JP2013037222A - Polarizer and method of manufacturing the same - Google Patents

Polarizer and method of manufacturing the same Download PDF

Info

Publication number
JP2013037222A
JP2013037222A JP2011173834A JP2011173834A JP2013037222A JP 2013037222 A JP2013037222 A JP 2013037222A JP 2011173834 A JP2011173834 A JP 2011173834A JP 2011173834 A JP2011173834 A JP 2011173834A JP 2013037222 A JP2013037222 A JP 2013037222A
Authority
JP
Japan
Prior art keywords
film
polarizer
polarizing plate
pva
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011173834A
Other languages
Japanese (ja)
Other versions
JP6121091B2 (en
Inventor
Daisuke Ogomi
大介 尾込
Nobuaki Iwamoto
展明 岩本
Tsukasa Miyazaki
司 宮崎
Akie Ikenaga
暁恵 池永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2011173834A priority Critical patent/JP6121091B2/en
Priority to TW101125534A priority patent/TWI565975B/en
Priority to KR1020120086633A priority patent/KR101991130B1/en
Publication of JP2013037222A publication Critical patent/JP2013037222A/en
Application granted granted Critical
Publication of JP6121091B2 publication Critical patent/JP6121091B2/en
Priority to KR1020180114205A priority patent/KR101991202B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • B29D11/00894Applying coatings; tinting; colouring colouring or tinting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Ophthalmology & Optometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polarizer which exhibits both high transmission and high polarization, i.e., high white luminance and high display contrast, and also provide a method of manufacturing the same.SOLUTION: The method of manufacturing the polarizer at least comprises a swelling process, a dyeing process, a crosslinking process, and an extending process which are applied to a polyvinyl alcohol film. In the swelling process, the polyvinyl alcohol film is extended by a factor of 1.4 to 2.4, thereby controlling the degree of crystallinity of the polyvinyl alcohol film to be 25 to 32%.

Description

本発明は偏光子及びその製造方法に関する。また本発明は当該偏光子を用いた偏光板に関する。前記偏光子、偏光板はこれ単独で、またはこれを積層した光学フィルムとして液晶表示装置、有機EL表示装置等のフラットパネルディスプレー等の画像表示装置を形成しうる。   The present invention relates to a polarizer and a method for manufacturing the same. The present invention also relates to a polarizing plate using the polarizer. The polarizer and the polarizing plate can be used alone or as an optical film laminated thereon to form an image display device such as a flat panel display such as a liquid crystal display device or an organic EL display device.

従来、液晶表示装置などに用いられる偏光子としては、ポリビニルアルコール系フィルムを、ヨウ素や二色性染料などで染色し、一軸延伸して形成された吸収二色性偏光子が広く用いられている。また、前記偏光子は、偏光子の両側または片側に鹸化処理したトリアセチルセルロースなどの透明保護フィルムを貼り合わせて、強度を補った偏光板として用いられている。   Conventionally, as a polarizer used for a liquid crystal display device or the like, an absorbing dichroic polarizer formed by uniaxially stretching a polyvinyl alcohol film dyed with iodine or a dichroic dye has been widely used. . Further, the polarizer is used as a polarizing plate having a strength enhanced by bonding a saponified transparent protective film such as triacetyl cellulose to both sides or one side of the polarizer.

特に近年では、液晶表示装置の低消費電力化の観点から、液晶表示装置の白輝度の向上が望まれており、それに伴い透過率の高い偏光子の開発が望まれている。しかしながら、単に単体透過率を高くしようとすると、偏光度が低下し、ひいては表示コントラストの低下を招くという問題がある。一方、偏光度を高くしようとすると、単体透過率が低下し、ひいては白輝度の低下を招くという問題がある。このように、偏光子の単体透過率と偏光度はトレード−オフの関係にある。そのため、高透過率及び高偏光度を両立する偏光子の開発が求められている。   In particular, in recent years, from the viewpoint of reducing the power consumption of a liquid crystal display device, it is desired to improve the white luminance of the liquid crystal display device, and accordingly, development of a polarizer having a high transmittance is desired. However, simply increasing the single transmittance causes a problem in that the degree of polarization decreases, and consequently the display contrast decreases. On the other hand, when the degree of polarization is to be increased, the single transmittance is lowered, and as a result, white brightness is lowered. Thus, the single transmittance of the polarizer and the degree of polarization are in a trade-off relationship. Therefore, development of a polarizer that achieves both high transmittance and high degree of polarization is required.

例えば、特許文献1には、透過率が41.1〜44.3であり、偏光度が99%以上である偏光板が開示されている。   For example, Patent Document 1 discloses a polarizing plate having a transmittance of 41.1 to 44.3 and a degree of polarization of 99% or more.

しかし、上記偏光板も透過率及び偏光度に関して満足できるものではない。   However, the polarizing plate is not satisfactory with respect to transmittance and degree of polarization.

特開2009‐92847号公報JP 2009-92847 A

本発明は、高透過率及び高偏光度を両立した、すなわち白輝度及び表示コントラストが高い偏光子及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a polarizer that achieves both high transmittance and high degree of polarization, that is, high white luminance and high display contrast, and a method for manufacturing the same.

本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、以下に示す偏光子の製造方法により前記目的に達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the object can be achieved by the following method for producing a polarizer, and have completed the present invention.

すなわち本発明は、ポリビニルアルコール系フィルムに、膨潤工程、染色工程、架橋工程および延伸工程を少なくとも施す偏光子の製造方法において、
前記膨潤工程において、ポリビニルアルコール系フィルムを1.4〜2.4倍延伸することにより、ポリビニルアルコール系フィルムの結晶化度を25〜32%に制御することを特徴とする偏光子の製造方法、に関する。
That is, the present invention provides a method for producing a polarizer in which a polyvinyl alcohol film is subjected to at least a swelling process, a dyeing process, a crosslinking process, and a stretching process.
In the swelling step, the polyvinyl alcohol film is stretched by 1.4 to 2.4 times to control the crystallinity of the polyvinyl alcohol film to 25 to 32%. About.

延伸する前の、ポリビニルアルコール(以下、「PVA」という)により形成された原反フィルムには、PVAの結晶部(ラメラ層)がランダムに存在している。このような原反フィルムを延伸すると結晶部が崩壊して伸びる。つまり、原反フィルムの結晶化度は延伸に伴い減少すると考えられる。   In the raw film formed of polyvinyl alcohol (hereinafter referred to as “PVA”) before stretching, crystal parts (lamellar layers) of PVA are present randomly. When such a raw film is stretched, the crystal part collapses and extends. That is, it is considered that the crystallinity of the raw film decreases with stretching.

膨潤工程後、染色工程にてヨウ素がPVAに吸着し、ヨウ素−PVA錯体を形成して二色性が発現する。ヨウ素は、PVAの非晶部にしか吸着できず、結晶部には吸着することができない。ポリビニルアルコール系フィルム(以下、「PVAフィルム」という)のヨウ素染色時にPVAフィルムの結晶化度が高すぎるとヨウ素の吸着部位が不足し、ヨウ素−PVA錯体が形成されにくくなる。一方、PVAフィルムの結晶化度が低すぎると延伸時に掛かる応力が低下し、PVAの配向性が高くならず、ヨウ素−PVA錯体が形成されにくくなる。   After the swelling process, iodine is adsorbed on the PVA in the dyeing process, and an iodine-PVA complex is formed to develop dichroism. Iodine can be adsorbed only on the amorphous part of PVA and not adsorbed on the crystal part. If the crystallinity of the PVA film is too high when the polyvinyl alcohol film (hereinafter referred to as “PVA film”) is stained with iodine, the adsorption site of iodine is insufficient, and the iodine-PVA complex is hardly formed. On the other hand, if the degree of crystallinity of the PVA film is too low, the stress applied during stretching decreases, the orientation of PVA does not increase, and the iodine-PVA complex becomes difficult to form.

本発明者らは、PVAフィルムの結晶化度に着目し、染色工程の前工程である膨潤工程において、PVAフィルムを1.4〜2.4倍延伸して、PVAフィルムの結晶化度を25〜32%に制御し、その後、染色工程を行うことにより、高透過率及び高偏光度を両立した偏光子が得られることを見出した。   The inventors pay attention to the degree of crystallinity of the PVA film, and in the swelling step, which is the previous step of the dyeing step, the PVA film is stretched by 1.4 to 2.4 times, and the degree of crystallinity of the PVA film is 25. It was found that a polarizer having both high transmittance and high degree of polarization can be obtained by controlling to ˜32% and then performing a dyeing step.

前記製造方法により得られる偏光子は、ホウ素含有量が4〜5.5重量%であり、単体透過率が43.0%以上、かつ偏光度が99.99%以上であり、高透過率及び高偏光度を両立した偏光子である。ホウ素含有量が4重量%未満の場合には、光学特性が低下する傾向にある。ホウ素含有量が5.5重量%を超える場合には、延伸工程において延伸切れが発生しやすくなる傾向にある。   The polarizer obtained by the manufacturing method has a boron content of 4 to 5.5% by weight, a single transmittance of 43.0% or more, and a degree of polarization of 99.99% or more. It is a polarizer with a high degree of polarization. When the boron content is less than 4% by weight, the optical properties tend to deteriorate. When the boron content exceeds 5.5% by weight, the stretching breakage tends to occur in the stretching step.

また、本発明は、前記偏光子の少なくとも一方の面に透明保護フィルムが積層されている偏光板、に関する。   The present invention also relates to a polarizing plate in which a transparent protective film is laminated on at least one surface of the polarizer.

また、本発明は、前記偏光子又は前記偏光板が少なくとも1枚積層されている光学フィルム、に関する。   The present invention also relates to an optical film in which at least one polarizer or the polarizing plate is laminated.

さらに、本発明は、前記光学フィルムを含む画像表示装置、に関する。   Furthermore, this invention relates to the image display apparatus containing the said optical film.

本発明の偏光子は、高透過率及び高偏光度を両立したものであり、当該偏光子を用いることにより、液晶表示装置の白輝度の向上及び表示コントラストの向上を同時に達成することができる。   The polarizer of the present invention has both a high transmittance and a high degree of polarization, and by using the polarizer, it is possible to simultaneously improve white luminance and display contrast of a liquid crystal display device.

偏光子の原料であるPVAフィルム(原反フィルム)としては、通常、結晶化度が35〜50%のものが用いられる。結晶化度が高すぎると延伸性が低下してヨウ素等の吸着部位が不足するため偏光特性が低下する。一方、結晶化度が低すぎると延伸時にフィルムに張力が掛からず、PVAが配向し難くなるため偏光特性が低下する。例えば、結晶化度が30%のPVAフィルムを使用し、膨潤工程においてPVAフィルムを延伸しない場合、膨潤工程後のPVAフィルムの結晶化度は25〜32%の範囲に入るが、本発明の偏光特性は得られない。つまり、PVAフィルムの初期の結晶化度が膨潤工程における延伸により低下し、延伸によって結晶化度を25〜32%に制御することにより、本発明の偏光特性が得られる。   As a PVA film (raw film) that is a raw material of a polarizer, a film having a crystallinity of 35 to 50% is usually used. If the degree of crystallinity is too high, the stretchability is lowered and the adsorbing sites such as iodine are insufficient, so that the polarization characteristics are lowered. On the other hand, if the degree of crystallinity is too low, no tension is applied to the film during stretching, and PVA is difficult to orient, resulting in a decrease in polarization characteristics. For example, when a PVA film having a crystallinity of 30% is used and the PVA film is not stretched in the swelling process, the crystallinity of the PVA film after the swelling process falls within the range of 25 to 32%. Characteristics cannot be obtained. That is, the initial crystallinity of the PVA film is lowered by stretching in the swelling process, and the polarization characteristics of the present invention can be obtained by controlling the crystallinity to 25 to 32% by stretching.

PVAフィルム中には、可塑剤、界面活性剤等の添加剤を添加してもよい。可塑剤としては、ポリオールおよびその縮合物等があげられ、たとえばグリセリン、ジグリセリン、トリグリセリン、エチレングリコール、プロピレングリコール、ポリエチレングリコール等があげられる。可塑剤等の使用量は、特に制限されないがPVAフィルム中に20重量%以下とするのが好適である。   You may add additives, such as a plasticizer and surfactant, in a PVA film. Examples of the plasticizer include polyols and condensates thereof, and examples thereof include glycerin, diglycerin, triglycerin, ethylene glycol, propylene glycol, and polyethylene glycol. The amount of the plasticizer used is not particularly limited, but is preferably 20% by weight or less in the PVA film.

本発明の偏光子は、前記PVAフィルムに、少なくとも膨潤工程、染色工程、架橋工程および延伸工程を施すことにより製造する。   The polarizer of the present invention is produced by subjecting the PVA film to at least a swelling process, a dyeing process, a crosslinking process, and a stretching process.

膨潤工程は、染色工程の前に施される。膨潤工程により、PVAフィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、PVAフィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。   The swelling process is performed before the dyeing process. In addition to washing the surface of the PVA film and the anti-blocking agent by the swelling step, there is also an effect of preventing unevenness such as uneven dyeing by swelling the PVA film.

膨潤工程において、処理液としては、通常、水、蒸留水、純水が用いられる。当該処理液は、主成分が水であれば、ヨウ化化合物、界面活性剤等の添加物、アルコール等が少量入っていてもよい。また、当該処理液にヨウ化化合物を含有させる場合、ヨウ化化合物の濃度は0.1〜10重量%程度であり、好ましくは0.2〜5重量%である。   In the swelling step, water, distilled water, or pure water is usually used as the treatment liquid. If the main component is water, the treatment solution may contain a small amount of an iodide compound, an additive such as a surfactant, alcohol, or the like. Moreover, when making the said processing liquid contain the iodide compound, the density | concentration of the iodide compound is about 0.1 to 10 weight%, Preferably it is 0.2 to 5 weight%.

膨潤工程における処理温度は、通常20〜45℃程度に調整するのが好ましく、より好ましくは25〜40℃である。なお、膨潤ムラがあるとその部分が染色工程において染色のムラになるため膨潤ムラは発生させないようにする。浸漬時間は通常10〜300秒間程度、好ましくは20〜240秒間である。   The treatment temperature in the swelling step is usually preferably adjusted to about 20 to 45 ° C, more preferably 25 to 40 ° C. In addition, if there is swelling unevenness, the portion becomes uneven coloring in the dyeing process, so that swelling unevenness is not generated. The immersion time is usually about 10 to 300 seconds, preferably 20 to 240 seconds.

本発明の偏光子の製造方法においては、膨潤工程において、PVAフィルムを元長に対して1.4〜2.4倍延伸することにより、PVAフィルムの結晶化度を25〜32%に制御することが必要である。延伸倍率は1.4〜2.2倍であることが好ましい。それにより、PVAフィルムの結晶化度を27〜32%に制御することができる。また、延伸倍率は1.6〜2.0倍であることが特に好ましい。それにより、PVAフィルムの結晶化度を28〜31%に制御することができる。   In the method for producing a polarizer of the present invention, the crystallinity of the PVA film is controlled to 25 to 32% by stretching the PVA film by 1.4 to 2.4 times the original length in the swelling step. It is necessary. The draw ratio is preferably 1.4 to 2.2 times. Thereby, the crystallinity of the PVA film can be controlled to 27 to 32%. The draw ratio is particularly preferably 1.6 to 2.0 times. Thereby, the crystallinity of the PVA film can be controlled to 28 to 31%.

染色工程は、膨潤処理したPVAフィルムに、ヨウ素または二色性染料を吸着・配向させることにより行う。本発明の偏光子の製造方法においては、ヨウ素等の吸着部位が多い状態、かつPVAの非晶部の配向性が高い状態で染色するために、染色工程は、PVAフィルムの結晶化度が25〜32%となる状態を経るように行う。   The dyeing step is performed by adsorbing and orienting iodine or a dichroic dye on the swollen PVA film. In the method for producing a polarizer according to the present invention, the dyeing step has a crystallinity of 25 PVA film in order to dye in a state where there are many adsorption sites such as iodine and the orientation of the amorphous part of PVA is high. It is performed so as to pass through a state of ˜32%.

染色は、通常、上記フィルムを染色溶液に浸漬することにより行われる。染色溶液としてはヨウ素溶液が一般的である。ヨウ素溶液として用いられるヨウ素水溶液は、ヨウ素および溶解助剤として例えばヨウ化カリウム等によりヨウ素イオンを含有させた水溶液などが用いられる。その他、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等のヨウ化物等の助剤を用いることができる。ヨウ素濃度は0.01〜0.5重量%程度、好ましくは0.02〜0.4重量%であり、ヨウ化カリウム濃度は0.01〜10重量%程度、好ましくは0.02〜8重量%である。ヨウ素染色にあたり、ヨウ素溶液の温度は、通常20〜50℃程度、好ましくは25〜40℃である。浸漬時間は通常10〜300秒間程度、好ましくは20〜240秒間である。   Dyeing is usually performed by immersing the film in a dyeing solution. As the staining solution, an iodine solution is generally used. As the iodine aqueous solution used as the iodine solution, an aqueous solution containing iodine ions with, for example, potassium iodide or the like as iodine and a dissolution aid is used. Other aids such as iodides such as lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide and titanium iodide. Can be used. The iodine concentration is about 0.01 to 0.5% by weight, preferably 0.02 to 0.4% by weight, and the potassium iodide concentration is about 0.01 to 10% by weight, preferably 0.02 to 8% by weight. %. In iodine staining, the temperature of the iodine solution is usually about 20 to 50 ° C., preferably 25 to 40 ° C. The immersion time is usually about 10 to 300 seconds, preferably 20 to 240 seconds.

架橋工程においては、通常、架橋剤としてホウ素化合物が用いられる。架橋工程は、延伸工程とともに行ってもよい。架橋工程は複数回行うことができる。ホウ素化合物としては、ホウ酸、ホウ砂等があげられる。ホウ素化合物は、水溶液または水−有機溶媒混合溶液の形態で一般に用いられる。通常は、ホウ酸水溶液が用いられる。偏光子中のホウ素含有量を4〜5.5重量%にするために、ホウ酸水溶液のホウ酸濃度は、2〜10重量%程度にすることが好ましく、より好ましくは3〜8重量%である。ホウ酸水溶液等には、ヨウ化カリウム等のヨウ化化合物を含有させることができる。ホウ酸水溶液にヨウ化化合物を含有させる場合、ヨウ化化合物濃度は0.1〜10重量%程度であり、好ましくは0.2〜5重量%である。   In the crosslinking step, a boron compound is usually used as a crosslinking agent. You may perform a bridge | crosslinking process with an extending process. The crosslinking step can be performed multiple times. Examples of the boron compound include boric acid and borax. The boron compound is generally used in the form of an aqueous solution or a water-organic solvent mixed solution. Usually, an aqueous boric acid solution is used. In order to make the boron content in the polarizer 4 to 5.5% by weight, the boric acid concentration of the boric acid aqueous solution is preferably about 2 to 10% by weight, more preferably 3 to 8% by weight. is there. The boric acid aqueous solution or the like can contain an iodide compound such as potassium iodide. When the iodide compound is contained in the boric acid aqueous solution, the iodide compound concentration is about 0.1 to 10% by weight, preferably 0.2 to 5% by weight.

架橋工程は、染色処理したPVAフィルムをホウ酸水溶液等へ浸漬することにより行うことができる。その他、前記PVAフィルムに、ホウ素化合物等を塗布又は噴霧等することにより行うことができる。架橋工程における処理温度は、通常25℃以上であり、好ましくは30〜85℃、より好ましくは30〜60℃である。処理時間は、通常10〜800秒間であり、好ましくは30〜500秒間である。   The crosslinking step can be performed by immersing the dyed PVA film in a boric acid aqueous solution or the like. In addition, it can be performed by applying or spraying a boron compound or the like to the PVA film. The processing temperature in a bridge | crosslinking process is 25 degreeC or more normally, Preferably it is 30-85 degreeC, More preferably, it is 30-60 degreeC. The treatment time is usually 10 to 800 seconds, preferably 30 to 500 seconds.

延伸工程は、通常、一軸延伸処理が施される。延伸方法は特に制限されず、湿潤延伸法と乾式延伸法のいずれも採用できる。乾式延伸法の延伸手段としては、たとえば、ロール間延伸方法、加熱ロール延伸方法、圧縮延伸方法等があげられる。延伸は多段で行うこともできる。延伸フィルムの延伸倍率は目的に応じて適宜に設定できるが、総延伸倍率は2〜7倍程度、好ましくは3〜6.8倍、より好ましくは3.5〜6.5倍である。   In the stretching process, a uniaxial stretching process is usually performed. The stretching method is not particularly limited, and either a wet stretching method or a dry stretching method can be employed. Examples of the stretching means of the dry stretching method include an inter-roll stretching method, a heated roll stretching method, and a compression stretching method. Stretching can also be performed in multiple stages. The stretch ratio of the stretched film can be appropriately set according to the purpose, but the total stretch ratio is about 2 to 7 times, preferably 3 to 6.8 times, more preferably 3.5 to 6.5 times.

その後、前記PVAフィルムに洗浄工程を施してもよい。洗浄工程により、延伸フィルムの表面に発生する析出物を除去することができる。   Thereafter, the PVA film may be subjected to a cleaning process. The precipitate generated on the surface of the stretched film can be removed by the washing step.

洗浄工程は、例えば、水、蒸留水、純水等の水洗浄により行うことができる。水洗浄工程は、通常、水洗浄浴にPVAフィルムを浸漬することにより行う。また洗浄工程は、ヨウ化カリウム等のヨウ化物を含有する水溶液に浸漬することにより行うことができる。例えば、当該水溶液としては、ヨウ化カリウム濃度0.5〜10重量%程度、さらには1〜8重量%とするのが好ましい。洗浄工程における洗浄浴の温度は、通常、5〜50℃、好ましくは10〜45℃、さらに好ましくは15〜40℃である。浸漬時間は、通常、1〜300秒間、好ましくは10〜240秒間である。なお、前記水溶液による洗浄は、水洗浄と組み合わせて行うことができ、水洗浄の前または後において行うことができる。   The washing step can be performed by washing with water, distilled water, pure water or the like, for example. The water washing step is usually performed by immersing the PVA film in a water washing bath. Moreover, a washing | cleaning process can be performed by immersing in the aqueous solution containing iodides, such as potassium iodide. For example, the aqueous solution preferably has a potassium iodide concentration of about 0.5 to 10% by weight, more preferably 1 to 8% by weight. The temperature of the washing bath in the washing step is usually 5 to 50 ° C, preferably 10 to 45 ° C, more preferably 15 to 40 ° C. The immersion time is usually 1 to 300 seconds, preferably 10 to 240 seconds. The cleaning with the aqueous solution can be performed in combination with water cleaning, and can be performed before or after the water cleaning.

その後、前記PVAフィルムに乾燥工程を施してもよい。   Then, you may give a drying process to the said PVA film.

上記方法で製造された偏光子は、ホウ素含有量が4〜5.5重量%であり、単体透過率が43.0%以上、かつ偏光度が99.99%以上のものである。   The polarizer produced by the above method has a boron content of 4 to 5.5% by weight, a single transmittance of 43.0% or more, and a polarization degree of 99.99% or more.

得られた偏光子は、常法に従って、その少なくとも片面に透明保護フィルムを設けた偏光板とすることができる。透明保護フィルムはポリマーによる塗布層として、またはフィルムのラミネート層等として設けることができる。透明保護フィルムを形成する、透明ポリマーまたはフィルム材料としては、適宜な透明材料を用いうるが、透明性や機械的強度、熱安定性や水分遮断性などに優れるものが好ましく用いられる。前記透明保護フィルムを形成する材料としては、例えばポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、二酢酸セルロースや三酢酸セルロース等のセルロース系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー、ポリカーボネート系ポリマーなどがあげられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、あるいは前記ポリマーのブレンド物なども前記透明保護フィルムを形成するポリマーの例としてあげられる。透明保護フィルムは、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型、紫外線硬化型の樹脂の硬化層として形成することもできる。   The obtained polarizer can be made into the polarizing plate which provided the transparent protective film in the at least single side | surface according to the conventional method. The transparent protective film can be provided as a coating layer made of a polymer or a laminate layer of the film. As the transparent polymer or film material for forming the transparent protective film, an appropriate transparent material can be used, but a material excellent in transparency, mechanical strength, thermal stability, moisture barrier property and the like is preferably used. Examples of the material for forming the transparent protective film include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as cellulose diacetate and cellulose triacetate, acrylic polymers such as polymethyl methacrylate, polystyrene, acrylonitrile, Examples thereof include styrene polymers such as styrene copolymers (AS resins), polycarbonate polymers, and the like. In addition, polyethylene, polypropylene, polyolefins having a cyclo or norbornene structure, polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers , Polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or the above Polymer blends and the like are also examples of polymers that form the transparent protective film. The transparent protective film can also be formed as a cured layer of thermosetting or ultraviolet curable resin such as acrylic, urethane, acrylurethane, epoxy, and silicone.

また、特開2001−343529号公報(WO01/37007)に記載のポリマーフィルム、たとえば、(A)側鎖に置換および/または非置換イミド基を有する熱可塑性樹脂と、(B)側鎖に置換および/または非置換フェニルならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物があげられる。具体例としてはイソブチレンとN−メチルマレイミドからなる交互共重合体とアクリロニトリル・スチレン共重合体とを含有する樹脂組成物のフィルムがあげられる。フィルムは樹脂組成物の混合押出品などからなるフィルムを用いることができる。これらのフィルムは位相差が小さく、光弾性係数が小さいため偏光板の歪みによるムラなどの不具合を解消することができ、また透湿度が小さいため、加湿耐久性に優れる。   Moreover, the polymer film described in JP-A-2001-343529 (WO01 / 37007), for example, (A) a thermoplastic resin having a substituted and / or unsubstituted imide group in the side chain, and (B) a substitution in the side chain And / or a resin composition containing a thermoplastic resin having unsubstituted phenyl and a nitrile group. A specific example is a film of a resin composition containing an alternating copolymer composed of isobutylene and N-methylmaleimide and an acrylonitrile / styrene copolymer. As the film, a film made of a mixed extruded product of the resin composition or the like can be used. Since these films have a small phase difference and a small photoelastic coefficient, problems such as unevenness due to the distortion of the polarizing plate can be eliminated, and since the moisture permeability is small, the humidification durability is excellent.

透明保護フィルムの厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、薄層性などの点より1〜500μm程度である。特に1〜300μmが好ましく、5〜200μmがより好ましい。   Although the thickness of a transparent protective film can be determined suitably, generally it is about 1-500 micrometers from points, such as workability | operativity, such as intensity | strength and handleability, and thin layer property. 1-300 micrometers is especially preferable, and 5-200 micrometers is more preferable.

また、透明保護フィルムは、できるだけ色付きがないことが好ましい。したがって、Rth=(nx−nz)・d(ただし、nxはフィルム平面内の遅相軸方向の屈折率、nzはフィルム厚方向の屈折率、dはフィルム厚みである)で表されるフィルム厚み方向の位相差値が−90nm〜+75nmである透明保護フィルムが好ましく用いられる。かかる厚み方向の位相差値(Rth)が−90nm〜+75nmのものを使用することにより、保護フィルムに起因する偏光板の着色(光学的な着色)をほぼ解消することができる。厚み方向位相差値(Rth)は、さらに好ましくは−80nm〜+60nm、特に−70nm〜+45nmが好ましい。   Moreover, it is preferable that a transparent protective film has as little color as possible. Therefore, Rth = (nx−nz) · d (where nx is the refractive index in the slow axis direction in the film plane, nz is the refractive index in the film thickness direction, and d is the film thickness). A transparent protective film having a direction retardation value of −90 nm to +75 nm is preferably used. By using a film having a thickness direction retardation value (Rth) of −90 nm to +75 nm, the coloring (optical coloring) of the polarizing plate caused by the protective film can be almost eliminated. The thickness direction retardation value (Rth) is more preferably −80 nm to +60 nm, and particularly preferably −70 nm to +45 nm.

保護フィルムとしては、偏光特性や耐久性などの点より、トリアセチルセルロースフィルム、ノルボルネン系フィルム、シクロオレフィン系フィルムおよびアクリル樹脂フィルムが好ましい。特にトリアセチルセルロースフィルムが好適である。なお、偏光子の両側に保護フィルムを設ける場合、その表裏で同じポリマー材料からなる保護フィルムを用いてもよく、異なるポリマー材料等からなる保護フィルムを用いてもよい。   As the protective film, a triacetyl cellulose film, a norbornene-based film, a cycloolefin-based film, and an acrylic resin film are preferable from the viewpoints of polarization characteristics and durability. A triacetyl cellulose film is particularly preferable. In addition, when providing a protective film in the both sides of a polarizer, the protective film which consists of the same polymer material may be used by the front and back, and the protective film which consists of a different polymer material etc. may be used.

前記透明保護フィルムの偏光子を接着させない面には、ハードコート層や反射防止処理、スティッキング防止や、拡散ないしアンチグレアを目的とした処理を施したものであってもよい。   The surface of the transparent protective film to which the polarizer is not adhered may be subjected to a hard coat layer, an antireflection treatment, an antisticking treatment, or a treatment for diffusion or antiglare.

なお、反射防止層、スティッキング防止層、拡散層やアンチグレア層等は、透明保護フィルムそのものに設けることができるほか、別途光学層として透明保護フィルムとは別体のものとして設けることもできる。   The antireflection layer, the antisticking layer, the diffusion layer, the antiglare layer, and the like can be provided on the transparent protective film itself, or can be provided as a separate optical layer from the transparent protective film.

前記偏光子と透明保護フィルムとの接着処理には、接着剤が用いられる。接着剤としては、イソシアネート系接着剤、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリエステル等を例示できる。前記接着剤は、通常、水溶液からなる接着剤が用いられる。   An adhesive is used for the adhesion treatment between the polarizer and the transparent protective film. Examples of the adhesive include isocyanate adhesives, polyvinyl alcohol adhesives, gelatin adhesives, vinyl latexes, and water-based polyesters. As the adhesive, an adhesive made of an aqueous solution is usually used.

本発明の偏光板は、前記透明保護フィルムと偏光子を、前記接着剤を用いて貼り合わせることにより製造する。接着剤の塗布は、透明保護フィルム、偏光子のいずれに行ってもよく、両者に行ってもよい。貼り合わせ後には、乾燥工程を施し、塗布乾燥層からなる接着層を形成する。偏光子と透明保護フィルムの貼り合わせは、ロールラミネーター等により行うことができる。接着層の厚さは、特に制限されないが、通常0.1〜5μm程度である。   The polarizing plate of the present invention is produced by bonding the transparent protective film and the polarizer using the adhesive. The adhesive may be applied to either the transparent protective film or the polarizer, or to both. After the bonding, a drying process is performed to form an adhesive layer composed of a coating dry layer. Bonding of a polarizer and a transparent protective film can be performed with a roll laminator or the like. The thickness of the adhesive layer is not particularly limited, but is usually about 0.1 to 5 μm.

本発明の偏光板は、実用に際して他の光学層と積層した光学フィルムとして用いることができる。その光学層については特に限定はないが、例えば反射板や半透過板、位相差板(1/2や1/4等の波長板を含む)、視角補償フィルムなどの液晶表示装置等の形成に用いられることのある光学層を1層または2層以上用いることができる。特に、本発明の偏光板に更に反射板または半透過反射板が積層されてなる反射型偏光板または半透過型偏光板、偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板、偏光板に更に視角補償フィルムが積層されてなる広視野角偏光板、あるいは偏光板に更に輝度向上フィルムが積層されてなる偏光板が好ましい。   The polarizing plate of the present invention can be used as an optical film laminated with another optical layer in practical use. The optical layer is not particularly limited. For example, for forming a liquid crystal display device such as a reflection plate, a semi-transmission plate, a retardation plate (including wavelength plates such as 1/2 and 1/4), and a viewing angle compensation film. One or more optical layers that may be used can be used. In particular, a reflective polarizing plate or a semi-transmissive polarizing plate in which a polarizing plate or a semi-transmissive reflecting plate is further laminated on the polarizing plate of the present invention, an elliptical polarizing plate or a circularly polarizing plate in which a retardation plate is further laminated on the polarizing plate. A wide viewing angle polarizing plate obtained by further laminating a viewing angle compensation film on a plate or a polarizing plate, or a polarizing plate obtained by further laminating a brightness enhancement film on the polarizing plate is preferable.

本発明の偏光板または光学フィルムは液晶表示装置等の各種装置の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと偏光板または光学フィルム、及び必要に応じての照明システム等の構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明においては本発明による偏光板または光学フィルムを用いる点を除いて特に限定はなく、従来に準じうる。液晶セルについても、例えばTN型やSTN型、π型などの任意なタイプのものを用いうる。   The polarizing plate or the optical film of the present invention can be preferably used for forming various devices such as a liquid crystal display device. The liquid crystal display device can be formed according to the conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, a polarizing plate or an optical film, and an illumination system as necessary, and incorporating a drive circuit. There is no limitation in particular except the point which uses the polarizing plate or optical film by invention, and it can apply according to the former. As the liquid crystal cell, any type such as a TN type, an STN type, or a π type can be used.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、各例中、部および%は特記ない限り重量基準である。   Examples and the like specifically showing the configuration and effects of the present invention will be described below. In each example, parts and% are based on weight unless otherwise specified.

(PVAの結晶化度の測定)
幅20mm×長さ30mm×厚み75μmのPVAフィルム(クラレ社製、商品名:VF−PS#7500)を延伸機にセットし、当該PVAフィルムを25℃の水中で延伸しながら、小角X線散乱法(Spring-8のビームライン、BL40B2にて実施、X線波長λ=1Å)により結晶化度を測定した。各延伸倍率における結晶化度を表1に示す。
(Measurement of crystallinity of PVA)
A small-angle X-ray scattering is performed by setting a PVA film (trade name: VF-PS # 7500, manufactured by Kuraray Co., Ltd.) having a width of 20 mm, a length of 30 mm, and a thickness of 75 μm in a stretching machine and stretching the PVA film in water at 25 ° C. The crystallinity was measured by the method described above (Spring-8 beam line, BL40B2; X-ray wavelength λ = 1Å). Table 1 shows the crystallinity at each draw ratio.

(偏光子中のホウ素含有量の測定)
作製した偏光子を120℃で乾燥させ、偏光子の重量を測定した。次に、純水に前記偏光子を完全溶解させて得られた溶液に、マンニトールおよび滴定指示薬としてブロモチモールブルーを添加し、そして、NaOH(0.1mol/L)水溶液を滴下した。溶液の色がオレンジ色から青色に変色した時にNaOH水溶液の滴下を止めて滴下量を測定した。偏光子中のホウ素含有量は下記式により算出した。
ホウ素含有量(重量%)=0.1×{NaOH水溶液の滴下量(ml)/1000}×
10.81×{1/偏光子の重量(g)}×100
(Measurement of boron content in polarizer)
The produced polarizer was dried at 120 ° C., and the weight of the polarizer was measured. Next, mannitol and bromothymol blue as a titration indicator were added to a solution obtained by completely dissolving the polarizer in pure water, and an aqueous NaOH (0.1 mol / L) solution was dropped. When the color of the solution changed from orange to blue, dropping of the NaOH aqueous solution was stopped and the amount of dripping was measured. The boron content in the polarizer was calculated by the following formula.
Boron content (% by weight) = 0.1 × {Drop amount of NaOH aqueous solution (ml) / 1000} ×
10.81 × {1 / weight of the polarizer (g)} × 100

実施例1
(偏光子の作製)
厚み75μmのPVAフィルム(クラレ社製、商品名:VF−PS#7500)を、25℃の温水(膨潤浴)中に浸漬して膨潤させつつ、元長に対して延伸倍率が1.4倍になるように流れ方向に延伸した。その後、PVAフィルムをヨウ素濃度0.04%、ヨウ化カリウム濃度0.4%を含む30℃のヨウ素水溶液(染色浴)中に60秒間浸漬して、染色しながら、元長に対して延伸倍率が3.3倍になるように流れ方向に延伸した。次に、前記フィルムをホウ酸4重量%及びヨウ化カリウム3重量%を含む30℃の水溶液に30秒間浸漬した。その後、前記フィルムをホウ酸4重量%及びヨウ化カリウム5重量%を含む60℃の水溶液(延伸浴)中に40秒間浸漬しながら、元長に対して延伸倍率が6倍になるように流れ方向に延伸した。その後、前記フィルムをヨウ化カリウム3重量%を含む30℃の水溶液中に10秒間浸漬して洗浄し、さらに、50℃で4分間乾燥して偏光子を得た。
Example 1
(Production of polarizer)
While stretching a 75 μm thick PVA film (trade name: VF-PS # 7500, manufactured by Kuraray Co., Ltd.) in warm water (swelling bath) at 25 ° C., the draw ratio is 1.4 times the original length. It extended | stretched in the flow direction so that it might become. Thereafter, the PVA film was immersed in a 30 ° C. aqueous iodine solution (dyeing bath) containing an iodine concentration of 0.04% and a potassium iodide concentration of 0.4% for 60 seconds. Was stretched in the flow direction so as to be 3.3 times. Next, the film was immersed in an aqueous solution at 30 ° C. containing 4% by weight of boric acid and 3% by weight of potassium iodide for 30 seconds. Thereafter, the film was immersed in a 60 ° C. aqueous solution (stretching bath) containing 4% by weight boric acid and 5% by weight potassium iodide for 40 seconds while flowing so that the stretching ratio was 6 times the original length. Stretched in the direction. Thereafter, the film was immersed in a 30 ° C. aqueous solution containing 3% by weight of potassium iodide for 10 seconds for washing, and further dried at 50 ° C. for 4 minutes to obtain a polarizer.

実施例2〜4、比較例1、2
実施例1の膨潤工程において、延伸倍率を表1に示すように変更した以外は実施例1と同様の方法で偏光子を作製した。
Examples 2 to 4, Comparative Examples 1 and 2
A polarizer was produced in the same manner as in Example 1 except that, in the swelling step of Example 1, the draw ratio was changed as shown in Table 1.

(評価)
実施例および比較例で得られた偏光子について、下記光学特性について評価した。結果を表1に示す。
(Evaluation)
The polarizers obtained in the examples and comparative examples were evaluated for the following optical characteristics. The results are shown in Table 1.

<光学特性>
380〜780nmの波長光における偏光子の分光透過率を、積分球付き分光光度計(日本分光株式会社製、商品名:V7100)を用いて測定した。各直線偏光に対する透過率はグランテラ−プリズム偏光子を通して得られた完全偏光を100%として測定した。測定された分光透過率よりCIE1931 Yxy表色系に従い、C光源2°視野でのY値を算出した。これらを単体透過率(Ts(Y))、平行透過率(Tp(Y))、直交透過率(Tc(Y))とした。
<Optical characteristics>
The spectral transmittance of the polarizer at a wavelength of 380 to 780 nm was measured using a spectrophotometer with an integrating sphere (manufactured by JASCO Corporation, trade name: V7100). The transmittance for each linearly polarized light was measured with 100% of the completely polarized light obtained through the Grantera prism polarizer. The Y value in the C light source 2 ° field of view was calculated from the measured spectral transmittance according to the CIE1931 Yxy color system. These were designated as single transmittance (Ts (Y)), parallel transmittance (Tp (Y)), and orthogonal transmittance (Tc (Y)).

偏光度(P)は、{(平行透過率−直交透過率)/(平行透過率+直交透過率)}1/2×100(%)、により算出した。 The degree of polarization (P) was calculated by {(parallel transmittance−orthogonal transmittance) / (parallel transmittance + orthogonal transmittance)} 1/2 × 100 (%).

Figure 2013037222
Figure 2013037222

本発明の偏光子及び偏光板は、液晶表示装置、有機EL表示装置等のフラットパネルディスプレー等の画像表示装置の製造に用いられる。   The polarizer and polarizing plate of the present invention are used for the production of image display devices such as flat panel displays such as liquid crystal display devices and organic EL display devices.

Claims (5)

ポリビニルアルコール系フィルムに、膨潤工程、染色工程、架橋工程および延伸工程を少なくとも施す偏光子の製造方法において、
前記膨潤工程において、ポリビニルアルコール系フィルムを1.4〜2.4倍延伸することにより、ポリビニルアルコール系フィルムの結晶化度を25〜32%に制御することを特徴とする偏光子の製造方法。
In the method for producing a polarizer, the polyvinyl alcohol film is subjected to at least a swelling process, a dyeing process, a crosslinking process, and a stretching process.
In the swelling step, the polyvinyl alcohol film is stretched by 1.4 to 2.4 times, thereby controlling the crystallinity of the polyvinyl alcohol film to 25 to 32%.
請求項1記載の製造方法により得られ、ホウ素含有量が4〜5.5重量%であり、単体透過率が43.0%以上、かつ偏光度が99.99%以上である偏光子。   A polarizer obtained by the production method according to claim 1, having a boron content of 4 to 5.5% by weight, a single transmittance of 43.0% or more, and a polarization degree of 99.99% or more. 請求項2記載の偏光子の少なくとも一方の面に透明保護フィルムが積層されている偏光板。   A polarizing plate in which a transparent protective film is laminated on at least one surface of the polarizer according to claim 2. 請求項2記載の偏光子、又は請求項3記載の偏光板が少なくとも1枚積層されている光学フィルム。   An optical film in which at least one polarizer according to claim 2 or at least one polarizing plate according to claim 3 is laminated. 請求項4記載の光学フィルムを含む画像表示装置。   An image display device comprising the optical film according to claim 4.
JP2011173834A 2011-08-09 2011-08-09 Polarizer and manufacturing method thereof Active JP6121091B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011173834A JP6121091B2 (en) 2011-08-09 2011-08-09 Polarizer and manufacturing method thereof
TW101125534A TWI565975B (en) 2011-08-09 2012-07-16 Polarizer and manufacturing method thereof
KR1020120086633A KR101991130B1 (en) 2011-08-09 2012-08-08 Polarizer and method of manufacturing the same
KR1020180114205A KR101991202B1 (en) 2011-08-09 2018-09-21 Polarizer and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011173834A JP6121091B2 (en) 2011-08-09 2011-08-09 Polarizer and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013037222A true JP2013037222A (en) 2013-02-21
JP6121091B2 JP6121091B2 (en) 2017-04-26

Family

ID=47886868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011173834A Active JP6121091B2 (en) 2011-08-09 2011-08-09 Polarizer and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP6121091B2 (en)
KR (2) KR101991130B1 (en)
TW (1) TWI565975B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104356569A (en) * 2014-11-28 2015-02-18 云南云天化股份有限公司 Polyvinyl alcohol (PVA) film and preparation method thereof, and polaroid
JP2017003954A (en) * 2015-06-12 2017-01-05 住友化学株式会社 Polarizing film and polarizing plate including the same
JP2017015415A (en) * 2015-06-29 2017-01-19 株式会社クラレ Method for evaluating optical unevenness of polyvinyl alcohol film
JPWO2015020046A1 (en) * 2013-08-09 2017-03-02 株式会社クラレ Vinyl alcohol polymer film
CN110361804A (en) * 2018-04-09 2019-10-22 日东电工株式会社 The manufacturing method of polarizing film
WO2021033401A1 (en) * 2019-08-21 2021-02-25 日東電工株式会社 Radiation transmission preventing film, and radiation transmission preventing filter and imaging device each utilizing said radiation transmission preventing film
JP2022070192A (en) * 2020-10-26 2022-05-12 住友化学株式会社 Laminate
WO2023182249A1 (en) * 2022-03-22 2023-09-28 三菱ケミカル株式会社 Polyvinyl alcohol film, polarizing film using same, and polarizing plate
WO2023182250A1 (en) * 2022-03-22 2023-09-28 三菱ケミカル株式会社 Polyvinyl alcohol-based film, and polarizing film and polarizing plate using same
WO2024004974A1 (en) * 2022-06-28 2024-01-04 株式会社クラレ Polarizing plate, thermoformed body, and thermoformed body manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160035516A (en) * 2014-09-23 2016-03-31 스미또모 가가꾸 가부시키가이샤 Preparing method for polarizer
KR102593640B1 (en) * 2020-03-10 2023-10-24 삼성에스디아이 주식회사 Polarizing plate and optical display apparatus comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198939A (en) * 1993-12-28 1995-08-01 Kuraray Co Ltd Production of polarizing film
JP2002236214A (en) * 2001-02-08 2002-08-23 Nitto Denko Corp Polarizing film and polarizing plate and liquid crystal display device which uses the same
JP2006188655A (en) * 2004-11-02 2006-07-20 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol film and method for producing the same
WO2010071093A1 (en) * 2008-12-18 2010-06-24 株式会社クラレ Method for producing polarizing film
JP2010152374A (en) * 2002-07-24 2010-07-08 Nitto Denko Corp Polarizer, optical film using the same, and image display device using them

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200730988A (en) * 2002-08-02 2007-08-16 Nitto Denko Corp Method for manufacturing polarizing film
JP2009092847A (en) 2007-10-05 2009-04-30 Nitto Denko Corp Liquid crystal panel and liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198939A (en) * 1993-12-28 1995-08-01 Kuraray Co Ltd Production of polarizing film
JP2002236214A (en) * 2001-02-08 2002-08-23 Nitto Denko Corp Polarizing film and polarizing plate and liquid crystal display device which uses the same
JP2010152374A (en) * 2002-07-24 2010-07-08 Nitto Denko Corp Polarizer, optical film using the same, and image display device using them
JP2006188655A (en) * 2004-11-02 2006-07-20 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol film and method for producing the same
WO2010071093A1 (en) * 2008-12-18 2010-06-24 株式会社クラレ Method for producing polarizing film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宮崎 司: "偏光板用PVA/ヨウ素延伸フィルムのSAXS/WAXSによる構造解析", SPRING-8ワークショップテキスト, JPN7014002495, 23 January 2009 (2009-01-23), JP, ISSN: 0003012415 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015020046A1 (en) * 2013-08-09 2017-03-02 株式会社クラレ Vinyl alcohol polymer film
CN104356569A (en) * 2014-11-28 2015-02-18 云南云天化股份有限公司 Polyvinyl alcohol (PVA) film and preparation method thereof, and polaroid
JP7068377B2 (en) 2015-06-12 2022-05-16 住友化学株式会社 Polarizing film and polarizing plate containing it
JP2020112837A (en) * 2015-06-12 2020-07-27 住友化学株式会社 Polarizing film and polarizing plate having the same
JP2017003954A (en) * 2015-06-12 2017-01-05 住友化学株式会社 Polarizing film and polarizing plate including the same
JP2022115906A (en) * 2015-06-12 2022-08-09 住友化学株式会社 Polarizing film and polarizing plate having the same
JP2017015415A (en) * 2015-06-29 2017-01-19 株式会社クラレ Method for evaluating optical unevenness of polyvinyl alcohol film
CN110361804A (en) * 2018-04-09 2019-10-22 日东电工株式会社 The manufacturing method of polarizing film
WO2021033401A1 (en) * 2019-08-21 2021-02-25 日東電工株式会社 Radiation transmission preventing film, and radiation transmission preventing filter and imaging device each utilizing said radiation transmission preventing film
JP2021032630A (en) * 2019-08-21 2021-03-01 日東電工株式会社 Radiation transmission suppression film, radiation transmission suppression filter using radiation transmission suppression film and photographing device
JP2022070192A (en) * 2020-10-26 2022-05-12 住友化学株式会社 Laminate
WO2023182249A1 (en) * 2022-03-22 2023-09-28 三菱ケミカル株式会社 Polyvinyl alcohol film, polarizing film using same, and polarizing plate
WO2023182250A1 (en) * 2022-03-22 2023-09-28 三菱ケミカル株式会社 Polyvinyl alcohol-based film, and polarizing film and polarizing plate using same
WO2024004974A1 (en) * 2022-06-28 2024-01-04 株式会社クラレ Polarizing plate, thermoformed body, and thermoformed body manufacturing method

Also Published As

Publication number Publication date
KR101991130B1 (en) 2019-06-19
TW201310088A (en) 2013-03-01
JP6121091B2 (en) 2017-04-26
KR101991202B1 (en) 2019-06-19
KR20180111726A (en) 2018-10-11
KR20130018605A (en) 2013-02-25
TWI565975B (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6121091B2 (en) Polarizer and manufacturing method thereof
JP5985813B2 (en) Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device
WO2013137464A1 (en) Organic el display element comprising optical laminate
KR101412934B1 (en) Method of manufacturing polarizer, polarizer, polarizing plate, optical film, and image display
JP6188187B2 (en) Iodine polarizer, polarizing plate, optical film, and image display device
JP6076609B2 (en) Polarizer, production method thereof, polarizing plate, optical film, and image display device
JP2006047978A (en) Polarizer, its manufacturing method, polarizing plate, optical film and image display apparatus
JP5966079B2 (en) Circularly polarizing plate, retardation plate for circularly polarizing plate, organic EL display device
JP6777286B2 (en) Polarizer
JP2008040251A (en) Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device
JP2010026498A (en) Polarizing plate and method of manufacturing the same
JP2008102274A (en) Polarizer, polarization plate, optical film and image display apparatus
JP5300160B2 (en) Manufacturing method of polarizing film
JP5420519B2 (en) Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device
JP4646236B2 (en) Method for producing polarizer and method for producing polarizing plate
JP2019504361A (en) Polarizer
JP2012203002A (en) Polarizer and manufacturing method thereof
JP2005266325A (en) Method for manufacturing polarizing film, polarizing film, optical film using same, and image display device
JP2008298871A (en) Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device
JP2008026637A (en) Method of manufacturing polarizer, polarizer, polarizing plate, optical film and image display apparatus
JP2005266326A (en) Method for manufacturing polarizing film, polarizing film, optical film using the same and image display device
JP4500194B2 (en) Manufacturing method of polarizer
JP2019504362A (en) Polarizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160120

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170329

R150 Certificate of patent or registration of utility model

Ref document number: 6121091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250