC) compound)
In the same manner as the above film, a coating liquid (B) containing a rod-like liquid crystal compound having the following composition was applied to a cellulose acylate film to obtain various films having a Re (550) at 550 nm of 125 nm to 300 nm. The average inclination angle of the long axis of the rod-like liquid crystal compound with respect to the film surface was 0 °, and it was confirmed that the liquid crystal compound was aligned horizontally with respect to the film surface. Further, the angle of the slow axis was orthogonal to the rotation axis of the rubbing roller.
光学異方性層塗布液(B)の組成
―――――――――――――――――――――――――――――――――
 下記の棒状液晶化合物(A)            100質量部
 光重合開始剤(イルガキュアー907、チバ・ジャパン社製)
                            3質量部
 増感剤(カヤキュアーDETX、日本化薬(株)製)   1質量部
 上記のフッ素系ポリマー(FP1)         0.3質量部
 メチルエチルケトン                193質量部
 シクロヘキサノン                  50質量部
―――――――――――――――――――――――――――――――――
Composition of coating solution (B) for optically anisotropic layer ―――――――――――――――――――――――――――――――――
The following rod-like liquid crystal compound (A) 100 parts by mass Photopolymerization initiator (Irgacure 907, manufactured by Ciba Japan)
3 parts by mass Sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass The above fluoropolymer (FP1) 0.3 part by mass Methyl ethyl ketone 193 parts by mass Cyclohexanone 50 parts by mass ―――――――――――――――――――――――――
 棒状液晶性化合物(A) Rod-like liquid crystalline compound (A)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(3)光学異方性層の剥離、及び転写
 上記の方法で形成した光学異方性層を、セルロースアシレートフィルムから剥離し、別に準備した光学異方性層付きセルロースアシレートフィルムの光学異方性層上に粘着剤にて貼り合せた(転写)。このようにして、異なるレターデーション及び遅相軸をもつ2種類の光学異方性層が形成されたセルロースアシレートフィルムを得た。
(3) Separation and transfer of optically anisotropic layer The optically anisotropic layer formed by the above method is peeled off from the cellulose acylate film, and the optical difference of the separately prepared cellulose acylate film with an optically anisotropic layer is obtained. It stuck together with the adhesive on the anisotropic layer (transfer). Thus, a cellulose acylate film in which two types of optically anisotropic layers having different retardations and slow axes were formed was obtained.
(4)偏光子の作成
 厚さ80μmのポリビニルアルコール(PVA)フィルムを、ヨウ素濃度0.05質量%のヨウ素水溶液中に30℃で60秒浸漬して染色し、次いでホウ酸濃度4質量%濃度のホウ酸水溶液中に60秒浸漬している間に元の長さの5倍に縦延伸した後、50℃で4分間乾燥させて、厚さ20μmの偏光膜を得た。
(4) Production of polarizer A polyvinyl alcohol (PVA) film having a thickness of 80 μm is dyed by dipping in an aqueous iodine solution having an iodine concentration of 0.05 mass% at 30 ° C. for 60 seconds, and then boric acid concentration is 4 mass%. While being immersed in an aqueous boric acid solution for 60 seconds, the film was longitudinally stretched 5 times the original length and then dried at 50 ° C. for 4 minutes to obtain a polarizing film having a thickness of 20 μm.
(5)偏光子保護フィルムの準備
 市販のセルロースアシレート系フィルム「TD80UL」(富士フイルム社製)を準備し、1.5モル/リットルで55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、0.005モル/リットルで35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
(5) Preparation of Polarizer Protective Film A commercially available cellulose acylate film “TD80UL” (manufactured by FUJIFILM Corporation) was prepared, immersed in an aqueous sodium hydroxide solution at 55 ° C. at 1.5 mol / liter, and then water The sodium hydroxide was thoroughly washed out. Then, after being immersed in a diluted sulfuric acid aqueous solution at 0.005 mol / liter at 35 ° C. for 1 minute, it was immersed in water to sufficiently wash away the diluted sulfuric acid aqueous solution. Finally, the sample was thoroughly dried at 120 ° C.
(6)光学積層体の作成
 (実施例1~135)
 前述(1)のいずれかの透明支持体に、ディスコティック液晶化合物(以下、DLC)、又は棒状液晶化合物(以下、RLC)を前述(2)の方法で塗布した。また、必要に応じて1枚の透明支持体の両面にDLC、又はRLCを(2)の方法で塗布した。更に、必要に応じ、前述(3)の方法にて異なる2種類の光学異方性層を透明支持体上に形成した。このようにして得たフィルムと、必要に応じ1枚、又は2枚以上の前記透明支持体と、前述(4)の偏光子とを粘着剤で貼り合せた。最後に、偏光子の表面に前述(5)の偏光子保護フィルムをポリビニル系粘着剤を用いて貼り合せた。このようにして、下表1~7の実施例1~135に示す各種光学積層体を作成した。
(6) Preparation of optical laminate (Examples 1 to 135)
A discotic liquid crystal compound (hereinafter referred to as DLC) or a rod-like liquid crystal compound (hereinafter referred to as RLC) was applied to any of the transparent supports described in (1) by the method described in (2) above. Moreover, DLC or RLC was apply | coated by the method of (2) on both surfaces of one transparent support body as needed. Furthermore, if necessary, two different optically anisotropic layers were formed on the transparent support by the method (3) described above. The film thus obtained, one or two or more transparent supports as necessary, and the polarizer of the above (4) were bonded with an adhesive. Finally, the polarizer protective film of the above (5) was bonded to the surface of the polarizer using a polyvinyl adhesive. Thus, various optical laminates shown in Examples 1 to 135 in Tables 1 to 7 below were prepared.
(実施例138)
(セルロースエステル溶液A-1の調製)
 下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースエステル溶液A-1を調製した。
(Example 138)
(Preparation of cellulose ester solution A-1)
The following composition was put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose ester solution A-1.
セルロースエステル溶液A-1の組成
―――――――――――――――――――――――――――――――――
・セルロースアセテート(アセチル化度2.86)   100質量部
・メチレンクロライド(第1溶媒)          320質量部
・メタノール(第2溶媒)               83質量部
・1-ブタノール(第3溶媒)              3質量部
・トリフェニルフォスフェート            7.6質量部
・ビフェニルジフェニルフォスフェート        3.8質量部
―――――――――――――――――――――――――――――――――
Composition of cellulose ester solution A-1 ――――――――――――――――――――――――――――――――――
Cellulose acetate (acetylation degree 2.86) 100 parts by mass Methylene chloride (first solvent) 320 parts by mass Methanol (second solvent) 83 parts by mass 1-butanol (third solvent) 3 parts by mass Triphenyl Phosphate 7.6 parts by mass, biphenyldiphenyl phosphate 3.8 parts by mass ―――――――――――――――――――――――――――――――――
(マット剤分散液B-1の調製)
 下記の組成物を分散機に投入し、攪拌して各成分を溶解し、マット剤分散液B-1を調製した。
(Preparation of matting agent dispersion B-1)
The following composition was charged into a disperser and stirred to dissolve each component to prepare a matting agent dispersion B-1.
マット剤分散液B-1の組成
―――――――――――――――――――――――――――――――――
 ・シリカ粒子分散液(平均粒径16nm)
  "AEROSIL R972"、日本アエロジル(株)製 
                         10.0質量部
 ・メチレンクロライド              72.8質量部
 ・メタノール                   3.9質量部
 ・ブタノール                   0.5質量部
 ・セルロースエステル溶液A-1         10.3質量部
―――――――――――――――――――――――――――――――――
(紫外線吸収剤溶液C-1の調製)
 下記の組成物を別のミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、紫外線吸収剤溶液C-1を調製した。
Composition of Matting Agent Dispersion B-1 ――――――――――――――――――――――――――――――――――
・ Silica particle dispersion (average particle size 16 nm)
"AEROSIL R972", manufactured by Nippon Aerosil Co., Ltd.
10.0 parts by mass-72.8 parts by mass of methylene chloride-3.9 parts by mass of methanol-0.5 parts by mass of butanol-10.3 parts by mass of cellulose ester solution A-1 ----- ――――――――――――――――――――――
(Preparation of UV absorber solution C-1)
The following composition was put into another mixing tank and stirred while heating to dissolve each component to prepare an ultraviolet absorber solution C-1.
紫外線吸収剤溶液C-1の組成
―――――――――――――――――――――――――――――――――
 ・紫外線吸収剤(下記UV-1)         10.0質量部
 ・紫外線吸収剤(下記UV-2)         10.0質量部
 ・メチレンクロライド              55.7質量部
 ・メタノール                    10質量部
 ・ブタノール                   1.3質量部
 ・セルロースエステル溶液A-1         12.9質量部 
―――――――――――――――――――――――――――――――――
Composition of UV absorber solution C-1 ――――――――――――――――――――――――――――――――――
UV absorber (UV-1 below) 10.0 parts by weight UV absorber (UV-2 below) 10.0 parts by weight Methylene chloride 55.7 parts by weight Methanol 10 parts by weight Butanol 1.3 parts by weight・ Cellulose ester solution A-1 12.9 parts by mass
―――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(セルロースエステルフィルムの作製)
 セルロースアシレート溶液A-1を94.6質量部、マット剤分散液B-1を1.3質量部とした混合物に、セルロースアシレート100質量部当たり、紫外線吸収剤(UV-1)及び紫外線吸収剤(UV-2)がそれぞれ1.0質量部となるように、紫外線吸収剤溶液C-1を加え、加熱しながら充分に攪拌して各成分を溶解し、ドープを調製した。得られたドープを30℃に加温し、流延ギーサーを通して直径3mのドラムである鏡面ステンレス支持体上に流延した。支持体の表面温度は-5℃に設定し、塗布幅は1470mmとした。流延したドープ膜をドラム上で34℃の乾燥風を150m/分で当てることにより乾燥させ、残留溶剤が150%の状態でドラムより剥離した。剥離の際、搬送方向(長手方向)に15%の延伸を行った。その後、フィルムの幅方向(流延方向に対して直交する方向)の両端をピンテンター(特開平4-1009号公報の図3に記載のピンテンター)で把持しながら搬送し、幅手方向には延伸処理を行わなかった。更に、熱処理装置のロール間を搬送することにより更に乾燥し、セルロースアシレートフィルム(T1)を製造した。作製した長尺状のセルロースアシレートフィルム(T1)の残留溶剤量は0.2%で、厚みは60μmで、550nmにおけるReとRthはそれぞれ0.8nm、40nmであった。
(Production of cellulose ester film)
In a mixture of 94.6 parts by mass of cellulose acylate solution A-1 and 1.3 parts by mass of matting agent dispersion B-1, an ultraviolet absorber (UV-1) and an ultraviolet ray per 100 parts by mass of cellulose acylate An ultraviolet absorbent solution C-1 was added so that the amount of the absorbent (UV-2) was 1.0 part by mass, and each component was dissolved by heating and stirring sufficiently to prepare a dope. The obtained dope was heated to 30 ° C., and cast on a mirror surface stainless steel support, which was a drum having a diameter of 3 m, through a casting Giuser. The surface temperature of the support was set to −5 ° C., and the coating width was 1470 mm. The cast dope film was dried by applying a dry air of 34 ° C. at 150 m 3 / min on the drum, and the residual solvent was peeled off from the drum in a state of 150%. During peeling, 15% stretching was performed in the transport direction (longitudinal direction). Thereafter, the film is conveyed while being held by a pin tenter (pin tenter described in FIG. 3 of JP-A-4-1009) at both ends in the width direction (direction perpendicular to the casting direction) and stretched in the width direction. No processing was performed. Furthermore, it dried further by conveying between the rolls of a heat processing apparatus, and manufactured the cellulose acylate film (T1). The produced long cellulose acylate film (T1) had a residual solvent amount of 0.2%, a thickness of 60 μm, and Re and Rth at 550 nm of 0.8 nm and 40 nm, respectively.
(配向膜の形成)
 作製したセルロースアシレートフィルム(T1)を、上記と同様にしてアルカリ鹸化処理を行った。その上に下記組成の配向膜塗布液を#14のワイヤーバーで連続的に塗布した。60℃の温風で60秒、更に100℃の温風で120秒乾燥した。
(Formation of alignment film)
The produced cellulose acylate film (T1) was subjected to alkali saponification treatment in the same manner as described above. An alignment film coating solution having the following composition was continuously applied thereon with a # 14 wire bar. Drying was performed with warm air of 60 ° C. for 60 seconds, and further with warm air of 100 ° C. for 120 seconds.
配向膜塗布液の組成
―――――――――――――――――――――――――――――――――
下記の変性ポリビニルアルコール            10質量部
水                          75質量部
メタノール                      17質量部
イソプロパノール                    7質量部
光重合開始剤(イルガキュアー2959、チバ・ジャパン製)
                          0.8質量部
―――――――――――――――――――――――――――――――――
Composition of alignment film coating solution ―――――――――――――――――――――――――――――――――
The following modified polyvinyl alcohol 10 parts by mass Water 75 parts by mass Methanol 17 parts by mass Isopropanol 7 parts by mass Photopolymerization initiator (Irgacure 2959, manufactured by Ciba Japan)
0.8 parts by mass ――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(ディスコティック液晶(DLC)化合物を含む光学異方性層の形成)
 上記作製した配向膜に連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向とラビングローラーの回転軸とのなす角度が75°(時計回り)とした(フィルム長手方向を90°とすると、ラビングローラーの回転軸は15°)。
(Formation of optically anisotropic layer containing discotic liquid crystal (DLC) compound)
The alignment film thus prepared was continuously rubbed. At this time, the longitudinal direction of the long film and the conveying direction are parallel, and the angle formed between the longitudinal direction of the film and the rotation axis of the rubbing roller is 75 ° (clockwise) (when the longitudinal direction of the film is 90 °). The rotation axis of the rubbing roller is 15 °).
 下記の組成のディスコティック液晶化合物を含む塗布液(C)を上記作製した配向膜上に#5.0のワイヤーバーで連続的に塗布した。フィルムの搬送速度(V)は26m/minとした。塗布液の溶媒の乾燥及びディスコティック液晶化合物の配向熟成のために、115℃の温風で90秒間、続いて、80℃の温風で60秒間加熱し、80℃にてUV照射を行い、液晶化合物の配向を固定化した。DLC化合物の円盤面のフィルム面に対する平均傾斜角は90°であり、DLC化合物がフィルム面に対して、垂直に配向していることを確認した。また、遅相軸の角度はラビングローラーの回転軸と平行で、フィルム長手方向を90°とすると、15°であった。 A coating liquid (C) containing a discotic liquid crystal compound having the following composition was continuously applied on the prepared alignment film with a wire bar of # 5.0. The conveyance speed (V) of the film was 26 m / min. In order to dry the solvent of the coating solution and to mature the orientation of the discotic liquid crystal compound, it was heated with warm air of 115 ° C. for 90 seconds, then heated with warm air of 80 ° C. for 60 seconds, and irradiated with UV at 80 ° C. The alignment of the liquid crystal compound was fixed. The average inclination angle of the disk surface of the DLC compound with respect to the film surface was 90 °, and it was confirmed that the DLC compound was oriented perpendicular to the film surface. Moreover, the angle of the slow axis was parallel to the rotation axis of the rubbing roller, and was 15 ° when the film longitudinal direction was 90 °.
光学異方性層塗布液(C)の組成
―――――――――――――――――――――――――――――――――
下記のディスコティック液晶化合物(B)        80質量部
下記のディスコティック液晶化合物(C)        20質量部
上記のアクリレートモノマー              10質量部
光重合開始剤(イルガキュアー907、チバ・ジャパン社製)3質量部
下記のピリジニウム塩(B)             0.9質量部
下記のボロン酸含有化合物             0.08質量部
下記のポリマー                   0.6質量部
上記のフッ素系ポリマー(FP1)          0.3質量部
メチルエチルケトン                 183質量部
シクロヘキサノン                   40質量部
―――――――――――――――――――――――――――――――――
Composition of coating solution (C) for optically anisotropic layer ―――――――――――――――――――――――――――――――――
80 parts by mass of the following discotic liquid crystal compound (B) 20 parts by mass of the following discotic liquid crystal compound (C) 10 parts by mass of the above acrylate monomer (Irgacure 907, manufactured by Ciba Japan) 3 parts by mass of the following 0.9 parts by mass of the following boronic acid-containing compound 0.08 parts by mass The following polymer 0.6 parts by mass The above fluoropolymer (FP1) 0.3 parts by mass Methyl ethyl ketone 183 parts by mass Cyclohexanone 40 parts by mass Department ――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(棒状液晶(RLC)化合物を含む光学異方性層の形成)
 上記作製したDLC化合物を含む光学異方性層に連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向とラビングローラーの回転軸とのなす角度が-75°(反時計回り)とした(フィルム長手方向を90°とすると、ラビングローラーの回転軸は165°)。
(Formation of optically anisotropic layer containing rod-like liquid crystal (RLC) compound)
The optically anisotropic layer containing the produced DLC compound was continuously rubbed. At this time, the longitudinal direction of the long film and the transport direction are parallel, and the angle formed between the longitudinal direction of the film and the rotation axis of the rubbing roller is −75 ° (counterclockwise) (the longitudinal direction of the film is 90 °). Then, the rotation axis of the rubbing roller is 165 °).
 下記の組成の棒状液晶化合物を含む塗布液(D)を上記作製した配向膜上に#2.2のワイヤーバーで連続的に塗布した。フィルムの搬送速度(V)は26m/minとした。塗布液の溶媒の乾燥及びディスコティック液晶化合物の配向熟成のために、60℃の温風で60秒間加熱し、60℃にてUV照射を行い、液晶化合物の配向を固定化した。棒状液晶化合物の長軸のフィルム面に対する平均傾斜角は0°であり、液晶化合物がフィルム面に対して、水平に配向していることを確認した。また、遅相軸の角度はラビングローラーの回転軸と直交で、フィルム長手方向を90°とすると、75°であった。 A coating liquid (D) containing a rod-like liquid crystal compound having the following composition was continuously applied onto the prepared alignment film with a # 2.2 wire bar. The conveyance speed (V) of the film was 26 m / min. In order to dry the solvent of the coating liquid and to mature the orientation of the discotic liquid crystal compound, the coating liquid was heated with warm air of 60 ° C. for 60 seconds and irradiated with UV at 60 ° C. to fix the orientation of the liquid crystal compound. The average inclination angle of the long axis of the rod-like liquid crystal compound with respect to the film surface was 0 °, and it was confirmed that the liquid crystal compound was aligned horizontally with respect to the film surface. Moreover, the angle of the slow axis was orthogonal to the rotation axis of the rubbing roller, and 75 ° when the film longitudinal direction was 90 °.
光学異方性層塗布液(D)の組成
―――――――――――――――――――――――――――――――――
上記の棒状液晶化合物(A)              20質量部
下記の棒状液晶化合物(B)              80質量部
光重合開始剤(イルガキュアー907、チバ・ジャパン社製)3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製)    1質量部
下記のフッ素系ポリマー(FP4)          0.3質量部
メチルエチルケトン                 193質量部
シクロヘキサノン                   50質量部
―――――――――――――――――――――――――――――――――
Composition of coating solution (D) for optically anisotropic layer ―――――――――――――――――――――――――――――――――
The above rod-shaped liquid crystal compound (A) 20 parts by mass The following rod-shaped liquid crystal compound (B) 80 parts by mass Photopolymerization initiator (Irgacure 907, manufactured by Ciba Japan) 3 parts by mass sensitizer (Kayacure DETX, Nippon Kayaku) 1 part by mass The following fluoropolymer (FP4) 0.3 part by mass Methyl ethyl ketone 193 parts by mass Cyclohexanone 50 parts by mass ――――――――――――――――――――― ――――――――――――
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記のようにして、セルロースアシレートフィルムの上に、DLC化合物を含む光学異方性層とRLC化合物を含む光学異方性層とが積層されたフィルム(F1)を作製した。このフィルムを1.5モル/リットルで55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、0.005モル/リットルで35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
 上記と同様にして作製した偏光子と偏光子保護フィルムを準備し、フィルム(F1)のセルロースアシレート面が偏光子と接するようにして、フィルム(F1)と偏光子と偏光子保護フィルムを貼り合わせた。このようにして、実施例138の光学積層体を作製した。
As described above, a film (F1) in which an optically anisotropic layer containing a DLC compound and an optically anisotropic layer containing an RLC compound were laminated on a cellulose acylate film was produced. This film was immersed in an aqueous sodium hydroxide solution at 1.5 mol / liter at 55 ° C., and the sodium hydroxide was thoroughly washed away with water. Then, after being immersed in a diluted sulfuric acid aqueous solution at 0.005 mol / liter at 35 ° C. for 1 minute, it was immersed in water to sufficiently wash away the diluted sulfuric acid aqueous solution. Finally, the sample was thoroughly dried at 120 ° C.
A polarizer and a polarizer protective film prepared in the same manner as above were prepared, and the film (F1), the polarizer, and the polarizer protective film were bonded so that the cellulose acylate surface of the film (F1) was in contact with the polarizer. Combined. In this way, an optical laminate of Example 138 was produced.
 (実施例139)
 前述のフィルム(F1)のDLC化合物、及びRLC化合物から成る光学異方性層をセルロースアシレートフィルムから剥離し、前述(4)の偏光子の表面にDLC化合物から成る層が接するように貼り合わせ、もう一方の面に前述(5)の偏光子保護フィルムをポリビニル系粘着剤を用いて貼り合せた。このようにして実施例139の光学積層体を作製した。
(Example 139)
The optically anisotropic layer composed of the DLC compound and RLC compound of the film (F1) is peeled off from the cellulose acylate film, and bonded so that the layer composed of the DLC compound is in contact with the surface of the polarizer of (4). The polarizer protective film described in (5) above was bonded to the other surface using a polyvinyl adhesive. In this way, an optical laminate of Example 139 was produced.
 (実施例140~143)
 市販のノルボルネン系ポリマーフィルム「ZEONOR ZF14」((株)オプテス製)を延伸して、膜厚が50umになるように調整し、Re(550)が125nm、Rth(550)が74nmのポリマーフィルムを得た。これを前述の実施例1~135と同様の方法で光学異方性層、偏光子、及び偏光子保護フィルムと貼り合せ、実施例140~143に示す光学積層体を作成した。
(Examples 140 to 143)
A commercially available norbornene-based polymer film “ZEONOR ZF14” (manufactured by Optes Co., Ltd.) is stretched to adjust the film thickness to 50 μm, and a polymer film having Re (550) of 125 nm and Rth (550) of 74 nm is obtained. Obtained. This was bonded to an optically anisotropic layer, a polarizer, and a polarizer protective film in the same manner as in Examples 1 to 135 described above to produce optical laminates shown in Examples 140 to 143.
 (実施例144~147)
 LG電子製の3D-TVである55LW5700に付属の3Dメガネに使用されていたポリカーボネート系のλ/4フィルムを剥離し、これを前述の実施例1~135と同様の方法で光学異方性層、偏光子、及び偏光子保護フィルムと貼り合せ、下表8の実施例144~147に示す光学積層体を作成した。
(Examples 144 to 147)
The polycarbonate type λ / 4 film used in the 3D glasses attached to 55LW5700, which is a 3D-TV made by LG Electronics, is peeled off, and the optically anisotropic layer is peeled off in the same manner as in Examples 1 to 135 described above. Then, the optical laminates shown in Examples 144 to 147 in Table 8 below were prepared by bonding to the polarizer and the polarizer protective film.
 (比較例1~20)
 前述の実施例1~135と同様の方法にて、下表9~14の比較例1~20に示す各種光学積層体を作成した。
(Comparative Examples 1 to 20)
Various optical laminates shown in Comparative Examples 1 to 20 in Tables 9 to 14 below were prepared in the same manner as in Examples 1 to 135 described above.
 (比較例21)
 市販のノルボルネン系ポリマーフィルム「ZEONOR ZF14」((株)オプテス製)を斜め延伸して、膜厚が50umになるように調整し、Re(550)が125nm、Rth(550)が85nmのポリマーフィルムを得た。これを前述の実施例1~135と同様の方法で透明支持体、偏光子、及び偏光子保護フィルムと貼り合せ、下表15の比較例21に示す各種光学積層体を作成した。
(Comparative Example 21)
A commercially available norbornene-based polymer film “ZEONOR ZF14” (manufactured by Optes Co., Ltd.) is diagonally stretched to adjust the film thickness to 50 μm, and Re (550) is 125 nm and Rth (550) is 85 nm. Got. This was bonded to a transparent support, a polarizer, and a polarizer protective film in the same manner as in Examples 1 to 135 described above to prepare various optical laminates shown in Comparative Example 21 in Table 15 below.
(7)有機EL素子への実装及び表示性能の評価
 (表示装置への実装)
 有機ELパネル搭載のSAMSUNG社製GALAXY SIIを分解し、円偏光板を剥離して、下表1~15に示した実施例、及び比較例の光学積層体を貼合し、表示装置を作製した。
(7) Mounting on organic EL elements and evaluation of display performance (Mounting on display device)
The GALAXY SII manufactured by SAMSUNG equipped with an organic EL panel was disassembled, the circularly polarizing plate was peeled off, and the optical laminates of Examples and Comparative Examples shown in Tables 1 to 15 below were bonded to produce a display device. .
 (表示性能の評価)
 作製した有機EL表示装置について、明光下にて視認性及び表示品位を評価した。
 表示装置に白表示、黒表示、画像表示をして、正面及び極角45度から蛍光灯を映し込んだときの反射光を観察した。正面と比較して、極角45度の表示品位を下記の基準で評価した。
 4:色味付きが全く視認されない。(許容)
 3:色味差が視認されるものの、ごくわずか(許容)
 2:色味差が視認されるが反射光は小さく、使用上問題はない。(許容)
 1:色味差が視認され、反射光も多く、許容できない。
(Evaluation of display performance)
About the produced organic EL display apparatus, visibility and display quality were evaluated under bright light.
The display device displayed white, black, and images, and the reflected light was observed when a fluorescent lamp was projected from the front and a polar angle of 45 degrees. Compared with the front, the display quality at a polar angle of 45 degrees was evaluated according to the following criteria.
4: Coloration is not visually recognized at all. (Acceptable)
3: Although slight color difference is visible, very slight (allowable)
2: Although the color difference is visually recognized, the reflected light is small and there is no problem in use. (Acceptable)
1: A color difference is visually recognized and a lot of reflected light is unacceptable.
 評価結果を下表1~15に示す。
 なお、下表1~15に記載の吸収軸の角度、遅相軸角度は、偏光子の透過軸の角度を0°とし、有機ELパネルを視認側から見て時計回りを正とした。ただし、時計回りを負とする定義を用いた場合であっても、下表1~15に示した評価結果は何ら変化しない。
 また、偏光子の透過軸は有機ELパネルに対し任意の角度で貼合する事ができる。
The evaluation results are shown in Tables 1 to 15 below.
The absorption axis angle and slow axis angle shown in Tables 1 to 15 below were set to 0 ° as the transmission axis angle of the polarizer, and positive when viewed clockwise from the viewing side of the organic EL panel. However, the evaluation results shown in Tables 1 to 15 below do not change even when the definition that the clockwise direction is negative is used.
Moreover, the transmission axis of the polarizer can be bonded to the organic EL panel at an arbitrary angle.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 本発明の有機EL表示装置である実施例1~147の有機EL表示装置は、従来の円偏光板である比較例20、又は比較例21の有機EL表示装置、又は透明支持体のRthを最適な値に調整していない比較例1~19の有機EL表示装置よりも、明光下での視認性に優れることがわかる。本発明の有機EL表示装置に使用される光学積層体は、Roll to Rollで作製可能であり、優れた反射防止性能を有する有機EL表示装置を、高い生産性、優れたコスト耐性に加え、高い歩留まりで提供することが可能となる。更に、DLC、又はRLCを含む光学異方性層は温度や湿度の変動によるレターデーションの変化がほとんどないため、本発明の有機EL表示装置は、温度が0℃~30℃、湿度が0%~90%の範囲において、反射防止性能の変化は視認できなかった。 The organic EL display devices of Examples 1 to 147, which are the organic EL display devices of the present invention, have the optimum Rth of the organic EL display device of Comparative Example 20 or Comparative Example 21, which is a conventional circularly polarizing plate, or a transparent support. It can be seen that the visibility under bright light is superior to those of the organic EL display devices of Comparative Examples 1 to 19 which are not adjusted to a proper value. The optical laminate used in the organic EL display device of the present invention can be produced by Roll to Roll, and an organic EL display device having excellent antireflection performance is high in addition to high productivity and excellent cost resistance. It becomes possible to provide with a yield. Furthermore, since the optically anisotropic layer containing DLC or RLC hardly changes in retardation due to temperature and humidity fluctuations, the organic EL display device of the present invention has a temperature of 0 ° C. to 30 ° C. and a humidity of 0%. In the range of ˜90%, no change in antireflection performance was visible.
 なお、本発明の光学積層体は有機EL表示装置のみならず、反射型液晶表示装置、半透過型液晶表示装置、透明ディスプレイ等の反射防止用にも好適に使用できる。また、液晶表示装置のバックライト側に設置して、輝度向上膜としても使用できる。更に、光ディスク用ピックアップやPS変換素子などの用途にも使用できる。 The optical layered body of the present invention can be suitably used for antireflection of not only an organic EL display device but also a reflective liquid crystal display device, a transflective liquid crystal display device, a transparent display and the like. It can also be used as a brightness enhancement film by being installed on the backlight side of a liquid crystal display device. Furthermore, it can be used for applications such as optical disk pickups and PS conversion elements.
 本発明によれば、有機EL素子の内部反射による反射像の映り込みを、正面方向においても斜め方向においても十分に低減し、表示性能、生産性、及び耐久性に優れた有機EL表示装置を提供することができる。 According to the present invention, the reflection of the reflected image due to the internal reflection of the organic EL element is sufficiently reduced both in the front direction and in the oblique direction, and an organic EL display device excellent in display performance, productivity, and durability is provided. Can be provided.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年3月15日出願の日本特許出願(特願2012-059351)、及び2012年10月4日出願の日本特許出願(特願2012-222480)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on March 15, 2012 (Japanese Patent Application No. 2012-059351) and a Japanese patent application filed on October 4, 2012 (Japanese Patent Application No. 2012-222480). Is incorporated herein by reference.
   1 TFT基板
   2 背面電極
   3 発光層を含む有機層
   4 透明又は半透明電極 
   5 透明基板
   6 光学積層体
   7 偏光板
1 TFT substrate 2 Back electrode 3 Organic layer including light emitting layer 4 Transparent or translucent electrode
5 Transparent substrate 6 Optical laminate 7 Polarizing plate

Claims (29)

  1.  少なくとも偏光子層と、λ/2板と、λ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記λ/4板の550nmにおける面内レターデーションRe2(550)が
        115≦Re2(550)≦155
    を満たし、かつ前記λ/2板の550nmにおける面内レターデーションRe1(550)が
        Re1(550)=2×Re2(550)±50nm
    を満たすことを特徴とする有機EL表示装置。
    An organic EL display device comprising at least a polarizer layer, a λ / 2 plate, a λ / 4 plate, and an organic EL panel in this order, wherein the in-plane retardation Re2 (550) of the λ / 4 plate at 550 nm 115 ≦ Re2 (550) ≦ 155
    And the in-plane retardation Re1 (550) at 550 nm of the λ / 2 plate is Re1 (550) = 2 × Re2 (550) ± 50 nm
    An organic EL display device characterized by satisfying the above.
  2.  前記偏光子層の吸収軸方向と前記λ/2板の遅相軸方向とのなす角が
        -30°×Rth1(550)/|Rth1(550)|+45°±8°
    の範囲であり、かつ前記偏光子層の吸収軸方向と前記λ/4板の遅相軸方向とのなす角が
        30°×Rth1(550)/|Rth1(550)|+45°±8°
    の範囲である請求項1に記載の有機EL表示装置。(ただし、Rth1(550)は前記λ/2板の波長550nmにおける厚さ方向のレターデーションである。)
    The angle formed by the absorption axis direction of the polarizer layer and the slow axis direction of the λ / 2 plate is −30 ° × Rth1 (550) / | Rth1 (550) | + 45 ° ± 8 °
    And the angle formed by the absorption axis direction of the polarizer layer and the slow axis direction of the λ / 4 plate is 30 ° × Rth1 (550) / | Rth1 (550) | + 45 ° ± 8 °
    The organic EL display device according to claim 1, wherein (However, Rth1 (550) is retardation in the thickness direction of the λ / 2 plate at a wavelength of 550 nm.)
  3.  前記λ/2板、及び前記λ/4板の少なくとも一方がディスコティック液晶化合物、又は棒状液晶化合物のいずれかを含む層である請求項2に記載の有機EL表示装置。 3. The organic EL display device according to claim 2, wherein at least one of the λ / 2 plate and the λ / 4 plate is a layer containing either a discotic liquid crystal compound or a rod-like liquid crystal compound.
  4.  前記偏光子層から前記λ/2板までの間の層であって、前記λ/2板を含み前記偏光子層を含まない全ての層の波長550nmにおけるRthの総和が-150nm~150nmであり、かつ、前記λ/2板から前記λ/4板までの間の層であって、前記λ/4板を含み前記λ/2板を含まない全ての層の波長550nmにおけるRthの総和が-120nm~120nmである請求項3に記載の有機EL表示装置。 The sum of Rth at a wavelength of 550 nm of the layers between the polarizer layer and the λ / 2 plate and including the λ / 2 plate but not the polarizer layer is −150 nm to 150 nm. And the sum of Rth at a wavelength of 550 nm of all layers between the λ / 2 plate and the λ / 4 plate, including the λ / 4 plate but not the λ / 2 plate, is − The organic EL display device according to claim 3, wherein the organic EL display device has a thickness of 120 nm to 120 nm.
  5.  少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる第2の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-30nm~150nmであり、前記第2の透明支持体層の波長550nmにおけるRthが0nm~200nmである請求項4に記載の有機EL表示装置。 At least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, a second transparent support layer composed of one or more layers, and a disco An organic EL display device comprising a λ / 4 plate composed of a layer containing a tick liquid crystal compound and an organic EL panel in this order, wherein the Rth of the first transparent support layer at a wavelength of 550 nm is −30 nm to 150 nm The organic EL display device according to claim 4, wherein Rth of the second transparent support layer at a wavelength of 550 nm is from 0 nm to 200 nm.
  6.  少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-10nm~140nmである請求項4に記載の有機EL表示装置。 A λ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a transparent support layer comprising one or more layers, a λ / 4 plate comprising a layer containing a discotic liquid crystal compound, and an organic EL panel The organic EL display device according to claim 4, wherein Rth at a wavelength of 550 nm of the transparent support layer is -10 nm to 140 nm.
  7.  少なくとも偏光子層と、1層以上からなる透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-30nm~30nmである請求項4に記載の有機EL表示装置。 At least a polarizer layer, a transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, a λ / 4 plate composed of a layer containing a discotic liquid crystal compound, and an organic EL panel 5. The organic EL display device according to claim 4, wherein Rth at a wavelength of 550 nm of the transparent support layer is −30 nm to 30 nm.
  8.  少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-10nm~100nmである請求項4に記載の有機EL表示装置。 A λ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a λ / 4 plate comprising a layer containing a discotic liquid crystal compound, a transparent support layer comprising one or more layers, and an organic EL panel The organic EL display device according to claim 4, wherein the transparent support layer has an Rth of -10 nm to 100 nm at a wavelength of 550 nm.
  9.  少なくとも偏光子層と、1層以上からなる透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える光学積層体であって、前記透明支持体層の波長550nmにおけるRthが-50nm~150nmである請求項4に記載の有機EL表示装置。 At least a polarizer layer, a transparent support layer comprising one or more layers, a λ / 2 plate comprising a layer containing a discotic liquid crystal compound, a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, and an organic EL panel 5. The organic EL display device according to claim 4, wherein Rth at a wavelength of 550 nm of the transparent support layer is −50 nm to 150 nm.
  10.  少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える光学積層体であって、前記透明支持体層の波長550nmにおけるRthが-90nm~50nmである請求項4に記載の有機EL表示装置。 A λ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a transparent support layer comprising one or more layers, a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, and an organic EL panel 5. The organic EL display device according to claim 4, wherein Rth at a wavelength of 550 nm of the transparent support layer is −90 nm to 50 nm.
  11.  少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-110nm~40nm請求項4に記載の有機EL表示装置。 A λ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, a transparent support layer comprising one or more layers, an organic EL panel, The organic EL display device according to claim 4, wherein the transparent support layer has an Rth of −110 nm to 40 nm at a wavelength of 550 nm.
  12.  少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる第2の透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-40nm~140nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-70nm~70nmである請求項4に記載の有機EL表示装置。 At least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, a second transparent support layer composed of one or more layers, and a rod shape An organic EL display device comprising a λ / 4 plate composed of a layer containing a liquid crystal compound and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is −40 nm to 140 nm, The organic EL display device according to claim 4, wherein Rth of the second transparent support layer at a wavelength of 550 nm is -70 nm to 70 nm.
  13.  少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-50nm~130nmであり、前記第2の透明支持体層の波長550nmにおけるRthが0nm~100nmである請求項4に記載の有機EL表示装置。 At least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, and a λ / 4 plate composed of a layer containing a discotic liquid crystal compound, An organic EL display device comprising a second transparent support layer composed of one or more layers and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is −50 nm to 130 nm The organic EL display device according to claim 4, wherein Rth of the second transparent support layer at a wavelength of 550 nm is 0 nm to 100 nm.
  14.  少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-40nm~140nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-100nm~40nmである請求項4に記載の有機EL表示装置。 At least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a discotic liquid crystal compound, a λ / 4 plate composed of a layer containing a rod-like liquid crystal compound, and 1 An organic EL display device comprising a second transparent support layer composed of a plurality of layers and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is −40 nm to 140 nm, The organic EL display device according to claim 4, wherein Rth of the second transparent support layer at a wavelength of 550 nm is -100 nm to 40 nm.
  15.  少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-40nm~150nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-50nm~100nmである請求項4に記載の有機EL表示装置。 A λ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a first transparent support layer comprising one or more layers, a λ / 4 plate comprising a layer containing a discotic liquid crystal compound, An organic EL display device including a second transparent support layer composed of one or more layers and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is −40 nm to 150 nm The organic EL display device according to claim 4, wherein Rth of the second transparent support layer at a wavelength of 550 nm is -50 nm to 100 nm.
  16.  少なくとも偏光子層と、ディスコティック液晶化合物を含む層からなるλ/2板と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-70nm~100nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-110nm~40nmである請求項4に記載の有機EL表示装置。 A λ / 2 plate comprising at least a polarizer layer, a layer containing a discotic liquid crystal compound, a first transparent support layer comprising one or more layers, a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, and 1 An organic EL display device comprising a second transparent support layer comprising at least a layer and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is −70 nm to 100 nm, The organic EL display device according to claim 4, wherein Rth of the second transparent support layer at a wavelength of 550 nm is -110 nm to 40 nm.
  17.  少なくとも偏光子層と、1層以上からなる透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-150nm~50nmである請求項4に記載の有機EL表示装置。 At least a polarizer layer, a transparent support layer comprising one or more layers, a λ / 2 plate comprising a layer containing a rod-like liquid crystal compound, a λ / 4 plate comprising a layer containing a discotic liquid crystal compound, and an organic EL panel The organic EL display device according to claim 4, wherein the transparent support layer has an Rth of −150 nm to 50 nm at a wavelength of 550 nm.
  18.  少なくとも偏光子層と、1層以上からなる透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-30nm~30nmである請求項4に記載の有機EL表示装置。 At least a polarizer layer, a transparent support layer comprising one or more layers, a λ / 2 plate comprising a layer containing a rod-like liquid crystal compound, a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, and an organic EL panel 5. The organic EL display device according to claim 4, wherein Rth at a wavelength of 550 nm of the transparent support layer is −30 nm to 30 nm.
  19.  少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-50nm~90nmである請求項4に記載の有機EL表示装置。 A λ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a transparent support layer comprising one or more layers, a λ / 4 plate comprising a layer containing a discotic liquid crystal compound, and an organic EL panel The organic EL display device according to claim 4, wherein Rth of the transparent support layer at a wavelength of 550 nm is -50 nm to 90 nm.
  20.  少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-140nm~10nmである請求項4に記載の有機EL表示装置。 A λ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a transparent support layer comprising one or more layers, a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, and an organic EL panel 5. The organic EL display device according to claim 4, wherein the transparent support layer has an Rth of −140 nm to 10 nm at a wavelength of 550 nm.
  21.  少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-50nm~110nmである請求項4に記載の有機EL表示装置。 A λ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a λ / 4 plate comprising a layer containing a discotic liquid crystal compound, a transparent support layer comprising one or more layers, an organic EL panel, The organic EL display device according to claim 4, wherein the transparent support layer has an Rth of -50 nm to 110 nm at a wavelength of 550 nm.
  22.  少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記透明支持体層の波長550nmにおけるRthが-100nm~10nmである請求項4に記載の有機EL表示装置。 A λ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, a transparent support layer comprising one or more layers, and an organic EL panel 5. The organic EL display device according to claim 4, wherein the transparent support layer has an Rth of −100 nm to 10 nm at a wavelength of 550 nm.
  23.  少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる第2の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-140nm~40nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-70nm~70nmである請求項4に記載の有機EL表示装置。 At least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a rod-like liquid crystal compound, a second transparent support layer composed of one or more layers, and a discotic An organic EL display device comprising a λ / 4 plate comprising a layer containing a liquid crystal compound and an organic EL panel in this order, wherein the first transparent support layer has an Rth of −140 nm to 40 nm at a wavelength of 550 nm, The organic EL display device according to claim 4, wherein Rth of the second transparent support layer at a wavelength of 550 nm is -70 nm to 70 nm.
  24.  少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる第2の透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-150nm~40nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-200nm~0nmである請求項4に記載の有機EL表示装置。 At least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a rod-shaped liquid crystal compound, a second transparent support layer composed of one or more layers, and a rod-shaped liquid crystal An organic EL display device comprising a λ / 4 plate comprising a layer containing a compound and an organic EL panel in this order, wherein Rth of the first transparent support layer at a wavelength of 550 nm is −150 nm to 40 nm, The organic EL display device according to claim 4, wherein Rth of the second transparent support layer at a wavelength of 550 nm is -200 nm to 0 nm.
  25.  少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-140nm~40nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-40nm~100nmである請求項4に記載の有機EL表示装置。 At least a polarizer layer, a first transparent support layer composed of one or more layers, a λ / 2 plate composed of a layer containing a rod-like liquid crystal compound, a λ / 4 plate composed of a layer containing a discotic liquid crystal compound, and 1 An organic EL display device comprising a second transparent support layer comprising at least a layer and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is −140 nm to 40 nm, The organic EL display device according to claim 4, wherein Rth of the second transparent support layer at a wavelength of 550 nm is -40 nm to 100 nm.
  26.  少なくとも偏光子層と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/2板と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-120nm~40nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-100nm~0nmである請求項4に記載の有機EL表示装置。 At least a polarizer layer, a first transparent support layer comprising one or more layers, a λ / 2 plate comprising a layer containing a rod-like liquid crystal compound, a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, and one layer An organic EL display device comprising the above-described second transparent support layer and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is −120 nm to 40 nm, The organic EL display device according to claim 4, wherein Rth of the second transparent support layer at a wavelength of 550 nm is from -100 nm to 0 nm.
  27.  少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる第1の透明支持体層と、ディスコティック液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-100nm~80nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-40nm~100nmである請求項4に記載の有機EL表示装置。 A λ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a first transparent support layer comprising one or more layers, a λ / 4 plate comprising a layer containing a discotic liquid crystal compound, and 1 An organic EL display device comprising a second transparent support layer composed of at least a layer and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is -100 nm to 80 nm, The organic EL display device according to claim 4, wherein Rth of the second transparent support layer at a wavelength of 550 nm is -40 nm to 100 nm.
  28.  少なくとも偏光子層と、棒状液晶化合物を含む層からなるλ/2板と、1層以上からなる第1の透明支持体層と、棒状液晶化合物を含む層からなるλ/4板と、1層以上からなる第2の透明支持体層と、有機ELパネルとをこの順に備える有機EL表示装置であって、前記第1の透明支持体層の波長550nmにおけるRthが-150nm~40nmであり、前記第2の透明支持体層の波長550nmにおけるRthが-100nm~50nmである請求項4に記載の有機EL表示装置。 A λ / 2 plate comprising at least a polarizer layer, a layer containing a rod-like liquid crystal compound, a first transparent support layer comprising one or more layers, a λ / 4 plate comprising a layer containing a rod-like liquid crystal compound, and one layer An organic EL display device comprising the above-described second transparent support layer and an organic EL panel in this order, wherein Rth at a wavelength of 550 nm of the first transparent support layer is −150 nm to 40 nm, The organic EL display device according to claim 4, wherein Rth of the second transparent support layer at a wavelength of 550 nm is from -100 nm to 50 nm.
  29.  前記偏光子層と前記有機ELパネルとの間に少なくとも1層のセルロースアシレート層を含む請求項1~28のいずれか1項に記載の有機EL表示装置。 The organic EL display device according to any one of claims 1 to 28, comprising at least one cellulose acylate layer between the polarizer layer and the organic EL panel.
PCT/JP2013/057541 2012-03-15 2013-03-15 Organic el display element comprising optical laminate WO2013137464A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380014240.0A CN104170525B (en) 2012-03-15 2013-03-15 There is the organic EL display element of optical laminate
JP2014505041A JP5745686B2 (en) 2012-03-15 2013-03-15 ORGANIC EL DISPLAY ELEMENT HAVING OPTICAL LAMINATE
KR1020147025436A KR101631399B1 (en) 2012-03-15 2013-03-15 Organic el display element comprising optical laminate
US14/484,453 US9588271B2 (en) 2012-03-15 2014-09-12 Organic EL display element having optical stack

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-059351 2012-03-15
JP2012059351 2012-03-15
JP2012-222480 2012-10-04
JP2012222480 2012-10-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/484,453 Continuation US9588271B2 (en) 2012-03-15 2014-09-12 Organic EL display element having optical stack

Publications (1)

Publication Number Publication Date
WO2013137464A1 true WO2013137464A1 (en) 2013-09-19

Family

ID=49161358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057541 WO2013137464A1 (en) 2012-03-15 2013-03-15 Organic el display element comprising optical laminate

Country Status (5)

Country Link
US (1) US9588271B2 (en)
JP (1) JP5745686B2 (en)
KR (1) KR101631399B1 (en)
CN (1) CN104170525B (en)
WO (1) WO2013137464A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015106114A (en) * 2013-12-02 2015-06-08 日東電工株式会社 Circular polarization plate for organic el display device, and organic el display device
WO2016035636A1 (en) * 2014-09-01 2016-03-10 富士フイルム株式会社 Circularly polarizing film, optical film and image display device
WO2016047465A1 (en) * 2014-09-26 2016-03-31 日本ゼオン株式会社 Elongated circularly polarizing plate, elongated broadband λ/4 plate, organic electroluminescent display device, and liquid crystal display device
WO2016194792A1 (en) * 2015-05-29 2016-12-08 富士フイルム株式会社 Polarizing plate, display device, and organic electroluminescence display device
WO2017038415A1 (en) * 2015-08-31 2017-03-09 日東電工株式会社 Polarizing plate having optical compensation layer, and organic el panel using same
WO2017038417A1 (en) * 2015-08-31 2017-03-09 日東電工株式会社 Optical compensation layer-equipped polarizing plate and organic el panel using same
WO2017038416A1 (en) * 2015-08-31 2017-03-09 日東電工株式会社 Longitudinally oriented optical compensation layer-equipped polarizing plate and organic el panel using same
JP2017083868A (en) * 2013-03-14 2017-05-18 富士フイルム株式会社 Method for manufacturing optical compensation film, optical compensation film, polarizing plate, and liquid crystal display device
KR20170063614A (en) * 2014-09-26 2017-06-08 니폰 제온 가부시키가이샤 /4 circularly polarizing plate method for producing same broadband /4 plate organic electroluminescent display device and liquid crystal display device
JP2017187737A (en) * 2016-04-05 2017-10-12 三星電子株式会社Samsung Electronics Co.,Ltd. Organic light-emitting device
CN107615881A (en) * 2015-05-29 2018-01-19 富士胶片株式会社 Organic electroluminescence display device and method of manufacturing same
US9977165B2 (en) 2014-08-29 2018-05-22 Fujifilm Corporation Method of producing optical laminate, optical laminate, polarizing plate and organic el display device
JP2018109778A (en) * 2018-03-01 2018-07-12 日東電工株式会社 Polarizing plate with optical compensation layers, and organic el panel having the same
WO2018164126A1 (en) * 2017-03-08 2018-09-13 富士フイルム株式会社 Organic electroluminescence display device, phase difference film, and circularly polarizing plate
US10132974B2 (en) 2014-09-30 2018-11-20 Fujifilm Corporation Circularly polarizing plate and display device
WO2019009255A1 (en) * 2017-07-03 2019-01-10 富士フイルム株式会社 Liquid crystal film, optical laminate, circularly polarizing plate, and organic electroluminescent display device
JP2019066882A (en) * 2019-01-16 2019-04-25 日東電工株式会社 Polarizing plate with optical compensation layer and organic EL panel using the same
WO2019159888A1 (en) * 2018-02-14 2019-08-22 住友化学株式会社 Layered body and method for manufacturing same
US10459136B2 (en) 2014-08-29 2019-10-29 Fujifilm Corporation Optical laminate, polarizing plate and organic EL display device
TWI682197B (en) * 2014-09-17 2020-01-11 日商日本瑞翁股份有限公司 Circular polarizing plate, wide-band λ/4 plate and organic electroluminescence display device
JP2020009634A (en) * 2018-07-09 2020-01-16 Tianma Japan株式会社 Display device
US10564339B2 (en) 2015-03-30 2020-02-18 Fujifilm Corporation Phase difference film, circularly polarizing film, and image display device
US10571613B2 (en) 2015-03-30 2020-02-25 Fujifilm Corporation Circularly polarizing plate and display device
US10644078B2 (en) 2015-09-03 2020-05-05 Fujifilm Corporation Organic electroluminescence display device having a polarizer comprised of polarization regions
WO2021149312A1 (en) * 2020-01-24 2021-07-29 日東電工株式会社 Retardation-layer-equipped polarizing plate and image display device using same
WO2021149311A1 (en) * 2020-01-24 2021-07-29 日東電工株式会社 Retardation layer–equipped polarizing plate and image display device using same
JP2021117482A (en) * 2020-01-24 2021-08-10 日東電工株式会社 Polarizing plate with retardation layer, and image display device using the same
JP2021117481A (en) * 2020-01-24 2021-08-10 日東電工株式会社 Polarizing plate with retardation layer, and image display device using the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107408359B (en) 2015-02-04 2020-06-05 富士胶片株式会社 Image display device
JP6560133B2 (en) * 2015-05-29 2019-08-14 日東電工株式会社 Laminated roll, optical unit, organic EL display device, transparent conductive film, and optical unit manufacturing method
US11114645B2 (en) 2016-04-29 2021-09-07 Samsung Display Co., Ltd. Polarization member and display device including the same
KR102515564B1 (en) 2016-05-19 2023-03-28 삼성전자주식회사 Organic light emitting diode device
KR102601679B1 (en) 2016-10-11 2023-11-10 동우 화인켐 주식회사 Laminate, a polarizing plate including thereof and preparing method for the same
KR101851282B1 (en) 2016-10-21 2018-06-07 동우 화인켐 주식회사 Laminate, a polarizing plate including thereof and preparing method for the same
KR20180061485A (en) 2016-11-28 2018-06-08 삼성디스플레이 주식회사 Flexible display device
JP6859109B2 (en) * 2017-01-18 2021-04-14 日東電工株式会社 Polarizing plate with optical compensation layer and organic EL panel using it
KR20200064616A (en) 2018-11-29 2020-06-08 동우 화인켐 주식회사 Polarizing film and display device including the same
CN111200001A (en) * 2020-01-10 2020-05-26 京东方科技集团股份有限公司 Display panel and display device
DE112021001426T5 (en) 2021-01-18 2023-01-12 Beijing Boe Display Technology Co., Ltd. DISPLAY PANEL AND DISPLAY DEVICE
KR20230046417A (en) 2021-09-30 2023-04-06 동우 화인켐 주식회사 Optical film laminate and image display device including the same
KR20230070667A (en) 2021-11-15 2023-05-23 동우 화인켐 주식회사 Method of fabricating optical film laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155866A (en) * 1999-11-24 2001-06-08 Fuji Photo Film Co Ltd Electroluminescent display
JP2009139812A (en) * 2007-12-10 2009-06-25 Konica Minolta Opto Inc Roll-shaped retardation film, method for manufacturing the roll-shaped retardation film, and circularly polarizing plate
JP2009244486A (en) * 2008-03-31 2009-10-22 Toagosei Co Ltd Phase difference integrated type composite polarizing plate, and image display device using the same
JP2011210724A (en) * 2010-03-29 2011-10-20 Samsung Electronics Co Ltd Organic light-emitting element and polarization structure utilized for the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2761453B2 (en) 1993-11-17 1998-06-04 出光興産株式会社 Organic EL element and organic EL panel
JPH09127885A (en) 1995-10-30 1997-05-16 Sony Corp Display element
JP3854659B2 (en) 1996-04-26 2006-12-06 キヤノン株式会社 Liquid crystal device
JP2000105316A (en) 1998-06-24 2000-04-11 Fuji Photo Film Co Ltd Optical compensating sheet, stn type liquid crystal display device and aligning method of discotic liquid crystalline molecule
JP2000056310A (en) 1998-08-04 2000-02-25 Fuji Photo Film Co Ltd Optical compensation sheet and stn type liquid crystal display device
JP2000104073A (en) 1998-09-30 2000-04-11 Fuji Photo Film Co Ltd Vertical alignment layer, optical compensation sheet, stn-type liquid crystal display, and method for aligning discotic liquid crystal molecule
JP2001004837A (en) 1999-06-22 2001-01-12 Fuji Photo Film Co Ltd Phase difference plate and circular polarization plate
JP2002098833A (en) 2000-09-22 2002-04-05 Teijin Ltd Transparent conductive substrate and display element by using the same
JP4630884B2 (en) 2002-04-26 2011-02-09 東芝モバイルディスプレイ株式会社 EL display device driving method and EL display device
JP2003332068A (en) 2002-05-15 2003-11-21 Nitto Denko Corp Electroluminescence element
JP2004053841A (en) 2002-07-18 2004-02-19 Fuji Photo Film Co Ltd lambda/4 PLATE AND CIRCULAR POLARIZING PLATE
JP2007108732A (en) 2005-09-16 2007-04-26 Fujifilm Corp Polarizing plate and liquid crystal display device
JP4737629B2 (en) 2005-12-16 2011-08-03 日東電工株式会社 Elliptical polarizing plate and image display device using the same
JP5473506B2 (en) 2009-09-14 2014-04-16 ユー・ディー・シー アイルランド リミテッド Color filter and light emitting display element
KR101628428B1 (en) * 2012-12-17 2016-06-08 제일모직주식회사 Polarizing plate, method for preparing the same and optical display apparatus comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155866A (en) * 1999-11-24 2001-06-08 Fuji Photo Film Co Ltd Electroluminescent display
JP2009139812A (en) * 2007-12-10 2009-06-25 Konica Minolta Opto Inc Roll-shaped retardation film, method for manufacturing the roll-shaped retardation film, and circularly polarizing plate
JP2009244486A (en) * 2008-03-31 2009-10-22 Toagosei Co Ltd Phase difference integrated type composite polarizing plate, and image display device using the same
JP2011210724A (en) * 2010-03-29 2011-10-20 Samsung Electronics Co Ltd Organic light-emitting element and polarization structure utilized for the same

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017083868A (en) * 2013-03-14 2017-05-18 富士フイルム株式会社 Method for manufacturing optical compensation film, optical compensation film, polarizing plate, and liquid crystal display device
JP2015106114A (en) * 2013-12-02 2015-06-08 日東電工株式会社 Circular polarization plate for organic el display device, and organic el display device
US9977165B2 (en) 2014-08-29 2018-05-22 Fujifilm Corporation Method of producing optical laminate, optical laminate, polarizing plate and organic el display device
US10459136B2 (en) 2014-08-29 2019-10-29 Fujifilm Corporation Optical laminate, polarizing plate and organic EL display device
WO2016035636A1 (en) * 2014-09-01 2016-03-10 富士フイルム株式会社 Circularly polarizing film, optical film and image display device
TWI682197B (en) * 2014-09-17 2020-01-11 日商日本瑞翁股份有限公司 Circular polarizing plate, wide-band λ/4 plate and organic electroluminescence display device
CN112505819A (en) * 2014-09-26 2021-03-16 日本瑞翁株式会社 Long strip circular polarizing plate, long strip wide band lambda/4 plate, organic electroluminescent display device and liquid crystal display device
CN107076905A (en) * 2014-09-26 2017-08-18 日本瑞翁株式会社 The circular polarizing disk of strip, broadband λ/4 piece, organic electroluminescence display device and method of manufacturing same and the liquid crystal display device of strip
US10295714B2 (en) 2014-09-26 2019-05-21 Zeon Corporation Elongated circularly polarizing plate, elongated broadband lambda/4 plate, organic electroluminescent display device, and liquid crystal display device
KR20170060002A (en) * 2014-09-26 2017-05-31 니폰 제온 가부시키가이샤 ELONGATED CIRCULARLY POLARIZING PLATE, ELONGATED BROADBAND λ/4 PLATE, ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE, AND LIQUID CRYSTAL DISPLAY DEVICE
KR20170063614A (en) * 2014-09-26 2017-06-08 니폰 제온 가부시키가이샤 /4 circularly polarizing plate method for producing same broadband /4 plate organic electroluminescent display device and liquid crystal display device
JPWO2016047465A1 (en) * 2014-09-26 2017-07-06 日本ゼオン株式会社 Long circular polarizer, long broadband λ / 4 plate, organic electroluminescence display device, and liquid crystal display device
CN107076902A (en) * 2014-09-26 2017-08-18 日本瑞翁株式会社 The wave plate of circular polarizing disk and its manufacture method, broadband λ/4, organic electroluminescence display device and method of manufacturing same and liquid crystal display device
WO2016047465A1 (en) * 2014-09-26 2016-03-31 日本ゼオン株式会社 Elongated circularly polarizing plate, elongated broadband λ/4 plate, organic electroluminescent display device, and liquid crystal display device
TWI668474B (en) * 2014-09-26 2019-08-11 日商日本瑞翁股份有限公司 Long circular polarizing plate, long wide-band λ/4 plate, organic electroluminescence display device and liquid crystal display device
KR102412038B1 (en) * 2014-09-26 2022-06-21 니폰 제온 가부시키가이샤 ELONGATED CIRCULARLY POLARIZING PLATE, ELONGATED BROADBAND λ/4 PLATE, ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE, AND LIQUID CRYSTAL DISPLAY DEVICE
KR102422556B1 (en) * 2014-09-26 2022-07-18 니폰 제온 가부시키가이샤 Circularly polarizing plate, method for producing same, broadband λ/4 plate, organic electroluminescent display device, and liquid crystal display device
US10132974B2 (en) 2014-09-30 2018-11-20 Fujifilm Corporation Circularly polarizing plate and display device
US10564339B2 (en) 2015-03-30 2020-02-18 Fujifilm Corporation Phase difference film, circularly polarizing film, and image display device
US10571613B2 (en) 2015-03-30 2020-02-25 Fujifilm Corporation Circularly polarizing plate and display device
CN107615881B (en) * 2015-05-29 2019-08-27 富士胶片株式会社 Organic electroluminescence display device and method of manufacturing same
JPWO2016194792A1 (en) * 2015-05-29 2018-04-26 富士フイルム株式会社 Polarizing plate, display device, and organic electroluminescence display device
WO2016194792A1 (en) * 2015-05-29 2016-12-08 富士フイルム株式会社 Polarizing plate, display device, and organic electroluminescence display device
KR20170129954A (en) 2015-05-29 2017-11-27 후지필름 가부시키가이샤 Polarizing plate, display device, and organic electroluminescence display device
CN107615881A (en) * 2015-05-29 2018-01-19 富士胶片株式会社 Organic electroluminescence display device and method of manufacturing same
TWI702422B (en) * 2015-08-31 2020-08-21 日商日東電工股份有限公司 Polarizing plate with optical compensation layer and organic EL panel using it
JP2017049361A (en) * 2015-08-31 2017-03-09 日東電工株式会社 Polarizing plate with optical compensation layer and organic EL panel using the same
WO2017038415A1 (en) * 2015-08-31 2017-03-09 日東電工株式会社 Polarizing plate having optical compensation layer, and organic el panel using same
US10816708B2 (en) 2015-08-31 2020-10-27 Nitto Denko Corporation Polarizing plate having optical compensation layer, and organic EL panel using same
WO2017038417A1 (en) * 2015-08-31 2017-03-09 日東電工株式会社 Optical compensation layer-equipped polarizing plate and organic el panel using same
WO2017038416A1 (en) * 2015-08-31 2017-03-09 日東電工株式会社 Longitudinally oriented optical compensation layer-equipped polarizing plate and organic el panel using same
US10644078B2 (en) 2015-09-03 2020-05-05 Fujifilm Corporation Organic electroluminescence display device having a polarizer comprised of polarization regions
JP7020781B2 (en) 2016-04-05 2022-02-16 三星電子株式会社 Organic light emitting device
JP2017187737A (en) * 2016-04-05 2017-10-12 三星電子株式会社Samsung Electronics Co.,Ltd. Organic light-emitting device
JPWO2018164126A1 (en) * 2017-03-08 2019-12-19 富士フイルム株式会社 Organic electroluminescence display device, retardation film, circular polarizer
WO2018164126A1 (en) * 2017-03-08 2018-09-13 富士フイルム株式会社 Organic electroluminescence display device, phase difference film, and circularly polarizing plate
US10935836B2 (en) 2017-03-08 2021-03-02 Fujifilm Corporation Organic electroluminescent display device, phase difference film, and circularly polarizing plate
US11230669B2 (en) 2017-07-03 2022-01-25 Fujifilm Corporation Liquid crystal film, optical laminate, circularly polarizing plate, and organic electroluminescent display device
KR20200003879A (en) 2017-07-03 2020-01-10 후지필름 가부시키가이샤 Liquid crystal film, optical laminated body, circularly polarizing plate, organic electro luminescence display device
WO2019009255A1 (en) * 2017-07-03 2019-01-10 富士フイルム株式会社 Liquid crystal film, optical laminate, circularly polarizing plate, and organic electroluminescent display device
JPWO2019009255A1 (en) * 2017-07-03 2020-04-16 富士フイルム株式会社 Liquid crystal film, optical laminate, circularly polarizing plate, organic electroluminescence display device
WO2019159888A1 (en) * 2018-02-14 2019-08-22 住友化学株式会社 Layered body and method for manufacturing same
JP2018109778A (en) * 2018-03-01 2018-07-12 日東電工株式会社 Polarizing plate with optical compensation layers, and organic el panel having the same
JP2020009634A (en) * 2018-07-09 2020-01-16 Tianma Japan株式会社 Display device
JP7300813B2 (en) 2018-07-09 2023-06-30 Tianma Japan株式会社 Display device
JP2019066882A (en) * 2019-01-16 2019-04-25 日東電工株式会社 Polarizing plate with optical compensation layer and organic EL panel using the same
JP2021117481A (en) * 2020-01-24 2021-08-10 日東電工株式会社 Polarizing plate with retardation layer, and image display device using the same
JP2021117482A (en) * 2020-01-24 2021-08-10 日東電工株式会社 Polarizing plate with retardation layer, and image display device using the same
WO2021149311A1 (en) * 2020-01-24 2021-07-29 日東電工株式会社 Retardation layer–equipped polarizing plate and image display device using same
JP7114664B2 (en) 2020-01-24 2022-08-08 日東電工株式会社 Polarizing plate with retardation layer and image display device using the same
JP7114665B2 (en) 2020-01-24 2022-08-08 日東電工株式会社 Polarizing plate with retardation layer and image display device using the same
CN115004067A (en) * 2020-01-24 2022-09-02 日东电工株式会社 Polarizing plate with phase difference layer and image display device using same
WO2021149312A1 (en) * 2020-01-24 2021-07-29 日東電工株式会社 Retardation-layer-equipped polarizing plate and image display device using same
TWI823031B (en) * 2020-01-24 2023-11-21 日商日東電工股份有限公司 Polarizing plate with retardation layer and image display device using the same

Also Published As

Publication number Publication date
US9588271B2 (en) 2017-03-07
KR101631399B1 (en) 2016-06-16
KR20140135739A (en) 2014-11-26
JPWO2013137464A1 (en) 2015-08-03
US20140375935A1 (en) 2014-12-25
CN104170525A (en) 2014-11-26
JP5745686B2 (en) 2015-07-08
CN104170525B (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5745686B2 (en) ORGANIC EL DISPLAY ELEMENT HAVING OPTICAL LAMINATE
KR102523072B1 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP6259925B2 (en) Circular polarizing plate, display device
JP5753922B2 (en) Phase difference plate for circularly polarizing plate, circularly polarizing plate, organic EL display device
US7815972B2 (en) Method for manufacturing polarizing film and polarizing film and optical film manufactured by using the method
US20120057107A1 (en) Optical display device having polarizing film
US9366793B2 (en) Circularly polarizing plate, retardation plate for circularly polarizing plate, and organic electroluminescence display apparatus
WO2006054597A1 (en) Optical compensation layer-carrying polarizing plate, liquid crystal panel, liquid crystal display unit, image display unit and production method of optical compensation layer-carrying polarizing plate
JP2010152374A (en) Polarizer, optical film using the same, and image display device using them
WO2016035636A1 (en) Circularly polarizing film, optical film and image display device
JP4928985B2 (en) Liquid crystal display
JP2013037222A (en) Polarizer and method of manufacturing the same
JP4198559B2 (en) Method for producing polarizing film, and polarizing film and optical film using the same
JP4646236B2 (en) Method for producing polarizer and method for producing polarizing plate
JPH1062624A (en) Polarizing plate with wide angle of visibility
JP4975236B2 (en) Polarizer, optical film using the same, and image display device using the same
JP4651054B2 (en) Manufacturing method of polarizer and wet stretching apparatus used therefor
JP6699514B2 (en) Set of polarizing plates for IPS mode and IPS mode liquid crystal display device using the same
JP2018060150A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
WO2020115977A1 (en) Polarizing plate with retardation layer and image display device using same
JP2010091654A (en) Liquid crystal display and set of polarizing plate used for the same
JP2008026637A (en) Method of manufacturing polarizer, polarizer, polarizing plate, optical film and image display apparatus
JP6724729B2 (en) Polarizing plate set and IPS mode liquid crystal display device using the same
JP2018060149A (en) Set of polarizing plates and ips mode liquid crystal display using the same
TW202243891A (en) Laminate and method for manufacturing image display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014505041

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147025436

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760565

Country of ref document: EP

Kind code of ref document: A1