WO2013136372A1 - Cell sheet, cell culture method, and cell culture apparatus - Google Patents

Cell sheet, cell culture method, and cell culture apparatus Download PDF

Info

Publication number
WO2013136372A1
WO2013136372A1 PCT/JP2012/001834 JP2012001834W WO2013136372A1 WO 2013136372 A1 WO2013136372 A1 WO 2013136372A1 JP 2012001834 W JP2012001834 W JP 2012001834W WO 2013136372 A1 WO2013136372 A1 WO 2013136372A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
cell
supply amount
oxygen supply
cells
Prior art date
Application number
PCT/JP2012/001834
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 中嶌
志津 松岡
豊茂 小林
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/001834 priority Critical patent/WO2013136372A1/en
Priority to JP2014504465A priority patent/JP5991368B2/en
Publication of WO2013136372A1 publication Critical patent/WO2013136372A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/02Atmosphere, e.g. low oxygen conditions

Definitions

  • the present invention relates to a cell culture method, a cell sheet produced by the method, and an automatic culture apparatus.
  • Reconstructed tissue with a three-dimensional shape reconstructed outside the body has properties close to that of the living body, improving therapeutic effects in regenerative medicine that treats diseases using cells, and animal experiments in the development of pharmaceuticals and cosmetics. In recent years, it has become important from the standpoint of improving development efficiency with alternative cells and human-derived cells.
  • vegetative cells often called feeder cells are used when producing epithelial cell sheets.
  • a vegetative cell a cell called NIH / 3T3 or 3T3-J2 derived from a mouse is generally used.
  • the regenerative tissue produced using the above-mentioned feeder cells is xenogeneic, and the act of transplanting it into a living body corresponds to xenogeneic transplantation (Ministry of Health, Labor and Welfare: “Public with implementation of xenotransplantation” Guideline for regenerative medicine of epithelial system using 3T3J2 strain and 3T3NIH strain as feeder cells based on “Guidelines on sanitary infectious diseases”).
  • heterologous feeder cells for the production of regenerative tissues, there are major problems such as the inability to deny heterogeneous infectious diseases and the burden of strict quality control of feeder cells.
  • Non-Patent Document 1 uses a feeder cell because a nutrient for culture medium can be supplied from the basal side of the epithelial cell sheet by using a culture container called a cell culture insert. At least, it is disclosed that a stratified epithelial cell sheet can be obtained.
  • D.Murakami et al . The effect of micropores in the surface of temperature-responsive culture inserts on the fabrication of transplantable canine oral mucosal epithelial cell sheets: Biomaterials, 27, 5518-5523, 2006 Rama P. et al .: Limbal stem-cell therapy and long-term corneal regeneration: N Engl J Med, 363, 147-155, 2010
  • Non-Patent Document 1 it is known that the expression of p63, which is an epithelial stem cell marker, decreases in the cell sheet prepared by such a method.
  • p63 which is an epithelial stem cell marker
  • the presence of stem cells in the cell sheet (p63 strong positive rate of more than 3%) is an important factor for determining the prognosis of treatment (see Non-Patent Document 2).
  • a cell sheet produced without cells and having reduced stem cells cannot be applied to treatment.
  • the present invention automates a method for producing a cell sheet that has a colony formation rate of 3% or more indicating the presence of stem cells, which is close to the case where feeder cells are used even when feeder cells are free. It aims at providing the culture device which performs.
  • the first oxygen supply amount in the first period in which the stem cells or progenitor cells forming the tissue self-replicate and the first oxygen supply amount in the second period including the period in which the stem cells or progenitor cells differentiate A cell culture method characterized by controlling a second oxygen supply amount of a larger oxygen supply amount, and a cell culture device having a culture region for culturing stem cells or progenitor cells forming a tissue, wherein the culture region
  • a first oxygen supply amount in a first period within a period in which the stem cell or progenitor cell self-replicates, and an oxygen control unit that controls an oxygen concentration in the cell and a control unit that controls the oxygen control unit Is a cell culture device characterized by having a low oxygen concentration (less than 20%).
  • an epithelial cell sheet having a colony formation rate of 3% or more indicating the presence of stem cells is close to the case of using feeder cells without using feeder cells. It can be produced.
  • FIG. 1 The figure which shows colony formation of the corneal epithelial stem cell and progenitor cell in the comparative example 1 and the example 1.
  • FIG. 2 The figure which shows the days required for cell culture in the comparative examples 2 and 3 and the examples 2-6.
  • FIG. The figure which shows the external appearance of the corneal epithelial cell sheet
  • the figure which shows the cell type which can apply a present Example Schematic showing the confluence, the paving stone form, the time of tight bonding.
  • the apparatus block diagram in the case of switching the oxygen concentration of the whole culture tank.
  • the apparatus block diagram at the time of adding an optical coherence tomography and a transepithelial electrical resistance measuring apparatus to the structure of FIG. The apparatus block diagram in the case of switching the oxygen concentration in a culture container directly.
  • the apparatus block diagram at the time of adding an electrical resistance measuring apparatus to the structure of FIG. The apparatus block diagram at the time of adding an optical coherence tomography to the structure of FIG.
  • the apparatus block diagram at the time of adding an optical coherence tomography and a transepithelial electrical resistance measuring apparatus to the structure of FIG. The apparatus block diagram at the time of adding an optical coherence tomometer and an electrical resistance measuring apparatus to the structure of FIG.
  • the cell species is not limited to rabbits, and may be mammalian cells such as mice, rats, dogs, pigs, and humans.
  • the cell type is not limited to corneal epithelial cells, and may be stratified epithelial cells such as skin and oral cavity.
  • the culture process of the cells forming the tissue can be divided into a self-replication period in which stem cells / progenitor cells self-replicate and a differentiation period in which cell differentiation is performed after occupying a certain amount of the culture surface by self-replication.
  • a corneal epithelial cell sheet as an example.
  • the differentiation in the corneal epithelial cell sheet is more specifically referred to as stratification in which cells form a laminated structure.
  • the differentiation phase is referred to as the stratification phase.
  • FIG. 1 is a diagram showing the results.
  • Comparative Example 1 almost no colonies were observed, whereas in Example 1, many colonies were observed despite the absence of feeder cells. This indicates that at low oxygen concentrations, stem cells and progenitor cells adhere and proliferate even without feeder cells. This result suggests that the activity and properties as stem cells may be maintained at low oxygen concentrations.
  • Example 2 shows a case where the self-replication phase is cultured at 1% O 2 and the stratification phase at 20% O 2, which is a normal oxygen concentration, without using feeder cells.
  • Example 3 when culturing at O 2 2%, stratification period at normal oxygen concentration of 20% O 2 , self-replication period at O 2 5%, stratification period at normal oxygen concentration of O 2 20% in the case of culturing example 4, the self-replicating life O 2 10%, examples 5 a case of culturing with O 2 20% normal oxygen concentration stratification period, the self-replicating life O 2 15%, stratified-life Example 6 when cultivated with 20% O 2 at normal oxygen concentration, Example 7 when culturing at 1% O 2 in both the stratification and self-replication phases, both in the stratification and self-replication phases illustrative case cultured in O 2 2% 8, stratification period, excessive self-replicating life both Illustrative 9 when cultured in O 2 5% both stratified phase, examples of the case where cultured in O 2 10% self-replicating life both process both 10, using feeder cells, cultured in O 2 20% in both processes both The case in which this was performed was Comparative Example 2, and the case in which both processes were culture
  • FIG. 2 is a graph showing the number of days required for cell sheet production in Comparative Examples 2 and 3 and Examples 2 to 6.
  • FIG. 3 is a diagram showing phase contrast microscopic images of cultures 5, 7, 9, 11, and 12 in Comparative Examples 2 and 3 and Example 4.
  • the cells are in a state of being densely cultured without any gaps (hereinafter referred to as “confluent”), and then cells by self-replication
  • the cells were condensed as a result of the growth of the cells, and the volume of each cell was reduced and spread (hereinafter referred to as a cobblestone shape), whereas in Examples 2 to 6, the cobblestone shape was observed on the ninth day.
  • the form was shown.
  • the stratification period was set to 5 days.
  • FIG. 4 is a diagram showing the appearance of the cell sheet in Comparative Examples 2 and 3 and Examples 2-6. All the cell sheets had a thickness that could withstand the tweezers operation.
  • FIG. 5 is a diagram showing the number of cells contained in the cell sheet in Comparative Examples 2 and 3 and Examples 2 to 6. From this result, it can be seen that any cell sheet has almost the same number of cells. From this result, it can be inferred that the cell sheet prepared without feeder cells and the cell sheet prepared with feeder cells are layered to the same extent.
  • FIG. 6 is a graph showing the colony formation rate indicating the proportion of stem cells contained in the cell sheet in Comparative Examples 2 and 3 and Examples 2 to 6. Comparing Comparative Example 2 and Comparative Example 3, it can be seen that the colony formation rate is reduced to about 1/4 due to the absence of feeder cells. On the other hand, in Examples 2 to 5, despite the absence of feeder cells, the colony formation rate was significantly higher than that of Comparative Example 3, which was about 3/4 of Comparative Example 2, indicating 3% or more. However, although Example 6 was significantly higher than Comparative Example 3, it was about half of Examples 2-5.
  • FIG. 7 is a diagram showing colony formation in Comparative Examples 2 and 3 and Example 4.
  • FIG. 8 shows tissue stained images in Comparative Examples 2 and 3 and Examples 2 to 6, and is intended for evaluation of a corneal epithelial cell sheet. According to this, it can be seen that the film is laminated to about 3 to 6 layers under any condition.
  • FIG. 9 is a diagram showing an immunostained image and a cell nucleus stained image of CK3, which is a corneal epithelial cell differentiation marker, in Comparative Examples 2 and 3 and Examples 2 to 5. According to this, it can be seen that cells layered in 3 to 6 layers are differentiated as corneal epithelial cells.
  • FIG. 28 is a diagram showing an immunostained image and a cell nucleus stained image of CK3, which is a corneal epithelial cell differentiation marker, in Comparative Examples 2 and 3 and Examples 7 to 10. According to this, it is understood that the stratification does not proceed sufficiently depending on the oxygen concentration in those cultured at a low oxygen concentration in both the stratification phase and the self-replication phase.
  • FIGS. 1 to 9 and 28 are all inferior to those of Comparative Example 2, which is a conventional method, by culturing at a low oxygen concentration in the self-renewal period even in the condition without feeder cells. This shows that a stratified epithelial cell sheet retaining a certain amount of stem cells can be produced. Result of verification by the above-mentioned principle, in conditions without feeder cells, self-replicating life with O 2 less than 1% to 15% without feeder cells, O 2 20% cultured from significantly colonization rate when in It was revealed that the colony formation rate was high, when feeder cells were present, and when the cells were cultured at 20% O 2 .
  • the self-replication period is O 2 1% or more and less than 15%, and the differentiation period O 2 15% or more is higher than the colony formation rate of the cell sheet prepared in Comparative Example 2, and retains the colony formation rate 3% or more.
  • the oxygen concentration was desirable for obtaining a multilayered epithelial cell sheet. The specific method of the above experiment is shown below.
  • the culture vessel was a 6-well cell culture insert and 6-well plate, or a 12-well cell culture insert and 12-well plate.
  • the day before culturing corneal epithelial cells NIH-3T3 cells treated with mitomycin C (10 ⁇ g / ml) for 2 hours at 37 ° C. were seeded as feeder cells in a 6-well plate at 2 ⁇ 10 4 / cm 2 . .
  • the day after the seeding of NIH-3T3 cells corneal epithelial cells were collected from the corneal limbus of a rabbit eyeball purchased from Funakoshi in accordance with a conventional method, and placed in a 6-well cell culture insert so as to be 1 ⁇ 10 4 / cm 2.
  • KCM medium containing 5% FBS used for culturing epithelial cells was used as the culture solution.
  • the culture solution was exchanged once on the 5th, 7th, and 9-16th days after the start of the culture for both the upper and lower layers of the cell culture container. During the culture period, the state of cell proliferation was confirmed with a phase contrast microscope.
  • the number of cells in the growth process was quantified from the number of cells contained in the cell sheet prepared under each culture condition and the amount of DNA.
  • tissue section preparation of corneal epithelial tissue tissue section staining method
  • the cell sheet was frozen and embedded according to a conventional method.
  • a 10 ⁇ m thick section was prepared from the frozen embedded tissue with a microtome.
  • hematoxylin-eosin staining and immunohistochemical staining were performed according to a conventional method.
  • Anti-CK3 antibody AE5 was used for immunohistochemical staining.
  • a cell to which the above method can be applied is a stem cell forming a tissue or a progenitor cell generated by differentiation of the stem cell. They first self-replicate and grow to a predetermined degree, and then start to differentiate at a general oxygen concentration. In general, differentiation tends to be suppressed in a hypoxic state. That is, switching from the hypoxic state to the normoxic state means the start of differentiation of the stem cells and progenitor cells that form the tissue.
  • a specific method for changing the oxygen concentration in the culture process of the stem cells and progenitor cells forming the tissue will be described.
  • cells seeded in a culture space such as a culture vessel are cultured so that the culture space has a low oxygen concentration.
  • the cells repeat proliferation by replication more rapidly than the normoxic concentration.
  • the overall size of proliferated and bound stem cells / progenitor cells, or the size of single cells, the rate of proliferation, etc. may vary. Therefore, it is desirable to arbitrarily determine the degree of size of cells obtained by self-replication depending on the cell type and switch from a low oxygen concentration to a normal oxygen concentration.
  • Cells exposed to normoxia start to differentiate and form tissues.
  • the degree of cell proliferation can also be determined by the occupation ratio with respect to the culture surface to be cultured.
  • the cells start to grow by self-replication so as to spread over the culture surface of the seeded culture space.
  • the occupation ratio for determining the switching timing can be arbitrarily set to 80% or 90% depending on the characteristics of the cell type.
  • the cobblestone form is a state that occurs from the time when cells become confluent until the start of the differentiation phase.
  • Tight junction is a transmembrane protein, a structure in which the cell gap is closed by claudin and occludin, and the cultured cells become tightly bound, thereby causing a paracellular pathway of dissolved substances, ions, and water. Is controlling. In other words, it can be determined by confirming the occurrence of tight junction that the cells are cultured in the absence of externally dissolved substances or contaminants.
  • the method for controlling the oxygen concentration can be controlled by the amount of oxygen supplied to the cells to be cultured.
  • the oxygen concentration of the gas supplied to the cells can be increased by supplying more oxygen or reducing the supply of nitrogen or carbon dioxide.
  • to reduce the oxygen concentration less oxygen is supplied.
  • it can be achieved by increasing the amount of nitrogen or carbon dioxide.
  • an automatic cell culture apparatus equipped with a function of automatically controlling the oxygen concentration based on the principle and method described in Example 1 will be described with reference to FIGS.
  • the calculation unit related to the control of the oxygen concentration will be described as an example incorporated in the control device 2, but the software and CPU related to the calculation unit are not limited to this, and an external computer, It may be built in the gas concentration adjusting unit 8 or the like.
  • the user When controlling the oxygen concentration, it is possible for the user to directly observe the cells in the cell culture apparatus and switch the oxygen concentration.
  • an imaging means for observing and imaging the cells such as the CCD camera 12 is provided.
  • the captured image may be displayed on the display screen 13 or the like, and the user may switch the oxygen concentration based on the captured image.
  • the display screen 13 may not be a visual display, but may prompt an instruction for hearing such as a buzzer.
  • the control device 2 that has captured cells with the CCD camera 12 during culture and has acquired the cell images performs a process of detecting cells from the acquired image data. And binarizing based on the image, and calculating the cell occupation area in the image. After acquiring several points of data on the culture surface, if the cell occupation area is 100%, the oxygen concentration is changed from the low oxygen concentration to the normal oxygen concentration. When the cell occupation area does not reach the predetermined area, the oxygen concentration is not switched, the culture in the low oxygen state is continued, and the above operation is repeated at a predetermined timing, and the cell occupation area reaches 100%. Execute oxygen concentration switching at the time.
  • the cell occupancy increases as the self-replication of cells progresses, it is desirable to switch at a confluence near 100% of the cell occupancy near the final process of self-replication.
  • it can be arbitrarily set to 80% or 90% according to the specifications of the CCD camera, the state of cell culture, the area where cells are actually cultured on the culture surface, and the like. If the cells do not reach confluence depending on the cell type, the oxygen concentration switching timing may be set in accordance with the size and occupied area until the self-replication of the cells is completed.
  • the cell size is the maximum value near the confluence. It becomes. After that, the number of cells per area increases and the cells shrink as it goes to the cobblestone form, so the average cell size gradually decreases, and after the cobblestone form, the cell shape is fixed The cell size is constant.
  • the CCD camera 12 captures a plurality of images in time series, and the control device 2 calculates cell size statistics using a plot file or the like based on the plurality of images. Furthermore, the average cell size for each image is calculated from the calculated statistical data, and compared with the average cell size included in the preceding and succeeding images in time series. The average time-series change of the cell size is calculated by comparison, and the timing when the cell size becomes the maximum value is specified.
  • control device 2 changes the oxygen concentration after the specified maximum value, that is, after the confluent timing.
  • the display screen 13 may display the maximum cell size, the specified switching timing period, and the like to prompt the user to switch the oxygen concentration.
  • the method of specifying the maximum value of the cell size is not limited to this, and a specific value is set in advance according to the cell type, and the cell self-replicates to an average size exceeding this value.
  • the oxygen concentration may be switched at different times.
  • the average cell size as shown in FIG. 16 (a)
  • the time-series change of the size distribution is analyzed from the image, and the point at which the distribution peak is maximized is set as the maximum value.
  • a dispersion value for switching the oxygen concentration may be set in advance.
  • the optical coherence tomography 14 can irradiate the sample with one of the two divided infrared lights and cause the reflected light and the other light to interfere with each other, thereby imaging the surface and cross section of the tissue on the entire medium surface.
  • the light source installed in the optical coherence tomography 14 can be provided with a drive unit that can change the irradiation position of the infrared light emitted from the light source. Using this driving means, an image of a cross section in one direction of the culture surface is acquired. Furthermore, a cross-sectional image of the entire culture surface can be obtained by acquiring a plurality of cross-sectional images while moving the drive means in a direction perpendicular to the one direction.
  • the vertical interval of the acquired cross-sectional images be set to be narrower than the cell size so that there is no leakage at the cell defect site.
  • the interval at which the cross-sectional image is acquired may be determined depending on the degree of cell proliferation.
  • the acquired image may be displayed on the display unit 16. As a display method, only an image with a cell defect may be displayed, or an image may not be displayed and a buzzer may warn that a cell defect has occurred. The presence or absence of cells can be determined. Based on the detection result of the optical coherence tomography 14, the control device 2 switches from a low oxygen concentration to a normal oxygen concentration if confluent.
  • the above-described cell image method and optical coherence tomography method can be used in combination, and the oxygen concentration can be automatically controlled more reliably. For example, when it is determined that the cell occupation area with respect to the culture surface is equal to or greater than a set value (for example, 100%) and the entire culture surface (for example, 100%) has a cell thickness, By switching, the accuracy of determining confluence can be increased.
  • a set value for example, 100%
  • the entire culture surface for example, 100%
  • the control device 2 has an arithmetic means for switching the oxygen concentration.
  • the gas concentration adjusting section 8 is provided with an arithmetic means, and the gas concentration adjusting section 8 independent of the control apparatus 2 is used. It is also possible to control the change of the oxygen concentration.
  • the method for controlling the oxygen concentration may be controlled by the control device 2 so that the supply amount of each gas supplied from the gas supply unit is adjusted by the gas concentration adjustment unit 8.
  • the oxygen concentration of the gas supplied to the cells can be increased by supplying more oxygen or reducing the supply of nitrogen or carbon dioxide. Conversely, to reduce the oxygen concentration, less oxygen is supplied. Alternatively, it can be achieved by increasing the amount of nitrogen or carbon dioxide.
  • Oxygen concentration switching time is not at confluence, but after confluence, the cell density becomes high, and the volume of each cell becomes small, and it can be in a paving stone-like state. Since differentiation such as stratification is an event that occurs after passing through the cobblestone form, the desired tissue can be produced earlier by switching the oxygen concentration when the cobblestone form is shown.
  • the control device 2 processes the image so that the cell space in the cell image becomes clear after the cell occupancy reaches 100%. Thereafter, as shown in FIG. 17, a change in luminance on one line of an arbitrarily set image is calculated as a signal.
  • the cobblestone shape is discriminated based on whether or not the signal is regularly detected every 5 to 15 ⁇ m, which is the size of the cell in the cobblestone shape. Change the concentration from low oxygen concentration to normal oxygen concentration. If it does not show a cobblestone form, that is, if the cell is not the size in the cobblestone form as described above, in the detection result of the signal indicating the length between cells, continue the culture at a low oxygen concentration, Perform the above procedure again.
  • the peripheral portion of the outline of each cell in the imaged image is shown with a relatively low luminance in the image and a high luminance between the cell itself and each cell. That is, since the number of cells is small at the early stage of culture, there are many portions where the luminance is high, and the average luminance of the image is high. Furthermore, as the number of cells increases, the cell peripheral portion (the portion with low luminance) also increases, so the average luminance of the image gradually decreases.
  • the number of cells increases because the cells are densely spread by the growth of the cells as the cobblestone shape is approached. That is, since the area around the outline of the cell in the image increases, the average luminance continues to decrease.
  • the paving stone-like form that is finally formed is a state in which the self-replication of cells on the culture surface is saturated, so the average brightness of the image is constant from the formation of the paving stone-like form until differentiation begins. It becomes the state of. Therefore, the control device 2 can determine the time when the average luminance of the image has a constant value as a paving stone shape, and can switch the oxygen concentration.
  • the size of the cell in the self-replication phase is larger than the paving stone shape as described above. Furthermore, since the culture progresses in each region of the culture surface, the region of the dispersion value of the distribution is widened. The cell size and the size distribution gradually decrease as the cobblestone morphology is approached, and when the cobblestone morphology is formed, the cell size during the self-renewal phase is a minimum and constant value. Become.
  • the control device 2 shifts to a region where the cell size distribution is the smallest or when the width of the dispersion value due to the distribution is the narrowest, the time series change of the size distribution is a constant value. In this case, or by a combination of these, it is possible to determine the cobblestone form and switch the oxygen concentration.
  • FIG. 12 is a diagram schematically showing the configuration of the cell culture device 1, and each element controlled by the control device 2 is connected to the thermostatic chamber 3 and the culture vessel 4 disposed inside the thermostatic chamber 3. .
  • the control device 2 includes a temperature adjusting unit 5 for controlling the temperature of the thermostat 3, a humidity adjusting unit 6 for controlling the humidity in the culture vessel, and a gas concentration in the culture vessel,
  • a gas concentration adjusting unit 8 having a gas supply unit 7 and a culture solution supply pump having a liquid feeding tube connected to a tank 9 for holding the culture solution and waste solution for automatically exchanging the culture solution in the culture vessel 10, a temperature / humidity / CO 2 / O 2 sensor 11, a cell observation CCD camera 12, and a display screen 13 are connected for the purpose of controlling the operation of each component.
  • the temperature adjusting unit 4, the humidity adjusting unit 5, and the gas concentration adjusting unit 7 are connected to the thermostatic chamber 2, and the culture solution supply pump 8 is connected to the cell culture vessel 3.
  • oxygen is supplied into the thermostatic chamber, so that the closed culture vessel 3 can be supplied with a gas, such as polystyrene, polycarbonate, polyethylene terephthalate, polymethylpentene, or the like, preferably It is better to provide a porous film made of polycarbonate, polyethylene terephthalate, or polyimide.
  • the porous diameter is preferably less than 20 nm in order to avoid invasion of viruses and bacteria into the culture vessel. This is a setting based on a parvovirus diameter of about 20 nm, the smallest virus currently known.
  • FIG. 13 shows a modified example of the apparatus configuration of Example 4 to which an optical coherence tomography 14 is attached based on Example 3. Since the optical coherence tomography can measure the thickness of the cross section, it can be applied to non-invasively evaluate the quality of whether or not the produced cell sheet is differentiated.
  • a method for evaluating based on electrical resistance is presented as a non-invasive quality evaluation method for cell sheets.
  • Epithelial cells form tight junctions when the cells are tightly coupled. When tight junctions are formed between cells, exchange of ions between cells is blocked, and thus resistance occurs when a voltage is applied between cells. That is, it can be determined from the electric resistance value whether the cells are dense and have a paving stone shape and a tight bond is formed.
  • FIG. 13 shows a modification of the second embodiment with the optical coherence tomography 14 attached
  • FIG. 14 shows a modification of the second embodiment with the electrical resistance measuring device 15 attached.
  • the control device 2 calculates the time series change of the resistance value by the electrical resistance measuring device 15, and analyzes whether or not the resistance value changes in an exponential function shape from the calculation result. If the resistance value changes with an exponential function, it is determined that tight coupling has occurred.
  • the electrical resistance measuring device may be used in combination with the optical coherence tomography 14 as shown in FIG. 18 to check the quality of the cultured cells.
  • Example 4 the apparatus configuration for controlling the oxygen concentration in the culture tank was used.
  • the humidity control unit, the gas control unit, and the temperature / humidity / CO 2 / O 2 sensor are culture vessels.
  • An example in which the oxygen concentration in the culture vessel is controlled is shown as Example 5.
  • the configuration of the apparatus controls the oxygen concentration in the culture tank or the culture vessel, but the permeability of the gas permeable membrane installed in the culture vessel can be changed.
  • this configuration it is possible to control the oxygen concentration in the culture vessel without having to flow low oxygen gas or water vapor into the culture vessel.
  • the humidity controller, the gas controller, the CO 2, and the O 2 sensor are not required, and the apparatus configuration can be simplified.
  • 24 to 26 show modified examples of the device configuration.
  • the shape of the culture vessel is important.
  • An example of the culture container in the said apparatus structure is shown in FIG.
  • Two gas permeable membranes are provided on the frame 18 of the culture vessel 4, and the outermost layer suppresses the permeation of oxygen to form a suppression membrane 16 that can reduce the oxygen concentration in the culture vessel to a removable structure.
  • membrane 16 has used what is used as pharmaceuticals and food packaging materials, such as a polyethylene terephthalate, PVA, nylon, nylon type
  • the film etc. with a special layer called the super barrier film made from the Fuji Film company used by organic EL, electronic paper, a solar cell, etc. are mentioned.
  • the inner membrane is the porous membrane 17 having pores with a diameter of less than 20 nm as described in Example 2.
  • the cells are cultured while holding the suppression film 16. This realizes a low oxygen culture environment.
  • a mechanism capable of automatically removing the suppression film 16 is provided in the apparatus, and the mechanism is operated by the control device 2 so as to be in a period such as confluent or cobblestone form. The oxygen concentration in the culture vessel is changed by using the suppression film 16.
  • the method of removing the suppression film 16 is such that a manipulator having a driving means is installed in the cell culture device, and the control device 2 drives the manipulator to remove the suppression film 16.
  • the culture solution may evaporate because the inside of the culture tank is not a humid environment.
  • it is effective to provide a device for automatically injecting the evaporating culture solution into the cell container so that the amount of the culture solution is always kept constant.
  • the culture medium in the lower layer can be refluxed or constantly passed.
  • the culture container 21 containing one insert container 20 having a porous membrane as shown in FIG. 29 or a culture container 22 containing a plurality of insert containers 20 the culture container is circulated by refluxing the culture medium or constantly passing the culture container. Since the lower layer is always filled with a fresh culture solution, a cell sheet with a more stable or improved quality can be produced as compared with the case where reflux or constant flow is not performed.
  • the culture solution When the culture solution is refluxed or constantly passed, the culture solution can be circulated using, for example, a peristaltic pump.
  • a peristaltic pump In that case, for example, as shown in FIG. 30, by changing the height of the injection port and the discharge port, it is not necessary to block the flow path with a solenoid valve or the like, and after the culture container is filled with a certain amount of liquid, It is also possible to drain the liquid.
  • the discharge port may be made higher than the injection port. The height varies depending on the amount of liquid to be filled in the culture vessel.
  • the flow rate of the culture solution is desirably a flow rate that does not cause turbulence in order to prevent unintended damage to the cells.
  • the flow rate of the culture solution may be adjusted by controlling the operation of the peristaltic pump or the like by a control unit (not shown).
  • liquid injection and waste liquid is controlled by the control unit using an openable / closable member that shuts off the flow path with a solenoid valve or the like You may make it adjust.
  • the present invention is not limited to this, and the arrangement form of the insert container may be changed according to the purpose and application.
  • the insert may be arranged in a circular shape, or the installation height of the insert may be changed for each insert. At that time, a height adjusting mechanism may be provided.
  • the lower layer of the culture vessel is always filled with fresh culture liquid, so the quality is more stable than when refluxing and not constantly flowing.
  • improved cell culture can be performed.
  • the present invention is useful as a cell culture method and a cell culture apparatus.

Abstract

A cell culture method characterized by culturing a stem cell or a progenitor cell that can form a tissue for a first period, which is a portion of a period for causing the self-replication of the stem cell or the progenitor cell and included in a period for culturing of the stem cell or the progenitor cell, while supplying oxygen in a first supply amount, then changing the amount of oxygen to be supplied from the first supply amount to a second supply amount which is higher than the first supply amount on the basis of the degree of the proliferation of the stem cell or the progenitor cell by self-replication, and then culturing the stem cell or the progenitor cell for a second period, which is a period including a period for causing the differentiation of the stem cell, while supplying oxygen in the above-mentioned second supply amount, wherein no feeder cell is used during the first period and the second period.

Description

細胞シート、細胞培養方法および細胞培養装置Cell sheet, cell culture method and cell culture apparatus
 本発明は、細胞培養方法と当該方法で作製した細胞シートと、自動培養装置に関するものである。 The present invention relates to a cell culture method, a cell sheet produced by the method, and an automatic culture apparatus.
 生体外で再構成された3次元形状の再生組織は、生体内に近い性質を有しており、細胞を用いて疾病の治療を行う再生医療おける治療効果向上や、医薬品、化粧品開発における動物実験代替やヒト由来細胞による開発効率向上の観点から近年重要になってきている。 Reconstructed tissue with a three-dimensional shape reconstructed outside the body has properties close to that of the living body, improving therapeutic effects in regenerative medicine that treats diseases using cells, and animal experiments in the development of pharmaceuticals and cosmetics. In recent years, it has become important from the standpoint of improving development efficiency with alternative cells and human-derived cells.
 再生組織の中でも、上皮系の細胞シートを作製する際には、しばしばフィーダー細胞と呼ばれる栄養細胞を用いる。この栄養細胞はマウス由来であるNIH/3T3や3T3-J2と呼ばれる細胞を用いるのが一般的である。再生医療においては、上記のフィーダー細胞を用いて作製された再生組織は異種とされ、それを生体に移植する行為は、異種間移植に該当する(厚生労働省指針:「異種移植の実施に伴う公衆衛生上の感染症問題に関する指針」に基づく3T3J2株及び3T3NIH株をフィーダー細胞として利用する上皮系の再生医療への指針)。異種由来のフィーダー細胞を再生組織作製に用いる場合、異種由来感染症が否定できないこと、フィーダー細胞の厳密な品質管理の負担が少なくないことなど、大きな課題がある。 Among the regenerated tissues, vegetative cells often called feeder cells are used when producing epithelial cell sheets. As this vegetative cell, a cell called NIH / 3T3 or 3T3-J2 derived from a mouse is generally used. In regenerative medicine, the regenerative tissue produced using the above-mentioned feeder cells is xenogeneic, and the act of transplanting it into a living body corresponds to xenogeneic transplantation (Ministry of Health, Labor and Welfare: “Public with implementation of xenotransplantation” Guideline for regenerative medicine of epithelial system using 3T3J2 strain and 3T3NIH strain as feeder cells based on “Guidelines on sanitary infectious diseases”). When using heterologous feeder cells for the production of regenerative tissues, there are major problems such as the inability to deny heterogeneous infectious diseases and the burden of strict quality control of feeder cells.
 こうした課題を解決する目的で、非特許文献1には、セルカルチャインサートと呼ばれる培養容器を用いることで、上皮系細胞シートのbasal側からの培地栄養分の供給が可能となるため、フィーダー細胞を用いずとも、重層化した上皮系細胞シートが得られることが開示されている。 In order to solve these problems, Non-Patent Document 1 uses a feeder cell because a nutrient for culture medium can be supplied from the basal side of the epithelial cell sheet by using a culture container called a cell culture insert. At least, it is disclosed that a stratified epithelial cell sheet can be obtained.
 しかしながら、このような方法で作製した細胞シートでは上皮系幹細胞マーカーであるp63の発現が低下することが知られている(非特許文献1参照)。角膜輪部幹細胞疲弊症患者の治療においては、細胞シート内の幹細胞の存在(p63強陽性率3%超)が、治療予後を決定する重要な因子であるため(非特許文献2参照)、フィーダー細胞フリーで作製し幹細胞が減少した細胞シートは、治療には適用できないという課題があった。 However, it is known that the expression of p63, which is an epithelial stem cell marker, decreases in the cell sheet prepared by such a method (see Non-Patent Document 1). In the treatment of patients with corneal limbal stem cell exhaustion, the presence of stem cells in the cell sheet (p63 strong positive rate of more than 3%) is an important factor for determining the prognosis of treatment (see Non-Patent Document 2). There is a problem that a cell sheet produced without cells and having reduced stem cells cannot be applied to treatment.
 本発明はこのような問題点に鑑みて、フィーダー細胞フリーでもフィーダー細胞を用いた場合に近く、幹細胞の存在を示すコロニー形成率が3%以上となる細胞シートを作製する方法とその方法を自動化する培養装置を提供することを目的とする。 In view of the above problems, the present invention automates a method for producing a cell sheet that has a colony formation rate of 3% or more indicating the presence of stem cells, which is close to the case where feeder cells are used even when feeder cells are free. It aims at providing the culture device which performs.
 組織を形成する幹細胞または前駆細胞が自己複製する第一の期間における第一の酸素供給量と、前記幹細胞または前駆細胞が分化する期間を含む第二の期間における、前記第一の酸素供給量よりも多い酸素供給量の第二の酸素供給量を制御することを特徴とする細胞培養方法と、組織を形成する幹細胞または前駆細胞を培養する培養領域を有する細胞培養装置であって、前記培養領域内の酸素濃度を調節する酸素調節部と、前記酸素調節部を制御する制御部と、を有し、前記幹細胞または前駆細胞が自己複製する期間内の第一の期間における第一の酸素供給量を低酸素濃度(20%未満)とすることを特徴とする細胞培養装置である。 From the first oxygen supply amount in the first period in which the stem cells or progenitor cells forming the tissue self-replicate and the first oxygen supply amount in the second period including the period in which the stem cells or progenitor cells differentiate A cell culture method characterized by controlling a second oxygen supply amount of a larger oxygen supply amount, and a cell culture device having a culture region for culturing stem cells or progenitor cells forming a tissue, wherein the culture region A first oxygen supply amount in a first period within a period in which the stem cell or progenitor cell self-replicates, and an oxygen control unit that controls an oxygen concentration in the cell and a control unit that controls the oxygen control unit Is a cell culture device characterized by having a low oxygen concentration (less than 20%).
 本発明に係る細胞培養方法および細胞培養装置によれば、フィーダー細胞を用いずとも、フィーダー細胞を用いた場合に近く、幹細胞の存在を示すコロニー形成率が3%以上となる上皮系細胞シートが作製可能である。 According to the cell culturing method and the cell culturing apparatus of the present invention, an epithelial cell sheet having a colony formation rate of 3% or more indicating the presence of stem cells is close to the case of using feeder cells without using feeder cells. It can be produced.
比較例1と実例1における、角膜上皮幹細胞および前駆細胞のコロニー形成を示す図。The figure which shows colony formation of the corneal epithelial stem cell and progenitor cell in the comparative example 1 and the example 1. FIG. 比較例2、3と実例2~6における、細胞培養に要した日数を示す図。The figure which shows the days required for cell culture in the comparative examples 2 and 3 and the examples 2-6. 比較例2、3と実例4における、角膜輪部上皮細胞の位相差顕微鏡像を示す図。The figure which shows the phase-contrast microscope image of the corneal limbal epithelial cell in the comparative examples 2 and 3 and the example 4. FIG. 比較例2、3と実例2~6における、角膜上皮細胞シートの外観を示す図。The figure which shows the external appearance of the corneal epithelial cell sheet | seat in the comparative examples 2 and 3 and the examples 2-6. 比較例2、3と実例2~6における、角膜上皮細胞シート中の細胞数を示す図。The figure which shows the cell number in a corneal epithelial cell sheet | seat in the comparative examples 2 and 3 and the examples 2-6. 比較例2、3と実例2~6における、角膜上皮細胞シート中の幹細胞・前駆細胞のコロニー形成率を示す図。The figure which shows the colony formation rate of the stem cell and progenitor cell in a corneal epithelial cell sheet | seat in the comparative examples 2 and 3 and the examples 2-6. 比較例2、3と実例2~6における、角膜上皮細胞シート中の幹細胞・前駆細胞のコロニー形成を示す図The figure which shows colony formation of the stem cell and progenitor cell in a corneal epithelial cell sheet | seat in the comparative examples 2 and 3 and the examples 2-6 比較例2、3と実例2~6における、角膜上皮細胞シート切片のヘマトキシリンーエオジン染色像を示す図。The figure which shows the hematoxylin-eosin dyeing | staining image of the corneal epithelial cell sheet section | slice in the comparative examples 2 and 3 and the examples 2-6. 比較例2、3と実例2~5における、角膜上皮細胞シート切片のCK3と細胞核染色像を示す図。The figure which shows the CK3 and cell nucleus dyeing | staining image of a corneal epithelial cell sheet | seat section in Comparative Examples 2 and 3 and Examples 2-5. 本実施例を適用可能な細胞種を示す図。The figure which shows the cell type which can apply a present Example. コンフルエント、敷石状形態、密着結合の時期を示す概略図。Schematic showing the confluence, the paving stone form, the time of tight bonding. 培養槽全体の酸素濃度を切り替える場合の装置構成図。The apparatus block diagram in the case of switching the oxygen concentration of the whole culture tank. 図12の構成に、光干渉断層計を加えたときの装置構成図。The apparatus block diagram when adding an optical coherence tomography to the structure of FIG. 図12の構成に、電気抵抗測定装置を加えた場合の装置構成図。The apparatus block diagram at the time of adding an electrical resistance measuring apparatus to the structure of FIG. 培養日数と細胞の大きさの関係を示す図。The figure which shows the relationship between a culture | cultivation day and the magnitude | size of a cell. コンフルエント時と敷石状形態における細胞の大きさの分布を表わす図。The figure showing the distribution of the magnitude | size of the cell in the time of confluence and a paving stone form. コンフルエントと敷石状形態を示す図。The figure which shows confluent and a paving stone form. 図12の構成に、光干渉断層計と経上皮電気抵抗測定装置を加えた場合の装置構成図。The apparatus block diagram at the time of adding an optical coherence tomography and a transepithelial electrical resistance measuring apparatus to the structure of FIG. 培養容器内の酸素濃度を直接切り替える場合の装置構成図。The apparatus block diagram in the case of switching the oxygen concentration in a culture container directly. 図19の構成に、電気抵抗測定装置を加えた場合の装置構成図。The apparatus block diagram at the time of adding an electrical resistance measuring apparatus to the structure of FIG. 図19の構成に、光干渉断層計を加えた場合の装置構成図。The apparatus block diagram at the time of adding an optical coherence tomography to the structure of FIG. 図19の構成に、光干渉断層計と経上皮電気抵抗測定装置を加えた場合の装置構成図。The apparatus block diagram at the time of adding an optical coherence tomography and a transepithelial electrical resistance measuring apparatus to the structure of FIG. ガス透過膜を変更可能な培養容器内の酸素濃度を直接切り替える場合の装置構成図。The apparatus block diagram in the case of switching directly the oxygen concentration in the culture container which can change a gas permeable membrane. 図23の構成に、電気抵抗測定装置を加えた場合の装置構成図。The apparatus block diagram at the time of adding an electrical resistance measuring apparatus to the structure of FIG. 図23の構成に、光干渉断層計と経上皮電気抵抗測定装置を加えた場合の装置構成図。The apparatus block diagram at the time of adding an optical coherence tomography and a transepithelial electrical resistance measuring apparatus to the structure of FIG. 図23の構成に、光干渉断層計と電気抵抗測定装置を加えた場合の装置構成図。The apparatus block diagram at the time of adding an optical coherence tomometer and an electrical resistance measuring apparatus to the structure of FIG. ガス透過膜を交換可能な培養容器を示す図。The figure which shows the culture container which can replace | exchange gas permeable membrane. 比較例2、3と実例7~10における、角膜上皮細胞シート切片のCK3と細胞核染色像を示す図。The figure which shows the CK3 and cell nucleus dyeing | staining image of a corneal epithelial cell sheet section | slice in the comparative examples 2 and 3 and the examples 7-10. 培養容器を示す図。The figure which shows a culture container. 図29の変形例。The modification of FIG.
 本発明を実施するための形態について、実施例を示しながら説明する。ただし、これらの形態および実施例は本発明を実現するための一例に過ぎず、本発明の技術的範囲を限定するものではない。また、各図において共通の構成については同一の参照番号が付されている。 The form for carrying out the present invention will be described with reference to examples. However, these forms and examples are merely examples for realizing the present invention, and do not limit the technical scope of the present invention. In each drawing, the same reference numerals are assigned to common components.
 本実施例では、酸素濃度制御による再生組織製造期間短縮の原理及び方法について説明する。以下は、ウサギ角膜上皮細胞シートをモデルとした一例である。細胞の種はウサギに限定されるものではなく、マウス、ラット、イヌ、ブタ、ヒトなどの哺乳動物細胞であってもよい。また、細胞の種類は、角膜上皮細胞に限定されるものではなく、皮膚、口腔などの重層上皮細胞であってもよい。 In this example, the principle and method of shortening the regenerative tissue production period by controlling the oxygen concentration will be described. The following is an example using a rabbit corneal epithelial cell sheet as a model. The cell species is not limited to rabbits, and may be mammalian cells such as mice, rats, dogs, pigs, and humans. The cell type is not limited to corneal epithelial cells, and may be stratified epithelial cells such as skin and oral cavity.
 組織を形成する細胞の培養過程は、幹細胞・前駆細胞などが自己複製を行う自己複製期間と、自己複製により培養面を一定以上占有した後に細胞分化を行う分化期間に分けられる。以下、角膜上皮細胞シートを例に、培養期間短縮化の原理を示す。尚、角膜上皮細胞シートにおける分化は、より具体的には細胞が積層構造を形成する重層化と呼ばれ、以下分化期を重層化期と称して説明する。 The culture process of the cells forming the tissue can be divided into a self-replication period in which stem cells / progenitor cells self-replicate and a differentiation period in which cell differentiation is performed after occupying a certain amount of the culture surface by self-replication. Hereinafter, the principle of shortening the culture period will be described using a corneal epithelial cell sheet as an example. The differentiation in the corneal epithelial cell sheet is more specifically referred to as stratification in which cells form a laminated structure. Hereinafter, the differentiation phase is referred to as the stratification phase.
 まず、自己複製期では低酸素濃度で培養し、重層化期では正常酸素濃度で培養することにより、フィーダー細胞を用いずとも、幹細胞が保持された重層上皮細胞シートを製造する原理について、以下の実証を用いて説明する。 First, the principle of producing a stratified epithelial cell sheet retaining stem cells without using feeder cells by culturing at a low oxygen concentration in the self-renewal phase and culturing at a normal oxygen concentration in the stratification phase is as follows. This will be explained using demonstration.
 まず、ウサギ角膜輪部から採取した細胞を用いたコロニー形成試験において、フィーダー細胞を用いずにO20%で培養する場合を比較例1、フィーダー細胞を用いずにO5%で培養する場合を実例1とし、コロニー形成の程度を求めた。図1はその結果を示す図である。比較例1ではコロニーがほとんど見られないのに対し、実例1では、フィーダー細胞が無いのにも関わらず、多くのコロニーが認められた。これは、低酸素濃度では、フィーダー細胞が無くとも、幹細胞および前駆細胞が接着、増殖することを示している。この結果からは、低酸素濃度では、幹細胞としての活性、性質が維持される可能性が示唆される。 First, in the colony formation test using cells collected from the rabbit cornea ring, the case of culturing at 20% O 2 without using feeder cells is compared with Comparative Example 1, and culturing at 5% O 2 without using feeder cells. The case was taken as Example 1 and the degree of colony formation was determined. FIG. 1 is a diagram showing the results. In Comparative Example 1, almost no colonies were observed, whereas in Example 1, many colonies were observed despite the absence of feeder cells. This indicates that at low oxygen concentrations, stem cells and progenitor cells adhere and proliferate even without feeder cells. This result suggests that the activity and properties as stem cells may be maintained at low oxygen concentrations.
 続いて、角膜上皮細胞シート形成において、フィーダー細胞を用いない条件において、自己複製期をO1%、重層化期を正常酸素濃度であるO20%で培養する場合を実例2、自己複製期をO2%、重層化期を正常酸素濃度であるO20%で培養する場合を実例3、自己複製期をO5%、重層化期を正常酸素濃度であるO20%で培養する場合を実例4、自己複製期をO10%、重層化期を正常酸素濃度であるO20%で培養する場合を実例5、自己複製期をO15%、重層化期を正常酸素濃度であるO20%で培養する場合を実例6、重層化期、自己複製期両過程共にO1%で培養する場合を実例7、重層化期、自己複製期両過程共にO2%で培養する場合を実例8、重層化期、自己複製期両過程共にO5%で培養する場合を実例9、重層化期、自己複製期両過程共にO10%で培養する場合を実例10、フィーダー細胞を用いて、両過程共にO20%で培養する場合を比較例2、フィーダー細胞を用いずに、両過程共にO2%で培養する場合を比較例3とした。図2は比較例2,3、実例2~6における、細胞シート作製に要した日数を示す図である。図3は比較例2、3、実例4における培養5、7、9、11、12日目の位相差顕微鏡像を示す図である。比較例2では培養11日目、比較例3では培養12日目で細胞が培養領域内に隙間なく密に培養されている状態(以下コンフルエントとする)を経過し、さらにその後の自己複製による細胞の増殖により細胞が凝縮し、細胞一つ一つの体積が小さくなって敷き詰められた状態(以下敷石状形態とする)を示したのに対し、実例2~6では、約9日目で敷石状形態を示した。比較例、実例共に重層化期は5日間と設定した。 Subsequently, in the formation of a corneal epithelial cell sheet, Example 2 shows a case where the self-replication phase is cultured at 1% O 2 and the stratification phase at 20% O 2, which is a normal oxygen concentration, without using feeder cells. Example 3 when culturing at O 2 2%, stratification period at normal oxygen concentration of 20% O 2 , self-replication period at O 2 5%, stratification period at normal oxygen concentration of O 2 20% in the case of culturing example 4, the self-replicating life O 2 10%, examples 5 a case of culturing with O 2 20% normal oxygen concentration stratification period, the self-replicating life O 2 15%, stratified-life Example 6 when cultivated with 20% O 2 at normal oxygen concentration, Example 7 when culturing at 1% O 2 in both the stratification and self-replication phases, both in the stratification and self-replication phases illustrative case cultured in O 2 2% 8, stratification period, excessive self-replicating life both Illustrative 9 when cultured in O 2 5% both stratified phase, examples of the case where cultured in O 2 10% self-replicating life both process both 10, using feeder cells, cultured in O 2 20% in both processes both The case in which this was performed was Comparative Example 2, and the case in which both processes were cultured at 2% O 2 without using feeder cells was referred to as Comparative Example 3. FIG. 2 is a graph showing the number of days required for cell sheet production in Comparative Examples 2 and 3 and Examples 2 to 6. FIG. 3 is a diagram showing phase contrast microscopic images of cultures 5, 7, 9, 11, and 12 in Comparative Examples 2 and 3 and Example 4. In Comparative Example 2, on the 11th day of culture, and in Comparative Example 3 on the 12th day of culture, the cells are in a state of being densely cultured without any gaps (hereinafter referred to as “confluent”), and then cells by self-replication The cells were condensed as a result of the growth of the cells, and the volume of each cell was reduced and spread (hereinafter referred to as a cobblestone shape), whereas in Examples 2 to 6, the cobblestone shape was observed on the ninth day. The form was shown. In both the comparative example and the actual example, the stratification period was set to 5 days.
 図4は、比較例2,3、実例2~6における、細胞シートの外観を示す図である。いずれの細胞シートも、ピンセット操作に耐えうる厚さをもつものであった。図5は比較例2,3、実例2~6における、細胞シートに含まれる細胞数を示す図である。この結果からは、どの細胞シートでもほぼ同等の細胞数から成ることが分かる。この結果から、フィーダー細胞なしで作製した細胞シートとフィーダー細胞ありで作製した細胞シートが同程度重層化していることが推測できる。 FIG. 4 is a diagram showing the appearance of the cell sheet in Comparative Examples 2 and 3 and Examples 2-6. All the cell sheets had a thickness that could withstand the tweezers operation. FIG. 5 is a diagram showing the number of cells contained in the cell sheet in Comparative Examples 2 and 3 and Examples 2 to 6. From this result, it can be seen that any cell sheet has almost the same number of cells. From this result, it can be inferred that the cell sheet prepared without feeder cells and the cell sheet prepared with feeder cells are layered to the same extent.
 図6は、比較例2,3、実例2~6における、細胞シート中に含まれる幹細胞の割合を表す、コロニー形成率を示す図である。比較例2と比較例3を比べると、フィーダー細胞がないことで、コロニー形成率は1/4程度に低下していることがわかる。一方、実例2~5はフィーダー細胞なしの条件にも関わらず、比較例3と比べると、コロニー形成率は有意に高く、比較例2の3/4程度であり、3%以上を示した。しかしながら、実例6は比較例3と比べると、有意に高いものの、実例2~5の半分程度であった。図7は、比較例2、3、実例4におけるコロニー形成を示す図である。 FIG. 6 is a graph showing the colony formation rate indicating the proportion of stem cells contained in the cell sheet in Comparative Examples 2 and 3 and Examples 2 to 6. Comparing Comparative Example 2 and Comparative Example 3, it can be seen that the colony formation rate is reduced to about 1/4 due to the absence of feeder cells. On the other hand, in Examples 2 to 5, despite the absence of feeder cells, the colony formation rate was significantly higher than that of Comparative Example 3, which was about 3/4 of Comparative Example 2, indicating 3% or more. However, although Example 6 was significantly higher than Comparative Example 3, it was about half of Examples 2-5. FIG. 7 is a diagram showing colony formation in Comparative Examples 2 and 3 and Example 4.
 図8は、比較例2,3、実例2~6における、組織染色像を示すもので、角膜上皮細胞シート評価を目的とするものである。これによると、いずれの条件でも3~6層程度に重層化していることが分かる。 FIG. 8 shows tissue stained images in Comparative Examples 2 and 3 and Examples 2 to 6, and is intended for evaluation of a corneal epithelial cell sheet. According to this, it can be seen that the film is laminated to about 3 to 6 layers under any condition.
 図9は、比較例2,3、実例2~5における、角膜上皮細胞分化マーカであるCK3の免疫染色像と細胞核染色像を示す図である。これによると、3~6層に重層した細胞が角膜上皮細胞として分化していることが分かる。 FIG. 9 is a diagram showing an immunostained image and a cell nucleus stained image of CK3, which is a corneal epithelial cell differentiation marker, in Comparative Examples 2 and 3 and Examples 2 to 5. According to this, it can be seen that cells layered in 3 to 6 layers are differentiated as corneal epithelial cells.
 図28は、比較例2,3、実例7~10における、角膜上皮細胞分化マーカであるCK3の免疫染色像と細胞核染色像を示す図である。これによると、重層化期、自己複製期両過程共に低酸素濃度で培養したものは、酸素濃度依存的に重層化が十分に進行しないことが分かる。 FIG. 28 is a diagram showing an immunostained image and a cell nucleus stained image of CK3, which is a corneal epithelial cell differentiation marker, in Comparative Examples 2 and 3 and Examples 7 to 10. According to this, it is understood that the stratification does not proceed sufficiently depending on the oxygen concentration in those cultured at a low oxygen concentration in both the stratification phase and the self-replication phase.
 図1~9、28に示す結果は、いずれも、フィーダー細胞なしの条件においても、自己複製期を低酸素濃度で培養することで、従来の方法である比較例2と比べてそん色のない程度の幹細胞を保持した重層化上皮細胞シートが製造できることを示すものである。上述の原理にて検証した結果、フィーダー細胞無しの条件で、自己複製期はO1%以上15%未満で、フィーダー細胞無し、O20%で培養した時よりもコロニー形成率が有意に高く、フィーダー細胞あり、O20%で培養した時に近いコロニー形成率を示すことが明らかとなった。また、重層化期は、低酸素では分化が抑制されるが、O15%以上であれは分化することが分かった。従って、自己複製期間はO1%以上15%未満、分化期間はO15%以上が、比較例2で作製した細胞シートのコロニー形成率よりも高く、コロニー形成率3%以上を保持する、重層化した上皮細胞シートを得る上で望ましい酸素濃度であった。以下に上記実験の具体的な方法を示す。 The results shown in FIGS. 1 to 9 and 28 are all inferior to those of Comparative Example 2, which is a conventional method, by culturing at a low oxygen concentration in the self-renewal period even in the condition without feeder cells. This shows that a stratified epithelial cell sheet retaining a certain amount of stem cells can be produced. Result of verification by the above-mentioned principle, in conditions without feeder cells, self-replicating life with O 2 less than 1% to 15% without feeder cells, O 2 20% cultured from significantly colonization rate when in It was revealed that the colony formation rate was high, when feeder cells were present, and when the cells were cultured at 20% O 2 . In addition, it was found that in the stratification period, differentiation is suppressed at low oxygen, but differentiation occurs at O 2 of 15% or more. Therefore, the self-replication period is O 2 1% or more and less than 15%, and the differentiation period O 2 15% or more is higher than the colony formation rate of the cell sheet prepared in Comparative Example 2, and retains the colony formation rate 3% or more. The oxygen concentration was desirable for obtaining a multilayered epithelial cell sheet. The specific method of the above experiment is shown below.
 (ウサギ角膜上皮細胞培養方法)
 培養容器は6ウェル用セルカルチャインサートと6ウェルプレート、もしくは、12ウェル用セルカルチャインサートと12ウェルプレートとした。角膜上皮細胞を培養する前日に、フィーダー細胞として、マイトマイシンC(10μg/ml)で37℃2時間処理したNIH-3T3細胞を2×10/cmとなるように、6ウェルプレートに播種した。NIH-3T3細胞を播種した翌日に、フナコシ社より購入したウサギ眼球の角膜輪部から常法に従って角膜上皮細胞を採取し、1×10/cmとなるように6ウェル用セルカルチャインサートに播種した。培養液には、上皮系細胞の培養に用いられる5%FBSを含むKCM培地を用いた。培養液の交換は、細胞培養容器の上層下層共に、培養開始5、7、9-16日目に1回行った。培養期間中は、位相差顕微鏡で細胞増殖状況を確認した。
(Rabbit corneal epithelial cell culture method)
The culture vessel was a 6-well cell culture insert and 6-well plate, or a 12-well cell culture insert and 12-well plate. The day before culturing corneal epithelial cells, NIH-3T3 cells treated with mitomycin C (10 μg / ml) for 2 hours at 37 ° C. were seeded as feeder cells in a 6-well plate at 2 × 10 4 / cm 2 . . The day after the seeding of NIH-3T3 cells, corneal epithelial cells were collected from the corneal limbus of a rabbit eyeball purchased from Funakoshi in accordance with a conventional method, and placed in a 6-well cell culture insert so as to be 1 × 10 4 / cm 2. Sowing. As the culture solution, KCM medium containing 5% FBS used for culturing epithelial cells was used. The culture solution was exchanged once on the 5th, 7th, and 9-16th days after the start of the culture for both the upper and lower layers of the cell culture container. During the culture period, the state of cell proliferation was confirmed with a phase contrast microscope.
 (角膜上皮細胞シートの外観検査と細胞数測定方法)
 各培養条件で作製した細胞シート内に含まれる細胞数と、DNA量から、増殖過程での細胞数を定量した。作製後の細胞シートに含まれる細胞数の算出方法を以下に記載する。まずディスパーゼ(200U/ml)を培養下層に注入し、37℃60分処理した。処理後、ピンセットで細胞シートの培養表面から剥離させ、外観を検査した。剥離した細胞シートを0.25%トリプシンで37℃10分処理して、細胞懸濁液として細胞シートに含まれる細胞数を求めた(TC10 bio-rad社製)(n=4)。
(Appearance inspection and cell number measurement method of corneal epithelial cell sheet)
The number of cells in the growth process was quantified from the number of cells contained in the cell sheet prepared under each culture condition and the amount of DNA. A method for calculating the number of cells contained in the prepared cell sheet is described below. First, dispase (200 U / ml) was injected into the lower culture layer and treated at 37 ° C. for 60 minutes. After the treatment, the cell sheet was peeled from the culture surface with tweezers, and the appearance was examined. The detached cell sheet was treated with 0.25% trypsin at 37 ° C. for 10 minutes to determine the number of cells contained in the cell sheet as a cell suspension (TC10 bio-rad) (n = 4).
 (コロニー形成率算出方法)
 コロニー形成率を求めるために、ディスパーゼで剥離した細胞シートを、0.25%トリプシン溶液を用いて細胞懸濁液として、その内2000個の細胞を、あらかじめマイトマイシンC処理したNIH-3T3細胞を2×10/cm となるように播種した10cmディッシュに播種し、約10日間KCM培地にて培養した。出現したコロニー数(直径約2mm以上)/2000個の割合を求めてコロニー形成率を算出した。
(Calculation method of colony formation rate)
In order to determine the colony formation rate, the cell sheet detached with dispase was used as a cell suspension using a 0.25% trypsin solution, and 2,000 cells of which were treated with mitomycin C-treated NIH-3T3 cells. It seed | inoculated to the 10cm dish seed | inoculated so that it might become * 10 < 4 > / cm < 2 >, and it culture | cultivated for about 10 days in the KCM culture medium. The colony formation rate was calculated by calculating the ratio of the number of colonies that appeared (diameter of about 2 mm or more) / 2000.
 (角膜上皮組織の組織切片作製、組織切片染色方法)
 組織切片を作製するために、常法に従い細胞シートを凍結包埋した。凍結包埋した組織から, ミクロトームで厚さ10μmの切片を作製した。作製した切片を用いて常法に従い、ヘマトキシリンーエオジン染色、および免疫組織染色を実施した。免疫組織染色には、抗CK3抗体(AE5)を用いた。
(Tissue section preparation of corneal epithelial tissue, tissue section staining method)
In order to prepare a tissue section, the cell sheet was frozen and embedded according to a conventional method. A 10 μm thick section was prepared from the frozen embedded tissue with a microtome. Using the prepared section, hematoxylin-eosin staining and immunohistochemical staining were performed according to a conventional method. Anti-CK3 antibody (AE5) was used for immunohistochemical staining.
 上記方法を適用可能な細胞種の範囲について、図10を用いて説明する。上記方法を適用できる細胞は、組織を形成する幹細胞、あるいは当該幹細胞の分化によって生じる前駆細胞である。これらは、まず自己複製を行い、所定の度合いにまで増殖された後、一般酸素濃度にて分化を開始する。一般に、低酸素状態では分化抑制傾向にある。すなわち、低酸素状態から正常酸素状態へと切り替えることは、組織を形成する幹細胞、前駆細胞の分化の開始を意味している。 The range of cell types to which the above method can be applied will be described with reference to FIG. A cell to which the above method can be applied is a stem cell forming a tissue or a progenitor cell generated by differentiation of the stem cell. They first self-replicate and grow to a predetermined degree, and then start to differentiate at a general oxygen concentration. In general, differentiation tends to be suppressed in a hypoxic state. That is, switching from the hypoxic state to the normoxic state means the start of differentiation of the stem cells and progenitor cells that form the tissue.
 次に、組織を形成する幹細胞、前駆細胞の培養過程において酸素濃度を変更する具体的な方法について説明する。まず、培養容器などの培養空間に播種された細胞を、当該培養空間内が低酸素濃度となるようにして培養する。自己複製期においては、細胞は正常酸素濃度よりも迅速に複製による増殖を繰り返す。培養する幹細胞の種類によって、増殖して結合した幹細胞・前駆細胞の全体の大きさ、または細胞単体での大きさ、増殖速度などの度合いは異なる場合がある。そのため、細胞種により、自己複製によって得られた細胞の大きさの度合いを任意に定め、低酸素濃度から正常酸素濃度に切り替えることが望ましい。正常酸素濃度に晒された細胞は分化を開始し、組織形成を行う。 Next, a specific method for changing the oxygen concentration in the culture process of the stem cells and progenitor cells forming the tissue will be described. First, cells seeded in a culture space such as a culture vessel are cultured so that the culture space has a low oxygen concentration. In the self-renewal phase, the cells repeat proliferation by replication more rapidly than the normoxic concentration. Depending on the type of stem cells to be cultured, the overall size of proliferated and bound stem cells / progenitor cells, or the size of single cells, the rate of proliferation, etc. may vary. Therefore, it is desirable to arbitrarily determine the degree of size of cells obtained by self-replication depending on the cell type and switch from a low oxygen concentration to a normal oxygen concentration. Cells exposed to normoxia start to differentiate and form tissues.
 細胞の増殖の度合いは、培養される培養面に対する占有率にて判別することも可能である。細胞は播種された培養空間の培養面に広がるように自己複製による増殖を開始する。この培養面に対する細胞の占有率が100%となったとき、上述の原理にて述べたように、コンフルエントの状態であると位置づけられるので、酸素濃度を正常酸素濃度(20%)に切り替える。尚、切り替えるタイミングを決定する占有率は、細胞種の特性などによって80%や90%など、任意に設定してすることも可能である。 The degree of cell proliferation can also be determined by the occupation ratio with respect to the culture surface to be cultured. The cells start to grow by self-replication so as to spread over the culture surface of the seeded culture space. When the cell occupancy with respect to the culture surface becomes 100%, as described in the above principle, the cell is positioned as confluent, so the oxygen concentration is switched to the normal oxygen concentration (20%). Note that the occupation ratio for determining the switching timing can be arbitrarily set to 80% or 90% depending on the characteristics of the cell type.
 また、酸素濃度を切り替える時点については、上述のように細胞がコンフルエントとなった状態だけでなく、敷石状形態にて切り替えることも有効である。図11に示すように、敷石状形態は、細胞がコンフルエントの状態になってから分化期開始までに生じる状態であり、敷石状形態で酸素を切り替えることで、コンフルエントに比べ分化期直前まで低酸素にて培養できるため、より短期間での培養が可能となる。 In addition, regarding the point of time when the oxygen concentration is switched, it is effective to switch not only in a state where the cells are confluent as described above but also in a cobblestone form. As shown in FIG. 11, the cobblestone form is a state that occurs from the time when cells become confluent until the start of the differentiation phase. By switching oxygen in the cobblestone form, the oxygen level is reduced until just before the differentiation phase. Can be cultured in a shorter period of time.
 さらに、酸素濃度を切り替えた後、図11に示すように、敷石状形態の後の分化期間にて生じる、密着結合と呼ばれる現象が生じているかを確認することで、酸素濃度切り替え後の細胞が正常に培養されているか、品質評価することができる。密着結合とは、膜貫通タンパク質である、クローディンとオクルーディンにより細胞間隙が閉じられた構造で、培養された細胞は密着結合の状態となることにより、溶解物質、イオン、水の傍細胞経路を制御している。つまりは、外部からの溶解物質や汚染物質などの介入が無い状態にて細胞が培養されていることを、密着結合の発生の確認によって判断することができる。 Furthermore, after switching the oxygen concentration, as shown in FIG. 11, by confirming whether a phenomenon called tight junction that occurs in the differentiation period after the paving stone shape occurs, the cells after the oxygen concentration switching It is possible to evaluate the quality of normal culture. Tight junction is a transmembrane protein, a structure in which the cell gap is closed by claudin and occludin, and the cultured cells become tightly bound, thereby causing a paracellular pathway of dissolved substances, ions, and water. Is controlling. In other words, it can be determined by confirming the occurrence of tight junction that the cells are cultured in the absence of externally dissolved substances or contaminants.
 酸素濃度を制御する方法は、培養する細胞に送る酸素の供給量によって制御することができる。例えば、細胞に供給する気体の酸素濃度を高めるには、酸素をより多く供給する、あるいは窒素や二酸化炭素などの供給を少なくすることで可能となる。逆に、酸素濃度を低くするには、酸素をより少なく供給する。あるいは窒素や二酸化炭素などを多くしてやれば可能となる。 The method for controlling the oxygen concentration can be controlled by the amount of oxygen supplied to the cells to be cultured. For example, the oxygen concentration of the gas supplied to the cells can be increased by supplying more oxygen or reducing the supply of nitrogen or carbon dioxide. Conversely, to reduce the oxygen concentration, less oxygen is supplied. Alternatively, it can be achieved by increasing the amount of nitrogen or carbon dioxide.
 本実施例では、実施例1にて説明した原理および方法に基づいて、酸素濃度を自動で制御する機能を搭載した自動細胞培養装置について図12~14を用いて説明する。尚、本実施例以降、酸素濃度の制御に関わる演算手段を制御装置2に内蔵した例として説明するが、演算手段に関するソフトウェアやCPUなどはこれに限られるものではなく、外付けのコンピュータや、ガス濃度調節部8などに内蔵されていても良い。 In this example, an automatic cell culture apparatus equipped with a function of automatically controlling the oxygen concentration based on the principle and method described in Example 1 will be described with reference to FIGS. In the following description of the present embodiment, the calculation unit related to the control of the oxygen concentration will be described as an example incorporated in the control device 2, but the software and CPU related to the calculation unit are not limited to this, and an external computer, It may be built in the gas concentration adjusting unit 8 or the like.
 酸素濃度の制御を行う際、細胞培養装置内の細胞をユーザーが直接観察して酸素濃度を切り替えることも可能であるが、CCDカメラ12のような細胞を観察し撮像する撮像手段を設けておいて、撮像した画像を表示画面13などに表示させ、撮像された画像を基にユーザーが酸素濃度を切り替えるようにしてもよい。また、表示画面13は視覚的な表示ではなく、ブザーのような聴覚へと指示を促すものであってもよい。 When controlling the oxygen concentration, it is possible for the user to directly observe the cells in the cell culture apparatus and switch the oxygen concentration. However, an imaging means for observing and imaging the cells such as the CCD camera 12 is provided. The captured image may be displayed on the display screen 13 or the like, and the user may switch the oxygen concentration based on the captured image. In addition, the display screen 13 may not be a visual display, but may prompt an instruction for hearing such as a buzzer.
 酸素濃度を自動で制御するためには、細胞状態を自動認識して、酸素濃度変更に適切な時期を判別することが望ましい。まず、培養中にCCDカメラ12で細胞を撮像し、細胞画像を取得した制御装置2は、取得した画像データから細胞を検出する処理を実施し、画像の輝度により、画像の白黒やグレースケールなどに基づく二値化し、当該画像における細胞占有面積を算出する。培養面の数点のデータを取得後、細胞占有面積が100%である場合、酸素濃度を低酸素濃度から通常酸素濃度へ変更する。細胞占有面積が所定の面積に達していない場合は、酸素濃度切替は実施せず、低酸素状態での培養を継続し、所定のタイミングで上記動作を繰り返し、細胞占有面積が100%に達した時点で酸素濃度切替を実行する。 In order to automatically control the oxygen concentration, it is desirable to automatically recognize the cell state and determine the appropriate time for changing the oxygen concentration. First, the control device 2 that has captured cells with the CCD camera 12 during culture and has acquired the cell images performs a process of detecting cells from the acquired image data. And binarizing based on the image, and calculating the cell occupation area in the image. After acquiring several points of data on the culture surface, if the cell occupation area is 100%, the oxygen concentration is changed from the low oxygen concentration to the normal oxygen concentration. When the cell occupation area does not reach the predetermined area, the oxygen concentration is not switched, the culture in the low oxygen state is continued, and the above operation is repeated at a predetermined timing, and the cell occupation area reaches 100%. Execute oxygen concentration switching at the time.
 細胞占有率は細胞の自己複製が進むにつれて上昇していくため、自己複製の最終過程付近の、細胞占有率100%付近のコンフルエントにて切り替えることが望ましい。ただし、CCDカメラのスペックや細胞の培養状況、培養面上で実際に細胞が培養される領域面等に合わせて、80%や90%など、任意に設定が可能である。また、細胞の種類によって、コンフルエントに達しない場合は、細胞の自己複製が完了するまでの大きさや占有面積に合わせて、酸素濃度切り替えのタイミングを設定しても良い。 Since the cell occupancy increases as the self-replication of cells progresses, it is desirable to switch at a confluence near 100% of the cell occupancy near the final process of self-replication. However, it can be arbitrarily set to 80% or 90% according to the specifications of the CCD camera, the state of cell culture, the area where cells are actually cultured on the culture surface, and the like. If the cells do not reach confluence depending on the cell type, the oxygen concentration switching timing may be set in accordance with the size and occupied area until the self-replication of the cells is completed.
 また、コンフルエントの別の判別方法として、細胞の大きさの平均から判別することが可能である。図15に示すように、培養面に接着した細胞は通常仮足を伸ばしながら増殖するので、細胞のサイズが播種直後に比べて大きくなり、細胞の大きさの平均は、コンフルエント付近にて最大値となる。その後、敷石状形態に向かうにつれて、面積あたりの細胞数が増加して細胞は縮小されるため、細胞の大きさの平均が徐々に減少し、敷石状形態後は細胞の形状が固定されるため、細胞の大きさは一定となる。 Also, as another method for determining confluence, it is possible to determine from the average cell size. As shown in FIG. 15, since the cells adhered to the culture surface usually grow while stretching the temporary foot, the cell size becomes larger than that immediately after seeding, and the average cell size is the maximum value near the confluence. It becomes. After that, the number of cells per area increases and the cells shrink as it goes to the cobblestone form, so the average cell size gradually decreases, and after the cobblestone form, the cell shape is fixed The cell size is constant.
 CCDカメラ12は、時系列に複数の画像を撮像し、制御装置2はこの複数の画像を基に、プロットファイルなどで細胞の大きさの統計を算出する。さらに算出された統計データから、画像ごとの細胞の大きさの平均を算出し、時系列的に前後の画像に含まれる細胞の大きさの平均と比較を行う。比較によって細胞の大きさの平均の時系列変化を演算し、細胞の大きさが最大値となるタイミングを特定する。 The CCD camera 12 captures a plurality of images in time series, and the control device 2 calculates cell size statistics using a plot file or the like based on the plurality of images. Furthermore, the average cell size for each image is calculated from the calculated statistical data, and compared with the average cell size included in the preceding and succeeding images in time series. The average time-series change of the cell size is calculated by comparison, and the timing when the cell size becomes the maximum value is specified.
 さらに制御装置2は、特定した最大値となるタイミング以降、つまりはコンフルエントとなるタイミング以降について、酸素濃度を変更する。またこの際、表示画面13に、最大値となる細胞の大きさや、特定した切り替えタイミングの期間などを表示し、ユーザーに酸素濃度の切り替えを促すようにしてもよい。 Further, the control device 2 changes the oxygen concentration after the specified maximum value, that is, after the confluent timing. At this time, the display screen 13 may display the maximum cell size, the specified switching timing period, and the like to prompt the user to switch the oxygen concentration.
 細胞の大きさの最大値を特定する方法はこれに限られるものではなく、細胞種に応じて特定の値を予め設定しておき、この値を超える大きさ平均にまで細胞が自己複製を行ったタイミングにて酸素濃度を切り替えるようにしてもよい。また、細胞の大きさの平均ではなく、図16(a)のように、大きさの分布の時系列変化を画像から解析し、分布のピークが最大となる点を上記最大値として設定する、あるいは酸素濃度を切り替える分散値を予め設定しておいてもよい。 The method of specifying the maximum value of the cell size is not limited to this, and a specific value is set in advance according to the cell type, and the cell self-replicates to an average size exceeding this value. The oxygen concentration may be switched at different times. Further, instead of the average cell size, as shown in FIG. 16 (a), the time-series change of the size distribution is analyzed from the image, and the point at which the distribution peak is maximized is set as the maximum value. Alternatively, a dispersion value for switching the oxygen concentration may be set in advance.
 上述のような細胞画像から酸素濃度切り替え時期を判別する方法以外に、図13に示すような光干渉断層計14により細胞状態を解析することにより、酸素濃度切り替えを判断することができる。細胞画像から判断する方法では、培養面数点を観察して判断するため、観察しなかった箇所がコンフルエントか否かが分からない可能性がある。一方、光干渉断層計14により細胞状態を解析する方法では、培養面全体での細胞欠損箇所を検出できる。光干渉断層計14は、2分割した赤外光の一方をサンプルに照射し、反射した光ともう一方の光を干渉させて、培地面全体の組織の表面および断面を画像化することができる。光干渉断層計14に設置された光源は、光源から照射される赤外光の照射位置を可変できる駆動手段を具備させることも可能である。この駆動手段を用いて、培養面の一方向における断面の画像を取得する。さらに、駆動手段を前記一方向に対して垂直方向に動かしながら、断面の画像を複数取得することで、培養面全体の断面画像を得ることができる。取得する断面画像の垂直方向の間隔は、細胞の欠損箇所に漏れのないよう、細胞の大きさよりも狭くなるように行うことが望ましい。また、後述する画像解析方法などによって細胞の大きさが解析できるため、細胞の増殖の度合いによって断面の画像を取得する間隔を決定してもよい。また、取得した画像は表示部16に表示するようにしてもよい。表示の仕方は、細胞の欠損のある画像のみを表示してもよいし、画像は表示せずに細胞の欠損があったことをブザーで警告するようにしてもよい。細胞の有無を判別することができる。制御装置2は光干渉断層計14での検出結果に基づいて、コンフルエントであれば低酸素濃度から正常酸素濃度へと切り替える。 In addition to the method for discriminating the oxygen concentration switching time from the cell image as described above, it is possible to determine the oxygen concentration switching by analyzing the cell state with the optical coherence tomometer 14 as shown in FIG. In the method of judging from the cell image, since the judgment is made by observing several points on the culture surface, there is a possibility that it is not possible to know whether or not the part that was not observed is confluent. On the other hand, in the method of analyzing the cell state with the optical coherence tomography 14, it is possible to detect a cell defect location on the entire culture surface. The optical coherence tomography 14 can irradiate the sample with one of the two divided infrared lights and cause the reflected light and the other light to interfere with each other, thereby imaging the surface and cross section of the tissue on the entire medium surface. . The light source installed in the optical coherence tomography 14 can be provided with a drive unit that can change the irradiation position of the infrared light emitted from the light source. Using this driving means, an image of a cross section in one direction of the culture surface is acquired. Furthermore, a cross-sectional image of the entire culture surface can be obtained by acquiring a plurality of cross-sectional images while moving the drive means in a direction perpendicular to the one direction. It is desirable that the vertical interval of the acquired cross-sectional images be set to be narrower than the cell size so that there is no leakage at the cell defect site. In addition, since the size of the cell can be analyzed by an image analysis method described later, the interval at which the cross-sectional image is acquired may be determined depending on the degree of cell proliferation. Further, the acquired image may be displayed on the display unit 16. As a display method, only an image with a cell defect may be displayed, or an image may not be displayed and a buzzer may warn that a cell defect has occurred. The presence or absence of cells can be determined. Based on the detection result of the optical coherence tomography 14, the control device 2 switches from a low oxygen concentration to a normal oxygen concentration if confluent.
 上述した細胞画像による方法と光干渉断層計による方法は併用して用いることが可能であり、より確実に酸素濃度を自動制御できる。例えば、培養面に対する細胞占有面積が設定した値以上(例えば100%)であり、かつ培養面全体(例えば100%)で細胞分の厚みを有していると判断された場合、酸素脳濃度を切り替えることにより、よりコンフルエントを判断する精度を高めることができる。 The above-described cell image method and optical coherence tomography method can be used in combination, and the oxygen concentration can be automatically controlled more reliably. For example, when it is determined that the cell occupation area with respect to the culture surface is equal to or greater than a set value (for example, 100%) and the entire culture surface (for example, 100%) has a cell thickness, By switching, the accuracy of determining confluence can be increased.
 以上のようにコンフルエントの状態かどうかを判別し、酸素濃度を切り替えることが可能であるが、切り替える時点は、コンフルエントとなった時点よりも所定時間経過後とするように設定することも短期間化に有効である。所定時間を経過すると、実施例3にて詳細を説明する敷石状形態が発生する。そのため、予めこの敷石状形態発生を考慮した切り替え時点を設定しておけば、より短期にて培養が可能となる。 As described above, it is possible to determine whether the state is confluent and to switch the oxygen concentration. However, it is also possible to set the switching point to be after a predetermined time from the point when it becomes confluent. It is effective for. When a predetermined time elapses, a paving stone-like form, which will be described in detail in Example 3, is generated. Therefore, if a switching time point in consideration of the occurrence of this paving stone shape is set in advance, culture can be performed in a shorter time.
 尚、本実施例では酸素濃度を切り替える演算手段を制御装置2に有した場合について述べたが、ガス濃度調節部8に演算手段を持たせ、制御装置2とは独立したガス濃度調節部8によって酸素濃度の変更を制御することも可能である。 In the present embodiment, the case where the control device 2 has an arithmetic means for switching the oxygen concentration has been described. However, the gas concentration adjusting section 8 is provided with an arithmetic means, and the gas concentration adjusting section 8 independent of the control apparatus 2 is used. It is also possible to control the change of the oxygen concentration.
 酸素濃度を制御する方法は、ガス供給部から供給される各気体の供給量を、ガス濃度調節部8にて調節するよう、制御装置2にて制御してやればよい。例えば、細胞に供給する気体の酸素濃度を高めるには、酸素をより多く供給する、あるいは窒素や二酸化炭素などの供給を少なくすることで可能となる。逆に、酸素濃度を低くするには、酸素をより少なく供給する。あるいは窒素や二酸化炭素などを多くしてやれば可能となる。 The method for controlling the oxygen concentration may be controlled by the control device 2 so that the supply amount of each gas supplied from the gas supply unit is adjusted by the gas concentration adjustment unit 8. For example, the oxygen concentration of the gas supplied to the cells can be increased by supplying more oxygen or reducing the supply of nitrogen or carbon dioxide. Conversely, to reduce the oxygen concentration, less oxygen is supplied. Alternatively, it can be achieved by increasing the amount of nitrogen or carbon dioxide.
 酸素濃度切り替え時期は、コンフルエント時ではなく、コンフルエント後、細胞密度が高くなり、細胞一つ一つの体積が小さくなって敷き詰めれた状態である敷石状形態の状態とすることができる。重層化などの分化は敷石状形態を経た後に起こる事象であるため、敷石状形態を示した時点で酸素濃度を切り替た方がより早期に所望の組織を製造できる。制御装置2は、まず実施例2に記載した細胞解析結果により、細胞占有率が100%に到達した後に、制御装置2は細胞画像における細胞間が明瞭となるように画像を処理する。その後、図17に示すように、任意に設定された画像の一線上における輝度の変化を信号にして算出する。この信号の分布から、敷石状形態における細胞の大きさである約5~15μmおきに規則的に検出される信号であるかどうかで敷石状形態を判別し、敷石状形態であった場合に酸素濃度を低酸素濃度から正常酸素濃度へ変更する。敷石状形態を示さない場合、即ち、細胞間の長さを示す信号の検出結果にて、細胞が上記のような敷石状形態における大きさでない場合は、低酸素濃度での培養を継続し、上記に示した手順を再度実行する。 Oxygen concentration switching time is not at confluence, but after confluence, the cell density becomes high, and the volume of each cell becomes small, and it can be in a paving stone-like state. Since differentiation such as stratification is an event that occurs after passing through the cobblestone form, the desired tissue can be produced earlier by switching the oxygen concentration when the cobblestone form is shown. First, according to the cell analysis result described in Example 2, the control device 2 processes the image so that the cell space in the cell image becomes clear after the cell occupancy reaches 100%. Thereafter, as shown in FIG. 17, a change in luminance on one line of an arbitrarily set image is calculated as a signal. From this signal distribution, the cobblestone shape is discriminated based on whether or not the signal is regularly detected every 5 to 15 μm, which is the size of the cell in the cobblestone shape. Change the concentration from low oxygen concentration to normal oxygen concentration. If it does not show a cobblestone form, that is, if the cell is not the size in the cobblestone form as described above, in the detection result of the signal indicating the length between cells, continue the culture at a low oxygen concentration, Perform the above procedure again.
 敷石状形態か否かを判別する別の方法として、CCDカメラ12で撮像された細胞の画像の信号の分布から、細胞の大きさの平均、或いは分布を用いて判別する方法がある。 As another method for determining whether or not it is a cobblestone shape, there is a method for determining from the distribution of the signal of the image of the cell imaged by the CCD camera 12 using the average or distribution of the cell size.
 撮像された画像における各細胞の輪郭周辺部分は、画像において相対的に輝度が低くなり、細胞自身と各細胞間の輝度は高くなって示される。すなわち、培養の初期の頃は細胞数が少ないため、輝度が高くなる部分が多く、画像の平均輝度は高い状態となっている。さらに、細胞数が増えるにつれて、細胞周辺部分(輝度が低い部分)も増えるため、画像の平均輝度は徐々に低くなる。 The peripheral portion of the outline of each cell in the imaged image is shown with a relatively low luminance in the image and a high luminance between the cell itself and each cell. That is, since the number of cells is small at the early stage of culture, there are many portions where the luminance is high, and the average luminance of the image is high. Furthermore, as the number of cells increases, the cell peripheral portion (the portion with low luminance) also increases, so the average luminance of the image gradually decreases.
 培養面がコンフルエントの状態となった後は、敷石状形態に近づくにつれ、細胞の増殖によって密に敷き詰められていくため、細胞の数が増加していく。つまり、画像における細胞の輪郭周辺部分の面積が増えていくため、平均輝度は下がり続ける。 After the culture surface becomes confluent, the number of cells increases because the cells are densely spread by the growth of the cells as the cobblestone shape is approached. That is, since the area around the outline of the cell in the image increases, the average luminance continues to decrease.
 最終的に形成される敷石状形態は、培養面における細胞の自己複製が飽和している状態であるので、敷石状形態が形成されてから分化が開始されるまでは、画像の平均輝度は一定の状態となる。よって、制御装置2は、画像の平均輝度が一定の値となった時期を敷石状形態として判別し、酸素濃度を切り替えることができる。 The paving stone-like form that is finally formed is a state in which the self-replication of cells on the culture surface is saturated, so the average brightness of the image is constant from the formation of the paving stone-like form until differentiation begins. It becomes the state of. Therefore, the control device 2 can determine the time when the average luminance of the image has a constant value as a paving stone shape, and can switch the oxygen concentration.
 実施例2にて説明した細胞の大きさの平均を用いることでも、敷石状形態を判別することが可能である。図15に示すように、敷石状形態の場合、細胞の時系列変化は、コンフルエントから凝縮されて一定の大きさに留まるため、この一定の大きさとなった期間において、酸素濃度を切り替える。期間を求めるまでの制御装置2での演算方法は実施例2にて説明した方法と同様である。 It is also possible to determine the cobblestone form by using the average cell size described in Example 2. As shown in FIG. 15, in the cobblestone form, the time series change of the cells is condensed from the confluent state and stays at a constant size. Therefore, the oxygen concentration is switched during the period of the constant size. The calculation method in the control device 2 until the period is obtained is the same as the method described in the second embodiment.
 また、制御装置2によって解析された細胞の大きさの分布から、敷石状形態を判別することも可能である。図16に示すように、自己複製期における細胞の大きさは、上述のように敷石状形態よりも大きい。さらに培養面の各領域における培養の進行にもばらつきが生じるため、分布の分散値の領域も広くなっている。細胞の大きさ、および大きさの分布は、敷石状形態に近づくにつれて徐々に減少し、敷石状形態が形成された時点で、自己複製期における細胞の大きさとしては、最小かつ一定の値となる。 It is also possible to determine the cobblestone form from the cell size distribution analyzed by the control device 2. As shown in FIG. 16, the size of the cell in the self-replication phase is larger than the paving stone shape as described above. Furthermore, since the culture progresses in each region of the culture surface, the region of the dispersion value of the distribution is widened. The cell size and the size distribution gradually decrease as the cobblestone morphology is approached, and when the cobblestone morphology is formed, the cell size during the self-renewal phase is a minimum and constant value. Become.
 したがって制御装置2は、細胞の大きさの分布が最も小さくなるような領域に移行した場合、あるいは分布による分散値の幅が最も狭くなった場合、大きさの分布の時系列変化が一定の値となった場合、もしくはこれらの組み合わせによっても、敷石状形態を判別し、酸素濃度を切り替えることが可能である。 Therefore, when the control device 2 shifts to a region where the cell size distribution is the smallest or when the width of the dispersion value due to the distribution is the narrowest, the time series change of the size distribution is a constant value. In this case, or by a combination of these, it is possible to determine the cobblestone form and switch the oxygen concentration.
 本実施例では、実施例1で説明した細胞培養方法と実施例2、3で示した酸素濃度自動制御方法により、培養空間である培養槽内全体の酸素濃度を切り替える方法について説明する。 In this example, a method for switching the oxygen concentration in the entire culture tank, which is a culture space, by the cell culture method described in Example 1 and the oxygen concentration automatic control method shown in Examples 2 and 3 will be described.
 図12は、細胞培養装置1の構成を模式的に示す図で、制御装置2によって制御される各要素が、恒温槽3および、恒温槽3の内部に配置される培養容器4に接続される。制御装置2には、恒温槽3の温度を制御するための温度調節部5と、培養容器内の湿度を制御するための湿度調節部6と、培養容器内のガス濃度を制御するための、ガス供給部7を有するガス濃度調節部8と、培養容器内の培養液を自動で交換するための、培養液と廃液を保持するタンク9に接続された送液用チューブを有する培養液供給ポンプ10と、それぞれの構成要素の動作を制御することを目的とした、温度・湿度・CO2・O2センサー11と、細胞観察用のCCDカメラ12と表示画面13が接続されている。そして、温度調節部4、湿度調節部5、ガス濃度調節部7は恒温槽2に接続され、培養液供給ポンプ8は細胞培養容器3に接続される。上記装置構成の場合、恒温槽内に酸素が供給されるので、閉鎖系培養容器3は内部にガス供給ができるように、ポリスチレン、ポリカーボネート、ポリエチレンテレフタレート、ポリメチルペンテン等のガス透過膜、好ましくはポリカーボネート、ポリエチレンテレフタレート、ポリイミドから成る多孔膜を設けた方がよい。この際多孔の直径は、ウイルスや細菌の培養容器内への侵入を回避するために、20nm未満であることが望ましい。これは、現在知られている最も小さいウイルスである、パルボウイルスの直径が約20nmであることに基づいた設定である。 FIG. 12 is a diagram schematically showing the configuration of the cell culture device 1, and each element controlled by the control device 2 is connected to the thermostatic chamber 3 and the culture vessel 4 disposed inside the thermostatic chamber 3. . The control device 2 includes a temperature adjusting unit 5 for controlling the temperature of the thermostat 3, a humidity adjusting unit 6 for controlling the humidity in the culture vessel, and a gas concentration in the culture vessel, A gas concentration adjusting unit 8 having a gas supply unit 7 and a culture solution supply pump having a liquid feeding tube connected to a tank 9 for holding the culture solution and waste solution for automatically exchanging the culture solution in the culture vessel 10, a temperature / humidity / CO 2 / O 2 sensor 11, a cell observation CCD camera 12, and a display screen 13 are connected for the purpose of controlling the operation of each component. The temperature adjusting unit 4, the humidity adjusting unit 5, and the gas concentration adjusting unit 7 are connected to the thermostatic chamber 2, and the culture solution supply pump 8 is connected to the cell culture vessel 3. In the case of the above apparatus configuration, oxygen is supplied into the thermostatic chamber, so that the closed culture vessel 3 can be supplied with a gas, such as polystyrene, polycarbonate, polyethylene terephthalate, polymethylpentene, or the like, preferably It is better to provide a porous film made of polycarbonate, polyethylene terephthalate, or polyimide. At this time, the porous diameter is preferably less than 20 nm in order to avoid invasion of viruses and bacteria into the culture vessel. This is a setting based on a parvovirus diameter of about 20 nm, the smallest virus currently known.
 実施例3に基づいて、光干渉断層計14を付属させた実施例4装置構成の変形例を図13に示す。光干渉断層計は断面の厚みを計測できるため、作製した細胞シートが分化しているか否かという品質を非侵襲で評価することに適用可能である。 FIG. 13 shows a modified example of the apparatus configuration of Example 4 to which an optical coherence tomography 14 is attached based on Example 3. Since the optical coherence tomography can measure the thickness of the cross section, it can be applied to non-invasively evaluate the quality of whether or not the produced cell sheet is differentiated.
 細胞シートの非侵襲品質評価方法として、光干渉断層計による方法以外に、電気抵抗値により評価する方法を提示する。上皮系の細胞は細胞同士が密に結合することによって密着結合を形成する。密着結合が細胞間に形成されると、細胞間でのイオンのやり取りが遮断されるため、細胞間に電圧を印加した際に抵抗が生じる。すなわち、細胞が密で敷石状形態となり、密着結合が形成されているか否かを電気抵抗値により判断することができる。光干渉断層計14を付属させた実施例2の変形例を図13に、電気抵抗測定装置15を付属させた実施例2の変形例を図14に示す。制御装置2は、電気抵抗測定装置15による抵抗値の時系列変化を演算し、演算結果から抵抗値が指数関数の形状にて変化しているかどうかを解析する。抵抗値が指数関数にて変化していれば、密着結合が生じていると判別する。尚、電気抵抗測定装置は、図18のように光干渉断層計14と組み合わせて用い、より培養された細胞の品質を確認するようにしてもよい。 提示 In addition to the method using optical coherence tomography, a method for evaluating based on electrical resistance is presented as a non-invasive quality evaluation method for cell sheets. Epithelial cells form tight junctions when the cells are tightly coupled. When tight junctions are formed between cells, exchange of ions between cells is blocked, and thus resistance occurs when a voltage is applied between cells. That is, it can be determined from the electric resistance value whether the cells are dense and have a paving stone shape and a tight bond is formed. FIG. 13 shows a modification of the second embodiment with the optical coherence tomography 14 attached, and FIG. 14 shows a modification of the second embodiment with the electrical resistance measuring device 15 attached. The control device 2 calculates the time series change of the resistance value by the electrical resistance measuring device 15, and analyzes whether or not the resistance value changes in an exponential function shape from the calculation result. If the resistance value changes with an exponential function, it is determined that tight coupling has occurred. The electrical resistance measuring device may be used in combination with the optical coherence tomography 14 as shown in FIG. 18 to check the quality of the cultured cells.
 実施例4では、培養槽内の酸素濃度を制御する装置構成であったが、図19の構成のように、湿度調節部と、ガス調節部と、温度・湿度・CO2・O2センサーは培養容器に接続され、培養容器内の酸素濃度を制御する場合の実施例を実施例5として示す。 In Example 4, the apparatus configuration for controlling the oxygen concentration in the culture tank was used. However, as in the configuration of FIG. 19, the humidity control unit, the gas control unit, and the temperature / humidity / CO 2 / O 2 sensor are culture vessels. An example in which the oxygen concentration in the culture vessel is controlled is shown as Example 5.
 この構成により、培養容器内ガス供給ポートを利用して、水蒸気も培養容器内に流入することができる。また、培養槽全体が恒温多湿環境である場合、培養槽自体は無菌空間でないため、カビ、細菌が繁殖する危険性を有している。これに対して、培養容器内が恒温多湿環境である場合、培養容器内は無菌空間であるため、カビ、細菌が繁殖する危険性が低いといった利点がある。また、培養容器に特殊な膜を設ける必要がないので、培養容器作製工程も簡素化できる。図20~22は、実施例4同様に、装置構成の変形例を示すものである。 With this configuration, water vapor can also flow into the culture vessel using the gas supply port in the culture vessel. Moreover, when the whole culture tank is a constant temperature and humidity environment, since the culture tank itself is not a sterile space, there is a risk of mold and bacteria breeding. On the other hand, when the inside of the culture container is a constant temperature and high humidity environment, the inside of the culture container is an aseptic space, so there is an advantage that the risk of mold and bacteria breeding is low. Further, since it is not necessary to provide a special film on the culture container, the culture container preparation process can be simplified. 20 to 22 show modified examples of the device configuration as in the fourth embodiment.
 実施例4、5では、培養槽内や培養容器内の酸素濃度を制御する装置構成であったが、培養容器に設置されたガス透過性の膜の透過性を変化させることができる。この構成により、低酸素ガスや水蒸気を培養容器内に流入する必要なく、培養容器内酸素濃度を制御することができる。例えば、図23に示すように湿度調節部、ガス調節部、CO2、O2センサーが必要なく、装置構成を簡素化できる。図24~26に装置構成の変形例を示す。 In Examples 4 and 5, the configuration of the apparatus controls the oxygen concentration in the culture tank or the culture vessel, but the permeability of the gas permeable membrane installed in the culture vessel can be changed. With this configuration, it is possible to control the oxygen concentration in the culture vessel without having to flow low oxygen gas or water vapor into the culture vessel. For example, as shown in FIG. 23, the humidity controller, the gas controller, the CO 2, and the O 2 sensor are not required, and the apparatus configuration can be simplified. 24 to 26 show modified examples of the device configuration.
 本装置構成では、培養容器の形状が重要となる。上記装置構成における培養容器の一例を図27に示す。培養容器4の枠体18に2枚のガス透過膜を設け、最外層は酸素の透過を抑制し、培養容器内の酸素濃度を低酸素にできる抑制膜16とし、取り外し可能な構造としておく。抑制膜16は、ポリエチレンテレフタレート、PVA、ナイロン、ナイロン系、シリカ蒸着系フィルムなどの医薬品、食品包装資材として使用されているものがある。また、有機EL、電子ペーパー、太陽電池などで使用されている、富士フィルム社製のスーパーバリアフィルムと呼ばれる、特殊な層をもつフィルム等が挙げられる。内側の膜は、実施例2に記載した直径20nm未満の孔を有する多孔膜17とする。自己複製期は抑制膜16を保持した状態で培養する。これによって低酸素培養環境が実現する。自己複製終了後、正常酸素濃度にするために、抑制膜16を自動で除去できる機構を装置に備えておき、制御装置2によって、当該機構を操作し、コンフルエントや敷石状形態などの期間にて、抑制膜16することによって、培養容器内の酸素濃度を変更させる。 In this device configuration, the shape of the culture vessel is important. An example of the culture container in the said apparatus structure is shown in FIG. Two gas permeable membranes are provided on the frame 18 of the culture vessel 4, and the outermost layer suppresses the permeation of oxygen to form a suppression membrane 16 that can reduce the oxygen concentration in the culture vessel to a removable structure. The suppression film | membrane 16 has used what is used as pharmaceuticals and food packaging materials, such as a polyethylene terephthalate, PVA, nylon, nylon type | system | group, and a silica vapor deposition type | system | group film. Moreover, the film etc. with a special layer called the super barrier film made from the Fuji Film company used by organic EL, electronic paper, a solar cell, etc. are mentioned. The inner membrane is the porous membrane 17 having pores with a diameter of less than 20 nm as described in Example 2. In the self-replication period, the cells are cultured while holding the suppression film 16. This realizes a low oxygen culture environment. In order to obtain a normal oxygen concentration after the completion of self-replication, a mechanism capable of automatically removing the suppression film 16 is provided in the apparatus, and the mechanism is operated by the control device 2 so as to be in a period such as confluent or cobblestone form. The oxygen concentration in the culture vessel is changed by using the suppression film 16.
 抑制膜16の除去方法は、細胞培養装置に、駆動手段を有したマニュピレータ等を設置し、制御装置2がマニュピレータを駆動させ、抑制膜16を除去することが可能である。 The method of removing the suppression film 16 is such that a manipulator having a driving means is installed in the cell culture device, and the control device 2 drives the manipulator to remove the suppression film 16.
 抑制膜除去後、細胞分化培養を行うが、この際、培養槽内が多湿環境でないため培養液が蒸発する可能性がある。これを回避する方法としては、蒸発する培養液分を細胞容器内に自動で注入する機構を装置の設け、培養液量を常に一定に保つようにしておくのが効果的である。 After the suppression membrane is removed, cell differentiation culture is performed. At this time, the culture solution may evaporate because the inside of the culture tank is not a humid environment. As a method for avoiding this, it is effective to provide a device for automatically injecting the evaporating culture solution into the cell container so that the amount of the culture solution is always kept constant.
 培養容器下層にフィーダー細胞を用いた場合、そのフィーダー細胞から分泌される成分を必要とするために、下層内の培養液を還流や常時通液することは好ましくない。しかし、フィーダー細胞を用いない場合は、下層内の培養液を還流や常時通液することが可能である。例えば図29に示すような、多孔膜を有するインサート容器20を1個内包する培養容器21や、インサート容器20を複数個内包する培養容器22において、培養液の還流や常時通液により、培養容器下層は常に新鮮な培養液に満たされた状態となるために、還流や常時通液をしない場合と比較して、より品質が安定または向上した細胞シートが作製できる。 When feeder cells are used in the lower layer of the culture vessel, components secreted from the feeder cells are required, so it is not preferable to reflux or constantly pass the culture solution in the lower layer. However, when feeder cells are not used, the culture medium in the lower layer can be refluxed or constantly passed. For example, in a culture container 21 containing one insert container 20 having a porous membrane as shown in FIG. 29 or a culture container 22 containing a plurality of insert containers 20, the culture container is circulated by refluxing the culture medium or constantly passing the culture container. Since the lower layer is always filled with a fresh culture solution, a cell sheet with a more stable or improved quality can be produced as compared with the case where reflux or constant flow is not performed.
 培養液の還流や常時通液の際には、例えばペリスタポンプ等を用いて培養液を流通させることができる。その際例えば図30に示すように、注液口と排出口の高さを変えることで、電磁弁等で流路を遮断しておく必要なく、培養容器に一定量液が満たされた後に、液を排出することも可能である。具体的には、注入口よりも排出口を高くすればよい。高さは培養容器に満たしたい液量によって変わるものである。 When the culture solution is refluxed or constantly passed, the culture solution can be circulated using, for example, a peristaltic pump. In that case, for example, as shown in FIG. 30, by changing the height of the injection port and the discharge port, it is not necessary to block the flow path with a solenoid valve or the like, and after the culture container is filled with a certain amount of liquid, It is also possible to drain the liquid. Specifically, the discharge port may be made higher than the injection port. The height varies depending on the amount of liquid to be filled in the culture vessel.
 尚、培養液の流通速度は、細胞への意図しないダメージを防ぐためにも乱流が生じない程度の流速が望ましい。この培養液の流通速度は、ペリスタポンプ等の動作を図示しない制御部により制御することで調節すればよい。 It should be noted that the flow rate of the culture solution is desirably a flow rate that does not cause turbulence in order to prevent unintended damage to the cells. The flow rate of the culture solution may be adjusted by controlling the operation of the peristaltic pump or the like by a control unit (not shown).
 上記では注液口と排出口の高さを変える例を示したが、これに限らず、電磁弁等で流路を遮断する開閉可能な部材を用いて制御部の制御により注液、廃液を調整する様にしても良い。 In the above, an example in which the height of the liquid injection port and the discharge port is changed is shown, but not limited to this, liquid injection and waste liquid is controlled by the control unit using an openable / closable member that shuts off the flow path with a solenoid valve or the like You may make it adjust.
 図29、30を用いて常時通液を行うための構成例を示したが、これに限らず、目的、用途に応じてインサート容器の配置形態を変えても良い。例えば、円状にインサートを配置しても良いし、インサートの設置高さをインサート毎に変えるようにしても良い。またその際、高さの調整機構を備えるようにしても良い。 29 and 30 show an example of a configuration for constantly passing liquids, but the present invention is not limited to this, and the arrangement form of the insert container may be changed according to the purpose and application. For example, the insert may be arranged in a circular shape, or the installation height of the insert may be changed for each insert. At that time, a height adjusting mechanism may be provided.
 上記の様な培養液の還流や常時通液により、培養容器下層は常に新鮮な培養液に満たされた状態となるために、還流や常時通液をしない場合と比較して、より品質が安定または向上した細胞培養を行うことが可能となる。 Because the culture medium is refluxed and constantly passed as described above, the lower layer of the culture vessel is always filled with fresh culture liquid, so the quality is more stable than when refluxing and not constantly flowing. Alternatively, improved cell culture can be performed.
 本発明は、細胞培養方法および細胞培養装置として有用である。 The present invention is useful as a cell culture method and a cell culture apparatus.
1…細胞培養装置
2…制御装置
3…恒温槽
4…培養容器
5…温度調節部
6…湿度調節部
7…ガス供給部
8…ガス濃度調節部
9…培養液・廃液タンク
10…培養液供給ポンプ
11…温度・湿度・ガスセンサ
12…細胞観察用CCDカメラ
13…表示装置
14…光干渉断層計
15…電気抵抗測定装置
16…抑制膜
17…多孔膜
18…枠体
19…温度センサー
20…インサート容器
21…培養容器
22…培養容器
DESCRIPTION OF SYMBOLS 1 ... Cell culture apparatus 2 ... Control apparatus 3 ... Constant temperature bath 4 ... Culture container 5 ... Temperature control part 6 ... Humidity control part 7 ... Gas supply part 8 ... Gas concentration control part 9 ... Culture solution / waste liquid tank 10 ... Culture solution supply Pump 11 ... Temperature / humidity / gas sensor 12 ... CCD camera 13 for cell observation ... Display device 14 ... Optical coherence tomometer 15 ... Electrical resistance measuring device 16 ... Suppression membrane 17 ... Porous membrane 18 ... Frame 19 ... Temperature sensor 20 ... Insert Container 21 ... Culture container 22 ... Culture container

Claims (15)

  1. 組織を形成する幹細胞または前駆細胞を培養する期間のうち、
    前記幹細胞または前駆細胞を自己複製させる期間内の第一の期間を第一の酸素供給量で培養し、
    前記幹細胞または前駆細胞の自己増殖による増殖の度合いに基づいて、前記第一の酸素供給量より高い酸素供給量の第二の酸素供給量に変更し、
    前記幹細胞が分化する期間を含む第二の期間を前記第二の酸素供給量にて培養し、
    前記第一の期間と前記第二の期間でフィーダー細胞を用いないことを特徴とする細胞培養方法。
    During the period of culturing the stem cells or progenitor cells that form the tissue,
    Culturing a first period of time within which the stem cells or progenitor cells self-replicate with a first oxygen supply,
    Based on the degree of proliferation due to self-proliferation of the stem cells or progenitor cells, change to a second oxygen supply amount of oxygen supply amount higher than the first oxygen supply amount,
    Culturing a second period including a period in which the stem cells differentiate with the second oxygen supply amount;
    A cell culture method, wherein no feeder cells are used in the first period and the second period.
  2. 上皮組織を形成する幹細胞または前駆細胞を培養する期間のうち、
    前記幹細胞または前駆細胞を自己複製させる期間内の第一の期間を第一の酸素供給量で培養し、
    前記幹細胞または前駆細胞の自己増殖による増殖の度合いに基づいて、前記第一の酸素供給量より高い酸素供給量の第二の酸素供給量に変更し、
    前記幹細胞が分化する期間を含む第二の期間を前記第二の酸素供給量にて培養し、
    前記第一の期間と前記第二の期間でフィーダー細胞を用いないことを特徴とする細胞培養方法。
    During the period of culturing stem cells or progenitor cells that form epithelial tissue,
    Culturing a first period of time within which the stem cells or progenitor cells self-replicate with a first oxygen supply,
    Based on the degree of proliferation due to self-proliferation of the stem cells or progenitor cells, change to a second oxygen supply amount of oxygen supply amount higher than the first oxygen supply amount,
    Culturing a second period including a period in which the stem cells differentiate with the second oxygen supply amount;
    A cell culture method, wherein no feeder cells are used in the first period and the second period.
  3. 前記第一の酸素供給量は、1%以上15%未満であって、
    前記第二の酸素供給量は、15%以上であることを特徴とする請求項1記載の細胞培養方法。
    The first oxygen supply amount is 1% or more and less than 15%,
    The cell culture method according to claim 1, wherein the second oxygen supply amount is 15% or more.
  4. 請求項1に記載の細胞培養方法で作製した細胞シート。 A cell sheet produced by the cell culture method according to claim 1.
  5. 組織を形成する幹細胞または前駆細胞を培養する培養領域を有する細胞培養装置であって、
    前記培養領域内の酸素供給量を調節する酸素調節部と、
    前記酸素調節部を制御する制御部と、
    前記細胞の培養期間のうち、
    前記幹細胞または前駆細胞が自己複製する期間内の第一の期間における第一の酸素供給量と、
    前記幹細胞または前駆細胞が分化する期間を含む第二の期間における、前記第一の酸素供給量よりも多い酸素供給量の第二の酸素供給量と、
    を制御し、
    前記幹細胞または前駆細胞の自己複製による増殖の度合いに基づいて、前記第一の酸素供給量を前記第二の酸素供給量に変更するよう、前記酸素調節部を制御する制御部と、
    を有し、
    前記第一の期間と前記第二の期間でフィーダー細胞を用いないことを特徴とする細胞培養装置。
    A cell culture device having a culture region for culturing stem cells or progenitor cells forming a tissue,
    An oxygen regulator that regulates the amount of oxygen supplied in the culture region;
    A control unit for controlling the oxygen control unit;
    Of the cell culture period,
    A first oxygen supply in a first period within which the stem cells or progenitor cells self-replicate;
    A second oxygen supply amount of an oxygen supply amount greater than the first oxygen supply amount in a second period including a period in which the stem cells or progenitor cells differentiate; and
    Control
    A controller that controls the oxygen regulator to change the first oxygen supply amount to the second oxygen supply amount based on the degree of proliferation of the stem cells or progenitor cells by self-replication; and
    Have
    A cell culture device, wherein no feeder cells are used in the first period and the second period.
  6. 上皮組織を形成する幹細胞または前駆細胞が培養される培養領域を有する培養容器を保持する容器保持部と、
    前記培養容器内の酸素供給量を調節する酸素調節部と、
    前記酸素調節部を制御する制御部と、
    前記幹細胞または前駆細胞の培養期間のうち、
    前記幹細胞または前駆細胞が前記培養領域に形成された培養面と接するように増殖する期間内の第一の期間における第一の酸素供給量と、
    前記培養面に増殖した幹細胞または前駆細胞が前記培養面上に重層するように増殖する期間を含む第二の期間における、前記第一の酸素供給量よりも酸素供給量の高い第二の酸素供給量と、
    を制御し、
    前記培養面と接するように増殖する期間における、増殖の度合いに基づいて、前記第一の酸素供給量を前記第二の酸素供給量に変更するよう、前記酸素調節部を制御する制御部と、
    を有し、
    前記第一の期間と前記第二の期間でフィーダー細胞を用いないことを特徴とする細胞培養装置。
    A container holding part for holding a culture container having a culture region in which stem cells or progenitor cells forming epithelial tissue are cultured;
    An oxygen control unit for adjusting the oxygen supply amount in the culture vessel;
    A control unit for controlling the oxygen control unit;
    Of the stem cell or progenitor cell culture period,
    A first oxygen supply amount in a first period within a period in which the stem cells or progenitor cells grow so as to be in contact with a culture surface formed in the culture region;
    A second oxygen supply having a higher oxygen supply amount than the first oxygen supply amount in a second period including a period in which the stem cells or progenitor cells grown on the culture surface grow so as to be layered on the culture surface Quantity,
    Control
    A control unit that controls the oxygen adjusting unit to change the first oxygen supply amount to the second oxygen supply amount based on the degree of growth in a period of growing so as to be in contact with the culture surface;
    Have
    A cell culture device, wherein no feeder cells are used in the first period and the second period.
  7. 前記第一の酸素供給量は、1%以上15%未満であって、
    前記第二の酸素供給量は、15%以上であることを特徴とする請求項5記載の細胞培養装置。
    The first oxygen supply amount is 1% or more and less than 15%,
    6. The cell culture device according to claim 5, wherein the second oxygen supply amount is 15% or more.
  8. 前記細胞培養装置は、
    前記幹細胞または前駆細胞を撮像する撮像部をさらに備え、
    前記制御部は、
    前記撮像部から取得した画像から、前記度合いを算出することを特徴とする請求項5記載の細胞培養装置。
    The cell culture device comprises:
    Further comprising an imaging unit for imaging the stem cells or progenitor cells,
    The controller is
    The cell culture device according to claim 5, wherein the degree is calculated from an image acquired from the imaging unit.
  9. 前記制御部は、
    前記自己複製する期間のうち、前記幹細胞または前駆細胞が前記培養領域内の所定領域まで自己複製によって増殖した場合、前記第一の酸素供給量を前記第二の酸素供給量に変更するよう、前記酸素調節部を制御することを特徴とする請求項8記載の細胞培養装置。
    The controller is
    During the self-replication period, when the stem cells or progenitor cells proliferate by self-replication up to a predetermined region in the culture region, the first oxygen supply amount is changed to the second oxygen supply amount, The cell culture device according to claim 8, wherein the oxygen control unit is controlled.
  10. 前記制御部は、
    前記自己複製する期間のうち、前記幹細胞または前駆細胞が前記培養領域内の所定領域まで自己複製によって増殖した後、所定時間が経過した時点にて、前記第一の酸素供給量を前記第二の酸素供給量に変更するよう、前記酸素調節部を制御することを特徴とする請求項8記載の細胞培養装置。
    The controller is
    In the self-replicating period, after the stem cells or progenitor cells proliferate by self-replication up to a predetermined region in the culture region, the first oxygen supply amount is set to the second oxygen when a predetermined time has elapsed. The cell culture device according to claim 8, wherein the oxygen control unit is controlled so as to change to an oxygen supply amount.
  11. 前記細胞培養装置は、
    前記培養領域に、幹細胞または前駆細胞を培養させる第一の面を有し、
    前記増殖の度合いは、前記第一の面に対する前記幹細胞または前駆細胞の占有率であることを特徴とする請求項5記載の細胞培養装置。
    The cell culture device comprises:
    The culture region has a first surface for culturing stem cells or progenitor cells,
    The cell culture device according to claim 5, wherein the degree of proliferation is an occupation ratio of the stem cells or progenitor cells to the first surface.
  12. 前記細胞培養装置は、
    前記幹細胞または前駆細胞を撮像する撮像部をさらに備え、
    前記制御部は、
    前記撮像部から取得した画像から、前記占有率を算出することを特徴とする請求項11記載の細胞培養装置。
    The cell culture device comprises:
    Further comprising an imaging unit for imaging the stem cells or progenitor cells,
    The controller is
    The cell culture device according to claim 11, wherein the occupation ratio is calculated from an image acquired from the imaging unit.
  13. 前記細胞培養装置は、
    前記占有率を表示させる表示部を有することを特徴とする請求項12記載の細胞培養装置。
    The cell culture device comprises:
    The cell culture device according to claim 12, further comprising a display unit that displays the occupation ratio.
  14. 前記制御部は、
    前記占有率に基づいて、前記第一の酸素供給量を前記第二の酸素供給量に変更するよう前記酸素調節部を制御することを特徴とする請求項12記載の細胞培養装置。
    The controller is
    13. The cell culture device according to claim 12, wherein the oxygen control unit is controlled to change the first oxygen supply amount to the second oxygen supply amount based on the occupation rate.
  15. 前記細胞培養装置は、
    前記幹細胞または前駆細胞を撮像する撮像部をさらに備え、
    前記制御部は、
    前記撮像部から取得した画像に基づいて、前記幹細胞または前駆細胞の大きさの平均の時系列変化を算出することを特徴とする請求項5記載の細胞培養装置。
    The cell culture device comprises:
    Further comprising an imaging unit for imaging the stem cells or progenitor cells,
    The controller is
    6. The cell culture device according to claim 5, wherein an average time-series change in the size of the stem cell or progenitor cell is calculated based on an image acquired from the imaging unit.
PCT/JP2012/001834 2012-03-16 2012-03-16 Cell sheet, cell culture method, and cell culture apparatus WO2013136372A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/001834 WO2013136372A1 (en) 2012-03-16 2012-03-16 Cell sheet, cell culture method, and cell culture apparatus
JP2014504465A JP5991368B2 (en) 2012-03-16 2012-03-16 Cell sheet, cell culture method and cell culture apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001834 WO2013136372A1 (en) 2012-03-16 2012-03-16 Cell sheet, cell culture method, and cell culture apparatus

Publications (1)

Publication Number Publication Date
WO2013136372A1 true WO2013136372A1 (en) 2013-09-19

Family

ID=49160347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001834 WO2013136372A1 (en) 2012-03-16 2012-03-16 Cell sheet, cell culture method, and cell culture apparatus

Country Status (2)

Country Link
JP (1) JP5991368B2 (en)
WO (1) WO2013136372A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152025A1 (en) * 2014-03-31 2015-10-08 テルモ株式会社 Method for evaluating quality of sheet-shaped cell culture
WO2016009789A1 (en) * 2014-07-18 2016-01-21 株式会社日立ハイテクノロジーズ Cell culture device and image analysis device
JP2016111975A (en) * 2014-12-16 2016-06-23 大日本印刷株式会社 Cell culture vessel and a method for producing cell laminate
WO2017038887A1 (en) * 2015-08-31 2017-03-09 アイ・ピース株式会社 Pluripotent stem cell production system
JP2017522016A (en) * 2014-06-27 2017-08-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Cultured mammalian limbal stem cells, production method thereof and use thereof
JP2018518190A (en) * 2015-06-25 2018-07-12 オークランド ユニサービシズ リミテッド Apparatus and method for culturing tissue
JP2020089304A (en) * 2018-12-05 2020-06-11 株式会社日立ハイテク Cell culture apparatus, and method for controlling gas concentration in culture solution
JP2021073942A (en) * 2019-11-12 2021-05-20 株式会社日立製作所 Cell sheet evaluation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141325A (en) * 2004-11-22 2006-06-08 Hitachi Medical Corp Culturing device
WO2009011139A1 (en) * 2007-07-13 2009-01-22 Mitsubishi Tanabe Pharma Corporation Method for isolation of cell, serum-free culture medium for cell, and method for culture of cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141325A (en) * 2004-11-22 2006-06-08 Hitachi Medical Corp Culturing device
WO2009011139A1 (en) * 2007-07-13 2009-01-22 Mitsubishi Tanabe Pharma Corporation Method for isolation of cell, serum-free culture medium for cell, and method for culture of cell

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
LUNI, C. ET AL.: "Design of a stirred multiwell bioreactor for expansion of CD34+ umbilical cord blood cells in hypoxic conditions", BIOTECHNOL.PROG., vol. 27, no. 4, 2011, pages 1154 - 1162 *
MANABU MIZUTANI ET AL.: "Saisei Kakumaku Johi Sheet Sakusei no Tameno Shinki Heisakei Baiyo Yoki no Kaihatsu", THE JAPANESE JOURNAL OF ARTIFICIAL ORGANS, vol. 34, no. 2, 15 November 2005 (2005-11-15), pages S-155 *
OHNISHI, S. ET AL.: "Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells", STEM CELLS, vol. 25, 2007, pages 1166 - 1177, XP002510772, DOI: doi:10.1634/stemcells.2006-0347 *
RODRIGUES, C.A.V. ET AL.: "Hypoxia enhances proliferation of mouse embryonic stem cell- derived neural stem cells", BIOTECHNOL.BIOENG., vol. 106, 2009, pages 260 - 270 *
SCHMITMEIER, S. ET AL.: "Improvement of metabolic performance of primary hepatocytes in hyperoxic cultures by vitamin C in a novel small-scale bioreactor", J.MEMBRANE SCI., vol. 298, 2007, pages 30 - 40, XP025320317, DOI: doi:10.1016/j.memsci.2007.04.006 *
SIMON, M.C. ET AL.: "The role of oxygen availability in embryonic development and stem cell function", NATURE REVIEWS MOL.CELL BIOL., vol. 9, 2008, pages 285 - 296 *
THOMAS, P.C. ET AL.: "Regulating oxygen levels in a microfluidic device", ANAL.CHEM., vol. 83, 2011, pages 8821 - 8824 *
TOYOSHIGE KOBAYASHI ET AL.: "Soshiki Kogaku no Tameno Jido Baiyo Sochi no Kaihatsu", INFLAMMATION AND REGENERATION, vol. 25, no. 4, 2005, pages 316 *
ZORAN, I.: "Oxygenation level as a factor in stem cell maintenance", SRPSKI ARCHIV ZA CELOKUPNO LEKARSTVO, vol. 134, no. L, 2006, pages 57 - 63 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152025A1 (en) * 2014-03-31 2015-10-08 テルモ株式会社 Method for evaluating quality of sheet-shaped cell culture
JPWO2015152025A1 (en) * 2014-03-31 2017-04-13 テルモ株式会社 Quality evaluation method for sheet cell culture
JP2017522016A (en) * 2014-06-27 2017-08-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Cultured mammalian limbal stem cells, production method thereof and use thereof
US10717962B2 (en) 2014-07-18 2020-07-21 Hitachi High-Tech Corporation Cell culture device and image analysis device
WO2016009789A1 (en) * 2014-07-18 2016-01-21 株式会社日立ハイテクノロジーズ Cell culture device and image analysis device
JP2016021915A (en) * 2014-07-18 2016-02-08 株式会社日立ハイテクノロジーズ Cell culture device and image analyzing device
JP2016111975A (en) * 2014-12-16 2016-06-23 大日本印刷株式会社 Cell culture vessel and a method for producing cell laminate
JP7465294B2 (en) 2015-06-25 2024-04-10 オークランド ユニサービシズ リミテッド Apparatus and method for culturing tissue
JP2018518190A (en) * 2015-06-25 2018-07-12 オークランド ユニサービシズ リミテッド Apparatus and method for culturing tissue
JP2022068312A (en) * 2015-06-25 2022-05-09 オークランド ユニサービシズ リミテッド Tissue culture apparatus and method
WO2017038887A1 (en) * 2015-08-31 2017-03-09 アイ・ピース株式会社 Pluripotent stem cell production system
US11286454B2 (en) 2015-08-31 2022-03-29 I Peace, Inc. Pluripotent stem cell manufacturing system and method for producing induced pluripotent stem cells
US10508260B2 (en) 2015-08-31 2019-12-17 I Peace, Inc. Pluripotent stem cell production system
US11518974B2 (en) 2015-08-31 2022-12-06 I Peace, Inc. Pluripotent stem cell production system
US11912977B2 (en) 2015-08-31 2024-02-27 I Peace, Inc. Pluripotent stem cell production system
JPWO2017038887A1 (en) * 2015-08-31 2017-08-31 剛士 田邊 Pluripotent stem cell production system
JP2020089304A (en) * 2018-12-05 2020-06-11 株式会社日立ハイテク Cell culture apparatus, and method for controlling gas concentration in culture solution
JP2021073942A (en) * 2019-11-12 2021-05-20 株式会社日立製作所 Cell sheet evaluation method
JP7316912B2 (en) 2019-11-12 2023-07-28 株式会社日立製作所 Cell sheet evaluation method

Also Published As

Publication number Publication date
JP5991368B2 (en) 2016-09-14
JPWO2013136372A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP5991368B2 (en) Cell sheet, cell culture method and cell culture apparatus
JP5802751B2 (en) Cell culture device and cell culture method
AU2016281433B2 (en) Tissue culture apparatus and method
JP5894260B2 (en) Culture container and automatic culture device
RU2530169C2 (en) Membrane as substrate for growing cells of retinal pigment epithelium (versions), application thereof and method of inoculating such cells
TWI576433B (en) Cell culture system and cell culture method
JP5866006B2 (en) Culture container and automatic culture device
WO2012008368A1 (en) Cell culture vessel and cell culture device
CN103898056B (en) Cell culture medium and the application in cultivating people&#39;s primary tumor cell thereof
JP6326827B2 (en) Cell culture device and cell culture method
JP2013514068A (en) Continuous culture equipment
JP5960256B2 (en) Culture container and automatic culture device
WO2015004762A1 (en) Cell culturing method, device, and cell sheet
KR100879597B1 (en) Device for Cell Manipulation and Cultivation in a Closed Environment
JP2005218368A (en) Apparatus for culturing cell
JP2008271915A (en) System for supplying closed culture medium to culture small cells
WO2018124888A1 (en) Method of transporting in vivo grown tissue
CN110507859A (en) The tissue engineering spinal cord tissue construction method in area containing vascularization and aixs cylinder straight trip myelinization area
JP2018532385A (en) Tissue engineering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504465

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871479

Country of ref document: EP

Kind code of ref document: A1