WO2013137100A1 - Power transmisssion device for vehicle - Google Patents

Power transmisssion device for vehicle Download PDF

Info

Publication number
WO2013137100A1
WO2013137100A1 PCT/JP2013/056286 JP2013056286W WO2013137100A1 WO 2013137100 A1 WO2013137100 A1 WO 2013137100A1 JP 2013056286 W JP2013056286 W JP 2013056286W WO 2013137100 A1 WO2013137100 A1 WO 2013137100A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
continuously variable
gear set
power
power transmission
Prior art date
Application number
PCT/JP2013/056286
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 奥平
裕介 細川
伸太郎 大塩
理善 佐々木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013137100A1 publication Critical patent/WO2013137100A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/383One-way clutches or freewheel devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/24Coasting mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a power transmission device for a vehicle including a continuously variable transmission.
  • a configuration is known in which kinetic energy of a vehicle is regenerated as electric energy during coasting or braking.
  • a hybrid vehicle including an electric motor in addition to an internal combustion engine as a drive source, regeneration is performed by causing the electric motor to function as a generator during coasting.
  • Some general internal combustion engine-equipped vehicles also actively regenerate by increasing the power generation torque of the alternator during deceleration.
  • a continuously variable transmission that transmits power by a pair of pulleys and a belt or chain wound around the pulleys transmits power by frictional force between the belt and the pulleys, and therefore, a stepped transmission that transmits power by gears.
  • Power transmission efficiency between input / output shafts is lower than For this reason, when the transmission of the vehicle is a continuously variable transmission, the energy that can be regenerated is reduced by the transmission loss in the continuously variable transmission between the drive wheels and the electric motor.
  • a gear train that can bypass the variator and transmit power between the input side and the output side of the continuously variable transmission, and a clutch that connects and disconnects the power transmission of the gear train JP2009-186007A describes a direct connection structure in which a gear is arranged in parallel with a variator and a clutch is engaged under a predetermined condition so that a gear train is in a direct connection state.
  • an object of the present invention is to provide a power transmission device that can regenerate power more efficiently.
  • a vehicle power transmission device including a continuously variable transmission having a so-called belt-type transmission mechanism and an electric motor that can regenerate the kinetic energy of the vehicle as electric energy.
  • This vehicle power transmission device includes a gear set that can transmit power by bypassing a speed change mechanism between an input shaft and an output shaft of a continuously variable transmission, and a power connection / disconnection mechanism that can connect / disconnect power transmission by the gear set.
  • the power connection / disconnection mechanism is rotationally driven by a gear set and a sleeve member supported on the input shaft or output shaft of the continuously variable transmission so as to be fixed in the rotational direction and movable in the axial direction, and having an engagement groove on the outer periphery.
  • a ring member having an engagement groove on the inner peripheral portion, and at the time of regeneration, the engagement grooves are engaged with each other.
  • FIG. 1 is a configuration diagram of a system according to the embodiment.
  • FIG. 2 is a diagram illustrating a driving force transmission path in a driving state.
  • FIG. 3 is a diagram showing a driving force transmission path in a coast state.
  • FIG. 4 is a flowchart showing a control routine of the synchro mechanism of the first embodiment.
  • FIG. 5 is a time chart when the control routine of FIG. 4 is executed.
  • FIG. 6 is a flowchart showing a control routine of the synchro mechanism of the second embodiment.
  • FIG. 7 is a time chart when the control routine of FIG. 6 is executed.
  • FIG. 8 is a configuration diagram of a system according to the third embodiment.
  • FIG. 1 is a system configuration diagram of a vehicle according to an embodiment of the present invention.
  • a hybrid vehicle using an internal combustion engine and an electric motor as drive sources will be described as an example.
  • an internal combustion engine 1, an electric motor 4, and a variator 7 that is a transmission mechanism of a continuously variable transmission are arranged in series.
  • a first clutch 2 is disposed between the output shaft 1 A of the internal combustion engine 1 and the output shaft 17 of the electric motor 4, and a second clutch 6 is disposed on the output shaft 17 of the electric motor 4. That is, this system is a so-called 1-motor 2-clutch hybrid system. Note that the output shaft 17 of the electric motor 4 also serves as the input shaft of the variator 7.
  • the variator 7 includes an input-side primary pulley 8, an output-side secondary pulley 9, and a belt 10 as a winding member wound around both pulleys 8, 9, and changes a pulley diameter ratio by hydraulic pressure.
  • This is a belt-type transmission mechanism that can change the transmission ratio steplessly.
  • a chain may be used as the winding member instead of the belt 10. Oil pressure for changing the pulley diameter ratio of the variator 7 is generated by the oil pump 3.
  • the oil pump 3 Since the oil pump 3 is disposed so as to engage with the output shaft 17 of the electric motor 4, if the first clutch 2 is in the engaged state, it can be driven by either the internal combustion engine 1 or the electric motor 4. It can be driven by the electric motor 4 even when the clutch 2 is in the released state.
  • the output shaft 19 of the variator 7 is connected to the drive wheels 16 via a final gear set 13, a differential device 14, and an axle 15.
  • the final gear set 13 includes an input gear 13A fixed to the output shaft 19 of the variator 7, and an output gear set 13B that connects the input gear 13A and the ring gear 14A of the differential device 14.
  • the output shaft 19 of the variator 7 and the output shaft 17 of the electric motor 4 can be connected by the gear set 5 and the synchro mechanism 11 arranged in parallel with the variator 7.
  • the synchronizer 11 includes a synchronizer sleeve (hereinafter referred to as a synchro sleeve) 11A that is supported on the output shaft 19 of the variator 7 so as to be movable in the axial direction, and a synchronizer that is rotatably supported around the output shaft 19 of the variator 7.
  • a ring (hereinafter referred to as a synchro ring) 11B and an actuator 12 for moving the synchro sleeve 11A are included.
  • Spline grooves are formed in the outer peripheral surface of the synchro sleeve 11A and the inner peripheral surface of the synchro ring 11B, and these engage to enable rotation and transmission of power.
  • the sync sleeve 11A and the sync ring 11B include tapered cone portions 11C and 11D that face each other.
  • the sync sleeve 11A moves along the output shaft 19 of the variator 7, the cone portions 11C and 11D are pressed against each other, the rotation of the sync sleeve 11A and the sync ring 11B is synchronized, and both splines are engaged and fastened. It becomes a state. For this reason, when maintaining a fastening state, it is not necessary to operate the actuator 12. Also, when releasing, the actuator 12 only needs to be operated while the sync sleeve 11A is moved until the spline engagement is released, and does not need to be operated to maintain the released state.
  • the synchro ring 11B is a gear having teeth on the outer peripheral surface, and also serves as a second gear 5C that is a part of the gear set 5 described later.
  • the gear set 5 includes the first gear 5A fixed to the output shaft 17 of the electric motor 4, the synchro ring 11B described above, and the counter gear 5B arranged so as to mesh with both of them. By including the counter gear 5B, the first gear 5A and the synchro ring 11B rotate in the same direction.
  • the gear ratio of the gear set 5, that is, the gear ratio of the first gear 5 ⁇ / b> A and the synchro ring 11 ⁇ / b> B may be set arbitrarily. For example, it is set to be the same as the highest of the variator 7 or the same as the lowest.
  • the control unit 200 executes.
  • the control unit 200 includes a microcomputer that includes a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • the control unit 200 can be composed of a plurality of microcomputers.
  • the control unit 200 may be composed of an internal combustion engine controller, an electric motor controller, a clutch controller, a transmission controller, and an integrated controller connected to each of the controllers via a network.
  • the first clutch 2 is released from the state shown in FIG. 2, and the synchro mechanism 11 is fastened to the direct connection state.
  • the inertia of the vehicle is transmitted to the output shaft 17 of the electric motor 4 via the axle 15, the differential device 14, the final gear set 13, the synchro mechanism 11, and the gear set 5.
  • the kinetic energy at the time of deceleration can be regenerated as electric power by the electric motor 4.
  • the synchro mechanism 11 and the variator 7 are compared, the synchro mechanism 11 is spline-engaged between the input side and the output side at the time of fastening, and the variator 7 is rotated by the frictional force between the pulleys 8, 9 and the belt 10. The output side rotates synchronously. Therefore, the power transmission efficiency of the synchro mechanism 11 that employs spline engagement is higher than that of the variator 7.
  • FIG. 4 is a flowchart showing a control routine of the synchro mechanism 11 executed by the control unit 200.
  • the control unit 200 repeatedly executes this routine at intervals as short as about 10 milliseconds, for example.
  • step S100 the control unit 200 determines whether or not the input torque to the variator 7 changes from positive to negative.
  • the input torque is calculated by the control unit 200 based on the output torque of the internal combustion engine 1 and the electric motor 4, the inertia of the rotating member accompanying the change in the rotation speed, and the like, as in general transmission control. Therefore, the control unit 200 can determine whether or not the input torque subsequently changes from positive to negative.
  • step S110 if the input torque changes from positive to negative, the process of step S110 is executed, and if not, the process of step S120 is executed.
  • step S110 the control unit 200 fastens the synchro mechanism 11 at the timing when the input torque transitions from positive to negative, that is, when the input torque becomes zero.
  • step S120 the control unit 200 determines whether or not the input torque changes from negative to positive. As a result of the determination, if the input torque transitions from negative to positive, in step S130, the synchro mechanism 11 is released at the timing when the input torque becomes zero, and if not, the current routine is terminated.
  • the synchro mechanism 11 is fastened or released when the input torque becomes zero. That is, the synchro mechanism 11 is fastened at the timing when the drive state is switched from the drive state running with the driving force of the internal combustion engine 1 or the electric motor 4 to the coast state, and the synchro mechanism 11 is released at the timing when the coast state is switched to the drive state.
  • the synchro mechanism 11 synchronizes the rotation of the synchro sleeve 11A by pressing the cone portion 11C of the synchro sleeve 11A against the cone portion 11D of the synchro ring 11B, and further presses the synchro sleeve 11A toward the synchro ring 11B to engage the spline. Conclude. On the other hand, the synchro sleeve 11A and the synchro ring 11B are released by being pulled out in the axial direction from the spline engagement state.
  • the synchro mechanism 11 it is difficult to fasten the synchro mechanism 11 when either positive or negative input torque is applied to the synchro ring 11B.
  • the synchro ring 11B is in a state where no torque is applied.
  • the synchronization mechanism 11 can be easily fastened by synchronizing the rotation by pressing the synchronization sleeve 11A against the synchronization ring 11B.
  • the synchronization sleeve 11A is pressed against the synchronization ring 11B by the negative input torque in the coast state. Since the second clutch 6 is engaged, the negative input torque passing through the variator 7 and the gear set 5 pushes the synchro ring 11B against the synchro sleeve 11A, that is, presses the synchro sleeve 11A against the synchro ring 11B. Acts in the direction of cancellation. However, since there is a transmission loss in the variator 7, as a result, the sync sleeve 11A is pressed against the sync ring 11B. In the drive state, the synchro ring 11B is pressed against the sync sleeve 11A by the positive input torque.
  • the synchro mechanism 11 can be fastened and released at an arbitrary timing. It will be in a running state and give the driver a sense of incongruity.
  • FIG. 5 is a time chart when the above control routine is executed.
  • the pulley pressure in a figure refers to a secondary pulley pressure.
  • This pulley pressure is a value set by the control unit 200 so as not to cause belt slipping according to the input torque and the inertia torque of the belt 10 and the primary pulley 8.
  • the synchro mechanism 11 and the second clutch 6 are in a released state.
  • control unit 200 increases the output torque of the internal combustion engine 1 or the electric motor 4 in accordance with the increase in the accelerator opening, the input torque also increases. For this reason, the control unit 200 increases the pulley pressure so that belt slip does not occur with respect to the increased input torque. Thereafter, since the acceleration is continued at a constant accelerator opening, the input torque becomes constant, the synchro mechanism 11 is maintained in the released state, and the second clutch 6 is engaged.
  • the pulley pressure increases in a transient state where the input torque at the initial stage of acceleration increases and then gradually decreases to a substantially constant state. This corresponds to the fact that the belt slip is more likely to occur in the transient state of the input torque than in the constant state.
  • the pulley pressure is increased to prevent belt slip, and when a constant state is reached, the extra pulley pressure is not applied, thereby reducing the load required to drive the oil pump 3. This is also because the gear ratio of the variator 7 shifts from Low to High.
  • the control unit 200 When the accelerator opening becomes zero and the coasting state is reached at timing t2, the control unit 200 starts the fuel cut and shifts the input torque from positive to negative. At this timing, the control unit 200 operates the actuator 12 to fasten the sync mechanism 11. When the brake pedal is depressed at timing t3, the control unit 200 further increases the absolute value of the negative input torque in order to decelerate the vehicle.
  • the pulley pressure decreases in a stepwise manner at timing t2, and then maintains the value until timing t3. This corresponds to the fact that the absolute value of the input torque is smaller than the constant value between timings t1 and t2, and the pulley pressure necessary for preventing belt slippage has decreased.
  • the depression amount of the brake pedal is constant, and the vehicle speed gradually decreases.
  • the control unit 200 resumes fuel injection to generate a creep force, and transitions the input torque from negative to positive.
  • control unit 200 When the input torque transitions from negative to positive at timing t4, the control unit 200 operates the actuator 12 to release the synchro mechanism 11. When the vehicle speed becomes zero at timing t5, the second clutch 6 is also released.
  • the pulley pressure increases stepwise at the timing t3 when the absolute value of the input torque increases, and further increases because the gear ratio of the variator 7 shifts from High to Low. Then, after the synchronization mechanism 11 is released at the timing t4, the speed gradually decreases, and is constant after the second clutch 6 is released at the timing t5.
  • the second clutch 6 may be released when the synchronization mechanism 11 is engaged. Since the torque transmission path to the output shaft 17 of the electric motor 4 at the time of regeneration is only the gear set 5, the torque transmission efficiency is further improved, so that the regeneration efficiency can be further increased.
  • a power transmission device including a variator 7 and an electric motor 4, and a gear set that can transmit power by bypassing the variator 7 between an input shaft of the variator 7, that is, an output shaft 17 of the electric motor 4 and an output shaft 19 of the variator 7. 5 and a synchro mechanism 11 capable of connecting / disconnecting power transmission by the gear set 5.
  • the synchro mechanism 11 is supported on the output shaft 19 of the variator 7 in a rotational direction and supported so as to be movable in the axial direction.
  • the synchro sleeve 11A has an engagement groove on the outer peripheral portion, and is driven to rotate by the gear set 5 on the inner peripheral portion. It has a synchro ring 11B having an engaging groove, and at the time of regeneration, the engaging groove is engaged with each other.
  • the device Since the switching between the fastening and releasing of the synchro mechanism 11 is performed at the timing when the input torque is switched between positive and negative, the device can be switched to the directly connected state while preventing the device from becoming complicated and giving the driver a sense of incongruity. Note that the transmission efficiency can be further improved by releasing the second clutch 6 after the synchronization mechanism 11 is engaged.
  • the present embodiment is the same as the first embodiment with respect to the system configuration. However, the hydraulic control of the variator 7 after the synchronization mechanism 11 is engaged and the second clutch 6 is released is different.
  • FIG. 6 is a control routine for engaging and releasing the synchronization mechanism 11 and the second clutch 6 executed by the control unit 200 in the second embodiment.
  • Steps S200, S210, S220, and S230 are the same as steps S100, S110, S120, and S130 of FIG.
  • step S210 When the control unit 200 fastens the synchro mechanism 11 in step S210, the control unit 200 releases the second clutch 6 in step S212. In step S214, the hydraulic control of the variator 7 is switched to the clutch release hydraulic control.
  • step S230 when the control unit 200 releases the synchro mechanism 11 in step S230, the second clutch 6 is engaged in step S232. In step S234, the clutch hydraulic pressure control is switched to the normal hydraulic pressure control.
  • FIG. 7 is a time chart when the above control is executed. Here, a description will be given in comparison with FIG. 5 in which normal hydraulic control is performed with the second clutch 6 engaged even after the synchronization mechanism 11 is engaged.
  • timing t0 to timing t2 From timing t0 to timing t2, it is the same as FIG. 5 except that the second clutch 6 is released at timing t2.
  • the hydraulic pulley once decreases from the timing t2 to the timing t3 when the absolute value of the input torque decreases, but increases again after the timing t3 when the absolute value of the input torque increases.
  • the pulley hydraulic pressure decreases at the timing t2.
  • the pulley hydraulic pressure is also decreased after the timing t3 by releasing the second clutch 6 and switching to the clutch release hydraulic control at the timing t2. Has not increased.
  • the pulley oil pressure lower than that of the normal oil pressure control, it is possible to reduce the load required for driving the oil pump 3, and as a result, it is possible to improve the transmission efficiency of the rotational power.
  • the pulley hydraulic pressure can be reduced by the clutch release hydraulic pressure control, and the transmission efficiency of the rotational power can be further improved.
  • FIG. 8 is a configuration diagram of a system according to the third embodiment. The difference from FIG. 1 is that the one-way clutch 30 is included in the gear set 5 and that the gear ratio of the gear set 5 is higher than the highest of the variator 7.
  • the one-way clutch 30 is interposed between the first gear 5A and the output shaft 17 of the electric motor 4, and when the gear ratio of the gear set 5 is higher than the highest level of the variator 7, the electric motor 4 In this structure, the power is not transmitted when the rotational speed of the output shaft 17 is higher than the rotational speed of the first gear 5A.
  • the rotation of the output shaft 17 of the electric motor 4 is decelerated by the variator 7 and transmitted to the output shaft 19 of the variator 7.
  • the rotation of the output shaft 17 of the electric motor 4 is transmitted to the synchro ring 11 ⁇ / b> B via the gear set 5.
  • the variator 7 rotates through the gear set 5 whose gear ratio is higher than that of the variator 7 regardless of the gear ratio state.
  • the synchronizing ring 11B is faster than the output shaft 19 of the variator 7.
  • the one-way clutch 30 idles and power is not transmitted from the first gear 5 ⁇ / b> A to the output shaft 17 of the electric motor 4. Therefore, a torque shock accompanying the fastening of the synchro mechanism 11 can be prevented. Further, when the second clutch 6 is released, the rotation speed of the output shaft 17 of the electric motor 4 decreases, and when the rotation speed becomes lower than the rotation speed of the first gear 5A, the one-way clutch 30 stops idling and regeneration in a directly connected state is performed. Is called.
  • the position where the one-way clutch 30 is provided is not limited to the position between the output shaft 17 of the electric motor 4 and the first gear 5A, and may be provided on any shaft of the gear set 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Transmission Devices (AREA)
  • Structure Of Transmissions (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

A power transmission device equipped with a continuously variable transmission having a belt-type transmission mechanism (7), and with an electric motor (4) that recovers the kinetic energy of a vehicle as electrical energy, said power transmission device having: a gear set (5) capable of transmitting power between an input shaft (17) and an output shaft (19) of the continuously variable transmission while bypassing the transmission mechanism (7); and a power connection/disconnection mechanism (11) capable of connecting/disconnecting the transmission of power by the gear set (5). The power connection/disconnection mechanism (11) has a sleeve member (11A), which is supported on the input shaft (17) or the output shaft (19) of the continuously variable transmission so as to be capable of moving in the axial direction, and has an engagement groove on the outer circumferential part, and a ring member (11B), which is rotationally driven by the gear set (5) and has an engagement groove on the inner circumferential part, and during regeneration the respective engagement grooves of the members engage each other and the members are fastened together, thereby enabling more efficient regeneration of electricity.

Description

車両の動力伝達装置Vehicle power transmission device
 本発明は、無段変速機を備える車両の動力伝達装置に関する。 The present invention relates to a power transmission device for a vehicle including a continuously variable transmission.
 コースト走行時や制動時等に、車両の運動エネルギを電気エネルギとして回生する構成が知られている。例えば、駆動源として内燃機関の他に電動機を備えるハイブリッド車両では、コースト走行時に電動機を発電機として機能させることにより回生を行なう。また、一般的な内燃機関搭載車両においても、減速時にオルタネータの発電トルクを増大させて積極的に回生を行なうものもある。 A configuration is known in which kinetic energy of a vehicle is regenerated as electric energy during coasting or braking. For example, in a hybrid vehicle including an electric motor in addition to an internal combustion engine as a drive source, regeneration is performed by causing the electric motor to function as a generator during coasting. Some general internal combustion engine-equipped vehicles also actively regenerate by increasing the power generation torque of the alternator during deceleration.
 ところで、一対のプーリと、これに巻掛けられたベルトやチェーンにより動力伝達する無段変速機は、ベルト等とプーリとの摩擦力により動力伝達を行なうので、歯車で動力伝達する有段変速機等に比べて入出力軸間の動力伝達効率が低い。このため、車両の変速機が無段変速機である場合には、回生できるエネルギが駆動輪と電動機の間の無段変速機での伝達ロスの分だけ少なくなる。 By the way, a continuously variable transmission that transmits power by a pair of pulleys and a belt or chain wound around the pulleys transmits power by frictional force between the belt and the pulleys, and therefore, a stepped transmission that transmits power by gears. Power transmission efficiency between input / output shafts is lower than For this reason, when the transmission of the vehicle is a continuously variable transmission, the energy that can be regenerated is reduced by the transmission loss in the continuously variable transmission between the drive wheels and the electric motor.
 無段変速機の伝達効率を向上させる構造として、無段変速機の入力側と出力側の間で、バリエータを迂回して動力伝達し得るギア列と、当該ギア列の動力伝達を断接するクラッチをバリエータと並列に設け、所定条件下でクラッチを締結してギア列を直結状態にする直結構造がJP2009-186007Aに記載されている。 As a structure that improves the transmission efficiency of the continuously variable transmission, a gear train that can bypass the variator and transmit power between the input side and the output side of the continuously variable transmission, and a clutch that connects and disconnects the power transmission of the gear train JP2009-186007A describes a direct connection structure in which a gear is arranged in parallel with a variator and a clutch is engaged under a predetermined condition so that a gear train is in a direct connection state.
 直結状態であれば、上述した無段変速機での伝達ロスがなくなるので、回生の効率が向上する。 In the directly connected state, the transmission loss in the continuously variable transmission is eliminated, so that the regeneration efficiency is improved.
 しかしながら、ギア列の動力伝達を断接するためにクラッチを用いると、次のような事態を招くこととなる。例えば、油圧を掛けることで締結状態を維持するクラッチであれば、回生中に油圧を発生し続けなければならず、油圧ポンプ等を駆動することでエネルギが消費される。また、湿式クラッチであれば、解放時に引き摺りトルクが発生し、非回生時にもエネルギ損失が発生する。 However, if a clutch is used to connect and disconnect the power transmission of the gear train, the following situation will be caused. For example, in the case of a clutch that maintains the engaged state by applying hydraulic pressure, the hydraulic pressure must continue to be generated during regeneration, and energy is consumed by driving a hydraulic pump or the like. Moreover, if it is a wet clutch, drag torque will generate | occur | produce at the time of releasing, and energy loss will generate | occur | produce also at the time of non-regeneration.
 つまり、直結状態を維持するためのエネルギが必要となり、直結状態にすることによる回生電力増大効果が目減りしてしまう。 That is, energy for maintaining the direct connection state is required, and the effect of increasing the regenerative electric power due to the direct connection state is diminished.
 本発明の目的は、したがって、より効率的に電力回生することが可能な動力伝達装置を提供することである。 Therefore, an object of the present invention is to provide a power transmission device that can regenerate power more efficiently.
 本発明のある態様によれば、いわゆるベルト式の変速機構を有する無段変速機と、車両の運動エネルギを電気エネルギとして回生し得る電動機を備える車両の動力伝達装置が提供される。この車両の動力伝達装置は、無段変速機の入力軸と出力軸の間で変速機構を迂回して動力伝達し得るギアセットと、ギアセットによる動力伝達を断接し得る動力断接機構とを有する。動力断接機構は、無段変速機の入力軸または出力軸上に、回転方向に固定かつ軸方向に移動可能に支持され外周部に係合溝を有するスリーブ部材と、ギアセットにより回転駆動され内周部に係合溝を有するリング部材とを有し、回生時には両者の係合溝同士が係合した締結状態となる。 According to an aspect of the present invention, there is provided a vehicle power transmission device including a continuously variable transmission having a so-called belt-type transmission mechanism and an electric motor that can regenerate the kinetic energy of the vehicle as electric energy. This vehicle power transmission device includes a gear set that can transmit power by bypassing a speed change mechanism between an input shaft and an output shaft of a continuously variable transmission, and a power connection / disconnection mechanism that can connect / disconnect power transmission by the gear set. Have. The power connection / disconnection mechanism is rotationally driven by a gear set and a sleeve member supported on the input shaft or output shaft of the continuously variable transmission so as to be fixed in the rotational direction and movable in the axial direction, and having an engagement groove on the outer periphery. A ring member having an engagement groove on the inner peripheral portion, and at the time of regeneration, the engagement grooves are engaged with each other.
 この発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。 Embodiments of the present invention and advantages of the present invention will be described in detail below with reference to the accompanying drawings.
図1は実施形態のシステムの構成図である。FIG. 1 is a configuration diagram of a system according to the embodiment. 図2はドライブ状態の駆動力伝達経路を示す図である。FIG. 2 is a diagram illustrating a driving force transmission path in a driving state. 図3はコースト状態の駆動力伝達経路を示す図である。FIG. 3 is a diagram showing a driving force transmission path in a coast state. 図4は第1実施形態のシンクロ機構の制御ルーチンを示すフローチャートである。FIG. 4 is a flowchart showing a control routine of the synchro mechanism of the first embodiment. 図5は図4の制御ルーチンを実行した場合のタイムチャートである。FIG. 5 is a time chart when the control routine of FIG. 4 is executed. 図6は第2実施形態のシンクロ機構の制御ルーチンを示すフローチャートである。FIG. 6 is a flowchart showing a control routine of the synchro mechanism of the second embodiment. 図7は図6の制御ルーチンを実行した場合のタイムチャートである。FIG. 7 is a time chart when the control routine of FIG. 6 is executed. 図8は第3実施形態のシステムの構成図である。FIG. 8 is a configuration diagram of a system according to the third embodiment.
(第1実施形態)
 図1は、本発明の実施形態による車両のシステム構成図である。ここでは内燃機関と電動機を駆動源とするハイブリッド車両を例に説明する。
(First embodiment)
FIG. 1 is a system configuration diagram of a vehicle according to an embodiment of the present invention. Here, a hybrid vehicle using an internal combustion engine and an electric motor as drive sources will be described as an example.
 本ハイブリッド車両は、内燃機関1と、電動機4と、無段変速機の変速機構であるバリエータ7とが直列に配置されている。そして、内燃機関1の出力軸1Aと電動機4の出力軸17の間には第1クラッチ2が、電動機4の出力軸17には第2クラッチ6が、それぞれ配置されている。つまり、本システムは、いわゆる1モータ2クラッチ式のハイブリッドシステムである。なお、電動機4の出力軸17はバリエータ7の入力軸を兼ねている。 In this hybrid vehicle, an internal combustion engine 1, an electric motor 4, and a variator 7 that is a transmission mechanism of a continuously variable transmission are arranged in series. A first clutch 2 is disposed between the output shaft 1 A of the internal combustion engine 1 and the output shaft 17 of the electric motor 4, and a second clutch 6 is disposed on the output shaft 17 of the electric motor 4. That is, this system is a so-called 1-motor 2-clutch hybrid system. Note that the output shaft 17 of the electric motor 4 also serves as the input shaft of the variator 7.
 バリエータ7は、入力側のプライマリプーリ8、出力側のセカンダリプーリ9、及び両プーリ8、9に巻掛けられる巻掛け部材としてのベルト10を含んで構成され、油圧によりプーリ径比を変更することで変速比を無段階に変化させることができるベルト式変速機構である。なお、巻掛け部材として、ベルト10に代えてチェーンを用いてもよい。バリエータ7のプーリ径比を変更するための油圧は、オイルポンプ3で発生させる。 The variator 7 includes an input-side primary pulley 8, an output-side secondary pulley 9, and a belt 10 as a winding member wound around both pulleys 8, 9, and changes a pulley diameter ratio by hydraulic pressure. This is a belt-type transmission mechanism that can change the transmission ratio steplessly. A chain may be used as the winding member instead of the belt 10. Oil pressure for changing the pulley diameter ratio of the variator 7 is generated by the oil pump 3.
 オイルポンプ3は、電動機4の出力軸17と係合するよう配置されているので、第1クラッチ2が係合状態であれば内燃機関1、電動機4のいずれでも駆動させることができ、第1クラッチ2が解放状態でも電動機4により駆動させることができる。 Since the oil pump 3 is disposed so as to engage with the output shaft 17 of the electric motor 4, if the first clutch 2 is in the engaged state, it can be driven by either the internal combustion engine 1 or the electric motor 4. It can be driven by the electric motor 4 even when the clutch 2 is in the released state.
 バリエータ7の出力軸19は、ファイナルギアセット13、ディファレンシャル装置14、及び車軸15を介して駆動輪16と連結されている。ファイナルギアセット13は、バリエータ7の出力軸19に固定された入力ギア13Aと、入力ギア13Aとディファレンシャル装置14のリングギア14Aを連結する出力ギアセット13Bとを含んで構成される。 The output shaft 19 of the variator 7 is connected to the drive wheels 16 via a final gear set 13, a differential device 14, and an axle 15. The final gear set 13 includes an input gear 13A fixed to the output shaft 19 of the variator 7, and an output gear set 13B that connects the input gear 13A and the ring gear 14A of the differential device 14.
 また、バリエータ7の出力軸19と電動機4の出力軸17は、バリエータ7と並列に配置されるギアセット5及びシンクロ機構11により連結可能である。 Further, the output shaft 19 of the variator 7 and the output shaft 17 of the electric motor 4 can be connected by the gear set 5 and the synchro mechanism 11 arranged in parallel with the variator 7.
 シンクロ機構11は、バリエータ7の出力軸19に軸方向に移動可能に支持されたシンクロナイザースリーブ(以下、シンクロスリーブという)11Aと、バリエータ7の出力軸19回りに回転可能に支持されたシンクロナイザーリング(以下、シンクロリングという)11Bと、シンクロスリーブ11Aを移動させるアクチュエータ12を含んで構成される。 The synchronizer 11 includes a synchronizer sleeve (hereinafter referred to as a synchro sleeve) 11A that is supported on the output shaft 19 of the variator 7 so as to be movable in the axial direction, and a synchronizer that is rotatably supported around the output shaft 19 of the variator 7. A ring (hereinafter referred to as a synchro ring) 11B and an actuator 12 for moving the synchro sleeve 11A are included.
 シンクロスリーブ11Aの外周面及びシンクロリング11Bの内周面にはスプライン溝が形成されており、これらが係合することで回転、動力の伝達を可能にする。シンクロスリーブ11Aとシンクロリング11Bは、それぞれ互いに対向するテーパ状のコーン部11C、11Dを備える。シンクロスリーブ11Aがバリエータ7の出力軸19に沿って移動すると、コーン部11C、11Dが互いに押し付けられることにより、シンクロスリーブ11Aとシンクロリング11Bの回転が同期し、両者のスプラインが係合し、締結状態となる。このため、締結状態を維持する場合はアクチュエータ12を作動させる必要はない。また、解放する場合も、アクチュエータ12はスプライン係合が解除されるまでシンクロスリーブ11Aを移動させる間だけ作動すればよく、解放状態を維持するために作動させる必要はない。 Spline grooves are formed in the outer peripheral surface of the synchro sleeve 11A and the inner peripheral surface of the synchro ring 11B, and these engage to enable rotation and transmission of power. The sync sleeve 11A and the sync ring 11B include tapered cone portions 11C and 11D that face each other. When the sync sleeve 11A moves along the output shaft 19 of the variator 7, the cone portions 11C and 11D are pressed against each other, the rotation of the sync sleeve 11A and the sync ring 11B is synchronized, and both splines are engaged and fastened. It becomes a state. For this reason, when maintaining a fastening state, it is not necessary to operate the actuator 12. Also, when releasing, the actuator 12 only needs to be operated while the sync sleeve 11A is moved until the spline engagement is released, and does not need to be operated to maintain the released state.
 なお、シンクロリング11Bは、外周面に歯を有する歯車となっており、後述するギアセット5の一部である第2ギア5Cを兼ねている。 The synchro ring 11B is a gear having teeth on the outer peripheral surface, and also serves as a second gear 5C that is a part of the gear set 5 described later.
 ギアセット5は、電動機4の出力軸17に固定された第1ギア5Aと、前述したシンクロリング11Bと、これら両方と噛み合うように配置されるカウンターギア5Bとを含んで構成される。カウンターギア5Bを含むことで、第1ギア5Aとシンクロリング11Bは同方向に回転することになる。ギアセット5の変速比、つまり第1ギア5Aとシンクロリング11Bの変速比は、任意に設定すればよく、例えば、バリエータ7の最Highと同じ、または最Lowと同じに設定する。 The gear set 5 includes the first gear 5A fixed to the output shaft 17 of the electric motor 4, the synchro ring 11B described above, and the counter gear 5B arranged so as to mesh with both of them. By including the counter gear 5B, the first gear 5A and the synchro ring 11B rotate in the same direction. The gear ratio of the gear set 5, that is, the gear ratio of the first gear 5 </ b> A and the synchro ring 11 </ b> B may be set arbitrarily. For example, it is set to be the same as the highest of the variator 7 or the same as the lowest.
 シンクロスリーブ11Aとシンクロリング11Bが係合したシンクロ係合状態では、バリエータ7の出力軸19と電動機4の出力軸17は、シンクロスリーブ11A、シンクロリング11B、カウンターギア5B、及び第1ギア5Aを介して連結される。また、駆動輪16とバリエータ7の出力軸19とは、車軸15、ディファレンシャル装置14、ファイナルギアセット13を介して連結されている。したがって、コースト状態でシンクロ係合状態にすると、駆動輪16の回転はバリエータ7を介さずに電動機4の出力軸17に伝達される。この状態を直結状態と呼ぶ。 In the synchro-engaged state in which the synchro sleeve 11A and the synchro ring 11B are engaged, the output shaft 19 of the variator 7 and the output shaft 17 of the electric motor 4 are connected to the synchro sleeve 11A, the synchro ring 11B, the counter gear 5B, and the first gear 5A. Connected through. The drive wheel 16 and the output shaft 19 of the variator 7 are connected via an axle 15, a differential device 14, and a final gear set 13. Accordingly, when the synchro-engaged state is established in the coast state, the rotation of the drive wheel 16 is transmitted to the output shaft 17 of the electric motor 4 without passing through the variator 7. This state is called a direct connection state.
 内燃機関1の燃料噴射制御や点火時期制御、電動機4の発電と力行の切り替え制御、第1クラッチ2及び第2クラッチ6の断接制御、アクチュエータ12の制御、バリエータ7の変速比制御等は、コントロールユニット200が実行する。コントロールユニット200は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。また、コントロールユニット200を複数のマイクロコンピュータで構成することも可能である。 Fuel injection control and ignition timing control of the internal combustion engine 1, power generation and power running switching control of the electric motor 4, connection / disconnection control of the first clutch 2 and second clutch 6, control of the actuator 12, control of the gear ratio of the variator 7, etc. The control unit 200 executes. The control unit 200 includes a microcomputer that includes a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). In addition, the control unit 200 can be composed of a plurality of microcomputers.
 なお、コントロールユニット200を、内燃機関コントローラ、電動機コントローラ、クラッチコントローラ、変速機コントローラ、及び前記各コントローラとネットワーク接続される統合コントローラとで構成してもよい。 The control unit 200 may be composed of an internal combustion engine controller, an electric motor controller, a clutch controller, a transmission controller, and an integrated controller connected to each of the controllers via a network.
 上記のようなハイブリッドシステムでは、内燃機関1により走行する際には、第1クラッチ2及び第2クラッチ6を締結状態にし、シンクロ機構11を解放状態にする。これにより、図2に矢印で示すように、内燃機関1の出力はバリエータ7、ファイナルギアセット13、ディファレンシャル装置14、車軸15を介して駆動輪16へ伝達される。なお、電動機4によるアシストを行なう場合も同様である。また、電動機4のみにより走行する際には、図2の状態から第1クラッチ2を解放すればよい。 In the hybrid system as described above, when the internal combustion engine 1 travels, the first clutch 2 and the second clutch 6 are engaged and the synchro mechanism 11 is released. As a result, as indicated by an arrow in FIG. 2, the output of the internal combustion engine 1 is transmitted to the drive wheels 16 via the variator 7, the final gear set 13, the differential device 14, and the axle 15. The same applies when assisting by the electric motor 4 is performed. Moreover, what is necessary is just to release the 1st clutch 2 from the state of FIG.
 一方、コースト状態では図2の状態から第1クラッチ2を解放し、シンクロ機構11を締結して直結状態にする。これにより、図3に矢印で示すように、車両のイナーシャは車軸15、ディファレンシャル装置14、ファイナルギアセット13、シンクロ機構11、ギアセット5を介して電動機4の出力軸17に伝達される。これにより、減速時の運動エネルギを電動機4で電力として回生することができる。シンクロ機構11とバリエータ7を対比すると、シンクロ機構11は締結時に入力側と出力側がスプライン係合し同期回転するのに対し、バリエータ7はプーリ8、9とベルト10との摩擦力によって入力側と出力側が同期回転する。したがって、動力伝達効率はスプライン係合を採用するシンクロ機構11の方がバリエータ7よりも高い。 On the other hand, in the coast state, the first clutch 2 is released from the state shown in FIG. 2, and the synchro mechanism 11 is fastened to the direct connection state. Thereby, as indicated by an arrow in FIG. 3, the inertia of the vehicle is transmitted to the output shaft 17 of the electric motor 4 via the axle 15, the differential device 14, the final gear set 13, the synchro mechanism 11, and the gear set 5. Thereby, the kinetic energy at the time of deceleration can be regenerated as electric power by the electric motor 4. When the synchro mechanism 11 and the variator 7 are compared, the synchro mechanism 11 is spline-engaged between the input side and the output side at the time of fastening, and the variator 7 is rotated by the frictional force between the pulleys 8, 9 and the belt 10. The output side rotates synchronously. Therefore, the power transmission efficiency of the synchro mechanism 11 that employs spline engagement is higher than that of the variator 7.
 なお、第2クラッチ6を締結したままなのでバリエータ7を経由する伝達経路も併存する。そこで、インターロックを防止するため、バリエータ7の変速比をギアセット5の変速比と同じになるよう制御する。 In addition, since the second clutch 6 is still engaged, a transmission path via the variator 7 coexists. Therefore, in order to prevent the interlock, control is performed so that the speed ratio of the variator 7 becomes the same as the speed ratio of the gear set 5.
 図4は、コントロールユニット200が実行するシンクロ機構11の制御ルーチンを示すフローチャートである。コントロールユニット200は、例えば10ミリ秒程度の短い間隔で本ルーチンを繰り返し実行する。 FIG. 4 is a flowchart showing a control routine of the synchro mechanism 11 executed by the control unit 200. The control unit 200 repeatedly executes this routine at intervals as short as about 10 milliseconds, for example.
 ステップS100で、コントロールユニット200はバリエータ7への入力トルクが正から負へ遷移するか否かを判定する。入力トルクは、一般的な変速機制御と同様に、内燃機関1及び電動機4の出力トルクや、回転速度変化に伴う回転部材のイナーシャ等に基づいてコントロールユニット200が算出する。したがって、コントロールユニット200は、入力トルクがこの後正から負へ遷移するか否かを判定することができる。 In step S100, the control unit 200 determines whether or not the input torque to the variator 7 changes from positive to negative. The input torque is calculated by the control unit 200 based on the output torque of the internal combustion engine 1 and the electric motor 4, the inertia of the rotating member accompanying the change in the rotation speed, and the like, as in general transmission control. Therefore, the control unit 200 can determine whether or not the input torque subsequently changes from positive to negative.
 判定の結果、入力トルクが正から負へ遷移する場合にはステップS110の処理を実行し、遷移しない場合はステップS120の処理を実行する。 As a result of the determination, if the input torque changes from positive to negative, the process of step S110 is executed, and if not, the process of step S120 is executed.
 ステップS110で、コントロールユニット200は、入力トルクが正から負へ遷移するタイミング、つまり入力トルクがゼロになるタイミングでシンクロ機構11を締結する。 In step S110, the control unit 200 fastens the synchro mechanism 11 at the timing when the input torque transitions from positive to negative, that is, when the input torque becomes zero.
 一方、ステップS120では、コントロールユニット200は入力トルクが負から正へ遷移するか否かを判定する。判定の結果、入力トルクが負から正へ遷移する場合は、ステップS130で、入力トルクがゼロになるタイミングでシンクロ機構11を解放し、遷移しない場合はそのまま今回のルーチンを終了する。 On the other hand, in step S120, the control unit 200 determines whether or not the input torque changes from negative to positive. As a result of the determination, if the input torque transitions from negative to positive, in step S130, the synchro mechanism 11 is released at the timing when the input torque becomes zero, and if not, the current routine is terminated.
 上記のように、入力トルクがゼロになるタイミングでシンクロ機構11を締結または解放する。つまり、内燃機関1または電動機4の駆動力で走行するドライブ状態からコースト状態へ切り替わるタイミングでシンクロ機構11を締結し、コースト状態からドライブ状態へ切り替わるタイミングでシンクロ機構11を解放する。 As described above, the synchro mechanism 11 is fastened or released when the input torque becomes zero. That is, the synchro mechanism 11 is fastened at the timing when the drive state is switched from the drive state running with the driving force of the internal combustion engine 1 or the electric motor 4 to the coast state, and the synchro mechanism 11 is released at the timing when the coast state is switched to the drive state.
 ここで、入力トルクがゼロになるタイミングでシンクロ機構11の締結、解放動作を行なうことによる効果を説明する。 Here, the effect of performing the fastening and releasing operation of the synchro mechanism 11 at the timing when the input torque becomes zero will be described.
 シンクロ機構11は、シンクロスリーブ11Aのコーン部11Cをシンクロリング11Bのコーン部11Dに押し付けることにより両者の回転を同期させ、さらにシンクロスリーブ11Aをシンクロリング11B側に押し込むことでスプライン係合させることで締結する。一方、シンクロスリーブ11Aとシンクロリング11Bがスプライン係合している状態から、シンクロスリーブ11Aを軸方向に引き抜くことで解放する。 The synchro mechanism 11 synchronizes the rotation of the synchro sleeve 11A by pressing the cone portion 11C of the synchro sleeve 11A against the cone portion 11D of the synchro ring 11B, and further presses the synchro sleeve 11A toward the synchro ring 11B to engage the spline. Conclude. On the other hand, the synchro sleeve 11A and the synchro ring 11B are released by being pulled out in the axial direction from the spline engagement state.
 しかし、シンクロ機構11が解放されている場合は、ドライブ状態では正の入力トルクが電動機4の出力軸17、ギアセット5を介してシンクロリング11Bにかかっているため、コーン部11Cをコーン部11Dに押し付けても回転同期し難い。また、コースト状態では、バリエータ7を介して伝達された負の入力トルクがシンクロリング11Bにかかっているため、同様に回転同期し難い。 However, when the synchro mechanism 11 is released, in the drive state, positive input torque is applied to the synchro ring 11B via the output shaft 17 and the gear set 5 of the electric motor 4, so that the cone portion 11C is connected to the cone portion 11D. It is difficult to synchronize the rotation even if it is pressed. Further, in the coast state, since the negative input torque transmitted through the variator 7 is applied to the synchro ring 11B, it is similarly difficult to synchronize with the rotation.
 つまり、シンクロリング11Bに正負いずれかの入力トルクがかかっている状態では、シンクロ機構11を締結することは難しい。しかし、入力トルクが正から負、または負から正へ遷移するタイミングでは、シンクロリング11Bにトルクがかからない状態となる。このタイミングであれば、シンクロスリーブ11Aをシンクロリング11Bに押し付けることで回転を同期させて、シンクロ機構11を締結することが容易に可能である。 That is, it is difficult to fasten the synchro mechanism 11 when either positive or negative input torque is applied to the synchro ring 11B. However, at the timing when the input torque changes from positive to negative or from negative to positive, the synchro ring 11B is in a state where no torque is applied. At this timing, the synchronization mechanism 11 can be easily fastened by synchronizing the rotation by pressing the synchronization sleeve 11A against the synchronization ring 11B.
 一方、シンクロ機構11が締結されている場合は、コースト状態では負の入力トルクによってシンクロスリーブ11Aがシンクロリング11Bに押し付けられた状態となる。なお、第2クラッチ6を締結しているので、バリエータ7及びギアセット5を経由した負の入力トルクがシンクロリング11Bをシンクロスリーブ11Aに押し付ける方向、つまりシンクロスリーブ11Aのシンクロリング11Bへの押し付けを打ち消す方向に作用する。しかし、バリエータ7での伝達損失があるため、結果的にはシンクロスリーブ11Aがシンクロリング11Bに押し付けられた状態となる。また、ドライブ状態では正の入力トルクによってシンクロリング11Bがシンクロスリーブ11Aに押し付けられた状態となる。 On the other hand, when the synchronization mechanism 11 is fastened, the synchronization sleeve 11A is pressed against the synchronization ring 11B by the negative input torque in the coast state. Since the second clutch 6 is engaged, the negative input torque passing through the variator 7 and the gear set 5 pushes the synchro ring 11B against the synchro sleeve 11A, that is, presses the synchro sleeve 11A against the synchro ring 11B. Acts in the direction of cancellation. However, since there is a transmission loss in the variator 7, as a result, the sync sleeve 11A is pressed against the sync ring 11B. In the drive state, the synchro ring 11B is pressed against the sync sleeve 11A by the positive input torque.
 このように一方が他方に押し付けられた状態で、摩擦力に抗してシンクロスリーブ11Aを軸方向に移動させて解放状態にするのは困難である。しかし、入力トルクが正から負、または負から正へ遷移するタイミングでは、シンクロスリーブ11Aとシンクロリング11Bのいずれも、他方に押し付けられない状態となる。このタイミングであれば、シンクロスリーブ11Aを容易に軸方向に移動させてシンクロ機構11を解放することが可能である。 In this state where one is pressed against the other, it is difficult to move the sync sleeve 11A in the axial direction against the frictional force so as to be in the released state. However, at the timing when the input torque changes from positive to negative or from negative to positive, neither the sync sleeve 11A nor the sync ring 11B is pressed against the other. At this timing, the synchro sleeve 11A can be easily moved in the axial direction to release the synchro mechanism 11.
 ところで、シンクロ機構11へのトルク伝達を断つためのクラッチを設ければ任意のタイミングでシンクロ機構11の締結、解放を行なうことができるが、当該クラッチを解放することで、いわゆるトルク抜けと呼ばれる空走状態となり、運転者に違和感を与えることになる。 By the way, if a clutch for cutting off the torque transmission to the synchro mechanism 11 is provided, the synchro mechanism 11 can be fastened and released at an arbitrary timing. It will be in a running state and give the driver a sense of incongruity.
 これに対して、入力トルクの正負が遷移するタイミングでも、瞬間的にはトルク抜けと同じ状態となるが、このタイミングでのトルク抜けは運転者の意図に合致したものであり、違和感を与えることはない。したがって、シンクロ機構11の締結、解放を入力トルクの正負が遷移するタイミングで行うことで、さらなる装置を追加することなく、かつ運転者に違和感を与えることなく、直結状態に切り替えることができる。 On the other hand, even at the timing of the positive / negative transition of the input torque, the torque instantaneously becomes the same state as the torque loss, but the torque loss at this timing matches the driver's intention and gives a sense of incongruity. There is no. Accordingly, by performing the fastening and releasing of the synchro mechanism 11 at the timing when the positive and negative of the input torque transition, it is possible to switch to the direct connection state without adding a further device and without giving the driver a sense of incongruity.
 図5は、上記制御ルーチンを実行した場合のタイムチャートである。なお、図中のプーリ圧とは、セカンダリプーリ圧を指す。このプーリ圧は、コントロールユニット200が、入力トルクと、ベルト10及びプライマリプーリ8のイナーシャトルクとに応じて、ベルト滑りを生じないよう設定した値である。また、初期状態では、シンクロ機構11及び第2クラッチ6は解放状態とする。 FIG. 5 is a time chart when the above control routine is executed. In addition, the pulley pressure in a figure refers to a secondary pulley pressure. This pulley pressure is a value set by the control unit 200 so as not to cause belt slipping according to the input torque and the inertia torque of the belt 10 and the primary pulley 8. In the initial state, the synchro mechanism 11 and the second clutch 6 are in a released state.
 タイミングt0からタイミングt1の間は、アクセル開度、ブレーキストローク、車速がいずれもゼロであり、シンクロ機構11及び第2クラッチ6は初期状態のままである。したがって、入力トルクもゼロである。 From the timing t0 to the timing t1, the accelerator opening, the brake stroke, and the vehicle speed are all zero, and the synchro mechanism 11 and the second clutch 6 remain in the initial state. Therefore, the input torque is also zero.
 タイミングt1で運転者がアクセルペダルを踏み込むと、コントロールユニット200は第2クラッチ6を締結する。これにより車両は走行開始する。 When the driver depresses the accelerator pedal at timing t1, the control unit 200 engages the second clutch 6. As a result, the vehicle starts running.
 このとき、コントロールユニット200はアクセル開度の増大に応じて内燃機関1または電動機4の出力トルクが増大させるので、入力トルクも増大する。このため、増大した入力トルクに対してベルト滑りが生じないように、コントロールユニット200はプーリ圧を増大させる。その後、アクセル開度一定で加速を続けるので入力トルクは一定となり、シンクロ機構11は解放状態が維持され、第2クラッチ6締結状態が維持される。 At this time, since the control unit 200 increases the output torque of the internal combustion engine 1 or the electric motor 4 in accordance with the increase in the accelerator opening, the input torque also increases. For this reason, the control unit 200 increases the pulley pressure so that belt slip does not occur with respect to the increased input torque. Thereafter, since the acceleration is continued at a constant accelerator opening, the input torque becomes constant, the synchro mechanism 11 is maintained in the released state, and the second clutch 6 is engaged.
 なお、プーリ圧は加速初期の入力トルクが増大する過渡状態で増大した後、徐々に減少して、ほぼ一定状態となっている。これは、入力トルクの過渡状態では、一定状態に比べてベルト滑りが生じやすいことに対応したものである。つまり、ベルト滑りが生じやすい過渡状態ではプーリ圧を高めてベルト滑りを防止し、一定状態となったら余分なプーリ圧をかけないことで、オイルポンプ3の駆動に要する負荷を低減している。また、バリエータ7の変速比がLowからHighに変速するためでもある。 Note that the pulley pressure increases in a transient state where the input torque at the initial stage of acceleration increases and then gradually decreases to a substantially constant state. This corresponds to the fact that the belt slip is more likely to occur in the transient state of the input torque than in the constant state. In other words, in a transient state where belt slip is likely to occur, the pulley pressure is increased to prevent belt slip, and when a constant state is reached, the extra pulley pressure is not applied, thereby reducing the load required to drive the oil pump 3. This is also because the gear ratio of the variator 7 shifts from Low to High.
 そして、タイミングt2でアクセル開度がゼロとなってコースト状態になると、コントロールユニット200は燃料カットを開始し、入力トルクを正から負へ遷移させる。このタイミングで、コントロールユニット200はアクチュエータ12を作動させてシンクロ機構11を締結する。タイミングt3でブレーキペダルが踏みこまれると、コントロールユニット200は車両を減速させるために、負の入力トルクの絶対値を更に大きくする。 When the accelerator opening becomes zero and the coasting state is reached at timing t2, the control unit 200 starts the fuel cut and shifts the input torque from positive to negative. At this timing, the control unit 200 operates the actuator 12 to fasten the sync mechanism 11. When the brake pedal is depressed at timing t3, the control unit 200 further increases the absolute value of the negative input torque in order to decelerate the vehicle.
 プーリ圧は、タイミングt2でステップ的に低下した後、タイミングt3までその値を維持している。これは、入力トルクの絶対値がタイミングt1-t2間における一定値よりも小さく、ベルト滑り防止に必要なプーリ圧が低下したことに対応するものである。 The pulley pressure decreases in a stepwise manner at timing t2, and then maintains the value until timing t3. This corresponds to the fact that the absolute value of the input torque is smaller than the constant value between timings t1 and t2, and the pulley pressure necessary for preventing belt slippage has decreased.
 タイミングt3からタイミングt4の間は、ブレーキペダルの踏み込み量が一定で、徐々に車速が低下している。車速がゼロに近づくと、コントロールユニット200はクリープ力を発生させるために燃料噴射を再開し、入力トルクを負から正へ遷移させる。 During the period from the timing t3 to the timing t4, the depression amount of the brake pedal is constant, and the vehicle speed gradually decreases. When the vehicle speed approaches zero, the control unit 200 resumes fuel injection to generate a creep force, and transitions the input torque from negative to positive.
 タイミングt4で入力トルクが負から正に遷移すると、コントロールユニット200はアクチュエータ12を作動させてシンクロ機構11を解放状態にする。そして、タイミングt5で車速がゼロになると、第2クラッチ6も解放する。 When the input torque transitions from negative to positive at timing t4, the control unit 200 operates the actuator 12 to release the synchro mechanism 11. When the vehicle speed becomes zero at timing t5, the second clutch 6 is also released.
 なお、プーリ圧は、入力トルクの絶対値が増大するタイミングt3でステップ的に増大し、バリエータ7の変速比がHighからLowに変速するため、さらに増大している。そしてタイミングt4でシンクロ機構11を解放した後は徐々に低下し、タイミングt5で第2クラッチ6を解放した後は一定となっている。 Note that the pulley pressure increases stepwise at the timing t3 when the absolute value of the input torque increases, and further increases because the gear ratio of the variator 7 shifts from High to Low. Then, after the synchronization mechanism 11 is released at the timing t4, the speed gradually decreases, and is constant after the second clutch 6 is released at the timing t5.
 なお、シンクロ機構11を締結したら第2クラッチ6を解放するようにしてもよい。回生時の電動機4の出力軸17へのトルク伝達経路がギアセット5のみになることでトルクの伝達効率がより向上するので、回生の効率をより高めることができる。 Note that the second clutch 6 may be released when the synchronization mechanism 11 is engaged. Since the torque transmission path to the output shaft 17 of the electric motor 4 at the time of regeneration is only the gear set 5, the torque transmission efficiency is further improved, so that the regeneration efficiency can be further increased.
 以上説明した実施形態の作用効果についてまとめると以下の通りである。 The operational effects of the embodiment described above are summarized as follows.
 バリエータ7と電動機4を備える動力伝達装置であって、バリエータ7の入力軸、つまり電動機4の出力軸17と、バリエータ7の出力軸19の間でバリエータ7を迂回して動力伝達し得るギアセット5と、ギアセット5による動力伝達を断接し得るシンクロ機構11とを有する。シンクロ機構11は、バリエータ7の出力軸19上に回転方向に固定かつ軸方向に移動可能に支持され外周部に係合溝を有するシンクロスリーブ11Aと、ギアセット5により回転駆動され内周部に係合溝を有するシンクロリング11Bとを有し、回生時には両者の係合溝同士が係合した締結状態となる。これにより、回生時にはバリエータ7の出力軸19と電動機4の出力軸17とが直結状態となり、かつ、直結状態を維持するためのエネルギが不要なので、より高い効率で電力回生することができる。 A power transmission device including a variator 7 and an electric motor 4, and a gear set that can transmit power by bypassing the variator 7 between an input shaft of the variator 7, that is, an output shaft 17 of the electric motor 4 and an output shaft 19 of the variator 7. 5 and a synchro mechanism 11 capable of connecting / disconnecting power transmission by the gear set 5. The synchro mechanism 11 is supported on the output shaft 19 of the variator 7 in a rotational direction and supported so as to be movable in the axial direction. The synchro sleeve 11A has an engagement groove on the outer peripheral portion, and is driven to rotate by the gear set 5 on the inner peripheral portion. It has a synchro ring 11B having an engaging groove, and at the time of regeneration, the engaging groove is engaged with each other. As a result, during regeneration, the output shaft 19 of the variator 7 and the output shaft 17 of the electric motor 4 are in a directly connected state, and energy for maintaining the directly connected state is unnecessary, so that it is possible to regenerate power with higher efficiency.
 シンクロ機構11の締結と解放の切り替えを、入力トルクの正負が切り替わるタイミングで行うので、装置を複雑化や運転者へ違和感を与えることを防止しつつ、直結状態に切り替えることができる。なお、シンクロ機構11を締結後に第2クラッチ6を解放することで、伝達効率をより向上させることができる。 Since the switching between the fastening and releasing of the synchro mechanism 11 is performed at the timing when the input torque is switched between positive and negative, the device can be switched to the directly connected state while preventing the device from becoming complicated and giving the driver a sense of incongruity. Note that the transmission efficiency can be further improved by releasing the second clutch 6 after the synchronization mechanism 11 is engaged.
 (第2実施形態)
 本実施形態は、システムの構成については第1実施形態と同様である。ただし、シンクロ機構11を締結し第2クラッチ6を解放した後のバリエータ7の油圧制御が異なる。
(Second Embodiment)
The present embodiment is the same as the first embodiment with respect to the system configuration. However, the hydraulic control of the variator 7 after the synchronization mechanism 11 is engaged and the second clutch 6 is released is different.
 図6は、第2実施形態でコントロールユニット200が実行するシンクロ機構11及び第2クラッチ6の締結、解放のための制御ルーチンである。ステップS200、S210、S220、S230は、図4のステップS100、S110、S120、S130と同様なので、説明を省略する、 FIG. 6 is a control routine for engaging and releasing the synchronization mechanism 11 and the second clutch 6 executed by the control unit 200 in the second embodiment. Steps S200, S210, S220, and S230 are the same as steps S100, S110, S120, and S130 of FIG.
 コントロールユニット200は、ステップS210でシンクロ機構11を締結したら、ステップS212で第2クラッチ6を解放する。そして、ステップS214でバリエータ7の油圧制御を、クラッチ解放時油圧制御に切り替える。 When the control unit 200 fastens the synchro mechanism 11 in step S210, the control unit 200 releases the second clutch 6 in step S212. In step S214, the hydraulic control of the variator 7 is switched to the clutch release hydraulic control.
 ドライブ状態や第2クラッチ6を締結してのコースト状態で実行する通常油圧制御では、入力トルクと、ベルト10及びプライマリプーリ8のイナーシャトルクとに応じて、ベルト滑りを起こさない油圧を設定する。これに対してクラッチ解放時油圧制御では、ベルト10及びプライマリプーリ8のイナーシャトルクに応じて、ベルト滑りを起こさない油圧を設定する。つまり、油圧の設定に際し、入力トルクの大きさを考慮しない。これは、第2クラッチ6を解放することにより、バリエータ7への負の入力トルクを考慮する必要がなくなるからである。 In the normal hydraulic control executed in the coast state with the second clutch 6 engaged, the hydraulic pressure that does not cause belt slippage is set according to the input torque and the inertia torque of the belt 10 and the primary pulley 8. On the other hand, in the clutch release hydraulic pressure control, a hydraulic pressure that does not cause belt slip is set according to the inertia torque of the belt 10 and the primary pulley 8. That is, the magnitude of the input torque is not taken into account when setting the hydraulic pressure. This is because it is not necessary to consider the negative input torque to the variator 7 by releasing the second clutch 6.
 入力トルクを考慮しない分、ベルト滑りを防止するために必要な油圧は通常油圧制御よりも低くできる。 ∙ Since the input torque is not taken into account, the hydraulic pressure required to prevent belt slip can be lower than that of normal hydraulic control.
 一方、コントロールユニット200は、ステップS230でシンクロ機構11を解放したら、ステップS232で第2クラッチ6を締結する。そして、ステップS234でクラッチ解放時油圧制御から通常油圧制御に切り替える。 On the other hand, when the control unit 200 releases the synchro mechanism 11 in step S230, the second clutch 6 is engaged in step S232. In step S234, the clutch hydraulic pressure control is switched to the normal hydraulic pressure control.
 図7は、上記制御を実行した場合のタイムチャートである。ここでは、シンクロ機構11を締結した後も第2クラッチ6を締結したままで、通常油圧制御を実行する図5と比較して説明する。 FIG. 7 is a time chart when the above control is executed. Here, a description will be given in comparison with FIG. 5 in which normal hydraulic control is performed with the second clutch 6 engaged even after the synchronization mechanism 11 is engaged.
 タイミングt0からタイミングt2までは、タイミングt2で第2クラッチ6を解放する点以外は図5と同様である。 From timing t0 to timing t2, it is the same as FIG. 5 except that the second clutch 6 is released at timing t2.
 図5では、油圧プーリは入力トルクの絶対値が低下するタイミングt2からタイミングt3の間ではいったん低下しているが、入力トルクの絶対値が増大するタイミングt3以降は再び増大している。 In FIG. 5, the hydraulic pulley once decreases from the timing t2 to the timing t3 when the absolute value of the input torque decreases, but increases again after the timing t3 when the absolute value of the input torque increases.
 これに対して図7では、タイミングt2でプーリ油圧が低下するのは同様であるが、タイミングt2で第2クラッチ6を解放してクラッチ解放時油圧制御に切り替えることにより、タイミングt3以降もプーリ油圧は増大していない。このように通常油圧制御より低いプーリ油圧にすることで、オイルポンプ3の駆動に要する負荷を低減させることができ、その結果、回転動力の伝達効率が向上させることができる。 On the other hand, in FIG. 7, the pulley hydraulic pressure decreases at the timing t2. However, the pulley hydraulic pressure is also decreased after the timing t3 by releasing the second clutch 6 and switching to the clutch release hydraulic control at the timing t2. Has not increased. Thus, by setting the pulley oil pressure lower than that of the normal oil pressure control, it is possible to reduce the load required for driving the oil pump 3, and as a result, it is possible to improve the transmission efficiency of the rotational power.
 以上のように、第2実施形態によれば第1実施形態と同様の効果に加え、クラッチ解放時油圧制御によりプーリ油圧を低減し、回転動力の伝達効率をさらに向上させることができる。 As described above, according to the second embodiment, in addition to the same effects as those of the first embodiment, the pulley hydraulic pressure can be reduced by the clutch release hydraulic pressure control, and the transmission efficiency of the rotational power can be further improved.
 (第3実施形態)
 図8は、第3実施形態のシステムの構成図である。図1と異なるのは、ギアセット5にワンウェイクラッチ30が含まれる点と、ギアセット5の変速比がバリエータ7の最HighよりHighである点である。
(Third embodiment)
FIG. 8 is a configuration diagram of a system according to the third embodiment. The difference from FIG. 1 is that the one-way clutch 30 is included in the gear set 5 and that the gear ratio of the gear set 5 is higher than the highest of the variator 7.
 ワンウェイクラッチ30は、具体的には第1ギア5Aと電動機4の出力軸17の間に介装されており、ギアセット5の変速比がバリエータ7の最HighよりHighの場合には、電動機4の出力軸17の回転速度が第1ギア5Aの回転速度より速い場合に動力を伝達しない構造とする。 Specifically, the one-way clutch 30 is interposed between the first gear 5A and the output shaft 17 of the electric motor 4, and when the gear ratio of the gear set 5 is higher than the highest level of the variator 7, the electric motor 4 In this structure, the power is not transmitted when the rotational speed of the output shaft 17 is higher than the rotational speed of the first gear 5A.
 上記のようなワンウェイクラッチ30を設ける効果について、まず、ギアセット5の変速比がバリエータ7の最HighよりHighであって、ワンウェイクラッチ30を備えない場合から説明する。 The effect of providing the one-way clutch 30 as described above will be described first from the case where the gear ratio of the gear set 5 is higher than the highest of the variator 7 and the one-way clutch 30 is not provided.
 ドライブ状態では、電動機4の出力軸17の回転がバリエータ7で減速されてバリエータ7の出力軸19に伝達される。一方、電動機4の出力軸17の回転は、ギアセット5を介してシンクロリング11Bに伝達される。バリエータ7の出力軸19の回転速度とシンクロリング11Bの回転速度を比較すると、バリエータ7がどのような変速比状態であっても、バリエータ7よりも変速比がHighなギアセット5を介して回転するシンクロリング11Bの方が、バリエータ7の出力軸19よりも速い。このようにバリエータ7の出力軸19とシンクロリング11Bで回転速度が異なる状態で、ドライブ状態からコースト状態へ遷移してシンクロ機構11を締結すると、シンクロスリーブ11Aが押し付けられることでギアセット5には減速方向の力が作用する。このため、シンクロ機構11の締結に伴い第1ギア5Aから電動機4の出力軸17へ減速方向の力が作用し、回転速度差が大きいほど運転者は大きなトルクショックを感じることになる。また、シンクロ機構11を締結後、第2クラッチ6を解放するまでの間は、第2クラッチ6とシンクロ機構11のいずれも締結され、バリエータ7とギアセット5という変速比の異なる2つの伝達経路が併存する、いわゆるインターロック状態となる。 In the drive state, the rotation of the output shaft 17 of the electric motor 4 is decelerated by the variator 7 and transmitted to the output shaft 19 of the variator 7. On the other hand, the rotation of the output shaft 17 of the electric motor 4 is transmitted to the synchro ring 11 </ b> B via the gear set 5. Comparing the rotational speed of the output shaft 19 of the variator 7 and the rotational speed of the synchro ring 11B, the variator 7 rotates through the gear set 5 whose gear ratio is higher than that of the variator 7 regardless of the gear ratio state. The synchronizing ring 11B is faster than the output shaft 19 of the variator 7. In this way, when the output shaft 19 of the variator 7 and the synchro ring 11B have different rotational speeds, when the transition is made from the drive state to the coast state and the synchro mechanism 11 is fastened, the synchro sleeve 11A is pressed against the gear set 5 A force in the deceleration direction acts. Therefore, a force in the deceleration direction acts on the output shaft 17 of the electric motor 4 from the first gear 5A as the synchro mechanism 11 is fastened, and the driver feels a greater torque shock as the rotational speed difference increases. In addition, after the synchronization mechanism 11 is engaged and until the second clutch 6 is released, both the second clutch 6 and the synchronization mechanism 11 are engaged, and the two transmission paths having different speed ratios, the variator 7 and the gear set 5. Are in a so-called interlock state.
 しかし、電動機4の出力軸17の回転速度が第1ギア5Aの回転速度より速い場合には動力伝達しないワンウェイクラッチ30を設けると、ドライブ状態では第1ギア5Aは回転せず、これに伴いシンクロリング11Bも回転しない。そして、シンクロ機構11の締結動作によって、シンクロリング11Bの回転速度が上昇し、これに伴って第1ギア5Aの回転速度も上昇する。シンクロリング11Bとシンクロスリーブ11Aの回転が同期した場合、変速比の関係により第1ギア5Aの回転速度は電動機4の出力軸17の回転速度よりも遅くなる。つまり、ワンウェイクラッチ30が空転して第1ギア5Aから電動機4の出力軸17へ動力は伝達されない。したがって、シンクロ機構11の締結に伴うトルクショックを防止できる。また、第2クラッチ6を解放することで電動機4の出力軸17の回転速度が低下し、第1ギア5Aの回転速度より低くなると、ワンウェイクラッチ30の空転が止まり、直結状態での回生が行われる。 However, when the rotation speed of the output shaft 17 of the motor 4 is higher than the rotation speed of the first gear 5A, if the one-way clutch 30 that does not transmit power is provided, the first gear 5A does not rotate in the drive state, and accordingly the synchronization is performed. The ring 11B also does not rotate. And by the fastening operation | movement of the synchro mechanism 11, the rotational speed of the synchro ring 11B rises and the rotational speed of the 1st gear 5A also rises in connection with this. When the rotation of the synchronization ring 11B and the synchronization sleeve 11A is synchronized, the rotation speed of the first gear 5A becomes slower than the rotation speed of the output shaft 17 of the electric motor 4 due to the gear ratio. That is, the one-way clutch 30 idles and power is not transmitted from the first gear 5 </ b> A to the output shaft 17 of the electric motor 4. Therefore, a torque shock accompanying the fastening of the synchro mechanism 11 can be prevented. Further, when the second clutch 6 is released, the rotation speed of the output shaft 17 of the electric motor 4 decreases, and when the rotation speed becomes lower than the rotation speed of the first gear 5A, the one-way clutch 30 stops idling and regeneration in a directly connected state is performed. Is called.
 このように、ワンウェイクラッチ30を設けることにより、シンクロ機構11の締結に伴うインターロックやトルクショックの発生を防止することができる。 Thus, by providing the one-way clutch 30, it is possible to prevent the occurrence of interlock and torque shock accompanying the fastening of the synchro mechanism 11.
 以上説明したように、ギアセット5にワンウェイクラッチ30を含めることにより、シンクロ機構11の締結に伴うインターロックやトルクショックを防止することができる。 As described above, by including the one-way clutch 30 in the gear set 5, it is possible to prevent the interlock and torque shock accompanying the fastening of the synchro mechanism 11.
 なお、ワンウェイクラッチ30を設ける位置は、電動機4の出力軸17と第1ギア5Aの間に限られず、ギアセット5のいずれの軸に設けても構わない。 The position where the one-way clutch 30 is provided is not limited to the position between the output shaft 17 of the electric motor 4 and the first gear 5A, and may be provided on any shaft of the gear set 5.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 本願は2012年3月13日に日本国特許庁に出願された特願2012-56301に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2012-56301 filed with the Japan Patent Office on March 13, 2012, the entire contents of which are incorporated herein by reference.

Claims (5)

  1.  駆動源から駆動力が入力されるプライマリプーリと、駆動輪へ駆動力を出力するセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに巻掛けられる巻掛け部材とを含み、油圧により前記プライマリプーリと前記セカンダリプーリのプーリ径比を変更することで変速比を変更する変速機構を有する無段変速機と、
     車両の駆動軸に連結されて車両の運動エネルギを電気エネルギとして回生し得る電動機と、
    を備える車両の動力伝達装置において、
     前記無段変速機の入力軸と出力軸の間で前記変速機構を迂回して動力伝達し得る複数枚の歯車からなるギアセットと、
     前記ギアセットによる前記無段変速機の入力軸と出力軸の間の動力伝達を断接し得る動力断接機構と、
    を有し、
     前記動力断接機構は、前記無段変速機の入力軸または出力軸上に回転方向には固定、軸方向には移動可能に支持され外周部に係合溝を有するスリーブ部材と、前記ギアセットにより回転駆動され内周部に係合溝を有するリング部材とを有し、前記スリーブ部材が移動して前記スリーブ部材と前記リング部材の係合溝同士が係合すると締結状態となり、前記スリーブ部材が移動して前記スリーブ部材と前記リング部材の前記係合溝同士の係合が解かれると解放状態となり、回生時には前記締結状態、回生時以外には前記解放状態となる車両の動力伝達装置。
    A primary pulley to which a driving force is input from a driving source; a secondary pulley that outputs a driving force to a driving wheel; and the primary pulley and a winding member that is wound around the secondary pulley. A continuously variable transmission having a speed change mechanism that changes the speed ratio by changing the pulley diameter ratio of the secondary pulley;
    An electric motor coupled to a drive shaft of the vehicle and capable of regenerating kinetic energy of the vehicle as electric energy;
    In a vehicle power transmission device comprising:
    A gear set comprising a plurality of gears capable of bypassing the transmission mechanism and transmitting power between the input shaft and the output shaft of the continuously variable transmission;
    A power connection / disconnection mechanism capable of connecting / disconnecting power transmission between an input shaft and an output shaft of the continuously variable transmission by the gear set;
    Have
    The power connection / disconnection mechanism includes a sleeve member which is supported on an input shaft or an output shaft of the continuously variable transmission in a rotational direction and is movable in the axial direction and has an engagement groove on an outer peripheral portion, and the gear set. And a ring member having an engagement groove on an inner periphery thereof, and when the sleeve member moves and the engagement grooves of the sleeve member and the ring member engage with each other, a fastening state is established, and the sleeve member The power transmission device for a vehicle that is released when the engagement grooves of the sleeve member and the ring member are disengaged and is released, and is in the engaged state during regeneration and in the released state except during regeneration.
  2.  請求項1に記載の車両の動力伝達装置において、
     前記動力断接機構は、締結と解放の切り替えを、前記無段変速機への入力トルクの正負が切り替わるタイミングで行う車両の動力伝達装置。
    The power transmission device for a vehicle according to claim 1,
    The power connection / disconnection mechanism is a vehicle power transmission device that performs switching between engagement and disengagement at a timing at which the sign of input torque to the continuously variable transmission is switched.
  3.  請求項1または2に記載の車両の動力伝達装置において、
     前記ギアセットと前記無段変速機の入力軸との動力伝達を断接するクラッチ機構をさらに備え、
     回生時に前記クラッチ機構を解放状態にする車両の動力伝達装置。
    The power transmission device for a vehicle according to claim 1 or 2,
    A clutch mechanism for connecting and disconnecting power transmission between the gear set and the input shaft of the continuously variable transmission;
    A power transmission device for a vehicle that puts the clutch mechanism in a released state during regeneration.
  4.  請求項3に記載の車両の動力伝達装置において、
     前記変速機構は、前記クラッチ機構が解放状態の場合は前記プライマリプーリのイナーシャトルク及び前記巻掛け部材のイナーシャトルクに基づいて、前記巻掛け部材の滑りが生じないよう油圧を制御する車両の動力伝達装置。
    The vehicle power transmission device according to claim 3,
    When the clutch mechanism is in the disengaged state, the transmission mechanism controls the hydraulic pressure so as to prevent the winding member from slipping based on an inertia torque of the primary pulley and an inertia torque of the winding member. apparatus.
  5.  請求項1から4のいずれかに記載の車両の動力伝達装置において、
     前記ギアセットが、前記無段変速機の入力軸側の回転速度が前記無段変速機の出力軸側の回転速度より速い場合に空転するワンウェイクラッチを含んで構成される車両の動力伝達装置。
    In the vehicle power transmission device according to any one of claims 1 to 4,
    A power transmission device for a vehicle, wherein the gear set includes a one-way clutch that idles when a rotational speed on the input shaft side of the continuously variable transmission is higher than a rotational speed on the output shaft side of the continuously variable transmission.
PCT/JP2013/056286 2012-03-13 2013-03-07 Power transmisssion device for vehicle WO2013137100A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-056301 2012-03-13
JP2012056301A JP2015096735A (en) 2012-03-13 2012-03-13 Vehicle power transmission device

Publications (1)

Publication Number Publication Date
WO2013137100A1 true WO2013137100A1 (en) 2013-09-19

Family

ID=49161010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056286 WO2013137100A1 (en) 2012-03-13 2013-03-07 Power transmisssion device for vehicle

Country Status (2)

Country Link
JP (1) JP2015096735A (en)
WO (1) WO2013137100A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2543043A (en) * 2015-10-05 2017-04-12 Gm Global Tech Operations Llc Vehicle power system
CN107406067A (en) * 2015-03-05 2017-11-28 加特可株式会社 The control device of motor vehicle driven by mixed power
WO2019201370A1 (en) * 2018-04-19 2019-10-24 Schaeffler Technologies AG & Co. KG Hybrid drivetrain comprising a combustion powertrain and an electrical powertrain
US10626968B2 (en) 2016-02-25 2020-04-21 GM Global Technology Operations LLC Motor vehicle drivetrain
CN111152642A (en) * 2020-01-03 2020-05-15 浙江吉利汽车研究院有限公司 Hybrid transmission structure based on automobile CVT

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224303A (en) * 1996-02-16 1997-08-26 Nippon Soken Inc Vehicle controller of hybrid car
JPH11222047A (en) * 1998-02-03 1999-08-17 Akebono Brake Res & Dev Center Ltd Regenerative brake device
JP2008105622A (en) * 2006-10-27 2008-05-08 Toyota Central R&D Labs Inc Driving device of hybrid vehicle
JP2009107425A (en) * 2007-10-29 2009-05-21 Toyota Central R&D Labs Inc Power transmission system
JP2009268256A (en) * 2008-04-24 2009-11-12 Honda Motor Co Ltd Power device
JP2010261544A (en) * 2009-05-11 2010-11-18 Honda Motor Co Ltd Power transmission device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224303A (en) * 1996-02-16 1997-08-26 Nippon Soken Inc Vehicle controller of hybrid car
JPH11222047A (en) * 1998-02-03 1999-08-17 Akebono Brake Res & Dev Center Ltd Regenerative brake device
JP2008105622A (en) * 2006-10-27 2008-05-08 Toyota Central R&D Labs Inc Driving device of hybrid vehicle
JP2009107425A (en) * 2007-10-29 2009-05-21 Toyota Central R&D Labs Inc Power transmission system
JP2009268256A (en) * 2008-04-24 2009-11-12 Honda Motor Co Ltd Power device
JP2010261544A (en) * 2009-05-11 2010-11-18 Honda Motor Co Ltd Power transmission device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406067A (en) * 2015-03-05 2017-11-28 加特可株式会社 The control device of motor vehicle driven by mixed power
CN107406067B (en) * 2015-03-05 2020-09-01 加特可株式会社 Control device for hybrid vehicle
GB2543043A (en) * 2015-10-05 2017-04-12 Gm Global Tech Operations Llc Vehicle power system
US10626968B2 (en) 2016-02-25 2020-04-21 GM Global Technology Operations LLC Motor vehicle drivetrain
WO2019201370A1 (en) * 2018-04-19 2019-10-24 Schaeffler Technologies AG & Co. KG Hybrid drivetrain comprising a combustion powertrain and an electrical powertrain
CN111152642A (en) * 2020-01-03 2020-05-15 浙江吉利汽车研究院有限公司 Hybrid transmission structure based on automobile CVT
CN111152642B (en) * 2020-01-03 2021-04-16 浙江吉利汽车研究院有限公司 Hybrid transmission structure based on automobile CVT

Also Published As

Publication number Publication date
JP2015096735A (en) 2015-05-21

Similar Documents

Publication Publication Date Title
JP5373371B2 (en) Control device for hybrid electric vehicle
JP6070716B2 (en) Vehicle travel control device
JP6003843B2 (en) Control device for hybrid vehicle
JP6061021B2 (en) Vehicle control apparatus and method
WO2012104993A1 (en) Vehicle control apparatus
JP6241424B2 (en) Vehicle control device
JP6447738B2 (en) Control device
WO2013137100A1 (en) Power transmisssion device for vehicle
JP2017094854A (en) Vehicle drive apparatus
JP2015010670A (en) Automatic transmission control device
JP4557402B2 (en) Vehicle drive control device
JP2004251452A (en) Controller for hybrid vehicle
WO2019031278A1 (en) Vehicle control device and control method
JP2010158973A (en) Method and apparatus for controlling drive device for vehicle
WO2017135172A1 (en) Control device for vehicle, and control method for vehicle
JP5810977B2 (en) Vehicle control device
JP2018069960A (en) Control device for electric vehicle
JP7169058B2 (en) vehicle controller
JP6717063B2 (en) Control method and control device for hybrid vehicle
JP2016056818A (en) Flywheel system and control method thereof
JP6280314B2 (en) Vehicle control device
JP2016078636A (en) Flywheel regeneration system and its control method
JP2016060254A (en) Flywheel regeneration system and its control method
JP5960656B2 (en) Flywheel regeneration system and control method thereof
JP2022155289A (en) Vehicle drive apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP