WO2013136476A1 - Probe - Google Patents

Probe Download PDF

Info

Publication number
WO2013136476A1
WO2013136476A1 PCT/JP2012/056607 JP2012056607W WO2013136476A1 WO 2013136476 A1 WO2013136476 A1 WO 2013136476A1 JP 2012056607 W JP2012056607 W JP 2012056607W WO 2013136476 A1 WO2013136476 A1 WO 2013136476A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
light
probe
lens
collimator
Prior art date
Application number
PCT/JP2012/056607
Other languages
French (fr)
Japanese (ja)
Inventor
秀雄 鹿熊
Original Assignee
株式会社吉田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社吉田製作所 filed Critical 株式会社吉田製作所
Priority to JP2014504561A priority Critical patent/JP5688185B2/en
Priority to PCT/JP2012/056607 priority patent/WO2013136476A1/en
Publication of WO2013136476A1 publication Critical patent/WO2013136476A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0088Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for oral or dental tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00

Definitions

  • the present invention relates to a probe used in an optical coherence tomographic image generation apparatus that captures a tomographic image inside an object using, for example, coherent light.
  • an optical coherence tomographic image generation apparatus (Optical Coherence Tomography: hereinafter referred to as an OCT apparatus) has been applied in ophthalmic medicine such as tomographic measurement of the cornea of the eyeball or retina in the field of living bodies.
  • OCT methods are broadly divided into TD (Time Domain) -OCT and FD (Frequency Domain) -OCT.
  • FD-OCT is classified into SD (Spectrum Domain) -OCT and SS (Swept Source) -OCT. It is known to be classified.
  • SS-OCT is a method for specifying an optical path length by using a laser light source capable of continuously sweeping a wavelength (wave number), subjecting spectral information acquired by a detector to FFT (Fast Fourier Transform) processing.
  • SS-OCT has features such as higher resolution and real-time measurement compared to an X-ray imaging apparatus, a CT (Computed Tomography) apparatus, and the like.
  • CT Computerputed Tomography
  • TD-OCT has been tried for dental use, but since SS-OCT can acquire data with higher sensitivity and higher speed than TD-OCT, motion artifact (ghost due to body movement) It is characterized by being strong.
  • a handpiece (probe) for a dental photodiagnostic device is provided with OCT means, and means for positioning a photodiagnostic portion of a tooth part is an imaging method using a camera, and for acquiring a surface image inside.
  • the probe of Patent Document 1 includes a condensing lens installed at the tip of an optical fiber for signal light transmission of low-coherent light generated outside, and an optical scanner (MEMS (Micro) (MEMS) that reflects signal light from the condensing lens.
  • MEMS Micro
  • Electro (Mechanical Systems) mirror) and a window glass and a cover arranged so as to cover the optical scanner through a space are assembled and installed at the tip of a long cylindrical handpiece.
  • JP 2007-83009 A (Claims 2, 3, FIG. 2, paragraph 0015) JP 2004-347380 A (FIG. 3, FIG. 23 to FIG. 29)
  • the probe of the above-mentioned Patent Document 1 includes a “diagnostic handpiece insertion portion whose tip is in contact with a tooth portion in the oral cavity and a subsequent portion to be gripped in a linear configuration, and an internal structure. Since the condensing lens of the reflected light of the optical scanner is arranged between the signal light irradiation window and the optical scanner, the focus of the lens can be adjusted at the shortest distance to the tooth part of the subject, and an appropriate diagnostic area Can be set and diagnosed ”(see paragraph 0015).
  • Patent Document 1 does not describe any mechanism for adjusting the focal point of the lens. Even if the technique of the probe described in Patent Document 1 is adopted as it is, adjusting the focal point of the condenser lens is not possible. There was a problem that it was not possible.
  • the probe described in Patent Document 2 includes an optical system surface plate in the probe in which an optical fiber, a condensing lens, and a polygon mirror optical system are disposed, and the optical system surface plate in the probe is moved back and forth. And a mechanism for scanning in the depth direction (see paragraph 0015 of Patent Document 2). For this reason, when using a probe, the position of a condensing lens can be adjusted by moving the optical system surface plate in the probe back and forth in advance.
  • the present invention has been invented to solve such a problem, and provides a probe that can easily adjust the focal position of a lens even when a subject is being photographed. Let it be an issue.
  • the probe according to the present invention distributes the laser light emitted from the light source into the measurement light applied to the subject and the reference light applied to the reference mirror, and is reflected from the subject and returned.
  • Used in an optical coherence tomographic image generation device that generates an optical coherence tomographic image by analyzing coherent light obtained by combining scattered light and reflected light reflected by the reference mirror, and irradiates the subject with the measurement light.
  • a probe for collecting the scattered light that has been reflected and returned, and an optical fiber that transmits the measurement light and the scattered light, and an irradiation direction of the laser light introduced into the probe by the optical fiber is changed.
  • a scanning means for causing the measurement light from the scanning means to irradiate the subject and collecting the scattered light, and a collection unit interposed between the nozzle and the scanning means.
  • a lens, and a housing for holding the optical fiber, the scanning unit, and the nozzle, and the nozzle has a telescopic mechanism capable of changing a length of the nozzle. To do.
  • the probe has an expansion / contraction mechanism that can change the length of the nozzle, so that the nozzle can be expanded and contracted in the length direction while photographing the subject.
  • the distance from the condenser lens to the subject can be adjusted, and the focal point of the condenser lens can be adjusted to focus. For this reason, the probe can take a tomographic image of the position of the subject to be photographed clearly while adjusting the focus even during the photographing.
  • the expansion / contraction mechanism includes an engagement cylinder member disposed at a distal end portion of the housing, and a spring member interposed between the engagement cylinder member and the nozzle to urge the nozzle toward the distal end side.
  • the base end side is engaged with the engaging cylinder member, and the distal end side is provided with an annular member that engages the nozzle so as to be movable at a predetermined interval.
  • the expansion / contraction mechanism can adjust the position of the focal point of the condenser lens while photographing the subject by pressing the nozzle against the subject arranged at the tip of the nozzle and expanding and contracting the spring member. Therefore, it is easy to adjust the focus of the condenser lens.
  • the engaging tube member includes a spring receiving portion with which the proximal end side of the spring member abuts, a male screw portion screwed into a female screw portion formed on the proximal end side of the annular member, and the engaging tube member A hollow portion formed inside, the nozzle being pressed by the spring member, a sliding contact portion provided in the hollow portion so as to be movable forward and backward, and a tip of the sliding contact portion
  • the annular member has a small-diameter portion with which the step portion abuts.
  • the nozzle is pressed and expanded and contracted by being pressed against a subject arranged at the tip of the nozzle, so that the length of the nozzle relative to the housing can be varied while compressing the spring member. And if you stop pressing the nozzle against the subject, it will automatically return to its original position by the spring force of the spring member, so even during shooting, you can adjust the position while easily changing the focal position of the condenser lens Can do.
  • the engaging tube member includes a spring receiving portion with which the proximal end side of the spring member abuts, a male screw portion screwed into a female screw portion formed on the proximal end side of the annular member, and the engaging tube member A hollow portion in which a slider energized by the spring member is accommodated via the spring member, and the nozzle is a slider screw formed on the outer peripheral portion on the tip end side of the slider
  • the annular member has a small diameter portion with which the slider urged by the spring member abuts.
  • the nozzle can change the length of the nozzle relative to the housing while pressing the tip of the nozzle against the subject to compress the spring member by being pressed by the subject. If the nozzle is stopped from being pressed against the subject, the original position is automatically restored by the spring force of the spring member, so that the focal position of the condenser lens can be easily adjusted even during shooting.
  • the expansion / contraction mechanism is detachably attached to an outer ring member attached to a nozzle installation portion formed in the housing.
  • the expansion / contraction mechanism having the nozzle at the tip is detachably attached to the outer ring member attached to the nozzle installation portion of the housing, so that it matches the shape and position of the subject to be photographed. It can be easily replaced with a nozzle that is easy to shoot. Further, the expansion / contraction mechanism can be easily cleaned or disinfected by detaching it from the probe together with the nozzle.
  • the opening of the nozzle has a non-slip portion that increases friction with the subject to be brought into contact with the opening during photographing.
  • the nozzle opening portion has the non-slip portion that increases friction with the subject, so that the non-slip portion of the opening portion can be brought into contact with the subject when the subject is photographed.
  • the photographing operation can be facilitated.
  • the present invention it is possible to provide a probe that can easily adjust the focal position of a lens even when a subject is being photographed.
  • an embodiment for implementing the apparatus of the present invention (hereinafter referred to as “embodiment”) will be described in detail with reference to the drawings.
  • OCT apparatus 1 optical coherence tomographic image generation apparatus
  • the OCT apparatus 1 optical coherence tomographic image generation apparatus
  • the OCT apparatus 1 mainly includes an optical unit unit 10 (optical unit), a diagnostic probe unit 30 (probe), and a control unit unit 50 (control unit).
  • optical unit unit 10 optical unit
  • diagnostic probe unit 30 diagnostic probe unit
  • control unit unit 50 control unit
  • the OCT apparatus 1 is a coupler 12 (light splitter) for measuring light for irradiating a sample S (subject) with laser light emitted from a light source 11 and reference light for irradiating a reference mirror 21.
  • the scattered light that is irradiated with the measurement light onto the sample S and scattered from the inside of the sample S by the diagnostic probe unit 30 and the reflected light from the reference mirror 21 are coupled to the coupler 16 (optical multiplexing).
  • the optical coherence tomographic image generation device generates an optical coherence tomographic image by analyzing the coherent light synthesized by the optical device.
  • the optical unit unit 10 includes a light source, an optical system, and a detection unit to which each method of general optical coherence tomography can be applied.
  • the optical unit 10 includes a light source 11 that continuously (periodically) irradiates a sample S (subject) with laser light having a high-band wavelength, and measurement light that irradiates the sample S with laser light.
  • a coupler 12 (light splitter) that distributes the reference light to be irradiated to the reference mirror 21 and a diagnostic probe unit that irradiates the sample S with the measurement light and scatters the sample S and returns the scattered light.
  • Detector 23 for detecting the internal information of the optical fiber 19b, optical fibers 19b and 60A (see FIG. 4) provided in the optical path between the light source 11 and the detector 23, and other optical components.
  • the measurement light enters the diagnostic probe unit 30 from the circulator 14 of the sample arm 13.
  • This measurement light is collected on the sample S by the condenser lens 34 via the collimator lens 32 and the scanning means 33 (two-dimensional MEMS mirror) when the shutter 312 (see FIG. 6) of the shutter mechanism 31 of the diagnostic probe unit 30 is open.
  • the light is scattered and reflected there, and then returns to the circulator 14 of the sample arm 13 through the condenser lens 34, the scanning means 33, and the collimator lens 32 again.
  • the polarization component of the returned measurement light is returned to a state with less polarization by the polarization controller 15 and input to the detector 23 via the coupler 16 as an optical multiplexer.
  • the reference light separated by the coupler 12 for the light splitter is collected on the reference mirror 21 (reference mirror) by the reference light condensing lens 20 from the circulator 18 of the reference arm 17 through the collimator lens 19 and the optical path length changing means 24. After being reflected and reflected there, the light returns to the circulator 18 through the reference light condensing lens 20 and the collimator lens 19 again.
  • the polarization component of the returned reference light is returned to a state with less polarization by the polarization controller 22 and input to the detector 23 via the coupler 16 for the optical multiplexer.
  • the detector 23 detects the light (interference light) interfered by the multiplexing. It can be detected as internal information of the sample S.
  • the light source 11 for example, a laser light source for SS-OCT method can be used.
  • the light source 11 has a performance with a center wavelength of 1310 nm, a sweep wavelength width of 100 nm, a sweep speed of 50 kHz, and a coherence distance (coherent length) of 14 mm.
  • the coherent distance corresponds to a distance when the attenuation of the power spectrum is 6 dB.
  • the coherence distance of a laser beam is 10 mm or more and highly coherent light of less than 48 mm is preferable, it is not limited to this.
  • the reference light collimator lens 19 (see FIG. 2) is a lens that converges the reference light divided by the coupler 12 (light splitter) into parallel light.
  • the collimator lens 19 ′ includes a collimator lens 19 ′.
  • 19d is accommodated in a substantially cylindrical lens holder 19a.
  • the collimator lens unit 19 ′ supports a collimator 19d, a collimator holder 19e that holds the collimator 19d, a block 19f that supports the collimator holder 19e, and a block 19f that can be finely adjusted in a direction perpendicular to the optical axis.
  • the support frame member 194 is mainly provided.
  • the collimator 19d includes the collimator lens 19, a substantially cylindrical lens holder 19a in which the collimator lens 19 is fitted, a connector 19c attached to the lens holder 19a, one end connected to the connector 19c, and the other end to the lens holder. 19a and an optical fiber 19b connected to the circulator 18 (see FIG. 2).
  • the collimator lens 19 is installed in the lens holder 19a, and the connector 19c that connects one end of the optical fiber 19b is attached to the lens holder 19a. Therefore, the optical axis of the collimator lens 19 and the optical fiber 19b are attached. It is installed in a state where the optical axis of each is matched and a certain distance is maintained.
  • an optical fiber 19b is attached to one end on the optical axis and the connector 19c is fixed, and the other end is opened toward the reference mirror 21 to form an opening through which the reference light and reflected light enter and exit.
  • the collimator holder 19e is fixed on the block 19f by advancing and retracting the collimator 19d in the optical axis direction and screwing it so as to be finely adjustable.
  • the block 19f is supported so as to be finely adjustable in a direction perpendicular to the optical axis via a compression coil spring SP in a substantially U-shaped bracket 19h when viewed from the front.
  • the bracket 19h is fixed to and integrated with the support base 191.
  • the support table 191 is a member that mounts a collimator lens unit 19 ′ fixed to the support table 191 and supports the collimator lens unit 19 ′ so that the position of the collimator lens unit 19 ′ can be adjusted with respect to the support frame member 194 in the optical axis direction.
  • the support base 191 is a substantially U-shaped thick plate member that is slidably engaged with the support frame member 194 in the optical axis direction, and is continuously provided so as to straddle the support frame member 194. .
  • the support base 191 is provided with a sliding surface 191a disposed in a state in which the bracket 19h is in contact with the support frame member 194 from both ends of a flat plate-like portion where the sliding surface 191a is formed.
  • a pair of left and right engaging projections 191b and a convex portion 191c formed between the left and right engaging projections 191b and abutting against the rail-shaped portion of the support frame member 194 are formed.
  • the fixing tool 193 includes a fastening member for fixing the backlash preventing member 192 engaged with the one engaging protrusion 191b of the support base 191 to the engaging protrusion 191b, and the collimator lens unit 19 ′ is supported by the support frame member 194. It is for fixing to a predetermined position.
  • the collimator 19d can be positioned and adjusted at a preset position on the optical axis so that the optical path length on the sample S (subject) light side is equal to the optical path length on the reference light side. .
  • the reference light condensing lens 20 is a lens that condenses the parallel light converged by the collimator lens 19 on the reference mirror 21.
  • the reference light condensing lens 20 is preset between the collimator lens 19 on the support frame member 194 and the reference mirror 21. Is arranged at a position on the optical axis.
  • the reference light condensing lens 20 is supported by the support base 20a so that the inclination of the reference light condensing lens 20 can be adjusted, and the support base 20a is fastened to the support frame member 194 so as to be movable and fixed in the optical axis direction.
  • the fixing tool 20b is fixed to a predetermined position of the support frame member 194.
  • the support frame member 194 is a plate-like member extending in the optical axis direction.
  • the collimator lens unit 19 ′, the reference light condensing lens 20, and the like are disposed at predetermined intervals on the support frame member 194 at appropriate intervals.
  • the reference mirror 21 is mounted.
  • a reference mirror 21 is fixed to the end portion of the support frame member 194, and a reference light condensing lens 20 and a collimator 19d are sequentially arranged from the reference mirror 21 through an appropriate distance to condense the reference light.
  • the optical path length can be changed by moving the lens 20 and the collimator 19d.
  • optical path length changing means 24 for the reference light moves the collimator 19d in the optical axis direction to change the optical path length from the coupler 12 (optical divider) to the reference mirror 21, thereby changing the optical axis direction. It is a device used when adjusting the position to the initial position or initializing the position in the optical axis direction.
  • the optical path length changing means 24 of the reference light includes, for example, a collimator lens unit 19 ′ that holds the collimator 19d and is arranged so as to be able to advance and retract manually along the optical axis together with the collimator 19d, and the reference light condensing lens 20 And a reference frame 21, and a support frame member 194 that extends along the optical axis and supports the collimator lens unit 19 ′, the reference light collecting lens 20, and the reference mirror 21.
  • the diagnostic probe unit 30 includes scanning means 33 (two-dimensional MEMS mirror) for two-dimensionally scanning laser light, guides the laser light from the optical unit 10 to the sample S, and The scattered light scattered and reflected in the sample S is received and guided to the optical unit 10.
  • the diagnostic probe unit 30 includes a cable 60, a housing 3, a frame body 300, a shutter mechanism 31, a collimator lens 32, a scanning unit 33 (two-dimensional MEMS mirror), a condenser lens 34, which will be described later.
  • the condensing point adjustment mechanism 35, the nozzle 37 (refer FIG. 4), and the expansion-contraction mechanism 370 (refer FIG. 7) are provided.
  • the nozzle 37 including the direct-view imaging nozzle 37A anterior tooth nozzle
  • the cable 60 (see FIG. 1) is for optically and electrically connecting the diagnostic probe unit 30, the optical unit unit 10, and the control unit unit 50.
  • the cable 60 includes an optical fiber 60 ⁇ / b> A (see FIG. 4) connected to the optical unit unit 10 and a communication line 60 ⁇ / b> B connected to the control unit unit 50.
  • the optical fiber 60A transmits measurement light and scattered light.
  • the housing 3 of the diagnostic probe section 30 is, as shown in FIG. 1A, a single joint arm 70 extending in the horizontal direction from the lower side of the display device 54 arranged on the upper portion of the OCT apparatus 1. It is held by the holder 71 at the tip of the head. As a result, even when the cable 60 is stored, the cable 60 can be stored without being twisted, and the storage space can be reduced.
  • the user removes and grasps the diagnostic probe unit 30 from the holder 71 of the single joint arm 70 and brings the diagnostic probe unit 30 into contact with the patient's teeth (sample S) to prevent camera shake. .
  • the foot controller 80 (FIG. 1) connected to the control unit 50 so as to be communicable by wire or wirelessly. Reference) can also be used.
  • the diagnostic probe unit 30 includes an articulated arm 70A that extends horizontally from the upper side of the display device 54 disposed on the OCT apparatus 1A.
  • the OCT apparatus 1 is the same as the OCT apparatus 1 shown in FIG. 1A except that it can be held by the holder 71 at the tip.
  • the articulated arm 70A has a longer length from the proximal end to the distal end holder 71 than the single-joint arm 70, and is disposed at a higher position from the floor. Therefore, the drooping of the cable 60 can be reduced. Thereby, operability can be improved and it can prevent having stepped on the cable 60 which hung down accidentally.
  • the housing 3 is a case body that covers or supports components such as the frame main body 300, the diagnostic probe unit 30, and the nozzle 37, and has a substantially inverted L shape when viewed from the side. It is formed in a shape (substantially pistol shape). For this reason, it is easy to hold, has good operability, and has a shape that can be easily attached to the holder 71.
  • the housing 3 is formed with a scanning means storage portion 3a, a grip portion 3b, a condenser lens storage portion 3c, and a nozzle installation portion 3d, which will be described later.
  • the housing 3 is formed in a state in which the grip portion 3b and the scanning means storage portion 3a are bent downward with respect to the condenser lens storage portion 3c and the nozzle installation portion 3d formed in the horizontal direction.
  • the frame main body 300 is disposed almost entirely in the housing 3, the scanning means 33 is accommodated in the substantially central portion, and the cable 60, the collimator lens 32, and the shutter mechanism 31 are disposed on the proximal end side.
  • the condensing lens 34 is disposed closer to the distal end portion, and the direct-view photographing nozzle 37A (nozzle 37) is disposed in the distal end portion so as to be extendable and detachable.
  • the housing 3 is formed by, for example, matching two housing halves 3e and 3f that are vertically divided in the center and divided into right and left.
  • the scanning means storage portion 3 a is a portion that is disposed in a substantially central portion (folded portion) of the substantially inverted L-shaped housing 3 and stores the scanning means 33.
  • a square chip-shaped two-dimensional MEMS mirror serving as the scanning means 33 is disposed, for example, at an angle of about 45 degrees in the scanning means storage unit 3a, and a laser beam emitted from the collimator lens 32 by the two-dimensional MEMS mirror. Light is reflected.
  • the grip portion 3b is a portion that is gripped when the user holds the diagnostic probe portion 30 by hand and is a portion that is held by the holder 71 (see FIG. 1).
  • the grip portion 3b is formed so as to extend in the direction of the optical axis of the laser beam from the arrangement position of the collimator lens 32 arranged on the base end side of the housing 3 to the arrangement position of the scanning means 33, and is formed in a substantially cylindrical shape.
  • the grip portion 3b receives an operation button SW installed on the outer peripheral surface, an optical fiber 60A wired in a state of being pulled out from the lower surface of the housing 3, and measurement light introduced by the optical fiber 60A to receive a laser.
  • a storage space is mainly provided in which a collimator lens 32 that converges light into parallel light and a shutter mechanism 31 that blocks the laser light are stored.
  • the condensing lens storage unit 3c is a part for storing a lens storage cylinder 352 (see FIGS. 5 and 6) having a condensing lens 34 for condensing the scanning light scanned by the scanning unit 33. It is formed at a position closer to the tip than the means storage portion 3a.
  • the condenser lens storage portion 3c is formed to extend in a direction orthogonal to the grip portion 3b, and is formed in a substantially cylindrical shape from the scanning means storage portion 3a to the nozzle installation portion 3d in the forward direction. That is, the condensing lens storage portion 3c is formed to extend in the direction of the reflected light reflected by the scanning unit 33, and is formed to be bent with respect to the grip portion 3b.
  • the nozzle installation part 3d is a part where the nozzle 37 is detachably attached to the distal end side of the nozzle installation part 3d via an outer ring member 38 and an expansion / contraction mechanism 370, which will be described later, from the condenser lens storage part 3c. Is also formed at the tip of the housing 3 on the tip side.
  • the frame main body 300 is a thick plate-like member that holds the shutter mechanism 31, the optical axis adjustment mechanism 321, the scanning unit 33, and the lens storage cylinder 352, and is screwed into the housing 3. Yes.
  • the frame main body 300 is formed in a substantially inverted L shape (substantially pistol shape) in a side view according to the shape of the housing 3.
  • the frame body 300 is formed with an L-shaped portion 300a in which the scanning means 33 is fixed at the central portion, and a vertical portion that is formed to extend downward from the central portion and to which the shutter mechanism 31 and the optical axis adjusting mechanism 321 are fixed.
  • a position adjustment hole 302 extending in the horizontal direction is mainly formed in the horizontal portion 300c.
  • the collimator lens 32 is provided in the lens holder 322a, and the optical axis length of the collimator 322 in which the connector 322b in which the optical fiber 60A is attached to the lens holder 322a on one end side on the optical axis is set.
  • An optical path length changing unit 39 for measuring light that can be adjusted to adjust the position in the optical axis direction is provided.
  • the optical path length changing means 39 for the measurement light includes a position adjustment hole 301 formed in the frame body 300 so as to extend in the optical axis direction of the measurement light, a collimator bracket 324 for holding the collimator 322, and an optical axis direction in the position adjustment hole 301. And a bracket fastener 327 that is movably inserted to fasten the collimator bracket 324 at a predetermined position.
  • the position adjustment hole 301 is a long hole formed in the vertical portion 300b so as to extend in the optical axis direction of the measurement light, and supports the collimator bracket 324 so as to be movable and tiltable in the optical axis direction.
  • a bracket fastener 327 that is fastened in a predetermined direction and position is inserted so as to be movable up and down.
  • the position adjusting hole 302 is a long hole for movably installing a condensing point adjusting mechanism 35 that advances and retracts the condensing lens 34 along the optical axis, and an adjustment bolt 353 is movably inserted therein.
  • the diagnostic probe unit 30 is configured such that the measurement light sent from the circulator 14 (see FIG. 2) and the scattered light reflected by the measurement light hitting the sample S are reflected.
  • the device is interposed between the collimator lens 32 in the grip portion 3b and the scanning means 33 in the scanning means storage portion 3a.
  • the shutter mechanism 31 includes, for example, a shutter base 311, a shutter 312, shutter driving means 313, and a shutter base fastener 314.
  • the shutter mechanism 31 is for performing zero point correction by blocking the reflected light from the sample S by the shutter 312 and removing noise (image) appearing on the display screen in a software manner.
  • the shutter base 311 is a member to which the shutter 312 and the shutter driving unit 313 are attached, and is fixed to the frame main body 300 so as to be vertically movable by the shutter base fastener 314.
  • a through hole 311a through which measurement light and scattered light pass is formed on the optical axis in the vertical direction.
  • the shutter base 311 can be rotated in the direction of arrow a about the shutter base fastener 314 by loosening the fastening of the shutter base fastener 314.
  • the shutter 312 is a member that blocks the optical path of measurement light and scattered light that passes through the through hole 311a, and rotates about a drive shaft (not shown) of the shutter drive unit 313 to open and close the through hole 311a. It consists of the board
  • the shutter driving unit 313 is an actuator that opens and closes the through hole 311a by moving the shutter 312 on the optical axis or retracting the shutter 312 from the optical axis.
  • the shutter driving unit 313 includes, for example, a motor that rotates the shutter 312 to open and close the through hole 311a, or a solenoid that opens and closes the shutter 312 to open and close the through hole 311a.
  • the shutter base fastener 314 is a bolt for fixing the shutter base 311 to the frame body 300 so as to be movable in the vertical direction.
  • the shutter base fastener 314 is inserted into the position adjustment hole 301 of the frame main body 300 and screwed to the shutter base 311.
  • the shutter mechanism 31 may be a mechanism that manually moves the shutter 312.
  • the collimator lens 32 is installed in the lens holder 322a, and a connector 322b in which an optical fiber 60A is attached to one end on the optical axis is set in the lens holder 322a.
  • This is a lens of the collimator 322.
  • the collimator lens 32 receives the measurement light sent from the coupler 12 (see FIG. 2) via the circulator 14 and converges the laser light into parallel light.
  • the collimator lens 32 is installed in a substantially cylindrical collimator 322 and is rotatably attached to the lower portion of the frame body 300 with a collimator holder 323 and a collimator bracket 324 interposed therebetween.
  • the optical axis adjusting mechanism 321 is a device that adjusts the direction and position of the collimator 322 by tilting or moving the collimator 322 provided with the collimator lens 32 with respect to the optical axis. is there.
  • Each of the optical axis adjustment mechanisms 321 includes a collimator 322, a collimator holder 323, a collimator bracket 324, a unit fastener 325, a holder fastener 326, and a bracket fastener (not shown). ing.
  • the collimator 322 is a substantially cylindrical member in which a collimator lens 32 is provided, and is arranged in the vertical direction along the optical axis.
  • the collimator holder 323 is a member that holds the collimator 322 so as to be rotatable in the direction of the arrow b around the optical axis, and includes a through hole 323a into which the collimator 322 is inserted, and a notch 323b that is notched in the through hole 323a. And a screw hole (not shown) into which the unit fastener 325 and the holder fastener 326 are screwed.
  • the collimator bracket 324 is a member that is attached to the frame main body 300 in the housing 3 so that the position of the collimator bracket 323 can be adjusted in a direction that allows the collimator holder 323 to rotate in the direction of arrow c around the holder fastener 326 (see FIG. 5). It is made of a substantially L-shaped thick plate material in plan view.
  • the collimator bracket 324 is formed with a hole (not shown) into which the holder fastener 326 is inserted and a screw hole (not shown) into which the bracket fastener (not shown) is screwed.
  • the unit fastener 325 can be rotated in the direction of the arrow b by loosening the tightening of the collimator 322 inserted into the collimator holder 323 so as to be rotatable, or can be fastened to fix the collimator 322 to the collimator holder 323. It is a fastener.
  • the unit fastener 325 is screwed into a screw hole (not shown) formed so as to be orthogonal to the notch 323b of the collimator holder 323.
  • the holder fastener 326 can be rotated in the direction of arrow c by loosening the tightening of the collimator holder 323 fitted in the collimator bracket 324 so as to be rotatable, or can be tightened before and after the collimator 322. It is a fastener for fixing the inclination of a direction.
  • the holder fastener 326 is screwed into the collimator holder 323 through the collimator bracket 324 at the tip.
  • a bracket fastener (not shown) is a fastener that is attached to a position adjustment hole 301 that is formed in the frame main body 300 so as to be vertically movable and rotatable so that the collimator bracket 324 can be moved up and down.
  • This bracket fastener can be rotated in the direction of arrow d by loosening the tightening of the collimator bracket 324, and the inclination of the optical axes of the collimator bracket 324 and the collimator 322 can be adjusted.
  • the scanning unit 33 is a mirror that is introduced into the diagnostic probe unit 30 by the optical fiber 60 ⁇ / b> A and changes the irradiation direction of the laser light that has passed through the collimator lens 32, and is transmitted through the collimator lens 32.
  • a two-dimensional MEMS mirror which converts the optical axis of the measuring light.
  • the element of the two-dimensional MEMS mirror has, for example, a three-layer structure including a silicon layer on which a movable structure such as a mirror and a planar coil is formed, a ceramic pedestal, and a permanent magnet.
  • the silicon layer is arranged in the center to totally reflect light, a cross-shaped beam that supports the mirror, X and Y frames, and an electromagnetic drive arranged around and around each mirror to generate electromagnetic force. And a two-layer planar coil. Then, by energizing the coils formed on the X and Y frames, it is possible to control to statically and dynamically tilt in the X axis direction and the Y axis direction in proportion to the magnitude of the current.
  • the operating angle of the mirror is, for example, ⁇ 10.6 degrees in the X-axis direction and ⁇ 5.2 degrees in the Y-axis direction with respect to the device plane.
  • the size of the device of the two-dimensional MEMS mirror is, for example, about 10 mm ⁇ 10 mm ⁇ 0.5 mm.
  • the mirror at the center of the device is formed of a quadrangle with a side of about 2 mm.
  • the laser light emitted from the light source 11 is applied to the sample S (see FIG. 2) through the two-dimensional MEMS mirror, and the depth direction (inward) proceeds from the surface of the sample S where the nozzle tip of the diagnostic probe unit 30 directly faces (
  • the detector 23 acquires the internal information in the (A direction).
  • data in the A direction consisting of 1152 points (hereinafter referred to as A line data) is acquired in one scan, and image processing for subsequent frequency analysis is acquired.
  • the X direction and the Y direction correspond to the horizontal direction and the vertical direction (Y-axis direction) on the surface of the sample S facing the nozzle tip of the diagnostic probe unit 30.
  • the scanning unit 33 may be a galvanometer mirror.
  • the condensing lens 34 is a lens that condenses the scanning light from the scanning unit 33 and condenses the measurement light on the sample S and irradiates it. It is installed inside.
  • the lens housing cylinder 352 is housed in the condensing lens housing portion 3 c of the housing 3 and is fixed to the frame body 300. In this case, the lens housing cylinder 352 is disposed so as to be able to advance and retract along a position adjustment hole 302 formed in the frame body 300.
  • a ring-shaped operation knob 351 on which a user's finger is loosely fitted is integrally formed on the lower surface portion of the lens housing cylinder 352.
  • the condensing point adjustment mechanism 35 is a device that adjusts the condensing point by adjusting the distance between the condensing lens 34 and the sample S (subject) in contact with the nozzle 37.
  • the operating knob 351 is exposed in the condensing lens storage portion 3c of the housing 3 in an exposed state.
  • the condensing point adjusting mechanism 35 includes a position adjusting hole 302 extending in the horizontal direction in the horizontal portion 300c of the frame main body 300, and the lens accommodating cylinder 352 inserted along the optical axis by being inserted into the position adjusting hole 302.
  • An adjustment bolt 353 that is fixed to an appropriate position of the position adjustment hole 302 formed in this manner, and a lens barrel formed integrally with the lens housing cylinder 352 for moving the condenser lens 34 to an appropriate position of the position adjustment hole 302.
  • the operation knob 351 and a connecting cylinder 354 for fixing the direct-view photographing nozzle 37A (nozzle 37) to the frame main body 300 through the nozzle support 36 are provided.
  • the condensing point adjusting mechanism 35 can adjust the position of the condensing point by operating and moving the operation knob 351 so that the condensing lens 34 advances and retreats in the optical axis direction together with the operation knob 351. .
  • the lens housing cylinder 352 is provided with a condensing point adjustment mechanism that adjusts the condensing point by adjusting the distance between the condensing lens 34 and the sample S (subject) in contact with the nozzle 37.
  • FIG. In this case, for example, by operating and moving an operation knob (not shown) of the condensing point adjusting mechanism, the condensing lens 34 is advanced and retracted in the optical axis direction together with the operating knob 351, so that the condensing point can be adjusted. It becomes like this.
  • the nozzle 37 (direct-view imaging nozzle 37 ⁇ / b> A (front tooth nozzle)) is disposed in front of the condenser lens 34 and has an opening 37 ⁇ / b> Ae that irradiates the sample S with measurement light and collects scattered light. It is the cylindrical member which has.
  • the direct-view imaging nozzle 37A (front tooth nozzle) is connected to the condensing lens storage portion 3c at the tip of the housing 3 in a connecting cylinder 354, a nozzle support 36, a spring (not shown), a sphere SB, and an outer ring member 38.
  • the direct-view imaging nozzle 37 ⁇ / b> A applies the opening 37 ⁇ / b> Ae of the cylindrical direct-view imaging nozzle 37 ⁇ / b> A to the sample S when the diagnostic probe unit 30 images the lip side surface of the front tooth portion (sample S) (see FIG. 5). It is a member for collecting the reflected scattered light by irradiating the sample S with the measurement light while keeping the distance therebetween.
  • the direct-view imaging nozzle 37A can be used for imaging intraoral tissues in addition to the anterior teeth (sample S).
  • the direct-view imaging nozzle 37 ⁇ / b> A (nozzle 37) has the length L of the direct-view imaging nozzle 37 ⁇ / b> A relative to the probe 30 to be coherent. It consists of the cylindrical member provided with the expansion-contraction mechanism 370 which can be changed short within the range of the expansion-contraction adjustment range L1 in the range L2.
  • the diagnostic probe unit 30 is provided with two focus adjustment units, that is, the condensing point adjusting mechanism 35 and a second condensing point adjusting mechanism including a telescopic mechanism 370 provided in the direct-view photographing nozzle 37A. .
  • a pressing portion 37Aa In the direct-view imaging nozzle 37A, a pressing portion 37Aa, a sliding contact portion 37Ab, a stepped portion 37Ac, a cylindrical portion 37Ad, an opening portion 37Ae having a non-slip portion 37Ag, and a spring housing portion 37Af, which will be described later, are integrated. Is formed.
  • the expansion / contraction mechanism 370 is a mechanism that supports the direct-viewing imaging nozzle 37 ⁇ / b> A with respect to the housing 3 so as to be able to advance and retreat, and an engagement cylinder member 371 disposed at the distal end of the housing 3, and the engagement cylinder member 371.
  • a spring member 372 that is interposed between the photographing nozzle 37A and biases the direct-view photographing nozzle 37A toward the distal end side, the proximal end side is locked to the engaging cylinder member 371, and the distal end side is a direct-view photographing nozzle 37A.
  • an annular member 373 that is movably locked at a predetermined interval.
  • the pressing portion 37Aa is a portion where the distal end portion of the spring member 372 interposed between the direct-viewing imaging nozzle 37A and the engaging cylinder member 371 contacts and is pressed by a spring force, and the proximal end of the direct-viewing imaging nozzle 37A A step is formed on the inner surface near the side.
  • the sliding contact portion 37Ab is formed in an engagement cylinder member spring accommodating portion 371g formed inside the distal end side of the engagement cylinder member 371 when the direct-view photographing nozzle 37A advances and retreats against the spring force of the spring member 372. It is installed in the wall so that it can move forward and backward.
  • the stepped portion 37Ac is a portion where the direct-view photographing nozzle 37A biased by the spring member 372 is brought into contact with and locked with the inner wall of the small-diameter portion 373b of the annular member 373, and the tip side of the sliding contact portion 37Ab Are formed at adjacent positions.
  • the cylindrical portion 37Ad is a portion that forms a space through which the measurement light applied to the sample S and the scattered light reflected and returned from the sample S pass, and extends in a cylindrical shape in the longitudinal direction of the entire direct-view imaging nozzle 37A. It is installed.
  • the opening 37Ae is a part that collects scattered light by irradiating the measurement light from the scanning unit 33 to the sample S, and is formed at the tip of the cylindrical part 37Ad.
  • the opening 37Ae is photographed in a state where the sample S is in contact with the tip of the opening 37Ae during photographing (see FIG. 8B).
  • An edge such as an opening end of the opening 37Ae has a non-slip portion 37Ag for allowing the direct-view photographing nozzle 37A to adhere to the sample S to be brought into contact with the photographing without slipping.
  • the non-slip portion 37Ag increases friction between the opening portion 37Ae and the sample S in contact with the opening portion 37Ae.
  • the non-slip portion 37Ag is, for example, an irregularity formed on the surface of the opening 37Ae by graining (etching, shot blasting, etc.), an annular rubber member that can be detachably attached to the opening 37Ae, or the opening 37Ae.
  • the nozzle-side spring accommodating portion 37Af is a portion where the distal end side of the spring member 372 is accommodated.
  • the engaging cylinder member 371 is a member for detachably attaching the base end side of the direct-view photographing nozzle 37A to the nozzle support 36, and is formed in a substantially cylindrical shape.
  • the engagement tube member 371 includes an engagement tube portion 371a, an annular groove 371b, a flange portion 371c, a male screw portion 371d, a spring receiving portion 371e, a hollow portion 371f, and an engagement tube portion side, which will be described later.
  • the spring storage portion 371g is integrally formed.
  • the engagement cylinder part 371a is a part for fitting the direct-view imaging nozzle 37A into the nozzle support 36 on the base end side of the engagement cylinder member 371, and is formed in a cylindrical shape.
  • the annular groove 371b is a semicircular groove formed in the outer peripheral surface of the engagement cylinder portion 371a in a cross-sectional view, and the sphere SB is engaged / disengaged.
  • the direct-view imaging nozzle 37A and the expansion / contraction mechanism 370 are detachable from the probe 30 by the spherical body SB engaging / disengaging from the annular groove 371b.
  • the flange portion 371 c is a portion formed in a hook shape at the center of the outer peripheral portion of the engagement cylinder member 371, and is disposed between the annular member 373 and the outer ring member 38.
  • the male screw portion 371d is a screw portion for screwing into a female screw portion 373a formed on the proximal end side of the annular member 373 and fixing the annular member 373 to the engagement cylinder member 371.
  • the spring receiving portion 371e is a portion that is received by receiving the proximal end portion of the spring member 372.
  • the hollow portion 371f is a space that communicates with the cylindrical portion 37Ad of the direct-view photographing nozzle 37A, and is a hollow portion that is formed inside the engagement tube member 371 and through which measurement light and scattered light pass.
  • the engagement cylinder portion side spring accommodating portion 371g is a portion where the proximal end side of the spring member 372 is accommodated.
  • the spring member 372 is formed of a compression coil spring that presses the direct-view photographing nozzle 37A toward the distal end side.
  • the direct-view photographing nozzle 37 ⁇ / b> A is expanded and contracted by the expansion / contraction mechanism 370 as much as the spring member 372 is compressed.
  • the annular member 373 is a nut-like member for engaging the direct-viewing imaging nozzle 37A with the engaging cylinder member 371 so as to be extendable and contractible, and includes the female screw portion 373a and the small diameter portion 373b with which the stepped portion 37Ac abuts. Is formed.
  • the annular member 373 can release the spring member 372 and the direct-view photographing nozzle 37A from the engaging cylinder member 371 by loosening the female screw portion 373a that is screwed into the male screw portion 371d.
  • the nozzle support 36 is a substantially cylindrical member that is interposed between the connecting cylinder 354 and the direct-viewing imaging nozzle 37 ⁇ / b> A and is detachably fitted to the outer ring member 38. .
  • the nozzle support 36 has an engagement portion (not shown) fitted in the coupling cylinder 354 on the base end side, and a spring (not shown) made of a cylindrical coil spring while being fitted in the outer ring member 38. ), A spring receiving portion (not shown) that externally fits the spring, and a sphere insertion hole 36d in which the sphere SB is movably fitted. Is formed.
  • the outer ring member 38 is a substantially cylindrical member disposed outside the nozzle support 36 and a spring (not shown) so as to cover the nozzle support 36 and the spring (not shown).
  • a spring receiving convex portion (not shown) for supporting the portion is formed.
  • control unit 50 includes an AD conversion circuit 51, a DA conversion circuit 52, a two-dimensional MEMS mirror control circuit 53, a display device 54, and an OCT control device 100. .
  • the AD conversion circuit 51 converts the analog output signal of the detector 23 (detector) into a digital signal.
  • the AD conversion circuit 51 starts acquisition of a signal in synchronization with a trigger output from the laser output device that is the light source 11, and the timing of the clock signal ck that is also output from the laser output device.
  • the analog output signal of the detector (detector) 23 is acquired and converted into a digital signal. This digital signal is input to the OCT controller 100.
  • the DA conversion circuit 52 converts the digital output signal of the OCT control device 100 into an analog signal.
  • the DA conversion circuit 52 converts the digital signal of the OCT control device 100 into an analog signal in synchronization with a trigger output from the laser output device that is the light source 11. This analog signal is input to the two-dimensional MEMS mirror control circuit 53.
  • the two-dimensional MEMS mirror control circuit 53 is a driver that controls the scanning unit 33 of the diagnostic probe unit 30.
  • the two-dimensional MEMS mirror control circuit 53 moves the mirror of the two-dimensional MEMS mirror in the horizontal direction and the vertical direction in synchronization with the output period of the laser light emitted from the light source 11 based on the analog output signal of the OCT control device 100.
  • a drive signal for driving is output.
  • the two-dimensional MEMS mirror control circuit 53 performs a process of rotating the mirror axis to change the angle of the mirror surface in the horizontal direction and a process of rotating the mirror axis to change the angle of the mirror surface in the vertical direction. Do it at different times.
  • the display device 54 displays an optical coherence tomographic image (hereinafter referred to as an OCT image) generated by the OCT control device 100.
  • the display device 54 includes, for example, a liquid crystal display (LCD: Liquid Crystal Display), EL (Electronic Luminescence), CRT (Cathode Ray Tube), PDP (Plasma Display Panel), and the like.
  • the OCT control apparatus 100 is a control apparatus for the OCT apparatus 1 and performs imaging by controlling the scanning unit 33 in synchronization with the laser beam, and also generates an OCT image of the sample S from the data obtained by converting the detection signal of the detector 23.
  • generates is performed.
  • the OCT control apparatus 100 includes a computer including input / output means (not shown), storage means, and arithmetic means, and a program installed in the computer.
  • the diagnostic probe unit 30 adjusts the distance (condensing point) between the condensing lens 34 and the sample S in contact with the tip of the direct-viewing nozzle 37 ⁇ / b> A by the condensing point adjusting mechanism 35 when photographing.
  • the position of the tomographic image to be taken can be adjusted in the depth direction from the reference plane of the sample S, and a tomographic image can be obtained over a wide range in the depth direction.
  • the OCT apparatus 1 includes an optical path length changing unit 24 that changes the optical path length from the coupler 12 (optical divider) to the reference mirror 21 by moving the collimator 19d in the optical axis direction.
  • a condensing point adjusting mechanism (not shown) for adjusting the condensing point by adjusting the distance between the condensing lens 34 and the sample S, and the length L (see FIG. 8A) of the direct-view photographing nozzle 37A.
  • a telescopic mechanism 370 that can be varied and operating both to match each other's optical path length, a clear tomographic image within a desired coherent distance can be obtained.
  • the user grasps the grip portion 3b of the diagnostic probe portion 30 shown in FIG. 5 with his hand and photographs the tip of the direct-view photographing nozzle 37A with the opening 37Ae in contact with the sample S (front tooth portion). .
  • the opening 37Ae to be brought into contact with the sample S has a non-slip portion 37Ag, the frictional resistance with the sample S to be brought into contact with the opening 37Ae is large, so that the direct-view photographing nozzle 37A slides.
  • the direct-view imaging nozzle 37A can be attached to the sample S.
  • the direct-view imaging nozzle 37 ⁇ / b> A is pressed toward the distal end side by the spring member 372 before the tip of the direct-view imaging nozzle 37 ⁇ / b> A comes into contact with the sample S, and the stepped portion 37 ⁇ / b> Ac is formed in the annular member 373. It is in the state contact
  • the direct-view imaging nozzle 37A applied to the surface of the sample S is pushed and expanded to the sample S side, and the focal position of the condenser lens 34 is expanded.
  • the sample S is photographed at the same position as the sample S.
  • the focus of the sample S to be photographed is moved and adjusted to the focal position of the condenser lens 34 to adjust the focus. can do.
  • the focal point of the condensing lens 34 is at the tip of the surface of the sample S, as shown in FIGS. 8B and 9, a tomogram at a position P in the middle of the distance (L1) from the surface of the sample S.
  • the direct-view shooting nozzle 37A is pressed against the sample S and compressed and moved to a distance (L1) within the coherent range L2, thereby adjusting the focal position of the condenser lens 34 to the position P. That ’s why I ’m in focus. For this reason, the tomographic image of the position P where the sample S is desired to be photographed can be photographed in a clear state.
  • the housing 3 is formed in a pistol shape that is bent in an L shape with a substantially central portion as a center, so that the user holds the diagnostic probe portion 30 with a hand and When shooting while changing the focal position, it is easy to grasp, so it is easy to hold it with your hand.
  • the diagnostic probe unit 30 is provided in a nozzle 37 having a shape corresponding to the shape and arrangement state of the sample S to be photographed (for example, the front tooth portion) by providing the nozzle 37 so as to be attachable to and detachable from the housing 3.
  • the sample S is photographed after replacement. Even if it is one diagnostic probe part 30, all the teeth, such as a patient's front tooth part and molar part, are changed clearly, changing the focal position of the condensing lens 34 by replacing the nozzle 37 with the thing suitable for a use application. Can be taken.
  • the non-slip portion 37Ag is made of a rubber member or a seal material that can be attached to and detached from the opening 37Ae, so that the non-slip portion 37Ag used for photographing is discarded as a disposable, and a clean new anti-slip portion 37Ag is newly added. Can be used attached to.
  • the nozzle 37 can use the non-slip
  • the focus position of the condensing lens 34 is adjusted to the position P by the expansion / contraction mechanism 370 at the time of tomography.
  • the imaging region in the depth direction can be changed by operating the operation knob 351 of the point adjusting mechanism 35.
  • FIG. 10 is an exploded perspective view of a main part showing a first modified example of the probe according to the embodiment of the present invention, and shows a state when a side-view photographing nozzle is attached.
  • FIG. 11 is a view showing a first modified example of the probe according to the embodiment of the present invention, and is an exploded perspective view of a main part showing a nozzle attached / detached state.
  • FIG. 12 is a longitudinal sectional view of the center portion showing a first modification of the probe according to the embodiment of the present invention.
  • FIG. 13 is a diagram showing a first modification of the probe according to the embodiment of the present invention, and is an exploded perspective view of a main part showing a nozzle attached / detached state.
  • FIG. 8 is a conceptual diagram in which molars are samples
  • FIGS. 4 to 9 are an anterior tooth portion (incisor) as a sample S.
  • the diagnostic probe unit 30 provided with the nozzle 37A nozzle for front teeth
  • the diagnostic probe unit 30B may be used by replacing the sample S with an angle type side-viewing imaging nozzle 37B (molar tooth nozzle) with the molar portion as a molar part.
  • the side-view photographing nozzle 37B (molar tooth nozzle) has an oblique mirror 37Ba that converts the optical axis of the condensing lens 34 in a direction perpendicular to the tip of the cylindrical portion 37Bb.
  • An opening 37Bd is formed in the inner wall 37Bc and in a direction orthogonal to the optical axis of the condenser lens 34, and the sample S in the direction orthogonal to the longitudinal direction of the side-viewing nozzle 37B is irradiated. Scattered light is collected.
  • the side-view shooting nozzle 37B is detachably (replaceable), rotatable, and telescopically attached to the housing 3 in the same manner as the direct-view shooting nozzle 37A.
  • the side-view imaging nozzle 37B uses the sample S (molar part) to open the opening 37Bd of the side-view imaging nozzle 37B when imaging the molar part with the diagnostic probe unit 30B. ),
  • the length L of the side-view photographing nozzle 37B is varied within the expansion / contraction adjustment range L1, the measurement light is irradiated onto the sample S, and the reflected scattered light is collected.
  • the side-view photographing nozzle 37B is disposed in the nozzle installation portion 3d of the housing 3 so as to be expandable and contractible with the connecting cylinder 354, the outer ring member 38, and the expansion / contraction mechanism 370B interposed therebetween.
  • the nozzle that is screwed into the slider screw portion 374Ba formed on the outer peripheral portion on the distal end side of the slider 374B is connected to the side-viewing nozzle 37B on the base end side.
  • the threaded portion 37Bg, the cylindrical portion 37Bb extending from the nozzle threaded portion 37Bg toward the distal end side, the distal end inner wall 37Bc where the oblique mirror 37Ba is disposed obliquely, and the lower end of the distal end inner wall 37Bc are opened.
  • the opening 37Bd is integrally formed and has an anti-slip portion 37Be on the edge of the opening 37Bd.
  • the non-slip portion 37Be is a non-slip means that increases the frictional resistance with the sample S to be brought into contact with the image S to make the side-view shooting nozzle 37B difficult to slide, and is formed by processing the surface of the opening 37Bd. It is made of a material having a large friction coefficient that is detachably attached to the contact surface or the opening 37Bd.
  • the expansion / contraction mechanism 370B is a mechanism that allows the slider 374B that moves forward and backward integrally with the side-viewing imaging nozzle 37B to move forward and backward against the spring force of the spring member 372B.
  • This engagement cylinder member 371B, a spring member 372B, an annular member 373B, and a slider 374B are provided. That is, the expansion / contraction mechanism 370B of the first modification is different from the above-described embodiment in that the slider 374B is provided.
  • the engaging cylinder member 371B includes a spring receiving portion 371Be that a proximal end side of the spring member 372B contacts, a male screw portion 371Bd that is screwed into a female screw portion 373Ba formed on the proximal end side of the annular member 373B, and the engaging cylindrical member. It has a hollow portion 371Bf that is formed inside 371B and that houses a slider 374B that is biased by the spring member 372B via a spring member 372B.
  • the engagement cylinder member 371B has substantially the same shape as the engagement cylinder member 371 of the above embodiment, and the slider 374B is disposed in the cylindrical male screw portion 371Bd. This is different from the tubular member 371.
  • the spring member 372B is formed of a compression coil spring that biases the side-view photographing nozzle 37B in the distal direction via a slider 374B.
  • the spring member 372B is supported at the base end side in contact with the spring receiving portion 371Be of the engaging tube member 371B in the same manner as the spring member 372 of the above-described embodiment, and the distal end side presses the slider 374B toward the distal end side. This is different from the above embodiment.
  • the annular member 373B is a ring member for receiving the slider 374B biased by the spring member 372B and locking the slider 374B to the engagement cylinder member 371B.
  • This annular member 373B has a female threaded portion 373Ba on the inner wall surface on the proximal end side, and a small diameter portion 373Bb on the distal end side with which the slider 374B biased by the spring member 372B abuts.
  • the slider 374B has a proximal end portion that is provided in the engagement cylinder member 371B so as to be movable by a predetermined distance, and a slider screw portion 374Ba formed on the distal end side is screwed into the nozzle screw portion 37Bg of the side-view photographing nozzle 37B.
  • they are connected and arranged at the tip of the diagnostic probe unit 30 so as to advance and retreat integrally with the side-view imaging nozzle 37B.
  • the side-view photographing nozzle 37B is detachably provided on the slider 374B.
  • the slider 374B is advanced and retracted together. Can be expanded and contracted within the range of the expansion / contraction adjustment range L1.
  • the side-view photographing nozzle 37B includes the oblique mirror 37Ba for converting the optical axis by 90 degrees, the opening 37Bd opened in the direction perpendicular to the tip of the cylindrical portion 37Bb, and the expansion and contraction extending in the front-rear direction. If the cylindrical portion 37Bb is rotated and the direction of the opening 37Bd (direction to shoot) can be freely changed, and the side-view shooting nozzle 37B is pressed, the axial length is obtained. Since L can be varied, a tomographic image of the molar portion in the back of the oral cavity can be easily taken.
  • the diagnostic probe unit 30 can move the focal position of the condenser lens 34 by moving the side-viewing imaging nozzle 37B in the axial direction, and can obtain a clear image.
  • the side-view imaging nozzle 37B is used for imaging intraoral tissue, imaging of sites difficult to capture with the above-described direct-view imaging nozzle 37A, for example, occlusal surface, lingual side surface, buccal side surface, etc. It is also suitable for taking tomographic images of the side of the tongue.
  • FIG. 14 is a perspective view showing a second modification of the probe according to the embodiment of the present invention.
  • FIG. 15 is an exploded perspective view showing a second modification of the probe according to the embodiment of the present invention.
  • FIG. 16 is a view showing a second modification of the probe according to the embodiment of the present invention, and is a side view showing a state when the housing half is removed.
  • FIG. 17 is a view showing a second modification of the probe according to the embodiment of the present invention, and is a perspective view of the main part of the probe with the housing half removed.
  • the diagnostic probe section 30C of the above embodiment may be one in which an expansion / contraction mechanism 370 is arranged in a straight type housing 3C as shown in FIGS.
  • the scanning means storage portion 3Ca is disposed at the center portion of the housing 3C
  • the grip portion 3Cb is disposed at the base end portion
  • the condenser lens storage portion 3Cc is disposed at a position closer to the distal end side of the center portion.
  • the nozzle mounting portion 3Cd is arranged at the tip, and the entire housing 3C is formed in a straight type shape arranged straight.
  • the housing 3C has two housing halves 3Ce and 3Cf, which are divided into right and left by longitudinally sectioning the central portion in the length direction, and a direct-view shooting nozzle 37A via a telescopic mechanism 370 at the tip of the housing 3C. Is arranged.
  • the grip portion 3Cb is formed to extend in the direction of the optical axis of the laser light from the collimator lens 32 to the reflecting mirror M.
  • the optical axis of the laser beam reflected by the reflecting mirror M toward the scanning unit 33 and reflected by the scanning unit 33 is parallel to the optical axis in the grip unit Cb. It is arranged to be reflected.
  • the condenser lens storage 3Cc is formed to extend in the direction of the parallel lines. For this reason, the housing 3C is formed straight from the grip portion 3Cb to the direct-view photographing nozzle 37A via the scanning means storage portion 3Ca and the condenser lens storage portion 3Cc.
  • the laser light that has entered the diagnostic probe section 30 ⁇ / b> C from the optical fiber 60 ⁇ / b> A passes through the collimator 322 and the shutter mechanism 31, and is in the center of the scanning unit 33. It is arranged so as to be inclined toward the grip portion 3Cb with respect to the length direction of the housing 3C so as to be reflected toward the mirror.
  • a cable 60, a collimator 322, a shutter mechanism 31 and the like are mainly housed on the base end side.
  • a plurality of operation buttons SW are provided on the side surface of the grip portion 3Cb near the condenser lens storage portion 3Cc.
  • the nozzle installation part 3Cd is a part where the nozzle 37 is detachably attached and can be extended and retracted through the connecting cylinder 354, the outer ring member 38, and the expansion and contraction mechanism 370.
  • the direct-view photographing nozzle 37A or the side-view photographing nozzle 37B is attached according to the above.
  • the nozzle installation portion 3Cd is formed from the distal end side of the condenser lens storage portion 3Cc to the distal end of the housing 3.
  • the diagnostic probe unit 30C can change the length of the nozzle 37, the length of the optical path and the focal point of the condenser lens 34 can be changed accordingly. In addition to being able to search for a wide range, the sharpness of the tomographic image can be adjusted.
  • FIG. 18 is a view showing a third modification of the probe according to the embodiment of the present invention, and is an exploded perspective view of a main part of the probe provided with a nozzle expansion / contraction mechanism.
  • FIG. 19 is a view showing a third modification of the probe according to the embodiment of the present invention, and is an enlarged vertical cross-sectional view of a main part of the probe provided with a nozzle expansion / contraction mechanism.
  • a third modification of the probe according to the embodiment of the present invention is based on the above-described telescopic mechanism 370 that slides in the axial direction (see FIGS. 8A, 8B, 13A, and 13B). Instead, as shown in FIGS. 18 and 19, by rotating the nozzle 37D, the nozzle 37D is moved back and forth in the axial direction to change the nozzle length L, and the condenser lens 34 (see FIG. 5) and the sample S (see FIG. 5).
  • Extension mechanism> The expansion / contraction mechanism 370 ⁇ / b> D of the nozzle 37 ⁇ / b> D forms a condensing point adjusting mechanism that adjusts the distance between the condensing lens 34 and the sample S by moving the nozzle 37 ⁇ / b> D forward and backward with respect to the housing 3.
  • the nozzle 37D of the diagnostic probe section 30C includes a nozzle base 37D1 that is detachably fitted to the tip of the nozzle support 36, and a nozzle expansion / contraction that is attached to the nozzle base 37D1 in a stretched state. And a body 37D2.
  • the nozzle base 37D1 has a female thread portion 37Da formed in the opening at the tip.
  • the nozzle expansion / contraction body 37D2 is formed with a male screw portion 37Db that is screwed into the female screw portion 37Da on the outer peripheral surface on the base end side, and the nozzle expansion / contraction body 37D2 is rotated forward / reversely so that the nozzle length L is set to a desired length.
  • the distance between the condenser lens 34 and the sample S can also be adjusted.
  • the expansion / contraction mechanism 370D of the nozzle 37D may include a screw mechanism including the female screw portion 37Da and the male screw portion 37Db.
  • the expansion / contraction mechanisms 370 and 370B are provided with spring members 372 and 372B as means for pushing the direct-view imaging nozzle 37A and the side-view imaging nozzle 37B back to the distal end side, and the spring force is applied.
  • spring members 372 and 372B other than the compression coil spring may be used.
  • the spring members 372 and 372B of the expansion and contraction mechanisms 370 and 370B form a sealed space between the direct-view shooting nozzle 37A and the side-view shooting nozzle 37B and the engagement cylinder members 371 and 371B, and the sealed space.
  • It may be an air spring that is filled with compressed air of an appropriate pressure.
  • the spring members 372 and 372B may be rubber springs, disk springs, or the like having an elastic force that pushes back the direct-view photographing nozzle 37A and the side-view photographing nozzle 37B.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Dentistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Endoscopes (AREA)

Abstract

A probe (30) is used in an optical coherence tomography device (1) and illuminates a subject (S) with measurement light and collects scattered light which reflects therefrom. The probe (30) comprises: an optical fiber (60A) which transmits the measurement light and the scattered light; a scanning means (33) for changing the illumination direction of a laser beam which is introduced into the probe (30) by the optical fiber (60A); a nozzle (37) further comprising an aperture part (37Ae) which illuminates the subject (S) with the measurement light from the scanning means (33) and collects the scattered light; a light collecting lens (34) which is interposed between the nozzle (37) and the scanning means (33); and a housing (3) which retains the optical fiber (60A), the scanning means (33), and the nozzle (37). The nozzle (37) further comprises a stretch/contract mechanism (370) which is capable of varying the length of the (nozzle (37)).

Description

プローブprobe
 本発明は、例えば、光のコヒーレント(干渉性)を利用して物体内部の断層像を撮像する光干渉断層画像生成装置に使用されるプローブに関する。 The present invention relates to a probe used in an optical coherence tomographic image generation apparatus that captures a tomographic image inside an object using, for example, coherent light.
 従来、光干渉断層画像生成装置(Optical Coherence Tomography:以下、OCT装置と称する)は、生体の分野では、眼球の角膜や網膜の断層計測等の眼科医療で応用されている。OCTの方式は、TD(Time Domain)-OCT、FD(Frequency Domain)-OCTに大別され、後者のFD-OCTは、SD(Spectrum Domain)-OCTと、SS(Swept Source)-OCTとに分類されることが知られている。 Conventionally, an optical coherence tomographic image generation apparatus (Optical Coherence Tomography: hereinafter referred to as an OCT apparatus) has been applied in ophthalmic medicine such as tomographic measurement of the cornea of the eyeball or retina in the field of living bodies. OCT methods are broadly divided into TD (Time Domain) -OCT and FD (Frequency Domain) -OCT. The latter FD-OCT is classified into SD (Spectrum Domain) -OCT and SS (Swept Source) -OCT. It is known to be classified.
 例えば、SS-OCTは、波長(波数)を連続的に掃引できるレーザ光源を使用し、検出器により取得したスペクトル情報をFFT(Fast Fourier Transform)処理し、光路長を特定する方式である。SS-OCTは、X線撮影装置やCT(Computed Tomography)装置等に比べ、解像度が高く、リアルタイムに計測が行える等の特徴がある。
 また、歯科用のために、前記したTD-OCTが試されていたが、SS-OCTはTD-OCTに比べて、高感度かつ高速にデータを取得できることから、モーションアーチファクト(体動によるゴースト)に強いという特徴がある。
For example, SS-OCT is a method for specifying an optical path length by using a laser light source capable of continuously sweeping a wavelength (wave number), subjecting spectral information acquired by a detector to FFT (Fast Fourier Transform) processing. SS-OCT has features such as higher resolution and real-time measurement compared to an X-ray imaging apparatus, a CT (Computed Tomography) apparatus, and the like.
In addition, TD-OCT has been tried for dental use, but since SS-OCT can acquire data with higher sensitivity and higher speed than TD-OCT, motion artifact (ghost due to body movement) It is characterized by being strong.
 歯科の分野のOCT装置では、歯科光診断装置用ハンドピース(プローブ)において、OCT手段を備え、歯部の光診断箇所を位置決めする手段が、カメラによる撮像方式で、内部に、表面画像取得用の撮像カメラを備えている(特許文献1参照)。 In an OCT apparatus in the field of dentistry, a handpiece (probe) for a dental photodiagnostic device is provided with OCT means, and means for positioning a photodiagnostic portion of a tooth part is an imaging method using a camera, and for acquiring a surface image inside. (Refer to Patent Document 1).
 前記特許文献1のプローブは、外部で生成された低コヒーレント光の信号光伝送用光ファイバの先端に設置された集光レンズと、集光レンズからの信号光を反射させる光スキャナ(MEMS(Micro Electro Mechanical Systems)ミラー)と、光スキャナを空間を介して覆うように配置された窓ガラス及びカバーと、を長い円筒状のハンドピース内の先端部に集合させて設置して構成されている。 The probe of Patent Document 1 includes a condensing lens installed at the tip of an optical fiber for signal light transmission of low-coherent light generated outside, and an optical scanner (MEMS (Micro) (MEMS) that reflects signal light from the condensing lens. Electro (Mechanical Systems) mirror) and a window glass and a cover arranged so as to cover the optical scanner through a space are assembled and installed at the tip of a long cylindrical handpiece.
 その他のプローブとしては、患者の口腔内の奥にある臼歯部を撮影する際に、プローブの先端部側面に信号光照射用窓がある臼歯部撮影専用のプローブや、前歯部を撮影する前歯部撮影専用のプローブや、全体の形状がピストル形状をしたものが知られている(例えば、特許文献2参照)。 As other probes, when photographing the molar part in the back of the patient's mouth, a probe dedicated to photographing the molar part with a signal light irradiation window on the side of the tip of the probe, or the front tooth part for photographing the front tooth part Probes dedicated to imaging and those having a pistol shape as a whole are known (for example, see Patent Document 2).
特開2007-83009号公報(請求項2,3、図2、段落0015)JP 2007-83009 A (Claims 2, 3, FIG. 2, paragraph 0015) 特開2004-347380号公報(図3、図23~図29)JP 2004-347380 A (FIG. 3, FIG. 23 to FIG. 29)
 前記した特許文献1のプローブには、「先端部が口腔内の歯部に当接される診断用ハンドピース挿入部と、把持する後続部分とが直線的に構成された形状で、内部構造が、光スキャナの反射光の集光レンズを信号光照射用窓と光スキャナとの間に配設したため、被検体の歯部に最短距離でレンズの焦点調整が可能であり、適節な診断領域の設定、診断ができる」と記載されている(段落0015参照)。 The probe of the above-mentioned Patent Document 1 includes a “diagnostic handpiece insertion portion whose tip is in contact with a tooth portion in the oral cavity and a subsequent portion to be gripped in a linear configuration, and an internal structure. Since the condensing lens of the reflected light of the optical scanner is arranged between the signal light irradiation window and the optical scanner, the focus of the lens can be adjusted at the shortest distance to the tooth part of the subject, and an appropriate diagnostic area Can be set and diagnosed ”(see paragraph 0015).
 しかしながら、特許文献1には、レンズの焦点を調整する機構等が一切記載されておらず、特許文献1に記載のプローブの技術をそのまま採用しても、集光レンズの焦点を調整することはできないという問題点があった。 However, Patent Document 1 does not describe any mechanism for adjusting the focal point of the lens. Even if the technique of the probe described in Patent Document 1 is adopted as it is, adjusting the focal point of the condenser lens is not possible. There was a problem that it was not possible.
 また、特許文献2に記載のプローブには、光ファイバと集光レンズとポリゴンミラーの光学系を配設したプローブ内の光学系定盤と、プローブ内の光学系定盤を前後に移動させて深さ方向の走査を行う機構と、が内設されている(特許文献2の段落0015参照)。このため、プローブを使用する際に、予めプローブ内の光学系定盤を前後に移動させて集光レンズの位置を調整することができる。 In addition, the probe described in Patent Document 2 includes an optical system surface plate in the probe in which an optical fiber, a condensing lens, and a polygon mirror optical system are disposed, and the optical system surface plate in the probe is moved back and forth. And a mechanism for scanning in the depth direction (see paragraph 0015 of Patent Document 2). For this reason, when using a probe, the position of a condensing lens can be adjusted by moving the optical system surface plate in the probe back and forth in advance.
 しかしながら、引用文献2に記載の光学系定盤を前後に移動させる機能は、プローブ内に内設されて、単に光学系定盤をスライド移動させるものであるため、プローブを使用中に集光レンズの焦点を調整することができないという問題点があった。 However, since the function of moving the optical system platen described in the cited document 2 back and forth is provided in the probe and simply sliding the optical system platen, the condensing lens is in use while using the probe. There was a problem that it was not possible to adjust the focus.
 そこで、本発明は、そのような問題を解消すべく発明されたものであって、被写体を撮影中であっても、レンズの焦点位置を容易に位置調整することができるプローブを提供することを課題とする。 Accordingly, the present invention has been invented to solve such a problem, and provides a probe that can easily adjust the focal position of a lens even when a subject is being photographed. Let it be an issue.
 前記課題を解決するために、本発明に係るプローブは、光源から照射されたレーザ光を、被写体に照射する計測光と参照ミラーに照射する参照光とに分配し、前記被写体から反射して戻ってきた散乱光と前記参照ミラーで反射した反射光とを合成させた干渉光を解析して光干渉断層画像を生成する光干渉断層画像生成装置に使用され、前記計測光を前記被写体に照射して前記反射して戻ってきた散乱光を回収するプローブであって、前記計測光及び前記散乱光を伝送する光ファイバと、この光ファイバによって前記プローブ内に導入されたレーザ光の照射方向を変化させる走査手段と、この走査手段からの前記計測光を前記被写体に照射して前記散乱光を回収する開口部を有するノズルと、このノズルと前記走査手段との間に介在された集光レンズと、前記光ファイバ、前記走査手段、及び、前記ノズルを保持するハウジングと、を備え、前記ノズルは、当該ノズルの長さを可変することができる伸縮機構を有していることを特徴とする。 In order to solve the above problems, the probe according to the present invention distributes the laser light emitted from the light source into the measurement light applied to the subject and the reference light applied to the reference mirror, and is reflected from the subject and returned. Used in an optical coherence tomographic image generation device that generates an optical coherence tomographic image by analyzing coherent light obtained by combining scattered light and reflected light reflected by the reference mirror, and irradiates the subject with the measurement light. A probe for collecting the scattered light that has been reflected and returned, and an optical fiber that transmits the measurement light and the scattered light, and an irradiation direction of the laser light introduced into the probe by the optical fiber is changed. A scanning means for causing the measurement light from the scanning means to irradiate the subject and collecting the scattered light, and a collection unit interposed between the nozzle and the scanning means. A lens, and a housing for holding the optical fiber, the scanning unit, and the nozzle, and the nozzle has a telescopic mechanism capable of changing a length of the nozzle. To do.
 かかる構成によれば、プローブは、ノズルが、このノズルの長さを可変することができる伸縮機構を有していることにより、被写体を撮影中に、ノズルを長さ方向に伸縮させることで、集光レンズから被写体までの距離を調整して、集光レンズの焦点の位置を調整してピントを合わすことができる。このため、プローブは、撮影したい被写体の位置の断層画像を、撮影中であっても、ピントを調整しながら鮮明に撮影することが可能となる。 According to such a configuration, the probe has an expansion / contraction mechanism that can change the length of the nozzle, so that the nozzle can be expanded and contracted in the length direction while photographing the subject. The distance from the condenser lens to the subject can be adjusted, and the focal point of the condenser lens can be adjusted to focus. For this reason, the probe can take a tomographic image of the position of the subject to be photographed clearly while adjusting the focus even during the photographing.
 また、前記伸縮機構は、前記ハウジングの先端部に配置された係合筒部材と、この係合筒部材と前記ノズルとの間に介在されて、前記ノズルを先端側へ付勢するばね部材と、基端部側が前記係合筒部材に係止され、先端側が前記ノズルを所定間隔移動自在に係止した環状部材と、を備えていることが好ましい。 The expansion / contraction mechanism includes an engagement cylinder member disposed at a distal end portion of the housing, and a spring member interposed between the engagement cylinder member and the nozzle to urge the nozzle toward the distal end side. Preferably, the base end side is engaged with the engaging cylinder member, and the distal end side is provided with an annular member that engages the nozzle so as to be movable at a predetermined interval.
 かかる構成によれば、伸縮機構は、ノズルの先端に配置される被写体にそのノズルを押し当ててばね部材を伸縮させることによって、被写体を撮影しながら集光レンズの焦点の位置を調整することができるため、集光レンズの焦点の調整が行い易い。 According to such a configuration, the expansion / contraction mechanism can adjust the position of the focal point of the condenser lens while photographing the subject by pressing the nozzle against the subject arranged at the tip of the nozzle and expanding and contracting the spring member. Therefore, it is easy to adjust the focus of the condenser lens.
 また、前記係合筒部材は、前記ばね部材の基端側が当接するばね受け部と、前記環状部材の基端側に形成された雌ねじ部に螺合する雄ねじ部と、当該係合筒部材の内部に形成された中空部と、を有し、前記ノズルは、前記ばね部材によって押圧される押圧部と、前記中空部に進退自在に内設された摺接部と、この摺接部の先端側に形成された段差部と、を有し、前記環状部材は、前記段差部が当接する小径部を有していることが好ましい。 Further, the engaging tube member includes a spring receiving portion with which the proximal end side of the spring member abuts, a male screw portion screwed into a female screw portion formed on the proximal end side of the annular member, and the engaging tube member A hollow portion formed inside, the nozzle being pressed by the spring member, a sliding contact portion provided in the hollow portion so as to be movable forward and backward, and a tip of the sliding contact portion Preferably, the annular member has a small-diameter portion with which the step portion abuts.
 かかる構成によれば、ノズルは、このノズルの先端に配置される被写体に押し当てることにより押圧されて伸縮するため、ばね部材を圧縮させながらハウジングに対するノズルの長さを可変させることができる。そして、ノズルを被写体に押し付けるのを止めれば、ばね部材のばね力で元の位置に自動復帰するため、撮影中であっても、集光レンズの焦点位置を容易に可変させながら位置調整することができる。 According to such a configuration, the nozzle is pressed and expanded and contracted by being pressed against a subject arranged at the tip of the nozzle, so that the length of the nozzle relative to the housing can be varied while compressing the spring member. And if you stop pressing the nozzle against the subject, it will automatically return to its original position by the spring force of the spring member, so even during shooting, you can adjust the position while easily changing the focal position of the condenser lens Can do.
 また、前記係合筒部材は、前記ばね部材の基端側が当接するばね受け部と、前記環状部材の基端側に形成された雌ねじ部に螺合する雄ねじ部と、当該係合筒部材の内部に形成され、前記ばね部材を介在してこのばね部材に付勢されるスライダが収納された中空部と、を有し、前記ノズルは、前記スライダの先端側外周部に形成されたスライダねじ部に螺合されるノズルねじ部を有し、前記環状部材は、前記ばね部材に付勢された前記スライダが当接する小径部を有していることが好ましい。 Further, the engaging tube member includes a spring receiving portion with which the proximal end side of the spring member abuts, a male screw portion screwed into a female screw portion formed on the proximal end side of the annular member, and the engaging tube member A hollow portion in which a slider energized by the spring member is accommodated via the spring member, and the nozzle is a slider screw formed on the outer peripheral portion on the tip end side of the slider Preferably, the annular member has a small diameter portion with which the slider urged by the spring member abuts.
 かかる構成によれば、ノズルは、このノズルの先端を被写体に押し当てることにより、被写体に押圧されてばね部材を圧縮させながらハウジングに対するノズルの長さを可変させることができる。そして、ノズルを被写体に押し付けるのを止めれば、ばね部材のばね力で元の位置に自動復帰するため、撮影中であっても、集光レンズの焦点位置を容易に調整することができる。 According to this configuration, the nozzle can change the length of the nozzle relative to the housing while pressing the tip of the nozzle against the subject to compress the spring member by being pressed by the subject. If the nozzle is stopped from being pressed against the subject, the original position is automatically restored by the spring force of the spring member, so that the focal position of the condenser lens can be easily adjusted even during shooting.
 また、伸縮機構は、前記ハウジングに形成されたノズル設置部に装着された外環部材に、着脱自在に取り付けられていることが好ましい。 Further, it is preferable that the expansion / contraction mechanism is detachably attached to an outer ring member attached to a nozzle installation portion formed in the housing.
 かかる構成によれば、先端にノズルを備えた伸縮機構は、ハウジングのノズル設置部に装着された外環部材に、着脱自在に取り付けられていることにより、撮影したい被写体の形状や位置等に適合した撮影し易いノズルに容易に交換することができる。また、伸縮機構は、ノズルと共にプローブから取り外すことによって、ノズルを容易に洗浄したり、消毒したりすることができる。 According to such a configuration, the expansion / contraction mechanism having the nozzle at the tip is detachably attached to the outer ring member attached to the nozzle installation portion of the housing, so that it matches the shape and position of the subject to be photographed. It can be easily replaced with a nozzle that is easy to shoot. Further, the expansion / contraction mechanism can be easily cleaned or disinfected by detaching it from the probe together with the nozzle.
 また、前記ノズルの前記開口部は、撮影の際に当該開口部に当接させる前記被写体との摩擦を増大させる滑り止部を有していることが好ましい。 In addition, it is preferable that the opening of the nozzle has a non-slip portion that increases friction with the subject to be brought into contact with the opening during photographing.
 かかる構成によれば、ノズルの開口部は、被写体との摩擦を増大させる滑り止部を有していることにより、被写体を撮影する際に、開口部の滑り止部を被写体に当接させれば、ノズルが摩擦で滑ることなく被写体に付着するため、撮影作業を行い易くすることができる。 According to such a configuration, the nozzle opening portion has the non-slip portion that increases friction with the subject, so that the non-slip portion of the opening portion can be brought into contact with the subject when the subject is photographed. In this case, since the nozzle adheres to the subject without slipping due to friction, the photographing operation can be facilitated.
 本発明によれば、被写体を撮影中であっても、レンズの焦点位置を容易に位置調整することができるプローブを提供することができる。 According to the present invention, it is possible to provide a probe that can easily adjust the focal position of a lens even when a subject is being photographed.
本発明の実施形態に係るプローブが設けられた光干渉断層画像生成装置の外観図であって、(a)は単関節アーム型、(b)は多関節アーム型をそれぞれ示している。BRIEF DESCRIPTION OF THE DRAWINGS It is an external view of the optical coherence tomographic image generation apparatus provided with the probe which concerns on embodiment of this invention, Comprising: (a) has shown the single joint arm type, (b) has shown the articulated arm type | mold, respectively. 本発明の実施形態に係るプローブが設けられた光干渉断層画像生成装置のユニット構成を模式的に示す構成図である。It is a block diagram which shows typically the unit structure of the optical coherence tomographic image generation apparatus provided with the probe which concerns on embodiment of this invention. 本発明の実施形態に係るプローブが使用される光干渉断層画像生成装置の参照ミラー周りの構成を示す要部斜視図である。It is a principal part perspective view which shows the structure around the reference mirror of the optical coherence tomographic image generation apparatus in which the probe which concerns on embodiment of this invention is used. 本発明の実施形態に係るプローブの斜視図である。It is a perspective view of the probe which concerns on embodiment of this invention. 本発明の実施形態に係るプローブの中央部縦断面図である。It is a center part longitudinal cross-sectional view of the probe which concerns on embodiment of this invention. 本発明の実施形態に係るプローブの要部分解斜視図である。It is a principal part disassembled perspective view of the probe which concerns on embodiment of this invention. 本発明の実施形態に係るプローブのノズルの着脱状態を示す要部分解斜視図である。It is a principal part disassembled perspective view which shows the attachment or detachment state of the nozzle of the probe which concerns on embodiment of this invention. 本発明の実施形態に係るプローブのノズルの設置状態を示す概念図であり、(a)は被写体がレンズから離れているときの状態を示す要部拡大縦断面図、(b)はノズルが被写体によって押圧されているときの状態を示す要部拡大縦断面図である。It is a conceptual diagram which shows the installation state of the nozzle of the probe which concerns on embodiment of this invention, (a) is a principal part expanded longitudinal sectional view which shows a state when a to-be-photographed object is away from a lens, (b) is a nozzle to a to-be-photographed object. It is a principal part expanded longitudinal sectional view which shows a state when it is pressed by. 被写体の概略図である。It is the schematic of a to-be-photographed object. 本発明の実施形態に係るプローブの第1変形例を示す要部分解斜視図であり、側視撮影用ノズルを取り付けたときの状態を示す。It is a principal part exploded perspective view which shows the 1st modification of the probe which concerns on embodiment of this invention, and shows a state when the nozzle for side view imaging | photography is attached. 本発明の実施形態に係るプローブの第1変形例を示す図であり、ノズルの着脱状態を示す要部分解斜視図である。It is a figure which shows the 1st modification of the probe which concerns on embodiment of this invention, and is a principal part disassembled perspective view which shows the attachment or detachment state of a nozzle. 本発明の実施形態に係るプローブの第1変形例を示す中央部縦断面図である。It is a center part longitudinal cross-sectional view which shows the 1st modification of the probe which concerns on embodiment of this invention. 本発明の実施形態に係るプローブの第1変形例を示す図であり、ノズルの着脱状態を示す要部分解斜視図である。It is a figure which shows the 1st modification of the probe which concerns on embodiment of this invention, and is a principal part disassembled perspective view which shows the attachment or detachment state of a nozzle. 本発明の実施形態に係るプローブの第2変形例を示す斜視図である。It is a perspective view which shows the 2nd modification of the probe which concerns on embodiment of this invention. 本発明の実施形態に係るプローブの第2変形例を示す分解斜視図である。It is a disassembled perspective view which shows the 2nd modification of the probe which concerns on embodiment of this invention. 本発明の実施形態に係るプローブの第2変形例を示す図であり、ハウジング半体を外したときの状態を示す側面図である。It is a figure which shows the 2nd modification of the probe which concerns on embodiment of this invention, and is a side view which shows a state when a housing half body is removed. 本発明の実施形態に係るプローブの第2変形例を示す図であり、ハウジング半体を取り除いたプローブの要部斜視図である。It is a figure which shows the 2nd modification of the probe which concerns on embodiment of this invention, and is a principal part perspective view of the probe which removed the housing half body. 本発明の実施形態に係るプローブの第3変形例を示す図であり、ノズル伸縮機構を備えたプローブの要部分解斜視図である。It is a figure which shows the 3rd modification of the probe which concerns on embodiment of this invention, and is a principal part exploded perspective view of the probe provided with the nozzle expansion-contraction mechanism. 本発明の実施形態に係るプローブの第3変形例を示す図であり、ノズル伸縮機構を備えたプローブの要部拡大縦断面図である。It is a figure which shows the 3rd modification of the probe which concerns on embodiment of this invention, and is a principal part expanded vertical sectional view of the probe provided with the nozzle expansion-contraction mechanism.
 以下、図面を参照して本発明の装置を実施するための形態(以下「実施形態」という)について詳細に説明する。本発明の実施形態に係るプローブを説明する前に、プローブが使用されるOCT装置1(光干渉断層画像生成装置)について説明する。 Hereinafter, an embodiment for implementing the apparatus of the present invention (hereinafter referred to as “embodiment”) will be described in detail with reference to the drawings. Before describing a probe according to an embodiment of the present invention, an OCT apparatus 1 (optical coherence tomographic image generation apparatus) in which the probe is used will be described.
[OCT装置の構成の概要]
 OCT装置1(光干渉断層画像生成装置)の構成の概要について、OCT装置1によって撮影する被写体(サンプルS)を、歯科患者の診断対象の歯牙(前歯部)である場合を例に挙げて説明する。図1及び図2に示すように、OCT装置1は、光学ユニット部10(光学ユニット)と、診断プローブ部30(プローブ)と、制御ユニット部50(制御ユニット)と、を主に備える。
 図2に示すように、OCT装置1は、光源11から照射されたレーザ光をサンプルS(被写体)に照射する計測光と、参照ミラー21とに照射する参照光にカップラ12(光分割器)で分配し、診断プローブ部30で、前記計測光をサンプルSに照射しサンプルSの内部から散乱して戻って来た散乱光と、参照ミラー21からの反射光と、をカップラ16(光合波器)で合成させた干渉光を解析して、光干渉断層画像を生成する光干渉断層画像生成装置である。
[Overview of OCT system configuration]
The outline of the configuration of the OCT apparatus 1 (optical coherence tomographic image generation apparatus) will be described by taking as an example a case where the subject (sample S) to be imaged by the OCT apparatus 1 is a tooth (anterior tooth portion) to be diagnosed by a dental patient. To do. As shown in FIGS. 1 and 2, the OCT apparatus 1 mainly includes an optical unit unit 10 (optical unit), a diagnostic probe unit 30 (probe), and a control unit unit 50 (control unit).
As shown in FIG. 2, the OCT apparatus 1 is a coupler 12 (light splitter) for measuring light for irradiating a sample S (subject) with laser light emitted from a light source 11 and reference light for irradiating a reference mirror 21. The scattered light that is irradiated with the measurement light onto the sample S and scattered from the inside of the sample S by the diagnostic probe unit 30 and the reflected light from the reference mirror 21 are coupled to the coupler 16 (optical multiplexing). The optical coherence tomographic image generation device generates an optical coherence tomographic image by analyzing the coherent light synthesized by the optical device.
≪光学ユニット部≫
 光学ユニット部10(光学ユニット)は、一般的な光コヒーレンストモグラフィの各方式が適用可能な光源、光学系、検出部を備えている。図2に示すように、光学ユニット部10は、サンプルS(被写体)に高帯域な波長のレーザ光を続けて(周期的に)照射する光源11と、レーザ光をサンプルSに照射する計測光と参照ミラー21に照射する参照光に分配するカップラ12(光分割器)と、計測光をサンプルSに照射しこのサンプルSの内部で散乱して戻って来た散乱光を受光する診断プローブ部30(プローブ)と、参照光が参照ミラー21から反射して戻って来た反射光と散乱光とを合成させて干渉光を生成するカップラ16(光合波器)と、その干渉光からサンプルSの内部情報を検出するディテクタ(検出器)23と、光源11とディテクタ23との間の光路中に設けられた光ファイバ19b,60A(図4参照)やその他光学部品等を備えている。
≪Optical unit part≫
The optical unit unit 10 (optical unit) includes a light source, an optical system, and a detection unit to which each method of general optical coherence tomography can be applied. As shown in FIG. 2, the optical unit 10 includes a light source 11 that continuously (periodically) irradiates a sample S (subject) with laser light having a high-band wavelength, and measurement light that irradiates the sample S with laser light. And a coupler 12 (light splitter) that distributes the reference light to be irradiated to the reference mirror 21 and a diagnostic probe unit that irradiates the sample S with the measurement light and scatters the sample S and returns the scattered light. 30 (probe), a coupler 16 (optical combiner) that generates interference light by synthesizing the reflected light and the reflected light that are reflected from the reference mirror 21 and returned from the reference mirror 21, and a sample S from the interference light. Detector 23 for detecting the internal information of the optical fiber 19b, optical fibers 19b and 60A (see FIG. 4) provided in the optical path between the light source 11 and the detector 23, and other optical components.
 ここで、光学ユニット部10の概略を説明する。
 光源11から射出された光は、光分割器であるカップラ12により、計測光と参照光とに分けられる。計測光は、サンプルアーム13のサーキュレータ14から診断プローブ部30に入射する。この計測光は、診断プローブ部30のシャッタ機構31のシャッタ312(図6参照)が開状態において、コリメータレンズ32、走査手段33(二次元MEMSミラー)を経て集光レンズ34によってサンプルSに集光され、そこで散乱、反射した後に再び集光レンズ34、走査手段33、コリメータレンズ32を経てサンプルアーム13のサーキュレータ14に戻る。戻ってきた計測光の偏光成分は、偏光コントローラ15によってより偏光の少ない状態に戻され、光合波器としてのカップラ16を介してディテクタ23に入力される。
Here, an outline of the optical unit unit 10 will be described.
Light emitted from the light source 11 is divided into measurement light and reference light by a coupler 12 which is a light splitter. The measurement light enters the diagnostic probe unit 30 from the circulator 14 of the sample arm 13. This measurement light is collected on the sample S by the condenser lens 34 via the collimator lens 32 and the scanning means 33 (two-dimensional MEMS mirror) when the shutter 312 (see FIG. 6) of the shutter mechanism 31 of the diagnostic probe unit 30 is open. The light is scattered and reflected there, and then returns to the circulator 14 of the sample arm 13 through the condenser lens 34, the scanning means 33, and the collimator lens 32 again. The polarization component of the returned measurement light is returned to a state with less polarization by the polarization controller 15 and input to the detector 23 via the coupler 16 as an optical multiplexer.
 一方、光分割器用のカップラ12により分離された参照光は、レファレンスアーム17のサーキュレータ18からコリメータレンズ19、光路長変更手段24を経て参照光集光レンズ20によって参照ミラー21(レファレンスミラー)に集光され、そこで反射した後に再び参照光集光レンズ20、コリメータレンズ19を経てサーキュレータ18に戻る。戻ってきた参照光の偏光成分は、偏光コントローラ22によってより偏光の少ない状態に戻され、光合波器用のカップラ16を介してディテクタ23に入力される。つまり、カップラ16が、サンプルSで散乱、反射して戻ってきた計測光と、参照ミラー21で反射した反射光とを合波するので、合波により干渉した光(干渉光)をディテクタ23がサンプルSの内部情報として検出することができる。 On the other hand, the reference light separated by the coupler 12 for the light splitter is collected on the reference mirror 21 (reference mirror) by the reference light condensing lens 20 from the circulator 18 of the reference arm 17 through the collimator lens 19 and the optical path length changing means 24. After being reflected and reflected there, the light returns to the circulator 18 through the reference light condensing lens 20 and the collimator lens 19 again. The polarization component of the returned reference light is returned to a state with less polarization by the polarization controller 22 and input to the detector 23 via the coupler 16 for the optical multiplexer. That is, since the coupler 16 combines the measurement light scattered and reflected by the sample S and the reflected light reflected by the reference mirror 21, the detector 23 detects the light (interference light) interfered by the multiplexing. It can be detected as internal information of the sample S.
<光源>
 光源11としては、例えばSS-OCT方式用のレーザ光源を用いることができる。
 この場合、光源11は、例えば、中心波長1310nm、掃引波長幅100nm、掃引速度50kHz、可干渉距離(コヒーレント長)が14mmの性能のものが好ましい。
 ここで、可干渉距離とは、パワースペクトルの減衰が6dBとなるときの距離に相当する。なお、レーザ光の可干渉距離は10mm以上で、48mm未満の高コヒーレント光が好ましいが、これに限定されるものではない。
<Light source>
As the light source 11, for example, a laser light source for SS-OCT method can be used.
In this case, it is preferable that the light source 11 has a performance with a center wavelength of 1310 nm, a sweep wavelength width of 100 nm, a sweep speed of 50 kHz, and a coherence distance (coherent length) of 14 mm.
Here, the coherent distance corresponds to a distance when the attenuation of the power spectrum is 6 dB. In addition, although the coherence distance of a laser beam is 10 mm or more and highly coherent light of less than 48 mm is preferable, it is not limited to this.
<参照光のコリメータレンズ>
 参照光のコリメータレンズ19(図2参照)は、カップラ12(光分割器)で分割された参照光を平行光に収束させるレンズであり、図3に示すように、コリメータレンズユニット19’のコリメータ19dの略円筒状のレンズホルダ19a内に収容されている。
 コリメータレンズユニット19’は、コリメータ19dと、コリメータ19dを抱持するコリメータ保持体19eと、コリメータ保持体19eを支持するブロック19fと、ブロック19fを光軸に直交する方向に微調整可能に支持するブラケット19hと、ブラケット19hを保持する支持台191と、支持台191を支持フレーム部材194に係合させるためのガタ防止部材192と、支持台191を支持フレーム部材194に固定するための固定具193と、前記支持フレーム部材194と、を主に備えている。
<Reference collimator lens>
The reference light collimator lens 19 (see FIG. 2) is a lens that converges the reference light divided by the coupler 12 (light splitter) into parallel light. As shown in FIG. 3, the collimator lens 19 ′ includes a collimator lens 19 ′. 19d is accommodated in a substantially cylindrical lens holder 19a.
The collimator lens unit 19 ′ supports a collimator 19d, a collimator holder 19e that holds the collimator 19d, a block 19f that supports the collimator holder 19e, and a block 19f that can be finely adjusted in a direction perpendicular to the optical axis. A bracket 19h, a support base 191 for holding the bracket 19h, a backlash preventing member 192 for engaging the support base 191 with the support frame member 194, and a fixture 193 for fixing the support base 191 to the support frame member 194 The support frame member 194 is mainly provided.
 コリメータ19dは、前記コリメータレンズ19と、コリメータレンズ19を内嵌した略円筒状のレンズホルダ19aと、レンズホルダ19aに取り付けられたコネクタ19cと、一端がコネクタ19cに接続され、他端がレンズホルダ19aとサーキュレータ18(図2参照)とに接続された光ファイバ19bと、を備えている。このように、コリメータレンズ19は、レンズホルダ19aに内設されて、そのレンズホルダ19aに光ファイバ19bの一端を接続したコネクタ19cが装着されているため、コリメータレンズ19の光軸と光ファイバ19bの光軸を合致させて、一定の距離を保った状態に設置されている。 The collimator 19d includes the collimator lens 19, a substantially cylindrical lens holder 19a in which the collimator lens 19 is fitted, a connector 19c attached to the lens holder 19a, one end connected to the connector 19c, and the other end to the lens holder. 19a and an optical fiber 19b connected to the circulator 18 (see FIG. 2). In this way, the collimator lens 19 is installed in the lens holder 19a, and the connector 19c that connects one end of the optical fiber 19b is attached to the lens holder 19a. Therefore, the optical axis of the collimator lens 19 and the optical fiber 19b are attached. It is installed in a state where the optical axis of each is matched and a certain distance is maintained.
 レンズホルダ19aは、光軸上の一端側に光ファイバ19bが取り付けられコネクタ19cを固定し、他端側に参照ミラー21に向けて開口され、参照光と反射光とが出入りする開口部が形成されている。
 コリメータ保持体19eは、コリメータ19dを光軸方向へ進退させて微調整可能にねじ止めし、ブロック19f上に固定されている。
 ブロック19fは、正面視して略コ字状のブラケット19h内に圧縮コイルばねSPを介在して光軸に直交する方向に微調整可能に支持されている。
 ブラケット19hは、支持台191に固定されて一体化されている。
In the lens holder 19a, an optical fiber 19b is attached to one end on the optical axis and the connector 19c is fixed, and the other end is opened toward the reference mirror 21 to form an opening through which the reference light and reflected light enter and exit. Has been.
The collimator holder 19e is fixed on the block 19f by advancing and retracting the collimator 19d in the optical axis direction and screwing it so as to be finely adjustable.
The block 19f is supported so as to be finely adjustable in a direction perpendicular to the optical axis via a compression coil spring SP in a substantially U-shaped bracket 19h when viewed from the front.
The bracket 19h is fixed to and integrated with the support base 191.
 支持台191は、この支持台191に固定したコリメータレンズユニット19’を載設して、コリメータレンズユニット19’を支持フレーム部材194に対して光軸方向に位置調整可能に支持する部材である。支持台191は、支持フレーム部材194上に光軸方向に摺動自在に係合された略コ字状の厚板部材であり、支持フレーム部材194の上方を跨ぐようにして連設されている。この支持台191には、ブラケット19hが当接された状態で配置される摺動面191aと、摺動面191aが形成される平板形状部位の両端部から支持フレーム部材194側に突設された左右一対の係合突起191bと、この左右の係合突起191b間に形成されて支持フレーム部材194のレール状部位に当接する凸部191cと、が形成されている。 The support table 191 is a member that mounts a collimator lens unit 19 ′ fixed to the support table 191 and supports the collimator lens unit 19 ′ so that the position of the collimator lens unit 19 ′ can be adjusted with respect to the support frame member 194 in the optical axis direction. The support base 191 is a substantially U-shaped thick plate member that is slidably engaged with the support frame member 194 in the optical axis direction, and is continuously provided so as to straddle the support frame member 194. . The support base 191 is provided with a sliding surface 191a disposed in a state in which the bracket 19h is in contact with the support frame member 194 from both ends of a flat plate-like portion where the sliding surface 191a is formed. A pair of left and right engaging projections 191b and a convex portion 191c formed between the left and right engaging projections 191b and abutting against the rail-shaped portion of the support frame member 194 are formed.
 固定具193は、支持台191の一方の係合突起191bに係合されたガタ防止部材192をその係合突起191bに固定するための締結部材からなり、コリメータレンズユニット19’を支持フレーム部材194の所定位置に固定するためのものである。
 かかる構成により、前記コリメータ19dは、サンプルS(被写体)光側の光路長と参照光側の光路長が等しくなるように予め設定された光軸上の位置に位置調整して配置することができる。
The fixing tool 193 includes a fastening member for fixing the backlash preventing member 192 engaged with the one engaging protrusion 191b of the support base 191 to the engaging protrusion 191b, and the collimator lens unit 19 ′ is supported by the support frame member 194. It is for fixing to a predetermined position.
With this configuration, the collimator 19d can be positioned and adjusted at a preset position on the optical axis so that the optical path length on the sample S (subject) light side is equal to the optical path length on the reference light side. .
 参照光集光レンズ20は、コリメータレンズ19により収束された平行光を参照ミラー21に集光させるレンズであり、例えば、支持フレーム部材194上のコリメータレンズ19と参照ミラー21との間の予め設定された光軸上の位置に配置されている。参照光集光レンズ20は、この参照光集光レンズ20の傾きを調整可能に支持台20aに支持されると共に、その支持台20aが支持フレーム部材194に光軸方向へ移動及び固定可能に締結される固定具20bで支持フレーム部材194の所定位置に固定される。 The reference light condensing lens 20 is a lens that condenses the parallel light converged by the collimator lens 19 on the reference mirror 21. For example, the reference light condensing lens 20 is preset between the collimator lens 19 on the support frame member 194 and the reference mirror 21. Is arranged at a position on the optical axis. The reference light condensing lens 20 is supported by the support base 20a so that the inclination of the reference light condensing lens 20 can be adjusted, and the support base 20a is fastened to the support frame member 194 so as to be movable and fixed in the optical axis direction. The fixing tool 20b is fixed to a predetermined position of the support frame member 194.
 支持フレーム部材194は、光軸方向に延設された板状の部材であり、この支持フレーム部材194上のそれぞれの所定位置に適宜な間隔でコリメータレンズユニット19’、参照光集光レンズ20、及び参照ミラー21が載設されている。支持フレーム部材194には、例えば、端部に参照ミラー21が固定され、この参照ミラー21から適宜な間隔を介して参照光集光レンズ20とコリメータ19dとが順に配置されて、参照光集光レンズ20及びコリメータ19dを移動することによって光路長が変更できるように設けられている。 The support frame member 194 is a plate-like member extending in the optical axis direction. The collimator lens unit 19 ′, the reference light condensing lens 20, and the like are disposed at predetermined intervals on the support frame member 194 at appropriate intervals. And the reference mirror 21 is mounted. For example, a reference mirror 21 is fixed to the end portion of the support frame member 194, and a reference light condensing lens 20 and a collimator 19d are sequentially arranged from the reference mirror 21 through an appropriate distance to condense the reference light. The optical path length can be changed by moving the lens 20 and the collimator 19d.
<参照光の光路長変更手段>
 図2に示すように、参照光の光路長変更手段24は、コリメータ19dを光軸方向に移動させて、カップラ12(光分割器)から参照ミラー21までの光路長を変更して光軸方向に位置を調整したり、光軸方向の位置を初期設定する際に使用する装置である。参照光の光路長変更手段24は、例えば、コリメータ19dを保持してそのコリメータ19dと共に光軸に沿って手動式に進退可能に配置されたコリメータレンズユニット19’と、前記参照光集光レンズ20と、前記参照ミラー21と、光軸に沿って延設されてコリメータレンズユニット19’、参照光集光レンズ20及び参照ミラー21を支持する支持フレーム部材194と、を備えて構成されている。
<Optical path length changing means for reference light>
As shown in FIG. 2, the optical path length changing means 24 for the reference light moves the collimator 19d in the optical axis direction to change the optical path length from the coupler 12 (optical divider) to the reference mirror 21, thereby changing the optical axis direction. It is a device used when adjusting the position to the initial position or initializing the position in the optical axis direction. The optical path length changing means 24 of the reference light includes, for example, a collimator lens unit 19 ′ that holds the collimator 19d and is arranged so as to be able to advance and retract manually along the optical axis together with the collimator 19d, and the reference light condensing lens 20 And a reference frame 21, and a support frame member 194 that extends along the optical axis and supports the collimator lens unit 19 ′, the reference light collecting lens 20, and the reference mirror 21.
≪診断プローブ部≫
 図2に示すように、診断プローブ部30(プローブ)は、レーザ光を2次元走査する走査手段33(二次元MEMSミラー)を含み、光学ユニット部10からのレーザ光をサンプルSに導くと共に、サンプルS内で散乱して反射した散乱光を受光して光学ユニット部10に導くものである。この診断プローブ部30は、それぞれ後記するケーブル60と、ハウジング3と、フレーム本体300と、シャッタ機構31と、コリメータレンズ32と、走査手段33(二次元MEMSミラー)と、集光レンズ34と、集光点調整機構35と、ノズル37(図4参照)と、伸縮機構370(図7参照)と、を備えている。
 なお、本実施形態では、診断プローブ部30の一例として直視撮影用ノズル37A(前歯用ノズル))からなるノズル37を備えたものを例に挙げて説明する。
≪Diagnostic probe part≫
As shown in FIG. 2, the diagnostic probe unit 30 (probe) includes scanning means 33 (two-dimensional MEMS mirror) for two-dimensionally scanning laser light, guides the laser light from the optical unit 10 to the sample S, and The scattered light scattered and reflected in the sample S is received and guided to the optical unit 10. The diagnostic probe unit 30 includes a cable 60, a housing 3, a frame body 300, a shutter mechanism 31, a collimator lens 32, a scanning unit 33 (two-dimensional MEMS mirror), a condenser lens 34, which will be described later. The condensing point adjustment mechanism 35, the nozzle 37 (refer FIG. 4), and the expansion-contraction mechanism 370 (refer FIG. 7) are provided.
In the present embodiment, an example in which the nozzle 37 including the direct-view imaging nozzle 37A (anterior tooth nozzle) is provided as an example of the diagnostic probe unit 30 will be described.
<ケーブル>
 ケーブル60(図1参照)は、診断プローブ部30と、光学ユニット部10及び制御ユニット部50とを光学的及び電気的に接続するためのものである。ケーブル60は、光学ユニット部10に接続された光ファイバ60A(図4参照)と、制御ユニット部50に接続された通信線60Bとを内蔵している。光ファイバ60Aは、計測光及び散乱光を伝送する。
<Cable>
The cable 60 (see FIG. 1) is for optically and electrically connecting the diagnostic probe unit 30, the optical unit unit 10, and the control unit unit 50. The cable 60 includes an optical fiber 60 </ b> A (see FIG. 4) connected to the optical unit unit 10 and a communication line 60 </ b> B connected to the control unit unit 50. The optical fiber 60A transmits measurement light and scattered light.
 撮影中以外のときには、診断プローブ部30のハウジング3を、図1(a)に示すように、OCT装置1の上部に配置された表示装置54の下部側から水平方向に延伸した単関節アーム70の先端のホルダ71に保持させておく。これにより、収納時には、長いケーブル60であってもケーブル60を捻じったりすることなく収納し、収納スペースを低減することができる。 When the imaging is not in progress, the housing 3 of the diagnostic probe section 30 is, as shown in FIG. 1A, a single joint arm 70 extending in the horizontal direction from the lower side of the display device 54 arranged on the upper portion of the OCT apparatus 1. It is held by the holder 71 at the tip of the head. As a result, even when the cable 60 is stored, the cable 60 can be stored without being twisted, and the storage space can be reduced.
 一方、撮影時には、利用者は、診断プローブ部30を単関節アーム70のホルダ71から外して把持し、手振れ防止等のため診断プローブ部30を患者の歯(サンプルS)に対して当接させる。このとき利用者の両手が塞がっていたとしても撮影開始の操作ボタンSW(図4参照)を操作するために、制御ユニット部50に有線または無線で通信可能に接続されたフットコントローラ80(図1参照)を用いることもできる。 On the other hand, at the time of imaging, the user removes and grasps the diagnostic probe unit 30 from the holder 71 of the single joint arm 70 and brings the diagnostic probe unit 30 into contact with the patient's teeth (sample S) to prevent camera shake. . At this time, even if both hands of the user are blocked, in order to operate the operation button SW (see FIG. 4) for starting photographing, the foot controller 80 (FIG. 1) connected to the control unit 50 so as to be communicable by wire or wirelessly. Reference) can also be used.
 図1(b)に示すOCT装置1Aは、撮影中以外のときには、診断プローブ部30を、OCT装置1Aの上部に配置された表示装置54の上部側から水平方向に延伸した多関節アーム70Aの先端のホルダ71に保持させておくことができるようにした点以外は、図1(a)に示すOCT装置1と同様なものである。多関節アーム70Aは、単関節アーム70に比べて、基端から先端のホルダ71までの長さが長く、床からより高い位置に配置されている。そのため、ケーブル60の垂れ下がりが低減できる。これにより、操作性を向上させ、垂れ下がったケーブル60を誤って踏んだりすることを防止できる。 When the OCT apparatus 1A shown in FIG. 1B is not in the middle of imaging, the diagnostic probe unit 30 includes an articulated arm 70A that extends horizontally from the upper side of the display device 54 disposed on the OCT apparatus 1A. The OCT apparatus 1 is the same as the OCT apparatus 1 shown in FIG. 1A except that it can be held by the holder 71 at the tip. The articulated arm 70A has a longer length from the proximal end to the distal end holder 71 than the single-joint arm 70, and is disposed at a higher position from the floor. Therefore, the drooping of the cable 60 can be reduced. Thereby, operability can be improved and it can prevent having stepped on the cable 60 which hung down accidentally.
<ハウジング>
 図4~図6に示すように、ハウジング3は、フレーム本体300や診断プローブ部30やノズル37等の構成部品を覆ったり、支持したりするケース体であり、側面視して略逆L字形状(略ピストル形状)に形成されている。このため、持ち易くて操作性がよく、前記ホルダ71にも容易に取り付けることもできる形状をしている。ハウジング3には、それぞれ後記する走査手段収納部3aと、グリップ部3bと、集光レンズ収納部3cと、ノズル設置部3dと、が形成されている。ハウジング3は、水平方向に向けて形成された集光レンズ収納部3c及びノズル設置部3dに対して、グリップ部3b及び走査手段収納部3aが下方向に折れ曲がった状態に形成されている。
<Housing>
As shown in FIGS. 4 to 6, the housing 3 is a case body that covers or supports components such as the frame main body 300, the diagnostic probe unit 30, and the nozzle 37, and has a substantially inverted L shape when viewed from the side. It is formed in a shape (substantially pistol shape). For this reason, it is easy to hold, has good operability, and has a shape that can be easily attached to the holder 71. The housing 3 is formed with a scanning means storage portion 3a, a grip portion 3b, a condenser lens storage portion 3c, and a nozzle installation portion 3d, which will be described later. The housing 3 is formed in a state in which the grip portion 3b and the scanning means storage portion 3a are bent downward with respect to the condenser lens storage portion 3c and the nozzle installation portion 3d formed in the horizontal direction.
 このハウジング3には、このハウジング3内の略全体にフレーム本体300が配置され、略中央部に走査手段33が収納され、基端部側にケーブル60、コリメータレンズ32及びシャッタ機構31が配置され、先端部側寄りに集光レンズ34、先端に直視撮影用ノズル37A(ノズル37)が伸縮可能に、かつ、着脱して交換可能に配置されている。ハウジング3は、例えば、中央部を縦断面して左右に二分した2つのハウジング半体3e,3fを合致させてなる。 In the housing 3, the frame main body 300 is disposed almost entirely in the housing 3, the scanning means 33 is accommodated in the substantially central portion, and the cable 60, the collimator lens 32, and the shutter mechanism 31 are disposed on the proximal end side. The condensing lens 34 is disposed closer to the distal end portion, and the direct-view photographing nozzle 37A (nozzle 37) is disposed in the distal end portion so as to be extendable and detachable. The housing 3 is formed by, for example, matching two housing halves 3e and 3f that are vertically divided in the center and divided into right and left.
 走査手段収納部3aは、略逆L字形状のハウジング3の略中央部(折曲部)内に配置され、走査手段33を収納する部位である。この走査手段収納部3a内には、走査手段33である四角形のチップ形状の二次元MEMSミラーが、例えば、約45度に傾けて配置されて、この二次元MEMSミラーでコリメータレンズ32からのレーザ光が反射される。
 グリップ部3bは、利用者が手で診断プローブ部30を持つ際に握る部位であると共に、ホルダ71(図1参照)で抱持される部位である。グリップ部3bは、ハウジング3の基端部側に配置されたコリメータレンズ32の配置位置から走査手段33の配置位置までのレーザ光の光軸の方向に延びて形成されて、略円筒状に形成されている。グリップ部3bには、外周面に設置された操作ボタンSWと、ハウジング3の下面から引き出された状態に配線された光ファイバ60Aと、この光ファイバ60Aによって導入された計測光を受光してレーザ光を平行光に収束させるコリメータレンズ32と、そのレーザ光を遮断するシャッタ機構31と、が主に収納される収納空間が内設されている。
The scanning means storage portion 3 a is a portion that is disposed in a substantially central portion (folded portion) of the substantially inverted L-shaped housing 3 and stores the scanning means 33. A square chip-shaped two-dimensional MEMS mirror serving as the scanning means 33 is disposed, for example, at an angle of about 45 degrees in the scanning means storage unit 3a, and a laser beam emitted from the collimator lens 32 by the two-dimensional MEMS mirror. Light is reflected.
The grip portion 3b is a portion that is gripped when the user holds the diagnostic probe portion 30 by hand and is a portion that is held by the holder 71 (see FIG. 1). The grip portion 3b is formed so as to extend in the direction of the optical axis of the laser beam from the arrangement position of the collimator lens 32 arranged on the base end side of the housing 3 to the arrangement position of the scanning means 33, and is formed in a substantially cylindrical shape. Has been. The grip portion 3b receives an operation button SW installed on the outer peripheral surface, an optical fiber 60A wired in a state of being pulled out from the lower surface of the housing 3, and measurement light introduced by the optical fiber 60A to receive a laser. A storage space is mainly provided in which a collimator lens 32 that converges light into parallel light and a shutter mechanism 31 that blocks the laser light are stored.
 集光レンズ収納部3cは、走査手段33で走査された走査光を集光する集光レンズ34を内設したレンズ収納筒体352(図5及び図6参照)を収納する部位であり、走査手段収納部3aよりも先端部寄りの位置に形成されている。集光レンズ収納部3cは、グリップ部3bに対して直交する方向に延びて形成されると共に、走査手段収納部3aから前方向のノズル設置部3dに亘って略円筒状に形成されている。つまり、集光レンズ収納部3cは、走査手段33で反射された反射光の方向に延びて形成され、グリップ部3bに対して折れ曲がって形成されている。
 ノズル設置部3dは、このノズル設置部3dの先端側に、後記する外環部材38及び伸縮機構370を介在してノズル37が着脱自在に取り付けられる部位であり、この集光レンズ収納部3cよりも先端側のハウジング3の先端に形成されている。
The condensing lens storage unit 3c is a part for storing a lens storage cylinder 352 (see FIGS. 5 and 6) having a condensing lens 34 for condensing the scanning light scanned by the scanning unit 33. It is formed at a position closer to the tip than the means storage portion 3a. The condenser lens storage portion 3c is formed to extend in a direction orthogonal to the grip portion 3b, and is formed in a substantially cylindrical shape from the scanning means storage portion 3a to the nozzle installation portion 3d in the forward direction. That is, the condensing lens storage portion 3c is formed to extend in the direction of the reflected light reflected by the scanning unit 33, and is formed to be bent with respect to the grip portion 3b.
The nozzle installation part 3d is a part where the nozzle 37 is detachably attached to the distal end side of the nozzle installation part 3d via an outer ring member 38 and an expansion / contraction mechanism 370, which will be described later, from the condenser lens storage part 3c. Is also formed at the tip of the housing 3 on the tip side.
<フレーム本体>
 図5に示すように、フレーム本体300は、シャッタ機構31、光軸調整機構321、走査手段33及びレンズ収納筒体352を保持する厚板状の部材であり、ハウジング3内にねじ止めされている。フレーム本体300は、ハウジング3の形状に合わせて、側面視して略逆L字形状(略ピストル形状)に形成されている。このフレーム本体300には、中央部に走査手段33が固定されるL字型部300aと、中央部から下側に延びて形成され、シャッタ機構31及び光軸調整機構321が固定される垂直部300bと、中央のL字型部300aから前側に延びて形成されて、レンズ収納筒体352が固定されている水平部300cと、垂直部300bに上下方向に延設された位置調整孔301と、水平部300cに水平方向に延設された位置調整孔302と、が主に形成されている。
<Frame body>
As shown in FIG. 5, the frame main body 300 is a thick plate-like member that holds the shutter mechanism 31, the optical axis adjustment mechanism 321, the scanning unit 33, and the lens storage cylinder 352, and is screwed into the housing 3. Yes. The frame main body 300 is formed in a substantially inverted L shape (substantially pistol shape) in a side view according to the shape of the housing 3. The frame body 300 is formed with an L-shaped portion 300a in which the scanning means 33 is fixed at the central portion, and a vertical portion that is formed to extend downward from the central portion and to which the shutter mechanism 31 and the optical axis adjusting mechanism 321 are fixed. 300b, a horizontal portion 300c formed to extend from the central L-shaped portion 300a to the front side, to which the lens storage cylinder 352 is fixed, and a position adjustment hole 301 extending vertically in the vertical portion 300b. A position adjustment hole 302 extending in the horizontal direction is mainly formed in the horizontal portion 300c.
<計測光の光路長変更手段>
 そのフレーム本体300には、コリメータレンズ32をレンズホルダ322a内に内設し、レンズホルダ322aに光軸上の一端側に光ファイバ60Aを取り付けたコネクタ322bをセットにしたコリメータ322の光軸長を可変させて光軸方向の位置を調整できるようにした計測光の光路長変更手段39が設けられている。
 計測光の光路長変更手段39は、フレーム本体300に計測光の光軸方向に延びて形成された位置調整孔301と、コリメータ322を保持するコリメータブラケット324と、位置調整孔301に光軸方向に移動可能に挿入されてこのコリメータブラケット324を所定位置に締結するブラケット締結具327と、を備えてなる。
<Measuring unit for changing optical path length of measuring light>
In the frame body 300, the collimator lens 32 is provided in the lens holder 322a, and the optical axis length of the collimator 322 in which the connector 322b in which the optical fiber 60A is attached to the lens holder 322a on one end side on the optical axis is set. An optical path length changing unit 39 for measuring light that can be adjusted to adjust the position in the optical axis direction is provided.
The optical path length changing means 39 for the measurement light includes a position adjustment hole 301 formed in the frame body 300 so as to extend in the optical axis direction of the measurement light, a collimator bracket 324 for holding the collimator 322, and an optical axis direction in the position adjustment hole 301. And a bracket fastener 327 that is movably inserted to fasten the collimator bracket 324 at a predetermined position.
 位置調整孔301は、垂直部300bに計測光の光軸方向に延びて形成された長孔であり、コリメータブラケット324を光軸方向に移動可能及び傾動可能に支持すると共に、そのコリメータブラケット324を所定の向き及び位置に締結するブラケット締結具327が上下動可能に挿入されている。
 位置調整孔302は、集光レンズ34を光軸に沿って進退させる集光点調整機構35を移動自在の設置するための長孔であり、調整ボルト353が移動自在に挿入されている。
The position adjustment hole 301 is a long hole formed in the vertical portion 300b so as to extend in the optical axis direction of the measurement light, and supports the collimator bracket 324 so as to be movable and tiltable in the optical axis direction. A bracket fastener 327 that is fastened in a predetermined direction and position is inserted so as to be movable up and down.
The position adjusting hole 302 is a long hole for movably installing a condensing point adjusting mechanism 35 that advances and retracts the condensing lens 34 along the optical axis, and an adjustment bolt 353 is movably inserted therein.
<シャッタ機構>
 図5~図7に示すように、シャッタ機構31は、サーキュレータ14(図2参照)から送られて来た計測光と、サンプルSに計測光が当たって反射した散乱光とが診断プローブ部30を通過するのを遮断する装置であり、例えば、グリップ部3b内のコリメータレンズ32と走査手段収納部3a内の走査手段33との間に介在されている。このシャッタ機構31は、例えば、シャッタ基体311と、シャッタ312と、シャッタ駆動手段313と、シャッタ基体締結具314と、を備えている。シャッタ機構31は、シャッタ312によってサンプルSからの反射光を遮断して、表示画面上に写るノイズ(像)をソフト的に除去するゼロ点補正を行うためのものである。
<Shutter mechanism>
As shown in FIGS. 5 to 7, in the shutter mechanism 31, the diagnostic probe unit 30 is configured such that the measurement light sent from the circulator 14 (see FIG. 2) and the scattered light reflected by the measurement light hitting the sample S are reflected. For example, the device is interposed between the collimator lens 32 in the grip portion 3b and the scanning means 33 in the scanning means storage portion 3a. The shutter mechanism 31 includes, for example, a shutter base 311, a shutter 312, shutter driving means 313, and a shutter base fastener 314. The shutter mechanism 31 is for performing zero point correction by blocking the reflected light from the sample S by the shutter 312 and removing noise (image) appearing on the display screen in a software manner.
 シャッタ基体311は、シャッタ312及びシャッタ駆動手段313が取り付けられる部材であり、シャッタ基体締結具314によってフレーム本体300に上下動可能な状態に固定されている。シャッタ基体311には、計測光及び散乱光が通過する透孔311aが上下方向に向けて光軸上に形成されている。シャッタ基体311は、シャッタ基体締結具314の締結を緩めることによって、シャッタ基体締結具314を中心として矢印a方向に回動可能となっている。
 シャッタ312は、透孔311aを通過する計測光及び散乱光の光路を遮断する部材であり、シャッタ駆動手段313の駆動軸(図示省略)を中心に回動して、透孔311aを開閉するように配置された板部材からなる。
The shutter base 311 is a member to which the shutter 312 and the shutter driving unit 313 are attached, and is fixed to the frame main body 300 so as to be vertically movable by the shutter base fastener 314. In the shutter base 311, a through hole 311a through which measurement light and scattered light pass is formed on the optical axis in the vertical direction. The shutter base 311 can be rotated in the direction of arrow a about the shutter base fastener 314 by loosening the fastening of the shutter base fastener 314.
The shutter 312 is a member that blocks the optical path of measurement light and scattered light that passes through the through hole 311a, and rotates about a drive shaft (not shown) of the shutter drive unit 313 to open and close the through hole 311a. It consists of the board | plate member arrange | positioned.
 シャッタ駆動手段313は、シャッタ312を光軸上に移動させたり、光軸上から退避させたりして開閉駆動させて、透孔311aを開閉させるアクチュエータである。シャッタ駆動手段313は、例えば、シャッタ312を回動させて透孔311aを開閉させるモータ、または、シャッタ312を進退移動させて透孔311aを開閉させるソレノイド等からなる。
 シャッタ基体締結具314は、シャッタ基体311をフレーム本体300に上下方向に移動可能に固定するためのボルトである。このシャッタ基体締結具314は、フレーム本体300の位置調整孔301に挿入してシャッタ基体311に螺着される。
 なお、シャッタ機構31は、手動でシャッタ312が動かすものであっても構わない。
The shutter driving unit 313 is an actuator that opens and closes the through hole 311a by moving the shutter 312 on the optical axis or retracting the shutter 312 from the optical axis. The shutter driving unit 313 includes, for example, a motor that rotates the shutter 312 to open and close the through hole 311a, or a solenoid that opens and closes the shutter 312 to open and close the through hole 311a.
The shutter base fastener 314 is a bolt for fixing the shutter base 311 to the frame body 300 so as to be movable in the vertical direction. The shutter base fastener 314 is inserted into the position adjustment hole 301 of the frame main body 300 and screwed to the shutter base 311.
The shutter mechanism 31 may be a mechanism that manually moves the shutter 312.
<コリメータレンズ>
 図5~図7に示すように、コリメータレンズ32は、コリメータレンズ32をレンズホルダ322a内に内設し、レンズホルダ322aに光軸上の一端側に光ファイバ60Aを取り付けたコネクタ322bをセットしたコリメータ322のレンズである。コリメータレンズ32は、カップラ12(図2参照)からサーキュレータ14を介して送られた計測光を受光してレーザ光を平行光に収束させる。コリメータレンズ32は、略円筒状のコリメータ322に内設されて、コリメータホルダ323及びコリメータブラケット324を介在してフレーム本体300の下部に回動可能に取り付けられている。
<Collimator lens>
As shown in FIGS. 5 to 7, in the collimator lens 32, the collimator lens 32 is installed in the lens holder 322a, and a connector 322b in which an optical fiber 60A is attached to one end on the optical axis is set in the lens holder 322a. This is a lens of the collimator 322. The collimator lens 32 receives the measurement light sent from the coupler 12 (see FIG. 2) via the circulator 14 and converges the laser light into parallel light. The collimator lens 32 is installed in a substantially cylindrical collimator 322 and is rotatably attached to the lower portion of the frame body 300 with a collimator holder 323 and a collimator bracket 324 interposed therebetween.
<光軸調整機構>
 図5~図7に示すように、光軸調整機構321は、コリメータレンズ32を内設したコリメータ322を光軸に対して傾けたり、進退してコリメータ322の向きと位置とを調整する装置である。光軸調整機構321は、それぞれ後記するコリメータ322と、コリメータホルダ323と、コリメータブラケット324と、ユニット締結具325と、ホルダ締結具326と、ブラケット締結具(図示省略)と、を備えて構成されている。
<Optical axis adjustment mechanism>
As shown in FIGS. 5 to 7, the optical axis adjusting mechanism 321 is a device that adjusts the direction and position of the collimator 322 by tilting or moving the collimator 322 provided with the collimator lens 32 with respect to the optical axis. is there. Each of the optical axis adjustment mechanisms 321 includes a collimator 322, a collimator holder 323, a collimator bracket 324, a unit fastener 325, a holder fastener 326, and a bracket fastener (not shown). ing.
 コリメータ322は、コリメータレンズ32を内設した略筒状の部材あり、光軸に沿って上下方向に向けて配置されている。
 コリメータホルダ323は、コリメータ322を光軸を中心として矢印b方向に回動自在に保持する部材であり、コリメータ322が挿入される貫通孔323aと、貫通孔323aに切欠成形された切欠部323bと、ユニット締結具325及びホルダ締結具326が螺合されるねじ穴(図示省略)と、を有している。
The collimator 322 is a substantially cylindrical member in which a collimator lens 32 is provided, and is arranged in the vertical direction along the optical axis.
The collimator holder 323 is a member that holds the collimator 322 so as to be rotatable in the direction of the arrow b around the optical axis, and includes a through hole 323a into which the collimator 322 is inserted, and a notch 323b that is notched in the through hole 323a. And a screw hole (not shown) into which the unit fastener 325 and the holder fastener 326 are screwed.
 コリメータブラケット324は、コリメータホルダ323をホルダ締結具326(図5参照)を中心として矢印c方向に回動自在に保持されて、ハウジング3内のフレーム本体300に対して位置調整可能に取り付けられる部材であり、平面視して略L字状の厚板材からなる。コリメータブラケット324には、ホルダ締結具326が挿入される孔(図示省略)と、ブラケット締結具(図示省略)が螺合されるねじ穴(図示省略)と、が形成されている。
 ユニット締結具325は、コリメータホルダ323に回動自在に挿入されたコリメータ322の締め付けを緩めることにより矢印b方向に回動可能にしたり、締め付けてコリメータ322をコリメータホルダ323に固定したりするための締結具である。ユニット締結具325は、コリメータホルダ323の切欠部323bに直交するように形成されたねじ穴(図示省略)に螺入される。
The collimator bracket 324 is a member that is attached to the frame main body 300 in the housing 3 so that the position of the collimator bracket 323 can be adjusted in a direction that allows the collimator holder 323 to rotate in the direction of arrow c around the holder fastener 326 (see FIG. 5). It is made of a substantially L-shaped thick plate material in plan view. The collimator bracket 324 is formed with a hole (not shown) into which the holder fastener 326 is inserted and a screw hole (not shown) into which the bracket fastener (not shown) is screwed.
The unit fastener 325 can be rotated in the direction of the arrow b by loosening the tightening of the collimator 322 inserted into the collimator holder 323 so as to be rotatable, or can be fastened to fix the collimator 322 to the collimator holder 323. It is a fastener. The unit fastener 325 is screwed into a screw hole (not shown) formed so as to be orthogonal to the notch 323b of the collimator holder 323.
 図5に示すように、ホルダ締結具326は、コリメータブラケット324に回動自在に内嵌されたコリメータホルダ323の締め付けを緩めることにより矢印c方向に回動可能にしたり、締め付けてコリメータ322の前後方向の傾きを固定したりするための締結具である。ホルダ締結具326は、先端部がコリメータブラケット324を挿通してコリメータホルダ323に螺着される。
 不図示のブラケット締結具は、コリメータブラケット324を上下動及び回動自在にするためにフレーム本体300に上下方向に長く形成された位置調整孔301に取り付けるための締結具であり、位置調整孔301を挿通してコリメータブラケット324に形成されたねじ穴(図示省略)に螺合される。このブラケット締結具は、コリメータブラケット324の締め付けを緩めることにより矢印d方向に回動可能にして、コリメータブラケット324及びコリメータ322の光軸の傾きを調整することができる。
As shown in FIG. 5, the holder fastener 326 can be rotated in the direction of arrow c by loosening the tightening of the collimator holder 323 fitted in the collimator bracket 324 so as to be rotatable, or can be tightened before and after the collimator 322. It is a fastener for fixing the inclination of a direction. The holder fastener 326 is screwed into the collimator holder 323 through the collimator bracket 324 at the tip.
A bracket fastener (not shown) is a fastener that is attached to a position adjustment hole 301 that is formed in the frame main body 300 so as to be vertically movable and rotatable so that the collimator bracket 324 can be moved up and down. Is screwed into a screw hole (not shown) formed in the collimator bracket 324. This bracket fastener can be rotated in the direction of arrow d by loosening the tightening of the collimator bracket 324, and the inclination of the optical axes of the collimator bracket 324 and the collimator 322 can be adjusted.
<走査手段>
 図7に示すように、走査手段33は、光ファイバ60Aによって診断プローブ部30内に導入され、コリメータレンズ32を通過したレーザ光の照射方向を変化させるためのミラーであり、コリメータレンズ32を透過した計測光の光軸を変換する二次元MEMSミラーからなる。
 二次元MEMSミラーの素子は、例えば、ミラーや平面コイル等の可動構造体が形成されたシリコン層と、セラミック台座と、永久磁石との三層構造になっている。シリコン層は、中央に配置されて光を全反射するミラーと、このミラーを支える十字形状の梁と、X及びYフレームと、ミラーの周囲及び各フレームに配置され電磁力を発生する電磁駆動用の二層平面コイルと、から構成されている。そして、X及びYフレーム上に形成されたコイルへの通電により、電流の大きさに比例してX軸方向及びY軸方向に静的、動的傾斜する制御が可能になっている。
 ミラーの動作角度は、例えば、デバイス平面に対してX軸方向が±10.6度、Y軸方向が±5.2度である。二次元MEMSミラーのデバイスの大きさは、例えば、10mm×10mm×0.5mm程度である。そのデバイスの中央にあるミラーは、一辺が2mm程度の四角形に形成されたものからなる。
<Scanning means>
As shown in FIG. 7, the scanning unit 33 is a mirror that is introduced into the diagnostic probe unit 30 by the optical fiber 60 </ b> A and changes the irradiation direction of the laser light that has passed through the collimator lens 32, and is transmitted through the collimator lens 32. a two-dimensional MEMS mirror which converts the optical axis of the measuring light.
The element of the two-dimensional MEMS mirror has, for example, a three-layer structure including a silicon layer on which a movable structure such as a mirror and a planar coil is formed, a ceramic pedestal, and a permanent magnet. The silicon layer is arranged in the center to totally reflect light, a cross-shaped beam that supports the mirror, X and Y frames, and an electromagnetic drive arranged around and around each mirror to generate electromagnetic force. And a two-layer planar coil. Then, by energizing the coils formed on the X and Y frames, it is possible to control to statically and dynamically tilt in the X axis direction and the Y axis direction in proportion to the magnitude of the current.
The operating angle of the mirror is, for example, ± 10.6 degrees in the X-axis direction and ± 5.2 degrees in the Y-axis direction with respect to the device plane. The size of the device of the two-dimensional MEMS mirror is, for example, about 10 mm × 10 mm × 0.5 mm. The mirror at the center of the device is formed of a quadrangle with a side of about 2 mm.
 光源11から照射されたレーザ光は、二次元MEMSミラーを介してサンプルS(図2参照)に照射され、診断プローブ部30のノズル先端が正対するサンプルSの表面から内部に進む深さ方向(A方向)の内部情報をディテクタ23が取得する。後記するように1回のスキャンで1152ポイントからなるA方向のデータ(以下、Aラインデータという)を取得し、その後の周波数解析の画像処理を取得する。
 ここで、X方向及びY方向とは、診断プローブ部30のノズル先端が正対するサンプルSの表面において横方向及び縦方向(Y軸方向)に対応する。
 なお、走査手段33は、ガルバノミラーであっても構わない。
The laser light emitted from the light source 11 is applied to the sample S (see FIG. 2) through the two-dimensional MEMS mirror, and the depth direction (inward) proceeds from the surface of the sample S where the nozzle tip of the diagnostic probe unit 30 directly faces ( The detector 23 acquires the internal information in the (A direction). As will be described later, data in the A direction consisting of 1152 points (hereinafter referred to as A line data) is acquired in one scan, and image processing for subsequent frequency analysis is acquired.
Here, the X direction and the Y direction correspond to the horizontal direction and the vertical direction (Y-axis direction) on the surface of the sample S facing the nozzle tip of the diagnostic probe unit 30.
The scanning unit 33 may be a galvanometer mirror.
<集光レンズ>
 図5~図7に示すように、集光レンズ34は、走査手段33による走査光を集光すると共に、計測光をサンプルSに集光させて照射するレンズであり、レンズ収納筒体352に内設されている。レンズ収納筒体352は、ハウジング3の集光レンズ収納部3c内に収納され、フレーム本体300に固定されている。この場合、レンズ収納筒体352は、フレーム本体300に形成された位置調整孔302に沿って進退自在に配置されている。このレンズ収納筒体352の下面部には、利用者の指が遊嵌するリング状の操作ノブ351が一体形成されている。
<Condensing lens>
As shown in FIGS. 5 to 7, the condensing lens 34 is a lens that condenses the scanning light from the scanning unit 33 and condenses the measurement light on the sample S and irradiates it. It is installed inside. The lens housing cylinder 352 is housed in the condensing lens housing portion 3 c of the housing 3 and is fixed to the frame body 300. In this case, the lens housing cylinder 352 is disposed so as to be able to advance and retract along a position adjustment hole 302 formed in the frame body 300. A ring-shaped operation knob 351 on which a user's finger is loosely fitted is integrally formed on the lower surface portion of the lens housing cylinder 352.
<集光点調整機構>
 図5に示すように、集光点調整機構35は、集光レンズ34とノズル37に当接されたサンプルS(被写体)との間の距離を調整して集光点を調整する装置であり、ハウジング3の集光レンズ収納部3cに操作ノブ351を露出した状態で内設されている。集光点調整機構35は、フレーム本体300の水平部300cに水平方向に向けて延設された位置調整孔302と、この位置調整孔302に挿入されてレンズ収納筒体352を光軸に沿って形成された位置調整孔302の適宜な位置に固定する調整ボルト353と、レンズ収納筒体352に一体に形成されて集光レンズ34を位置調整孔302の適宜な位置に移動操作するための前記操作ノブ351と、ノズル支持体36を介在して直視撮影用ノズル37A(ノズル37)をフレーム本体300に固定するための連結用筒体354と、を備えて構成されている。
 集光点調整機構35は、操作ノブ351を操作して移動させることによって、操作ノブ351と共に集光レンズ34が光軸方向に進退して、集光点の位置を調整できるようになっている。
<Condensing point adjustment mechanism>
As shown in FIG. 5, the condensing point adjustment mechanism 35 is a device that adjusts the condensing point by adjusting the distance between the condensing lens 34 and the sample S (subject) in contact with the nozzle 37. The operating knob 351 is exposed in the condensing lens storage portion 3c of the housing 3 in an exposed state. The condensing point adjusting mechanism 35 includes a position adjusting hole 302 extending in the horizontal direction in the horizontal portion 300c of the frame main body 300, and the lens accommodating cylinder 352 inserted along the optical axis by being inserted into the position adjusting hole 302. An adjustment bolt 353 that is fixed to an appropriate position of the position adjustment hole 302 formed in this manner, and a lens barrel formed integrally with the lens housing cylinder 352 for moving the condenser lens 34 to an appropriate position of the position adjustment hole 302. The operation knob 351 and a connecting cylinder 354 for fixing the direct-view photographing nozzle 37A (nozzle 37) to the frame main body 300 through the nozzle support 36 are provided.
The condensing point adjusting mechanism 35 can adjust the position of the condensing point by operating and moving the operation knob 351 so that the condensing lens 34 advances and retreats in the optical axis direction together with the operation knob 351. .
 つまり、レンズ収納筒体352は、集光レンズ34とノズル37に当接されたサンプルS(被写体)との間の距離を調整して集光点を調整する集光点調整機構を介在してハウジング3の集光レンズ収納部3cに内設してもよい。その場合は、例えば、集光点調整機構の操作ノブ(図示省略)を操作して移動させることによって、操作ノブ351と共に集光レンズ34が光軸方向に進退して、集光点を調整できるようになる。 In other words, the lens housing cylinder 352 is provided with a condensing point adjustment mechanism that adjusts the condensing point by adjusting the distance between the condensing lens 34 and the sample S (subject) in contact with the nozzle 37. You may install in the condensing lens storage part 3c of the housing 3. FIG. In this case, for example, by operating and moving an operation knob (not shown) of the condensing point adjusting mechanism, the condensing lens 34 is advanced and retracted in the optical axis direction together with the operating knob 351, so that the condensing point can be adjusted. It becomes like this.
<ノズル>
 図7に示すように、ノズル37(直視撮影用ノズル37A(前歯用ノズル))は、集光レンズ34の前方に配置され計測光をサンプルSに照射して散乱光を回収する開口部37Aeを有する筒状の部材である。直視撮影用ノズル37A(前歯用ノズル)は、ハウジング3の先端部の集光レンズ収納部3cに、連結用筒体354、ノズル支持体36、スプリング(図示省略)、球体SB、外環部材38及び伸縮機構370を介在して着脱自在(交換可能)、回動自在、かつ、伸縮自在に装着されている。
 直視撮影用ノズル37Aは、診断プローブ部30で前歯部(サンプルS)の唇側面側を撮影する際に(図5参照)、円筒状の直視撮影用ノズル37Aの開口部37AeをサンプルSに当接させて、その間隔を保持しながら計測光をサンプルSに照射して、反射された散乱光を回収するための部材である。なお、直視撮影用ノズル37Aは、前歯部(サンプルS)以外に、口腔内組織の撮影にも用いることができる。
<Nozzle>
As shown in FIG. 7, the nozzle 37 (direct-view imaging nozzle 37 </ b> A (front tooth nozzle)) is disposed in front of the condenser lens 34 and has an opening 37 </ b> Ae that irradiates the sample S with measurement light and collects scattered light. It is the cylindrical member which has. The direct-view imaging nozzle 37A (front tooth nozzle) is connected to the condensing lens storage portion 3c at the tip of the housing 3 in a connecting cylinder 354, a nozzle support 36, a spring (not shown), a sphere SB, and an outer ring member 38. In addition, it is detachably (replaceable), pivotable, and telescopically mounted via an expansion / contraction mechanism 370.
The direct-view imaging nozzle 37 </ b> A applies the opening 37 </ b> Ae of the cylindrical direct-view imaging nozzle 37 </ b> A to the sample S when the diagnostic probe unit 30 images the lip side surface of the front tooth portion (sample S) (see FIG. 5). It is a member for collecting the reflected scattered light by irradiating the sample S with the measurement light while keeping the distance therebetween. The direct-view imaging nozzle 37A can be used for imaging intraoral tissues in addition to the anterior teeth (sample S).
 図8(a)、(b)の臼歯をサンプルSとした概念図に示すように、直視撮影用ノズル37A(ノズル37)は、プローブ30に対する直視撮影用ノズル37Aの長さLを、可干渉範囲L2内の伸縮調整範囲L1の範囲内で短く可変することができる伸縮機構370を備えた円筒状の部材からなる。診断プローブ部30は、前記集光点調整機構35と、この直視撮影用ノズル37Aに設けた伸縮機構370からなる第2集光点調整機構と、の2つの焦点調節部を備えたことになる。直視撮影用ノズル37Aには、それぞれ後記する押圧部37Aaと、摺接部37Abと、段差部37Acと、円筒部37Adと、滑り止部37Agを有する開口部37Aeと、ばね収納部37Afとが一体形成されている。 As shown in the conceptual diagram in which the molars in FIG. 8A and FIG. 8B are the sample S, the direct-view imaging nozzle 37 </ b> A (nozzle 37) has the length L of the direct-view imaging nozzle 37 </ b> A relative to the probe 30 to be coherent. It consists of the cylindrical member provided with the expansion-contraction mechanism 370 which can be changed short within the range of the expansion-contraction adjustment range L1 in the range L2. The diagnostic probe unit 30 is provided with two focus adjustment units, that is, the condensing point adjusting mechanism 35 and a second condensing point adjusting mechanism including a telescopic mechanism 370 provided in the direct-view photographing nozzle 37A. . In the direct-view imaging nozzle 37A, a pressing portion 37Aa, a sliding contact portion 37Ab, a stepped portion 37Ac, a cylindrical portion 37Ad, an opening portion 37Ae having a non-slip portion 37Ag, and a spring housing portion 37Af, which will be described later, are integrated. Is formed.
≪伸縮機構≫
 前記伸縮機構370は、ハウジング3に対して直視撮影用ノズル37Aを進退可能に支持する機構であり、ハウジング3の先端部に配置された係合筒部材371と、この係合筒部材371と直視撮影用ノズル37Aとの間に介在されて、直視撮影用ノズル37Aを先端側へ付勢するばね部材372と、基端部側が係合筒部材371に係止され、先端側が直視撮影用ノズル37Aを所定間隔移動自在に係止した環状部材373と、を備えて構成されている。
≪Extension mechanism≫
The expansion / contraction mechanism 370 is a mechanism that supports the direct-viewing imaging nozzle 37 </ b> A with respect to the housing 3 so as to be able to advance and retreat, and an engagement cylinder member 371 disposed at the distal end of the housing 3, and the engagement cylinder member 371. A spring member 372 that is interposed between the photographing nozzle 37A and biases the direct-view photographing nozzle 37A toward the distal end side, the proximal end side is locked to the engaging cylinder member 371, and the distal end side is a direct-view photographing nozzle 37A. And an annular member 373 that is movably locked at a predetermined interval.
 押圧部37Aaは、直視撮影用ノズル37Aと係合筒部材371との間に介在されたばね部材372の先端部が当接してばね力で押圧される部位であり、直視撮影用ノズル37Aの基端側寄りの内面に段差状に形成されている。
 摺接部37Abは、直視撮影用ノズル37Aがばね部材372のばね力に抗して進退した際に、係合筒部材371の先端側内部に形成された係合筒部材ばね収納部371gの内壁面に進退自在に内設されている。
The pressing portion 37Aa is a portion where the distal end portion of the spring member 372 interposed between the direct-viewing imaging nozzle 37A and the engaging cylinder member 371 contacts and is pressed by a spring force, and the proximal end of the direct-viewing imaging nozzle 37A A step is formed on the inner surface near the side.
The sliding contact portion 37Ab is formed in an engagement cylinder member spring accommodating portion 371g formed inside the distal end side of the engagement cylinder member 371 when the direct-view photographing nozzle 37A advances and retreats against the spring force of the spring member 372. It is installed in the wall so that it can move forward and backward.
 段差部37Acは、ばね部材372によって付勢された直視撮影用ノズル37Aが、環状部材373の小径部373bの内側壁と当接して係止される部位であり、前記摺接部37Abの先端側の隣接した位置に形成されている。
 円筒部37Adは、サンプルSに照射する計測光と、サンプルSから反射して戻ってきた散乱光とが通る空間を形成する部位であり、直視撮影用ノズル37A全体の長手方向に円筒状に延設されている。
The stepped portion 37Ac is a portion where the direct-view photographing nozzle 37A biased by the spring member 372 is brought into contact with and locked with the inner wall of the small-diameter portion 373b of the annular member 373, and the tip side of the sliding contact portion 37Ab Are formed at adjacent positions.
The cylindrical portion 37Ad is a portion that forms a space through which the measurement light applied to the sample S and the scattered light reflected and returned from the sample S pass, and extends in a cylindrical shape in the longitudinal direction of the entire direct-view imaging nozzle 37A. It is installed.
 開口部37Aeは、走査手段33からの計測光をサンプルSに照射して散乱光を回収する部位であり、円筒部37Adの先端に形成されている。この開口部37Aeは、撮影時にサンプルSをこの開口部37Aeの先端に当接させた状態で撮影が行われる(図8(b)参照)。開口部37Aeの開口端等の縁は、撮影の際に当接させるサンプルSに対して直視撮影用ノズル37Aが滑ることなく付着するようにするための滑り止部37Agを有している。 The opening 37Ae is a part that collects scattered light by irradiating the measurement light from the scanning unit 33 to the sample S, and is formed at the tip of the cylindrical part 37Ad. The opening 37Ae is photographed in a state where the sample S is in contact with the tip of the opening 37Ae during photographing (see FIG. 8B). An edge such as an opening end of the opening 37Ae has a non-slip portion 37Ag for allowing the direct-view photographing nozzle 37A to adhere to the sample S to be brought into contact with the photographing without slipping.
 滑り止部37Agは、開口部37Aeと、開口部37Aeに当接するサンプルSとの摩擦を増大させるものである。この滑り止部37Agは、例えば、しぼ加工(エッチング加工、ショットブラスト加工等)によって開口部37Aeの表面に形成した凹凸、開口部37Aeに着脱可能に貼ることができる環状のゴム部材、開口部37Aeに着脱可能に付けることができる摩擦係数の大きい環状の薄板形のシール材、あるいは、開口部37Aeに着脱自在に外嵌されるキャップ状の滑り防止ゴム部材等からなる。
 ノズル側ばね収納部37Afは、ばね部材372の先端側が収納される部位である。
The non-slip portion 37Ag increases friction between the opening portion 37Ae and the sample S in contact with the opening portion 37Ae. The non-slip portion 37Ag is, for example, an irregularity formed on the surface of the opening 37Ae by graining (etching, shot blasting, etc.), an annular rubber member that can be detachably attached to the opening 37Ae, or the opening 37Ae. An annular thin plate-shaped sealing material having a large friction coefficient that can be detachably attached to the cap, or a cap-shaped anti-slip rubber member that is detachably fitted to the opening 37Ae.
The nozzle-side spring accommodating portion 37Af is a portion where the distal end side of the spring member 372 is accommodated.
 係合筒部材371は、直視撮影用ノズル37Aの基端側をノズル支持体36に着脱自在に取り付けるための部材であり、略円筒状に形成されている。この係合筒部材371には、それぞれ後記する係合筒部371aと、環状溝371bと、フランジ部371cと、雄ねじ部371dと、ばね受け部371eと、中空部371fと、係合筒部側ばね収納部371gと、が一体形成されている。 The engaging cylinder member 371 is a member for detachably attaching the base end side of the direct-view photographing nozzle 37A to the nozzle support 36, and is formed in a substantially cylindrical shape. The engagement tube member 371 includes an engagement tube portion 371a, an annular groove 371b, a flange portion 371c, a male screw portion 371d, a spring receiving portion 371e, a hollow portion 371f, and an engagement tube portion side, which will be described later. The spring storage portion 371g is integrally formed.
 係合筒部371aは、係合筒部材371の基端部側に直視撮影用ノズル37Aをノズル支持体36に内嵌させるための部位であり、円筒状に形成されている。
 環状溝371bは、係合筒部371aの外周面に形成された断面視して半円状の溝であり、球体SBが係合・離脱される。直視撮影用ノズル37A及び伸縮機構370は、この環状溝371bに球体SBが係合・離脱することによって、プローブ30に対して着脱自在になっている。
The engagement cylinder part 371a is a part for fitting the direct-view imaging nozzle 37A into the nozzle support 36 on the base end side of the engagement cylinder member 371, and is formed in a cylindrical shape.
The annular groove 371b is a semicircular groove formed in the outer peripheral surface of the engagement cylinder portion 371a in a cross-sectional view, and the sphere SB is engaged / disengaged. The direct-view imaging nozzle 37A and the expansion / contraction mechanism 370 are detachable from the probe 30 by the spherical body SB engaging / disengaging from the annular groove 371b.
 フランジ部371cは、係合筒部材371の外周部の中央に、鍔形状に形成されて部位であり、環状部材373と外環部材38との間に配置される。
 雄ねじ部371dは、環状部材373の基端側に形成された雌ねじ部373aに螺合して、環状部材373を係合筒部材371に固定させるためのねじ部である。
The flange portion 371 c is a portion formed in a hook shape at the center of the outer peripheral portion of the engagement cylinder member 371, and is disposed between the annular member 373 and the outer ring member 38.
The male screw portion 371d is a screw portion for screwing into a female screw portion 373a formed on the proximal end side of the annular member 373 and fixing the annular member 373 to the engagement cylinder member 371.
 ばね受け部371eは、ばね部材372の基端部側が当接して受け止められる部位である。
 中空部371fは、直視撮影用ノズル37Aの円筒部37Ad内に連通する空間であり、係合筒部材371の内部に形成され、計測光及び散乱光が通る中空部位である。
 係合筒部側ばね収納部371gは、ばね部材372の基端側が収納される部位である。
 ばね部材372は、直視撮影用ノズル37Aを先端側に押圧する圧縮コイルばねからなる。直視撮影用ノズル37Aは、このばね部材372が圧縮される分だけ、伸縮機構370によって伸縮するようになっている。
The spring receiving portion 371e is a portion that is received by receiving the proximal end portion of the spring member 372.
The hollow portion 371f is a space that communicates with the cylindrical portion 37Ad of the direct-view photographing nozzle 37A, and is a hollow portion that is formed inside the engagement tube member 371 and through which measurement light and scattered light pass.
The engagement cylinder portion side spring accommodating portion 371g is a portion where the proximal end side of the spring member 372 is accommodated.
The spring member 372 is formed of a compression coil spring that presses the direct-view photographing nozzle 37A toward the distal end side. The direct-view photographing nozzle 37 </ b> A is expanded and contracted by the expansion / contraction mechanism 370 as much as the spring member 372 is compressed.
 環状部材373は、直視撮影用ノズル37Aを係合筒部材371に伸縮可能な状態に係止させるためのナット状部材であり、前記雌ねじ部373aと、前記段差部37Acが当接する小径部373bとが形成されている。環状部材373は、雄ねじ部371dに螺合している雌ねじ部373aを緩めることによって、係合筒部材371からばね部材372及び直視撮影用ノズル37Aを離脱させることができる。 The annular member 373 is a nut-like member for engaging the direct-viewing imaging nozzle 37A with the engaging cylinder member 371 so as to be extendable and contractible, and includes the female screw portion 373a and the small diameter portion 373b with which the stepped portion 37Ac abuts. Is formed. The annular member 373 can release the spring member 372 and the direct-view photographing nozzle 37A from the engaging cylinder member 371 by loosening the female screw portion 373a that is screwed into the male screw portion 371d.
 図7に示すように、ノズル支持体36は、連結用筒体354と直視撮影用ノズル37Aとの間に介在されて外環部材38に着脱自在に内嵌される略円筒状の部材である。ノズル支持体36は、基端部側に連結用筒体354に内嵌される係合部(図示省略)と、外環部材38に内嵌されると共に、円筒コイルばねからなるスプリング(図示省略)の基端側を支持するばね受部(図示省略)と、そのスプリングが外嵌されるスプリング外装部(図示省略)と、球体SBが移動自在に内嵌される球体挿入孔36dと、が形成されている。 As shown in FIG. 7, the nozzle support 36 is a substantially cylindrical member that is interposed between the connecting cylinder 354 and the direct-viewing imaging nozzle 37 </ b> A and is detachably fitted to the outer ring member 38. . The nozzle support 36 has an engagement portion (not shown) fitted in the coupling cylinder 354 on the base end side, and a spring (not shown) made of a cylindrical coil spring while being fitted in the outer ring member 38. ), A spring receiving portion (not shown) that externally fits the spring, and a sphere insertion hole 36d in which the sphere SB is movably fitted. Is formed.
 外環部材38は、ノズル支持体36及びスプリング(図示省略)を覆うようにその外側に配置される略筒状の部材であり、その内面に、圧縮された状態のスプリング(図示省略)の先端部を支持するばね受け凸部(図示省略)が形成されている。 The outer ring member 38 is a substantially cylindrical member disposed outside the nozzle support 36 and a spring (not shown) so as to cover the nozzle support 36 and the spring (not shown). A spring receiving convex portion (not shown) for supporting the portion is formed.
≪制御ユニット部≫
 制御ユニット部50(制御ユニット)は、図2に示すように、AD変換回路51と、DA変換回路52と、二次元MEMSミラー制御回路53と、表示装置54と、OCT制御装置100とを備える。
≪Control unit section≫
As shown in FIG. 2, the control unit 50 (control unit) includes an AD conversion circuit 51, a DA conversion circuit 52, a two-dimensional MEMS mirror control circuit 53, a display device 54, and an OCT control device 100. .
 AD変換回路51は、ディテクタ23(検出器)のアナログ出力信号をデジタル信号に変換するものである。本実施形態では、AD変換回路51は、光源11であるレーザ出力装置から出力されるトリガ(trigger)に同期して信号の収得を開始し、同じくレーザ出力装置から出力されるクロック信号ckのタイミングに合わせて、ディテクタ(検出器)23のアナログ出力信号を収得し、デジタル信号に変換する。このデジタル信号は、OCT制御装置100に入力する。 The AD conversion circuit 51 converts the analog output signal of the detector 23 (detector) into a digital signal. In the present embodiment, the AD conversion circuit 51 starts acquisition of a signal in synchronization with a trigger output from the laser output device that is the light source 11, and the timing of the clock signal ck that is also output from the laser output device. At the same time, the analog output signal of the detector (detector) 23 is acquired and converted into a digital signal. This digital signal is input to the OCT controller 100.
 DA変換回路52は、OCT制御装置100のデジタル出力信号をアナログ信号に変換するものである。本実施形態では、DA変換回路52は、光源11であるレーザ出力装置から出力されるトリガ(trigger)に同期して、OCT制御装置100のデジタル信号をアナログ信号に変換する。このアナログ信号は、二次元MEMSミラー制御回路53に入力する。 The DA conversion circuit 52 converts the digital output signal of the OCT control device 100 into an analog signal. In the present embodiment, the DA conversion circuit 52 converts the digital signal of the OCT control device 100 into an analog signal in synchronization with a trigger output from the laser output device that is the light source 11. This analog signal is input to the two-dimensional MEMS mirror control circuit 53.
 二次元MEMSミラー制御回路53は、診断プローブ部30の走査手段33を制御するドライバである。二次元MEMSミラー制御回路53は、OCT制御装置100のアナログ出力信号に基づいて、光源11から出照されるレーザ光の出力周期に同期して、二次元MEMSミラーのミラーを水平方向と垂直方向に駆動させる駆動信号を出力する。
 二次元MEMSミラー制御回路53は、ミラーの軸を回転させて水平方向にミラー面の角度を変更する処理と、ミラーの軸を回転させて垂直方向にミラー面の角度を変更する処理と、を異なるタイミングで行う。
The two-dimensional MEMS mirror control circuit 53 is a driver that controls the scanning unit 33 of the diagnostic probe unit 30. The two-dimensional MEMS mirror control circuit 53 moves the mirror of the two-dimensional MEMS mirror in the horizontal direction and the vertical direction in synchronization with the output period of the laser light emitted from the light source 11 based on the analog output signal of the OCT control device 100. A drive signal for driving is output.
The two-dimensional MEMS mirror control circuit 53 performs a process of rotating the mirror axis to change the angle of the mirror surface in the horizontal direction and a process of rotating the mirror axis to change the angle of the mirror surface in the vertical direction. Do it at different times.
 表示装置54は、OCT制御装置100によって生成される光干渉断層画像(以下、OCT画像という)を表示するものである。表示装置54は、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)、EL(Electronic Luminescence)、CRT(Cathode Ray Tube)、PDP(Plasma Display Panel)等から構成される。 The display device 54 displays an optical coherence tomographic image (hereinafter referred to as an OCT image) generated by the OCT control device 100. The display device 54 includes, for example, a liquid crystal display (LCD: Liquid Crystal Display), EL (Electronic Luminescence), CRT (Cathode Ray Tube), PDP (Plasma Display Panel), and the like.
 OCT制御装置100は、OCT装置1の制御装置であって、レーザ光に同期して走査手段33を制御することで撮影を行うと共に、ディテクタ23の検出信号を変換したデータからサンプルSのOCT画像を生成する制御を行うものである。OCT制御装置100は、不図示の入出力手段と、記憶手段と、演算手段と、を備えたコンピュータと、このコンピュータにインストールされたプログラムとから構成される。 The OCT control apparatus 100 is a control apparatus for the OCT apparatus 1 and performs imaging by controlling the scanning unit 33 in synchronization with the laser beam, and also generates an OCT image of the sample S from the data obtained by converting the detection signal of the detector 23. The control which produces | generates is performed. The OCT control apparatus 100 includes a computer including input / output means (not shown), storage means, and arithmetic means, and a program installed in the computer.
[作用]
 次に、OCT装置1(光干渉断層画像生成装置)を使用してサンプルS(前歯部)を撮影する場合を説明する。
 サンプルSを撮影する場合は、まず、不図示の電源スイッチをONした後、診断プローブ部30のスイッチの操作ボタンSWを操作して、図6に示すシャッタ機構31のシャッタ駆動手段313を駆動させてシャッタ312を開放状態にする。
 また、光軸が傾いている場合には、ホルダ締結具326を緩めて、V方向の傾きを調整すると共に、ブラケット締結具(図示省略)を緩めてA方向の傾きを調整する。
[Action]
Next, the case where the sample S (front tooth part) is image | photographed using the OCT apparatus 1 (optical coherence tomographic image generation apparatus) is demonstrated.
When photographing the sample S, first, a power switch (not shown) is turned on, and then the operation button SW of the switch of the diagnostic probe unit 30 is operated to drive the shutter driving means 313 of the shutter mechanism 31 shown in FIG. The shutter 312 is opened.
When the optical axis is inclined, the holder fastener 326 is loosened to adjust the inclination in the V direction, and the bracket fastener (not shown) is loosened to adjust the inclination in the A direction.
 診断プローブ部30は、撮影する際に、集光レンズ34と、直視撮影用ノズル37Aの先端に当接させたサンプルSとの間の距離(集光点)を集光点調整機構35で調整することにより、撮影する断層画像をサンプルSの基準面から深さ方向に位置調整して、深さ方向に広い範囲に亘って断層画像を得ることができる。 The diagnostic probe unit 30 adjusts the distance (condensing point) between the condensing lens 34 and the sample S in contact with the tip of the direct-viewing nozzle 37 </ b> A by the condensing point adjusting mechanism 35 when photographing. Thus, the position of the tomographic image to be taken can be adjusted in the depth direction from the reference plane of the sample S, and a tomographic image can be obtained over a wide range in the depth direction.
 また、図2に示すように、OCT装置1は、コリメータ19dを光軸方向に移動させて、カップラ12(光分割器)から参照ミラー21までの光路長を変更する光路長変更手段24と、前記集光レンズ34とサンプルSとの距離を調整して集光点を調整する集光点調整機構(図示省略)と、直視撮影用ノズル37Aの長さL(図8(a)参照)を可変させることができる伸縮機構370と、を有し、両者を作動させて互いの光路長を一致させることによって、所望の可干渉距離内の鮮明な断層画像を得ることができる。 As shown in FIG. 2, the OCT apparatus 1 includes an optical path length changing unit 24 that changes the optical path length from the coupler 12 (optical divider) to the reference mirror 21 by moving the collimator 19d in the optical axis direction. A condensing point adjusting mechanism (not shown) for adjusting the condensing point by adjusting the distance between the condensing lens 34 and the sample S, and the length L (see FIG. 8A) of the direct-view photographing nozzle 37A. By having a telescopic mechanism 370 that can be varied and operating both to match each other's optical path length, a clear tomographic image within a desired coherent distance can be obtained.
 撮影するときは、図5に示す診断プローブ部30のグリップ部3bを手で握って、直視撮影用ノズル37Aの先端を開口部37AeをサンプルS(前歯部)に当接させた状態で撮影する。このとき、サンプルSに当接させる開口部37Aeは、滑り止部37Agを有していることにより、開口部37Aeに当接するサンプルSとの摩擦抵抗が大きいため、直視撮影用ノズル37Aが滑り動くのを抑止して、直視撮影用ノズル37AをサンプルSに付けることができる。 When photographing, the user grasps the grip portion 3b of the diagnostic probe portion 30 shown in FIG. 5 with his hand and photographs the tip of the direct-view photographing nozzle 37A with the opening 37Ae in contact with the sample S (front tooth portion). . At this time, since the opening 37Ae to be brought into contact with the sample S has a non-slip portion 37Ag, the frictional resistance with the sample S to be brought into contact with the opening 37Ae is large, so that the direct-view photographing nozzle 37A slides. The direct-view imaging nozzle 37A can be attached to the sample S.
 図8に示すように、直視撮影用ノズル37Aは、この直視撮影用ノズル37Aの先端をサンプルSに当接させる前は、ばね部材372によって先端側へ押圧されて、段差部37Acが環状部材373の小径部373bに当接した状態にある。このため、直視撮影用ノズル37Aは、係合筒部材371やハウジング3(図7参照)に対して最も先端側へ移動した状態で、環状部材373に係止されている。 As shown in FIG. 8, the direct-view imaging nozzle 37 </ b> A is pressed toward the distal end side by the spring member 372 before the tip of the direct-view imaging nozzle 37 </ b> A comes into contact with the sample S, and the stepped portion 37 </ b> Ac is formed in the annular member 373. It is in the state contact | abutted to the small diameter part 373b. For this reason, the direct-view photographing nozzle 37 </ b> A is locked to the annular member 373 in a state in which the direct-view photographing nozzle 37 </ b> A is moved to the most distal side with respect to the engaging cylinder member 371 and the housing 3 (see FIG. 7).
 図8(b)に示すように、サンプルSの断層画像を撮影する場合は、サンプルSの表面に当てた直視撮影用ノズル37AをサンプルS側に押して伸縮させ、集光レンズ34の焦点の位置に合わせてサンプルSの撮影した位置を合わせて撮影する。このようにして、直視撮影用ノズル37Aをばね部材372のばね力に抗して伸縮させることによって、集光レンズ34の焦点位置に撮影したいサンプルSの部位を移動させて合わせることでピントを調整することができる。 As shown in FIG. 8B, when capturing a tomographic image of the sample S, the direct-view imaging nozzle 37A applied to the surface of the sample S is pushed and expanded to the sample S side, and the focal position of the condenser lens 34 is expanded. The sample S is photographed at the same position as the sample S. In this way, by adjusting the direct-view photographing nozzle 37A against the spring force of the spring member 372, the focus of the sample S to be photographed is moved and adjusted to the focal position of the condenser lens 34 to adjust the focus. can do.
 例えば、サンプルSの表面の先端部に集光レンズ34の焦点がある場合に、図8(b)及び図9に示すように、サンプルSの表面から距離(L1)中側の位置Pの断層画像を撮影するときは、直視撮影用ノズル37AをサンプルSに押し当てて、可干渉範囲L2内の距離(L1)まで圧縮させて動かすことによって、集光レンズ34の焦点位置を位置Pに合わせることで、ピントが合う。このため、サンプルSの撮影したい位置Pの断層画像を鮮明な状態に撮影することができる。 For example, when the focal point of the condensing lens 34 is at the tip of the surface of the sample S, as shown in FIGS. 8B and 9, a tomogram at a position P in the middle of the distance (L1) from the surface of the sample S. When shooting an image, the direct-view shooting nozzle 37A is pressed against the sample S and compressed and moved to a distance (L1) within the coherent range L2, thereby adjusting the focal position of the condenser lens 34 to the position P. That ’s why I ’m in focus. For this reason, the tomographic image of the position P where the sample S is desired to be photographed can be photographed in a clear state.
 図5に示すように、ハウジング3は、略中央部を中心としてL字状に折れ曲がったピストル形状に形成されていることによって、利用者が診断プローブ部30を手で持って集光レンズ34の焦点位置を変えながら撮影するときに、握り易いので、手で持って撮影し易い。 As shown in FIG. 5, the housing 3 is formed in a pistol shape that is bent in an L shape with a substantially central portion as a center, so that the user holds the diagnostic probe portion 30 with a hand and When shooting while changing the focal position, it is easy to grasp, so it is easy to hold it with your hand.
 また、診断プローブ部30は、ノズル37がハウジング3に着脱して交換可能に設けられていることによって、撮影するサンプルS(例えば、前歯部)の形状や配置状態に応じた形状のノズル37に交換してサンプルSを撮影する。一つの診断プローブ部30であっても、ノズル37を利用用途に合ったものに交換することにより、患者の前歯部、臼歯部等の全ての歯を集光レンズ34の焦点位置を変えながら鮮明に撮影することができる。 Further, the diagnostic probe unit 30 is provided in a nozzle 37 having a shape corresponding to the shape and arrangement state of the sample S to be photographed (for example, the front tooth portion) by providing the nozzle 37 so as to be attachable to and detachable from the housing 3. The sample S is photographed after replacement. Even if it is one diagnostic probe part 30, all the teeth, such as a patient's front tooth part and molar part, are changed clearly, changing the focal position of the condensing lens 34 by replacing the nozzle 37 with the thing suitable for a use application. Can be taken.
 また、滑り止部37Agは、開口部37Aeに着脱可能なゴム部材あるいはシール材にすることにより、撮影に使用済の滑り止部37Agを使い捨てとして廃棄し、清潔な新品の滑り止部37Agを新たに取り付けて使用することができる。
 このように、ノズル37は、サンプルSと接触する滑り止部37Agを使い捨て部材として使用し、ノズル37の先端部分(開口部37Ae)を常に清潔な状態にすることができる。
Further, the non-slip portion 37Ag is made of a rubber member or a seal material that can be attached to and detached from the opening 37Ae, so that the non-slip portion 37Ag used for photographing is discarded as a disposable, and a clean new anti-slip portion 37Ag is newly added. Can be used attached to.
Thus, the nozzle 37 can use the non-slip | skid part 37Ag which contacts the sample S as a disposable member, and can always make the front-end | tip part (opening part 37Ae) of the nozzle 37 a clean state.
 さらに、集光点調整機構35と、伸縮機構370の二つの焦点調整機構を設けることにより、断層撮影時に、伸縮機構370で集光レンズ34の焦点位置を位置Pに合わせた上で、集光点調整機構35の操作ノブ351の操作によって深さ方向の撮影部位を変えることもできる。 In addition, by providing two focus adjustment mechanisms, namely, a condensing point adjustment mechanism 35 and an expansion / contraction mechanism 370, the focus position of the condensing lens 34 is adjusted to the position P by the expansion / contraction mechanism 370 at the time of tomography. The imaging region in the depth direction can be changed by operating the operation knob 351 of the point adjusting mechanism 35.
≪第1変形例≫
 なお、本発明は、前記実施形態に限定されるものではなく、その技術的思想の範囲内で種々の改造及び変更が可能であり、本発明はこれら改造及び変更された発明にも及ぶことは勿論である。なお、既に説明した構成は同じ符号を付してその説明を省略する。
 図10は、本発明の実施形態に係るプローブの第1変形例を示す要部分解斜視図であり、側視撮影用ノズルを取り付けたときの状態を示す。図11は、本発明の実施形態に係るプローブの第1変形例を示す図であり、ノズルの着脱状態を示す要部分解斜視図である。図12は、本発明の実施形態に係るプローブの第1変形例を示す中央部縦断面図である。図13は、本発明の実施形態に係るプローブの第1変形例を示す図であり、ノズルの着脱状態を示す要部分解斜視図である。
≪First modification≫
The present invention is not limited to the above-described embodiment, and various modifications and changes can be made within the scope of the technical idea. The present invention extends to these modifications and changes. Of course. In addition, the already demonstrated structure attaches | subjects the same code | symbol and abbreviate | omits the description.
FIG. 10 is an exploded perspective view of a main part showing a first modified example of the probe according to the embodiment of the present invention, and shows a state when a side-view photographing nozzle is attached. FIG. 11 is a view showing a first modified example of the probe according to the embodiment of the present invention, and is an exploded perspective view of a main part showing a nozzle attached / detached state. FIG. 12 is a longitudinal sectional view of the center portion showing a first modification of the probe according to the embodiment of the present invention. FIG. 13 is a diagram showing a first modification of the probe according to the embodiment of the present invention, and is an exploded perspective view of a main part showing a nozzle attached / detached state.
 前記実施形態では、OCT装置1の一例として、前歯部(切歯)をサンプルSとし、図4~図9(ただし、図8は臼歯をサンプルとした概念図)に示す円筒状タイプの直視撮影用ノズル37A(前歯用ノズル)を備えた診断プローブ部30を例に挙げて説明したが、これに限定されるものではない。
 図10~図13に示すように、診断プローブ部30Bは、サンプルSを臼歯部としてアングルタイプの側視撮影用ノズル37B(臼歯用ノズル)に交換して使用しても構わない。
In the above-described embodiment, as an example of the OCT apparatus 1, a cylindrical type direct-view imaging shown in FIGS. 4 to 9 (however, FIG. 8 is a conceptual diagram in which molars are samples) is an anterior tooth portion (incisor) as a sample S. Although the diagnostic probe unit 30 provided with the nozzle 37A (nozzle for front teeth) has been described as an example, the present invention is not limited to this.
As shown in FIGS. 10 to 13, the diagnostic probe unit 30B may be used by replacing the sample S with an angle type side-viewing imaging nozzle 37B (molar tooth nozzle) with the molar portion as a molar part.
 この場合、側視撮影用ノズル37B(臼歯用ノズル)は、図11及び図12に示すように、集光レンズ34の光軸を直交する方向に変換する斜鏡37Baを筒部37Bbの先端部内壁37Bcに有すると共に、集光レンズ34の光軸に対して直交する方向に開口部37Bdが形成されて、側視撮影用ノズル37Bの長手方向に対して直交する方向にあるサンプルSに照射して散乱光を回収するようになっている。側視撮影用ノズル37Bは、直視撮影用ノズル37Aと同様にハウジング3に対して着脱自在(交換可能)、回動自在、かつ、伸縮自在に装着されている。 In this case, as shown in FIGS. 11 and 12, the side-view photographing nozzle 37B (molar tooth nozzle) has an oblique mirror 37Ba that converts the optical axis of the condensing lens 34 in a direction perpendicular to the tip of the cylindrical portion 37Bb. An opening 37Bd is formed in the inner wall 37Bc and in a direction orthogonal to the optical axis of the condenser lens 34, and the sample S in the direction orthogonal to the longitudinal direction of the side-viewing nozzle 37B is irradiated. Scattered light is collected. The side-view shooting nozzle 37B is detachably (replaceable), rotatable, and telescopically attached to the housing 3 in the same manner as the direct-view shooting nozzle 37A.
 側視撮影用ノズル37Bは、図13(a)、(b)で示すように診断プローブ部30Bで臼歯部を撮影する際に、側視撮影用ノズル37Bの開口部37BdをサンプルS(臼歯部)に当接させて側視撮影用ノズル37Bの長さLを伸縮調整範囲L1の範囲で可変し、計測光をサンプルSに照射して、反射された散乱光を回収する。側視撮影用ノズル37Bは、ハウジング3のノズル設置部3dに、連結用筒体354、外環部材38及び伸縮機構370Bを介在して伸縮可能に配置されている。 As shown in FIGS. 13 (a) and 13 (b), the side-view imaging nozzle 37B uses the sample S (molar part) to open the opening 37Bd of the side-view imaging nozzle 37B when imaging the molar part with the diagnostic probe unit 30B. ), The length L of the side-view photographing nozzle 37B is varied within the expansion / contraction adjustment range L1, the measurement light is irradiated onto the sample S, and the reflected scattered light is collected. The side-view photographing nozzle 37B is disposed in the nozzle installation portion 3d of the housing 3 so as to be expandable and contractible with the connecting cylinder 354, the outer ring member 38, and the expansion / contraction mechanism 370B interposed therebetween.
 図13に示すように、側視撮影用ノズル37Bには、基端部側に当該側視撮影用ノズル37Bをスライダ374Bの先端側外周部に形成されたスライダねじ部374Baに螺合されるノズルねじ部37Bgと、このノズルねじ部37Bgから先端側に向けて延設された筒部37Bbと、斜鏡37Baが斜めに配置される先端部内壁37Bcと、先端部内壁37Bcの下側に開口された開口部37Bdと、が一体形成され、開口部37Bdの縁に滑り止部37Beを有している。
 滑り止部37Beは、撮影時に当接させるサンプルSとの摩擦抵抗を大きくして側視撮影用ノズル37Bを滑り難くした滑り防止手段であり、開口部37Bdの表面を加工処理して形成された当接面、あるいは、開口部37Bdに着脱可能に取り付けられた摩擦係数の大きい素材からなる。
As shown in FIG. 13, in the side-viewing nozzle 37B, the nozzle that is screwed into the slider screw portion 374Ba formed on the outer peripheral portion on the distal end side of the slider 374B is connected to the side-viewing nozzle 37B on the base end side. The threaded portion 37Bg, the cylindrical portion 37Bb extending from the nozzle threaded portion 37Bg toward the distal end side, the distal end inner wall 37Bc where the oblique mirror 37Ba is disposed obliquely, and the lower end of the distal end inner wall 37Bc are opened. The opening 37Bd is integrally formed and has an anti-slip portion 37Be on the edge of the opening 37Bd.
The non-slip portion 37Be is a non-slip means that increases the frictional resistance with the sample S to be brought into contact with the image S to make the side-view shooting nozzle 37B difficult to slide, and is formed by processing the surface of the opening 37Bd. It is made of a material having a large friction coefficient that is detachably attached to the contact surface or the opening 37Bd.
 また、伸縮機構370Bは、側視撮影用ノズル37Bと一体に進退するスライダ374Bをばね部材372Bのばね力に抗して進退可能にした機構である。この係合筒部材371Bと、ばね部材372Bと、環状部材373Bと、スライダ374Bと、を備えて構成されている。つまり、第1変形例の伸縮機構370Bは、前記した実施形態とはスライダ374Bを備えている点で相違している。 The expansion / contraction mechanism 370B is a mechanism that allows the slider 374B that moves forward and backward integrally with the side-viewing imaging nozzle 37B to move forward and backward against the spring force of the spring member 372B. This engagement cylinder member 371B, a spring member 372B, an annular member 373B, and a slider 374B are provided. That is, the expansion / contraction mechanism 370B of the first modification is different from the above-described embodiment in that the slider 374B is provided.
 係合筒部材371Bは、ばね部材372Bの基端側が当接するばね受け部371Beと、環状部材373Bの基端側に形成された雌ねじ部373Baに螺合する雄ねじ部371Bdと、この係合筒部材371Bの内部に形成され、ばね部材372Bを介在してこのばね部材372Bに付勢されるスライダ374Bが収納された中空部371Bfと、を有している。なお、係合筒部材371Bは、前記実施形態の係合筒部材371と略同一形状であり、円筒状の雄ねじ部371Bd内に配置されるのがスライダ374Bである点で、前記実施形態の係合筒部材371と相違している。 The engaging cylinder member 371B includes a spring receiving portion 371Be that a proximal end side of the spring member 372B contacts, a male screw portion 371Bd that is screwed into a female screw portion 373Ba formed on the proximal end side of the annular member 373B, and the engaging cylindrical member. It has a hollow portion 371Bf that is formed inside 371B and that houses a slider 374B that is biased by the spring member 372B via a spring member 372B. The engagement cylinder member 371B has substantially the same shape as the engagement cylinder member 371 of the above embodiment, and the slider 374B is disposed in the cylindrical male screw portion 371Bd. This is different from the tubular member 371.
 ばね部材372Bは、スライダ374Bを介在して側視撮影用ノズル37Bを先端側方向に付勢する圧縮コイルばねからなる。このばね部材372Bは、基端部側が、前記実施形態のばね部材372と同様に係合筒部材371Bのばね受け部371Beに当接されて支持され、先端側が、スライダ374Bを先端側に押圧している点で、前記実施形態とは相違している。 The spring member 372B is formed of a compression coil spring that biases the side-view photographing nozzle 37B in the distal direction via a slider 374B. The spring member 372B is supported at the base end side in contact with the spring receiving portion 371Be of the engaging tube member 371B in the same manner as the spring member 372 of the above-described embodiment, and the distal end side presses the slider 374B toward the distal end side. This is different from the above embodiment.
 環状部材373Bは、ばね部材372Bに付勢されたスライダ374Bを受け止めて、係合筒部材371Bに係止させるためのリング部材である。この環状部材373Bは、基端側の内壁面に、雌ねじ部373Baを有し、先端側に、ばね部材372Bに付勢されたスライダ374Bが当接する小径部373Bbを有している。 The annular member 373B is a ring member for receiving the slider 374B biased by the spring member 372B and locking the slider 374B to the engagement cylinder member 371B. This annular member 373B has a female threaded portion 373Ba on the inner wall surface on the proximal end side, and a small diameter portion 373Bb on the distal end side with which the slider 374B biased by the spring member 372B abuts.
 スライダ374Bは、基端部側が、係合筒部材371Bに所定距離移動可能に内設され、先端側に形成されたスライダねじ部374Baが、側視撮影用ノズル37Bのノズルねじ部37Bgに螺合されて連結され、側視撮影用ノズル37Bと一体に進退するように診断プローブ部30の先端に配置されている。このため、側視撮影用ノズル37Bは、スライダ374Bに着脱自在に設けられて、このスライダ374Bに固定することによってスライダ374Bを共に進退して、ハウジング3に対する側視撮影用ノズル37Bの長さLを伸縮調整範囲L1の範囲で伸縮して可変することができる。 The slider 374B has a proximal end portion that is provided in the engagement cylinder member 371B so as to be movable by a predetermined distance, and a slider screw portion 374Ba formed on the distal end side is screwed into the nozzle screw portion 37Bg of the side-view photographing nozzle 37B. Thus, they are connected and arranged at the tip of the diagnostic probe unit 30 so as to advance and retreat integrally with the side-view imaging nozzle 37B. For this reason, the side-view photographing nozzle 37B is detachably provided on the slider 374B. By fixing the side-view photographing nozzle 37B to the slider 374B, the slider 374B is advanced and retracted together. Can be expanded and contracted within the range of the expansion / contraction adjustment range L1.
 このように、側視撮影用ノズル37Bは、光軸を90度変換する斜鏡37Baと、筒部37Bbの先端の90度直交する方向に開口された開口部37Bdと、前後方向に伸縮する伸縮機構370Bと、を有して、筒部37Bbを回動させれば、開口部37Bdの向き(撮影する方向)を自由に変えられ、側視撮影用ノズル37Bを押圧すれば軸方向の長さLを可変できるため、口腔内の奥にある臼歯部の断層画像を容易に撮影することができる。 As described above, the side-view photographing nozzle 37B includes the oblique mirror 37Ba for converting the optical axis by 90 degrees, the opening 37Bd opened in the direction perpendicular to the tip of the cylindrical portion 37Bb, and the expansion and contraction extending in the front-rear direction. If the cylindrical portion 37Bb is rotated and the direction of the opening 37Bd (direction to shoot) can be freely changed, and the side-view shooting nozzle 37B is pressed, the axial length is obtained. Since L can be varied, a tomographic image of the molar portion in the back of the oral cavity can be easily taken.
 側視撮影用ノズル37Bの長さLを可変する場合は、開口部37Bdの滑り止部37BeをサンプルSに押し当てて、滑り止部37Beの摩擦抵抗によって、ばね部材375Bのばね力に抗してばね部材375Bを圧縮させて側視撮影用ノズル37Bを伸縮させる。
診断プローブ部30は、側視撮影用ノズル37Bを軸方向に移動させることにより、集光レンズ34の焦点位置を移動させて、鮮明な画像を得ることができる。
 さらに、この側視撮影用ノズル37Bは、口腔内組織撮影や、前記した直視撮影用ノズル37Aで撮影困難な部位、例えば、臼歯部の咬合面、舌側面、頬側面の撮影、その他、前歯部の舌側面側の断層画像を撮影するのにも適している。
When the length L of the side-view photographing nozzle 37B is variable, the anti-slip portion 37Be of the opening 37Bd is pressed against the sample S, and the spring force of the spring member 375B is resisted by the frictional resistance of the anti-slip portion 37Be. The spring member 375B is compressed to expand and contract the side view photographing nozzle 37B.
The diagnostic probe unit 30 can move the focal position of the condenser lens 34 by moving the side-viewing imaging nozzle 37B in the axial direction, and can obtain a clear image.
Further, the side-view imaging nozzle 37B is used for imaging intraoral tissue, imaging of sites difficult to capture with the above-described direct-view imaging nozzle 37A, for example, occlusal surface, lingual side surface, buccal side surface, etc. It is also suitable for taking tomographic images of the side of the tongue.
≪第2変形例≫
 図14は、本発明の実施形態に係るプローブの第2変形例を示す斜視図である。
図15は、本発明の実施形態に係るプローブの第2変形例を示す分解斜視図である。図16は、本発明の実施形態に係るプローブの第2変形例を示す図であり、ハウジング半体を外したときの状態を示す側面図である。図17は、本発明の実施形態に係るプローブの第2変形例を示す図であり、ハウジング半体を取り除いたプローブの要部斜視図である。
≪Second modification≫
FIG. 14 is a perspective view showing a second modification of the probe according to the embodiment of the present invention.
FIG. 15 is an exploded perspective view showing a second modification of the probe according to the embodiment of the present invention. FIG. 16 is a view showing a second modification of the probe according to the embodiment of the present invention, and is a side view showing a state when the housing half is removed. FIG. 17 is a view showing a second modification of the probe according to the embodiment of the present invention, and is a perspective view of the main part of the probe with the housing half removed.
 また、前記実施形態の診断プローブ部30Cは、図14~図17に示すように、ストレート型のハウジング3Cに伸縮機構370を配置したものであっても構わない。
 この場合、ハウジング3Cは、このハウジング3Cの中央部に走査手段収納部3Caが配置され、基端部にグリップ部3Cbが配置され、中央部の先端側寄りの位置に集光レンズ収納部3Ccが配置され、先端にノズル設置部3Cdが配置されて、ハウジング3C全体が真っ直ぐに配置されたストレートタイプの形状に形成されている。そのハウジング3Cは、長さ方向に中央部を縦断面して左右に二分した2つのハウジング半体3Ce,3Cfを合致させて、ハウジング3Cの先端に伸縮機構370を介在して直視撮影用ノズル37Aが配置されている。
Further, the diagnostic probe section 30C of the above embodiment may be one in which an expansion / contraction mechanism 370 is arranged in a straight type housing 3C as shown in FIGS.
In this case, in the housing 3C, the scanning means storage portion 3Ca is disposed at the center portion of the housing 3C, the grip portion 3Cb is disposed at the base end portion, and the condenser lens storage portion 3Cc is disposed at a position closer to the distal end side of the center portion. The nozzle mounting portion 3Cd is arranged at the tip, and the entire housing 3C is formed in a straight type shape arranged straight. The housing 3C has two housing halves 3Ce and 3Cf, which are divided into right and left by longitudinally sectioning the central portion in the length direction, and a direct-view shooting nozzle 37A via a telescopic mechanism 370 at the tip of the housing 3C. Is arranged.
 グリップ部3Cbは、コリメータレンズ32から反射鏡Mまでのレーザ光の光軸の方向に延びて形成されている。走査手段収納部3Ca内では、反射鏡Mで走査手段33に向けて反射され、さらに、走査手段33で反射されたレーザ光の光軸が、グリップ部Cb内の光軸に対して平行線上に反射されるように配置されている。集光レンズ収納部3Ccは、その平行線の方向に延びて形成されている。このため、ハウジング3Cは、グリップ部3Cbから走査手段収納部3Ca及び集光レンズ収納部3Ccを介して直視撮影用ノズル37Aまでストレートに形成されている。 The grip portion 3Cb is formed to extend in the direction of the optical axis of the laser light from the collimator lens 32 to the reflecting mirror M. In the scanning unit housing 3Ca, the optical axis of the laser beam reflected by the reflecting mirror M toward the scanning unit 33 and reflected by the scanning unit 33 is parallel to the optical axis in the grip unit Cb. It is arranged to be reflected. The condenser lens storage 3Cc is formed to extend in the direction of the parallel lines. For this reason, the housing 3C is formed straight from the grip portion 3Cb to the direct-view photographing nozzle 37A via the scanning means storage portion 3Ca and the condenser lens storage portion 3Cc.
 図16に示すように、反射鏡Mは、光ファイバ60Aから診断プローブ部30C内に入ったレーザ光が、コリメータ322、シャッタ機構31を通ってその反射鏡Mで、走査手段33の中央にあるミラーに向けて反射するように、ハウジング3Cの長さ方向に対してグリップ部3Cb側へ傾けた状態に配置されている。
 グリップ部3Cb内には、基端部側にケーブル60、コリメータ322、シャッタ機構31等が主に収納されている。グリップ部3Cbの側面の集光レンズ収納部3Cc寄りの位置には、複数の操作ボタンSW(図13参照)が設けられている。
As shown in FIG. 16, in the reflecting mirror M, the laser light that has entered the diagnostic probe section 30 </ b> C from the optical fiber 60 </ b> A passes through the collimator 322 and the shutter mechanism 31, and is in the center of the scanning unit 33. It is arranged so as to be inclined toward the grip portion 3Cb with respect to the length direction of the housing 3C so as to be reflected toward the mirror.
In the grip portion 3Cb, a cable 60, a collimator 322, a shutter mechanism 31 and the like are mainly housed on the base end side. A plurality of operation buttons SW (see FIG. 13) are provided on the side surface of the grip portion 3Cb near the condenser lens storage portion 3Cc.
 図16に示すように、ノズル設置部3Cdは、連結用筒体354、外環部材38、伸縮機構370を介在してノズル37が着脱自在、かつ、伸縮可能に取り付けられる部位であり、使用用途に応じて直視撮影用ノズル37A、あるいは、側視撮影用ノズル37Bが取り付けられる。ノズル設置部3Cdは、集光レンズ収納部3Ccの先端側からハウジング3の先端に亘って形成されている。 As shown in FIG. 16, the nozzle installation part 3Cd is a part where the nozzle 37 is detachably attached and can be extended and retracted through the connecting cylinder 354, the outer ring member 38, and the expansion and contraction mechanism 370. The direct-view photographing nozzle 37A or the side-view photographing nozzle 37B is attached according to the above. The nozzle installation portion 3Cd is formed from the distal end side of the condenser lens storage portion 3Cc to the distal end of the housing 3.
 このように、診断プローブ部30Cは、ノズル37の長さを変えることができるので、それに伴って光路の長さ集光レンズ34の焦点も変えられるため、撮影する範囲もサンプルSの深さ方向に広範囲に探せるようになると共に、断層画像の鮮明度も調整できるようになる。 Thus, since the diagnostic probe unit 30C can change the length of the nozzle 37, the length of the optical path and the focal point of the condenser lens 34 can be changed accordingly. In addition to being able to search for a wide range, the sharpness of the tomographic image can be adjusted.
≪第3変形例≫
 図18は、本発明の実施形態に係るプローブの第3変形例を示す図であり、ノズル伸縮機構を備えたプローブの要部分解斜視図である。図19は、本発明の実施形態に係るプローブの第3変形例を示す図であり、ノズル伸縮機構を備えたプローブの要部拡大縦断面図である。
<< Third Modification >>
FIG. 18 is a view showing a third modification of the probe according to the embodiment of the present invention, and is an exploded perspective view of a main part of the probe provided with a nozzle expansion / contraction mechanism. FIG. 19 is a view showing a third modification of the probe according to the embodiment of the present invention, and is an enlarged vertical cross-sectional view of a main part of the probe provided with a nozzle expansion / contraction mechanism.
 本発明の実施形態に係るプローブの第3変形例は、前記した軸方向に摺動する伸縮機構370(図8(a)、(b)、図13(a)、(b))参照)に代えて、図18及び図19に示すように、ノズル37Dを回転させることによって、ノズル37Dを軸方向に進退させてノズル長Lを可変し、集光レンズ34(図5参照)とサンプルS(図5参照)との距離を調整するねじ式の伸縮機構370Dを備えたプローブ30Dである。 A third modification of the probe according to the embodiment of the present invention is based on the above-described telescopic mechanism 370 that slides in the axial direction (see FIGS. 8A, 8B, 13A, and 13B). Instead, as shown in FIGS. 18 and 19, by rotating the nozzle 37D, the nozzle 37D is moved back and forth in the axial direction to change the nozzle length L, and the condenser lens 34 (see FIG. 5) and the sample S (see FIG. 5). This is a probe 30D provided with a screw-type expansion / contraction mechanism 370D that adjusts the distance from the device (see FIG. 5).
<伸縮機構>
 ノズル37Dの伸縮機構370Dは、ノズル37Dをハウジング3に対して進退させて、集光レンズ34とサンプルSとの距離を調整する集光点調整機構を形成する。
<Extension mechanism>
The expansion / contraction mechanism 370 </ b> D of the nozzle 37 </ b> D forms a condensing point adjusting mechanism that adjusts the distance between the condensing lens 34 and the sample S by moving the nozzle 37 </ b> D forward and backward with respect to the housing 3.
 この場合、診断プローブ部30C(プローブ)のノズル37Dは、ノズル支持体36の先端部に着脱自在に内嵌されるノズル基体37D1と、このノズル基体37D1に対して伸縮した状態に取り付けられるノズル伸縮体37D2と、を備えて構成されている。
 ノズル基体37D1は、先端部の開口部内に雌ねじ部37Daが形成されている。
 ノズル伸縮体37D2は、基端側の外周面に、雌ねじ部37Daに螺合する雄ねじ部37Dbが形成され、このノズル伸縮体37D2を正転・反転させることによって、ノズル長Lを所望の長さに調整して、集光レンズ34とサンプルSとの距離も調整できるようになっている。
 このようノズル37Dの伸縮機構370Dは、雌ねじ部37Daと雄ねじ部37Dbとによるねじ機構からなるものであっても構わない。
In this case, the nozzle 37D of the diagnostic probe section 30C (probe) includes a nozzle base 37D1 that is detachably fitted to the tip of the nozzle support 36, and a nozzle expansion / contraction that is attached to the nozzle base 37D1 in a stretched state. And a body 37D2.
The nozzle base 37D1 has a female thread portion 37Da formed in the opening at the tip.
The nozzle expansion / contraction body 37D2 is formed with a male screw portion 37Db that is screwed into the female screw portion 37Da on the outer peripheral surface on the base end side, and the nozzle expansion / contraction body 37D2 is rotated forward / reversely so that the nozzle length L is set to a desired length. The distance between the condenser lens 34 and the sample S can also be adjusted.
As described above, the expansion / contraction mechanism 370D of the nozzle 37D may include a screw mechanism including the female screw portion 37Da and the male screw portion 37Db.
[その他の変形例]
 また、前記実施形態及び第1変形例では、伸縮機構370,370Bに、直視撮影用ノズル37A及び側視撮影用ノズル37Bを先端側へ押し戻す手段としてばね部材372,372Bを設けて、ばね力を利用してノズル37を付勢させた例を説明したが(図8(a)、(b)、図13(a)、(b)参照)、直視撮影用ノズル37A及び側視撮影用ノズル37Bを押し戻す機能があるものであれば、圧縮コイルばね以外のばね部材372,372Bであっても構わない。
 例えば、伸縮機構370,370Bのばね部材372,372Bは、直視撮影用ノズル37A及び側視撮影用ノズル37Bと、係合筒部材371,371Bとの間を密閉空間に形成して、その密閉空間内に適宜な圧力の圧縮空気を充填してなる空気ばねであっても構わない。
 その他、ばね部材372,372Bは、直視撮影用ノズル37A及び側視撮影用ノズル37Bを押し戻す弾性力を有するゴムスプリングや皿ばね等であっても構わない。
[Other variations]
In the embodiment and the first modification, the expansion / contraction mechanisms 370 and 370B are provided with spring members 372 and 372B as means for pushing the direct-view imaging nozzle 37A and the side-view imaging nozzle 37B back to the distal end side, and the spring force is applied. Although an example in which the nozzle 37 is urged by using it has been described (see FIGS. 8A, 8B, 13A, and 13B), a direct-view shooting nozzle 37A and a side-view shooting nozzle 37B. As long as it has a function of pushing back, spring members 372 and 372B other than the compression coil spring may be used.
For example, the spring members 372 and 372B of the expansion and contraction mechanisms 370 and 370B form a sealed space between the direct-view shooting nozzle 37A and the side-view shooting nozzle 37B and the engagement cylinder members 371 and 371B, and the sealed space. It may be an air spring that is filled with compressed air of an appropriate pressure.
In addition, the spring members 372 and 372B may be rubber springs, disk springs, or the like having an elastic force that pushes back the direct-view photographing nozzle 37A and the side-view photographing nozzle 37B.
 1   OCT装置(光干渉断層画像生成装置)
 3   ハウジング
 3d  ノズル設置部
 11  光源
 21  参照ミラー
 30,30B,30C 診断プローブ部(プローブ)
 33  走査手段(二次元MEMSミラー)
 34  集光レンズ
 37  ノズル
 37A 直視撮影用ノズル(前歯用ノズル、ノズル)
 37B 側視撮影用ノズル(臼歯用ノズル、ノズル)
 37Aa 押圧部
 37Ab 摺接部
 37Ac 段差部
 37Ae,37Bd 開口部
 37Ag,37Be 滑り止部
 37Bg ノズルねじ部
 60  ケーブル
 60A 光ファイバ
 370,370B 伸縮機構
 371,371B 係合筒部材
 371e,371Be ばね受け部
 371d,371Bd 雄ねじ部
 371f,371Bf 中空部
 372,372B ばね部材
 373,373B 環状部材
 373a,373Ba 雌ねじ部
 373b,373Bb 小径部
 374B スライダ
 374Ba スライダねじ部
 S   サンプル(被写体)
1 OCT device (optical coherence tomographic image generator)
DESCRIPTION OF SYMBOLS 3 Housing 3d Nozzle installation part 11 Light source 21 Reference mirror 30, 30B, 30C Diagnostic probe part (probe)
33 Scanning means (two-dimensional MEMS mirror)
34 Condensing lens 37 Nozzle 37A Direct-viewing nozzle (front tooth nozzle, nozzle)
37B Side-viewing nozzle (molar tooth nozzle, nozzle)
37Aa Pressing portion 37Ab Sliding contact portion 37Ac Stepped portion 37Ae, 37Bd Opening portion 37Ag, 37Be Non-slip portion 37Bg Nozzle screw portion 60 Cable 60A Optical fiber 370, 370B Extending mechanism 371, 371B Engaging cylinder member 371e, 371Be Spring receiving portion 371d 371Bd Male thread part 371f, 371Bf Hollow part 372, 372B Spring member 373, 373B Annular member 373a, 373Ba Female thread part 373b, 373Bb Small diameter part 374B Slider 374Ba Slider screw part S Sample (Subject)

Claims (6)

  1.  光源から照射されたレーザ光を、被写体に照射する計測光と参照ミラーに照射する参照光とに分配し、
     前記被写体から反射して戻ってきた散乱光と前記参照ミラーで反射した反射光とを合成させた干渉光を解析して光干渉断層画像を生成する光干渉断層画像生成装置に使用され、
     前記計測光を前記被写体に照射して前記反射して戻ってきた散乱光を回収するプローブであって、
     前記計測光及び前記散乱光を伝送する光ファイバと、
     この光ファイバによって前記プローブ内に導入されたレーザ光の照射方向を変化させる走査手段と、
     この走査手段からの前記計測光を前記被写体に照射して前記散乱光を回収する開口部を有するノズルと、
     このノズルと前記走査手段との間に介在された集光レンズと、
     前記光ファイバ、前記走査手段、及び、前記ノズルを保持するハウジングと、を備え、
     前記ノズルは、当該ノズルの長さを可変することができる伸縮機構を有していることを特徴とするプローブ。
    Distributing the laser light emitted from the light source to the measurement light applied to the subject and the reference light applied to the reference mirror,
    Used for an optical coherence tomographic image generation device that generates an optical coherence tomographic image by analyzing coherent light obtained by combining the scattered light reflected back from the subject and the reflected light reflected by the reference mirror,
    A probe that irradiates the subject with the measurement light and collects the scattered light that is reflected and returned;
    An optical fiber for transmitting the measurement light and the scattered light;
    Scanning means for changing the irradiation direction of the laser light introduced into the probe by the optical fiber;
    A nozzle having an opening for irradiating the subject with the measurement light from the scanning unit and collecting the scattered light;
    A condenser lens interposed between the nozzle and the scanning means;
    A housing for holding the optical fiber, the scanning means, and the nozzle;
    The nozzle has a telescopic mechanism capable of changing the length of the nozzle.
  2.  前記伸縮機構は、前記ハウジングの先端部に配置された係合筒部材と、
     この係合筒部材と前記ノズルとの間に介在されて、前記ノズルを先端側へ付勢するばね部材と、
     基端部側が前記係合筒部材に係止され、先端側が前記ノズルを所定間隔移動自在に係止した環状部材と、を備えたことを特徴とする請求項1に記載のプローブ。
    The telescopic mechanism includes an engaging cylinder member disposed at a distal end portion of the housing;
    A spring member interposed between the engagement cylinder member and the nozzle to urge the nozzle toward the tip side;
    2. The probe according to claim 1, further comprising: an annular member having a proximal end portion locked to the engaging cylinder member and a distal end side locking the nozzle so as to be movable at a predetermined interval.
  3.  前記係合筒部材は、前記ばね部材の基端側が当接するばね受け部と、
     前記環状部材の基端側に形成された雌ねじ部に螺合する雄ねじ部と、
     当該係合筒部材の内部に形成された中空部と、を有し、
     前記ノズルは、前記ばね部材によって押圧される押圧部と、
     前記中空部に進退自在に内設された摺接部と、
     この摺接部の先端側に形成された段差部と、を有し、
     前記環状部材は、前記段差部が当接する小径部を有していることを特徴とする請求項2に記載のプローブ。
    The engagement tube member includes a spring receiving portion with which a proximal end side of the spring member abuts,
    A male screw portion that is screwed into a female screw portion formed on the base end side of the annular member;
    A hollow portion formed inside the engagement tube member,
    The nozzle is a pressing portion pressed by the spring member;
    A sliding contact portion provided in the hollow portion so as to freely advance and retract;
    A step portion formed on the tip side of the sliding contact portion, and
    The probe according to claim 2, wherein the annular member has a small diameter portion with which the stepped portion abuts.
  4.  前記係合筒部材は、前記ばね部材の基端側が当接するばね受け部と、
     前記環状部材の基端側に形成された雌ねじ部に螺合する雄ねじ部と、
     当該係合筒部材の内部に形成され、前記ばね部材を介在してこのばね部材に付勢されるスライダが収納された中空部と、を有し、
     前記ノズルは、前記スライダの先端側外周部に形成されたスライダねじ部に螺合されるノズルねじ部を有し、
     前記環状部材は、前記ばね部材に付勢された前記スライダが当接する小径部を有していることを特徴とする請求項2に記載のプローブ。
    The engagement tube member includes a spring receiving portion with which a proximal end side of the spring member abuts,
    A male screw portion that is screwed into a female screw portion formed on the base end side of the annular member;
    A hollow portion that is formed inside the engaging cylinder member and that houses a slider that is biased by the spring member through the spring member;
    The nozzle has a nozzle screw portion that is screwed into a slider screw portion formed on the outer peripheral portion on the tip end side of the slider,
    The probe according to claim 2, wherein the annular member has a small-diameter portion with which the slider urged by the spring member abuts.
  5.  伸縮機構は、前記ハウジングに形成されたノズル設置部に装着された外環部材に、着脱自在に取り付けられていることを特徴とする請求項1または請求項2に記載のプローブ。 The probe according to claim 1 or 2, wherein the expansion / contraction mechanism is detachably attached to an outer ring member attached to a nozzle installation portion formed in the housing.
  6.  前記ノズルの前記開口部は、撮影の際に当該開口部に当接させる前記被写体との摩擦を増大させる滑り止部を有していることを特徴とする請求項1または請求項2に記載のプローブ。 The said opening part of the said nozzle has a non-slip part which increases the friction with the said object contact | abutted to the said opening part at the time of imaging | photography, The Claim 1 or Claim 2 characterized by the above-mentioned. probe.
PCT/JP2012/056607 2012-03-14 2012-03-14 Probe WO2013136476A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014504561A JP5688185B2 (en) 2012-03-14 2012-03-14 probe
PCT/JP2012/056607 WO2013136476A1 (en) 2012-03-14 2012-03-14 Probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056607 WO2013136476A1 (en) 2012-03-14 2012-03-14 Probe

Publications (1)

Publication Number Publication Date
WO2013136476A1 true WO2013136476A1 (en) 2013-09-19

Family

ID=49160444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056607 WO2013136476A1 (en) 2012-03-14 2012-03-14 Probe

Country Status (2)

Country Link
JP (1) JP5688185B2 (en)
WO (1) WO2013136476A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016007488A (en) * 2014-06-26 2016-01-18 株式会社吉田製作所 Probe for optical coherence tomography image generation apparatus
CN106725266A (en) * 2016-12-29 2017-05-31 李翔 A kind of stomatology endoscope that can be positioned according to focal length
CN106872409A (en) * 2015-12-11 2017-06-20 株式会社思可林集团 A kind of filming apparatus and its image pickup method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033467A (en) * 1996-07-25 1998-02-10 Olympus Optical Co Ltd Endoscope
JP3116347U (en) * 2005-09-02 2005-12-02 株式会社モリタ東京製作所 Handpiece for dental optical diagnostic equipment
WO2007060973A1 (en) * 2005-11-22 2007-05-31 Shofu Inc. Dental optical coherence tomograph
WO2007083376A1 (en) * 2006-01-19 2007-07-26 Shofu Inc. Light coherence tomography device and measuring head
JP2007229310A (en) * 2006-03-02 2007-09-13 Sun Tec Kk Dental optical tomographic image display system
JP2012030088A (en) * 2003-10-03 2012-02-16 Academisch Medisch Centrum System and method for imaging reflectance of substrate
JP2012047505A (en) * 2010-08-25 2012-03-08 Panasonic Corp Optical tomographic image acquisition device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033467A (en) * 1996-07-25 1998-02-10 Olympus Optical Co Ltd Endoscope
JP2012030088A (en) * 2003-10-03 2012-02-16 Academisch Medisch Centrum System and method for imaging reflectance of substrate
JP3116347U (en) * 2005-09-02 2005-12-02 株式会社モリタ東京製作所 Handpiece for dental optical diagnostic equipment
WO2007060973A1 (en) * 2005-11-22 2007-05-31 Shofu Inc. Dental optical coherence tomograph
WO2007083376A1 (en) * 2006-01-19 2007-07-26 Shofu Inc. Light coherence tomography device and measuring head
JP2007229310A (en) * 2006-03-02 2007-09-13 Sun Tec Kk Dental optical tomographic image display system
JP2012047505A (en) * 2010-08-25 2012-03-08 Panasonic Corp Optical tomographic image acquisition device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016007488A (en) * 2014-06-26 2016-01-18 株式会社吉田製作所 Probe for optical coherence tomography image generation apparatus
CN106872409A (en) * 2015-12-11 2017-06-20 株式会社思可林集团 A kind of filming apparatus and its image pickup method
US10113859B2 (en) 2015-12-11 2018-10-30 SCREEN Holdings Co., Ltd. Imaging apparatus and imaging method
CN106872409B (en) * 2015-12-11 2019-08-09 株式会社思可林集团 A kind of filming apparatus and its image pickup method
CN106725266A (en) * 2016-12-29 2017-05-31 李翔 A kind of stomatology endoscope that can be positioned according to focal length

Also Published As

Publication number Publication date
JPWO2013136476A1 (en) 2015-08-03
JP5688185B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP6063187B2 (en) probe
JP4811612B2 (en) Probe for dental optical diagnostic equipment
JP2004344260A (en) Dental optical diagnostic equipment
JP5771052B2 (en) probe
JP5688185B2 (en) probe
JP5930262B2 (en) Optical coherence tomographic image generation apparatus and focusing point adjustment method for optical coherence tomographic image generation apparatus
JP5639521B2 (en) Control device, control method, and control program for dental optical coherence tomographic image generation apparatus
JP2019524327A (en) Automatic intraoral 3D scanner with low coherence range
JP4206821B2 (en) Probe for dental optical diagnostic equipment
JP5839894B2 (en) probe
JP2004344262A (en) Probe for dental optical diagnostic equipment
JP2007083009A (en) Hand piece for dental optical diagnostic apparatus
WO2017159513A1 (en) Optical interference tomographic image generating apparatus and method for using same
JP5814743B2 (en) probe
JP5993168B2 (en) Optical coherence tomographic image generator
JP4803405B2 (en) Dental optical diagnostic probe
JP3116347U (en) Handpiece for dental optical diagnostic equipment
JP4803402B2 (en) Probe for dental optical diagnostic equipment
JP2009006155A (en) Dental optical diagnostic apparatus
JP6543160B2 (en) probe
JP4803403B2 (en) Probe for dental optical diagnostic equipment
JP3118718U (en) Handpiece for dental optical diagnostic equipment
JP3116830U (en) Handpiece for dental optical diagnostic equipment
JP4803404B2 (en) Probe for dental optical diagnostic equipment
JP6412349B2 (en) probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504561

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871302

Country of ref document: EP

Kind code of ref document: A1